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Thesis directed by Associate Professor Brett A. Melbourne

Accurate descriptions of ecological processes often require accounting for demographic

stochasticity, the variation that arises in populations and communities as a result of prob-

abilistic demography (e.g., birth, death, migration). Much theory has been developed for

understanding the population-level effects of demographic stochasticity, but ecology largely

lacks rigorous community-level descriptions of its consequences. Furthermore, how demo-

graphic stochasticity affects other complex biological systems, such as populations respond-

ing to continuously-changing environments or populations undergoing range expansion, is

not well understood. Here I address some of these gaps using theoretical and experimental

approaches. First, I examine how demographic stochasticity affects competitive dynamics

in two-species communities and find, both experimentally and using simulations, that de-

mographic stochasticity can produce outcomes not predicted by traditional deterministic

models. In the next section, I consider the effects of continuously-changing environments

and describe a continuous-time simulation approach that combines environment-dependent

demography and demographic stochasticity. I simulate the approach for multiple ecologi-

cal models and environmental change scenarios and find that accounting for environment-

dependent demography in stochastic systems is often necessary for avoiding bias. In the

last two sections, I examine the applied issue of geographic range shifts, a multi-faceted

phemonemon affecting many species globally and one with substantial economic and social

costs. Recognizing the significant variation in range shifts arising from, in part, probabilis-

tic demography, I use highly-replicated experimental approaches to understand the effects

of two different processes thought to affect range shifts: spatial selection, and interspe-

cific competition. In the first of these sections, I find that the effects of spatial selection
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depend on both the intrinsic dispersal ability of expanding organisms as well as the environ-

ment into which they expand. In the second section, I show, for the first time empirically,

that interspecific competition can effectively halt range expansion for multiple generations.

Throughout this work, I illustrate both the role of demographic stochasticity as an emergent

driver of ecological dynamics and the importance of using controlled, replicated experiments

for understanding highly stochastic biological processes.
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Chapter 1

Introduction

A central goal in ecology is to describe species responses to biotic and abiotic fac-

tors using mathematical models. Commonly, ecologists apply models that are deterministic,

meaning that for a given set of model parameters and initial conditions, they always predict

the same outcome. Many of the foundational models or approaches in ecology are determin-

istic in this way, including the Lotka-Volterra equations (Lotka, 1925; Volterra, 1926), the

Levins metapopulation model (Levins, 1969), consumer-resource models (MacArthur, 1970),

biological chaos theory (Schaffer, 1984), S-I-R disease models (Kermack and McKendrick,

1927), and coexistence theory (Tilman, 1982; Chesson, 2000). While such equations are and

will continue to be useful to ecologists, they represent an intentionally simplified view of

biology (“mathematical hope rather than biological reality”, according to Renshaw (1991),

p. xiii) insofar as natural populations and communities rarely exhibit dynamics exactly in

line with classic deterministic models (e.g., Taylor et al., 1980; Bjrnstad et al., 1998; Rohani

et al., 2002). Moreover - and especially problematic for a purely deterministic conception of

biology - even under highly controlled laboratory conditions, replicated systems frequently

exhibit dissimilar dynamics and outcomes (e.g., Park, 1954; Dickerson and Robinson, 1985;

Fox and Smith, 1997; Desharnais et al., 2006; Melbourne and Hastings, 2009).

When population dynamics differ from deterministic expectations, the unexplained

variation is often referred to as “noise” or “stochastic”. In ecology, these terms are applied

to variation arising from at least three distinct phenomena: (1) misspecificed models (e.g.,
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models missing relevant parameters); (2) error, in either observations or the precision of

measurements; and (3) intrinsic variation in the responses of individuals (or cells, or DNA,

etc.) to biotic or abiotic conditions. Both (1) and (2) represent significant problems for

ecology and other disciplines, but do not conflict with a deterministic conception of biology,

and will not be discussed further. Instead, I will focus on the intrinsic variation arising from

(3), which at the population-level is called demographic stochasticity.

Demographic stochasticity arises when demographic processes (e.g., birth, death, mi-

gration) occur probabilistically (May, 1973; Renshaw, 1991; Melbourne, 2012). In other

words, it is a consequence of demographic processes having multiple possible outcomes (in-

stead of only one possible outcome) for the same initial conditions (i.e., the same environ-

ment, the same genetic variation, etc.). In mathematics, any such process is known formally

as a stochastic process (van Kampen, 1992; Renshaw, 1991; Ross, 2014) and can be described

using probability mass/density functions. For instance, a (theoretical) coin flip is a classic

example of a stochastic process, and it is straightforward to determine the probability of

obtaining exactly k heads for, say, 10 coin flips using the probability mass function of a bi-

nomial distribution (in this case:
(
10
k

)
0.5k(1− 0.5)10−k). In biology, where we might instead

be interested in modelling the probability distribution of population sizes over time, more

complicated methods for obtaining the relevant distributions are usually necessary (e.g., Kol-

mogorov forward equations; Kolmogorov (1931)). Nevertheless, the general notion of dealing

with probabilities rather than deterministic certainties is the same for random coin flips as

it is for more complex biological outcomes.

In addition to allowing for variable demographic outcomes, a probabilistic treatment

of demography means that population size can directly affect population-level variability.

This results from the fact that populations are a collection of a finite number of individ-

uals and thus are influenced by a finite number of realizations (or samples) of underlying

demographic processes. When populations are large and well-mixed, there will generally be

little difference between the expected population size (i.e., the most likely outcome of all
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demographic processes considered together) and what is observed. However, in the same

way that a small number of fair coin flips may not produce the expected 50:50 ratio of heads

to tails, a small number of stochastic demographic processes may not produce the expected

population size. Thus, not only does probabilistic demography mean that identical individ-

uals in a population can vary in their demography, it means that the collective demography

of entire populations (i.e., population trajectories) can change according to population size

and, in some cases, vary significantly from expectations.

While there is some debate about whether demographic processes are inherently proba-

bilistic (some argue they merely seem probabilistic because we lack the information necessary

for describing them deterministically; sensu Clark (2009)), there is good evidence that bi-

ological processes at the microscopic scale behave non-deterministically. Examples include

observations from highly controlled experiments showing significant variation in the traits

of genetically identical (single-celled) organisms experiencing identical environmental condi-

tions (e.g., Spudich and Kosland, 1976; Avery, 2006; Norman et al., 2013; Adiciptaningrum

et al., 2015), as well as evidence of probabilistic gene (e.g., Kærn et al., 2005) and protein

expression (e.g., Novick and Weiner, 1957; Bar-Even et al., 2006). How intrinsic variability

in these microscopic processes scales up for larger organisms composed of thousands or mil-

lions of cells is unclear, but it seems reasonable to suppose that microscopic variability could

lead to macroscopic variability in demographic processes such as birth or death. The only

study to date that has come close to characterizing such macroscopic variability is Stroustrup

et al. (2016), which documented variation in individual death rates for tens of thousands of

(non-clonal) Caenorhabditis elegans (approximately 1000 cells) and found broad adherence

in the data to the well-known stochastic Poisson process. My own unpublished work on the

demographic rates of Daphnia magna clones (shown in Figure 1.1) is also suggestive (though

not definitively) of non-deterministic demography at macroscopic scales.

Whether demographic processes are actually probabilistic, or merely seem that way to

us (or other organisms) given the available information/scale of analysis, is not necessarily
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Figure 1.1: The proportion of clonal Daphnia magna having their first brood (blue) or
dieing (black) on a particular day. All individuals (65 total) were kept in separate containers
under controlled conditions and were fed the same concentration of algae (Chlamydomonas
reinhardtii, from a large, well-fixed stock culture) every day.
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important so long as they can be described quantitatively. The earliest work on such descrip-

tions for biology came with Feller (1939), who used Kolmogorov‘s foundational approaches

for modelling stochastic processes (Kolmogorov, 1931) to examine probabilistic versions of

the Lotka-Volterra equations. This was followed by Kendall (1949), who examined solu-

tions to a closely-related stochastic birth-death process. Shortly thereafter came Bartlett‘s

(1960) seminal book on continuous-time stochastic models in ecology and epidemiology, and

since then, there has been considerable theory on the implications of demographic stochas-

ticity for populations and communities (e.g., Kurtz, 1970; Nisbet and Gurney, 1982; Lande,

1993; Matis and Kiffe, 2000; Nsell, 2001; Kilpatrick and Ives, 2003; Orrock and Fletcher,

2005; Vindenes et al., 2008; Orrock and Watling, 2010; Gokhale et al., 2013; Fisher and

Mehta, 2014). From this and other work, it has been shown that stochastic versions of

some simple population-level (and rarely, community-level) models can have widely different

outcomes and dynamics than their deterministic analogs, especially when demography is

non-linear (e.g., density-dependent growth) or when population sizes are small. Predicted

effects include increased extinction risk in populations (Shaffer, 1981; Lande, 1993), higher

probabilities of coexistence between competitors (Orrock and Fletcher, 2005; Orrock and

Watling, 2010), and increased persistence time of disease (Bartlett, 1957). Some of these

effects have been supported by empirical work, most notably the influence of stochasticity

on extinction rates (Burkey, 1997; Belovsky et al., 1999; Desharnais et al., 2006; Griffen and

Drake, 2008; Ovaskainen and Meerson, 2010); however, most remain theoretical and have not

been demonstrated or quantified in real populations. Moreover, the impacts of demographic

stochasticity on populations with complex demography (e.g., multiple life-stages), or on mul-

tiple interacting populations (i.e., communities), are largely unexplored either theoretically

or empirically.

Given that the effects of demographic stochasticity on simple populations and commu-

nities go beyond simply adding noise to their dynamics, it is worth considering the effects of

demographic stochasticity for the more complex systems and scenarios that are of concern
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to ecologists. As such, my aim is to move beyond the “mathematical hope” of

deterministic biology and help address important basic and applied questions by

providing more realistic descriptions of stochastic biological phenomena.

1.1 Overview of Chapters

In Chapter 2, I address the basic question of how demographic stochasticity affects a

community of competitors. Prior theoretical work has suggested that when population sizes

are small, demographic stochasticity alone can alter competitive outcomes in communities.

In particular, the variability caused by demographic stochasticity has been predicted to ef-

fectively weaken competition in small patches, allowing weaker competitors to outcompete

superior competitors (Orrock and Fletcher, 2005; Orrock and Watling, 2010; Pedruski et al.,

2015; Okuyama, 2015). I test this theory in a laboratory system of protists and examine

how absolute population size affects the likelihood of coexistence between competitors. Fur-

ther, I use continuous-time stochastic models of competition to examine how demographic

stochasticity affects other aspects of community dynamics, such as mean densities over time

and the effective demographic rates of competitors.

Chapter 3 addresses how demographic stochasticity interacts with environmental

change. Specifically, I consider how to account for environment-dependent demography (i.e.,

demographic rates that respond to environmental change) in a commonly-used algorithm

for simulating stochastic continuous-time models, Gillespie‘s stochastic simulation algorithm

[SSA] (Gillespie, 1977). The issue has relevance to both basic and applied researchers as the

traits of many species are known to respond to the environment (e.g., Deutsch et al., 2008;

Dell et al., 2011; Estay et al., 2014; Stroustrup et al., 2016), yet continuous-time stochastic

ecological models rarely account for such environmental-dependency. I describe an exten-

sion to the SSA (SSA+) that allows demography to respond to environmental fluctuations

and compare predictions SSA+, under a variety of environmental change scenarios, to the

standard SSA for two fundamental ecological models (exponential growth, logistic growth).
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Further, I outline a computationally inexpensive approach for estimating when and under

what circumstances it can be important to fully account for environment-dependent demog-

raphy for any class of model.

In Chapters 4 and 5, I shift away from examining the effects of demographic stochas-

ticity specifically and focus on the applied issue of range shifts, a phenomenon that has been

of great interest to biologists for decades (Andrewartha and Birch, 1954). Range shifts,

particularly the spread or expansion of invasive species, impose significant economic and

social costs. For example, the range expansion of invasive species into the United States has

previously been estimated to cost $120 billion a year (Pimentel et al., 2005). It is a prob-

lem globally as well, with invasive species esimated to have contributed to as much as 50%

of recent extinctions (Clavero and Garcia-Berthou, 2005). Moreover, the anticipated range

shifts of native and endangered species due to factors such as climate change and habitat loss

(Chen et al., 2011), is expected to impose significant costs due to losses of ecosystem services

(e.g., forest products, tourism) and ecosystem functioning (e.g., water use efficiency). As

a result, modelling the dynamics of range expansion is an important goal in applied ecol-

ogy. However, ecologists have so far been unsuccessful in creating accurate models of range

expansion for such applications (Kubisch et al., 2014; Louthan et al., 2015).

Part of the difficulty associated with modelling range expansion is that it represents

the sum of many different stochastic demographic processes occurring over time and across

space. As a result, the best predictive models have come from laboratory experiments, where

there is sufficient data and - crucially - sufficient replication to characterize the probability

distributions of the many underlying demographic processes (e.g., Fronhofer and Altermatt,

2015). Such laboratory efforts have so far been modestly successful for predicting single-

species range expansion into unoccupied habitat (e.g., Melbourne and Hastings, 2009; Szücs

et al., 2017; Hufbauer et al., 2015) and have even considered the added effects of evolu-

tionary change during expansion (Fronhofer and Altermatt, 2015; Williams et al., 2016;

Weiss-Lehman et al., 2017; Ochocki and Miller, 2017). However, to date these efforts have
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not considered the additional complexities we would expect to occur during natural range

shifts, such as the effects of heterogenous environments, different rates of local adaptation,

and competition between species. In the interest of creating more realistic templates for

modelling stochastic range expansions in nature, Chapters 4 and 5 examine how evolution

and competition between species affects range dynamics. Each chapter describes large, long-

term experiments involving the flour beetle model system (Tribolium species) expanding

across artificial landscapes. Chapter 4 examines the role of evolutionary change during ex-

pansion for each of two species of beetles experiencing different environments, and Chapter

5 examines the role of both competition between species in slowing, or halting altogether,

the speed of expansion.

Finally, in Chapter 6, I summarize my results and briefly discuss the importance and

tractability of accounting for demographic stochasticity in natural systems.



Chapter 2

Demographic stochasticity alters expected outcomes in experimental and

simulated communities

Geoffrey B. Legault, Jeremy W. Fox, Brett A. Melbourne

2.1 Introduction

Studies of interspecific competition in communities often treat competition as a de-

terministic process, meaning that the same initial conditions (e.g., genes, traits, niches,

environment, etc.) are expected to produce the same competitive outcomes (e.g., coexis-

tence, exclusion). For example, it is common to model communities using deterministic

equations representing species niches (e.g., Lotka-Volterra equations: Lotka, 1925; Volterra,

1926) and to use solutions of those equations to make predictions about whether and how

coexistence occurs (Gause, 1934; Macarthur and Levins, 1967; Luckinbill, 1979; Hansen and

Hubbell, 1980; Chesson, 2000; Levine and HilleRisLambers, 2009). However, deterministic

equations are not always sufficient for predicting outcomes in real communities (e.g., Park,

1954; Dickerson and Robinson, 1985; Fox and Smith, 1997; Fukami, 2004).

One reason the deterministic framework may be inadequate for predicting competitive

outcomes is that community dynamics are also affected by demographic stochasticity, the

randomness in population demographic rates (e.g., birth, death) arising from the discrete and

probabilistic nature of biological processes (May, 1973; Renshaw, 1991; Melbourne, 2012).

The importance of demographic stochasticity is relatively well-established, with a large body
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of theoretical and experimental work showing that it significantly increases extinction risk

for small populations (Bartlett, 1960; Kurtz, 1970; Shaffer, 1981; Lande, 1993; Burkey, 1997;

Belovsky et al., 1999; Matis and Kiffe, 2000; Griffen and Drake, 2008; Ovaskainen and Meer-

son, 2010). However, it has so far been difficult to generalize beyond effects on extinction

risk as the impacts of demographic stochasticity appear to be context-specific, for instance

depending on population structure (Engen et al., 2005), specific vital rates (Vindenes et al.,

2008), and nonlinearities (Bolnick et al., 2011). Further, even though demographic stochas-

ticity tends to be most important in small populations, large populations may also be strongly

affected by demographic stochasticity if total abundance is divided across many different life

stages or if particular life stages play major roles in demography (Melbourne and Hastings,

2008). Such context-specific effects at the population level are compounded at the com-

munity level, where these effects plus those related to interspecific interactions must also

be taken into account. For instance, when a large population of one species interacts with

small populations of other species, the demographic stochasticity exhibited by those small

populations will affect the large population. It is perhaps not surprising then, that despite

continued interest in how demographic stochasticity affects communities, it is a topic that

remains largely unresolved (Bell, 2000; Hubbell, 2001; Volkov et al., 2003; David, 2004; Adler

et al., 2007; Chase, 2007; Chase and Myers, 2011; Rosindell et al., 2012; Vellend et al., 2014;

Wang et al., 2016).

The few theoretical and simulation studies on the effects of demographic stochasticity

in communities show a range of impacts, including both higher and lower probabilities of

coexistence (Orrock and Fletcher, 2005; Orrock and Watling, 2010; Fisher and Mehta, 2014;

Pedruski et al., 2015), lower spatial synchrony (Simonis, 2012), and the disruption of co-

evolutionary dynamics (Gokhale et al., 2013). Most theoretical studies to date also restrict

attention to discrete time population models rather than the continuous-time models ap-

propriate for species with overlapping generations, or only approximate the added variation

caused by demographic stochasticity (Simonis, 2012; Gokhale et al., 2013; Okuyama, 2015,
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but see). Empirical work on demographic stochasticity has tended to proceed independent

of such theory, focusing instead on the effects of stochasticity on long-term community-

level outcomes such as local and regional species diversity (e.g., Spencer and Warren, 1996;

Fukami, 2004; Wang et al., 2016). We are aware of only one study of demographic stochastic-

ity that has linked mechanistic population-level models with real community-level patterns

(Gilbert and Levine, 2017), a study of plant communities.

Here we use experimental microcosms and exact stochastic simulations in continuous-

time to understand how demographic stochasticity affects population dynamics in simple

communities of consumers competing for shared food resources. Specifically, we manipu-

lated total abundance (and thus demographic stochasticity) and examined its effects both

on exclusion rates and abundances over time of competitors. We also developed a stochas-

tic continuous-time competition model to check whether our experimental results can be

explained by demographic stochasticity alone, and to explore a wider range of ecological

scenarios than could be explored experimentally. Our approach was as follows:

(1) Experimental microcosms: We created three types of two-species communities, con-

sisting of protist and rotifer competitors with a range of competitive abilities between

them (i.e., from small to large differences in fitness). We manipulated the strength

of demographic stochasticity in these communities by varying absolute abundances

over 2 orders of magnitude (500 to 40,000 individuals). We then observed how our

manipulations affected competitive outcomes and species abundances over time.

(2) Stochastic simulations: We used Gillespie’s stochastic simulation algorithm (SSA) to

simulate a consumer-resource model for a range of absolute abundances and differ-

ences in competitive abilities, similar to those in our experiment. We then observed

how demographic stochasticity in these simulations affected competitive outcomes

and dynamics. Finally, we assessed how demographic stochasticity quantitatively

changed fitness difference by comparing fitness differences in the deterministic model
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to the effective fitness differences implied by the mean dynamics of the stochastic

model. Any such changes to effective population processes would reflect real, prac-

tical effects that demographic stochasticity could have on the drivers of community

dynamics.

2.2 Methods

2.2.1 Part 1: Experimental microcosms

We used laboratory microcosms to examine the impact of absolute abundance (a proxy

for demographic stochasticity) on competitive outcomes and dynamics. Experimental units

consisted of different sized jars containing liquid medium, bacteria, and one or two pro-

tist/rotifer species. The three species used were the ciliate protists Paramecium aurelia and

Paramecium caudatum, and the bdelloid rotifer Philodina americanum. All three species

are fast-growing bacterivores and came from large laboratory stock cultures (> 1.5 years

old) raised under constant conditions (described below). From prior work in our system and

under the same experimental conditions, we knew that P. americanum was the strongest

competitor of the three focal species, followed by P. caudatum and, lastly, P. aurelia.

Microcosm medium was spring water collected from Big Hill Springs Provincial Park,

Alberta (Canada), mixed with 1.0 g/L of crushed protozoan pellets (Carolina Biological

Supply, USA). Prior to the start of the experiment, the medium was autoclaved and allowed

to cool for 1.5 hours before being vacuum filtered through autoclaved Whatman GF/A

filters (2-3 for each L of fluid) to remove large particles. Each litre of filtrate was then

inoculated with a long-running (more than 1.5 years) lab strain of unidentified bacteria

originally isolated from a stock culture of Colpidium striatum. All filtrations and inoculations

were done under sterile conditions in a laminar flow hood, but it is likely that small amounts

of unknown bacteria were also introduced into the medium at this time. The inoculated

medium was then loosely capped and stored in an incubator with constant light and a
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constant temperature of 22 C (stirred every 10-12 hours) until day 0 of the experiment (66

hours total).

Three microcosm sizes were used to manipulate the maximum population size of the

protist communities: 1 mL (small), 10 mL (medium), and 80 mL (large). Air-surface to vol-

ume ratios were constant between small and large jars, but were slightly lower in medium-

sized jars. Except during sampling (see below), all jars were kept with loose caps in in-

cubators with constant temperature (22 C) and 24 hours of light for the duration of the

experiment.

On day 0 of the experiment (August 12th 2013), autoclaved jars were filled in a laminar

flow hood with the inoculated/incubated medium and seeded with all possible two-species

combinations of the three microzooplankton species: P. aurelia and P. caudatum (AC), P.

aurelia and P. americanum (AP), and P. americanum and P. caudatum (PC).

In the small jars, 5 individuals of each relevant species were added directly to the

jars to create initial densities of exactly 5 mL-1. For the medium and large jars, it was

impractical to add a precise number of individuals to attain starting densities of 5 mL-1, so

we subsampled individuals from stock cultures of known densities to create initial densities

of approximately 5 individuals mL-1. Each combination of jar size and species pairing was

replicated 12 times, for a total of 108 experimental microcosms. We also established 10

replicate monocultures of each species at the large jar size, but do not report those results

here (but see Appendix A: Monocultures).

2.2.1.1 Sampling and census

On day 2 and every two days thereafter, jars were shaken to homogenize the distribution

of microzooplankton) and a 0.3 mL subsample was removed. Subsamples were carefully

scanned under a dissecting microscope to count the number of individuals of each species.

Then, subsamples were returned to the jars (i.e., non-destructive sampling). In practice,

a small amount of liquid (free of protists and/or rotifers) was left behind on the counting
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plates, meaning that our sampling procedure gradually reduced the volume of liquid within

jars over time. This effect was only noticeable in the small jars beginning after day 36.

On day 8 and every eight days thereafter, 9% of the fluid (including protists and/or

rotifers) in each jar (0.09 mL for small jars, 0.9 mL for medium jars, 7.2 mL for large jars)

was removed in a laminar flow hood and replaced with new sterile media (made as above,

except without the addition of bacteria). We replaced the removed medium with a volume

of fresh sterile medium equal to 10% of the nominal culture volume (0.1 mL for small jars,

1 mL for medium jars, 8 mL for large jars). We replaced a larger volume of medium than

we removed to replace evaporation and medium lost during sampling.

Individual jars were removed from the experiment once competitive exclusion had been

observed. Competitive exclusion was defined as the absence of one of the two competing

species in the 0.3 mL subsample and, for the medium and large jars, from a subsequent 10%

subsample (1 mL for medium jars, 8 mL for large jars). We ended the experiment on day

72 after observing the last exclusion in our competitive pairings.

2.2.1.2 Analysis of competitive outcomes and mean densities

To assess the effects of demographic stochasticity on competitive outcomes, we com-

pared exclusion rates for the AC, AP, and PC pairings across jar sizes. We tested the effect of

jar size on competitive outcome statistically using a logit model (family: binomial; exclusion

by the superior competitor was scored as 1, 0 otherwise), with species pairing and jar size

as categorical explanatory variables. All jars had the same initial and maximum densities,

differing only in their initial and maximum absolute abundances. In addition, environmental

conditions and initial resources were the same for jars of all sizes. Thus, jar size was treated

as a proxy for the strength of demographic stochasticity.

We examined the effects of jar size on mean abundances by comparing the 95% con-

fidence intervals of the abundances in different jar sizes over time. We focus on estimating

and reporting experimental means and their uncertainties but note that if the confidence
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intervals of two means do not overlap, there are highly significant differences between those

means. Using confidence intervals of abundances over time allowed us to broadly (and con-

servatively) compare abundances over time in the different jar sizes.

2.2.2 Part 2: Stochastic simulations of consumer-resource dynamics

We used simulations of a simple stochastic consumer-resource model to understand

how demographic stochasticity could alter competitive outcomes, mean abundances over

time, and effective demographic rates in two-species competitive communities. The model

describes two consumers (N1 and N2) competing for a shared resource (R), the deterministic

version of which is as follows (MacArthur, 1970):

dR

dt
= rR(1− R

K
)− a1RN1 − a2RN2 (2.1)

dN1

dt
= e1a1RN1 − d1N1

dN2

dt
= e2a2RN2 − d2N2

where r is the density-independent growth rate of the resource, K is the carrying capacity

of the source, ai is the area of attack of consumer i (proportional to the size of the system),

ei is the conversion efficiency of consumer i, and di is the density-independent per-capita

mortality rate of consumer i.

When only a single consumer is present in model 2.1, the resource R has a stable

equilibrium (R∗) equal to di
eiai

. This equilibrium is the lowest abundance of the resource at

which consumer i has a non-negative growth rate. In the two-consumer case, the system

will approach or oscillate towards the lowest of these R∗s, meaning that the consumer with

the lowest R∗ will ultimately exclude its competitor (Tilman, 1982). Thus, any difference

between consumers in R∗ values represent a fitness inequality (Chesson, 2000; Adler et al.,

2007).
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A comparable stochastic version of model 2.1 can be created by assigning probabilistic

intensity functions (i.e., transition rates) to discrete demographic events (e.g. birth, death).

This type of model, also known as a jump process, along with Gillespie’s stochastic simu-

lation algorithm (SSA), can then be used to accurately simulate demographic stochasticity

in continuous-time (Gillespie, 1977; Black and McKane, 2012). The stochastic analogue of

model 2.1 has the following 6 discrete events:

R birth: R
r1R(1− R

K
)

−−−−−−→ R + 1 (2.2)

R death: R
(1−e1)a1RN1+(1−e2)a2RN2−−−−−−−−−−−−−−−−→ R− 1

R death, N1 birth: R, N1
e1a1RN1−−−−−→ R− 1, N1 + 1

R death, N2 birth: R, N2
e2a2RN2−−−−−→ R− 1, N2 + 1

N1 death: N1
d1N1−−−→ N1 − 1

N2 death: N2
d2N2−−−→ N2 − 1

Each equation above an arrow represents the probability that a transition occurs. For

example, the first line (R birth) represents the birth of a resource (i.e., the population size of

R increases by 1) and occurs with probability r1R(1− R
K

) (i.e., the resource grows logistically).

The expected value of model 2.2 broadly matches model 2.1, except for differences arising

from lattice effects (due to discrete individuals: Henson et al., 2001) and Jensen’s inequality

(Jensen, 1906; Ruel and Ayres, 1999; Inouye, 2005; Chesson et al., 2005). Further details on

developing the stochastic model, as well as R code, are given in Appendix A.

We simulated model 2.2 using the SSA across 11 different sets of parameter values,

beginning with the neutral case (i.e., both consumers had identical demographic parameters),

then for fitness inequalities of 0.1%, 1%, and 5% and then for increasing fitness inequalities

between consumers in 5% increments (by lowering the death rate of consumer 2) up to a

difference of 50%. Two additional niche differences (0.1% and 1%) were simulated to aid

in our interpretation of the exclusion results below, but these simulations were not used for

subsequent model-fitting. Parameter values for these simulations (see Table 2.1) were chosen
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such that: (1) they produced dynamics broadly similar to those observed in our experimental

system; (2) quasi-equilibria for consumers were near what we observed in our experimental

monocultures (densities between 100 and 300 per 1/3 mL); (3) the quasi-equilibrium for the

resource was higher than consumer equilibria by at least one order of magnitude; and (4)

consumer death rates were high. In preliminary testing, we found that stochastic simulations

of consumer-resource models with a highly abundant resource such as bacteria (with densities

as high as 108 cells per mL) were computationally impractical using our methods. Thus,

point (3) is a compromise to speed computation by assuming that the bacterial resource

grows and is consumed in multiples of individuals.

Table 2.1: Parameter values for the neutral simulations of the stochastic consumer-resource
model. For the large population size, K and ai were scaled so that density-dependence
was identical across population sizes. Non-neutral simulations used these parameter values,
lowering only the death rate of consumer 2 in increments of 0.01 (making consumer 2 an
increasingly superior competitor).

Model parameters Values

r1 1
K (small) 1000
K (large) 10000

a1, a2 (small) 0.04
a1, a2 (large) 0.004

e1, e2 0.02
d1, d2 0.2

For each set of parameter values, we simulated model 2.2 20,000 times using the Gille-

spie algorithm (Gillespie, 1977; Black and McKane, 2012) for two different initial commu-

nity sizes, which differed by an order of magnitude in terms of absolute abundance: small

(R(0) = 1000, N1(0) = N2(0) = 5) and large (R(0) = 10000, N1(0) = N2(0) = 50). Sim-

ulations were run to t = 1000, at which point competitive exclusion had been observed in

the majority of the neutral simulations, in which the two consumer species had identical R∗

values (competitive exclusion happened earlier as fitness differences increased).
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To ensure that small and large simulations differed only with respect to the strength of

demographic stochasticity, we scaled all density-dependent parameters so that simulations

began in the same area of state space and so that individuals experienced the same degree of

density-dependence throughout (e.g., Nisbet et al., 2016). Specifically, the resource carrying

capacity, K, was scaled in the same way as initial abundance (Ksmall = 1000, Klarge = 10000)

and the attack rates, ai, which represent the proportion of the total habitat area subject to

attack, were reduced by a factor of 10 for the large simulations.

2.2.2.1 Simulation analysis and quantifying effective fitness inequalities

As with the experimental data, we quantified the probability of competitive exclu-

sion across the different fitness inequalities and simulation sizes. Further, we assessed how

population size affected abundances over time. Finally, we quantified how demographic

stochasticity altered effective demographic rates and hence the effective fitness inequality

between the two consumers.

To quantify change in abundance over time, for each parameter combination of the

stochastic model we calculated the mean density (and its 95% confidence interval, as in

the experiment) across 20,000 replicate simulations, for each time point (t = 1-100), condi-

tioning on both consumers being extant. Using the conditional means focuses our analysis

on quantitative differences between multi-species simulations and avoids biases in estimates

that could arise from fitting to simulations where a consumer had previously gone extinct

(differences are more extreme if these are included).

One way to quantify how stochasticity alters dynamics of abundance over time is to ask

how demographic rates in a deterministic model would need to change to compensate for the

effect of demographic stochasticity. In other words, what are the effective new parameter

values of the deterministic model that best capture the mean dynamics of the stochastic

model? We estimated effective parameter values by fitting the deterministic model to the

simulated data. To do so, we used a least square approach in which parameter estimates were
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optimized by minimizing the difference in the sum of squares between the solution of the

deterministic model (model 2.1) and the conditional means (above). This method produces

the same mean parameter estimates as a maximum likelihood approach where model 2.1 is

treated as the mean of a normal or Poisson distribution.

In separate simulations of model 2.1 where the resource grew in the absence of con-

sumers, we found that the effect of stochasticity on the effective values of r1 and K were

negligible. Thus, we assumed that the resource parameters, r1 and K, were fixed, leaving

six free parameters to be estimates (a1, a2, e1, e2, d1, d2).

We expressed the fitted parameters as the relative fitness inequality between consumers,

specifically:

1−
R∗
N2

R∗
N2

(2.3)

where R∗
Ni

is the stable equilibrium for the resource in model 2.1 when only Ni is present. We

obtained 95% confidence intervals for the estimated fitness inequality using a non-parametric

bootstrap (percentile method; Davidson and Hinkley (1997)). As described in Appendix A,

such model-fitting was possible only for the simulated data.

We used the program R, version 3.4.0 (R Core Team, 2017), with package ’deSolve’

(Soetaert et al., 2010). See Appendix A for example code for these steps.

2.3 Results

2.3.1 Competitive exclusion in the experimental microcosms

We knew from prior observations of the three species of zooplankton (G. Legault,

unpublished data) that the competitive hierarchy in our system was as follows: Philodina

americanum >> P. caudatum > P. aurelia. As a result, we expected the AP and PC pair-

ings to be characterized by large fitness inequalities and the AC pairing to be characterized

by small fitness inequalities between competitors. This assumption agreed with our experi-

mental findings: P. aurelia was the weakest competitor in the AC pairing and was excluded
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by P. caudatum in 10 of 12 replicates of the large jar size (Figure 2.1 a). The exclusion rate

in the medium jars was similarly high; P. aurelia was outcompeted in 11 of 12 replicates.

In the small jars, however, where the impact of demographic stochasticity was strongest,

the exclusion rate was half that of the other sizes, with P. aurelia excluded in only 5 of

12 replicates. Consistent with these qualitative differences, there was a statistically signifi-

cant difference between exclusion rates in small jars versus those in the large and medium

jars (Estimate = -1.945, 95% confidence interval = (−4.103,−0.168); Binomial model [logit

scale]).

The weakest competitor in the AP pairing, P. aurelia, was excluded in all replicates

across jar sizes (Figure 2.1 b). Similarly, for the PC pairing, P. caudatum was excluded in all

replicates and population sizes (Figure 2.1 c). As there were no differences in the ultimate

exclusion outcomes across jar sizes for the AP and PC pairings, statistical analysis was not

necessary for we did not fit binomial models to these data.

Finally, we note that both the AC and AP pairings had earlier exclusions in the small

jar size, consistent with the notion that demographic stochasticity increases the likelihood

of early stochastic extinctions.

2.3.2 Competitive exclusion in the stochastic simulations

When there were no differences in fitness between competitors (the neutral scenario),

competitive exclusion was similar between the small and large simulations. By t = 1000,

each consumer type won competition (i.e., outlasted the other consumer) in approximately

50% of cases (Figure 2.2). However, when fitness inequalities were non-zero, competitive

exclusion differed between small and large simulations. For example, when the relative

fitness inequality was 0.01 (i.e., consumer 2 had an R∗ 1% lower than consumer 1), the

superior competitor excluded the weaker competitor in 75.0% of the large simulations, but

only 51.6% of the small simulations. Similarly, when the relative fitness inequality was

0.05, the superior competitor won in 99.4% of large simulations versus 58.1% in the small
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Figure 2.1: Proportion of experimental jars in which the weaker competitor persisted, as
a function of time. Paramecium aurelia was the weakest competitor in the (a) AC and (b)
AP pairing, while Paramecium caudatum was the weakest competitor in the (c) PC pairing.
Different colored lines represent the proportion surviving (out of 12 replicates) in different
jar sizes (red = 1 mL habitat; gray = 10 mL habitat; blue = 80 mL habitat).
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simulations (Figure 2.2).

In the deterministic version of the consumer-resource model, any non-zero fitness in-

equalities between consumers will always lead to the exclusion of the weaker competitor,

thus the results of the large stochastic simulations were largely in line with deterministic

expectations. In contrast, stochasticity in the small simulations led to many cases in which

the weaker consumer excluded the stronger competitor (e.g., 41.9% of cases when the rel-

ative niche difference was 0.05). As fitness inequalities increased, the proportion of trials

where the weaker consumer won in the small simulations decreased gradually (compared to

a consistent win rate of 0-1% in the large simulations), but only when fitness differences were

very large (e.g., consumer 2 had an R* 50% lower than consumer 1) were these proportions

similar to those of the large simulations.

2.3.3 Conditional mean densities in the experimental microcosms

For the AC pairing, the pairing in which fitness inequality between competitors was

small, both species had consistently lower densities in small jars relative to large jars (i.e.,

95% confidence intervals did not overlap; Figure 2.3 a and b). In other words, when demo-

graphic stochasticity was strong, both consumers had lower mean densities. When fitness

inequalities were larger, as in the AP and PC pairings, densities of the weaker competitors

were also lower in small jars compared to large jars (Figure 2.3 c and e). However, jar size

appeared to have less dramatic effects on the mean densities of the superior competitors in

the AP and PC pairings (Figure 2.3 d and f).

2.3.4 Conditional mean densities in the stochastic simulations

Demographic stochasticity also affected the conditional mean densities of consumers in

the simulations. In general, early in the time series the mean densities of both consumers were

lower in the small simulations where demographic stochasticity was strongest compared to

the large simulations (Figure 2.4). Over the long term, however, demographic stochasticity
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Figure 2.2: Proportion of simulations in which the weaker consumer won as a function of
relative fitness inequalities between consumers. Points represent the proportion (y-axis) of
stochastic simulations where the weaker consumer (consumer 1) persisted longer than the
superior consumer across a range of 13 relative fitness inequalities (one minus the ratio of
consumers R∗s; x-axis; increasing fitness inequalities left to right) for the duration of the
simulations (t = 1000). Squares represent proportions from the large simulations, where
the effect of demographic stochasticity was weak, and circles represents proportions from
the small simulations, where the effect of demographic stochasticity was strong. See Table
2.1 for the parameter values used in the neutral simulations (i.e., consumers had the same
fitness).
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Figure 2.3: Densities over time in the experimental microcosms. Shown are means and
95% confidence intervals (from 12 replicates each) of the weaker competitors (top row) and
stronger competitors (bottom row) in each of the three competitive pairings (AC, column 1;
AP, column 2; PC, column 3). For clarity, only small (red) and large (blue) jars are shown
here. Confidence intervals were conditioned on both competitors being extant and therefore
some intervals are especially large or missing at different time points.
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lead to higher mean densities of the weaker consumer and lower mean densities of the stronger

consumer (see Appendix A for plots of all 11 fitness inequalities).

2.3.5 Effective fitness inequalities

There were minimal differences between small and large simulations in the effective

fitness inequalities between consumers. In other words, when species had identical demo-

graphic rates, demographic stochasticity during the simulations did not alter the effective

demographic rates of either consumer in a significant way. However, as the true fitness

inequalities between consumers increased, demographic stochasticity altered the effective fit-

ness inequalities of the consumers (Figure 2.5). In particular, the effective fitness inequalities

in large simulations were generally in line with the true values, whereas the effective fitness

inequalities in small simulations were consistently below both the true values and those of

the large simulations. Visualizations of the deterministic model fitted to the expected values

for the stochastic model for every parameter set are shown in Appendix A.

2.4 Discussion

We explored the effects of demographic stochasticity on competition using experimen-

tal communities of microzooplankton and simulations of continuous-time stochastic models,

demonstrating that stochasticity (here driven by population size) can alter competitive out-

comes and competitive dynamics. In particular, demographic stochasticity reduced the ex-

clusion rates of weaker competitors, generally lowered mean densities over time of all species,

and reduced effective fitness inequalities between species.

One of our key findings, that demographic stochasticity alters competitive outcomes,

agrees with existing theory on the effects of demographic stochasticity in simple communi-

ties. Orrock and Fletcher (2005) and Pedruski et al. (2015) both used discrete-time models

of consumer-resource dynamics and an approximation of demographic stochasticity to show

that it can allow weaker competitors to out-compete stronger competitors when niche differ-
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Figure 2.4: Conditional mean densities over time of consumers from the stochastic simula-
tions. Shown are the 95% confidence intervals (from 20,000 initial replicates) of the weaker
competitors (top row) and stronger competitors (bottom row) for increasing fitness inequal-
ities from 5% to 35%.
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Figure 2.5: The impact of demographic stochasticity on the effective relative fitness inequal-
ities of consumers in the simulations. Points represent the effective relative fitness inequality
(one minus the ratio of consumers R*s; y-axis), calculated from parameter estimates based
on fitting the deterministic model to the conditional means (conditioned on both consumers
being extant) of the stochastic simulations, across the 11 relative niche differences calcu-
lated from the actual parameters used in the stochastic simulations. Squares represent niche
differences for the large simulations and circles represent niche differences for the small simu-
lations. Non-parametric bootstrap 95% confidence intervals are shown (small for most niche
differences). The dotted line is the 1-to-1 line.
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ences were small, but not when they were large. Similarly, Okuyama (2015) used continuous-

time models of consumer-resource dynamics to show that demographic stochasticity can lead

to competitive outcomes not predicted by the deterministic model. Our simulation results

extend such work by examining the effects of demographic stochasticity on competitive out-

comes across different absolute abundances and fitness differences. In particular, across 13

sets of stochastic simulations, we found that the identity of the winner was more variable in

small simulations than in large simulations. Only when fitness differences were very large

(> 30%) was competitive exclusion not affected by simulation size. Furthermore, our exper-

imental findings demonstrate how such effects of demographic stochasticity manifest in real

populations. We found that when fitness differences were small, a weaker competitor (P. au-

relia) was able to exclude its superior rival (P. caudatum) more frequently in small jars than

in larger jars with otherwise comparable environmental conditions. However, when fitness

differences were large, as they were in the other species pairings, jar size had no discernible

effect on competitive outcomes. Thus our experiment results are consistent with theory on

demographic stochasticity and provide support for the notion that absolute abundance is

an important consideration when trying to assess the relative importance of niche versus

stochastic processes in real communities (Adler et al., 2007; Gravel et al., 2011; Vellend

et al., 2014).

In addition to altering competitive outcomes, demographic stochasticity affected the

densities over time of consumers in both our experimental jars and in the simulations. In the

AC pairing where fitness differences were small (P. aurelia and P. caudatum), each species

had lower mean densities in small jars compared to large jars. When fitness differences

were larger, as in the PC and AP pairings, only the densities of the weaker competitor

were reduced in the presence of strong demographic stochasticity. In the simulations, initial

densities in the small simulations were also generally lower than those in the large simulations

for both consumers. However, over the long-term, densities of the weaker competitor were

often highest, and densities of the stronger competitor often lowest, in the small simulations.



29

In other words, demographic stochasticity gradually led to higher than expected densities of

the weaker consumer and lower than expected densities of the stronger consumer. Consistent

with this, we found that the effective fitness inequalities between consumers were lower in

the small simulations for all but the neutral case (Figure 2.5). To our knowledge, our study

is the first such test of how demographic stochasticity affects mean densities over time as

well as the effective demographic rates of populations.

We likely did not observe the long-term increases/decreases in the densities of weak-

er/stronger consumers in our experimental system for two reasons: (1) our experiment did

not persist long enough; and (2) our species did not experience the same degree of demo-

graphic stochasticity as in our simulations. Regarding (2), this can be seen by comparing

Figures 2.3 and 2.4, which highlights the often large differences in abundance between the

two competing species, compared to the mostly similar consumer abundances in the simula-

tions. For instance, in the AP pairing, P. aurelia had approximately 4-fold higher absolute

abundances over time than its competitor P. caudatum. We intentionally chose to simulate

consumers with similar absolute abundances as it meant that both consumers could be ex-

pected to experience a similar degree of demographic stochasticity at each simulation size.

However, this choice also ignored the very real possibility that some consumers may naturally

have lower densities than their competitors, and therefore experience demographic stochas-

ticity differently across habitat sizes. This was likely the case for some of our experimental

jars.

Founder effects could have played a role in explaining the differences we observed in

competitive outcomes across population sizes in our experiment; however, this is unlikely. If

founder effects were important, we would expect to see large differences over time between

replicates of the small jars compared to replicates of larger jars due to the stronger influence

of genetic drift in the small jars over and above the effects of demographic stochasticity (e.g.,

Dobzhansky and Pavlovsky, 1957). However, the coefficients of variation across replicates

were not consistently higher for the small jars (see Appendix A). Moreover, the stock cultures
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used for our experiment had spent more than 1.5 years at conditions similar to those used

in the experiment, representing thousands of protist generations in a constant environment.

As a result, the standing genetic diversity of the protists used in our competitive trials was

likely to be low, meaning that different jar sizes likely had similar starting diversities.

Our findings regarding the effects of demographic stochasticity on competitive out-

comes are analogous to the effects of genetic drift (i.e., random sampling of alleles) on

evolutionary dynamics. As far back as Wright (1931), it has been recognized that evolving

populations are subject to the effects of both selection and genetic drift, and that at small

population sizes, genetic drift may be strong enough to interfere with selection. Since then,

there has been strong experimental support for the notion that small population size may

lead to evolutionary outcomes not predicted by fitness differences alone (e.g., Dobzhansky

and Pavlovsky, 1957; Weber, 1990; Lynch and Conery, 2003; Paland and Schmid, 2003; Petit

and Barbadilla, 2009). Insofar as selection for adaptive traits may be considered analogous to

competition for shared resources (sensu Vellend, 2010), we found similar results: that small

population size can lead to competitive outcomes not predicted by differences in competitive

abilities alone.

Demographic stochasticity is ubiquitous in natural systems and represents a significant

source of intraspecific variation in populations and communities. Recognizing the potential

role for such stochasticity is important (Vellend et al., 2014) as it can produce outcomes

not predicted by common, deterministic models of competition and other processes. Future

work should focus on how to better characterize and quantify the impacts of demographic

stochasticity in natural communities and in more realistic continuous-time descriptions of

such systems. Even in a controlled microcosm system such as ours, this may not always be

straightforward, and will likely need to be preceded by initial development and testing of

appropriate population models (e.g., Melbourne and Hastings, 2008). However, given the

potential for demographic stochasticity to erode our expectations of community dynamics

and outcomes, such work may be necessary if we are to better predict how communities
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assemble and change with time.



Chapter 3

Accounting for environmental change in continuous-time stochastic population

models

Geoffrey B. Legault, Brett A. Melbourne

3.1 Introduction

Ecologists use stochastic population models to account for intrinsic sources of popula-

tion variability, particularly the variability arising from probabilistic demographic events at

the individual level (e.g., random births and deaths), also known as demographic stochas-

ticity. The importance of accounting for demographic stochasticity in populations is well

established in the theoretical literature, where it has been shown to increase extinction risk

(Shaffer, 1981; Lande, 1993; Ovaskainen and Meerson, 2010), alter coexistence patterns (Or-

rock and Fletcher, 2005; Orrock and Watling, 2010; Okuyama, 2015; Pedruski et al., 2015;

Hart et al., 2016), increase the persistence time of disease (Bartlett, 1957), and reduce spatial

synchrony in metacommunities (Simonis, 2012).

For continuous-time population models, the effects of demographic stochasticity can

be approximated by adding white noise terms to differential equations (turning them from

deterministic differential equations into stochastic differential equations [SDEs]) or by em-

bedding such equations into standard probability distributions with an appropriate scaling

term for the variance (e.g., the system-size expansion; van Kampen, 1992). However, these

approximations are generally accurate only for predicting small deviations from the expected



33

value of the stochastic process (e.g., near stable equilibria; van Kampen, 1992; Ovaskainen

and Meerson, 2010; Black and McKane, 2012), and can fail to predict large deviations, such

as those leading to population extinction (e.g., Wilcox and Possingham, 2002; Doering et al.,

2005; Kessler and Shnerb, 2007). When predicting large deviations is important (e.g., for

predicting extinction risk or modelling populations not at equilibrium), population models

can be reformulated in terms of a set of partial differential equations that exactly describes

the time-evolving probability density of the system (also known as Kolmogorov forward equa-

tions (Kolmogorov, 1931), or the master equation). In practice, solving Kolmogorov forward

equations is often infeasible (even numerically) for ecological systems (Keeling and Ross,

2008), particularly those that are large (population size > 1000) and/or multi-dimensional

(i.e., contain many species). A convenient alternative, which effectively samples from the

probability density one would obtain by solving the forward equation, is Gillespie’s stochas-

tic simulation algorithm [SSA] (Gillespie, 1977). Due to its tractability and the relative ease

and speed of implementing the algorithm, the SSA is now commonly used in ecology to

account for and explore the effects of demographic stochasticity in populations and commu-

nities (e.g., Kolpas and Nisbet, 2010; Kramer and Drake, 2010; Simonis, 2012; Yaari et al.,

2012; Gokhale et al., 2013; Huang et al., 2015; Vestergaard and Gnois, 2015; Nisbet et al.,

2016).

An important limitation of the SSA, as it is currently used in ecology, is that it treats

demographic processes, such as birth or death, as time-independent (i.e., as stationary [or

homogenous] Poisson processes). In other words, the SSA assumes that the demographic

rates of individuals do not change over time. Such an assumption may be adequate over short

time scales or under highly controlled conditions, but is unrealistic for modelling stochastic-

ity in many natural systems. One reason is that demographic traits often depend on factors

that are not included in typical population models and which themselves change over time.

A key example of this kind of non-stationary demography is the fact that the demographic

traits (e.g., birth, death, dispersal rates) of many species are temperature-dependent (Parme-
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san, 2006; Deutsch et al., 2008; Angilletta, 2009; Dell et al., 2011) and may change within

individual lifetimes as a result of short- or long-term temperature variability (e.g., Miquel

et al., 1976; Kingsolver et al., 2013, 2015; Paaijmans et al., 2013; Estay et al., 2014; Strous-

trup et al., 2016). Similarly, plant growth is strongly associated with precipitation (e.g.,

Novoplansky and Goldberg, 2001; Fay et al., 2003; Angert et al., 2007; Heisler-White et al.,

2008), which, like temperature, may vary considerably over the lifespan of an individual.

The strong link between the external environment and demographic traits is why ecologists

routinely incorporate environmental variability into determinstic or approximately-stochastic

populations models. However, to our knowledge, environmental variability (and the resulting

non-stationary demography) has not been considered in more exact continuous-time stochas-

tic models such as those simulated by the SSA. This is problematic because stochastic models

that do not account for environment-dependent (i.e., non-stationary) demography may be

insufficient for forecasting the combined effects of environmental variability and probabilistic

demography in populations and communities.

We describe an extension of the SSA that allows for non-stationary demography and

explore how, under a variety of realistic environmental-change scenarios, its predictions differ

from the traditional, stationary SSA for continuous-time models of exponential and logistic

growth (Verhulst, 1845; Pearl and Reed, 1920). We show that using a stationary SSA when

demography is non-stationary can lead to biased predictions about the effects of stochastic-

ity on populations and communities. Furthermore, we outline a straightforward and com-

putationally inexpensive approach for estimating when it may be appropriate to use the

non-stationary extension of the SSA.
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3.2 Methods

3.2.1 Non-stationary demography in non-SSA models

Non-stationary demography can be easily incorporated into standard deterministic

models, either by converting one or more demographic parameters (e.g., birth rate) into

time-dependent functions or, if demography is non-stationary because of some extrinsic fac-

tor like temperature, by adding that factor as a new state variable and linking it to the

relevant parameter(s) with an appropriate parameter or function (also known as a coupling

factor; van Kampen, 1992). This approach can also be used for stochastic differential equa-

tions (SDEs), since they are essentially deterministic equations either embedded in standard

distributions or with added white noise terms that are independent of demographic rates or

environmental variability. However, as previously discussed, these approximations commonly

fail, particularly when there are large deviations from an equilibrium, as might be expected

during rapid environmental change. As an exact approach to modelling stochasticity, the

SSA has the potential to avoid such failings. However, as we describe below, additional

challenges arise when trying to use the SSA approach when demography is non-stationary.

3.2.2 Gillespie’s stochastic simulation algorithm (SSA)

We begin by describing the traditional (stationary) SSA (Gillespie, 1977), also known

as the direct method, and use a simple exponential growth model to illustrate the issue of

non-stationary demography. Other implementations of the algorithm have been proposed,

such as the tau-leap method (Gillespie, 2001), all of which sacrifice accuracy for simulation

speed. As a result, we will not address these less accurate implementations here.

The basic SSA can be conceived of as iteratively answering two questions: (1) When

does the next demographic process (e.g., birth, death) occur? and (2) Which demographic

process occurs? It has four steps (Gillespie, 1977):

(1) Initialization of the system, which includes setting the rates (i.e., the probability
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an event occurs per unit time) of all demographic processes, the effects of those

processes (e.g., birth = +1 individual), the starting population size(s), and the end

time of the simulation.

(2) Determine the inter-arrival time (i.e., waiting time), τ , until the next demographic

event by sampling from an exponential distribution with mean equal to the sum of

all demographic process rates.

(3) Determine which demographic event occurs by sampling from the list of possible

processes, the probability of each process conditioned on the fact that an event (of

any kind) has occurred at t+ τ .

(4) Update the time based on (2) and update population size(s) based on (3) [this may

also change future demographic rates if they depend on population size], then return

to step 2 until all demographic rates are zero or the end time has been reached.

Implementing the above algorithm is straightforward for most ecological models, the

most difficult aspect often being the creation of the rate function(s) in step (1). For example,

beginning with an exponential growth model with deterministic equation dN
dt

= rN , a choice

has to be made about whether the parameter r represents only a birth rate (i.e., we are

modelling a pure birth process) or whether it represents the net effect of a birth rate minus

a death rate (i.e., r = b − d). For the purpose of illustrating the SSA, we will keep things

simple and model a pure birth process only, in which case r can be interpreted as the

expected number of births per unit time. The stochastic formulation for a pure birth model

(also known as Yule process; Yule, 1925) can be represented as follows:

N
rN−→ N + 1 (3.1)

Here, equation 3.1 means that births occur at rate rN and that each birth has the effect

of increasing the population by 1. A single iteration through the SSA using this model,
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beginning at time t and population size N , would proceed in this manner: calculate the

birth rate (rN), obtain a sample (τ) from an exponential distribution with mean equal to

the birth rate, update the time from t to t+ τ and update the population from N to N + 1.

The decision to sample from an exponential distribution to determine the timing of the

next demographic event in the stationary SSA is based on assumptions about what it means

for a demographic process to be random. These assumptions are: (a) the process happens at

some average rate within a given time interval, although when in the interval it happens is

completely random (i.e., the occurrence times within an interval are uniformly distributed);

(b) occurrence times of the process are independent of each other. Taken together, these

assumptions describe what is known as a Poisson point process, which is used to represent

random processes in continuous time across many disciplines. One useful feature of these

processes in the context of ecological models is that the occurrence time of a set of multiple,

independent Poisson processes (e.g., a population experiencing both birth and death) can

itself be described by a single Poisson point process with rate, λ, equal to the sum of the

rates of the individual processes.

When the rate, λ, of a Poisson point process is constant through time, it is called a

stationary (or homogeneous) Poisson process and has inter-arrival times (i.e., times between

event occurrences) that follow a cumulative distribution function (CDF) of the form:

1− exp(−λt) (3.2)

Equation 3.2 is also the CDF of an exponential distribution, so it is possible to generate

the inter-arrival times of a stationary Poisson process by sampling from an exponential

distribution with rate λ. However, because it is generally faster computationally to sample

from a uniform distribution than it is from an exponential distribution, it is common to

obtain inter-arrival times of stationary processes by generating sample U from a uniform

distribution on the interval [0, 1) and then converting it to the appropriate exponential

random variable, X, using the inverse transform method, with equation X = −1
λ
ln( 1

U
).
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3.2.3 Changing environments: non-stationary Poisson processes

When the rate of a Poisson point process is not constant over time, say when it de-

pends on changing temperatures, it is called a non-stationary (or non-homogeneous) Poisson

process. In such cases, the rate of the process is described by a time-dependent function,

F (t), and the CDF for inter-arrival time τ , following the last occurrence of the process at

time T , is:

1− exp(−
∫ t

0

F (T + τ)dτ) (3.3)

In some cases, analytical solutions to the integral in equation 3.3 are possible. For

example, if the model contains only one non-stationary Poisson process with a rate function

of the form F (t) = αt−β (i.e., a power law function), equation 3.3 reduces to:

1− exp(−α(T + t)β − T β) (3.4)

which is also the CDF of a Weibull distribution. Thus, for extremely simple non-stationary

processes, the traditional SSA can be modified to obtain τ via sampling from a Weibull

distribution with scale parameter α and shape parameter β. However, many non-stationary

demographic processes will not follow a power law function. For example, if the birth rate r

in our pure birth model were time- or environment-dependent, the model would become:

N
r(t)N−−−→ N + 1 (3.5)

Here, unless the time-dependent birth rate r(t) can be expressed as t−β, the Weibull

method discussed above is not appropriate. Further, even if a single demographic process

could be described by a power law function, most population models will involve many

different demographic processes. Since multiple demographic processes could depend on

environmental conditions in different ways (some processes may also be stationary), it is

unlikely that the combination of all such processes can be expressed in a power law form.

For most population- or community-level models with any kind of complexity, ana-

lytical solutions to the CDF in equation 3.3 are unavailable. Various methods have been
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proposed to simulate such non-stationary models (e.g., Boguñá et al., 2014; Vestergaard and

Gnois, 2015; Duan and Liu, 2015), most of which involve thinning or rejection sampling

(Buffon, 1774; Von Neumann, 1951). We will not describe these methods here, other than to

say that while they are often computationally efficient, they require bounded rate functions

λ(t) and do not perform well for high-dimensional (e.g., models of many species) systems

(Ross, 2014). In any case, our goal is not to propose the most efficient method for simulat-

ing non-stationary biological processes, but rather to explore the conditions in which fully

accounting for non-stationary demography may be important. Thus, we employ an exact,

direct approach to simulating non-stationary stochastic models.

The direct approach, which we will refer to as SSA+, replaces step (2) of Gillespie’s

SSA by generating τ using the inverse transform method, which can be implemented as

follows:

(1) Generate random number U from a uniform distribution on the interval [0, 1).

(2) Find the value of X which solves F (X) = U , where F (t) is the CDF in 3.3.

(3) Set inter-arrival time τ to X.

Because both the direct method above and the rejection-based methods mentioned pre-

viously are computationally expensive compared to a stationary SSA, many ecologists might

be willing to sacrifice some accuracy for a faster approach. One way to do so, which we will

call the naive SSA (SSAn), would be to convert a non-stationary process to a stationary one

for each inter-arrival period by fixing λ(t) to the value at the current time of the simulation.

This algorithm would continue to sample inter-arrival times from an exponential distribution

and would be naive to changes in the environment only for the duration of an inter-arrival

period.

Supposing λ(t) was an increasing function (i.e., the rates of demographic events in-

creased through time), one would expect the SSAn to, on average, produce inter-arrival
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times that were smaller than the inter-arrival times that would be produced by the exact

SSA+ method. Since inter-arrival times determine when events occur in the simulations,

for an exponential growth model, this would lead to smaller population sizes over time than

those predicted by the SSA+. However, for other kinds of models and or patterns of envi-

ronmental change, it is difficult to know a priori how the SSAn and SSA+ methods might

differ. Therefore, to help generate some intuition about when such scenarios might arise, we

explore how predictions of the SSAn and SSA+ differ for two different ecological models in

a variety of environmental change scenarios.

3.2.4 Stochastic population models

To assess the importance of fully accounting for non-stationary demography, we con-

sider two population models: exponential and logistic growth. The deterministic forms of

these models and their stochastic analogs are presented in Table 3.1.

Each model includes a density-independent birth rate, b(t), which we set as the non-

stationary demographic process in all our simulations. Specifically, we assume a fixed

density-independent birth term, b1, which is multiplied by a time-dependent environment

function, env(t), to produce a birth rate that changes through time. We modelled 6 different

non-stationary functions representing environmental change (herein environment functions;

equations in Table 3.2): (1) constant, slow increase (increasing 1); (2) constant, fast increase

(increasing 2); (3) slow, regular fluctuations around a mean (fluctuating 1); (4) fast, regular

fluctuations around a mean (fluctuating 2); (5) slow, random fluctuations around a mean

(random 1); (6) fast, random fluctuations around a mean (random 2). The two increasing

scenarios are analogous to a demographic process that depends on external temperature

increases, as might occur over a growing season or in an environment where temperatures

are gradually increasing over time. The two fluctuating scenarios are analogous to a demo-

graphic process that responds to fluctuating temperatures, as might occur in an environment

with strong diurnal or seasonal temperature changes. Finally, the two random scenarios are
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Table 3.1: The ecological models considered in the study, specified as deterministic equations
with their stochastic analogs. Parameters b1 and d1 are density-independent birth and death
rates. Density-dependent growth in species N is incorporated with a density-dependent
death rate, d2. For the stochastic intensity functions, the functions above the arrows have
the same parameter values as their deterministic counterparts. The environment functions,
env(t), are defined in Table 3.2

Model Deterministic equations Stochastic intensity functions

Exponential growth
dN
dt

= b(t)N − d(t)N

where

b(t) = b1·env(t)
d(t) = d1

N birth: N
b(t)N−−−→ N + 1

N death: N
d(t)N−−−→ N − 1

Logistic growth
dN
dt

= b(t)N − d(t)N

where

b(t) = b1·env(t)
d(t) = d1 + d2N

N birth: N
b(t)N−−−→ N + 1

N death: N
d(t)N−−−→ N − 1
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analogous to a demographic process that responds to stochastic temperature fluctuations

(i.e., environmental stochasticity), which occur, to some degree, in nearly all natural envi-

ronments. Figure 3.1 illustrates how the value of each environment function changes over

time.

Table 3.2: The environment functions or distributions considered in our simulations. To
create time-dependent equations for the random simulations, we first sampled from a normal
distribution (n samples = number of integer time steps in the simulation interval) then
created splines using those samples so that we had a continuous-time function over which
to integrate. Values outside the simulation interval were set as the mean of the distribution
(1.5).

Description Environment function, env(t)

Increasing 1
Increasing 2

0.04t+ 1
0.08t+ 1

Fluctuating 1

Fluctuating 2

sin(t)+1
1.5

sin(2t)+1
1.5

Random 1

Random 2

env(t) = spline(
{

1, 2, ..., 100
}
,
{
Y1, Y2, ..., Y100

}
)

where Yi ∼ N (µ = 1.5, σ2 = 0.25)

env(t) = spline(
{

1, 2, ..., 100
}
,
{
Y1, Y2, ..., Y100

}
)

where Yi ∼ N (µ = 1.5, σ2 = 0.50)

For implementing the SSAn method, we treated demography as non-stationary, but al-

lowed rates to be updated after each step through the algorithm. In particular, we calculated

the inter-arrival time of the next event, τ , by sampling from an exponential distribution with

rate λ = λ(Y ), where Y is the current time of the simulation. As mentioned previously, this

implementation is naive to changes in the environment for the duration of an inter-arrival

period and, in this way, does not fully account for non-stationary demography. In general,

if the frequency of inter-arrival periods in a system far exceed the rate of environmental
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Figure 3.1: Values of the time-dependent environment functions used in the simulations of
non-stationary demography. In all cases, the value on the y-axis corresponds to the numerical
solution of env(t) at time t (x-axis). Equations for these functions are in Table 3.2
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change, we would expect this approximation to produce population estimates fairly close to

those of the SSA+.

For each model and environment function, we ran 10,000 simulations of both the SSAn

and SSA+ methods with a starting population size of N = 100, using the following parameter

values: b1 = 0.003 and d1 = 0.0027; and for the logistic growth model, d2 = 0.000003 (with

this parameterization, carrying capacity K = b1−d1
d2

). The above values were chosen such

that individual demographic processes occurred somewhat slowly in comparison to the rate

of environmental change (e.g., in the increasing 1 scenario, the environment changes by 0.04

per unit time while the density-independent birth rate was 0.003 per individual [0.3 for the

population of 100] over the same time period). We ran both models to t = 100.

3.2.5 Comparing CDFs of inter-arrival times

Prior to examining the results of the simulations, we can derive some intuition about

which models and which environment functions may lead to significant differences in the

predictions of the SSAn and SSA+. One way to do so is to examine the CDFs of the waiting

times, τ , at t = 0 based on both stationary and non-stationary treatments. Figure 2 shows

these CDFs for each model and environment function. We can see from Figure 3.2a, for

example, that the CDFs of the SSA+ method are consistently higher than those of the

SSAn. This suggests that demographic events will occur earlier in the SSA+ simulations,

translating to higher population sizes over time. For fluctuating environment functions, as in

Figure 3.2b, differences between the CDFs of the SSAn and SSA+ are even more pronounced,

as we might expect simply from looking at how quickly the environment changes in Figure

3.1b compared to Figure 3.1a. In Figure 3.2c, the SSA+ CDFs appear to be somewhat lower

than those of the SSAn, which we would expect to lead to lower projected population sizes

for these early time points. Differences between the inter-arrival times appear smaller for

the logistic growth model (Figure 3.2d-f), thus we expect to see smaller differences between

SSAn and SSA+ results.
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Figure 3.2: Cumulative probabilities over time (from t = 0) that the next demographic
event will occur, for all models and environment functions. The top row highlights the
probabilities for the exponential growth model for the (a) increasing; (b) fluctuating; and (c)
random environment functions, while the bottom row shows the probabilities for the logistic
growth model (d-f). The solid line represents the probabilities for the SSAn method, which
assumes that demographic processes occur at constant rates over time (in this case, the rate
at t = 0). Dashed and dotted lines represent the probabilities for the SSA+ method which
accurately accounts for non-stationary demographic rates (compare to Figure 3.1). Curves
are similar for both models.
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3.2.6 Diagnostics and analysis

We performed three independent diagnostic tests of our simulation algorithms. First,

we tested our implementation of sampling inter-arrival times for non-stationary processes.

To do so, we simulated a non-stationary process with a rate function of the form F (t) = αt−β,

a power law function. As discussed above, when a non-stationary process has such a rate

function, it is possible to obtain inter-arrival times by sampling from a Weibull distribution

with parameters α and β. After sampling 1,000,000 inter-arrival times using each method,

we found nearly identical distributions of waiting times (Appendix B).

Second, we compared the results of SSAn and SSA+ simulations when the environment

function was constant through time. As discussed above, the SSAn method treats demog-

raphy as being non-stationary by obtaining waiting times from an exponential distribution,

whereas the SSA+ method uses the inverse transform method. When demographic pro-

cesses are stationary, both methods should produce the same distribution of waiting times

and, subsequently, the same distribution of population sizes over time. As expected, for

both exponential growth and logistic growth with a constant environment function, both

the SSAn and SSA+ algorithms produced strongly overlapping population size distributions

(Appendix B).

To analyze the final simulation results (presented below), for each model and envi-

ronment function, we compared the 95% confidence intervals for the mean across 10,000

replicate simulations of the SSAn and SSA+ methods at each interval time step, obtained

using non-parametric bootstraps (percentile method; Davidson and Hinkley, 1997). Prior

to this, we tested whether 10,000 simulations were enough to accurately characterize the

probability density of the stochastic processes. Specifically, we examined how the variation

in population projections changed as more simulations were added. For all models and envi-

ronment functions, there were minimal changes in the mean and standard deviation across

simulations for resulting population sizes beyond 1,000 simulations (Appendix B). Thus,
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running 10,000 simulations was more than sufficient to minimize Monte Carlo errors in the

estimated means, and confidence intervals were very small.

Since the exponential growth model is linear with respect to density, the only differences

that should arise between the expected (mean) values of deterministic and stochastic versions

of the exponential model will be due to lattice effects (Henson et al., 2001), the impacts of

which should be minimal at population sizes larger than 100 (as in our case). Thus, in

addition to examining the confidence intervals, it is possible to directly compare the results

of the SSAn and SSA+ simulations to numerical solutions of the deterministic equation for

exponential growth in 3.1. In the absence of Monte Carlo error or lattice effects, if the SSA+

is properly accounting for non-stationary demography, the mean value of the simulations at

particular times should be equal to the solutions of the deterministic equations at those times.

Since the logistic growth model is non-linear with respect to density, both lattice effects and

non-linear averaging will lead to differences between the expected values of deterministic

and stochastic versions of the model. As such, we compare SSAn and SSA+ results to

the deterministic results only for the exponential growth model. For all the simulations

and analyses above, we used R, version 3.4.0 (R Core Team, 2017), and for solving the

deterministic equations, the R package ‘deSolve‘ (Soetaert et al., 2010). R code necessary

for running SSAn and SSA+ simulations is provided in Appendix B.

3.3 Results

When the environment was changing, there were often differences in the predicted dis-

tributions of population sizes between the SSAn and SSA+ methods (Figure 3.3, the [similar]

results for the slower environment functions are in Appendix B). Generally, the magnitude

of these differences corresponded with what could be predicted qualitatively from the CDFs

in Figure 3.2. For example, the distributions of population size predicted by the SSAn and

SSA+ algorithms for exponential growth overlapped the least when the environment fluctu-

ated rapidly (Figure 3.3b,c), the scenarios which also had the largest differences in the CDFs
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between SSAn and SSA+ (Figure 3.2b,c). Similarly, the predictions of SSAn and SSA+

logistic growth were fairly similar (i.e., distributions and expected values were similar) when

there was an increasing environment function (Figure 3.3d), a function for which there were

minimal differences between SSA and SSA+ inter-arrival times according to Figure 3.2d.

Differences between exactly accounting for (SSA+) or not fully accounting for (SSAn)

environmental change can also be seen in Figure 3.4, which shows the expected values and

their 95% confidence intervals over time of the SSAn and SSA+ methods for exponential

growth. Furthermore, as expected from theory, the expected values from the SSA+ method

closely match that of the deterministic version of the exponential growth model with a

changing environment.

Differences in the expected values, N̄ , of the SSAn and SSA+ simulations were qualita-

tively consistent with the CDFs, in that their direction (higher or lower) could be predicted

from Figure 3.2. For example, for exponential growth the SSA+ CDF curves for increas-

ing and fluctuating environment functions were generally above those of the SSAn curves,

suggesting births (the only possible demographic events) would happen more frequently in

the SSA+ simulations. Consistent with this, the mean population size N̄ of the SSA+ sim-

ulations for increasing and fluctuating conditions were higher at t = 100 than their SSAn

equivalents. The CDFs for the random environments (Figure 3.2c,f) were a notable excep-

tion to this: The initial SSA+ CDF curves were below their equivalent SSAn curves at t = 0,

but at t = 100, N̄ for SSA+ was higher than that of SSAn. This can be attributed to the

fact that the random environment function gradually declined at early time points (shown

in Figure 3.2) but ultimately increased at later time points (not shown).

3.4 Discussion

Recent uses of SSAs in ecology explore cases where demography is constant through

time (Kolpas and Nisbet, 2010; Kramer and Drake, 2010; Simonis, 2012; Yaari et al., 2012;

Gokhale et al., 2013; Huang et al., 2015; Nisbet et al., 2016), even though by now it is well-
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Figure 3.3: The frequency distribution of population sizes (N) at t = 100 for the exponential
growth (a-c) and logistic growth (d-f) models, simulated using either the SSAn (red) or SSA+
(blue) method. Displayed are the population size distributions for environment functions:
increasing 2 (a, d), fluctuating 2 (b, e), and random 2 (c, f). Colors are transparent, so purple
indicates overlap between the SSAn and SSA+ methods. Also displayed are the expected
values, N̄ , for each simulation method (same coloration as above). Note the different scales
on both axes for each panel.
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Figure 3.4: The 95% confidence intervals over time for the expected (mean) population
size (N) of the SSAn (red) and SSA+ (blue) simulations of the exponential growth model.
Displayed are the expected values (y-axis) for increasing 2 (a), fluctuating 2 (b), and random
2 (c) environment functions. Also displayed are the numerical solutions to the ordinary
differential equation describing the deterministic versions of exponential growth with the
same changing-environment functions. In general, confidence intervals were tiny and may be
hard to distinguish.
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known that demographic traits can and do respond to changing environments. Here we de-

scribed one method of extending the standard SSA algorithm to account for the added effects

of non-stationary demography (i.e., demography that changes through time) and examined

a variety of scenarios and ecological models in which accounting for non-stationary demogra-

phy might be important. For exponential growth and logistic growth models, we found often

large differences in the predicted distributions of population sizes between partly stationary

(SSAn) versus non-stationary (SSA+) implementations of the algorithm in changing envi-

ronments. Particularly when demography changed rapidly - as in the case of demography

responding to significant environmental variability - SSAn and SSA+ simulations differed

markedly in their expected values and distributions (Figures 3.3, 3.4). Moreover, these dif-

ferences could generally be predicted a priori based on comparing the CDFs (Figure 3.2) of

both methods.

We do not intend for this paper to be a criticism of stationary SSAs as there are many

circumstances in which it is appropriate to treat demography as stationary. Rather, because

of the computational cost of fully non-stationary SSAs, one of our goals is to highlight the

circumstances in which partly stationary SSAs and fully non-stationary SSAs would differ

substantially when the environment is changing (i.e., demography is non-stationary) in a

system. Based on our findings, which compare a naive SSA that updates demographic rates

only after each event (SSAn) to an SSA that fully accounts for continuously-changing demo-

graphic rates (SSA+), these circumstances are: (1) strong coupling between demographic

traits and the environment (in our simulations, this coupling was always 1 to 1, with no lag);

and (2) large environmental variability.

Research on thermal ecology and thermal performance over several decades suggests

strong coupling between demography and environmental conditions, particularly for tem-

perature in ectotherms (e.g., Davidson and Andrewartha, 1948; Huey and Stevenson, 1979;

Huey and Kingsolver, 1989; Adolph and Porter, 1993; Deutsch et al., 2008; Angilletta, 2009;

Dell et al., 2011; Estay et al., 2011; Meisner et al., 2014). It is therefore already well-known
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that condition (1) is often satisfied in the natural world, particularly with respect to temper-

ature. Regarding condition (2), environmental variability is also common in many systems

and is likely to increase in the future. For example, inter-annual temperature variability

has increased markedly in some regions in the past 50 years (Donat and Alexander, 2012;

Huntingford et al., 2013; Hartmann et al., 2013) and will probably continue to increase in

the future (Collins et al., 2013). Similarly rainfall, is also variable over time (e.g., Loik

et al., 2004) and can strongly influence demography, particularly in arid or semi-arid areas

(Knapp and Smith, 2001; Huxman et al., 2004). Thus, many natural systems satisfy the two

conditions which favor the use of a non-stationary SSA over less expensive stationary ones.

Understanding the interaction of environmental stochasticity and non-stationary de-

mography could be particularly important going forward. For our simulations, we created

a single random trajectory for each of the two random environment functions (random 1

and 2) and compared 10,000 SSAn and SSA+ simulations with those specific trajectories. A

fuller accounting of how stationary and non-stationary models differ in the face of environ-

mental variability could extend our approach by running additional simulations for a variety

of different realizations of “random” environments. Alternatively, each individual simulation

could generate a different realization of a “random” environment. In either case, avoiding

significant Monte Carlo error would likely require many times more simulations than used

here.

As mentioned previously, various authors have suggested alternatives to the exact ap-

proach we used to sample inter-arrival times, most of which use a variation of thinning or

rejection sampling (Boguñá et al., 2014; Vestergaard and Gnois, 2015; Ross, 2014; Duan and

Liu, 2015). However, we were not concerned with finding the most computationally effi-

cient method for simulating non-stationary SSAs. Indeed, our simulations would have been

many times faster if they had been written in a lower-level language such as C rather than R.

Rather, since both our exact approach (SSA+) and current rejection-based methods are quite

costly computationally, we were more interested in knowing when it was worth considering
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any non-stationary simulation approaches. In doing so for some simple ecological models

and environment functions, we also found a fairly general, computationally inexpensive ap-

proach - involving the comparison of easily calculated stationary and non-stationary CDFs

- for predicting when large differences between SSAn and SSA+ might arise. We suggest

comparing such CDFs prior to deciding whether to implement any of the resource-intensive

non-stationary methods.

Some caution is necessary when comparing CDFs, as we did, to understand when sta-

tionary or non-stationary approaches should be used. We examined initial CDFs (i.e., those

beginning at t = 0) to gain some intuition about any overlap between the methods, and

while that intuition was correct for most models and environments considered, it failed for

the random environment. This was because the random environment of our simulations

trended down at the beginning of the time interval but on average trended upwards over the

full interval. It is straightforward to conceive of other cases, involving both variable environ-

ment functions or models with complicated phase spaces (i.e., dynamical trajectories), where

examining only the CDFs based on initial conditions would provide incomplete information

on possible differences between the methods; for instance: chaotic systems, systems that

cycle (e.g., predator-prey models), and community-level models where individual species can

go extinct. One way around this problem would be to compare CDFs across a range of time

intervals and initial conditions.

We compared the predictions of stationary and non-stationary implementations of

Gillespie’s stochastic simulation algorithm (SSA) when demography was non-stationary, for

two simple ecological models and six different environmental change scenarios. For our sim-

ulations, we allowed only a single model parameter (b1) in the models to be affected by

a changing environment. We nevertheless found an important effect of non-stationary de-

mography for these simple, low-dimensional models. In real systems, multiple demographic

traits have the potential to respond to the environment in different ways and such systems

are also typically high-dimensional (i.e., contain many populations), non-linear, and have
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complicated dynamics. Our study should therefore be considered a fairly conservative test

of the importance of fully accounting for non-stationary demography in stochastic population

models.



Chapter 4

Intrinsic dispersal ability and environment affect trait evolution during range

expansion

Geoffrey B. Legault, Brett A. Melbourne

4.1 Introduction

Species geographic ranges are changing markedly as a result of climate change and

human activities (Harsch et al., 2009; Chen et al., 2011; Bebber et al., 2013). Such shifts

usually begin as ecological responses to changing conditions, including altered local abiotic

conditions (e.g., temperature change), habitat destruction, or human-mediated dispersal. As

a result, it is common to apply ecological approaches (e.g., models with static growth and

dispersal rates) to predict range shifts and their consequences (Gaston, 2009). Recently,

however, it has been suggested that evolution may play a significant role in short-term range

dynamics (Excoffier et al., 2009; Kubisch et al., 2014). In particular, rapid evolutionary

changes during range expansions have been predicted to alter the dispersal and growth rates

of shifting populations (Burton et al., 2010; Shine et al., 2011), leading to eco-evolutionary

dynamics not fully accounted for in purely ecological models (Kubisch et al., 2014).

Theoretical studies of the consequences of evolutionary changes during range shifts

have focused on spatial selection, a process that involves a combination of assortative mating

across space (i.e., spatial sorting, Shine et al. (2011)) and differences in selective pressures

across the range (Holt, 2003; Dytham, 2009). Spatial selection has been predicted to lead
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to differences in dispersal traits across expanding ranges, in particular increasing per-capita

dispersal rates at range edges compared to range cores and thereby increasing spread rates

(Burton et al., 2010; Shine et al., 2011; Perkins et al., 2013). In the past few years, laboratory

experiments across four different taxa (Fronhofer and Altermatt, 2015; Williams et al., 2016;

Ochocki and Miller, 2017; Weiss-Lehman et al., 2017) have shown that such effects are

real and have the potential to contribute significantly to overall spread rates in expanding

populations. However, these studies have focused largely on demonstrating that spatial

selection is possible, rather than on exploring the environmental and ecological contexts in

which short-term evolutionary changes are expected to have meaningful impacts on range

dynamics. This focus on demonstration may over- or under-represent the importance of

spatial selection for shifting natural systems. For instance, founding populations may lack

the necessary standing genetic variation for evolutionary change (e.g., Dlugosch and Parker,

2008), dispersal traits may be more or less heritable for different species (Ronce, 2007), and

differences in gene flow within or between species may affect rates of genetic differentiation

(e.g., Henry et al., 2015).

Gene flow may be an especially important determinant of whether short-term evolu-

tionary change during range expansion is possible. When gene flow between populations

is high, local adaptation is thought to be hindered (Haldane, 1930; Wright, 1931), an idea

that has been largely supported in both models of evolution (e.g., Garca-Ramos and Kirk-

patrick, 1997) and in the field (e.g., Moore et al., 2007). Even low levels of gene flow are

sufficient to reduce the effects of genetic drift, purge deleterious alleles, or interfere with local

selection (Slatkin, 1987; Morjan and Rieseberg, 2004; Ellstrand, 2014; Tigano and Friesen,

2016). Therefore, if gene flow is capable of interferring with other evolutionary processes, it

is likely that it can disrupt spatial selection as well. Theoretical and empirical investigations

of evolution across space have not yet focused on the interaction between spatial selection

and gene flow, but as a first approximation we would expect high levels of gene flow across

a range to lead to more transient differences in the dispersal rates of individuals at range
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edges.

The likelihood and impact of spatial selection may also depend on the environment

experienced by shifting populations. Selection in stressful environments, for example, may

select against high dispersing individuals, especially if there are trade-offs between growth

in that environment and dispersal ability (Burton et al., 2010). If such selection occurs, it

may override any spatial assortment that has occurred as a result of dispersal and limit the

evolution of high dispersal ability at range edges. Though not focused on spatial selection

per se, eco-evolutionary models have found significant effects of the environment on range

dynamics (e.g., Garca-Ramos and Kirkpatrick, 1997; Kirkpatrick and Barton, 1997; Doebeli

and Dieckmann, 2003; Atkins and Travis, 2010), suggesting that environmental context can

influence evolutionary changes across a range. However, the role of environment on spatial

selection has yet to be tested empirically.

In this study, we examine how spatial evolution is affected by both species-specific

differences in dispersal rate (a proxy for gene flow) and the environment experienced by

expanding populations. In particular, we compare the growth rate and dispersal traits of two

closely-related species of flour beetles (Tribolium castaneum and Tribolium confusum) before

and after five generations of experimental range expansion in two different environments. We

find that both intrinsic dispersal rates and environment play an important role in determining

whether spatial evolution causes differences in traits that impact range dynamics.

4.2 Methods

To examine the evolutionary consequences of range expansion, we used laboratory

microcosms of flour beetles from the genus Tribolium (Coleoptera: Tenebrionidae). These

beetles have a long history as model organisms in ecology (Costantino and Desharnais, 1991)

and one of the species, Tribolium castaneum, has been used previously to study the ecology

and evolution of range expansion (Melbourne and Hastings, 2009; Szücs et al., 2014; Hufbauer

et al., 2015; Weiss-Lehman et al., 2017; Szücs et al., 2017). Our experiment (outlined in
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Figure 4.1) consisted of two main parts: (1) Five generations of range expansion to establish

CORE and EDGE populations; and (2) Expansion of CORE and EDGE populations into

empty landscapes to assess how they differed in terms of growth and dispersal.

4.2.1 Details on model system and range expansion phase

We used two beetle species, Tribolium castaneum and Tribolium confusum, each of

which can be easily reared to relatively high population sizes (>150) in individual acrylic

boxes (dimensions: 4.0cm x 4.0cm x 6.0cm; herein patches) containing 15g mixtures of 95%

wheat flour and 5% brewers yeast. Individual patches can be arranged into linear arrays

(herein landscapes), with neighboring patches connected via 2.0 mm holes, which may be

blocked to control dispersal. Beginning in one or a small number of patches within these

landscapes, flour beetle populations will grow and expand into neighboring patches across

multiple generations (see below for details on the beetle life-cycle). To our knowledge, T.

confusum has not previously been studied in the context of range expansion, though it will

also easily spread through experimental landscapes such as ours.

For each species (T. castaneum and T. confusum), we established 8 experimental land-

scapes (16 patches long) for each of two environment treatments (WET and DRY). Land-

scapes were founded by adding 50 adult beetles to the first patch (patch 1) and allowing them

to mate and lay eggs for 24 hours before being removed. All founding beetles were taken

from large, long-running stock cultures (5,000 - 10,000 individuals) kept under conditions

equivalent to the WET environment treatment (see below). We also created 8 individual

patches for each species and environment as controls, resulting in a total of 32 landscapes

and 32 individual patches. All landscapes and individual patches were kept in temperature-

controlled incubators (29.6 C) with different relative humidities for each of the environment

treatments (WET = 65% relative humidity; DRY = 10-15% relative humidity).

We controlled the beetle life-cycle in the landscapes so that they dispersed and re-

produced only once in their lifetime, and so that populations experienced non-overlapping
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Figure 4.1: Experimental design. (1) Two species of beetles, Tribolium castaneum (Sp1)
and Tribolium confusum (Sp2), each underwent five generations of range expansion in ex-
perimental landscapes (WET or DRY conditions) of connected patches (individual squares);
(2) At the end of five generations, beetles were taken from CORE (i.e., patch 1) and EDGE
patches (i.e., furthest patch) to found new experimental landscapes under common condi-
tions (WET); (3) The F1 generation was allowed to grow and disperse for a single generation;
(4) F1 beetles were fully censused; (5) Fifty beetles were randomly sampled (from across en-
tire range) and used to found the F2 generation; and (6) F2 beetles grew, dispersed, and
were censused.
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generations. This life-cycle mimics that of seasonal or semelparous organisms such as annual

plants and many insect species. For each six-week generation, their life-cycle was as follows:

(1) Development: beetle eggs in each patch were left undisturbed to develop into adults for

41 days; (2) Dispersal: Holes connecting neighboring patches were unblocked for a period

of 24 hours, allowing adult beetles to move freely between patches in a landscape; (3) Re-

production: Flour media in every patch was replaced, and beetles were given 24 hours to

copulate and lay eggs in the new media. Following the reproduction period, all adult beetles

were removed from their patches (i.e., 100% mortality at the end of every generation), leav-

ing only the eggs behind to begin the next generation. Full censuses of adult beetles after

step (2) and prior to step (3) occurred every generation.

The range expansion phase (Figure 4.1, phase 1) of the experiment began in July

2016 and ended in March 2017, after each landscape and control had experienced five full

generations of growth and dispersal. During this period, one control patch went extinct (T.

confusum DRY) and four control patches (4 of T. castaneum DRY) were lost due to handling

errors.

4.2.2 Expansion of CORE and EDGE populations

At the end of the fifth generation (Figure 4.1, phase 2), 50 adult beetles were taken

randomly from either CORE (i.e., patch 1) or EDGE patches (i.e., the furthest patch in a

replicate). If there were fewer than 50 beetles in the furthest patch (there were always at

least 50 in the CORE), we sampled beetles randomly from the next furthest patch to the

EDGE patch until we had obtained the required number of beetles. In such cases, we rarely

had to take beetles from more than 1 patch behind the furthest population. We also took 50

random beetles from the single-patch controls to establish CONTROL populations that had

never experienced range expansion, although one CONTROL replicate in the T. confusum

DRY treatment had only 12 beetles. As in the initial set-up, beetles from CORE, EDGE

and CONTROL patches were then added to the first patch of new landscapes (Figure 4.1,
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phase 3) and allowed to mate and lay eggs for 24 hours. The eggs laid at this stage were

considered the F1 generation.

All F1 beetles were raised from the egg stage to adulthood under identical conditions,

equivalent to the WET environment treatment (29.6 C and 65% RH). As in the range

expansion phase, F1 beetles were allowed to grow undisturbed for 41 days in an incubator,

at which point they were given 24 hours to disperse across their (new) landscapes (Figure

4.1, end of phase 3). After dispersal, we recorded abundances in each patch (Figure 4.1,

phase 4). For each of the now 91 experimental landscapes, we then mixed together all

beetles (removing any spatial structure that had developed due to dispersal in phase 3),

and again randomly selected 50 adults to found an F2 generation (Figure 4.1, phase 5).

Only a single replicate had fewer than 50 beetles at this stage (41 beetles in a T. confusum

DRY CONTROL landscape). The F2 beetles similarly started in empty landscapes and

were allowed to grow for 41 days in an incubator, disperse for 24 hours, and, finally, were

censused (Figure 4.1, phase 6). The purpose of the F1 generation was to control for maternal

effects arising from CORE, EDGE, and CONTROL beetles experiencing different conditions,

particularly relating to patch density. It was apparent from comparing F1 and F2 data that

there were sometimes strong maternal effects on growth and dispersal ability (see Appendix

C), suggesting this was a necessary step; however, here we focus exclusively on the growth

and dispersal of the F2s.

The expansion of CORE and EDGE populations (Figure 4.1, phases 2-6) began in

March 2017 and lasted until June 2017. During this period, 2 landscapes were lost due to

handling errors (a T. confusum CORE and EDGE [WET]).

4.2.3 Comparing population growth and dispersal

We quantified the population growth rates and dispersal abilities of beetles from each

F2 experimental landscape, allowing us to assess the impact of spatial evolution on these

traits after five generations of range expansion and 2 generations in a common garden.
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We compared the growth and dispersal of CORE, EDGE, and CONTROL populations.

Furthermore, since the set-up of the F2 generation paralleled the initial set-up of the overall

experiment (i.e., 50 adult beetles were allowed to lay eggs in patch 1 for Generation 0), we

also quantified the growth and dispersal of beetles from Generation 1 of the range expansion

phase (herein, INITIAL populations).

Growth rate was calculated as r = log(Nt+1

Nt
), where Nt+1 was the number of beetles

found in the entire landscape and where Nt was the number of beetles that had originally

founded (i.e., laid eggs in) those landscapes. At our starting densities of 50 individuals, both

density-independent and density-dependent contributions to overall population growth were

likely strong (Melbourne and Hastings, 2008); however our measure of growth rate cannot

distinguish between or adjust for these different effects. As a result, and because of a lack

of power to fit mechanistic growth models such as the generalized Ricker model (Hufbauer

et al., 2015), we compared growth rates between treatments using Wilcoxon Rank Sum tests.

Since CORE and EDGE beetle populations either came from shared landscapes (during the

range expansion) and were direct descendants of INITIAL populations, we used paired tests

for comparisons between these groups. All other comparisons used unpaired tests.

We estimated the dispersal abilities of beetles in the different treatments by fitting

a dispersal kernel to all replicates within a treatment. The dispersal kernel we used is

a stochastic model of diffusion (Melbourne and Hastings, 2009) that assumes individual

beetles move probabilistically from patch 1 to patch x. In the case of density-independent

dispersal, the probability of a beetle moving from patch 1 to patch x can be obtained at any

given time by solving the following deterministic system of equations:

dNx

dt
= D(Nx−1 −HNx +Nx+1) (4.1)

Where Ni is the number of individuals in patch i, D is the diffusion coefficient (i.e., dispersal

ability), and H is the number of holes in a patch. In our landscapes, the first and last patch

in a landscape have 1 hole, and all other patches have 2 holes connecting them to other
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patches. The kernel was fitted to the data by maximum likelihood; specifically, by solving

equation 4.1 from t = 0 to t = 1, with i = 1, 2, 3, 4, 5 (i.e., patches 1-5, the dispersal range

across all replicates) and initial conditions N1 = 1 and N2 = N3 = N4 = N5 = 0, and setting

those solutions as the probabilities p1 through p5 of a multinomial distribution (i.e., the prob-

ability of finding a beetle in patches 1-5). We then found the value of D that produced the

multinomial dispersal model with the highest likelihood given our data. We estimated 95%

confidence intervals for our estimates of D using non-parametric bootstrapping (percentile

method; Davidson and Hinkley (1997)).

All analyses were conducted using R version 3.4.0 (R Core Team, 2017). We used

the package deSolve (Soetaert et al., 2010) to produce numerical solutions to equation 4.1.

Sample code for the dispersal kernel and likelihood function is provided in Appendix C.

4.3 Results

4.3.1 Range expansion phase

Over the course of five generations, T. castaneum and T. confusum populations spread

across the experimental landscapes at speeds that varied between species and environments

(Figure 4.2).

In both WET and DRY environments, T. castaneum spread rapidly, reaching up to

patch 13 (WET) or patch 15 (DRY) after five generations (Figure 4.2). In the WET envi-

ronment, average abundances in CORE patches (i.e, patch 1) were 66.7 after generation 1

(40.4 for DRY) and 171.1 after generation 5 (178.6 for DRY). Abundances in EDGE patches

(i.e., the furthest patch containing a beetle within a replicate) were consistently low for both

environments, with an average abundance of 6.4 at the end of generation 1 for the WET

treatment (23.4 for DRY) and 26.6 after generation 5 (11.9 for DRY).

T. confusum populations spread roughly half as far as T. castaneum over the same

period of range expansion, reaching only as far as patch 7 (WET) or patch 5 (DRY) (Figure
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4.2). Abundances in WET, CORE patches rose from 54.5 at the end of generation 1 (54.8

in DRY) to 264.1 by generation 5 (198.8 in DRY). As with T. castaneum, abundances in

EDGE patches were consistently low, with an average of 4.0 beetles in the furthest WET

patches after generation 1 (1.0 for DRY) and 24.4 beetles after generation 5 (18.5 for DRY).

In CONTROL patches, where beetles were unable to disperse out of the starting patch,

T. castaneum replicates had an average abundance at generation 5 of 144.1 and 188.5 in WET

and DRY environments, respectively (Figure 4.3). T. confusum CONTROL replicates had

an average abundance of 257.8 and 148.5 in WET and DRY environments. Notably, after

generation 4, there was relatively high between-replicate variation in the abundances of T.

confusum DRY patches (Figure 4.3d).

Figure 4.2: Mean abundances across the experimental landscapes during the five-generation
range expansion phase. Shaded lines represent the mean abundance (y-axis) in a patch
(x-axis) for T. castaneum (a, b) and T. confusum (c, d) replicates, with darker colors repre-
senting later generations. All landscapes began with 50 individuals in patch 1 (Generation
0; not shown).
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Figure 4.3: Abundances over time in control patches during the five-generation range expan-
sion phase. Solid lines represent the total abundance of adult beetles (y-axis) at the end of
each generation (x-axis) for T. castaneum (a, b) and T. confusum (c, d). Dotted lines (in b
and d) represent the abundances over time of replicates lost due to handling errors and not
considered in subsequent analyses.
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4.3.2 Population growth in CORE and EDGE populations

For T. castaneum, mean population growth rates were similar for CORE/EDGE/CON-

TROL populations and not significantly different (Figure 4.4). INITIAL population growth

rates were lower than the other groups, but this difference was not statistically significant.

In contrast, T. confusum growth rates were significantly lower in EDGE populations

that had expanded in the WET environment, compared to their CORE population pairs

(Figure 4.4b; paired Wilcoxon Rank Sum test, p = 0.03) and the independent CONTROL

populations (unpaired Wilcoxon Rank Sum test, p = 0.03). There were no significant differ-

ences between EDGE and CORE/CONTROL populations in the DRY environment, how-

ever. Finally, for all environmental treatments, INITIAL populations had consistently lower

growth rates than all other population types.

4.3.3 Dispersal in CORE and EDGE populations

The 95% confidence intervals for our estimated diffusion coefficents overlapped for all

T. castaneum populations (Figure 4.5a), suggesting that these populations did not differ

significantly in terms of dispersal ability. However, INITIAL and CONTROL populations

tended to have larger confidence intervals. For one treatment and environment (CONTROL,

DRY), we had only 4 replicates for model-fitting, leading to very large intervals.

In contrast, the confidence intervals of the diffusion coefficients of T. confusum CORE

and EDGE populations did not overlap for the WET environment (Figure 4.5), suggesting

that these populations differed signifcantly in terms of dispersal ability. We found no dif-

ferences between CORE and EDGE populations in the DRY conditions, however INITIAL

populations had significantly lower dispersal ability than all other populations from that en-

vironment. Similar to T. castaneum, CONTROL populations had larger confidence intervals

than other populations.
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Figure 4.4: Growth rates of replicates for each type of population in the two environments.
Thicker black points represent the mean growth rates (y-axis; log scale) of INITIAL (cross),
CORE (square), EDGE (circle), and CONTROL (triangle) populations across the two en-
vironmental treatments (x-axis) for T. castaneum (a) and T. confusum (b). Lighter gray
points are the growth rates of replicates within treatments. Bars are estimated 95% confi-
dence intervals of the mean. Asterisks above pairs of points indicate statistically significant
differences in the rank distributions of the two groups (Wilcoxon Rank Sum tests: * p < 0.05;
** p < 0.01; and *** p < 0.001).
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Figure 4.5: Estimated diffusion coefficients for each type of population in the two envi-
ronments. Points represent the estimated diffusion coefficient (y-axis; higher values indicate
better dispersal ability) of INITIAL (cross), CORE (square), EDGE (circle), and CONTROL
(triangle) populations across the two environmental treatments (x-axis) for T. castaneum (a)
and T. confusum (b). Bars are boostrapped 95% confidence intervals, meaning that non-
overlapping bars (e.g., CORE and EDGE in b, Wet) indicate strongly significant differences
in diffusion between groups. In one case, the confidence interval extends well beyond the
range of the plot (arrow above last point in a).
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4.4 Discussion

A variety of factors may interfere with the efficacy of spatial evolution during range

expansion, including gene flow and habitat quality. Following five generations of experimen-

tal expansion into one of two possible habitats, we found no evidence of rapid evolutionary

changes to either the population growth rate or dispersal of intrinsically high-dispersing

T. castaneum beetles across their range (i.e., between CORE and EDGE beetles) or when

comparing expanded populations to unexpanded ones (i.e., INITIAL and CONTROL bee-

tles). In contrast, for one of the two environment treatments, we found significant differences

in the growth and dispersal traits of CORE and EDGE populations for the low-dispersing

species, T. confusum, as well as differences between expanded and unexpanded populations.

From this, we conclude that both intrinsic dispersal ability and environmental context can

affect whether spatial evolution leads to differences in the demographic traits of expanding

populations.

The notion that high levels of gene flow can slow or prevent local adaptation is well-

known (Haldane, 1930; Wright, 1931). Consistent with this, we observed no evidence of

spatial evolution in populations of our high-dispersing species T. castaneum. The estimated

diffusion rates of INITIAL populations were between 0.75 and 1.5 (Figure 4.5), which trans-

lates into approximately 40-60% of beetles leaving their home patch (i.e., the patch in which

they developed from eggs) every generation and possibly mating with beetles near or at the

range edges. In contrast, T. confusum had initial diffusion rates of less than 0.1, translating

into less than 5% of beetles leaving their home patch every generation. We are not aware

of any studies directly examining the effects of dispersal rates on spatial evolution, but it is

likely that high intrinsic dispersal would lead to high levels of gene flow between adjacent

patches, thereby slowing or preventing any local adaptation that could have arisen from

spatial sorting (Shine et al., 2011) or selection. For longer periods of range expansion where

small differences could accumulate over time, or for highly non-linear dispersal kernels, we
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would not necessarily expect such effects. However, our experiment lasted only a moderate

number of generations and the observed dispersal kernels in our replicates were fairly linear

(Appendix C).

T. confusum EDGE populations evolved higher dispersal rates in only one of the two

environments. This may have been due to differences in selective pressures between the

WET and DRY environments. We did not measure selection on demographic traits in these

environments explicitly; however, from Figures 4.2 and 4.3, it is clear that by generation 4 T.

confusum populations in the DRY environment were beginning to experience large declines

in abundance and distance spread. Since conditions in the incubators did not change across

generations and since we did not observe similar declines in the WET environment, we infer

that such fitness declines were lagged responses to reduced water availability. The seemingly

abrupt halt to range expansion in the DRY environment at generation 5 (Figure 4.2d) is

also suggestive of the presence of strong selection in that environment (e.g., Garca-Ramos

and Kirkpatrick, 1997; Kirkpatrick and Barton, 1997), though it is not clear for which traits.

Nevertheless, it is likely that selection in the DRY environment did not favor high-dispersal

traits in T. confusum, either because of trade-offs between dispersal and drought tolerance or

because selection was acting predominantly on traits not related to dispersal. Alternatively,

the apparent halt to range expansion in generation 5 of the DRY environment may have

enabled sufficient dispersal (i.e., gene flow) from populations behind the EDGE populations

to erode any evolutionary changes caused by spatial sorting.

We found no significant differences in the population growth rates of any T. castaneum

populations but did observe large differences between pre- and post-expansion T. confusum

populations. This may be partly explained by our metric of population growth (i.e., the num-

ber of viable offspring produced from 50 adults), that combines both density-independent

and density-dependent mechanisms into a single term. In our system, density-dependent

mechanisms are strong at our starting population sizes of 50, and so any increases in this

metric of growth could be the result of evolutionary changes to density-dependent mecha-
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nisms. We likely did not observe selection for higher growth in T. castaneum populations

since the maximum densities within individual patches approximately 150 individuals rarely

exceeded the artificially maintained densities of the long-running stock cultures used to seed

the experiment. In contrast, T. confusum densities in the experimental landscapes/patches

were often well above the baseline levels of their starting stock cultures (also around 150

individuals). Therefore, selection arising from higher than usual densities could explain why

all post-expansion T. confusum populations evolved higher population growth. Consistent

with this explanation is the fact that in the lower density EDGE populations, selection for

higher growth rates was apparently weaker than in the equivalent CORE and CONTROL

populations (Figure 4.4b). Alternatively, differences in growth rates could have been driven

by selection acting on other life-history traits not measured in the experiment or due to

trade-offs between dispersal ability and growth (Burton et al., 2010). The trade-off explana-

tion is unlikely, however, given the lack of consistent directional responses and the minimal

correlations between dispersal ability and growth (Appendix C)

A previous study of spatial evolution in T. castaneum similarly found no evidence of

evolution for increased dispersal at moderate densities (Weiss-Lehman et al., 2017). However,

the authors did find evidence of increased low-density dispersal as well as higher mean growth

rates in core patches. Our experiment ran for 3 fewer generations, which could explain why

we did not observe differences in growth rates across the range and would be in line with our

assertion that genetic differentiation between CORE and EDGE populations requires more

time for species with high intrinsic dispersal rates. The experiment had other important

differences as well, including a 1-week longer development period to accomodate the slower

development time of T. confusum and the use of effectively in situ trait assays where growth

and dispersal were measured together (not as separate trials) and under nearly the same

conditions beetles experienced in experimental landscapes (e.g., developing in a patch prior

to dispersing, age at dispersal, and a single reproductive period).

Spatial evolution has been shown to have the potential to change demographic traits
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across an expanding range, effects that could in turn affect the speed and nature of range

expansion. In this study, we extended such work to consider how different intrinsic and

extrinsic factors could affect the likelihood of spatial evolution contributing to range dynam-

ics. In particular, we examined how spatial evolution affected trait differentiation between

core and edge populations for two closely related species of flour beetles with significantly

different dispersal abilities. We found no evolved differences in dispersal abilities across the

range of the high-dispersing species, compared to significant differences in dispersal abili-

ties of the low-dispersing species. Environment also played a role in determining whether

spatial evolution produced meaningful changes in expanding populations. This work high-

lights the importance of considering the species- and evironment-specific contexts of shifting

populations when deciding whether to account for the effects of spatial evolution in natural

systems.



Chapter 5

Interspecific competition halts range expansions in an experimental system

Geoffrey B. Legault, Brett A. Melbourne

5.1 Introduction

A species range - where it is found in geographic space - depends on a combination

of local and regional factors. At the local level, species may be affected by biotic (e.g.,

species interactions) and/or abiotic (e.g., temperature) constraints on population growth

rates (Gause, 1934; Connell, 1961; Silvertown, 2004; Levine and HilleRisLambers, 2009).

Regional factors, particularly dispersal from other areas, can also affect the presence of

species and, in some cases (e.g., source-sink dynamics), lead to long-term persistence in

geographic areas even when local growth rates are not positive (e.g., Huffaker, 1958; Crowder

and Cooper, 1982; Tilman, 1994). While ecologists largely recognize the importance of such

local and regional processes on species distributions (Chesson, 2000; Leibold et al., 2004), and

in many cases have knowledge about which specific factors seem most important in particular

areas (e.g., Hargreaves et al., 2014; Ettinger et al., 2011; Cunningham et al., 2016), it has

nevertheless been difficult to use this information to predict how species ranges change over

time (Kubisch et al., 2014).

Some of the difficulty of predicting how ranges change over time, or in response to

environment change, is that we often lack the demographic data necessary to parameterize

mechanistic population models. Moreover, we may not even know which models are most
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appropriate for a given species or environmental context. Recent work on understanding and

predicting range shifts has focused on parameterizing single-species population models with

highly replicated experimental trials (e.g., Melbourne and Hastings, 2008, 2009; Fronhofer

and Altermatt, 2015; Szücs et al., 2017, 2014). These approaches have had some success in

using fitted population models to predict how individual species can expand into unoccupied

habitat (but in some cases, evolution complicates matters, see Weiss-Lehman et al. (2017);

Ochocki and Miller (2017), and Chapter 4), and suggest that such an approach can be fruitful

for understanding some of the many climate- or human-induced range shifts that are occuring

worldwide (e.g., Harsch et al., 2009; Chen et al., 2011; Bebber et al., 2013). However, we

are aware of no studies that extend beyond the single-species perspective and explore how

ranges can change in the presence of other species. Given that significant biotic interactions

between species are found nearly anytime we look for them in nature (e.g., Sexton et al.,

2009), this represents a serious gap in our ability to understand and forecast range shifts.

In this chapter, we describe an experiment that aims to address some of these limita-

tions by providing replicated, high resolution data on how ranges change with and without

species interactions. In particular, we examine how interspecific competition between two

species of flour beetles (genus Tribolium) affects range expansion dynamics over multiple

generations. Here, we focus on results from the first six generations of the experiment,

which show strong effects of interspecific competition on the speed of range spread and, fur-

thermore, suggest that species interactions may have long-term effects on range boundaries.

5.2 Methods

To examine the role of interspecific competition on range expansion, we used laboratory

microcosms of flour beetles from the genus Tribolium (Coleoptera: Tenebrionidae). In par-

ticular we tested how competition between two species, Tribolium castaneum and Tribolium

confusum, affected the spread of T. castaneum (focal species) across different experimental

landscapes. As previously discussed, T. castaneum has been used before to study single-
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species range expansion (Melbourne and Hastings, 2009; Szücs et al., 2014; Hufbauer et al.,

2015; Weiss-Lehman et al., 2017). Further, in Chapter 4, I used T. confusum (in addition

to T. castaneum) to examine the eco-evolutionary dynamics of single-species range expan-

sion and found that it too will expand across artificial landscapes in a similar way as T.

castaneum, albeit at a slower rate.

Not only will T. castaneum and T. confusum readily expand across experimental land-

scapes, they are also known to compete strongly with each other, both directly via chemical

interference (e.g. Ghent, 1963), and indirectly for shared resources. Thomas Parks seminal

work on competition between these species (Park, 1948, 1954, 1957) found that over the

long-term (¿1800 days in continuous culture, 1 patch only), one species tended to exclude

the other (¿70% of the time) and that the identity of the winner depended on the environ-

ment. Therefore, flour beetles have already been used as a model system for both range

expansion and competition in ecology, and thus it is advantageous to use them to examine

how the two processes interact.

The design of our experiment is partly inspired by Park (1954), and examines range

expansion in monoculture and in competition with another species, under two environmental

conditions similar to those in Parks original study, specifically WET (29.6 C, 65% relative

humidity) and DRY (29.6 C, 10-15% relative humidity) environments, equivalent to Parks

treatments III (T. castaneum usually wins) and IV (T. confusum usually wins). However,

while we use similar environments, we do not necessarily expect similar outcomes in terms

of competitive exclusion, as our system is in discrete-time and, unlike Parks, does not have

overlapping generations or strong stage structure. Also, Park did not investigate range

expansion, only competition within a single container.

5.2.1 Design of range expansion experiment

We used the same media, acrylic boxes, and linear landscape as described in Chapter 4.

Further, we imposed the same 6-week discrete-time life-cycle of Growth (41 days), Dispersal



76

(24 hours), and Reproduction (24 hours, then removal of adults).

For each of two environments (WET and DRY), we established 20 replicate landscapes

(16 patches long) where T. castaneum could disperse into unoccupied, monoculture land-

scapes (i.e., single-species treatments) or into landscapes with subsequent patches occupied

by its competitor, T. confusum (i.e., two-species treatments). All replicates started by

adding 50 T. castaneum (Generation 0) to the left-most patch (patch 1) and allowing them

to mate and lay eggs for 24 hours prior to being removed. Additionally, for all two-species

treatments, 50 adult T. confusum were added to each of patches 9 through 16 and similarly

allowed to mate and lay eggs for 24 hours. We also established 20 replicates for each of 6

one-patch controls in which beetles could not disperse away from their starting patch. The

design of our experiment is outlined in Figure 5.1.

The experiment began in December 2016 and here we include data from up to October

2017, representing 6 full generations of range expansion. During this period, a number of

landscapes were lost due to handling errors or were intentionally removed (at random) due

to logistical constraints. As a result, by Generation 6, we had 14-15 complete replicates for

each treatment.

5.3 Results

In single-species one-patch controls, where beetles were unable to disperse out of their

initial patch, T. castaneum populations had similar abundances in both environments, with

averages of 224.6 (WET) and 220.1 (DRY) adult beetles by generation 6 (Figure 5.2a, b).

Competition with T. confusum generally reduced long-term abundances, with Generation

6 averages of 138.6 (WET) and 132.6 (DRY) in the two-species patches (Figure 5.2c, d;

approximately 60% of the abundances of single-species patches).

T. confusum abundances in the single-species one-patch controls were generally higher

than T. castaneum after generation 1 (compare Figures 5.2 and 5.3). By Generation 6,

average abundances of T. confusum were 285.6 and 313.3 in WET and DRY environments,
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Figure 5.1: Experimental design. We established 20 replicates for each of four landscape
treatments (each 16 patches long) and six one-patch treatments. There were two kinds of
landscape treatments: (1) single-species landscapes, where every patch was in a WET or
DRY environment and all patches beyond the first were unoccupied; and (2) two-species
landscapes with the same environments as (1), but with patches 9-16 initially occupied by
a competitor (Sp2, T. confusum). All replicates began with 50 adult T. castaneum (Sp1)
beetles reproducing in the left-most patch (or the only patch in the case of controls) and,
where approproriate, 50 adult T. confusum beetles (Sp2) reproducing in patches 9 through
16. We then followed the growth and dispersal of one or both species as they spread across
the landscapes over six generations.



78

respectively (Figure 5.3a, b). Competition with another species similarly reduced long-term

abundances, with Generation 6 averages of 124.0 (WET) and 135.6 (DRY) when competing

with T. castaneum (Figure 5.3c, d; approximately 40% of the abundances of single-species

patches).

There was generally higher variation between replicates in DRY environments for both

species, regardless of whether they were alone or competing (Figure 5.2b, d, Figure 5.3,b,

d).

T. castaneum populations in single-species and two-species landscapes had similar rates

of spread and similar abundances across their ranges until around Generation 4, the first

generation in which T. castaneum beetles at range edges developed alongside T. confusum

adults (Figures 5.4, 5.5, 5.6).

By Generation 4, the presence of another species clearly affected the average spread

of T. castaneum populations across the landscapes (Figures 5.4, 5.5). For instance, average

abundances in patch 8 of single-species WET landscapes were 28.8 (Generation 4), 95.1

(Generation 5), and 144.8 (Generation 6) compared to 4.2 (Generation 4), 8.7 (Generation 5),

and 17.0 (Generation 6) in two-species landscapes. Similarly, average abundances in patch

8 of single-species DRY landscapes were 27.0 compared to 11.4 in two-species landscapes

(Generation 4), 57.3 compared to 24.7 (Generation 5) and 115.8 compared to 31 (Generation

6).

Finally, while small numbers of beetles continued to spread into two-species landscapes

despite the presence of competing species, after Generation 4 populations greater than 10

individuals were generally not found beyond patches 7 or 8 (Figure 5.7).

5.4 Discussion

Interspecific competition is likely an important driver of species ranges in nature, how-

ever we currently lack the empirical data necessary to quantify its effects on range dynamics.

Here we presented data from the first six generations of a laboratory microcosm experiment
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Figure 5.2: Abundances over time of T. castaneum in control patches during the six genera-
tions of range expansion. Solid lines represent the total abundance of adult beetles (y-axis)
at the end of each generation (x-axis) when in monoculture (a, b) or in competition (c, d)
for each of two environments (left column = WET, right column = DRY).
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Figure 5.3: Abundances over time of T. confusum in control patches during the six genera-
tions of range expansion. Solid lines represent the total abundance of adult beetles (y-axis;
scale is larger than in Figure 2) at the end of each generation (x-axis) when in monoculture
(a, b) or in competition (c, d) for each of two environments (left column = WET, right
column = DRY).
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Figure 5.4: Abundances over time and across space of T. castaneum in WET single-species
(a) or two-species (b) landscapes. Filled in polygons represent the standard error intervals
of the mean abundances (y-axis) in each patch (x-axis). Different colored polygons repre-
sent different generations, from light (generation 1) to dark (generation 6). T. confusum
abundances have been omitted from (b) for clarity (shown in Figure 5.6).
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Figure 5.5: Abundances over time and across space of T. castaneum in DRY single-species
(a) or two-species (b) landscapes. Filled in polygons represent the standard error intervals
of the mean abundances (y-axis) in each patch (x-axis). Different colored polygons repre-
sent different generations, from light (generation 1) to dark (generation 6). T. confusum
abundances have been omitted from (b) for clarity (shown in Figure 5.6).
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Figure 5.6: Abundances over time and across space of T. confusum in the two-species land-
scapes. Filled in polygons represent the standard error intervals of the mean abundances
(y-axis) in each patch (x-axis) in the WET (a) or DRY (b) environments. Different colored
polygons represent different generations, from light (generation 1) to dark (generation 6).
Note that T. castaneum abundances (largely concentrated in the first 8 patches) have been
omitted for clarity (shown in Figures 5.4 and 5.4).
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Figure 5.7: Maximum spatial extent of T. castaneum in experimental landscapes. Points
represent the mean furthest patch (among replicates) occupied by at least 10 beetles within
a landscape (y-axis) for each generation (x-axis) for WET (a) or DRY (b) environments.
Black diamonds are the single-species landscapes and crosses are the two-species landscapes.
Bars above and below the points are the 95% confidence intervals of the means.
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examining how competition affects range expansion. We found effects of competition on

range dynamics across two different environments. Specifically, the presence of an interspe-

cific competitor (T. confusum) in adjacent patches within a landscape strongly limited the

continued spread of the focal species (T. castaneum) compared to the single-species cases.

This effect lasted for 3 generations and seems likely to last in future generations of the

experiment.

While competition is known to play a role in species abundances locally (e.g., Gause,

1934; Park, 1954) and regionally (e.g., Reitz and Trumble, 2002; Bertolino, 2008), to our

knowledge this is the first study to demonstrate a clear effect of competition on range dy-

namics. In our experiment, T. confusum effectively stopped the expansion of T. castaneum

into new patches for the three generations in which the two species met up in the two-species

landscapes (Generation 4-6). However, whether or not this halt to range expansion will con-

tinue for subsequent generations is unknown, especially given the possibility of evolutionary

change, which has already been shown to occur for T. confusum growth rates in Chapter

4 (after five generations of range expansion), and for dispersal and growth in other labora-

tory experiments over longer periods (Fronhofer and Altermatt, 2015; Williams et al., 2016;

Weiss-Lehman et al., 2017; Ochocki and Miller, 2017). Due to the high replication in this

study, it may be possible with more data (i.e., more generations) to disentangle ecological

from evolutionary effects via model-fitting.

Future work involving this growing dataset will move towards fitting stochastic models

to the full time series (Generations 1 to the end of the experiment), so as to fully quantify the

influence of interspecific competition on demographic processes during range expansion. An

appropriate two-species growth model of our flour beetle system has not yet been published,

though Dallas et al (2017, unpublished) has fitted a two-species Ricker model (Cushing et al.,

2004) to similar data on competition between T. castaneum and T. confusum in individual

patches. However, two-species Ricker models are not able to account for direct chemical

interference between species (e.g., Ghent, 1963), which may be occurring in our populations.
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A separate study has been undertaken to better understand the possible effects of such

chemicals (Bullock et al 2017, unpublished). The dispersal component of any expansion

model will also likely need refinement. The most recently published dispersal model for the

T. cataneum system (Melbourne and Hastings, 2009) assumes that dispersal is either density-

independent or depends on the density of beetles in the current patch; however, if beetles

are releasing chemicals into the flour or otherwise affecting habitat quality, this may not

hold. For instance, the average abundance in patch 2 of the single-species DRY landscapes

is higher than the average in patch 1 (Figure 5.5a, Generation 1), which is unlikely for models

of dispersal/diffusion that depend only on density.

The data presented here supports the notion that interspecific competition can be

an important driver of range expansion, at least over the short-term. We examined the

effects of competition between two closely related species with nearly identical niches (in

the lab) and that can exhibit fairly rapid competitive exclusion (in our case, we observed 2

cases of exclusion after six generations [in the DRY environment]), representing an extreme

case. In cases where competition between species is less strong (perhaps because of small

population sizes, as in Chapter 2), competition may not be able to halt range expansion,

even temporarily. However, as range expansion in the context of multiple species is likely to

be a highly non-linear phenomenon, the impact of reduced competition is difficult to predict

without well-developed models or empirical data. As a result, we hope this study will be

the first of many in this system and others that attempts to account for the potentially

significant impact of species interactions during range expansions.



Chapter 6

Conclusions

My dissertation examined both basic and applied questions in ecology, each motivated

by an interest in improving our understanding of complex, stochastic biological phenomena.

In Chapter 2, I examined how demographic stochasticity affected competitive out-

comes and dynamics in simple two-species communities. In particular, I tested the theory

that demographic stochasticity can alter competitive outcomes when fitness differences be-

tween competitors are small, but not when they are large. Using experimental two-species

protist communities, I found that competitive outcomes in small communities (associated

with strong stochasticity) were significantly different than outcomes in larger communities

when fitness differences were small, but not when they were large. Furthermore, I found

that absolute population size could alter mean competitive dynamics over time, a result

not discussed by existing theory. To explore whether demographic stochasticity alone could

explain these experimental findings, I also simulated continuous-time models of the protist

system and found similar results for different community sizes. Moreover, model-fitting to

the simulated data suggested that the effects of demographic stochasticity on outcomes and

dynamics may be caused by changes to the effective demographic rates of populations.

Chapter 3 also dealt with a basic question about stochasticity in populations, specifi-

cally the issue of integrating non-stationary (i.e., environment-dependent) demography into

continuous-time stochastic population models. I described an extension of Gillespie’s stochas-

tic simulation algorithm that allows for non-stationary demography and examined how its
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predictions differed from a method that is partly naive to environmental change. I found sig-

nificant differences in the predicted population sizes of the two implementations for two eco-

logical models (exponential and logistic growth), particularly when demography responded

to fluctuating and variable environments. Further, I outlined a computationally inexpensive

approach for estimating when and under what circumstances it can be important to fully

account for non-stationary demography for any class of model.

Chapters 4 and 5 centered on the applied issue of range expansions, a difficult phe-

nomenon to predict precisely, in part because it is the ultimate outcome of many different

stochastic demographic processes occurring across space and time (and other processes as

well (e.g., American Acclimatization Society, 1877)). In order to create effective models

of expansion that account for such stochasticity, ecologists first require better data on the

myriad of processes involved during such expansions. In this case, better means both high

temporal resolution (which is also necessary for fitting deterministic population models) and

because individual demographic processes are either inherently or effectively samples from

probability distributions highly replicated. Thus, as in Chapter 2, I employed laboratory

microcosms to address this general topic.

In Chapter 4, I examined the role of evolutionary change (i.e., spatial selection) during

the expansion of two species of flour beetles into artificial landscapes maintained in two

different environments. I found that evolutionary change during range expansion may not

occur or at least not affect some of the relevant demographic traits that drive expansion

(population growth and dispersal), particularly if the intrinsic dispersal ability (a proxy for

gene flow between populations) of the focal organism is high. Furthermore, I found that

the environment experienced by expanding populations can also affect the occurrence of

meaningful evolutionary change. This work highlights the importance of considering intrinsic

dispersal ability and environmental context when attempting to predict range shifts.

Chapter 5 examined how range expansion occurred in the presence of a competing

species, likely a common occurrence in nature but one for which we largely lack empiricial
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data. In this study, a focal flour beetle species, T. castaneum, was allowed to expand left

to right across artificial landscapes (the same kind used in Chapter 4) that were either

unoccupied or contained a competing species, T. confusum. For two different environments,

the effect of competition after six generations of range expansion was clear: interspecific

competition severely limited the spread of the focal species. Thus, competition can be

an important driver of range dynamics in the short-term and should be accounted for in

predictive models of expansion.

In addition to these specific findings, each chapter highlights the importance of tak-

ing seriously the idea that demography is stochastic. Chapter 2 demonstrates that such

stochasticity can change how we expect competition to proceed in communities. Chapter 3

highlights the importance of recognizing that demography can be simultaneously stochastic

and environment-dependent. Chapters 4 and 5 take it as a given that demographic pro-

cesses are stochastic by employing both the experimental control and replication necessary

for dealing with multiple, independent stochastic processes acting on populations spreading

across a range. Further, they provide baseline data on the importance of evolution and

competition during range expansion, data that is essential for creating and parameterizing

stochastic models of range expansion.

What does it mean to take demographic stochasticity seriously for natural popula-

tions? This is a difficult question to answer, but one that is important to ask given the

work presented here. I used models and data from controlled laboratory experiments to

understand the impacts of demographic stochasticity, approaches that greatly simplify (e.g.,

fewer species, static environments, low genetic variation) the immense complexity of natu-

ral systems. Nevertheless, there are commonalities between these experiments/simulations

and real populations that I hope will motivate more applied ecologists to think about de-

mographic stochasticity in their work. First, many natural populations are small at scales

that are relevant to important ecological questions, and thus many natural may be strongly

affected by demographic stochasticity. Second, even for those populations that are not small,
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intra- and interspecific interactions between individuals will often happen at small spatial

scales, and thus are likely to involve both a small number individuals and a small number

of species. For instance, the highly speciose and abundant forests in Barro Colorado Island

(Panama) have only an average of 0.3 individual plants above 1 cm per square meter (Condit

et al., 2012). As a result, individual trees only compete with a few dozen individuals of a

handful of species. The effects of stochasticity in such cases would be strong and relatively

straightforward to predict using methods and experiments similar to those described above.

Finally, recognizing that demographic processes are stochastic does not necessarily entail the

use of highly-parameterized stochastic models to understand ecological phenomena. Rather,

simply accepting that there is inherent or effective uncertainty in the outcomes of biological

processes (whether they demographic processes or cellular processes or ecosystem processes)

can change many aspects of how one might choose to answer ecological questions, including:

experimental design (e.g., determining how many replicates are necessary for differentiating

between probability distributions), analysis (e.g., using probability distributions of stochas-

tic processes rather than normal distributions), and interpration (e.g., large variability in

outcomes can be a real property of the system). The relevance of a stochastic conception

of biology is therefore not relegated merely to artificial systems, and is worthy of careful

consideration by ecologists of all varieties and concern.
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Appendix A

Supplemental information for Chapter 2

A.1 Monocultures

A.1.1 Experimental procedures

In parallel with the main experiment, we established 10 replicate monocultures of each

protist species (Paramecium aurelia, Paramecium caudatum, Philodina americanum) in large

(80 mL) jars. The preparation of the jars and the media matched that of the two-species

competition trials..

Each jar started with initial densities of 4.5-5.5 individuals per mL of media, or ap-

proximately 360-440 individuals total. Added individuals were not counted directly, rather

a fixed volume of media from stock cultures of known densities was added to each replicate.

Subsequent sampling and media replacement also matched that of the two-species

competition trials. Jars were sampled until day 42, well after a stable population size had

been observed for each species.

A.1.2 Consumer-resource models

We were interested in quantifying the dynamics in our monocultures (and, subse-

quently, in the two-species trials) by fitting mechanistic population models to our data. The

dynamics of P. aurelia were not consistent with a continuous-time logistic growth model

because their abundances did not increase monotonically to a carrying capacity but instead
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increased then decreased (Figure A.1). This, as well as knowledge that protists consume an

explicit biological resource (bacteria) in our system, led us to consider consumer-resource

models (MacArthur, 1970) of the form:

dR

dt
= Rf(R)−N1g(R,N1) (A.1)

dNi

dt
= Nieig(R,Ni)− h(Ni)

where f(R) is the growth function of the resource (prey), g(R,Ni) is the consumption func-

tion of the consumer (i.e., the rate at which the consumer removes the resource), h(Ni) is the

death function of the consumer, ei is the efficiency (i.e., assimilation rate) of the consumer,

while i indexes the consumer species.

Protists within culture vessels compete indirectly via exploitative competition for

shared bacterial resources and may also compete directly via interference competition. In-

terference within and between protist species is thought to occur as a result of allelopathic

compounds released into the media or interactions with bacterial endosymbionts (Gause,

1935; Gill, 1972; Habte and Alexander, 1978; Landis, 1981; Balčiūnas and Lawler, 1995;

Kusch et al., 2002; Müller et al., 2012). Such interactions could affect consumption rates

or death rates. As a result, we fit model A.1 to our data, specifying a variety of different

consumption and death functions

For the five models we considered, we assumed that the bacterial resource exhibited

logistic growth, such that:

f(R) = r(1− R

K
) (A.2)

where r is the density-independent growth rate of the resource and K is the carrying capacity.

Models differed in their consumption functions g(R,N1) and death functions h(N1). The

consumption and death functions considered are outlined in Table A.1.
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Table A.1: Details of the consumption and death functions used in the consumer-resource
models. A total of 5 models were fit to monoculture data for each species.

Description Function Models Reference(s)

Consumption g(R,N1)

A. Linear type I a1R 1, 5

B. Handling time (type II) a1R
1+a1h1R

2 Holling (1959)

C. Handling time +
consumer-dependent

a1R
1+a1h1R+u1N1

3 Beddington (1975)

DeAngelis et al. (1975)

D. Consumer-dependent a1R
1+u1N1

4 Ruxton et al. (1992)

Death h(N1)

E. Linear d1 1-4

F. Non-linear d1 +m1N1 5 Murdoch et al. (2003)
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A.1.3 Model-fitting

We assumed that the bacterial resource was at carrying capacity at the beginning of

the experiment, and, based on previous experimental studies using similar conditions (e.g.

(Diehl and Feiel, 2000; Fox, 2002; DeLong and Vasseur, 2012)), set the carrying capacity K

to 108 bacterial cells per mL. Under our lab conditions, half saturation of the bacteria occurs

after approximately 30 hours, so we estimated r1 using the analytical solution of the logistic

growth equation:

R(t) =
KR(0)

R(0) + (K −R(0))e−rt

and solving for r given that R0 = (number of loops of added bacteria)∗ (cells per loopful) =

4∗108, K = (mL of prepared media)∗(cells per mL at K) = 2000∗108, and R(1.25) = 1000.

From this, we estimated r1 (4.970) and set it constant across all models.

Using a one-step ahead maximum likelihood approach where the consumer-resource

models above were the means of normal distributions (i.e., incorporating both process error

and a normal approximation of stochasticity), we fitted to the monoculture data from the

first 30 days of observations for each species. Replicates which did not persist for 30 days

were omitted from the model fitting, such that we fit the models to data from 9 replicates

for P. aurelia and P. americanum, and 8 replicates for P. caudatum.

For each set of monocultures, we first performed a broad search of likelihood space,

calculating the likelihood of each model for parameter values ranging from e−10 to e2 in

increments of e1, resulting in a search across 2197 unique parameter combinations for model

1 (3 parameters); 28561 parameter combinations for models 2, 4, and 5 (4 parameters); and

371293 parameter combinations for model 3 (5 parameters).

From this set of parameters, the top 100 parameter combinations (i.e., with the highest

maximum likelihood scores) became the starting values for a numerical optimization routine

using the Nelder-Mead method, as implemented in the function ‘mle2‘ from the package

‘bbmle‘ for R.
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A.1.4 Results

For the P. aurelia monocultures, model-fitting was possible for all models considered,

with model 3 having the lowest negative log-likelihood and AIC scores (Table A.2, below).

However, it was not possible to obtain reasonable parameter estimates for any of the models

for either P. caudatum or P. americanum due to one or more of the following issues: (1)

lack of convergence in the optimization; (2) unrealistic parameter estimates (e.g. efficiency

[e1] estimates > 1); 3) confidence intervals spanning 3 or more orders of magnitude; and (4)

flat likelihood surfaces, preventing reasonable estimation of confidence intervals. Some of

these problems can likely be attributed to a lack of data on the bacterial resource as well as

insufficient coverage of state space due to the fast dynamics of the protist system and our

2-day sampling resolution (e.g., P. caudatum monocultures reached equilibrium after only

6 days and remained there for the duration of our observations). Times series data and

model fits are shown in Figure A.1 below. As a result of these aforementioned issues with

model-fitting, we did not fit mechanistic population models to our two-species trials.

A.2 Stochastic consumer-resource model

Here we outline some of the assumption made in our formulation of the stochastic

version of the consumer-resource model discussed in the manuscript. The deterministic

model is:

dR

dt
= r1R(1− R

K
)− a1RN1 − a2RN2 (A.3)

dN1

dt
= e1a1RN1 − d1N1

dN2

dt
= e2a2RN2 − d2N2

We expect the following demographic events in this system: (1) resource growth; (2) resource

death by consumer N1; (3) resource death by consumer N2; (4) consumer N1 growth; (5)

consumer N2 growth; (6) consumer N1 death; (7) consumer N2 death. Therefore, the goal
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Figure A.1: Monoculture time series data for the three protist species Paracemium aurelia,
Paramecium caudatum, Philodina americanum. Thin lines represent individual replicate
populations, and in the case of P. aurelia thicker lines represent the population trajectories
predicted by the fitted models.



112

Table A.2: Estimated parameter values (on the natural log scale) and confidence intervals
(CI) for models 1 through 6 for Paramecium aurelia. The table includes AIC scores from the
Nelder-Mead optimization for each model. Asterisks (*) indicate when confidence intervals
were estimated from a quadratic approximation of the likelihood surface.

Model / Parameter Estimate 95% CI AIC

1. Linear consumption + death

Consumer attack rate, a1
Consumer efficiency, e1
Consumer death rate, d1

-3.11
-14.10
-2.31

(-3.19,-3.01)
(-14.22,-14.00)
(-2.53,-2.12)

1434.32

2. Type II consumption + death

Consumer attack rate, a1
Consumer efficiency, e1
Resource handling time, h1
Consumer death rate, d1

-3.10
-12.66
-12.74
-2.17

(-3.14,-2.55)*
(-12.83,-12.51)*
(-12.93,-12.51)*

(-2.37,-1.99)

1379.30

3. Consumer-dependent consumption + death

Consumer attack rate, a1
Consumer efficiency, e1
Density-dependence (consumption), u1
Resource handling time, h1
Consumer death rate, d1

-0.93
-13.04
-2.77
-13.14
-2.01

(-0.94,-0.41)*
(-13.23,-12.93)*
(-3.09,-1.99)*

(-13.34,-13.08)*
(-2.19,-1.85)*

1355.68

4. Consumer-dependent consumption + death

Consumer attack rate, a1
Consumer efficiency, e1
Density-dependence (consumption), u1
Consumer death rate, d1

-2.15
-14.81
-4.04
-1.66

(-2.37,-1.88)*
(-15.04,-14.61)*
(-4.36,-3.68)*
(-1.96,-1.45)*

1412.90

5. Linear consumption + non-linear death

Consumer attack rate, a1
Consumer efficiency, e1
Consumer death rate, d1
Density-dependence (death), m1

-3.10
-14.15
-2.88
-7.95

(-3.18,-2.99)*
(-14.28,-14.04)*
(-5.74,-2.29)*
(-11.32,-7.12)*

1432.16
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in our top-down approach for constructing a stochastic model (Black and McKane, 2012) is

to determine which terms in model A.3 correspond to these different events.

Resource growth corresponds well with the first set of terms in the first equation

(r1R(1− R
K

) as it does not appear anywhere else in the model and is the only term which can

add resources to the system. Here we assume that the resource growth rate, r1 represents

the net growth rate and thus we do not specify individual birth (b) and death (d) rates. In

small populations, this assumption would be problematic, as the particular values of b and

d - rather than their sum - could be important for population dynamics. However, in our

system, the resource population is large (> 104) and so births and consumer-independent

deaths happen frequently enough that it is appropriate to consider only their net effect.

Determining the probability of consumer death is also relatively straightforward, as for

each consumer the last term in each consumer equation is the only one capable of subtracting

consumers from the system.

Accounting for consumer growth and resource death is less straightforward since both

are linked via the consumption functions, aiRNi. Moreover, efficiences (ei) may be less

than 1, meaning that the death of a resource may not always corresponds to the birth of a

consumer. As in (Simonis, 2012), we therefore discriminate between three kinds of resource

consumptions: (1) resource consumption with no corresponding consumer growth; (2) re-

source consumption with consumer N1 growth; (3) resource consumption with consumer N2

growth. For (2) and (3), we assume that ei represents the probability that the consumption

of a single (final) resource leads to the birth of a consumer. For (1), we assume that all

other consumptive events (by either consumer) lead only to the death of a resource. Thus,

resource death with consumer i growth occurs with probability:

eiaiRNi

and resource death with no consumer growth occurs with probability:

(1− e1)a1RN1 + (1− e2)a2RN2
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For the latter, we have lumped the two different kinds of resource death (by N1 and by N2)

without associated consumer births, since from the perspective of the overall system, both

kinds of events simply subtract a resource. Specifying separate no-birth death events would

have no effect on the final outcome of stochastic simulations. From the above, we obtain

6 final demographic events with the following transition probabilities and state changes

(reprinted from Chapter 1):

R birth: R
r1R(1− R

K
)

−−−−−−→ R + 1 (A.4)

R death: R
(1−e1)a1RN1+(1−e2)a2RN2−−−−−−−−−−−−−−−−→ R− 1

R death, N1 birth: R, N1
e1a1RN1−−−−−→ R− 1, N1 + 1

R death, N2 birth: R, N2
e2a2RN2−−−−−→ R− 1, N2 + 1

N1 death: N1
d1N1−−−→ N1 − 1

N2 death: N2
d2N2−−−→ N2 − 1

We used R to simulate the model A.4 using the direct version of the Gillespie algorithm.

For details on the Gillespie algorithm (i.e., the stochastic simulation approximation) we refer

readers to Gillespie (1977); Cao et al. (2004); Black and McKane (2012). Sample code with

annotations can be found in section 3 of Appendix A, below.

A.3 R code for Gillespie’s stochastic simulation algorithm

1 ## This s e c t i o n conta in s a func t i on capable o f s imu la t ing 1 run o f the

G i l l e s p i e a lgor i thm (SSA) . This implementation o f the SSA in R i s

l a r g e l y based on Ben Bolker ’ s e x c e l l e n t code , some o f which can be

seen here : https : // rpubs . com/bbolker / S IRg i l l e s p i e

2

3 ## The func t i on ‘ g i l l e s p i e ‘ takes as input the f o l l ow i n g :

4 ## ∗ ‘ i n i t ‘ = Array conta in ing a l l i n i t i a l c ond i t i on s ( e . g . i n i t i a l

populat ion s i z e )
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5 ## ∗ ‘ t imes ‘ = Sequence o f t imes over which you wish the func t i on to

r epor t / record populat ion s i z e

6 ## ∗ ‘ param ‘ = Array conta in ing a l l i n t r i n s i c demographic r a t e s r equ i r ed

f o r c a l c u l a t i n g i n t e n s i t i e s in ‘ inten ‘ ( below )

7 ## ∗ ‘ inten ‘ = Function which r e tu rn s a l l i n t e n s i t i e s / p r o b a b i l i t i e s o f

the po int p r o c e s s e s

8 ## ∗ ‘ pproc ‘ = Array conta in ing the s t a t e changes caused by the po int

p roce s s ( in the same order as ‘ intenfun ‘ )

9 g i l l e s p i e <− f unc t i on ( i n i t , times , param , inten , pproc ) {

10 tot t ime <− t imes [ 1 ]

11 t i n c <− l ength ( t imes )

12 N <− i n i t

13 r e s u l t s <− matrix ( nrow = t inc , nco l = length ( i n i t ) )

14 r e s u l t s [ 1 , ] <− N

15 f o r ( i in 2 : t i n c ) {

16 r e s u l t s [ i , ] <− r e s u l t s [ i − 1 , ]

17 whi le ( tot t ime <= times [ i ] ) {

18 intentemp <− i n t en ( tott ime , N, param)

19 i f ( a l l ( intentemp == 0) | min( intentemp ) < 0) {

20 r e s u l t s [ i , ] <− N

21 break

22 }

23 de l t a t <− rexp (1 , sum( intentemp ) )

24 tot t ime <− tot t ime + de l t a t

25 which . pproc <− sample ( 1 : nrow ( pproc ) ,

26 s i z e = 1 ,

27 prob = intentemp )

28 i f ( tot t ime > t imes [ i ] ) {

29 r e s u l t s [ i , ] <− N

30 N <− N + pproc [ which . pproc , ]

31 break

32 }
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33 N <− N + pproc [ which . pproc , ]

34 }

35 }

36 cbind ( times , r e s u l t s )

37 }

38 ## I n i t i a l populat ion s i z e s

39 i n i t <− c (1000 , 5 , 5)

40 ## Sequence o f t imes

41 t imes <− seq (0 , 20 , by = 1)

42 ## Parameter va lue s

43 param <− l i s t ( r = 1 ,

44 k = 10000 ,

45 a1 = 0 .02 ,

46 a2 = 0 .04 ,

47 e1 = 0 .07 ,

48 e2 = 0 .02 ,

49 d1 = 0 . 3 ,

50 d2 = 0 . 1 )

51 ## Function f o r r e tu rn ing t r a n s i t i o n p r o b a b i l i t i e s

52 comp1 <− f unc t i on ( tott ime , X, param) {

53 with ( as . l i s t ( c (param) ) , {

54 Rbirth <− r ∗ X[ 1 ] ∗ (1 − X[ 1 ] / k )

55 Rdeath <− (1 − e1 ) ∗ ( a1 ∗ X[ 1 ] ∗ X[ 2 ] ) + (1 − e2 ) ∗ ( a2 ∗ X[ 1 ] ∗

X[ 3 ] )

56 RdeathN1birth <− e1 ∗ ( a1 ∗ X[ 1 ] ∗ X[ 2 ] )

57 RdeathN2birth <− e2 ∗ ( a2 ∗ X[ 1 ] ∗ X[ 3 ] )

58 N1death <− d1 ∗ X[ 2 ]

59 N2death <− d2 ∗ X[ 3 ]

60 c ( Rbirth , Rdeath , RdeathN1birth , RdeathN2birth , N1death , N2death )

61 })

62 }

63 ## State changes ( cor re spond ing to the t r a n s i t i o n s above )
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64 pproc <− matrix ( c (

65 1 , 0 , 0 ,

66 −1, 0 , 0 ,

67 −1, 1 , 0 ,

68 −1, 0 , 1 ,

69 0 , −1, 0 ,

70 0 , 0 , −1) , nco l = 3 , nrow = 6 , byrow = T)

71 ## Simulate one run

72 g i l l e s p i e ( i n i t , times , param , comp1 , pproc )

A.4 R code for model-fitting

1 ## This s e c t i o n conta in s some o f the model− f i t t i n g code used to es t imate

the e f f e c t i v e model parameters o f the s t o c h a s t i c s imu la t i on s . Here , I

f i t the d e t e rm i n i s t i c consumer−r e s ou r c e model to data generated by the

d e t e rm i n i s t i c ‘ deso lve ‘ f unc t i on ‘ ode ‘

2

3 ## Source e s s e n t i a l l i b r a r y

4 l i b r a r y ( deSolve )

5

6 ## ‘ comp1det ‘ f unc t i on f o r s imu la t ing the consumer−r e s ou r c e model with r

(1 ) and K (10000) a l r eady s e t

7 comp1det <− f unc t i on ( t , y , parms ) {

8 with ( as . l i s t ( c (y , parms ) ) ,{

9 dR <− R ∗ (1 − R / 10000) − ( a1 ∗ R ∗ N1) − ( a2 ∗ R ∗ N2)

10 dN1 <− e1 ∗ ( a1 ∗ R ∗ N1) − d1 ∗ N1

11 dN2 <− e2 ∗ ( a2 ∗ R ∗ N2) − d2 ∗ N2

12 l i s t ( c (dR, dN1 , dN2) )

13 })

14 }

15 ## Model parameters ( neu t ra l s c ena r i o ; no n iche d i f f e r e n c e s between

consumers )

16 param1 <− l i s t ( a1 = 0 .04 ,
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17 a2 = 0 .04 ,

18 e1 = 0 .02 ,

19 e2 = 0 .02 ,

20 d1 = 0 . 2 ,

21 d2 = 0 . 2 )

22 ## Run de t e rm i n i s t i c model us ing above parameters u n t i l time = 100

23 detmodel <− ode (y = c (

24 R = 1000 ,

25 N1 = 5 ,

26 N2 = 5) ,

27 t imes = seq (0 , 100 , by = 0 . 01 ) ,

28 func = comp1det ,

29 parms = param1 )

30 ## Keep va lues at t imes 0 , 1 , 2 , e t c . and round to d i s c r e t e s t a t e s

31 detmodel . sub <− subset ( detmodel , time %in% seq (0 , 100 , 1) )

32

33 ## ‘ l e a s t ‘ f unc t i on f o r c a l c u l a t i n g l e a s t−squares d i f f e r e n c e between

model r e s u l t s ( above ) and the same model ( ‘ comp1det ‘ ) s imulated us ing

parameters in l i s t ‘ x ‘ . Here I f o cus on the consumers only ( columns 2

and 3 o f detmodel . sub )

34 l e a s t <− f unc t i on (x ) {

35 mtemp <− ode (y = c (

36 R = 1000 ,

37 N1 = 5 ,

38 N2 = 5) ,

39 t imes = seq (0 , 100 , by = 0 . 01 ) ,

40 func = comp1det ,

41 parms = c (

42 a1 = x [ 1 ] ,

43 a2 = x [ 2 ] ,

44 e1 = x [ 3 ] ,

45 e2 = x [ 4 ] ,
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46 d1 = x [ 5 ] ,

47 d2 = x [ 6 ] ) )

48 mtemp <− subset (mtemp , time %in% seq (0 , 100 , 1) )

49 sum( c ( (mtemp [ , 2 ] − detmodel . sub [ , 2 ] ) ˆ2) , c ( (mtemp [ , 3 ] − detmodel .

sub [ , 3 ] ) ˆ2) , na . rm = T)

50 }

51

52 ## Set s t a r t i n g va lue s f o r opt imiza t i on ( in t h i s case , the t rue va lue s )

53 s t a r t i n g v a l u e s <− c ( param1 [ [ 1 ] ] ,

54 param1 [ [ 2 ] ] ,

55 param1 [ [ 3 ] ] ,

56 param1 [ [ 4 ] ] ,

57 param1 [ [ 5 ] ] ,

58 param1 [ [ 6 ] ] )

59 ## Use optim to minimize l e a s t−squares d i f f e r e n c e ( d e f au l t method i s

Nelder−Mead)

60 mtemp <− optim ( s t a r t i n gva l u e s ,

61 l e a s t ,

62 hes s i an = TRUE)

63 ## Print ac tua l ve r sus est imated parameters

64 ### Actual

65 un l i s t ( param1 )

66 ### Estimated ( same order as above )

67 mtemp$par

68

69 ## Try again with d i f f e r e n t s t a r t i n g va lue s

70 s t a r t i n g v a l u e s <− c ( param1 [ [ 1 ] ] ∗ . 9 5 ,

71 param1 [ [ 2 ] ] ∗ . 9 5 ,

72 param1 [ [ 3 ] ] ∗ . 9 5 ,

73 param1 [ [ 4 ] ] ∗ . 9 5 ,

74 param1 [ [ 5 ] ] ∗ . 9 5 ,

75 param1 [ [ 6 ] ] ∗ . 9 5 )
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76 ## Use optim to minimize l e a s t−squares d i f f e r e n c e ( d e f au l t method i s

Nelder−Mead)

77 mtemp <− optim ( s t a r t i n gva l u e s ,

78 l e a s t ,

79 c on t r o l = l i s t ( maxit = 10000) ,

80 hes s i an = TRUE)

81 ## Print ac tua l ve r sus est imated parameters

82 ### Actual

83 un l i s t ( param1 )

84 ### Estimated ( same order as above )

85 mtemp$par

A.5 Model fits to simulated data

This section contains Figures (A.2 and A.3), showing the simulation data along with

their best-fit models.

A.6 Coefficients of variation

If founder effects were a significant influence on dynamics in our microcosms, we would

expect to see greater variation between replicates in the smaller jars than in the larger ones.

We observed no consistent trend in the coefficients of variation (CV) across time for the

experimental data A.4. However, there was a trend in the simulation data A.5, in particular:

small simulations sizes had consistently higher CVs than large simulation sizes
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Figure A.2: Model fits and conditional mean densities over time for consumer 1 (weak
competitor). Shown are the 95% confidence intervals of consumer 1 densities (y-axis) over
time (x-axis) for large (blue) and small (red) simulations, along with deterministic versions
of the model using the true parameter values (solid line), and the parameter values estimated
from the large (dashed) and small (dotdash) simulations
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Figure A.3: Model fits and conditional mean densities over time for consumer 2 (superior
competitor). Shown are the 95% confidence intervals of consumer 2 densities (y-axis) over
time (x-axis) for large (blue) and small (red) simulations, along with deterministic versions
of the model using the true parameter values (solid line), and the parameter values estimated
from the large (dashed) and small (dotdash) simulations.
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Figure A.4: Coefficients of variation (CV) across time for each competitor in the small (red),
medium (gray), and large (blue) experimental jars. Figures are overlaid so that each column
represents a competitive treatment: (a) and (b) show results for Paramecium aurelia and
Paramecium caudatum (AC pairing), respectively; (c) and (d) for P. aurelia and Philodina
americanum; (e) and (f) for P. americanum and P. caudatum.
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Figure A.5: Coefficients of variation (CV) across time for each competitor in the small (red),
and large (blue) simulations. Figures are overlaid so that each column represents a different
parameter set (i.e., fitness inequality).



Appendix B

Supplemental information for Chapter 3

B.1 Diagnostic tests of SSA+ method

To ensure we were generating appropriate inter-arrival times, τ , using our implemen-

tation of the SSA+ method, we performed two diagnostic tests:

(1) We simulated a non-stationary exponential growth model using our SSA+ imple-

mentation with a rate function of F (t) = αt−β (a power law function) and compared

our results to taking samples from a Weibull distribution with parameters α and

β, as discussed in the main text. These results should align nearly exactly if our

implementation is correct, which appears to be the case (Figure B.1).

(2) We set the environment function to a constant value (i.e., demography was sta-

tionary) and compared the results of 50,000 simulations of the SSA+ method to

an independent SSA implementation (since demography is stationary in this case,

we refer to it simply as the SSA rather than the SSAn, though both use the same

methods). With a constant environment, the SSA+ method should match the SSA

method, which appears to be the case (Figure B.2).

Finally, we also examined the extent to which 10,000 simulations was sufficient to

capture the ensemble mean and variance of the stochastic simulations. To do so, we examined

how the means and variances of the exponential growth models were affected by the number
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of simulations used. We found only very small differences in the means and variances from

1,000 to 10,000 simulations used (see Figure B.3 for this comparison).

Figure B.1: The probability density of 1,000,000 arrival times, obtained by sampling from
a Weibull distribution with scale parameter α and shape parameter β (black), or using our
SSA+ method for a non-stationary stochastic process with rate function F (t) = αt−β (blue).
In both cases, α = 1 and β = 1.5.
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Figure B.2: The frequency distribution of population sizes at t = 100 for 50,000 simulations
of exponential growth (a) and logistic growth (b), simulated using the SSA (red) or SSA+
(blue) methods with a constant environment. Colors are transparent, so the color purple
indicates overlap between the SSA and SSA+ methods. Also displayed are the (overlapping)
expected values, N̄ (rounded) for each simulation method.
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Figure B.3: The expected population sizes at t = 100 of the SSA+ method (exponential
growth) for different numbers of simulations (x-axis). Displayed are the population sizes for
the increasing (a), fluctuating (b), and random (c) environment functions. Points represent
the mean population size (across simulations), while bars are the standard deviations of the
simulations.
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B.2 R code for SSA+ method

This section contains sample code for simulating 1 run of the Gillespie algorithm (SSA

or SSAn in the main text) and 1 run of the extended, non-stationary version of the algo-

rithm (SSA+) for an exponential growth model. The code is specifically designed to allow

for environment- or time-dependent demography, but in this example the environment is

constant. In this code, transition rates are specified separately from intensity functions.

This modularity makes running (and debugging) large numbers of simulations easier.

1 # SSA func t i on ( g r id ve r s i on )

2 ## We r e f e r to t h i s as the g r id ve r s i on o f the SSA because i t does not

keep a l l events that occur during a s imu la t i on ( or t h e i r t iming ) .

Instead , the g r id ve r s i on r e co rd s the s t a t e o f the system f o r a

provided vector , or gr id , o f monotonica l ly i n c r e a s i n g time po in t s .

This vec to r must in c lude 0 as the f i r s t term , but can otherwi s e be o f

any s i z e and need not be r e gu l a r . The g r id o f t imes does not a f f e c t

the accuracy o f the s imu la t i on .

3 ## Below , we a l s o in c lude a ve r s i on o f the SSA which s t o r e s a l l events .

However , the g r id ve r s i on can be much e a s i e r to work with ( and i s

s t i l l exact ) f o r the f o l l ow i ng reasons : (1 ) I t i s o f t en unnecessary to

know p r e c i s e l y when d i f f e r e n t events occurred ; rather , e c o l o g i s t s are

o f t en more i n t e r e s t e d in the s t a t e o f a system at p a r t i c u l a r t imes ;

(2 ) Because i t i s not cons tant ly wr i t i ng to a s to rage array , i t i s

o f t en f a s t e r than the f u l l v e r s i on ( even when memory i s pre−a l l o c a t e d

f o r the s to rage array ) ; (3 ) Pr e c i s e p l o t s o f the time course o f the

system may s t i l l be achieved in the g r id ve r s i on with a f i n e g rad i en t

o f time po in t s ; ( 4 ) I t s i m p l i f i e s s t o rage i s s u e s when running many

s imulat ions , by both reduc ing the s i z e o f s to r ed data and by a l l ow ing

be t t e r p r ed i c t i on o f the r equ i r ed s to rage .

4

5 ## Function ‘ g i l l e s p i e ‘ takes as input the f o l l ow i n g ( examples o f which

w i l l be provided below ) :
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6 ## ∗ ‘ i n i t ‘ = Array conta in ing a l l i n i t i a l c ond i t i on s ( e . g . , i n i t i a l

populat ion s i z e )

7 ## ∗ ‘ t imes ‘ = Vector o f t imes over which you wish the func t i on to record

the system s t a t e

8 ## ∗ ‘ param ‘ = Array conta in ing a l l i n t r i n s i c demographic parameters ,

r a t e funct i ons , and the environment func t i on r equ i r ed f o r c a l c u l a t i n g

i n t e n s i t i e s in ‘ inten ‘ ( below )

9 ## ∗ ‘ inten ‘ = Function which r e tu rn s a l l i n t e n s i t i e s / p r o b a b i l i t i e s o f

the po int p r o c e s s e s

10 ## ∗ ‘ pproc ‘ = Array conta in ing the s t a t e changes caused by the po int

p roce s s ( in the same order as ‘ inten ‘ ; one row per s t a t e change )

11 ## ∗ ‘ hpp ‘ = Function f o r sampling in t e r−a r r i v a l t imes

12 g i l l e s p i e <− f unc t i on ( i n i t , times , param , inten , pproc , hpp) {

13 i f ( l ength ( t imes ) == 0) {

14 stop (”No time po in t s provided ‘ times ‘ ” )

15 } e l s e i f ( t imes [ 1 ] != 0) {

16 stop (” F i r s t time po int i s not 0”)

17 } e l s e {

18 tot t ime <− t imes [ 1 ]

19 t i n c <− l ength ( t imes )

20 N <− i n i t

21 r e s u l t s <− matrix ( nrow = t inc , nco l = length ( i n i t ) )

22 r e s u l t s [ 1 , ] <− N

23 f o r ( i in 2 : t i n c ) {

24 r e s u l t s [ i , ] <− r e s u l t s [ i − 1 , ]

25 whi le ( tot t ime <= times [ i ] ) {

26 intentemp <− i n t en ( tott ime , N, param)

27 i f ( a l l ( intentemp == 0) ) {

28 r e s u l t s [ i : t inc , ] <− N

29 i <− t i n c

30 warning (” Exi t ing with a l l i n t e n s i t i e s equal to 0”)

31 break
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32 } e l s e i f (min ( intentemp ) < 0) {

33 r e s u l t s [ i : t inc , ] <− NA

34 i <− t i n c

35 warning (” Exi t ing with i n t e n s i t y l e s s than 0”)

36 break

37 } e l s e {

38 tau <− hpp( intentemp )

39 tot t ime <− tot t ime + tau

40 which . pproc <− sample ( 1 : nrow ( pproc ) ,

41 s i z e = 1 ,

42 prob = intentemp )

43 i f ( tot t ime > t imes [ i ] ) {

44 r e s u l t s [ i , ] <− N

45 N <− N + pproc [ which . pproc , ]

46 break

47 } e l s e {

48 N <− N + pproc [ which . pproc , ]

49 }

50 }

51 }

52 i f ( i == t i n c ) break

53 }

54 cbind ( times , r e s u l t s )

55 }

56 }

57

58 ## I n i t i a l populat ion s i z e

59 i n i t <− 100

60

61 ## Grid o f time po in t s a c r o s s which we wish to record the system s t a t e

62 t imes <− seq (0 , 10 , 1)

63
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64 ## Terms f o r ‘ param ‘ l i s t

65 ### Function which r e tu rn s the value o f the environment at the cur rent

time ( tot t ime ) [ here , constant ]

66 constant <− f unc t i on ( t ) {

67 1

68 }

69 ### Li s t o f t r a n s i t i o n ra t e f unc t i on s ( b i r th i s environment−dependent and

t h e r e f o r e mu l t i p l i e d by envres ( the r e s u l t o f env ( t ) in the next

func t i on )

70 exponent ia l fun <− l i s t (

71 b i r t h s = func t i on (b , envres ) b ∗ envres ,

72 deaths = func t i on (d , envres ) d

73 )

74 ## Create a l i s t conta in ing r e l e van t parameter va lue s (b , d) as we l l as

t r a n s i t i o n r a t e s and environment func t i on (now c a l l e d ‘ env ‘ )

75 param <− l i s t (b = .03 ,

76 d = .027 ,

77 exponent ia l fun ,

78 env = constant )

79 param <− un l i s t ( param) # co l l a p s e to one−dimens iona l l i s t

80

81 ## In t en s i t y f unc t i on s which use above t r a n s i t i o n r a t e s ( func t i on env i s

‘ constant ‘ above , but i s de f ined as ‘ env ‘ in the l i s t o f parameters

below )

82 i n t en <− f unc t i on ( t , X, param) {

83 with ( as . l i s t ( c (param) ) ,{

84 bint <− X ∗ b i r t h s (b , env ( t ) )

85 dint <− X ∗ deaths (d , env ( t ) )

86 c ( bint , d int ) })

87 }

88
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89 ## Array conta in ing the s t a t e changes caused by the po int p r o c e s s e s (

b i r th = N + 1 , death = N − 1)

90 pproc <− matrix ( c (1 ,

91 −1) , nrow = 2)

92

93 ## Inter−a r r i v a l time sampling func t i on ( homogenous Poisson proce s s )

94 hpp <− f unc t i on ( intentemp ) {

95 rexp (1 , sum( intentemp ) )

96 }

97

98

99 s e t . seed (20170915)

100 ## Run 1 s imu la t i on

101 s sa . r e s u l t <− g i l l e s p i e ( i n i t , times , param , inten , pproc , hpp )

102 s sa . r e s u l t

103

104 # SSA func t i on ( f u l l account ing o f events and times )

105 ## Function ‘ g i l l e s p i e f u l l ‘ takes as input the f o l l ow i n g (most de f ined

above ) :

106 ## ∗ ‘ i n i t ‘ = Array conta in ing a l l i n i t i a l c ond i t i on s ( e . g . , i n i t i a l

populat ion s i z e )

107 ## ∗ ‘maxtime ‘ = Des i red end time o f s imu la t i on

108 ## ∗ ‘ param ‘ = Array conta in ing a l l i n t r i n s i c demographic parameters ,

r a t e funct i ons , and the environment func t i on r equ i r ed f o r c a l c u l a t i n g

i n t e n s i t i e s in ‘ inten ‘ ( below )

109 ## ∗ ‘ inten ‘ = Function which r e tu rn s a l l i n t e n s i t i e s / p r o b a b i l i t i e s o f

the po int p r o c e s s e s

110 ## ∗ ‘ pproc ‘ = Array conta in ing the s t a t e changes caused by the po int

p roce s s ( in the same order as ‘ inten ‘ ; one row per s t a t e change )

111 ## ∗ ‘ s t o r e s i z e ‘ = The i n i t i a l s i z e o f the s to rage array

112 g i l l e s p i e f u l l <− f unc t i on ( i n i t , maxtime , param , inten , pproc , hpp ,

s t o r e s i z e =10000) {
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113 N <− i n i t

114 nvars <− l ength (N)

115 # Create s to rage matrix

116 r e s u l t s <− matrix ( nrow = s t o r e s i z e , nco l = nvars + 1 )

117 colnames ( r e s u l t s ) <− c (” t ” , paste ( rep (”N” , nvars ) , 1 : nvars , sep = ””)

)

118 # I n i t i a l i z e

119 tot t ime <− 0

120 # Row index to keep track o f rows in s to rage matrix

121 row <− 1

122 whi le ( tot t ime <= maxtime ) {

123 # Expand s to rage i f nece s sa ry

124 i f ( row > nrow ( r e s u l t s ) ) {

125 r e s u l t s <− rbind ( r e s u l t s , matrix (NA, nrow = s t o r e s i z e , nco l

= nvars + 1) )

126 }

127 r e s u l t s [ row , ] <− c ( tott ime , N) # Store r e s u l t

128 intentemp <− i n t en ( tott ime , N, param) # Calcu la te i n t e n s i t y

129 i f ( a l l ( intentemp == 0) ) {

130 warning (” Exi t ing with a l l i n t e n s i t i e s equal to 0”)

131 break

132 } e l s e i f (min ( intentemp ) < 0) {

133 warning (” Exi t ing with i n t e n s i t y l e s s than 0”)

134 break

135 } e l s e {

136 tau <− hpp( intentemp )

137 tot t ime <− tot t ime + tau

138 which . proc <− sample ( 1 : nrow ( pproc ) ,

139 s i z e = 1 ,

140 prob = intentemp ) # Which proce s s

141 N <− N + pproc [ which . proc , ] # Carry out events

142 row <− row + 1
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143 }

144

145 }

146 i f ( tot t ime > maxtime ) {

147 r e s u l t s [ 1 : ( row − 1) , ]

148 } e l s e {

149 r e s u l t s [ 1 : row , ]

150 }

151 }

152

153 ## Set maxtime

154 maxtime <− 10

155

156 ## Run 1 s imu la t i on

157 s e t . seed (20170915)

158 s s a f u l l . r e s u l t <− g i l l e s p i e f u l l ( i n i t , maxtime , param , inten , pproc , hpp )

159 colnames ( s s a f u l l . r e s u l t ) < c ( t i m e s , N )

160 s s a f u l l . r e s u l t

161

162 # SSA+ func t i on ( g r id ve r s i on )

163 ## This i s the non−s t a t i ona ry a lgor i thm (SSA+) f o r a g r id o f t imes .

v e r s i on o f the SSA gr id func t i on . The only major d i f f e r e n c e with the

SSA func t i on ( g i l l e s p i e ( ) , above ) i s that t h i s func t i on uses a

d i f f e r e n t in t e r−a r r i v a l time sampler (nhpp ( ) , below ) .

164

165 ## Function ‘ g i l l e s p i e p l u s ‘ takes as input the f o l l ow i ng :

166 ## ∗ ‘ i n i t ‘ = Array conta in ing a l l i n i t i a l c ond i t i on s ( e . g . , i n i t i a l

populat ion s i z e )

167 ## ∗ ‘ t imes ‘ = Vector o f t imes over which you wish the func t i on to record

the system s t a t e

168 ## ∗ ‘ param ‘ = Array conta in ing a l l i n t r i n s i c demographic parameters ,

r a t e funct i ons , and the environment func t i on r equ i r ed f o r c a l c u l a t i n g
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i n t e n s i t i e s in ‘ inten ‘ ( below )

169 ## ∗ ‘ inten ‘ = Function which r e tu rn s a l l i n t e n s i t i e s / p r o b a b i l i t i e s o f

the po int p r o c e s s e s

170 ## ∗ ‘ pproc ‘ = Array conta in ing the s t a t e changes caused by the po int

p roce s s ( in the same order as ‘ inten ‘ )

171 ## ∗ ‘ nhpp ‘ = Function f o r sampling in t e r−a r r i v a l t imes (non−homogeneous

Poisson proce s s )

172 g i l l e s p i e p l u s <− f unc t i on ( i n i t , times , param , inten , pproc , nhpp ) {

173 i f ( l ength ( t imes ) == 0) {

174 stop (”No time po in t s provided ‘ times ‘ ” )

175 } e l s e i f ( t imes [ 1 ] != 0) {

176 stop (” F i r s t time po int i s not 0”)

177 } e l s e {

178 tot t ime <− t imes [ 1 ]

179 t i n c <− l ength ( t imes )

180 N <− i n i t

181 r e s u l t s <− matrix ( nrow = t inc , nco l = length ( i n i t ) )

182 r e s u l t s [ 1 , ] <− N

183 f o r ( i in 2 : t i n c ) {

184 r e s u l t s [ i , ] <− r e s u l t s [ i − 1 , ]

185 whi le ( tot t ime <= times [ i ] ) {

186 intentemp <− i n t en ( tott ime , N, param)

187 i f ( a l l ( intentemp == 0) ) {

188 r e s u l t s [ i : t inc , ] <− N

189 i <− t i n c

190 warning (” Exi t ing with a l l i n t e n s i t i e s equal to 0”)

191 break

192 } e l s e i f (min ( intentemp ) < 0) {

193 r e s u l t s [ i : t inc , ] <− NA

194 i <− t i n c

195 warning (” Exi t ing with i n t e n s i t y l e s s than 0”)

196 break



137

197 } e l s e {

198 tau <− nhpp( tott ime , N, param , inten , ( t imes [ t i n c ] −

tot t ime ) )

199 tot t ime <− tot t ime + tau

200 intentemp <− i n t en ( tott ime , N, param) # r e c a l c u l a t e

f o r new tott ime

201 which . pproc <− sample ( 1 : nrow ( pproc ) ,

202 s i z e = 1 ,

203 prob = intentemp )

204 i f ( tot t ime > t imes [ i ] ) {

205 r e s u l t s [ i , ] <− N

206 N <− N + pproc [ which . pproc , ]

207 break

208 } e l s e {

209 N <− N + pproc [ which . pproc , ]

210 }

211 }

212 }

213 i f ( i == t i n c ) break

214 }

215 cbind ( times , r e s u l t s )

216 }

217 }

218

219

220 ## Function ‘nhpp ‘ ( below ) i s the workhorse o f the SSA+ method and uses

the i nv e r s e trans form method to generate appropr ia t e in t e r−a r r i v a l

t imes . For performance reasons , the func t i on does not look f o r a root

to the i nv e r s e func t i on beyond the remaining time in the s imu la t i on ( ‘

t ime l e f t ‘ ) . I f i t f a i l s to f i nd a root , the ‘ tryCatch ‘ func t i on makes

any such f a i l u r e produce an in t e r−a r r i v a l time g r e a t e r than the

remaining time o f the s imulat ion , ra the r than stopping and producing
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an e r r o r message (among other th ings , t h i s a l l ows ‘ g i l l e s p i e p l u s ‘ to

c o r r e c t l y record the l a s t s t a t e o f the system p r i o r to e x i t i n g ) .

Subd iv i s i on s and t o l e r a n c e s may be tweaked to speed up the func t i on or

to i n c r e a s e p r e c i s i on , but w i l l g e n e r a l l y need to be l a r g e r than

d e f a u l t s .

221 nhpp <− f unc t i on ( tott ime , N, param , inten , t im e l e f t ) {

222 tryCatch ( un i root ( func t i on (X, Y) {

223 1 − exp(− i n t e g r a t e ( Vec to r i z e ( func t i on (X) {

224 sum( inten ( tot t ime + X, N, param) ) }) , 0 , X, s ubd i v i s i o n s =

200) $value ) − Y} ,

225 lower = 0 , upper = t ime l e f t , t o l = 1e−5, Y = run i f

(1 ) ) $root ,

226 e r r o r = func t i on ( c ) t im e l e f t + 1)

227 }

228

229 s e t . seed (20170915)

230 ## Run 1 s imu la t i on

231 s s ap lu s . r e s u l t <− g i l l e s p i e p l u s ( i n i t , times , param , inten , pproc , nhpp )

232 s s ap lu s . r e s u l t

233

234 ## Compare a l l r e s u l t s

235 ### But f i r s t tr im s s a f u l l . r e s u l t

236 s s a f u l l . r e s u l t [ , 1 ] <− c e i l i n g ( s s a f u l l . r e s u l t [ , 1 ] )

237 s s a f u l l . r e s u l t <− aggregate ( s s a f u l l . r e s u l t [ , 2 ] ˜ s s a f u l l . r e s u l t [ , 1 ] ,

FUN = func t i on (X) t a i l (X, 1) )

238 colnames ( s s a f u l l . r e s u l t ) <− c (” t imes ” , ”N”)

239 ### Comparison

240 s sa . r e s u l t

241 s s a f u l l . r e s u l t

242 s s ap lu s . r e s u l t

243



139

244 ## Note that the g i l l e s p i e p l u s r e s u l t i s d i f f e r e n t from the others ,

d e sp i t e i d e n t i c a l s eeds . This i s because func t i on ‘hpp ‘ uses ‘ rexp ‘ to

sample wai t ing times , whi l e ‘ nhpp ‘ uses ‘ run i f ‘ . We can make ‘hpp ‘

use ‘ run i f ‘ i n s t ead by apply ing the i nv e r s e trans form to the CDF of

the exponent i a l d i s t r i bu t i o n , l e av ing :

245 hpp <− f unc t i on ( intentemp ) {

246 −(1 / (sum( intentemp ) ) ) ∗ l og (1 − r un i f ( 1 ) )

247 }

248

249 ## Now run ‘ g i l l e s p i e ‘ again :

250 s e t . seed (20170915)

251 s sa . r e s u l t <− g i l l e s p i e ( i n i t , times , param , inten , pproc , hpp )

252 s sa . r e s u l t

253 s s ap lu s . r e s u l t # They match
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B.3 Comparison of SSAn and SSA+ for slower environment functions

In Figure B.4, we compare SSAn and SSA+ predictions for the slower environment

functions, specifically: increasing 1, fluctuating 1, and random 1. The qualitative results are

similar to those in Figure 3 (in main text), albeit with more overlap between the distributions.
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Figure B.4: The frequency distribution of population sizes at t = 100 for the exponential
growth (a-c) and logistic growth (d-f) models, simulated using either the SSAn (red) or SSA+
(blue) method. Displayed are the population size distributions for environment functions:
increasing 1 (a, d), fluctuating 1 (b, e), and random 1 (c, f). Colors are transparent, so purple
indicates overlap between the SSAn and SSA+ methods. Also displayed are the expected
values, N̄ (rounded to nearest integer), for each simulation method (same coloration as
above). Note the different scales on both axes for each panel.
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Appendix C

Supplemental information for Chapter 4

C.1 Comparison of F1 and F2 populations

C.1.1 Background

Since population growth and dispersal traits might be plastic, we raised all descen-

dents of CORE, EDGE, and CONTROL replicates under common conditions (29.C and

65% relative humidity) for two generations (F1 and F2 generations). Development under

these common conditions was meant to reduce differences in plastic responses due to the

environment experienced by F1 and F2 beetles; however, phenotypes of the F1 beetles could

still have been affected by maternal effects (i.e., trans-generational plasticity) passed on to

them before they were laid as eggs in the common landscapes. We did not know a priori what

these effects would be, however we expected some differences in plastic responses to arise

from the often large differences in adult densities between, for example, CORE and EDGE

populations (see Figure 4.2 in the main text). As a result, in the main text we focus only

on the growth and dispersal of the F2 beetles, the generation where both plastic responses

and maternal effects were minimized.

Since F1 and F2 beetles experienced identical growth periods (41 days) and dispersal

phases (24 hours) into new landscapes, their growth and dispersal traits may be compared

directly to assess the impacts of maternal effects. To compare growth rates between gener-
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ations, we calculated the relative difference between the two generations as follows:

Relative difference =
xF2 − xF1

x̄
(C.1)

where xFi was the growth rate of a replicate for generation i and x̄ was the mean across

generations. Relativizing in this way allows for trait values to be zero (relevant for dispersal

rates, see below).

In the main text, we estimated dispersal rates at the treatment level by fitting a

mechanistic diffusion model of dispersal to all replicates within a treatment. To assess the

impacts of maternal effects, however, we were interested in differences in dispersal across

generations within individual replicates. Therefore, we calculated an index of dispersal

ability - the proportion of beetles that left patch 1 - for the F1s and F2s and looked at the

relative differences between them, as above.

C.1.2 Results

As seen in Figure C.1, Tribolium castaneum F2 population growth rates were typically

higher than F1 growth rates in CORE and CONTROL replicates. In contrast, growth rates in

EDGE replicates were generally lower in the F2 generation. Tribolium confusum growth rates

were higher in the F2 generation for CORE and CONTROL replicates in both environments,

while EDGE replicates were consistently lower . Such results may reflect plastic effects on

F1 growth rates driven by either the patch densities or the environment experienced by

the maternal generation; for instance, beetles that grew in high density CORE/CONTROL

patches may have had fewer resources to provision to offspring compared to beetles that

grew in low density EDGE patches.

As seen in Figure C.2, there were no consistent differences in T. castaneum dispersal

between F2 and F1 CORE, EDGE, and CONTROL populations. In contrast, T. confusum

dispersal appeared higher in F2 EDGE patches. Such a difference suggests a maternal effect

on dispersal associated with patch density, though we lack the data to test this further.
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Figure C.1: The relative differences in growth rates between F1 and F2 generations. Thicker
black points represent the mean differences in growth rates (y-axis) of CORE (square), EDGE
(circle), and CONTROL (triangle) populations across the two environmental treatments
(x-axis) for (a) T. castaneum and (b) T. confusum. Lighter gray points are the relative
differences for individual replicates within treatments. Bars are the standard errors of the
means.
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Figure C.2: The relative differences in the proportion of beetles that dispersed between F1
and F2 generations. Thicker black points represent the mean differences in dispersal (y-axis)
of CORE (square), EDGE (circle), and CONTROL (triangle) populations across the two
environmental treatments (x-axis) for (a) T. castaneum and (b) T. confusum. Lighter gray
points are the relative differences for individual replicates within treatments. Bars are the
standard errors of the means.
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C.2 R code for dispersal kernel and likelihood function

This section contains the function used for calculating dispersal kernels for a given

diffusion coefficient (D) and the likelihood function used to determine the best-fit value of

D for a given dataset.

1 ## Function ‘ D i f f s o l v e r ‘ i s used to c a l c u l a t e the d i s p e r s a l k e rne l ( i . e . ,

the s e t o f p r o b a b i l i t i e s a b e e t l e w i l l be found in a given patch

a f t e r 24 hours o f d i s p e r s a l ) f o r a g iven value o f D, the d i f f u s i o n

c o e f f i c i e n t .

2 D i f f s o l v e r <− f unc t i on (N, tt , D) {

3 d i f f u s e <− f unc t i on ( t , N, D) {

4 np <− l ength (N)

5 dN <− N ∗ D #Number d i s p e r s i n g per ho le

6 ho l e s <− c (1 , rep (2 , (np − 2) ) , 1) #Number o f ho l e s

7 dNfrR <− c (dN [ 2 : np ] , 0) #Number d i s p e r s e from r i gh t

8 dNfrL <− c (0 , dN [ 1 : ( np − 1) ] ) #Number d i s p e r s e from l e f t

9 l i s t ( dNfrR + dNfrL − ho l e s ∗ dN)

10 }

11 out <− l s oda (N, c (0 , t t ) , d i f f u s e , D, r t o l=1e−4, a t o l=1e−6)

12 out [ 2 , 2 : nco l ( out ) ]

13 }

14

15 ## Function ‘ d i spsearch ‘ i s the l i k e l i h o o d func t i on used in con junct ion

with ‘ optim ‘ to c a l c u l a t e the l i k e l i h o o d o f the d i s p e r s a l model ( the

above d i s p e r s a l k e rne l embedded in a mult inomial model ) g iven the data

( a vec to r c a l l e d ‘ counts ‘ )

16 d i sp s ea r ch <− f unc t i on (D, counts ) {

17 tempkernel <− D i f f s o l v e r ( c (1 , rep (0 , 4) ) , 1 , D)

18 templ ike <− c ( )

19 f o r ( j in 1 : nrow ( counts ) ) {

20 templ ike2 <− dmultinom ( counts [ j , ] , prob = tempkernel , l og = T)

21 templ ike <− c ( templike , templ ike2 )
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22 }

23 −sum( templ ike )

24 }
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C.3 Fitted dispersal kernels

This section contains Figures C.3, C.4, C.5, C.6, each showing the proportion of beetles

found in each patch following dispersal of the F2 experimental landscapes and their best-fit

dispersal kernels (see main text for model-fitting details).

C.4 Correlation of dispersal and growth rate

This section examines the correlations between dispersal and growth rate for each

species and environmental treatment (Figure C.7). Dispersal ability was estimated by fitting

dispersal kernels to individual replicates, using the same dispersal model described in the

main text.

In two cases, T. castaneum WET (Figure C.7a) and T. confusum DRY (Figure C.7d),

we found correlations significantly different from zero.
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Figure C.3: Proportion of T. castaneum beetles found in each patch of the WET experimen-
tal landscapes and the best-fit dispersal kernels for each set of populations. Lines represent
the proportion of beetles (y-axis) found across patches (x-axis) for each replicate popula-
tion from before range expansion (a), and following five generations of expansion for CORE,
CONTROL, and EDGE populations (b, c, d, respectively). Dashed lines are the expected
proportions of beetles found across patches for the fitted dispersal kernels.
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Figure C.4: Proportion of T. castaneum beetles found in each patch of the DRY experimental
landscapes and the best-fit dispersal kernels for each set of populations. Lines represent the
proportion of beetles (y-axis) found across patches (x-axis) for each replicate population
from before range expansion (a), and following five generations of expansion for CORE,
CONTROL, and EDGE populations (b, c, d, respectively). Dashed lines are the expected
proportions of beetles found across patches for the fitted dispersal kernels.
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Figure C.5: Proportion of T. confusum beetles found in each patch of the WET experimental
landscapes and the best-fit dispersal kernels for each set of populations. Lines represent the
proportion of beetles (y-axis) found across patches (x-axis) for each replicate population
from before range expansion (a), and following five generations of expansion for CORE,
CONTROL, and EDGE populations (b, c, d, respectively). Dashed lines are the expected
proportions of beetles found across patches for the fitted dispersal kernels.
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Figure C.6: Proportion of T. confusum beetles found in each patch of the DRY experimental
landscapes and the best-fit dispersal kernels for each set of populations. Lines represent the
proportion of beetles (y-axis) found across patches (x-axis) for each replicate population
from before range expansion (a), and following five generations of expansion for CORE,
CONTROL, and EDGE populations (b, c, d, respectively). Dashed lines are the expected
proportions of beetles found across patches for the fitted dispersal kernels.
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Figure C.7: The correlations between dispersal ability (i.e., diffusion coefficient) and growth
rate of the F2 beetles. Diamonds represent the estimated diffusion coefficients (y-axis) and
growth rates (x-axis) for replicate populations of T. castaneum (a, b) and T. confusum (c, d)
that experienced range expansion in either WET (a, c) or DRY environments (b, d). Dotted
lines (in a and d) are the statistically significant best-fit models to the data (p < 0.05; with
estimates and coefficients of determination [R2] above the lines).


