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Abstract

Huerfano Butte in southeastern Colorado is a hypabyssal plug. Of the dikes of Huerfano Butte, a single E-W trending olivine-bearing alkali-lamprophyre dike was analyzed. Mineral assemblages and textures were observed and described using classical optical petrography. Electron Microprobe (EMP) analysis of phenocrysts and groundmass phases were performed to determine the geochemical and elemental compositions of the mineral phases of interest. The data collected was recast into end member chemical formulas and plotted on ternaries. 
The optical observations of EMP data were used to classify, reconstruct the crystallization sequence, and understand the petrogenetic history of the Huerfano Butte lamprophyre (hereafter referred to as the HBl). The HBl is classified as an olivine minette. All olivine observed were altered, chemically zoned in Ni, contained Cr-spinel inclusions, and were Fo72-Fo76 in composition. The low Fo content of the olivine suggests fractionation of the melt before final emplacement. The clinopyroxene had distinct discontinuous zoning suggesting two separate periods of crystal growth. Cr-spinel inclusions were observed in the clinopyroxene and the olivine, suggesting co-crystallization at high pressure. Large phenocrysts of biotite were chemically zoned in Ba and all phenocrysts were heavily enriched in TiO2. The Ba zoning suggests biotite was already present in the melt before emplacement. Three chemically distinct groups of spinel create a sequence of the crystallization as they go from being Cr-rich to Ti-bearing magnetite. A peritectic reaction between olivine, biotite, and clinopyroxene was observed and represents the instability of olivine during the melt’s journey to the surface.
The HBl was generated by the degassing of the fluids from the Farallon plate as it descended into the mantle. This metasomatized mantle was then  partial melted by the formation of the Rio Grande Rift, 32 Ma and emplaced in the upper crust at 1-2 km depth. 

INTRODUCTION
Motivation 
This project in petrologic research, funded by the Department of Geological Sciences’ Mentorship Program, has been a path of enlightenment. This project began in August of 2019 out of curiosity for a rare type of igneous intrusion. This curiosity stemmed from wanting to understand, from start to finish, the origin of lamprophyric dikes in Colorado and their journey which started off more than 50 miles deep in the mantle and ultimately ended up at the surface. I started with a multitude of questions, some being too narrow while others being too broad for me to unearth an answer without a more sizeable sampling pool and study. The specific questions addressed in this study are: 1) What do the mineral compositions and textures of the HBl reveal about its crystallization sequence and the P-T conditions of its journey from partial melting in the mantle to emplacement? 2) How does the HBl fit into the lamprophyre classification scheme using mineralogical and petrographic evidence? and 3) How does its formation fit into the larger picture of regional volcanism of the Spanish Peaks area? 

Introduction to Lamprophyric Magmas
Lamprophyres are porphyritic mafic to ultramafic intrusive igneous rocks. Lamprophyres derive from metasomatic mantle sources where alteration by hydrothermal and other fluids cause dissolution and deposition of new minerals to occur. These rocks often possess phenocrysts of olivine and always an alkali feldspar or plagioclase groundmass (Seiler, 1999). Lamprophyres have specific characteristics that separate them from other more common intrusive igneous rocks, such as high potassium content, essential phenocrysts of hydrous phases (biotite or amphiboles), and a feldspar groundmass. Lamprophyres commonly have elevated volatile contents and arc magma-like trace concentration of incompatible elements (K, P, Ba, Sr, and light REEs) (Best, 2003). These characteristics are thought to originate from a geochemically enriched, metasomatized mantle peridotite that contains a stable hydrous accessory phase in the form of phlogopite or amphibole. The partial melting of this metasomatized and mineralogically altered peridotite produces unusual magma types that include lamprophyres. 
Almost all lamprophyres are hypabyssal intrusions with no plutonic equivalents. They are found as sills, dikes, and volcanic pipes located in inland continental regions and orogenic belts (McBirney, 1993). Often lamprophyric dikes crosscut granitic plutons but are not genetically related to them; the crosscutting relationship likely stems from dikes exploiting existing crustal weaknesses, or conduits created by large plutonic magma bodies (Carmichael et al., 1974) (Luhr, 1997).
The study and classification of lamprophyres have been an overlooked topic in petrologic research. Prior to the discovery of diamonds in the Argyle lamproite in Western Australia, most lamprophyres were categorized along with rocks in the kimberlite group (Shigley et al., 2001). Lamprophyres are typically considered a clan of related rock types. This classification reflects a lack of research pertaining to the categorization of rare and odd rock types (Rock, 1991). Being a potential intrusive source for diamonds, lamprophyres gained notice and research increased due to their economic potential (Boxer, 1990). 

Geologic Background and Context
Huerfano Park area comprises roughly 621 km2 (Figure 1). Huerfano Butte is pictured in Figure 2 from its west face. Huerfano Butte lies at the foothills of the southern Rocky Mountains and the most westward expansion of the Great Plains with the Rio Grande Rift ~ 110 km directly to the west (Gibson et al., 1993). Located 14.8 km north of Walsenburg, CO; Huerfano Butte is accessible from I-25 by a county road that lies parallel with the Homestead Canal drainage ditch to the south. 
50 ft
Figure 1: Satellite image of Huerfano Park with Huerfano Butte signified as a red dot.  
2  mi
Figure 2: Huerfano Butte viewed aerially from the west, lamprophyre outlined in red. 

Huerfano Butte is a volcanic plug rising 100 m above the surrounding plains and has been over-looked in many cases for the grandeur of the Spanish Peaks region. Literature on the HBl itself is relatively limited, however, several broader studies of the igneous geology of the region have added to the general knowledge of the HBl. 
[bookmark: history]The HBl is in a tectonically active area and is spatially and temporally associated with the extensive magmatism of the Spanish Peaks volcanic complex. The tectonics of the area are characterized by a mid-Cenozoic change from crustal compression to crustal extension, as the Rio Grande rift system began to open-up immediately to the west of the Sangre de Cristo Mountains (Penn, 1996). 
[image: A person standing in front of a mountain

Description automatically generated]The landform that makes up Huerfano Butte is composed of three separate units, all of which are nearly vertical. The units are a biotite monzonite dike, biotite olivine alkali-gabbro, and the smaller dike is a heavily weathered alkali-lamprophyre (Figure 3).Figure 3: Huerfano Butte viewed from the east with East Spanish Peak in the background to the right. The lamprophyre analyzed in this study is outlined in red dashes, biotite monzonite dike shaded in green, and the biotite olivine alkali-gabbro shaded in blue.
50 ft


 There are also several other alkali-lamprophyres in the area that are part of the radial dike swarm around East Spanish Peak (Miggins, 1999).  Johnson (1968) classified Huerfano Butte as a syeno-diorite and suggested that the intrusion had a minimal metamorphic impact on the surrounding Cretaceous Pierre shale. The magmatic intrusions and volcanism of the Spanish Peak region have been dated using 40Ar/39Ar and range from 27 to 21 Ma (Penn, 2009).  Huerfano Butte has one published age of  25.2 Ma (Penn, 1994). In general, the oldest intrusions surrounding the Spanish Peaks were non-radial basaltic and lamprophyric dikes and sills (Penn, 1994). 
The petrogenetic origins of the Butte are somewhat murky. It has been hypothesized that a small degree of partial melting of a hydrated and metasomatized lithospheric mantle occurred during the formation of the Rio Grande Rift. This partial melting produced the lamprophyres in the region, including Huerfano Butte (Jones, 2011). 
This petrologic study enhances the understanding of lamprophyric rocks and contributes to the small pool of material on the subject. Specifically, this study corrects a prior error in classification of Huerfano Butte as a syeno-diorite. 

Technical Terms
To help with continuity and reader’s ease, below are keywords and abbreviations used throughout this study used on images and for the description of minerals. 
· Antecryst – Genetically related precursor crystals that formed in a more primitive stage in the magma’s existence.  
· Abbreviations – To save space on images important minerals are abbreviated as follows:
· 
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· Olivine – ol
· Clinopyroxene – cpx 
· Biotite – phl 
· Alkali Feldspar – A feld
· Plagioclase – plag
· Chromium Spinel – Cr-Spinel

METHODS
Samples were collected during a field excursion in September 2019. Huerfano Butte is located at 37.7539° N, 104.8269° W. Billets from the samples were cut in the Department of Geological Sciences’ Sample Preparation Lab and Educational Resource (SamPLER) Facility. Polished petrographic thin sections were made from these billets. The thin sections were examined and photographed. Phenocrysts were identified and textural observations were described and recorded. A photomicrograph of each slide was taken, textures were then described and recorded (Figures 4A and 4B). 
After optical observations and descriptions were completed, the thin sections were cleaned and coated with a 20 nm carbon thin film in preparation for electron microprobe analysis. Compositional analyses were acquired on an electron microprobe at the University of Colorado, Boulder; this instrument is equipped with 5 tunable wavelength dispersive spectrometers. Operating conditions were 40 degrees takeoff angle, and a beam energy of 15 keV. The beam current was 10 nA and the beam diameter was 2 microns. All x-ray peak intensities were corrected using a two point linear background model. On-peak counting times were 20 seconds for all elements and 10 seconds for each background position. The matrix correction method was Phi-Rho-Z algorithm that used absorption coefficient dataset from FEAST Chantler (NIST v 2.1, 2005). Oxygen was calculated by cation stoichiometry and included in the matrix correction. Natural mineral standards from Astimex LtD were used in the data reduction. Compositional data and backscattered electron images were collected for clinopyroxene, olivine, biotite, spinel, and feldspar crystals. Data output (after standardization, and numerous data correction procedures such as background subtraction and a variety of 'matrix' corrections) is typically a data table of weight percent of the simple oxides that comprise each mineral. The raw compositional data be found in Tables A1-A6 in the Appendix. 
The recalculation of weight percent of oxides into chemical formulas of minerals required a conversion of units of quantity and the normalization of sums to match the commonly used formula conventions. The percent oxide was divided by the formula weight of the oxide then the “mole number” acquired was multiplied by the number of oxygen atoms in the respective oxide’s chemical formula. This was necessary because it is assumed that each mineral is electrically neutral and that the positive charges on the cations are balanced by an appropriate quantity of oxygen anions. The “oxygen number” was then multiplied by a normalization number that is equal to the value of the number of oxygens in the desired formula divided by the sum of the "oxygen numbers” (Brady, 2019).  The normalized oxygen number was then multiplied by the number of cations per oxygen in the oxide formula. The chemical formula was then created by cations being assigned due to their probable crystallographic sites which is based on their probable coordination numbers. Once the crystallographic site occupancies were determined the relative proportion of end members was quantifiable and graphable. 
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Figure 4A: Plane polarized photomicrograph (PPL) showing large olivine phenocryst with fractures and alteration all along edges.
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Figure 4B: Identical Crossed Polarized photomicrograph (XPL) representation of the PPL image above



RESULTS
[image: ]The hand sample from which the thin section used to do analysis were made from is shown in Figure 5. The sample is texturally porphyritic and comprised of phenocrysts of olivine, clinopyroxene (cpx or augite), and biotite. Mica lamprophyres are basic igneous rocks that contain essential biotite, olivine and or augite phenocrysts, and have a feldspar groundmass. Biotite-bearing mafic to ultramafic rocks are often termed minettes; for consistency with Righter and Carmichael (1996) and Esperança and Holloway (1987) the HBl is referred to as an olivine minette. Figure 5: lamprophyre hand sample

The olivine and biotite are both visible with the naked eye. The olivine and cpx both are large (500 x 900 μm) and are interpreted as precursor crystals or antecrysts. The olivine and cpx both contain small inclusions of chromium spinel. Some large phenocrysts of biotite that exhibit zoning are also classified as antecrysts in this study. The rationale behind the interpretation of some of the phenocrysts as antecrysts is provided in the discussion. The groundmass is composed of plagioclase, alkali feldspar, magnetite, and apatite.1 cm

No olivine found was unaltered. The phenocrysts show evidence of secondary alteration in the form of serpentine or iddingsite and sulfide needles. The composition of the olivine ranged from Fo72 to Fo76  (Figure 6). Olivine phenocrysts are subhedral to anhedral and surrounded by coronas of augite and biotite. The corona is interpreted to be a reaction texture suggesting partial resorption of the olivine. 
The large cpx phenocrysts also show some subtle discontinuous chemical zoning (Figure 7). The large augite phenocrysts have compositions varying from core to rim with the inner cores having lower TiO2 and Al2O3. The cores are enriched in Cr2O3 and depleted at the rim. The core is depleted in TiO2, 0.62 wt.%, while the rim is enriched (1.65 wt.%). From core to rim Al2O3 concentrations vary from 2.06 to 5.65 wt.% respectively. The Cr2O3 composition from core to rim goes from 0.52 wt.% in the core to below detection limit of the EMP at the rim. 
A range of spinel compositions are present. Chromium spinel are only found as inclusions in the cpx and olivine whereas the matrix spinel consists of Ti-bearing magnetite. Compositionally the spinel can be separated into three distinct groups (Figure 8). The following values are not in wt.%, they values represent the percent occupancy of the trivalent cations in the B site of the spinel (AB2O4). The inclusion spinel are Cr-rich, 30.55 to 19.77%, as Cr in the B site decreases it is replaced with ferric iron (Fe3+) (67.53 to 43.35%) to make a group of evolved spinel crystals that bridge the gap between the other groups. The groundmass spinel are nearly end member magnetites. The inclusions of Cr-spinel are considerably smaller than the magnetite phenocrysts present in the matrix. The magnetite crystals also have a notable exsolution texture. 
The groundmass is composed of a mixture of alkali feldspar and plagioclase. The compositions of the groundmass feldspars are shown in Figure 9. The plagioclase compositions range from labradorite to andesine. The alkali feldspar is primarily sanidine. Feldspars never occur as phenocrysts and are always restricted to the groundmass of the HBl. 
Biotite is found throughout the sample with some phenocrysts showing subtle chemical zoning. The MgO content varies from 11.57 wt.% at the core to 13.03 wt.% at the rim. The biotite phenocrysts are also notably enriched in BaO and TiO2. The concentration of BaO ranges from an enriched core of 2.96 wt.% to values below the detection limits of the EMP at the rim. The concentration of TiO2 ranges from 6.43 to 8.24 wt.%. The biotite phenocrysts also typically have a low concentrations of F (0.21 to 0.63 wt.%), suggesting the volatile site is primarily filled by OH-. In addition to being present as a phenocryst, biotite is also observed forming coronas around olivine, suggesting that it has crystallized at the expense of the olivine as part of a peritectic reaction. This reaction texture is illustrated in Figures 10A and 10B. 
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[image: ]Figure 6: Plot of olivine end member composition
Figure 7: Plot of cpx end member composition

[image: ]FFigure 8: Ternary plot of tri valent cation distribution in spinel
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Figure 9: Ternary plot of major cation distribution in the feldspar/plagioclase groundmass
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Figure 10A: X-ray diffraction image of large olivine antecryst with its Cr-spinel inclusions, sulfide alteration and peritectic reaction



[image: ]	 10 μm

Figure 10B: Zoomed in of the white boxed region of Fig. 10A showing the peritectic reaction caused by the pressure instability. Ol  cpx + phl




DISCUSSION 

[image: ]The composition of the olivine phenocrysts (Fo72-Fo76) in the sample indicates that the melt from which they crystallized was primitive, though not a primary mantle derived liquid. The low Fo# indicates that the melt experienced some degree of fractionation prior to the crystallization of the olivine phenocrysts that are currently present. Early liquidus olivine from unfractionated mantle derived melts typically have >Fo85, therefore the olivine compositions suggest that the composition of the HBl has been modified by some degree of crystal fractionation prior to its emplacement in the shallow crust. The experimental phase diagrams for olivine minettes from Righter and Carmichael (1996) and Esperança and Holloway (1987) provided important context for interpreting the crystallization sequence and petrogenetic history of Huerfano Butte (Figure 11). The experiments of Righter and Carmichael (1996) and Esperança and Holloway (1987) were conducted to understand crystallization relationships and phase equilibria for mafic minettes at low pressures and high pressure, respectively. The phase diagrams published by Righter and Carmichael (1996) show the stability fields of phlogopite, olivine, and cpx from 0-2 kbars, and temperatures from 900-1500 . The experimental phase diagram published by Esperança and Holloway (1987) shows the stability fields of phlogopite, olivine, and cpx at high pressures, 10-20 kbars and within the same temperature range as Righter and Carmichael. The phase diagram in Figure 11 is a synthesis of the phase diagrams from these two studies Figure 11: Phase diagram interpretation for medium pressures extrapolated from low pressure stability equilibrium of phlogopite by Righter and Carmichael (1996) and high pressure phase diagrams from Esperança and Holloway (1987).  


The published phase relations of Esperança and Holloway (1987) indicate that olivine and cpx are only concurrently stable at high pressures. At low pressure, olivine is the first phase to appear on the liquidus. At low pressure there is no co-saturation of olivine and cpx. The experiments of Righter and Carmichael show that at pressures below 2 kbars olivine is the first phase on the liquidus. Olivine is replaced through a peritectic reaction by cpx and biotite at temperatures below 1125 . The phase diagrams suggests that the olivine and cpx phenocrysts crystallized at pressures greater than 2 kbars or 7 km depth. The interpolated phase diagram suggests that this occurred at pressures greater than 7 kbars. This interpretation is also supported by the discontinuous zoning of the cpx, which shows an abrupt change in composition perhaps caused by changes in temperature or pressure (Figure 12). The discontinuous zoning observed in the cpx suggests that the cpx experienced a two-part growth history.
The spinel inclusions also provide textural evidence for synchronous growth in cpx and olivine. The Cr-spinel’s core composition (Cr# = Cr/(Cr + Al)) is homogenous, insensitive to post-formation modification and therefore a robust petrogenetic indicator (Dien, 2019). Cr-spinel are often the first phase to crystallize from mantle derived basalts (Barnes, 2001). Cr-spinel are only found as inclusions inside of the olivine and cpx, providing additional evidence supporting the interpretation that these phases co-crystallization early in the evolution of HBl. If the olivine and cpx were early liquidus phases formed at relatively high pressure, then both the cores of the cpx and the olivine phenocrysts are antecrysts. An antecryst is defined as “before-crystal” – a term which is used to refer to phases that crystallized in an earlier more primitive magma and that existed prior to its final emplacement. It is also notable that the rims of the large cpx antecrysts are compositionally identical to the smaller cpx in the groundmass showing that they grew synchronously. 
The biotite are subtly zoned and enriched in Ba and Ti. The Ba-rich cores (2.96 wt.%) suggest early crystallization because at high temperature and pressure Ba is significantly more compatible in the biotite. This suggests that some of the biotite cores may also have co-crystallized at high pressure (Figure 13).  This suggests that some of the biotite phenocrysts were crystallized at higher pressures, perhaps along with the cpx cores and olivine (i.e., in the high pressure olivine + cpx + phl field in Figure 11). The high levels of TiO2 (6.43-8.14 wt.%) in the biotite are consistent with their high temperature formation (Righter and Carmichael, 1996). 
The reaction coronas observed around the olivine suggest the occurrence of the peritectic reaction:

forsterite (ol) + liquid (K2O and H2O) = enstatite (cpx)+ phlogopite (biotite)

The phase relations described by Righter and Carmichael (1996) show that this reaction occurs at low pressures (below 2 kbars) and at 1125 . As the melt was injected into the shallow crust, the olivine antecrysts react with the liquid according to the peritectic reaction above to form biotite and cpx. 
Biotite is stable at low pressures (< 2 kbar) from 1125 to < 1000 . As the magma was injected into the upper crust olivine became unstable and began reacting with the liquid to form biotite and the enstatite component of the cpx near and in the coronas. The presence of phlogopite (biotite) phenocrysts suggests an minimum emplacement pressure of 500-750 bars see phase diagram (Fig. 11). The low-pressure phase diagram from Righter and Carmichael (1996) show the emplacement of the dike could not have been deeper than 2 km or else the peritectic reaction would have been reversed and olivine would be seen growing at the expense of biotite. 
The groundmass is composed completely of alkali feldspar and plagioclase. The late appearance of feldspar groundmass is indicative of a melt rich in dissolved water, as the presence of water lowers the liquidus temperatures of the feldspars forcing them to be the last in the sequence to crystallize. 
[image: ] TiO2 1,81 wt%
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Figure 12: Big cpx with its discontinuous zoning outlined in orange also annotated with Cr2O3 and TiO2 content distribution from core to rim.

Figure 13: Biotite phenocrysts with subtle chemical zoning.
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CONCLUSIONS

Olivine and the cores of the large cpx and biotite phenocrysts are interpreted to have crystallized at higher pressures than the pressure at the emplacement depth of the dike. The discontinuous zoning present in the cpx indicates that there were two growth episodes. The antecryst cores of cpx are interpreted as the remnants of early crystallization that may have occurred during pooling of the magma in the deep crust. Whereas the rims and smaller phenocrysts of cpx likely crystallized synchronously with the biotite, magnetite,  and apatite after the emplacement of the dike in the upper crust. The Cr-spinel inclusions in olivine and the cpx cores are also evidence that these phases crystallized concurrently. 
The three distinct groups of spinel show the change in magmatic conditions as growth occurred. Cr-spinel grew during initial crystallization and fractionation of a more primitive parental melt. Spinels that were categorized as “evolved” represent a later generation of spinel crystallization. The magnetite phenocrysts appear to be late crystallizing phases that appeared during the final emplacement. The groundmass of feldspar was last in the overall sequence of minerals to crystallize. A crystallization sequence is represented in Figure 14 as a Pressure-Temperature path through mineral phases stability fields shown previously in Fig. 11. 
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Figure 14: Pressure-Temperature path imposed onto the diagram show in Fig. 11. This P/T path is one possibility to support the crystallization sequence described above. 




Petrogenetic History of the HBl from Parital Melting to Injection
[image: ]To reconstruct the petrogenetic history from start to finish involved piecing together information that was visible and also nonexistent because it did not end up in the final product that became the lamprophyre. The following cartoon strip, Figure 15, is a simplification of the petrogenetic history of the Huerfano Butte lamprophyre. A
B
C
C


Figure 15: A two-dimensional representation of the petrogenetic history of the lamprophyre. A. Preconditioning phase of slab derived fluids being introduced into the mantle. B. Ponding of the metasomatized mantle source at the base of the crust. C. Final emplacement of the lamprophyric dike. 



Metasomatizing and Partially Melting the Mantle (A)
The metasomatized mantle source was produced by slab derived fluids as the Farallon plate subducted underneath the North American continent (Humphreys, 2003). These fluids preconditioned the mantle for the formation of lamprophyric magmas by adding Ba, K, H2O, as well as other incompatible elements. Lamprophyres are the surface expressions of metasomatized peridotites, which cannot be directly observed, however not all metasomatized mantle peridotite melts to form lamprophyres. One potential mechanism to explain the intracontinental magmatism of Huerfano Butte is the formation of the Rio Grande Rift. The preconditioned mantle was affected by the bending of geotherms caused by rising asthenosphere associated with the formation of the Rio Grande Rift approximately 32 Ma (Ray, 2015) (Turcotte, 1986) (Bird, 1988). The thermal anomalies caused by the formation of the rift destabilized the metasomatized mantle source of the HBl and caused it to partially melt (Kelley, 2012). 

Early crystallization (B)
The partially melted metasomatized mantle pond at the base of the crust. During this ponding fractionation of the melt occurred, lowering the Mg# of the magma. The fractionation caused a compositional modification in the magma. The early crystallization and settling of high Mg# phases produced a compositionally modified magma. This lower Mg# liquid produced the olivine phenocrysts as well as the antecrystic cpx cores. 

Emplacement (C)
After fractionation of the magma occurred it underwent partial melting. The magma followed a preexisting crustal weakness, more than likely, left by the plutonic intrusions of the Spanish Peaks. The magma emplaced at a depth no deeper than 2 km below the land surface and crystallized fully to form the HBl.
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