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Speculative execution attacks leverage a processor’s speculative execution optimization to leak secret

information. Previous attempts to generalize transient execution attacks often analyze specific gadgets in

software or look solely at microarchitectural state artifacts to explain the fundamental logic behind these

attacks. In this work, we present SpecCheck, a systematic security verification for detecting potential

transient data leakage. SpecCheck is based on a description of a generic transient execution attack in the

form of a register based Finite State Machine (FSM) that is easily incorporated into commonly used processor

simulators. SpecCheck’s key insight is the fact that transient execution attacks involve both the software

and the hardware to succeed and the only way to verify if a design is capable of mitigating such attacks is

by considering both at verification time. As a proof of concept, we implement SpecCheck’s FSM in the

gem5 simulator to check for suspicious program flows during an arbitrary program’s simulation and lay the

groundwork for a robust and systematic hardware security verification tool. We show that SpecCheck is

able to identify known transient execution gadgets in four of the main Spectre variants while incurring on

average only a 4% simulation time overhead.
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Chapter 1

Introduction

Transient execution attacks are a new family of complex exploits that leave most modern processors

vulnerable to exploitation [44, 48, 11, 79]. These types of attacks leverage speculative execution to transiently

expose confidential information into microarchitectural state and then uncover the resulting microarchitec-

tural state to visible state to infer the secret information. The first variant of the Spectre family of attacks, one

of the first examples of a transient execution attack, exploits the branch predictor to mislead the processor

into accessing unauthorized memory that uses the value of a secret as an index into an array which is loaded

into the cache [44]. Cache state, which is not part of the visible state and thus not flushed after a branch

misprediction, is then leveraged via a cache timing attack to reveal the secret. By probing the cache, the

attacker learns the secret value by investigating which index of the array experiences a cache hit (shorter

access time). As this family of exploits directly targets effective processor optimizations, such as speculative

execution and branch prediction, almost all modern processors are vulnerable to this type of attack.

These types of complex vulnerabilities are difficult to verify at design time because they require both

software and hardware to work in unison to succeed. On one hand, they require the vulnerability in the

processor in the form of the ability to execute instructions transiently and to allow these transient instructions

to affect microarchitectural state that is not cleaned up after a mis-speculation is detected. On the other hand,

these attacks depend on carefully crafted software instructions—or gadgets—to leak sensitive information.

In other words, if viewed in isolation, the hardware design is functioning correctly, as it is not going to impact

the normal execution of a benign program; similarly, the software is seemingly doing what it is expected and

not accessing an illegal memory location (i.e. if (x < sizeOfArray) array[x]). Since the key to the
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success of transient execution attacks is the ability to exploit microarchitectural vulnerabilities with crafty

software gadgets, verification mechanisms must integrate software and hardware features to be effective.

Detection mechanisms for security verification have predominantly focused on either hardware or

software features in isolation, leaving prior solutions unequipped to identify a large number of transient

execution attacks. For example, state-of-the-art software security verification tools are insufficient to combat

this type of vulnerability because of their inability to consider the hardware state in their reasoning [57, 14, 28,

68, 67, 80]. Similarly, hardware security verification tools consider vulnerabilities to be solely in the hardware

and fail to consider atypical use cases in which these vulnerabilities are exploited [52, 53, 4, 35, 36, 84].

Recently proposed work that combine software and hardware state to evaluate security are difficult

to use for non-security experts. For example, CheckMate [70], which is an effective platform to identify

potentially vulnerable regions of code, requires the user to formally describe the details of microarchitecture

and the vulnerability in the 𝜇Spec Alloy Domain Specific Language (DSL). While effective, CheckMate

makes security evaluation difficult for non-security experts who may just be wondering how their new

microarchitecture interacts with transient execution attacks. InSpectre [27] is another example of a formal

verification tool for secure speculative execution. InSpectre uses a machine independent language (MIL) to

define the microarchitectural details to investigate. Once again, while effective, the requirement to use the

MIL makes it difficult for non-security experts to adopt. Our approach looks to complement these tools for

security experts and to supplement non-security experts the ability to evaluate security without additional

efforts.

To improve the detection accuracy and coverage of security verification tools for transient execution

attacks, we propose SpecCheck, a finite state machine based classifier to explicate common patterns in

Spectre-like vulnerabilities in commonly used processor simulators. SpecCheck is a systematic approach,

based on register finite state machines, to analyze program code execution at runtime based on both hardware

and software states to identify patterns of speculative execution vulnerabilities. SpecCheck is implemented

on a widely used processor simulator, gem5 [5], and is easily adaptable to other processor simulators to help

with wider adoption of the approach.

The key design principle behind SpecCheck is that a general pattern of transient execution attacks,
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including similar yet undiscovered ones, is inherent in the software and hardware traces of the system under

attack with different Spectre-like variants. While mitigation approaches use similar techniques [76, 51, 82,

16, 81] to identify conditions of a transient execution attack, the property that makes SpecCheck novel

is the use of register finite state machines to abstract away the details of the attack to widen the coverage

of the tool. In addition, prior approaches modify the microarchitecture to mitigate the attacks at runtime,

while SpecCheck is a systematic verification tool to be used at design time to verify that these mitigation

approaches indeed are effective. To the best of our ability, no prior work has considered using this approach

to construct a security verification tool to identify potentially vulnerable microarchitectural designs.

In addition, what makes SpecCheck a unique verification tool is that it does not require any new

environment or tool to do a security verification. We posit that commonly used tools in computer architecture

research (such as processor simulators) can give us enough information to consider both hardware and

software state simultaneously. SpecCheck detects suspicious program flows in arbitrary programs that

indicate potential transient execution vulnerabilities in a processor simulator. By tracking each instruction

through the processor pipeline, we maintain an internal state to analyze a program’s execution flow at

each instruction to determine the presence of a speculative execution vulnerability. While the current

implementation of SpecCheck is tailored towards the Spectre family of attacks, we envision the future

framework to be agnostic to the exact kind of transient execution vulnerability.

Our initial experiments suggest that SpecCheck is able to correctly identify multiple known gad-

gets across the four main unmitigated Spectre variants: Spectre variant 1 [44], Spectre Variant 2 [44],

SpecRSB [46] and Spectre variant 4 [33, 32]. The SpecCheck framework is intended to help both software

developers and computer architects to evaluate their own designs against a spectrum of vulnerabilities by

using our tool to identify potentially vulnerable implementations.

One of the key motivations for SpecCheck is to enable a simple way for non-security and security

experts alike to have easy access to a systematic security evaluation tool that will aid the future of security

evaluations. As Spectre and Meltdown have shown, performance optimizations need to have security as

a design constraint, as many of these optimizations may compromise previously mitigated vulnerabilities.

The difficulty of accessing security evaluation tools, makes security a second-class citizen, creating a never
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ending cycle of vulnerabilities and mitigation.

Prior work in security evaluation tools require users to re-implement designs in new programming

languages or environments, making their wide adoption problematic. While security experts absolutely need

these additional tools to formally verify security guarantees, non-security experts also need to be aware of

the security implications of their designs. SpecCheck is a tool that seeks to break this entry barrier to

non-security experts to make more thorough security evaluations with tools already at their disposal.

This paper presents the following contributions:

(1) A novel, systematic approach to identify potentially vulnerable hardware implementations by com-

bining software and hardware state at runtime via a register finite state machine.

(2) An easily accessible tool for non-security experts to perform more robust security evaluations for

transient execution attacks.

(3) A mechanism to identify potentially vulnerable regions of code executed on top of a specific

microarchitectural implementation.

(4) An implementation of the systematic finite state machine in the gem5 simulator.



Chapter 2

Background

This section provides an overview of the key concepts required to understand transient execution

attacks, as well as an overview of the tools used in the proposed framework. SpecCheck is designed to

identify all variants of transient execution attacks by leveraging microarchitectural state to identify temporally

sequenced patterns. The proposed framework takes advantage of the software and hardware state information

available in a processor simulator, gem5—a popular open source processor simulator [5].

While the method of exploiting prediction to speculatively execute loads is common to all transient

execution attacks (including the Meltdown family of attacks) [44, 9, 55, 11, 48], the prediction mechanisms

vary across variants. Several other variants have been discovered that are able to use other microarchitectural

components besides the branch predictor, the Return Stack Buffer and the Memory Disambiguator, to

transiently execute a load instruction that accesses the secret data [60, 73, 59, 77, 72, 44, 55]. Similarly, the

method for disclosing the secret has also been shown to leverage different microarchitectural states besides

the cache state, such as the line fill buffer and the floating point unit usage [73, 44]. Given these differences,

SpecCheck was designed to be independent of the speculation method and the disclosing method to increase

the coverage of the verification.

2.1 Out of Order Execution and Speculation

Modern processors make use of Out of Order (OoO or O3) processing and speculative execution to

improve overall CPU efficiency by executing instructions that may or may not be needed when they are ready

to be executed [31, 69]. These optimizations allow the processor to continue executing while waiting on
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various data dependencies at each stage of the pipeline. In an OoO pipeline, instructions can execute as

soon as their input operands are ready, i.e. all previous dependencies have completed their execution, before

completing themselves. Once an instruction completes, the result of its computation can be forwarded to

other dependent instructions down the pipeline, even if instructions are not executed in strict program order.

However, instructions are committed to the pipeline in order [37].

Speculative execution allows for instructions to be accessed speculatively, meaning that the processor

will predict whether or not the instructions will be executed in the future. One particularly common use case,

specifically in relation to Spectre variant 1 [44], is the branch prediction unit, which uses program history to

predict whether or not conditional branches should be taken before the branching conditional can be fetched

from memory and verified. When the speculated code path is incorrect, i.e. misspeculated, the results of

the speculative execution need to be flushed from the pipeline and rolled back to a correct state; instructions

within this misspeculation window are called transient. When the speculative code path is correct, all

speculative instructions are committed (or retired) to the pipeline once the speculation is resolved.

2.2 Transient Execution Attacks

Despite speculative execution being functionally correct, transient execution attacks target the mi-

croarchitectural states that are not flushed during a mis-speculated event. Transient execution attacks rely

on microarchitectural side-channels to transmit secret information [9, 44, 48, 72, 77, 73, 59, 60]. The secret

is transmitted through transiently executed instructions that are destined to be flushed from the pipeline. In

most cases, these vulnerabilities rely on timing differences required to access different data values, but other

types disclosing gadgets exist [75, 50]. As side-channels of this type arise from standard hardware behavior,

transient execution vulnerabilities are not only difficult to mitigate, but nearly all current mitigation tech-

niques either introduce a significant amount of overhead or do not protect all vulnerable microarchitectural

structures [9].

In combination with non-optimal mitigation techniques, the ever increasing number of discoveries of

new types of transient execution vulnerabilities makes it imperative that we develop tools to allow developers

(both software and hardware) to identify the patterns that enable these attacks.
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1 if (x < array1.size()) { // speculative branch

2 secret = array1[x]; // restricted access

3 y = array2[secret*4096]; // transmitter

4 }

Figure 2.1: Example Victim Code for a Spectre Variant 1 Attack.

2.2.1 Spectre Variant 1

The first transient execution attack published, the Spectre variant 1, leverages the branch predictor

to direct branches to a desired branch direction [44]. A Spectre variant 1 victim gadget [44] is shown in

Figure 2.1. The victim gadget is composed of a conditional branch (line 1), a memory access (line 2), and a

transmitter (line 3). In this gadget, a Spectre attack will first train the branch predictor to always predict that

the branch on line 1 be taken. During the second phase, the processor will speculatively execute instructions

on lines 2 and 3 before the conditional branch is resolved. The attacker will pass in a value for x that when

added to the base of array1 will match the address of a secret value. The access of array1 at index x

(when x > array1.size()) will be transiently executed but then flushed from the pipeline due to a branch

mis-prediction event. However, the array2 access on line 3 will be transiently executed as well before both

instructions are flushed, placing the secret value in the cache via the indexing trick shown on line 3. The

attacker, having flushed all indices of array2 from the cache prior to executing the victim gadget, can then

access every index of array2, measuring the time to access it, to determine which index is in the cache. The

index that takes the least amount of time is the one that was accessed during the attack phase, revealing the

secret value implicitly. Hence, this Spectre attack takes advantage of load instructions that complete but do

not retire as a result of branch mis-prediction.

2.2.2 Spectre Variant 2

The second variant of this original Spectre attack, called the Branch Target Injection (BTI) attack,

poisons the branch target buffer (BTB) to induce speculation during direct and indirect jumps instead of the

PHT like the first variant [44]. Spectre v2 is a variation of a Return Oriented Programming (ROP) attack,
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where an adversary is able to inject a malicious address into the BTB to ensure that transient control flow is

directed to a malicious gadget (or multiple gadgets) within the victim address space. The rest of the attack,

such as use of a covert channel to recover secret information, is the same as the first variant.

2.2.3 Spectre RSB (Variant 3)

A third variant, SpectreRSB [55] (or SpecRSB), exploits the Return Stack Buffer (RSB) rather than

the PHT or BTB. The RSB is a microarchitectural structure that stores virtual memory addresses as return

values every time a call instruction is invoked, and the address at the top of the RSB is popped when a

ret instruction is seen. When the RSB is full, the processor needs to speculate on the return address. A

mis-speculation using the RSB occurs when the RSB differs from the actual memory addresses returned by

the stack, and as the RSB occupies a fixed size, an attacker can induce a mismatch between RSB and real

stack addresses by deeply nesting functions inside of each other to overload the RSB.

2.2.4 Speculative Store Bypass (Variant 4)

A fourth variant, Spectre v4 [11], known as Store to Leak Forwarding or Speculative Store Bypass,

does not rely on transient control flow to leak secret data, but rather takes advantage of transient data

flow (Store to Load (STL) Forwarding, the memory disambiguator [63]) to transiently leak secrets. STL

forwarding is a memory disambiguation technique that allows loads to be speculatively executed ahead of

in-flight stores assuming the load accesses a different memory location than the store. With STL forwarding,

loads may read stale values from the cache ahead from older stores in the memory ordering buffer (MOB) to

avoid waiting for the longer memory access of the store to complete. An attacker can leverage this transient

execution to load a stale value in the cache, bypassing the older store to the same location. The processor

eventually re-executes the load to read the correct value and flushes any incorrect state from the pipeline.

However, the stale data from the transient load can be used to reveal sensitive data through a transmitting

side-channel (such as the cache state which is not flushed during a mis-speculation event).
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2.3 Current Mitigation Techniques

Mitigation for all variants of Spectre attacks at both the hardware and software levels are currently too

expensive to become the standard within kernels or microarchitectures today. While the Linux community

has successfully released OS-level mitigations for Meltdown [26], the Spectre family still affects a vast

majority of processors in use today. One popular software-based mitigation technique, shown in Figure 2.2,

is to use a serializing load fence [65]. The load fence instruction (line 4 in Figure 2.2) ensures that all

loads prior to the fence retire before issuing younger instructions. Load fences are a popular software level

mitigation for Spectre vulnerabilities as they are easy to implement and eliminate any Spectre vulnerabilities.

However, implementing load fencing incurs a drastic performance overhead.

RetPoline [71] is a more efficient software based mitigation to isolate indirect branches from speculative

execution, targeting the Spectre BTB variant. Retpoline redirects indirect branches to code regions that make

use of the Return Stack Buffer (RSB) in order to leverage an ISA’s return instruction as the speculation

primitive rather than the BTB. However, in recent work, the RSB has been shown to also be exploitable via

speculative execution with SpecRSB [55], and more recently RetPoline has been shown to be ineffective

against a novel Spectre variant RetBleed [78].

On the hardware side, many defenses have been proposed and only a few can defend from multiple

attacks with smaller performance overheads. For example, NDA [76] and DOLMA [51] instrument the

Reorder Buffer (ROB) to prevent data propagation of potentially unsafe instructions. Both of these defenses

achieve more reasonable overheads (compared to fences). STT [82] is another hardware defense mechanism,

in which the pipeline is instrumented to track data propagation and limit the effects of the data produced

during speculative windows. STT results in performance overheads in the order of 14% which is an order

of magnitude better than most prior defenses. While these hardware approaches succeed at defending

against several of the Spectre variants with reasonable performance overhead, they fail in addressing the

vulnerability at its source because of the lack of formalization around the attack. SpecCheck is a systematic

verification mechanism that will aid the security evaluation of these mitigation approaches to improve the

understanding of the vulnerability at its source and to identify potentially vulnerable designs that may not
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1 #include <x86intrin.h>

2

3 if(x < array1.size()) {

4 __mm__lfence(); // load fence

5 secret = array1[x];

6 y = array2[secret * 4096];

7 }

Figure 2.2: Example victim gadget for a Spectre variant 1 with a load fence as a mitigation (line 4).

have been considered vulnerable before.

2.4 The gem5 Processor Simulator

To be able to consider both software and hardware state in evaluating vulnerabilities, we look at

a popular processor simulator used in computer architecture research, gem5. The gem5 [5] simulator

is a full system, cycle accurate processor simulator that models various instruction set architectures and

provides detailed pipeline information at simulation runtime. The specific information used by SpecCheck

is encapsulated by the dynamic instruction object widely used throughout the simulation.

The dynamic instruction object contains most of the information required by the SpecCheck FSM,

including the state of the instruction through the pipeline, the program counter corresponding to the instruc-

tion, as well as the corresponding micro-ops for a macro instruction. The dynamic instruction object also

includes both the renamed input registers and the output register to enable the tracking of the potentially

vulnerable data. The use of dynamic instructions gives SpecCheck an omnipotent view of an instruction’s

lifetime throughout the execution of the program, and easily allows us to reason about hardware and software

state in combination.

The gem5 simulator provides another instruction API, static instructions, that provide static information

about each instruction. Unlike dynamic instructions that track information about an instruction throughout

its lifetime in the processor pipeline, static instructions tell us the type of instruction, e.g. whether it is a load

or store, the source and destination architectural registers, and the various microoperations associated with

a single macro operation. The static instruction API is especially useful for determining whether or not an
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instruction produces microarchitecturally visible effects.

The gem5 simulator uses the DynInst API to direct the execution through the pipeline stages. The

last stage is the commit stage which is where instructions exit the pipeline. The commit stage considers

instructions in order as this is the architecturally visible point. gem5 forces all instructions (flushed or not)

through this stage. Given the in-order and comprehensive nature of this commit stage implementation, this

region of the code is where the SpecCheck logic is inserted. A more thorough description of the SpecCheck

implementation in gem5 is given in section 3.



Chapter 3

SpecCheck

To identify potentially vulnerable microarchitectures, one needs to evaluate software and hardware

in combination. We propose to look at both the instruction sequence as well as the pipeline state at

runtime, leveraging the richness offered in processor simulators to determine if a specific microarchitectural

implementation running a specific region of code could potentially be leveraged for a transient execution

attack. We propose that a potentially vulnerable flow of execution can be identified by flagging mis-speculated

windows that contain a completed but not retired load instruction through a series of conditions explained in

a register finite state machine.

SpecCheck is a register finite state machine abstraction of a transient execution attack designed to

detect potential vulnerable code segments for a specific microarchitectural implementation. To achieve this

generalized description of the attacks, SpecCheck focuses entirely on mis-speculated windows that contain

potential transmission channels regardless of the method used to induce speculation or to disclose the secret.

The key insight of the SpecCheck framework is to track all data dependencies within each mis-

speculated window to determine the possibility of a potential data leak later in the pipeline. SpecCheck

records the destination registers of each load operation in the mis-speculation window that completes and

analyzes each subsequent instruction to determine the presence of a data dependency on one of these

destination registers. Any microarchitecturally visible, 𝜇V, instruction that contains a data dependency on a

mis-speculated load (directly or indirectly) is deemed as a potential data leak, and SpecCheck will flag all

instances of potential data leaks as vulnerable.
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3.1 Problem Definition

As explained in Section 2, a transient execution attack can be identified if it satisfies the following

conditions:

(1) It occurs during a flushed transient execution window

(2) The transient window contains least one completed load instruction.

(3) A microarchitecturally visible instruction uses a tainted register (directly or indirectly) from one of

the completed load instructions.

Given the richness of information within a processor simulator, the proposed mechanism is able to examine

the pipeline at each cycle to determine whether or not these conditions exists that would deem the execution

flow vulnerable to transient execution attacks.

A transient execution attack is first made possible by a load instruction that has completed but not

retired. A completion without retirement implies that this instruction has been flushed from the pipeline and is

possibly vulnerable to leaking information through microarchitectural side-channels. This microarchitectural

side-channels can be made visible through other instructions that may also have microarchitectural side-

effects.

Once an instruction uses the destination register of the completed, but not retired, load as an input

source and the consuming instruction is considered to be microarchitecturally visible, then we flag this

speculation window as being vulnerable. However, if the flushed sequence of instructions do not contain

any microarchitecturally visible instructions we conclude that the instruction sequence does not have a

vulnerability.

To determine if instructions within the mis-speculated window have any microarchitectural visibility,

we rely on the Instruction Set Architecture (ISA) to include this information as part of the software contract

as explained by prior work by Mosier et.al. [56]. The current implementation of SpecCheck identifies

commonly known instructions that are microarchitecturally visible such as branches (control flow state),

memory operations (memory system state) and floating point operations (functional unit state). As per prior
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work in Information Flow Tracking (IFT) [64, 47, 19], the vulnerable state of a register is propagated through

instructions regardless of whether they are considered to be microarchitecturally visible. This propagation

mechanism also includes data dependencies through memory. For example, a store instruction that places

some value in memory from a tainted register is considered to be a microarchitecturally visible instruction

and thus SpecCheck will flag such a sequence of instructions as being vulnerable.

The linear input stream of instructions encountered throughout a program’s lifetime is also represen-

tative of a classical string parsing problem typically defined by other finite state automata; by treating each

instruction and its corresponding microarchitectural state as a single symbol in a sequence of instructions

within a program, a finite state machine approach is able to make simple logical determinations about

the nature of a program based solely upon the next instruction symbol when augmented with a taint table

storage structure described in section 3.2 to retain memory of prior behavior in a program’s lifetime. As

we generalize a transient execution attack as a sequence of symbols that satisfy the properties described in

this subsection, we believe that treating an arbitrary program as a stream of instruction symbols is sufficient

enough to detect all code regions that may be vulnerable to such attacks.

A finite state machine approach was chosen for SpecCheck as it is both scalable and efficient, requiring

slightly more computational power than a traditional finite automaton for regular expression parsing. As the

number of states and transition functions are kept constant, SpecCheck incurs minimal overhead.

3.2 Finite State Machine Representation

We propose a 4-state automaton (shown in Figure 3.1) to classify mis-speculated code paths as

vulnerable to speculative execution attacks. The machine begins in an initial state, 𝑞𝑖𝑛𝑖 , and proceeds

through state transitions by consuming an instruction as it moves through the pipeline. Upon reaching the

accept state, 𝑞𝑎𝑐𝑐, the machine automatically reverts back to the initial state without consuming an additional

instruction to account for additional speculation windows.

The SpecCheck FSM augments a simple finite state automaton by including a taint table that stores all

possible data dependencies that are the destination of a tainted instruction during the mis-speculation window

by tainting its destination registers. When the accept state is reached or the pipeline resolves speculation, the
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𝑞𝑖𝑛𝑖start 𝑞1 𝑞2 𝑞acc

Retired
Flushed ∧ ¬CLoad

Flushed ∧ CLoad

Retired
Flushed ∧ CLoad

Flushed ∧ ¬CLoad

Flushed ∧ ¬CLoad
∧ ¬taint(src)

Retired

Flushed ∧ taint(src) ∧ 𝜇V

(Flushed ∧ CLoad) ∨
(Flushed ∧ taint(src) ∧ ¬𝜇V)

Taint destination register
Clear taint table

Figure 3.1: The Finite State Machine representation for SpecCheck.

taint table is reset.

3.2.1 The Instruction Tuple

SpecCheck is designed as a monitor to the Reorder Buffer (ROB) that consumes instructions in

the order they they are removed from the ROB. For any given instruction, SpecCheck evaluates: (1) the

instruction itself, (2) the Program Counter (PC), (3) the renamed source and destination registers, and (4)

the state of the instruction in both the complete and commit stages of the pipeline. The tracking of software

based information, such as the instruction and program counter, as well as hardware information, such as

microarchitectural registers and pipeline state, allow SpecCheck to identify side-channel gadgets by tracing

data dependencies through the pipeline.

3.2.2 The Taint Table

SpecCheck is further augmented with a taint table to track memory dependencies between instructions

as information flows through the pipeline. The maximum size of this register array depends on the number

of physical registers that may be used as either destinations or sources to instructions seen by the SpecCheck

FSM. Registers are tainted any time they are the target of a flushed load instruction that still reaches the

complete stage in the pipeline. The target of non-load instructions are tainted if either of the source registers
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are present in the taint table and the instruction completes, thus propagating its taint to dependent instructions.

The taint table automatically untaints all registers any time the FSM returns to the initial state, i.e. when the

transient state is resolved.

3.2.3 The Transition Function

As SpecCheck consumes each instruction, it may:

• Modify the current state

• Modify the taint table

Each state transition is determined by the current instruction and may depend on information provided

by the taint table. In addition to changing state, the state machine may also add registers to the taint table, or

clean the table when speculation is resolved. As shown in Figure 3.1, this transition logic is denoted by the

instruction itself, its final pipeline stage, and the dependence upon a tainted register. Each of the tasks that

may be taken in addition to a state transition are each denoted with a different color. We introduce the CLoad

primitive to denote a completed load instruction as loads that do not start the execution (denoted in gem5 as

the completion of the instruction) cannot create microarchitectural side channels on their own. Additionally

we introduce the taint(register) primitive to represent a lookup in the taint table, where taint(reg)

indicates that reg is tainted and ¬taint(reg) indicates that reg is not tainted.

In Figure 3.1, modifications to the taint table are denoted by different colors: red adds the destination

register of the current instruction to the taint table and green resets the taint table. When an instruction

reaches the accept state, there is an implied transition back to the initial state, clearing the taint table, without

needing to consume an additional instruction.

SpecCheck identifies any mis-speculated code region as vulnerable if it adheres to each of the

principles listed in Section 3.1. SpecCheck will only accept a mis-speculated code region as vulnerable if it

satisfies all principles and will immediately return to the initial state upon breaking any of these principles.

Specifically, SpecCheck will reject any mis-speculated code region that does not contain a load instruction

that completes (breaking principle 2) or any microarchitecturally visible instruction with a data dependency
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on a completed load instruction (breaking principle 3). Upon breaking either of these principles, the

automaton will revert back to the initial state and reset the taint table without flagging that mis-speculation

window as vulnerable.

3.2.4 Automaton States

SpecCheck will remain in the initial state until it encounters the first instance of a flushed instruction,

where it will transition to one of two intermediary states depending on the type of instruction as well as its

microarchitectural state: 𝑞1 will be reached if the flushed instruction is benign, i.e. does not satisfy property

(2), and 𝑞2 will be reached if this instruction is a load instruction that completes (CLoad), i.e. satisfies

property (2), and the target register will be tainted and added to the taint table. In either state, property (1)

is satisfied.

If in state 𝑞1, the state machine will stay until property (2) is satisfied, whereupon the state machine

will transition to 𝑞2 and taint the target of this instruction. Any instruction satisfying property (2), i.e. a

CLoad, while the state machine is in state 𝑞2 will continue to taint target registers to maintain a complete

list of all possible data leaks that are instigated in this mis-speculation window. The 𝑞2 state simultaneously

checks for any microarchitecturally visible instructions that satisfy property (3) by using a tainted register

as a source. If the mis-speculation window resolves before property (3) can be satisfied, the state machine

will return to the initial state and reset the taint table. The register taint propagation is done on the physical

register name rather than the architectural register, as only true data dependencies matter when it comes to

transient execution attacks.

State Property
1 2 3

𝑞𝑖𝑛𝑖 ✗ ✗ ✗

𝑞1 ✓ ✗ ✗

𝑞2 ✓ ✓ ✗

𝑞𝑎𝑐𝑐 ✓ ✓ ✓

Table 3.1: Properties as defined in subsection 3.1 that are guaranteed to be satisfied at each SpecCheck
state
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O3PipeView:fetch:1000000:0x150e: SAL_R_I : slli rdx, rdx, 0x20 // fetch tick:PC:asm:uop:registers

O3PipeView:decode:1001000 // decode end-tick

O3PipeView:rename:1002000 // rename end-tick

O3PipeView:dispatch:1003000 // dispatch end-tick

O3PipeView:issue:1004000 // issue end-tick

O3PipeView:complete:1005000 // complete end-tick

O3PipeView:retire:0:store:0 // retire end-tick (0->FLUSHED)

Figure 3.2: An example of a flushed DynInst instruction on a simulated out of order x86 processor.

3.2.5 The Accept State

When the state machine reaches the accept state, the program can be determined to have an exploitable

gadget within its source code. As there are likely many vulnerable code regions in a program, the state

machine does not halt and exit the program, but instead returns back to the initial accept state without

consuming an additional instruction to ensure a new mis-speculation window can be evaluated immediately

succeeding the resolution of the previous one. Since code regions are likely to be identified multiple times,

our gem5 implementation will only raise an alert the first time a unique mis-speculated window reaches the

final accept state, but will continue tracking the total number of vulnerable mis-speculation windows that are

encountered. More implementation details are discussed in section 3.3.

3.3 gem5 Implementation

SpecCheck was designed with software and hardware co-design as the primary goal, and the finite

state machine lays a preliminary framework for a robust security debugger to help computer architects in

creating secure hardware. To evaluate the effectiveness and feasibility of SpecCheck’s finite state machine

as a design tool, it was implemented on the cycle-accurate processor simulator gem5 [5]. In this section,

we describe the implementation specific details and provide an overview of how this tool can be used as an

effective security debugging suite for secure hardware design.

3.3.1 gem5 Security Debugger

The gem5 processor simulator was chosen as the evaluation suite for SpecCheck as it is the most used
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simulator for computer architecture researchers and is an open-source development project with an active

repository on GitHub [5]. As is, gem5 provides a vast suite of debugging tools tailored towards hardware

architects to develop novel hardware solutions without needing to implement their solutions on bare metal

hardware, but this debugging suite currently lacks sufficient support for hardware security primitives to

defend against complex vulnerabilities such as Meltdown, Spectre, and Row-Hammer [41]. As Meltdown is

considered to be successfully mitigated [49] and the nature of a Row-Hammer attack is based on the physical

properties of DRAM, we consider them to be out of scope for this work.

SpecCheck was implemented as an additional debugging tool within the gem5 simulator, and can

be accessed using the --debug-flags=SpecCheck debug flag when running a gem5 simulation. The

SpecCheck Proof-of-Concept is implemented on gem5’s out of order (O3) CPU, consisting of 7 pipeline

stages regardless of the underlying architecture: fetch, decode, rename, dispatch, issue, complete, and retire.

This microarchitectural consistency ensures that SpecCheck is compatible with x86, ARM, and RISC V

processors. As there is no explicit pipeline stage for execute, we denote an executed instruction as one

that has successfully been issued from the reorder buffer to the appropriate functional unit for execution,

and the retire stage is analogous to the commit stage of a traditional processor pipeline where correctness

is preserved. As Spectre attacks are completely visible through the system call interface, there is no need

to simulate an operating system in Full System (FS) mode, so all evaluations were done purely in system

emulation (SE) mode to save on computation and simulation time.

The gem5 implementation makes extensive use of the dynamic instruction (DynInsts) API [5] to

access all relevant microarchitectural state information about an instruction through a single interface: the

high-level assembly instruction, the corresponding micro-operation, the instruction’s program counter, the

renamed target and source registers, and the processor tick of each pipeline stage’s completion (or a 0 if

that stage does not finish). An example of a DynInst in gem5 can be seen in Figure 3.2 where an output

trace is obtained by running a gem5 simulation with the O3PipeView flag enabled, allowing the contents of

each DynInst to be written to an external trace file. This DynInst demonstrates a SAL (left shift) assembly

instruction occurring between a source register value (rdx) and an immediate value (0x20), and the result

written to the destination register rdx, with a corresponding slli micro-operation. This trace also provides the
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program counter associated with the SAL instruction (0x150e), as well as the micro-operation code (0), and

sequence number, both of which are ignored in the SpecCheck implementation. Lastly, this trace contains

the tick of the completion of each pipeline stage, showing that the instruction successfully completes but gets

flushed from the pipeline as the retire stage never finishes. As DynInst instructions reference architectural

registers, an additional step is needed to access the corresponding renamed microarchitectural registers.

SpecCheck is implemented as a monitor in the ROB during the commit stage of the O3 pipeline where

it consumes instructions as they are removed from the buffer. As the DynInst API provides an omnipotent

view of the pipeline, a ROB monitor ensures that SpecCheck evaluates instructions in program order. Since

the SpecCheck proof of concept only considers userspace programs under syscall emulation, the SpecCheck

state machine only consider instructions that execute within main’s execution, including all called/linked

functions. To invoke the SpecCheck monitor in gem5, the user passes the SpecCheck debug flag, which

initializes the FSM and activates the monitor within the commit stage.

The SpecCheck module implementation consists of a single source/header code file combination

within the O3 namespace. SpecCheck maintains two key global structures to keep track of current state, the

register taint table (vector), and a list of all unique PCs (misspeculation regions) that are marked vulnerable

throughout the program’s lifetime (vector). When an instruction is ready to be removed from the ROB

(squashed or not), it is passed to the state machine through an advance FSM() function invocation. This

will change the state of the FSM and update the taint table as necessary. Any time a unique misspeculation

window is marked as vulnerable, it is added to the vector of unique, vulnerable PCs. When a unique PC

is found to be vulnerable, SpecCheck will raise an alert to stdout, notifying the user of the potentially

vulnerable PC.

3.3.2 Defining Micro-Visible Instructions

Microarchitecturally visible (𝜇V) instructions are instructions that create externally observable effects.

As defined in Section 3.1, memory, floating point, and control flow operations all influence microarchitectural

state, making instructions of this type useful for transmitting information via side channels. As demonstrated

by Mosier et.al., the ISA itself needs to define the microarchitectural side-effects of the instruction, leaving
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it up to the ISA to identify this type of instructions [56]. To identify 𝜇V instructions, the SpecCheck FSM

also examines each instruction’s StaticInst pointer which maintains static information about each instruction

type, e.g. whether it is microarchitecturally visible or not. All StaticInst instructions that are of memory,

floating point, or control flow type are marked as 𝜇V.



Chapter 4

Evaluation

4.1 Evaluation Methodology

The SpecCheck implementation in gem5 was evaluated using a variety of programs spanning multiple

Spectre variants, Spectre V1 and V2 [44], SpecRSB [46], Speculative Store Bypass [32], and a mitigated

Spectre v1 using fences to demonstrate a strong security guarantee and 12 programs from the SPEC CPU

2017 [7] benchmark suite to show simulated time overhead. SpecCheck was evaluated using an out of

order x86 CPU across all experiments, identifying known side-channel gadgets that have been shown to leak

data through transient execution attacks and evaluating the simulation overhead of the SpecCheck security

debugging module. We additionally evaluate SpecCheck on a series of microbenchmarks that do not have

speculative execution, i.e. simple arithmetic or I/O programs. We further demonstrate that SpecCheck does

not find vulnerable gadgets within these programs.

Each proof of concept and microbenchmark is evaluated using gem5’s system call emulation mode

configured to use the DerivO3 CPU with LTAGE branch prediction [61], 8GB of memory, 32kB 8 way

associative L1 instruction/data caches, and a 2MB 16 way associative L2 cache. Each program was statically

compiled, and microbenchmarks were compiled without optimization. When SpecCheck is enabled, the

FSM will only analyze instructions that execute during the program’s lifetime, i.e. throughout the scope of

the main function and all invoked functions. Each program was simulated for a maximum of 150,000,000

instructions, just long enough to ensure that each program’s execution reaches its known exploitable gadget.
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4.2 Identifying Known Gadgets

To showcase the correctness of the SpecCheck debugging module, the finite state machine was run on

known Spectre gadgets, such as the one shown in Figure 2.1, to ensure that it is capable of detecting obvious

side channels. In addition to counting the number of mis-speculated code regions that are vulnerable to

data leaks, the SpecCheck debugger is also capable of tracking the PC value of the beginning of each mis-

speculation window that gets flagged as vulnerable. To ensure that SpecCheck identifies the vulnerabilities

in the expected code regions of the Spectre PoCs, each flagged PC was compared to the disassembled Spectre

binaries to determine if the mis-speculation window induced by each gadget was classified correctly.

We show that SpecCheck is able to correctly classify malicious transient execution in proof of concept

code for Spectre variant 1 [2], variant 2 [10], SpecRSB [10], and Speculative Store Bypass (variant 4) [10]:

variants that remain largely unmitigated [78]. Each Spectre variant was compiled statically to an x86 binary

to ensure proper compatibility with the gem5 simulator’s system emulation (SE) mode, leading SpecCheck

to analyze all statically linked library code in addition to the exploit code in the PoCs themselves, but only

analyzing gadets that occur during the actual execution of the given program. SpecCheck was able to identify

the desired victim gadget in each of the Spectre variants, ensuring that the debugging module is capable

of providing a an accurate depiction of the vulnerabilities in the transient execution paths. As SpecCheck

is evaluated on statically linked programs, it has also discovered numerous, malicious mis-speculated code

paths in the C standard library as well as other vulnerable code regions within each PoC distinct from the

chosen exploit gadget.

Spectre V1

We first analyze the Spectre v1 exploit to verify that SpecCheck can successfully identified the

potential vulnerability induced by the code gadget shown in Figure 2.1 by analyzing a known proof of

concept exploit [2]. To start, SpecCheck flags the PC of the first mis-speculated instruction in the vulnerable

window, i.e. the mis-predicted branch direction. Then, SpecCheck successfully identifies the first instruction

of the predicted branch target, a lea instruction at PC 0x401d3f, as vulnerable to a side-channel attack.

The disassembled assembly code for the Spectre v1 gadget is shown in Figure 4.1 with the branch target PC
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1 # Branch conditional

2 0x401d31 <+12>: mov 0xde3c9(%rip),%eax

3 0x401d37 <+18>: mov %eax,%eax

4 0x401d39 <+20>: cmp %rax,-0x8(%rbp)

5 0x401d3d <+24>: jae 0x401d72 <victim+77>

6

7 # Branch target

8 0x401d3f <+26>: lea 0xde3da(%rip),%rdx

9 0x401d46 <+33>: mov -0x8(%rbp),%rax

10 0x401d4a <+37>: add %rdx,%rax

11 0x401d4d <+40>: movzbl (%rax),%eax

12 0x401d50 <+43>: movzbl %al,%eax

13 0x401d53 <+46>: shl $0x9,%eax

14 0x401d56 <+49>: cltq

15 0x401d58 <+51>: lea 0xe1b01(%rip),%rdx

16 0x401d5f <+58>: movzbl (%rax,%rdx,1),%edx

17 0x401d63 <+62>: movzbl 0xe05f6(%rip),%eax

18 0x401d6a <+69>: and %edx,%eax

19 0x401d6c <+71>: mov %al,0xe05ee(%rip)

20

21 # End of branch / not taken

22 0x401d72 <+77>: leave

Figure 4.1: Disassembled victim code for a Spectre variant 1 attack gadget shown in Figure 2.1

1 # Misspeculation

2 0x000000000402225 <_Z11move_animalP6Animal>:

3 0x402225 endbr64

4 0x402229 mov (%rdi),%rax

5 0x40222c jmpq *(%rax)

Figure 4.2: Disassembled gadget code for the Spectre BTB (variant 2) POC [10].

directly matching the mis-speculated load instruction flagged by SpecCheck.

Spectre V2

SpecCheck is also able to identify information leaks that occur during branch target injection (BTB)

attacks, i.e. Spectre v2. Our analysis uses the Spectre v2 POC code provided by the transientfail reposi-

tory [10] where we use the same address space, in place variant. Spectre v2 relies on poisoning the target

of indirect jumps to induce speculation [44] which SpecCheck is able to identify. Figure 4.2 shows the
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exploitable gadget in the Spectre v2 POC that contains the indirect jump instruction at PC 0x40222c that

SpecCheck annotates as vulnerable.

SpecRSB

1 int __attribute__ ((noinline)) call_leak() {

2 // Manipulate stack to not return here

3 call_manipulate_stack();

4 // Architecturally shouldnt return here

5 // Encode data in covert channel

6 cache_encode(SECRET[idx]);

7 return 2;

8 }

Figure 4.3: SpecRSB (same address space, out of place) gadget to leak information via RSB mis-
speculation courtesy of the transientfail [10] repository.

Unlike Spectre variants 1 and 2, SpecRSB induces speculation through the return stack buffer rather

than branch misprediction [55]. We demonstrate that SpecCheck is able to identify gadgets in any speculated

code path, regardless of the reason for misspeculation. As in Spectre v2 and v4, SpecCheck was analyzed

on SpecRSB POC code provided by the transientfail repository [10].

We are similarly able to detect malicious transient execution in the SpecRSB exploit as SpecCheck

successfully identifies the mis-speculated return target as vulnerable to a side-channel vulnerability. In a

SpecRSB gadget shown in Figure 4.3, SpecCheck correctly annotates the resumption of execution within

call leak() after the call to call manipulate stack() as vulnerable. The call manipulate stack()

function induces speculation on the function’s return address which speculatively returns control tocall leak().

SpecCheck correctly identifies this misspeculation window as susceptible to leakage with the use of the

cache encode() mechanism.

Speculative Store Bypass (V4)

SpecCheck is lastly able to identify Speculative Store Bypass, or Spectre v4, attacks that exploit

store to load forwarding to induce speculation [11]. Figure 4.4 shows a simplified gadget to leak secret

information via store to load bypasses provided by transientfail [10]. SpecCheck is able to correctly identify

the misspeculated code path on line 15 as vulnerable to potential data leaks as this instruction induces the
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speculation and loads the secret. Unlike the previous Spectre variants, Speculative Store Bypass attacks do

not rely on speculative control flow, thus demonstrating SpecCheck’s ability to identify leakage regardless

of the reason for speculation.

1 char access_array(int x) {

2 // store secret in data

3 strcpy(data, SECRET);

4

5 // flushing the data increases

6 // probability of speculation

7 mfence();

8 flush(data);

9

10 // ensure data is flushed at this point

11 mfence();

12

13 // overwrite data

14 (*(*data_))[x] = OVERWRITE;

15

16 // Encode stale value in the cache

17 cache_encode(data[x]);

18 }

19

Figure 4.4: Simplified Speculative Store Bypass gadget [10]

Mitigated Spectre v1

SpecCheck was also evaluated on a mitigated Spectre v1 proof of concept using a load fence as shown

in figure 2.2. SpecCheck no longer identifies the victim function as vulnerable to speculative leaks as the

lfence ensures that the loads prior to the fence are forced to complete, thus mitigating any possibility of

side channel leakage. This further demonstrates SpecCheck’s ability to evaluate proposed Spectre defenses

in a systematic way, as a successful mitigation, whether in architecture or software, will no longer be marked

as vulnerable by SpecCheck.
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4.3 Microbenchmark Evaluation

SpecCheck was also evaluated on a small series of microbenchmarks that do not induce speculation.

These microbenchmarks include a program to store and load simple variables to/from memory, perform

arithmetic operations such as addition, and utilize the printf() function to print a string. As each

microbenchmark is compiled statically, SpecCheck only analyzes code that runs during the execution of

the program, i.e. everything invoked throughout main’s lifetime. Additionally, each microbenchmark was

compiled without any optimizations to ensure that none of the benchmark code is optimized out. SpecCheck

identified no potential leaks in either the store/load or arithmetic microbenchmarks, and finds a single potential

leak in the IO puts function call related to the printf() benchmark. These microbenchmarks demonstrate

a low false positive rate and SpecCheck’s use case of solely analyzing speculatively executed instructions.

1 int main () {

2 int a = 1;

3 int b = 2;

4 int c = a + b;

5 return 0;

6 }

Figure 4.5: Example of an arithmetic microbenchmark

4.4 False Positives

Variant True Positives False Positives True Negatives False Negatives FP rate
Variant 1 1 59 157 0 0.273
Variant 2 1 43 119 0 0.265

RSB 1 35 108 0 0.245
SSB 1 45 128 0 0.260

Table 4.1: SpecCheck confusion matrix results for all misspeculation windows across each Spectre
variant.

To provide a strong security guarantee, SpecCheck aims to avoid all instances of false negatives

where a malicious gadgets is not identified as potentially malicious and instead prefers a slight false positive
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rate. To identify false positive and false negative rates, a table of confusion matrix results for each Spectre

variant evaluated with SpecCheck is given in table 4.1. Each entry in the confusion matrix table represents

the number of unique misspeculated PCs: true positives are correctly identified as vulnerable and reach

SpecCheck’s accept state, i.e. known gadgets, false positives are incorrectly identified as vulnerable, true

negatives are correctly identified as benign, i.e. never reach the accept state, and false negatives are incorrectly

identified as benign.

The 0% false negative rate is indicative of SpecCheck’s strong security guarantees and is evident by

SpecCheck’s ability to identify known gadgets across multiple Spectre variants. Ensuring that SpecCheck

is comprehensive enough to detect all known variants incurs a relatively high false positive rate between

24-27%, but each of these annotated regions could, in theory, be used to transiently transmit secret data.

However, for the sake of evaluation, each PC that is not known to be vulnerable a priori is deemed as a false

positive. We leave further analysis of each annotated region and techniques for minimizing the false positive

rate for future work.

4.5 Simulation Overhead

The finite state machine design for the SpecCheck debugger was chosen for its lightweight imple-

mentation to incur minimal overhead in simulation time when using gem5. As SpecCheck is currently a

purely software defined tool without any modifications to the simulated hardware, the module’s overhead

was determined by an increase in simulation time on the host when using the SpecCheck debugger versus a

normal simulation workload. These statistics were measured in overall seconds taken to run the simulation

on the host as provided by the gem5 statistics API,

Unlike the vulnerability evaluation, each benchmark is simulated for 500 million instructions during

the warmup period, followed by a subsequent 500 million instructions. Across all 12 benchmarks, SpecCheck

incurs only a 4.05% timing overhead on average while incurring as low as 1.8% overhead in the best case

(mcf), and 10 of the 12 benchmarks sustain overheads of less than 5%. Even in the worst case performance,

SpecCheck experiences a maximum overhead of 9.8% in simulation time which we deem as reasonable for

simulation purposes.
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Discussion

5.1 Related Work

Speculative Taint Tracking (STT) [82] presents a hardware protection scheme for mitigating Spectre

attacks by tracking all speculatively accessed data. Like SpecCheck, STT separates Spectre attacks into two

phases, the access and transmit phases, and allows speculative instructions to execute until they are able to

form a covert channel, at which point dependent instructions must block until the access is resolved (i.e. non

speculative). These instructions are tainted based on the initial access instruction similarly to SpecCheck’s

taint mechanism. However, STT presents a hardware based defense mechanism for mitigating Spectre

attacks, while SpecCheck is designed to systematically evaluate the security of a proposed architecture.

As SpecCheck is not a proposed defense, has an omnipotent view of the pipeline, and does not consider

architectural performance constraints (unlike STT), it is able to easily verify the overall effectiveness of

security focused designs such as STT.

Spectify [58] presents another transient execution defense approach based on a FSM characterization

of a Spectre attack. However, the Spectify FSM is solely limited to cache based side channel attacks, whereas

SpecCheck aims to be agnostic to the underlying transmission gadget used during speculation, as various

other, non-cache side channels exist [25, 74, 73, 44]. Additionally, Spectify only considers speculation as

a result of branch misprediction, leaving variants that make use of other types of misspeculation, such as

Spectre v4 [11], as vulnerable even with the Spectify detection mechanism. We show that this type of FSM

design is not enough to reason about Spectre v4, a variant that is detectable with the SpecCheck FSM.

Axiomatic Hardware-Software Contracts for Security [56] introduces Leakage Containment Models
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(LCMs) that describe how data can leak microarchitecturally given a hardware implementation. This work

presents a formal approach to hardware/software contracts that expands upon memory consistency models

to define microarchitectural leakage models by similarly analyzing both architectural and microarchitectural

states. The final contribution, CLOU, is a static analysis tool integrated with LLVM to create LCMs and

identify microarchitectural leakage for a given program. This is a key contrast to SpecCheck which acts

as a runtime verification tool that is tightly integrated within the gem5 simulator. Additionally, the analysis

of CLOU considers solely Spectre v1 [44], v1.1 [43], and v4 [11], while neglecting to consider other key

variants, such as Spectre v2 [44] and SpecRSB [55], that are identified by SpecCheck.

CheckMate [70] presents a similar tool for microarchitecture analysis to determine vulnerable regions

of the hardware design that may be exploited by transient execution vulnerabilities. By providing a hardware

specification, CheckMate introduces the ”microarchitecturally happens before” (𝜇hb) primitive to create

an ordered event graph at the microarchitectural level to detect subtle event sequences that are exploited

by transient execution attacks. The user then supplies a 𝜇hb subgraph that defines an exploit behavoir,

and CheckMate will analyze the ordered event graph for vulnerabilities matching the provided exploit

behavior. Our approach differs from the work in CheckMate as SpecCheck (1) analyzes software patterns

by means of Spectre gadgets in combination with pipeline state information and (2) examines the pipeline

in isolation from other microarchitectural structures such as the L1 cache. For this reason, SpecCheck is

primarily focused towards identifying vulnerabilities that arise during the software/hardware codesign process

where CheckMate is exclusively used to verify a microarchitectural design implementation. Additionally,

SpecCheck is built directly into the gem5 simulator and is designed be used in conjunction with various

CPU configurations and binary programs specified by the end user.

Fadiheh et al. [20] present work on a formalized approach characterizing transient execution vul-

nerabilities by extending previous work Unique Program Execution Checking (UPEC) [21] to cover out of

order execution. However, similarly to CheckMate, this work is exclusively concerned with microarchi-

tectural structures, differing from SpecCheck’s analysis of software with pipeline state. The experimental

methodology was only carried out on a single Berkeley Out of Order Machine (BOOM) [13] and was able

to detect multiple Spectre variants along with Meltdown. SpecCheck aims to build upon this formalization
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by using a state machine to better fit the debugging framework offered by the gem5 simulator, and eschews

microarchitectural structures such as the ROB in favor of the pipeline for the same reason.

Various other proposed mechanisms for defending against Spectre have been proposed in recent

work [81, 76, 16, 66]. However, like many of the examples above, these works present active defense

mechanisms for transient execution attacks, and are the perfect candidates for security evaluation using

SpecCheck.

5.2 Future Work

To design a more robust debugging tool for developing secure architectures, we plan to extend the

SpecCheck platform to seamlessly integrate into full system simulation to account for software level defenses

to transient execution vulnerabilities. As Spectre attacks exploit speculative execution via avenues such as

branch prediction, the SpecCheck tool only analyzes mis-speculated code regions to determine the presence

of potential data leaks that may have side effects later on in the pipeline. However, this current approach

is primarily focused on architecture design and does not consider software based defenses when analyzing

transient execution paths. Expanding the SpecCheck debugging module to include operating system level

logic will help both computer architects and software engineers to develop secure hardware and software in

combination, targeting different areas of the systems stack to implement mitigations.

SpecCheck currently incurs a high false positive rate to ensure that no false negatives arise during the

evaluation process. In the future, we plan to analyze each of these false positive regions of code in depth to

determine the presence of other, potentially novel, side channel attacks. We believe that a significant number

of these false positive regions may actually be vulnerable to Spectre attacks and therefore marked as true

positives, but further analysis is required to support this claim. In that case, the number of false positives

would decrease while continuing to guarantee no false negatives occur.

We also plan to extend our SpecCheck framework to successfully debug a more diverse set of

microarchitectures as the proof of concept tool is currently only implemented for an out of order, 64 bit

processor. As gem5 separates the ISA from the microarchitecture as much as possible, SpecCheck remains

ISA agnostic as it is solely tied to the gem5 out of order (O3) microarchitecture. The SpecCheck tool will
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be extended to reason about other types of microarchitectures, such as in order processors and processors

with different pipeline designs, in addition to the current O3 model. To do so, SpecCheck will be extended

by generalizing the O3 pipeline stages into generic ”families” of stages used by other microarchitectures,

e.g. any execute stage will undergo the same logic, despite the naming convention used by that exact

implementation. As any processor capable of speculative execution, including in order processors, are

vulnerable to Spectre attacks, we do not want to limit SpecCheck to reasoning solely about out of order

pipelines and hope to generalize the tool to perform security analysis on any modern processor pipeline

design. Evaluating different branch predictors included in gem5 (BiModeBP, LocalBP, and TournamentBP)

as well as varying data cache implementations will provide a wider range of debugging opportunities for

secure hardware design using SpecCheck.

To reach the full capability of our hardware security debugger, we plan to implement fuzzing func-

tionality to fully explore the entire program space for any code regions that may be vulnerable and reachable

by an attacker. By adding fuzzing capabilities to the final SpecCheck platform, the debugger will provide

a completely thorough evaluation of transient execution vulnerabilities for any program ran on any modern

architecture.



Chapter 6

Conclusion

SpecCheck introduces a novel framework for characterizing code regions as being vulnerable transient

execution attacks through a finite state machine approach. The PoC implementation in the gem5 simulator

on an out of order processor proves to be a lightweight method of identifying data leakage through transient

execution and provides significant groundwork towards a comprehensive security debugger for developing

secure microarchitectures.

By modeling speculative execution vulnerabilities with a formal state machine, SpecCheck is able to

generalize the covert channel primitive inherent in all Spectre attacks to not only identify known vulnerabilities

but also detect potentially novel side channels that may transiently leak information. SpecCheck provides a

high security guarantee, successfully identifying vulnerable code regions in all four main Spectre variants.

SpecCheck leverages the pipeline state information to pinpoint exact regions in a program’s execution flow

that may be vulnerable and further provides support for analyzing speculative execution implementation by

tracking all areas of mis-speculation in a programs simulation. This feature allows users to identify code

regions with disproportionately high rates of mis-speculation in addition to providing a strong foundation

for security research. SpecCheck’s implementation provides lightweight debugging support to the gem5

simulator for developing secure architectures, incurring a 1.8% simulation overhead in the best case and a

4.05% overhead on average while ensuring a 0% false negative rate in each Spectre variant.
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proof assistant reference manual. INRIA, version, 6(11), 1999.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu,
Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, aug 2011.
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