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Abstract

Modern programs make extensive use of reusable software libraries. For
example, a study of a number of large Java applications shows that between
17% and 30% of the classes in those applications use the container classes from
the java.util package. Given this extensive code reuse in Java programs,
it is important for the reusable interfaces to have clear and unambiguous
documentation. Unfortunately, most documentation is expressed in English,
and therefore does not always satisfy the above requirements. Worse yet,
there is no way of checking that the documentation is consistent with the
associated code. Formal specifications, such as algebraic specifications, do
not suffer from these problems; however, they are notoriously hard to write.

To alleviate this difficulty we describe a tool that automatically derives
documentation for interfaces of Java classes. Our tool probes Java classes
by invoking them on dynamically generated tests and captures the informa-
tion observed during their execution as algebraic axioms. While the tool is
not complete or correct from a formal perspective we demonstrate that it
significantly alleviates the task of writing formal documentation for reusable
components.

1 Introduction

One of the hallmarks of modern programming languages is the support for reusable
code. This support comes both in the form of language features (such as inheri-
tance) and through extensive libraries for commonly used functionality and data
structures (such as hash tables). Language support allows users of the language to
create their own reusable libraries and to distribute these widely. Figure 1 gives
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# classes # using containers

Jedit 4.1 644 123 (19.1%)

Xalan J 2.5.2 2,395 398 (16.6%)

Jakarta Velocity 1.1b1 2,610 780 (29.9%)

Apache Tomcat 5.0.19 3,959 1,084 (27.4%)

Eclipse 3.0-M7 21,774 4,757 (21.8%)

JBoss 4.0.0DR2 32,820 7,888 (24.0%)

Figure 1: Use of containers based on Java container interfaces in typical Java
programs

the number of classes in several Java applications that use the reusable container
classes from the java.util package. We see that a significant fraction of classes in
Java applications take advantage of these reusable containers.

Since Java applications rely so heavily on libraries, it is crucial for the libraries
to be documented in a clear and unambiguous fashion. Moreover, it is desirable
for the documentation to be at least somewhat machine checkable, so that library
writers and users can automatically detect when documentation and code start to
diverge. Today, most documentation for reusable code tends to be written in a nat-
ural language (e.g., English for the documentation of the Java standard libraries).
As such, it is not machine checkable; moreover, it is even sometimes unclear, am-
biguous, or incomplete. An alternative is to use formal specifications instead of
a natural language to document code, since formal specifications are clear, unam-
biguous, and often machine checkable. However, formal specifications are difficult
to write and debug. In prior work [HD04b] we described a system for helping pro-
grammers develop formal specifications. Here we describe a system that discovers
formal specifications automatically.

In this work we focus on algebraic specifications [GH78], since they are partic-
ularly effective at describing the behavior of container classes, which, as discussed
above, are heavily reused. Our system automatically discovers algebraic specifi-
cations from Java classes. Algebraic specifications can describe what Java classes
implement without revealing implementation details.

Our approach is as follows: We start by extracting the signatures of classes
automatically, using the Java reflection API. We then use the signatures to au-
tomatically generate terms, using heuristics to guide term generation. Each term
corresponds to a legal sequence of method invocations on an instance of the class,
i.e. to one that does not throw an exception. We then evaluate the terms and com-
pare their outcomes. These comparisons yield equations between terms. Finally,
we generalize these equations to axioms and use term rewriting to eliminate redun-
dant axioms. We can increase confidence in the generated axioms by increasing the
number of terms generated.

Our approach is inspired by recent work on discovering likely specifications based
on program runs [ECGN01, ABL02, HL02, WML02]. Our methodology extends on
this prior work in that it is the first to discover high-level functional specifications
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that describe how to use a component. In contrast, prior systems, such as Daikon
[ECGN01], discover Gries-style specifications that describe how a component is
implemented.

We evaluate our system by running it on a number of container classes, includ-
ing some from from the Java standard libraries. Our experiments reveal that our
approach is effective in discovering specifications of Java classes. While we compare
object representations as a run-time performance optimization, our results are not
affected by any particular kind of object-internal representations and do not require
any representational invariants. Since our approach is based on examining the run-
time behavior of classes instead of static analyses, the axioms that it generates are
not guaranteed to be correct. However, all but two of the axioms discovered by our
system for the case studies were correct.

This paper improves and extends upon the presentation, ideas, and experimental
results presented in our previous work [HD03].

The remainder of the paper is organized as follows: Section 2 discusses and illus-
trates the algebraic background of our specification language. Section 3 details our
approach to dynamic specification discovery. Section 4 gives performance results
and discusses two case studies for our system. Section 5 reviews related work, and
Section 6 concludes.

2 Background

Our system discovers documentation for Java classes in a subset of the specification
language described in our prior work [HD04b]. This specification language is de-
signed to be as close as possible to the Java programming language, to make it easier
for Java programmers to understand discovered specifications. This proximity to
Java also means that the discovery tool can automatically map Java signatures and
types to algebraic signatures and sorts.

To give a feel for the specification language, Figure 3 gives the specification
in our language for the ObjectStack class in Figure 2. Algebraic specifications
have two parts: an algebraic signature (e.g., lines 2-6 in Figure 3) and a set of
axioms [Mit96] (e.g., lines 8-11 in Figure 3). The algebraic signature itself has two
parts: sorts (e.g., lines 2-3 in Figure 3) and operations and their signatures (e.g.,
lines 4-6 in Figure 3). Intuitively, sorts give the types of interest to the underlying
term algebra, whereas operations are the concrete entities from which terms in this
algebra are built. The discovery tool uses reflection to trivially extract lines 1-7 of
the specification from Java classes. The axioms equate terms in the algebra (e.g.,
lines 8-11 in Figure 3).

More precisely, given a Java method named m defined in a class represented by
sort cls with n arguments arg1, . . . , argn of sorts sort(arg1), . . . , sort(argn), with
the return type represented by sort ret , we construct the signature of an algebraic
operation m within an algebra cls as follows:

m : cls × sort(arg1)× ...× sort(argn)
→ cls × ret × sort(arg1)× ...× sort(argn)

(1)
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1 package edu.colorado.cs.simpleadts;

2

3 public class ObjectStack {

4 private Object [] store;

5 private int size;

6 private static final int INITIAL_CAPACITY=10;

7

8 public ObjectStack(){

9 this.store = new Object[INITIAL_CAPACITY];

10 this.size=0;

11 }

12

13 public void push(Object element){

14 if(this.size == this.store.length){

15 Object [] store = new Object[this.store.length*2];

16 System.arraycopy(this.store,0,store,0,this.size);

17 this.store = store;

18 }

19 this.store[this.size++]=element;

20 }

21

22 public Object pop(){

23 Object result = this.store[this.size];

24 this.store[this.size--] = null;

25 if(this.store.length > INITIAL_CAPACITY

26 && this.size*2.7 < this.store.length){

27 Object [] store = new Object[this.store.length/2];

28 System.arraycopy(this.store,0,store,0,this.size);

29 this.store = store;

30 }

31 return result;

32 }

33 }

Figure 2: An object stack class implemented in Java.

1 specification ObjectStackSpecification

2 class ObjectStack is edu.colorado.cs.ObjectStack

3 class Object is java.lang.Object

4 method NewObjectStack is <void <init>()>

5 method push is <void push(java.lang.Object)>

6 method pop is <javal.lang.Object pop()>

7 define ObjectStack

8 forall s:ObjectStack forall o:Object (Axiom 1) .
9 pop(push(s, o).state).retval == o

10 forall s:ObjectStack forall o:Object (Axiom 2) .
11 pop(push(s, o).state).state == s algebraic axioms

simulation set

operations

sorts

spec. name

Figure 3: Example Specification for an ObjectStack class (see Fig. 2).
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The receiver argument (of sort cls) to the left of the arrow characterizes the original
state passed into m . The receiver type to the right of the arrow represents the
possibly modified state of the receiver as a result of evaluating the operation. The
right hand side of the arrow also includes the return value (of sort ret , which
can be the sort void). In case the operation corresponds to a Java constructor,
the receiver argument to the left of the arrow is of type void. Note that while
our full specification language [HD04b] can capture side effects to arguments, this
paper assumes that invoking a method may only modify the observable state of the
receiver (of type cls) and return a result (of type ret , cf. equation 1). Our system
can be extended to handle other kinds of side effects at the cost of longer execution
times.

Consider the two axioms in lines 8-11 in Figure 3. The .retval and .state

qualifications select elements from the result tuple. .state retrieves the first ele-
ment, which is the possibly modified receiver object (this). .retval retrieves the
second element, which is the method’s return value. Both axioms are universally
quantified over all object stacks and all objects. Axiom 1 (Figure 3) states that
invoking pop after a push returns the object that was last pushed. Axiom 2 states
that invoking pop on an ObjectStack right after invoking push reverts the stack
back into its prior, pre-push state.

These axioms concisely and clearly document the interface of the ObjectStack.

3 Discovering Algebraic Specifications from Java

Classes

We discover algebraic specifications automatically from Java classes. The discovered
specifications use the notation illustrated in Section 2.

Like other specification discovery tools (e.g., [Ern00]), our tool is based on
dynamic program analysis. It generates sequences of invocations on a given class,
and asks the JVM to evaluate them. Based on the results of the evaluation, the
discovery tool constructs equations, which it generalizes to yield axioms (such as
axioms 1 and 2 in Fig. 3). Unfortunately, running all test cases needed to ensure
that a generalization is sound is often impossible or at least impractical. Therefore,
our discovery tool does not guarantee soundness but instead focuses on providing a
good starting point for writing a correct and complete specification for an interface.
Our discovery tool works well with our specification interpreter [HD04b], which is
useful in completing the specification produced by the discovery tool.

Fig. 4 gives an overview of our approach for discovering algebraic specifications
automatically from Java classes. We start by generating terms (Sections 3.1 and
3.2). The terms consist of operation applications (which correspond to Java method
and constructor invocations) and constants, such as integers and particular Java
objects. We use these terms to generate equations (Section 3.4). For example, we
may find that two terms evaluate to the same value. We use observational equiva-
lence [DF94] to determine if values produced by two terms are equal (Section 3.3):
We consider two values the same if they behave the same with respect to their
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Term

Generator

Section 3.2

General Term

Equivalence

Section 3.3

Equation

Generator

Section 3.4

Axiom

Generator

Section 3.5

Rewriting

Engine

Section 3.6

terms

equations axioms

less redundant

axioms

uses uses

Figure 4: Architectural overview of our tool for discovering algebraic specifications

public methods. Thus, observational equivalence abstracts away from low-level im-
plementation details and only considers the interface. We generalize the equations
into axioms by replacing subterms with universally-quantified typed variables (Sec-
tion 3.5). To determine (with some probability) whether the axioms hold, we check
them by generating test cases. Finally, we rewrite our axioms to eliminate many
redundant axioms (Section 3.6).

3.1 Automatically Mapping Java Classes to Algebras

Due to the design of our specification language (Section 2), the mapping from Java
classes to algebraic signatures is trivial: each Java type is a sort in the algebra and
each Java method is an operation on the appropriate sorts. For example, our system
discovers the sorts and operations declared in lines 2-6 in Fig. 3 automatically from
the ObjectStack class (Fig. 2): The system queries the Java reflection API at
runtime to find the methods that belong to the input class and the argument and
return types of the methods.

3.2 Generating Terms

The term generator (often abbreviated as just “generator” in this section) emits
an endless stream of terms (see Figure 4). Each term models a particular object
state. For example, the following two terms both model the state of an empty
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object stack.

NewObjectStack().state

pop(push(NewObjectStack().state, Object@7).state).state

Object@7 refers to a particular instance of the Object class.
Terms serve the role of test cases in our discovery tool. Analogously to a test-

case generator, the goal of the generator is to produce terms that thoroughly explore
the state space of the input class. Thus, the generator produces terms that end
with .state and not with .retval.

3.2.1 Growing Terms

To generate a term for a particular algebra, the term generator first constructs an
operation application corresponding to a Java constructor invocation. For example,
to generate a term for the ObjectStack algebra the term generator starts with
NewObjectStack, as shown in Fig. 5a. Then, the term generator grows the term
incrementally, by adding one operation application (corresponding to a Java method
invocation) at a time. The term generator backtracks whenever the addition of an
operation application causes the term to generate an exception when executed. In
the example in Fig. 5, the term generator backtracks (to step c), since the pop
operation applied to an empty stack yields an exception (step b).

The generator needs to provide arguments for the operations used to grow the
term. From a conceptual point of view, it could simply recurse to generate ar-
guments of the appropriate type. However, for efficiency and quality of ultimate
results, we identify two special cases that we handle differently: arguments of a
primitive type (such as integer) and arguments that are instances of immutable
classes (i.e., classes, such as Object, that do not have any modifying operations).

Arguments of primitive types For arguments of a primitive type, we use values
from a fixed set (e.g., values between 0 and 10). If our set is too small, we will not
explore enough of the state space and may end up missing some axioms; also, we
may fail to invalidate proposed axioms for which a counter-example exists. If the
set is too large, the tool will become too inefficient for practical use (we generate
all terms up to a given size). In our experience, our approach works well for types
such as integers and booleans. We have no experience with floating point types.

Arguments of immutable classes An immutable class is a class that has no
methods for modifying the state of an instance after creation (e.g., Object and
String classes in Java). Whenever the generator needs to produce an argument of
an immutable class, it picks a value from a fixed set of instances of that class. For
example, the generator may produce the term push(ObjStack ().state, obj@4).state
where obj@4 is an instance from the precomputed set. As with primitive types, it
is important for the set to be neither too small nor too large.

For non-immutable classes, we can not safely replace subterms with a particu-
lar instance as a precomputed constant, since then the potentially modified state
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NewObjectStack

.state : ObjectStack

a. NewObjectStack().state: Executes fine.

NewObjectStack

.state : ObjectStack

pop

.state : ObjectStack

b. pop(NewObjectStack().state).state: Throws exception.

NewObjectStack

.state : ObjectStack

c. Backtracking step.

NewObjectStack

.state : ObjectStack

push

.state : ObjectStack

d. push(ObjectStack().state, ?).state: Argument is missing.

NewObjectStack

.state : ObjectStack

Object@7

: Object

push

.state : ObjectStack

e. push(NewObjectStack().state, Object@7).state:

Executes fine.

NewObjectStack

.state : ObjectStack

Object@7

: Object

push

.state : ObjectStack

pop

.state : ObjectStack

f. pop(push(NewObjectStack().state, Object@7).state).state:

Executes fine.

Figure 5: Growing terms incrementally.
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of the instance would be used in the next evaluation of the term. For example,
if we execute the term push(ObjectStack@4, obj@4).state multiple times, we will
compute a different inner state for the receiver each time.

While algorithmic approaches to determining class immutability automatically
are conceivable, enumerated immutable types manually for our experiments, since
we observed better results with the latter approach. A third possible approach
would have been the use of a mod-ref analysis, which we expect to explore in future
work.

3.2.2 Policy for Term Generation

As discussed above, the quality of the terms ultimately determines the quality of the
axioms discovered by our system. If we generate too few terms, then we may end
up with incorrect axioms; if we generate too many terms, the axiom discovery may
take a long time. Our current system generates all terms up to a user-defined size.
The user configures the term sizes used for discovery and test generation for each
class that is being discovered (for examples of term sizes used in our experiments,
see Section 4.1).

3.2.3 Optimizations

To make the exploration of large object state spaces practical, we employ optimiza-
tions to discard redundant terms. Terms are redundant if they do not help us in
learning more about the behavior of objects.

Optimization 1: Avoid side-effect free operations Since the generator needs
to explore the state space of instances of a class, operations that do not modify the
state of the receiver need not be part of any terms. For example, the toString()

method usually does not change the state of the receiver. Thus, the generator does
not consider the operation toString when generating terms.

The generator determines whether applying a particular operation would change
the state of an object by (i) executing the term to generate an object, (ii) saving the
state of the object (e.g., by serializing it), (iii) applying the operation to the object,
and (iv) comparing the state of the object with the saved state. For example, to
determine if toString modifies the state of the receiver, the generator will serialize
the receiver before and after applying toString and compare the two serialized
versions. The generator will find the two to be the same and will thus conclude
that toString does not modify the internal state of the receiver.

This technique is conservative: Whenever it indicates that an operation applica-
tion is redundant, it will be right; however, it cannot find all possible redundancies,
since the serialized inner state being different does not guarantee that the objects
before and after the applications are different in any externally observable way.

Optimization 2: Only generate the minimal term for any generated ob-

ject representation We can understand terms as recipes for generating particu-
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lar Java objects. When two different terms generate objects with the same internal
representation, the generator keeps only the smaller of the two terms.

Whenever the generator produces a term it executes it and attempts to put a
serialization of the resulting state into a hash table. If there is a conflict in the
hash table, the generator knows that it has seen the state before and thus the new
term is unnecessary. Since the generator produces terms in order of increasing size,
this mechanism will always discard the larger terms in favor of smaller terms. The
equation generator (Section 3.4) also uses the conflicts in the hash table to cheaply
identify equations.

3.3 Term Equivalence

To determine whether or not two terms are the same, the specification discovery
tool uses a variation of Doong and Frankl’s EQN method [DF94]. Doong and Frankl
define that two values are observationally equivalent if they behave the same when
we apply arbitrary operations to both of them. Two values can be observationally
equivalent even though they have different internal representations. For illustration,
consider an ObjectStack implementation in Java like the one shown in Fig. 2, except
that line 25 is missing. For this implementation, the terms

ObjectStack().state

and

pop(push(ObjectStack().state, Object@7).state).state

generate two objects with a different representation: The first term generates an
ObjectStack instance with

size = 0 ∧ store.length = 10 ∧ ∀i . 0 ≤ i < 10⇒ store[i] = null

For the second term, store[0] contains a reference to an object, since the pop oper-
ation fails to fill the unused slots with null, thereby creating a leak. Even though
the two example terms generate a different object representation, both objects are
still observationally equivalent.

We extend Doong and Frankl’s notion of observational equivalence by intro-
ducing the concept of consistency, which allows us to accommodate Java methods
such as hashCode (Section 3.3.1), and we exploit reference equality for performance
optimizations (Section 3.3.2).

The EQN method for observational equivalence is effective but inefficient since
it needs to apply many operations to both terms in order to gain confidence that
they are indeed the same. Thus, we identify three special cases that we can handle
quickly: primitive types, immutable classes, and representation equivalence. Algo-
rithm 1 describes how we dispatch between the four possibilities. In Algorithm 1,
the parameters for GTE-DISPATCH are terms, not the values computed by the
terms. This is necessary since each of PRIMITIVE-EQUALS, REFEQ-APPLIES,
REP-EQUALS, and EQN needs more than a single sample of what the terms eval-
uate to. These functions have the following meanings:
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Algorithm 1 General term equivalence dispatch

GTE-DISPATCH(t1, t2) begin

Require: t1, t2 are terms of the same type T .
if T is a primitive type then

return PRIMITIVE-EQUALS(t1,t2)
else

if REFEQ-APPLIES(t1, t2) then

return EVAL(t1)=refEVAL(t2)
else

if REP-EQUALS(t1, t2) then

return true
else

return EQN(t1,t2)
end if

end if

end if

end

• EVAL(t) denotes the result of the evaluation of t

• =ref checks reference equality

• PRIMITIVE-EQUALS determines equality among primitive types (section
3.3.1)

• REFEQ-APPLIES determines equality of references computed by terms (sec-
tion 3.3.2)

• REP-EQUALS decides representational equivalence (section 3.3.3)

• EQN computes whether observational equivalence can be assumed (section
3.3.4)

GTE-DISPATCH is conservative in that it is accurate whenever it exposes non-
equivalence. It may be inaccurate when it finds equivalence.

We now describe the algorithms for the four cases in more detail.

3.3.1 Equivalence for Primitive Types

Let’s suppose the ObjectStack had a size method. We can confirm the equiv-
alence

size(push(ObjectStack().state,Object().state).state).retval = 1

by observing that the evaluation of the corresponding Java invocation sequences
yields 1.

Now consider the term hashCode(ObjectStack().state).retval . Since the
hashCode function will compute a different value for each ObjectStack instance,
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Algorithm 2 Equivalence for primitive types

PRIMITIVE-EQUALS(t1, t2) begin

Require: t1, t2 are terms computing values of the same primitive type.
result1a ← EVAL(t1), result1b ← EVAL(t1)
result2a ← EVAL(t2), result2b ← EVAL(t2)
consistent1 ← result1a =val result1b

consistent2 ← result2a =val result2b

if not consistent1 and not consistent2 then

return true
end if

if not consistent1 or not consistent2 then

return false
end if

return result1a =val result2a

end

the term will evaluate to a different value each time. We also say that this term is
not consistent ; A consistent term produces the same result each time it is executed.
To approximate consistency, Algorithm 2 evaluates each term twice. If both evalu-
ations yield the same result, we consider the term as consistent. If neither term is
consistent, we consider them equal. If exactly one term is consistent, we consider
them to be non-equal. Finally, if both terms are consistent, we can compare them
by determining their value equality.

3.3.2 Comparing the References Computed by Terms

Algorithm 3 Checking for reference equality

REFEQ-APPLIES(t1, t2) begin

Require: t1, t2 are terms of the same reference type.
return EVAL(t1) =ref EVAL(t1)

and EVAL(t2) =ref EVAL(t2)
end

Since our algorithm currently handles only side effects to instance variables of
receivers and we use instances of immutable classes from a fixed set (Section 3.2),
there are many situations where we can use reference equality rather than resorting
to the more expensive observational equivalence algorithm (Section 3.3.4). Thus,
we use a heuristic similar to that for primitive types (Algorithm 3): we evaluate
each term twice and see if each term evaluates to the same value in both evaluations.
If they do, then we can simply compare the references that they return. If they
do not, then we use the observational equivalence procedure. For example, for the
terms pop(push(ObjStack ().state, obj@123).retval and obj@123, REFEQ-APPLIES
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returns true, while it returns false for

pop(push(ObjStack ().state, obj@123).state

and ObjStack().state.

3.3.3 Representation Equivalence

Algorithm 4 Representation equivalence

REP-EQUALS(t1, t2)
Require: t1, t2 are terms, evaluating to instances of some class C

if SERIALIZE(EVAL(t1))=valSERIALIZE(EVAL(t2)) then

return true
else

return false
end if

Algorithm 4 shows pseudocode for a test of representation equivalence. Repre-
sentation equivalence implies observational equivalence, which is why we use this
check as an optimization. Representation equivalence checks if both terms evaluate
to objects with identical inner state by using SERIALIZE which serializes an object
into a binary representation, such as a byte array. If the objects have the same
inner state, we can safely assume that they are observationally equivalent.

3.3.4 Observational Equivalence

Algorithm 5 Observational equivalence

EQN(t1, t2)
Require: t1, t2 are terms, evaluating to instances of some class C

repeat

Generate a test stub stb, with an argument of type C
for all observers ob applicable to evaluation results of stb do

stubapp1 ← stb(t1), stubapp2 ← stb(t2)
obsapp1 ← ob(stubapp1, . . .).retval , obsapp2 ← ob(stubapp2, . . .).retval
if not GTE-DISPATCH(obsapp1,obsapp2) then

return false
end if

end for

until confident of outcome
return true

Algorithm 5 shows pseudocode for our version of EQN. EQN approximates
observational equivalence of two terms of class C as follows. We start by generating
term stubs that take an argument of type C and apply the stubs to t1 and t2. We
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then pick an observer1 and apply it to both terms. We compare the outputs of
the observers using GTE-DISPATCH (Algorithm 1). If GTE-DISPATCH returns
false, then we know that t1 and t2 are not observationally equivalent, otherwise we
become more confident in their equivalence. Since this algorithm could potentially
run into an infinite recursion, we use a recursion limit (omitted for brevity).

For example, consider applying this procedure to terms from the ObjectStack
algebra. An example of a stub is λx.push(x, obj@2).state and an example of an
observer is pop. If t1 is push(ObjectStack(), obj@3).state, the application of the
stub and the observer yields

pop(push(push(IntStack().state, obj@3).state, obj@2).state).retval

In this particular example, recursing to GTE-DISPATCH will return equality
for any t2, as the stub dominates the observations gathered from the observer; a
difference between t1 and t2 would be caught only after trying a different stub
(such as λx.x, the identity function) or observer (not possible here, as pop is the
sole observer of this algebra).

3.4 Finding Equations

The form of the equations determines the form of the algebraic specifications that
our system will discover. Our current implementation handles only equalities.

We can easily add new types of equations and can enable or disable equation
types. So far we have added three kinds of equations to our implementation: state
equations (Section 3.4.1), observer equations (Section 3.4.2), and difference equa-
tions (Section 3.4.3).

3.4.1 State Equations: Equality of Distinct Terms

For example,

pop(push(ObjectStack().state, obj@4).state).state = ObjectStack().state

is a state equation. These equations are useful in characterizing how operations
affect the observable state of an object. We generate these equations whenever
we find that two distinct terms are equivalent. We get some of these equations
from “Optimization 2” in Section 3.2.3: whenever we have a conflict in the hash
table, we have a potential equation. Since hashing does not use full observational
equivalence, this method will only find some of the state equations. We call the
optimized equation generator state/hash, while the more general generator (using
observational equivalence) is called state/eqn.

3.4.2 Observer Equations: Equality of a Term to a Constant

These equations take the following form (where obs is an observer and c a constant):

1An observer is an operation op such that the type of op(. . . ).retval is not void.
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obs(term1, arg2, ..., argn).retval = c

Observer equations characterize the interactions between operations that modify
and operations that observe. For example,

size(push(ObjectStack().state, obj@4).state).retval = 1

is an observer equation.
To generate observer equations we start with a term and apply an operation

that returns a constant. We execute the term using the Java Reflection API, and
record the evaluation result. We make sure that the term consistently returns the
same constant. We then form an equation by equating the term to the constant.
Note that constants might be object constants. This is where the scheme for im-
mutable objects described Section 3.2 (“Arguments of immutable classes”) becomes
important: During term generation, we use immutable objects as constants; often,
those objects then become the return value of a term. For example,

pop(push(ObjectStack().state,Object@1).state).retval

evaluates to the object constant Object@1.

3.4.3 Difference Equations: Constant Difference Between Terms

These equations take the following form (where obs is an observer, op an operation
computing a value of a primitive type, and diff a constant of a primitive type):

op(obs(term1.state).retval , diff ).retval = obs(term2).retval

For example:

IntAdd(size(ObjectStack ().state), 1).retval
= size(push(ObjectStack().state, obj@3).state).retval

In this example, op is IntAdd (i.e., integer addition) and diff is 1.
To generate such axioms, we generate two terms, apply an observer to both

terms, and take their difference. In practice, we found that difference equations with
a small value for diff are the most interesting ones. Therefore, we only generate
such an equation if diff is lower than a fixed threshold. This technique filters out
most spurious difference equations.

3.5 Generating Axioms

Our axioms are 3-tuples (t1, t2, V ), where t1 and t2 are terms and V is a set of
universally-quantified, typed variables that appear as free variables in t1 and t2.
An equation is simply an axiom with V = {}.
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The generation of axioms is an abstraction process that introduces free variables
into equations. For example, given the equation

IntAdd(size(ObjectStack().state).retval , obj@1).retval
= size(push(ObjectStack ().state, obj@3).state).retval

(2)

our axiom generator can abstract ObjectStack().state into the quantified variable s

of type ObjectStack and obj@3 into i of type Object to discover the axiom

∀s : ObjectStack ∀i : Object
IntAdd(size(s).retval , 1).retval = size(push(s, i).state).retval

(3)

Algorithm 6 Axiom generation

generateAxiom(Algebra) begin

(term1, term2) ← generate an equation in Algebra
Subterms ← the set of subterms occurring in term1 or term2

V ← a set of typed, universally-quantified variables x1, ..., xn

with one xi for each subtermi ∈ Subterms
for xi ∈ V do

Replace each occurrence of subtermi with the variable xi in term1 and term2

Generate a large set of test cases testset where each test case is a set of
generated terms {test1, ..., testn}, such that testj can replace xj ∈ V

for testcase ∈ testset do

Set all xj ∈ V to the corresponding testj ∈ testcase
if EQN-DISPATCH(term1,term2)= false then

Undo the replacement of subtermi in term1 and term2

Stop executing test cases
end if

end for

end for

Eliminate all xi from V which occur neither in term1 nor in term2

return the axiom (term1, term2, V )
end

Algorithm 6 describes the axiom generator, with optimizations left out for clar-
ity. To generate an axiom for a particular algebra, we first use any of the equation
generators as described in Section 3.4 to come up with an equation. We then com-
pute the set of all subterms of term1 and term2. For example, given the terms
push(ObjectStack ().state, 4).state and ObjectStack().state, the set of subterms
would be {push(ObjectStack().state, obj@4).state, ObjectStack().state, obj@4}.
We then initialize V as the set of universally-quantified variables, so that for each
subterm there is exactly one corresponding universally-quantified variable in V .
The loop then checks for each subterm, whether we can abstract all occurrences to
a free variable. First, we replace all occurrences of the subterm with a free variable.
Then, we generate test cases, where each test case replaces all the free variables in
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the terms with generated terms. We compare whether term1 and term2 are equiv-
alent under all test cases, and if a reasonable number of test cases is available. If
not, we undo the replacement of the particular subterm. Note that our notion of
a “reasonable number of test cases” is currently somewhat ad-hoc: Our system is
currently hard-wired to require at least two test cases; we expect to provide more
sophisticated facilities based on confidence metrics in the future.

At the end, we eliminate all free variables that do not occur in the terms and
return the axiom.

3.6 Axiom Redundancy Elimination by Axiom Rewriting

The axiom generator (Section 3.5) generates many redundant axioms. For example,
for the ObjectStack algebra, our generator may generate both

∀x4 : ObjectStack , ∀i4, j4 : Object
pop(pop(push(push(x4, i4).state, j4).state).state).state = x4

(4)

and

∀x5 : ObjectStack ∀i5 : Object . pop(push(x5, i5).state).state = x5 (5)

We eliminate redundant axioms using term rewriting [Mit96]. We use axioms
that satisfy these two requirements as rewriting rules: (i) the left and right-hand
sides must be of different length; and (ii) the free variables occurring in the shorter
side must be a subset of the free variables occurring in the longer side. When using
a rewrite rule on an axiom, we try to unify the longer side of the rewrite rule with
terms in the axiom. If there is a match, we replace the term with the shorter side
of the rewrite rule.

Whenever we are about to add a new axiom we note if any of the existing
rewrite rules can simplify the axiom. If the simplified axiom is a rewrite rule we
try to rewrite all existing axioms with this rule. If the rewriting makes an axiom
redundant or trivial we throw it away. If a rewritten axiom yields a rewrite rule
then we use that rule to simplify all existing axioms. This process terminates since
each rewriting application reduces the length of the terms of the axioms that it
rewrites, which means that in general, the addition of an axiom can only lead to a
finite number of rewriting and elimination steps.

We now sketch how to rewrite the example Axioms (4) and (5) as shown above.
Suppose that Axiom (4) already exists and we are about to add Axiom (5). First, we
try to rewrite Axiom (5) using Axiom (4) as a rewriting rule. Unfortunately since
the left (longer) term of Axiom (5) does not unify with any subterm in Axiom (4)
rewriting fails. We find that Axiom (5) does not already exist and it is not a trivial
axiom so we add it to the set of known axioms. Since Axiom (5) is a rewriting rule,
we try to rewrite all existing axioms, namely Axiom (4). We find that the left side
of Axiom (5) unifies with the following subterm of Axiom (4)

pop(push(push(x4, i4).state, j4).state).state
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with the unifier
{x5 → push(x4, i4).state, i5 → j4} .

Therefore, we instantiate the right side of Axiom (5) with the unifier we found and
obtain

push(x4, i4).state

which we use as a replacement for the subterm that we found in Axiom (4). There-
fore, Axiom (4) rewrites to

∀x4 : ObjectStack , ∀i4 : Object ( pop(push(x4, i4).state).state = x4 ) (6)

which is equivalent to Axiom (5). Since the rewritten Axiom (4) is identical to
Axiom (5), we eliminate Axiom (4). In summary, we end up with Axiom (5) as the
only axiom in the final set of axioms.

3.7 Discussion

The system we described in this section can discover algebraic specifications from
Java classes. The system is dynamic, which means that the output is potentially
unsound (i.e., may discover incorrect axioms) or incomplete (i.e., may miss some
axioms) or both. In our experience, we can usually achieve soundness by increasing
the maximum size for the generated terms but that is costly. Our system has a
bias towards certain patterns of equations and axioms; one can add new patterns
if desired.

The main goal of the tool is to provide a good starting point in documenting
code; the tool is successful as long as it reduces the time and effort for documenta-
tion.

4 Evaluation

This section evaluates our ideas. Section 4.1 uses various metrics to characterize
the performance of our algebraic specification discovery tool. Section 4.2 discusses
an example where an automatically detected specification is used to simulate the
behavior of a class for an existing program. Section 4.3 then gives an example in
which a manually generated specification is compared to an automatically generated
one.

4.1 Performance Evaluation of our Algebraic Specification

Discovery Tool

We conducted our evaluations on a Dell PowerEdge 600SC Pentium 4 2.4 GHz
single-CPU workstation with 2 GB of RAM running SuSE Linux 9.0 and Sun JDK
1.5.0.

Our discovery mechanism is parameterized by maximum term size, the max-
imum number of variables, constants and operations (ignoring state and retval
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annotations) allowed per term. For example, the size of

push(IntStack().state, 4).state

is 3.
To test the efficiency of axiom discovery, we configured our system as follows:

As a default, we used a term size of 5 for the equation generators and a test
case size of four. This means that the resulting equations will have terms with a
maximum size of five on either side, and that they will be tested with test stubs
(see Algorithm 3.3.4) of size four or smaller.

For HashMap, we chose a term size of 4 for all equation generators except for the
observer equation generator, where a size of 6 was beneficial. We configured the
system for HashSet in the same way as HashMap, except that we found that a test
stub size of 3 was sufficient. We also configured three distinct instances of Object
and similar small pools for primitive types.

Table 1 describes the our benchmark programs. Column “# op” gives the
number of operations in the class and “# observ” gives the number of operations
that are observers (i.e., operations with a non-void return type). LinkedList,
HashSet, HashMap, and Hashtable are library classes from Sun’s Java Development
Kit 1.5.0.

Table 1: Java classes used in our evaluation
Java Class Description Source # op # observ.
IntegerStack minimal integer stack Henkel 13 6
IntegerStack2 integer stack Henkel 13 6
ObjectStack object stack (Fig. 2) Henkel 12 6
FullObjectStack another Object stack Henkel 16 9
IntegerQueue a FIFO queue for integers Henkel 16 9
ObjectMapping a mapping between objects Henkel 16 10
ObjectQueue a FIFO queue for objects Henkel 16 9
LinkedList linked list Sun 46 37
HashSet hash set Sun 27 21
HashMap hash map Sun 26 19
Hashtable hash table Sun 29 22

Section 4.1.1 gives performance characteristics for our system. Section 4.1.2
presents data that suggests that our tool is successful in exercising most of the
class under consideration and is thus likely to be mostly sound. Finally Section
4.1.3 discusses some axioms that our tool discovers.

4.1.1 Performance of the Tool

Table 2 gives the overall performance of our system. For each benchmark, we
display the number of axioms before and after rewriting and the time it took to
generate the axioms. The table shows that our redundancy reduction by rewriting
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Table 2: Timings for our benchmark programs.
benchmark # axioms before rewriting # final axioms time

IntegerStack 71 7 3.5s
IntegerStack2 81 9 2.5s
ObjectStack 73 7 5.3s
FullObjectStack 198 19 7.9s
IntegerQueue 298 22 31.8s
ObjectQueue 276 17 56.5s
ObjectMapping 184 18 6.6s
LinkedList 1478 113 9.1 min
HashSet 4959 55 22.9 min
HashMap 5795 60 191 min
Hashtable 5702 44 167 min

Table 3: Efficiency of Term generation.
algebra time in seconds (# generated terms)

size 10 size 11
IntegerStack 0.28 (166) 0.52 (418)
IntegerStack2 0.25 (251) 0.42 (566)
ObjectStack 0.71 (432) 1.35 (1472)
FullObjectStack 0.99 (432) 1.75 (1472)
IntegerQueue 0.70 (358) 1.23 (722)
ObjectQueue 1.62 (906) 3.17 (2271)
ObjectMapping 1.05 (441) 1.58 (441)
LinkedList 22.27 (2616) 55.65 (5108)
HashSet 54.47 (1732) 121.09 (2390)
HashMap 24.57 (7966) 49.08 (13981)
Hashtable 12.57 (3423) 22.10 (5158)
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is very effective. It also shows that our system is fast for all of our own test cases,
and reasonably efficient for LinkedList and HashSet.

We see from Table 2 that LinkedList has the largest number of axioms– 113.
While this is a significant number, it is worth noting that the Java standard im-
plementation of linked list has a large number of operations (46, if we include all
public operations defined by its superclasses) and thus, 113 axioms is not excessive.

Table 3, Figure 6, Figure 7, and Figure 8 explore the performance of our system
in detail. Figure 3 gives the time to generate all terms of sizes 10 (first column) and
11 (second column) respectively. We see that the number of terms does increase
significantly with term length, even though we prune away many useless terms. We
also see that classes with a large number of terms (e.g., HashSet) are the ones that
take the most time in our system2.

Figure 6 and 7 are box plots that give the distribution of the time to generate the
different kinds of equations and axioms for LinkedList. As an example, consider
the state/eqn plot in Figure 6. The box denotes the interquartile range, which
contains the 50% of the values that fall within the second and third quartile. The
line inside the box is the median, which overlaps with the bottom of the box due
to a strong bias towards low values. Values beyond the whiskers are outliers. From
Figure 6 and Figure 7 we see that the state axioms and equations are the most
expensive to generate with state/eqn being the slowest. For the most part, observer
and difference equations and axioms are fast to generate and all equations and
axioms of those type take approximately the same time. These results suggest that
it may be worthwhile to try other orderings or kinds of equations in order to speed
up the equation and axiom generation.

2Note that these results differ from the ones reported in [HD03] since we made many modifi-
cations to our system since our earlier paper.
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Fig. 8 gives insight into the behavior of our tool when discovering axioms for
LinkedList. The x axis denotes time in terms of axioms generated by the axiom
generator. The “learning curve” is the number of axioms that have been discovered
and rewritten. Note that this curve does not ascend monotonically, as the discovery
of one axiom can lead to the elimination of numerous other axioms. The dots
near the bottom denote the number of rewriting events per discovered axiom. We
run our system as follows: first, we discover state axioms using the hash table
optimization (state/hash), then we generate the general state axioms (state/eqn),
next we generate the difference axioms and finally the observer axioms. The shaded
areas in Fig. 8 denote these different zones.

Note the sudden dip around axiom 176. At this point, we discover the following:

forall x0:LinkedList

LinkedList(clear(x0).state).state == LinkedList().state

Together with the earlier axiom

forall x0:LinkedList

LinkedList(x0).state == x0

this allows our system to eliminate 8 axioms that examined the behavior of “cleared”
LinkedLists (which our system then reduced to the behavior of newly constructed
LinkedLists).

Further note that State/eqn generates only 100 out of the axioms considered
here, many of which either were comparatively simple (resulting in few generaliza-
tion steps, cf. Algorithm 6), could be simplified by axioms previously detected by
state/hash, or could be falsified quickly due to a cache we provided for test pa-
rameters that had previously been successful in refuting axiom candidates. Thus,
despite having to employ the (comparatively) expensive observational equivalence
mechanism (Section 3.3), the total run-time of state/eqn only amounts to about
twenty seconds of the 9.1 minutes (average) required to determine the specifica-
tion of LinkedList: Its increased cost in equation generation was shadowed by its
significantly decreased cost of axiom generation.

4.1.2 Coverage Measurements

Since our system is based on a dynamic approach it is neither sound nor complete.
One way in which our system can fail to be sound is if the generated terms do
not adequately exercise the full range of behavior of the class under consideration.
Table 4 gives the basic block coverage attained by our term generator. Overall, we
find that our terms yield a high coverage.

When our coverage is less than 100% it is often because our terms do not
adequately explore the argument space for operations (e.g., for LinkedList we did
not generate a term that called removeAll with a collection that contains a subset
of the receiver’s elements). Other reasons include: dead code (e.g., some code
in LinkedList.subList); corner cases (e.g., corner cases for initialCapacity in
Hashtable).
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Table 4: Basic block coverage.
Class Coverage

IntegerStack 100%
IntegerStack2 62.5%
ObjectStack 100%
FullObjectStack 100%
IntegerQueue 100%
ObjectQueue 100%
ObjectMapping 100%
LinkedList 85.7%
HashSet 85%
HashMap 66.7%
Hashtable 74.8%

Table 5: Fraction of correct axioms (based on manual inspection).
Class Correct/Total Axioms Precision

IntegerStack 6/7 85.7%
IntegerStack2 7/9 77.8%
ObjectStack 6/7 85.7%
FullObjectStack 18/19 94.7%
IntegerQueue 21/22 95.5%
ObjectQueue 16/17 94.1%
ObjectMapping 17/18 94.4%
LinkedList 109/113 96.5%
HashSet 53/55 96.4%
HashMap 59/60 98.3%
Hashtable 43/44 97.7%

4.1.3 Manual Inspection of Axioms

To make sure that the axioms discovered by our tool were correct, we manually
verified the generated axioms for all classes; the results are listed as “Precision” in
Table 5.

The set of incorrect axioms we encountered typically included the incorrect
equality axiom discussed at the end of Section 4.3.

The axioms though many for some classes (e.g., LinkedList), were relatively
easy to read (verifying them took half an hour of our time per class, at most).

We now discuss a number of representative sample axioms which were discovered
by our tool.

forall x0:HashMap

size(x0).state == x0 (Axiom 3)
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Axiom 3 says that invoking size on a HashMap does not modify its internal state.
Our system generates such axioms for each pure observer (i.e., an operation that has
a non-void return value and does not change the state of the object), for example,
it finds 16 such axioms for LinkedList .

forall x0:HashMap (Axiom 4)
putAll(x0,x0).state == x0

Axiom 4 says that if we add all mappings of a HashMap into an equivalent HashMap,
the receiver’s state does not change.

forall x0 : HashMap (Axiom 5)
forall x1 : Object

forall x2 : Object

get(put(x0, x1, x2).state, x1).retval == x2

Axiom 5 gives a partial characterization of the get and put operations.

forall x0 : Object (Axiom 6)
get(put(HashMap().state, Object@0, x0).state, Object@1).retval

== null

Axiom 6 is one of the axioms that could be more abstract if our tool would support
conditional axioms: Instead of using the constants Object@0 and Object@1, the
axiom could then be rewritten into

forall x0 : Object

forall x1 : Object

forall x2 : Object

if x1.equals(x2) == false then

get(put(HashMap().state, x1, x0).state, x2).retval == null

As these kinds of overly concrete axioms require post-processing to be useful,
we removed them for all of our statistical results (i.e., they were omitted in all of
our graphs and tables).

Finally, it is worth noting that while we can manually determine the ratio of
correct axioms generated by our tool (its precision), it is much harder to determine
how many axioms we are missing (to determine recall). One approach to approxi-
mate an answer to this question is to run our algebraic specification interpreter for
a particular unit-test or application, and add algebraic axioms to the specification
until the interpretation succeeds. We describe such a scenario in Section 4.2.

4.2 Case Study: Discovering a Specification for Interpreta-

tion

In this case study, we used our specification discovery tool to generate a specification
for the java.util.ArrayList class contained in Sun’s Java Development Kit. We
then debugged this specification with our algebraic interpreter [HD04b], simulating
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the ArrayList class for a BibTeX parser.3 We chose this client application because
it is not dependent on libraries other than the Java standard libraries, it uses
collection classes, and because we were familiar with its implementation.

Out of the 10 algebraic axioms to execute the BibTeX parser successfully, our
discovery tool can produce 3 axioms exactly as needed. As an example, the following
two axioms specify how the first element of an ArrayList can be obtained by
applying the get operation for index 0:

forall x0 : Object (Axiom 7)
get(add(newArrayList().state, x0).state, 0).retval == x0

forall l : ArrayList (Axiom 8)
forall o1 : Object

forall o2 : Object

get(add(add(l, o1).state, o2).state, 0).retval

== get(add(l, o1).state, 0).retval

We manually added 7 axioms to the specification. Five of those axioms describe
the behavior of Iterator instances generated by ArrayList objects. For example,
the following axiom states that an iterator created from an empty list does not have
a next element:

hasNext(iterator(ArrayList().state).retval).retval == false

The discovery tool currently cannot find these 5 axioms because the state of the
Iterator object is modeled as the return value of the operation iterator() of
another class (ArrayList). This scenario is not covered by the currently imple-
mented equation generators. However, the discovery tool provides extension points
for adding new equation generators. An appropriate equation generator could be
implemented without changing the infrastructure.

More details about this case study, including all discovered axioms, are available
in a technical report [HD04a]. While this case study was performed with an older
version of our tool, we verified that our previous observations still hold with the
current version.

4.3 Case Study: Comparing a Discovered Specification to a

Hand-Written one

In this case study, we compared a discovered specification for a priority queue
class to a specification of the same class that we had furnished beforehand. This
specification was assumed to be “complete”, i.e., we had already gained reasonable
confidence in it specifying all aspects we considered relevant. Unlike the previous
case study, our goal was to determine whether the specification would be sufficient
for all possible clients, not just for one run of one particular program.

Figure 9 gives the class signature of this queue. In addition to the methods
given in Figure 9, the PriorityQueue also inherits the toString(), hashCode(),

3Available at www.cs.colorado.edu/~henkel/stuff/javabib/.
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public class PriorityQueue {

public PriorityQueue(Comparator c){...}

public Object get(){...}

public boolean equals(Object other){...}

public boolean add(Object object){...}

public boolean addAll(PriorityQueue collection){...}

public boolean contains(Object object){...}

public int size(){...}

}

Figure 9: A priority queue for Java

and getClass() methods from Object. The constructor of the PriorityQueue

takes an instance of java.util.Comparator, which determines the preorder on the
queue’s values.

4.4 Comparing a hand-crafted specification to an automati-

cally detected one

Using our algebraic specification interpreter [HD04b] and a test suite consisting
of 92 run-time tests, we developed what we considered to be a complete algebraic
priority queue specification. In order to function properly with our interpreter, this
specification also included a hidden method, describing an auxiliary function.

We then wrote a Java implementation of a Priority Queue and validated it
dynamically by running it against the test suite and against the interpreted speci-
fication.

4.4.1 Detected axioms vs. specified axioms

Our discovery tool yielded 28 axioms in 11 seconds for the Java Priority Queue.

• 8 axioms exactly matched axioms we had specified by hand, modulo renaming.

• 6 axioms matched axioms we had specified by hand, except that they were
slightly more concrete.

• 6 axioms were correct but could have been re-written if certain other, missing
axioms had also been known.

• 3 axioms specified the semantics of methods we had inherited but chose not
to specify (toString, getClass and hashCode).

• 2 axioms were correct but could have been eliminated by applying basic laws
of arithmetic.

• 2 axioms specified relevant behavior we had omitted in our manual specifica-
tion.
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• 1 axiom was incorrect

The 6 axioms listed as “could have been rewritten if [. . . ] missing axioms had
also been known” were found because our current detection mechanism does not
attempt to derive conditional axioms (axioms with preconditions).

The 6 axioms described as “matched axioms [. . . ], except that they were slightly
more concrete” were axioms in which the default constructor was used, even though
the more general parameterized constructor would have allowed for them to be
generalized over all supported orders; this was caused by an overly restrictive size
of our test set for java.util.Comparator objects.

4.4.2 Incorrectly detected axioms

As mentioned above, we detected an incorrect axiom, namely the following:

forall x0 : edu.colorado.cs.PriorityQueue (Axiom 9)
forall x1 : java.lang.Object

equals(x0,x1).retval == false

Our dynamic testing does not currently consider subtyping when choosing test
values. As such, we never attempted to pass a priority queue to equals and thus
never encountered a situation in which equals would evaluate to true, explaining
Axiom 9.

4.4.3 Specified axioms vs. detected axioms

Out of the 30 axioms we originally specified:

• 8 axioms were detected (modulo renaming).

• 7 axioms required preconditions and therefore could not be detected.

• 6 axioms were detected, but used the (overly concrete) default constructor
(see above).

• 5 axioms were not detected because our system does not consider subtype
instances as valid test parameters.

• 2 axioms specified a hidden method.

• 1 axiom was not detected because null is not used as a test parameter in
places requiring an instance of the class currently being analyzed.

• 1 axiom was not detected because none of our equation generators emitted
an equation that could have served as a template for it.

This last axiom was the following:
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forall p : edu.colorado.cs.PriorityQueue

forall q : edu.colorado.cs.PriorityQueue

forall o : java.lang.Object

addAll(p, add(q, o).state).state

== add(addAll(p, q).state, o).state

None of our equation generators yielded an equation that could have been gen-
eralized to this axiom. Again (as mentioned in section 4.2), it should be noted
that such a generator can be added easily; we did not include it in our system
because our initial estimates had indicated that the space of equations we would
have to explore would be quite significant, slowing down discovery, while only very
few additional axioms could potentially be found.

5 Related Work

We now describe related work in specification languages, dynamic invariant detec-
tion, automatic programming, static analysis, and testing.

5.1 Specification Languages

We drew many ideas and inspirations from previous work in algebraic specifications
for abstract data types [GH78]. Horebeek and Lewi [HL89] give a good introduction
to algebraic specifications. Sannella et al. give an overview of and motivation for the
theory behind algebraic specifications [ST97]. A book by Astesiano et al. contains
reports of recent developments in the algebraic specification community [AKKB99].

Antoy describes how to systematically design algebraic specifications [Ant89]. In
particular, he describes techniques that can help to identify whether a specification
is complete. His observations could be used in our setting; however, they are limited
to a particular class of algebras.

Prior work demonstrates that algebraic specifications are useful for a variety
of tasks. Rugaber et al. study the adequacy of algebraic specifications for a re-
engineering task [RSS01]. They specified an existing system using algebraic spec-
ifications and were able to regenerate the system from the specifications using a
code generator. Janicki et al. find that for defining abstract data types, algebraic
specifications are preferable over the trace assertion method [BP78, JS01]

5.2 Dynamic Invariant Detection

Recently, there has been much work on dynamic invariant detection [ECGN01,
WML02, ABL02, HL02]. Dynamic invariant detection systems discover specifica-
tions by learning general properties of a program’s execution from a set of program
runs.

Daikon [ECGN01] discovers Hoare-style axiomatic specifications [Hoa69, Gri81].
Daikon is useful for understanding how something is implemented, but also exposes
the full complexity of a given implementation. Daikon has been improved in many
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ways [ECGN00, EGKN00, DDLE02] and has been used for various applications
including program evolution [ECGN01], refactoring [KEGN01], test suite quality
evaluation [HME], bug detection [HL02], and as a generator of specifications that
are then checked statically [NE02].

Whaley et al. [WML02] describe how to discover specifications that are finite
state machines describing in which order method calls can be made to a given
object. Similarly, Ammons et al. extract nondeterministic finite state automatons
(NFAs) that model temporal and data dependencies in APIs from C code [ABL02].
These specifications are not nearly as expressive as algebraic specifications, since
they cannot capture what values are returned by the methods.

Our preliminary studies show that the current implementation of our tool does
not scale as well as some of the systems mentioned above. However, we are unaware
of any dynamic tool that discovers high-level specifications of the interfaces of
classes. Also, unlike prior work, our system interleaves automatic test generation
and specification discovery. All previous systems require a test suite.

5.3 Automatic Programming

Automatic programming systems [Bie72, BK76, Bie78, Ang82, Har75, Sum77] dis-
cover programs from examples or synthesize programs from specifications by de-
duction. The programs are analogous to our specifications in that our specifications
are high-level descriptions of examples. Algorithmic program debugging [Sha82] is
similar to automatic programming and uses an inductive inference procedure to test
side-effect and loop-free programs based on input output examples and then helps
users to interactively correct the bugs in the program. Unlike the above techniques
whose goals are to generate programs or find bugs, the goal of our system is to gen-
erate formal specifications (which could, of course, be used to generate programs
or find bugs).

5.4 Static Analysis

Program analyses generate output that describes the behavior of the program. For
example, shape analyses [SRW02] describe the shape of data structures and may be
useful for debugging. Type inference systems, such as Lackwit [OJ97] generate types
that describe the flow of values in a program. Our system is a dynamic black-box
technique that does not need to look at the code to be effective. However, various
static techniques can be used to guide our system (for example, we have already
experimented with mod-ref analyses).

5.5 Testing

Woodward describes a methodology for mutation testing algebraic specifications
[Woo93]. Mutation testing introduces one change (“mutations”) to a specification
to check the coverage of a test set. Woodward’s system includes a simple test
generation method that uses the signatures of specifications.

30



Algebraic specifications have been used successfully to test implementations of
abstract data types [GMH81, San91, HS96, AH00]. One of the more recent systems,
Daistish [HS96] allows for the algebraic testing of OO programs in the presence of
side effects. In Daistish, the user defines a mapping between an algebraic specifica-
tion and an implementation of the specification. The system then checks whether
the axioms hold, given user-defined test vectors. Similarly, the system by Antoy et
al. [AH00] requires the users to give explicit mappings between specification and
implementation. Our system automatically generates both the mapping and the
test suite.

Doong and Frankl [DF94] introduce the notion of observational equivalence
and an algorithm that generates test cases from algebraic specifications. Their sys-
tem semi-automatically checks implementations against generated test cases. Later
work improved on Doong and Frankl’s test case generation mechanism [CTCC98]
by combining white-box and black-box techniques. Our tool can potentially benefit
from employing static analysis of the code when generating test cases (white box
testing).

In addition to the above, prior work on test-case generation [HHG90, BOP00,
MOP02] is also relevant to our work, particularly where it deals with term genera-
tion. Also, methods for evaluating test suites or test selection [ZHM97, GHK+01]
are relevant. We do not use these techniques yet but expect that they will be useful
in improving the speed of our tool and the quality of the axioms.

Korat is a system for automated testing of Java programs [BKM02]. Korat
translates a given method’s pre- and post-conditions into Java predicates, gener-
ates an exhaustive set of test cases within a finite domain using the pre-condition
predicate and checks the correctness of the method by applying the post-condition
predicate. Our approach for generating terms borrows ideas from Korat.

6 Conclusion

Java applications rely heavily on reusable container classes. In our study of a
number of large Java applications we found that up to 30% of the classes in our
applications used one or more of the containers in the java.util package. Thus,
it is important for the container classes to be well documented.

To assist in this task, we describe a specification discovery tool that automati-
cally discovers algebraic specifications for Java classes. Since algebraic specifications
provide a clear, concise, and ambiguous description of the interface of container
classes, they are ideal for documenting these classes.

The specification discovery tool works by observing the runtime-behavior of
objects. Our experiments with a number of Java classes reveal that our system
generates axioms that are both correct and useful for understanding and using con-
tainer classes. Since our discovery tool is a dynamic tool (i.e., based on observing
runtime behavior), it is neither sound nor complete. However, the discovered spec-
ifications give developers a good starting point for developing complete and sound
specifications.
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