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Abstract

Through its magnetic activity, the Sun governs the conditions in Earth’s vicinity, creating space weather events,
which have drastic effects on our space- and ground-based technology. One of the most important solar magnetic
features creating the space weather is the solar wind that originates from the coronal holes (CHs). The
identification of the CHs on the Sun as one of the source regions of the solar wind is therefore crucial to achieve
predictive capabilities. In this study, we used an unsupervised machine-learning method, k-means, to pixel-wise
cluster the passband images of the Sun taken by the Atmospheric Imaging Assembly on the Solar Dynamics
Observatory in 171, 193, and 211Å in different combinations. Our results show that the pixel-wise k-means
clustering together with systematic pre- and postprocessing steps provides compatible results with those from
complex methods, such as convolutional neural networks. More importantly, our study shows that there is a need
for a CH database where a consensus about the CH boundaries is reached by observers independently. This
database then can be used as the “ground truth,” when using a supervised method or just to evaluate the goodness
of the models.

Unified Astronomy Thesaurus concepts: Solar coronal holes (678); Detection (1911); Space weather (2037)

1. Introduction

The Sun is a magnetically active star that shows various
magnetic activity structures extending from its surface to its
higher atmospheric layers, such as bipolar active regions (ARs)
on the photosphere, filaments in the chromosphere, and coronal
holes (CHs) in its corona. Through its magnetic activity, the
Sun governs the conditions in the vicinity of Earth and
throughout the heliosphere, which creates space weather and
space climate. Space weather is defined as the effects of the
solar wind and solar eruptive phenomena, such as flares and
coronal mass ejections (CMEs), on Earth’s magnetosphere,
ionosphere, and thermosphere (Schwenn 2006). The space
weather conditions have drastic effects our space- and ground-
based technology (Eastwood et al. 2017).

One of the most important solar magnetic features creating
the space weather and in turn affecting the Earth is the solar
wind. The observations revealed that there are three different
types of solar wind: (i) steady fast solar winds originate in the
CHs, (ii) unsteady slow winds from opening magnetic loops
and active regions, and (iii) transient winds from CMEs
(Marsch 2006). The identification of the CHs on the Sun as one
of the source regions of the solar wind (Wilcox 1968) that
creates space weather and in turn influences our space- and
ground-based technology is therefore crucial to achieve
predictive capabilities.

As the source regions of the steady fast solar winds, CHs
are identified as regions of low-density collisionless plasma

that is generally located above inactive parts of the Sun,
where open magnetic field lines extend throughout the
heliosphere (Schwenn 2006; Cranmer 2009). The magnetic
field inside a CH is known to be more unipolar and the CHs
show sharp and/or diffuse transition on the boundaries
between them and their surroundings (Cranmer 2009). The
temporal evolution of the CH as well as the area they cover on
the Sun depends on the solar activity cycle, also known as the
Schwabe cycle (Schwabe 1844). During the minimum phase
of a solar cycle, the CHs are observed to be larger and located
mainly on the solar polar caps. On the inclining phase of a
cycle, the CHs are observed to be present at any latitude and to
be short lived. During solar maximum, the CHs are smaller
and only exist around midlatitudes, while on the declining
phase of the solar cycle there are more long-lived CHs at lower
latitudes and they form closer to the solar equator as the cycle
progresses (Hewins et al. 2020). Additionally, during the
inclining and declining phases of a solar cycle, the CHs can
evolve into structures extending from a solar pole to the solar
equator.
As CHs have lower densities and temperatures, and hence

the lowest emission in UV and X-ray in comparison to their
surrounding environment consisting of active regions and quiet
Sun, they appear as dark regions in solar images in wavelengths
around 194Å whether they are on-disk or off-limb CHs
(Cranmer 2009).
Detection of CHs is done by eye on the He I 10830Å near-

infrared absorption line triplet (Harvey & Recely 2002), using
histogram-based intensity thresholding on 193 and 195Å
passband images of the Sun from the Atmospheric Imaging
Assembly (AIA; Lemen et al. 2012) on the Solar Dynamics
Observatory (SDO; Pesnell et al. 2012) and the Extreme
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ultraviolet Imaging Telescope (EIT; Delaboudinière et al.
1995) on the Solar and Heliospheric Observatory (SOHO),
respectively (CHARM; Krista & Gallagher 2009). Addition-
ally, an automated method for detection and segmentation of
CHs based on multithermal intensity segmentation using 171,
193, and 211Å passband images of the Sun from the AIA/
SDO (CHIMERA; Garton et al. 2018), and a semiautomated
method based on intensity threshold that is modulated by the
intensity gradient of a CH have been developed (CATCH;
Heinemann et al. 2019).

There are also methods based on supervised and unsuper-
vised machine-learning (ML) methods. Verbeeck et al. (2014)
developed a set of segmentation procedures based on the
spatial possibilistic clustering algorithm (SPoCA) to detect
CHs in an unsupervised ML fashion. Identified ARs and CHs
by this algorithm are uploaded to the event catalogs in the
Heliophysics Event Knowledge (HEK) database (Hurlburt
et al. 2012). Illarionov & Tlatov (2018) used convolutional
neural networks (CNNs; Schmidhuber 2014; Lecun et al.
2015) based on the U-Net architecture (Ronneberger et al.
2015) to identify CHs on solar images at 193Å passband
images of the Sun from AIA/SDO. They trained their network
using binary maps from the Kislovodsk Mountain Astronom-
ical Station. Recently, Jarolim et al. (2021) utilized CNNs
based on a progressively growing architecture using data from
all seven channels of AIA/SDO (94, 131, 171, 193, 211, 304,
and 335Å) as well as line-of-sight magnetograms from the
Helioseismic and Magnetic Imager (HMI; Scherrer et al. 2012)
on the SDO. For their network, the authors used binary maps
from manually reviewed SPoCA-CH data (Delouille et al.
2018).
In this study, we utilize a pixel-wise k-means algorithm,

which is an unsupervised ML method, to detect CHs based on
171, 193, and 211Å passband images from the AIA/SDO. To
achieve this objective, we used data from each channel in
different combinations, and compared results from each
combination to each other as well as to those from CATCH
and the HEK data to calculate their performances. We first
describe the data used in this study in Section 2 and explain the
analyses and present our results in Section 3. We discuss the
results and conclude in Section 4.

2. Data

To detect the CHs on the solar corona, we use passband data
with 2 s exposure from AIA/SDO in wavelengths 171, 193,
and 211Å in different combinations (Figure 1). The AIA
telescope on the SDO takes passband measurements of the Sun
every 12 s in full disk with a spatial resolution of 4096× 4096
pixels, and each pixel corresponds to 0 6 on the solar disk
leading to a spatial resolution of 1 5 (Lemen et al. 2012).
These three EUV bandpasses are centered on specific spectral
emission lines of Fe IX for 171Å, Fe XII, XXIV for 193Å, and
Fe XIV for 211Å, which covers the temperature range from
6× 105 to 2× 106 K, corresponding to the upper transition
region, quiet corona (171Å), corona and hot flare plasma
(193Å), and active-region corona (211Å) (Lemen et al. 2012).

3. Analyses and Results

3.1. Preprocessing Data

To detect the CHs, we use solar images taken by AIA/SDO
in passband images in wavelengths 171, 193, and 211Å in
different configurations. We also study the most efficient
wavelength or configuration of wavelengths to identify the
CHs. To achieve this, we compare our CH binary maps with
those from the CATCH. We also compared the CH polygons
provided by the HEK with the CATCH binary maps to have a
baseline with which we compare our results. The CATCH
binary maps are selected from the last two months of each year
in a time range from 2010 November to 2016 December,
extending through solar cycle 24. The CATCH data in this
period is reliable with minimal uncertainties. The total 237
CATCH CH binary maps consist of only contributions from the
longitudinal range of [ ]-400, 400 arcsec in helioprojective
coordinates as in this region the CHs can be identified more
robustly (Jarolim et al. 2021). We also imported CH polygons
from the HEK database for the same dates as the CATCH
maps, and converted them into binary maps.
In total, we analyze 237 days of data. For each date, we

import the Level 1 data in 171, 193, and 211Å wavelengths
and preprocess them using aiapy (Barnes et al. 2020a, 2020b)
and SunPy (The SunPy Community et al. 2020; Mumford et al.
2021) python packages. This step consists of correcting the
data for instrument degradation, for pointing and observer

Figure 1. Passband images of the Sun in 171 Å (the left panel), 193 Å (the middle panel), and 211 Å (the right panel) taken by the AIA/SDO on 2016 December 8 at
00:00 UT.
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location. Following these corrections, we register and align the
data and normalize it so it has units of counts/pixels/seconds.
Following these corrections, we correct the passband images
for limb brightening using an annulus limb brightening
correction approach (Verbeeck et al. 2014). We then
deconvolve the passband images using the instrument point-
spread function for each wavelength, and rescaled them to
1024× 1024 using the spline method. As the final step, we
lognormal transformed the data.

Following these steps, we created histograms of each data set
to determine the lower- and upper-threshold values. Determin-
ing these values allows us to increase the contrast in the data.
To avoid using any arbitrary values for these thresholds and to
have a more systematic approach for determining these values,
we fit a bimodal Gaussian curve to each histogram (Figure 2),
where it is possible. For some dates, however, it was not
possible to fit a bimodal Gaussian fit. For these dates, we used a
unimodal Gaussian fit. Using the obtained parameters of the
Gaussian fits, we calculated the lower- and upper-threshold
values based on the mean and standard deviation values of the
higher peak (the right panels of Figure 2), because the lower
peak represents the CH pixels (Heinemann et al. 2019). For
each date in the data set, we calculate a lower-threshold value

for each wavelength based on (μ− 4σ), while the upper-
threshold value is determined based on (μ+ 4σ). Values below
(above) the lower-threshold (upper-threshold) value are stacked
to have only one value that is the threshold value.
We then investigate the temporal variations in the calculated

mean (μ) and the lower-threshold values (μ− 4σ) (Figure 3).
The μ values of 193 and 211Å passband images show
variations in phase with the solar cycle, while the μ values of
171Å do not show such a trend (Figure 3(a)). The μ values for
each passband image also show day-to-day fluctuations.
Similarly, the lower-threshold values show day-to-day fluctua-
tions as well. These fluctuations have a wider range for the
threshold values calculated for the 211Å passband images
especially during the maximum phase of the solar cycle, while
the other two channels do not exhibit such wide fluctuations
(Figure 3(b)). An important feature to note is the “negative”
threshold values found for the 211Å passband images. There
are 27 days where the lower thresholds are negative values.
However, as this does not have a physical meaning, the
threshold values for these days were accepted as zero. The
reason for the negative values come from the underlying shape
of the Gaussians.

Figure 2. Probability densities of AIA/SDO 171 Å (top panel), 193 Å (middle panel), and 211 Å (bottom panel) intensities of the solar disk on 2016 December 8 at
00:00 UT. The left panels show the probability densities of the preprocessed data, while the right panels show probability densities of the postprocessed data. The
vertical dashed lines show the mean (μ) and μ ± 4σ values calculated to identify the threshold values.
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3.2. Pixel-wise Clustering the Images Using the k-means
Algorithm

After increasing the contrast in each image based on their
individual mean and standard deviation values, we created four
different data sets: (i) 193Å image, (ii) 211Å image, (iii) 193
and 211Å composite image (two-channel composite (2CC)),
and (iv) 171, 193, and 211Å composite image (three-channel
composite (3CC)). We then pixel-wise cluster each image using
the k-means method. This method is used to automatically
cluster a given data set into k groups of equal variance
(MacQueen 1967). The most commonly used clustering
criterion is the sum of squared Euclidian distances (SSD), also
known as the within-cluster sum of squares, of each data point
to the centroid of the cluster, to which that data point is
assigned (Likas et al. 2003). The k-means algorithm first
randomly selects k-cluster centroids, and then iteratively refines
these initial cluster centroids by assigning each Euclidian
distance to its closest cluster centroid. Then the algorithm
updates each cluster centroid value to be the mean of its
elements by minimizing the SSD (Wagstaff et al. 2001; Likas
et al. 2003).

The number of clusters, the k value, for this method is an
input parameter. To choose the optimum number of clusters,
we used the scree-plot method (Paparrizos & Gravano 2015).
In this method, we use k= 1, 2, 3, L , 10 and calculate the the
sum of squared distances (SSD) for each k value. The results
show that after the cluster number 3, any further decrease in
SSD is very small compared to previous ones, which means
that the optimum k value to use is 3 (Figure 4). This indicates
that there are darker regions, brighter regions, and regions that
surround them, which can be assigned to the CHs, active
regions, and the quiet Sun.

The k-means method allows us to determine a threshold
value for single-channel inputs, a threshold line for two-
channel inputs, and a threshold surface for three-channel inputs
in a systematic way that enables us to deter from choosing
these thresholds arbitrarily. Additionally, this method, when
automated, is flexible enough for day-to-day variations in solar
images, providing a dynamical response to them.
We calculate segmentation maps for each date using the k-

means method throughout solar cycle 24. Following that, we
convert these maps to binary maps by merging the two clusters
that identify brighter regions (active regions) and regions that
surround darker and brighter regions (quiet Sun). The reason
we did not use a k value of 2, is to avoid overestimation of the

Figure 3. Calculated mean (μ) (a) and lower-threshold values (μ − 4σ) (b) for AIA/SDO 171 Å (green), 193 Å (red), and 211 Å (blue) passband images for the study
period. Note that there are 27 points below zero, meaning that no lower-threshold value could be calculated; therefore, no thresholding was applied to the 211 Å
passband data on these dates.

Figure 4. Sum of squared distances (SSD) calculated for each number of
clusters, which ranges from 1 to 10 for passband data in 193 Å on 2017
December 8 at 00:00 UT.
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darker pixels on the passband images of the solar disk. We then
remove small dotted-like regions using the morphology module
of the scikit-image package (van der Walt et al. 2014). This
method requires two inputs, the smallest allowable object size
and connectivity, for which we use 200 and 10 pixels,
respectively. We also used morphological closing using a
disk-shaped footprint with a radius of 2 pixels to remove
smaller holes in identified CHs. The reason for using a smaller
footprint is to try to avoid smoothing out larger bright points in
identified CHs, which might be related to the coronal bright
points (Karachik et al. 2006; Hong et al. 2014; Wyper et al.
2018).

In addition to the four different binary map types generated
based on the 193Å, 211Å, 2CC, and 3CC, we generated
another type of binary map. We generated them based on the
overlap between binary maps of the 193 and 211Å images,
which we will refer to as the two-channel overlap (2CO). The
2CO binary maps are created if a pixel is simultaneously
identified as a CH pixel in the two binary maps from the 193
and 211Å images. Those pixels that are not simultaneously
identified as a CH are then accepted as non-CH pixels.

3.3. Pixel-wise Evaluation Metrics

To calculate the performances of our binary maps generated
by the k-means method for each date, we used pixel-wise
evaluation metrics. As there will be an imbalance between non-
CH and CH pixels in the passband and composite images of the
Sun, we use intersection over union (IoU), also known as the
Jaccard index (Jaccard 1912), and true skill statistics (TSS;
Hanssen & Kuipers 1965) as pixel-wise evaluation metrics. To

calculate these metrics, we used binary maps from CATCH.
IoU and TSS are calculated based on each confusion matrix for
each date using

( )=
+ +

IoU
TP

TP FP FN
, 1

( )=
+

-
+

TSS
TP

TP FN

FP

FP TN
, 2

where TP, TN, FP, and FN denote the pixel-wise calculated
number of true positives, true negatives, false positives, and
false negatives, respectively.
The distributions of the IoU values calculated between our

and the CATCH binary maps together with those between the
HEK and the CATCH binary maps show that the IoU for the
HEK CH binary maps has a median value of 0.53± 0.13, while
our results from the AIA 193 and 2CC show median values of
0.62± 0.14 and 0.64± 0.14, respectively. This indicates a
better overlap of the identified CHs from our method with
those generated by CATCH. The other three binary maps
from our study, the AIA 212, 3CC, and 2CO, result in IoU
values of 0.51± 0.20, 0.50± 0.21, and 0.61± 0.19, respec-
tively (Figure 5(a)).
The median TSS values of the AIA 193 and 2CC are

0.91± 0.06 and 0.93± 0.06, respectively (Figure 5(b)), while
the median TSS value for the HEK is 0.73± 0.13. These
results indicate that our binary maps generated by AIA 193 and
2CC are more in line with those from CATCH. The AIA 212,
3CC, and 2CO, show median TSS values lower than AIA 193
and 2CC (Figure 5(b)).

Figure 5. The distributions of the calculated IoU (a) and TSS (b) values between binary maps generated in this study and the CATCH, together with those between the
HEK database and the CATCH. The white dots indicate the median value for each distribution. We also show the median values together with median absolute
deviation for each evaluation metric in the figure. The red, blue, orange, green, purple, and yellow colors show AIA 193, AIA 211, 2CC, 3CC, 2CO, and HEK binary
maps, respectively.
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3.4. Coronal Hole Areas

To further validate our results against the HEK and CATCH
results, we calculate the total areas of the CHs on the solar disk
in percentage of CH coverage on the solar disk. To achieve
this, we first corrected each pixel in our binary maps for
projection effects by applying

( )
a

=A
A

cos
, 3i

i

i

,proj

where Ai and αi denote the corrected pixel area and the
heliographic angular distance of each pixel to the center of the
solar disk as seen from the AIA/SDO, respectively.
We calculated the Pearson correlation coefficients for each

year between results from our study, HEK binary maps, and
CATCH (Figure 6). We need to note that we use the last two
months of each year to calculate the correlations. Similar to the
results obtained for IoU and TSS, AIA 193 and 2CC generally
provide higher correlations through the study period.

Figure 6. Temporal evolution of the correlation coefficients between total CH areas from our method, HEK against CATCH data through 2010 November and 2016
December, extending through solar cycle 24. Note that the correlations are calculated using data during the last two months of each year (see the text).

Figure 7. The total percentage areas from this study (a)–(e) and HEK database (f) as a function of the areas from CATCH. The black solid lines show the linear fits,
while the shaded areas show uncertainty. We also show the Pearson correlation coefficients and their statistical significances. The color coding is the same in Figure 5.

6

The Astrophysical Journal, 930:118 (11pp), 2022 May 10 Inceoglu et al.



Figure 8. The CH binary maps for 2012 November 5 (top row), 2014 December 7 (middle row), and 2016 December 7 (bottom row) identified from the AIA 193,
AIA 211, 2CC, 3CC, 2CO together with binary maps from the HEK and CATCH. The vertical white dashed lines indicate the longitudinal range of [ ]-400, 400
arcsec in helioprojective coordinates. The color coding is the same in Figure 5.
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Interestingly after 2014, the correlation coefficients calculated
for every binary map become similar and evolve in parallel
until 2016 (Figure 6).

We also calculated the overall correlations between the
binary maps from our study and HEK, and binary maps from
CATCH. The highest correlation of 0.88 for the CH areas is
observed between the HEK and the CATCH data, while our
2CC gave a correlation coefficient of 0.82, followed closely by
AIA 193 that gave a correlation coefficient of 0.81. The
correlation coefficients for the 2CO, 3CC, and AIA 212 are
0.79, 0.75, and 0.73 respectively (Figure 7).

3.5. Comparison of the CH Binary Maps

We then select three dates that represent different phases of
solar cycle 24 to compare the CH binary maps. These dates are
(i) 2012 November 5 on the inclining phase before the cycle
maximum, (ii) 2014 December 7 right after the solar cycle
maximum, and (iii) 2016 December 7 on the declining phase of
solar cycle 24 (Figure 8).
On the inclining phase of solar cycle 24, on 2012 November

5, our method identifies smaller CHs. The results from the AIA
193, 3CC, and 2CO are observed to be more in line with those
from the CATCH, where there is only one CH at [ ]0, 500

Figure 9. The CH binary maps for a time sequence from 2015 November 3 through 2015 November 11 identified from the 2CC.
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arcsec in helioprojective coordinates. The results from the AIA
211 and the 2CC, on the other hand, are more in line with those
from the HEK database (the top row of Figure 8). On 2014
December 7, a few months after the cycle maximum, the binary
maps from the AIA 193, the 3CC, and the 2CO show similar
CH coverage on the solar disk to the CATCH within the
longitudinal range of [ ]-400, 400 arcsec. All of the CH binary
maps from our method, except for the 3CC, are similar to the
CHs from the HEK showing a small coronal hole near
[ ]-750, 500 arcsec (the middle row of Figure 8). On the
declining phase of solar cycle 24, on 2016 December 7, the CH
areas identified using the AIA 193, the 2CC, and the 3CC are in
line with those from the HEK database and CATCH. On this
date, the total CH area coverage also reaches its maximum,
where it extends from the southern solar pole to the solar
equator (the bottom row of Figure 8).

To evaluate the consistency of our results, we plotted the
detected CHs using 2CC on the dates from 2015 November 3
through 2015 November 11 (Figure 9). The temporal evolution
of the detected CHs close to the solar equator is consistent with
the solar rotation. Formation and evolution of a new CH, again
close to the solar equator, starting from the 6th of November
through 11th of November can also be observed. In addition,
temporal evolution of the large CH on the northern solar
hemisphere is also consistent in each date (Figure 9).

To further investigate the consistency, we checked the day-
to-day temporal evolution of the areas during 2012 and 2016
(Figure 10). Note that the areas are calculated for the last two
months of each year. In 2012, there is a general good
agreement between our 2CC, CATCH, and HEK CHs
especially during December, whereas in November, the HEK

CH areas are larger compared to our 2CC and the CATCH
(Figure 10(a)). During 2016, on the other hand, CH areas from
the three sources covary with some small differences in
amplitudes (Figure 10(b)).

4. Discussion and Conclusions

CHs are the source regions of the steady fast solar winds,
which result in corotating interaction region-driven storms, the
so-called HILDCAA events (Tsurutani & Gonzalez 1987). In
comparison to their surroundings, CH have lower plasma
densities and temperatures and therefore they have the lowest
emissions in the UV and X-ray wavelength range. This
physical feature makes them appear as darker regions in
passband images of the Sun taken in these wavelengths. CHs
are also known to have very complex magnetic structures
extending from the photosphere to the corona (Heinemann
et al. 2018, 2021), where the open magnetic field lines extend
into the interplanetary medium. They also show solar cycle
dependence.
There are several methods to identify CHs on the solar

images taken by AIA/SDO and EIT/SOHO based on
histograms (Krista & Gallagher 2009), multithermal intensity
segmentation (Garton et al. 2018), and intensity threshold,
which is modulated by the intensity gradient of a CH
(Heinemann et al. 2019). Recently, unsupervised and super-
vised ML methods have been used to detect CHs using single-
or multichannel passband data from the AIA/SDO (Verbeeck
et al. 2014; Illarionov & Tlatov 2018; Jarolim et al. 2021). The
supervised ML methods mainly rely on the CNNs for image
segmentation. These methods, however, require a reliable

Figure 10. The CH areas during the last two months of 2012 (a) and 2016 (b). The coral, gold, and maroon lines represent 2CC, HEK, and CATCH data, respectively.
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training data set that consists of CH polygons detected either by
an observer or by an unsupervised method.

In our study, to identify the CHs we used a simple clustering
algorithm, k-means, to pixel-wise cluster the passband images
of the Sun taken in 171, 193, and 211Å by the AIA/SDO
covering the time period between 2010 November and 2016
December. In addition to using a single-channel approach, we
used different combinations of these channels. To detect the
lower- and upper-threshold values, we fitted bimodal Gaussians
to the probability densities of intensities for each channel on
each date. We then calculated the thresholds based on the mean
and standard deviation of the local maximum at higher
intensities. To cluster the passband images, we used the k-
means method, where the optimum number of clusters, 3, is
calculated based on the scree plot. The k-means method,
together with pre- and postprocessing steps enabled us to build
an automated flexible approach that dynamically responds to
day-to-day variations in solar images. As a result we obtained
five different binary maps for each identified CHs, that are (i)
AIA 193, (ii) AIA 211, (iii) 2CC, (iv) 3CC, and (v) 2CO. We
then calculated pixel-wise evaluation metrics based on CH
binary maps from CATCH and compared our results with them
as well as those from the HEK database. Following that, we
calculated the total percentage area identified as a CH per date,
after correcting the binary maps for the projection effects.

Our results show that the 2CC, a composite image using only
193 and 211Å passband images, provides the best results that
are closely followed by results from AIA 193. The median IoU
and TSS values for the 2CC are 0.64± 0.14 and 0.93± 0.06,
respectively, while they are 0.62± 0.14 and 0.91± 0.06 for
the AIA 193. Our results show higher similarity to CATCH
results than the HEK database (IoU= 0.53± 0.13 and
TSS= 0.73± 0.13). Our results provided better overlap with
the CATCH data than those obtained by the CHRONNOS
method (Jarolim et al. 2021) for the same period, which
provided mean IoU and TSS values of 0.63 and 0.81,
respectively. This method uses all of the seven channels from
the AIA/SDO and line-of-sight magnetograms from the HMI/
SDO in progressively growing CNNs (Jarolim et al. 2021).
Even though our results from AIA 193 and 2CC also provide
high overall correlations, they are still lower than the
correlation coefficient of 0.88 between the HEK binary maps
and CATCH.

We also showed the consistency of our results, especially
from the 2CC method, when the formation and temporal
evolution of the CHs are considered. Our method was able to
identify and track the CHs from November 3 through
November 11 for nine consecutive days. Additionally, temporal
variations of CH areas from our method follows the trends that
are observed in the CATCH and HEK CH areas.

To investigate the effects of the chosen lower- and upper-
threshold values, we also calculated the same evaluation
metrics and areas for the threshold ranges of μ± 3σ and
μ± 5σ, as well as for cases where we do not apply any
thresholding at all. Similarly, we calculated the thresholds
based on the bimodal Gaussian fit and the mean and standard
deviation of the local maximum at the higher intensities.
However, using different thresholds, and also not using any
thresholds, provided lower evaluation metrics as well as
correlation coefficients of the total areas.

Interestingly enough, our results show significant discrepan-
cies between the identified CHs using our method, HEK, and

CATCH when we look at the temporal variations in the
correlation coefficients calculated for the total areas. Recently,
some steps have been taken to create a reliable database where
there is a consensus about the CH boundaries and their
uncertainties are being discussed (Linker et al. 2021; Reiss
et al. 2021).
In conclusion, as an unsupervised ML method, using the k-

means clustering provides better results with those from
complex methods, such as CNNs. One of the most important
steps in this method is the preprocessing of the data and the
choice of the lower- and upper-threshold values in a more
systematic way, which then can lead to automation of the CH
detection at any given date or a date range. More importantly,
our study shows that there is a need for a CH database where a
consensus about the CH boundaries is reached by observers
independently, and which can be used as the “ground truth,”
when using a supervised method or just to evaluate the
goodness of the models.
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