An Abstract Data Type for Name Analysis

U. Kastens
W. M. Waite

CU-CS-460-90

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

An Abstract Data Type for Name Analysis

U. Kastens
W. M. Waite

CU-CS-460-90 March, 1990

ABSTRACT: This paper defines an abstract data type on which a solution to the name
analysis subproblem of a compiler can be based. We give a state model for the ADT,
and showed how that model could be implemented efficiently. The implementation is
independent of any particular name analysis, so it is possible to create a library module
that can be used in any compiler. Such a library module has been incorporated into the
Eli compiler construction system.

1. Introduction

The problem of compiling a program can be decomposed into a number of sub-
problems, many of which have standard solutions. If a subproblem has a standard solu-
tion, there is no need for a compiler designer to re-invent that solution. The standard
solution can be packaged in a module and re-used. Development of a library of such
modules should be accorded high priority by researchers studying the compiler construc-
tion process.

In this paper we consider the name analysis subproblem. This is the problem of
determining which source language entity is denoted by each identifier occurrence in a
program. For example, in the Pascal program of Figure 1 the programmer has used the
identifier A to denote a variable on line 10. On line 12, A denotes a field of the record
pointed to by P. The identifier B, on the other hand, has been used to denote a field of
the record R (declared on line 6) on both lines. A Pascal compiler’s name analysis task
must determine which entity is denoted by each occurrence of A, which by each
occurrence of B, and so forth.

Source language entities are described by sets of properties. The Pascal entity
declared on line 6 of Figure 1 is a variable capable of holding values of a particular type.
Its lifetime is the entire execution history of the program, and it will occupy a certain
amount of storage at a particular address during execution. Thus this entity might be
described by the following property values:

program Context (input ,output);
const C=1.2;
type T=record A ,B,C: integer end;
var

A:real;

R:T,

pP:Tr;
begin
new (P); readin (R.B ,R.C .PT.C);
10 A:=RB+C,
11 with P T do (* Re-defines A B C *)
12 A:=RB+C,;
13 R:=P 7T, writeln(A,RA);
14 end.

O R0 ~IW b W -

Figure 1
A Pascal Program

Class: Variable

Type : real (determines the storage requirement also)
Level: 1 (indicates the variable is global)
Offset: -12 (address relative to the global storage area base)

All entities would have a Class property in their description, but the remaining properties
might be different for entities of different classes.

Each entity can be characterized by a key, which allows the compiler to access the
entity’s properties. Because the key characterizes the source program entity, the name
analyzer need only determine a key for each identifier occurrence. Property access may
be implemented by an appropriate data base technique or a definition table with one entry
for each key, but these decisions are totally independent of name analysis.

Name analysis is based on the scope rules of the source language being compiled.
Scope rules are formulated in terms of definitions, which cause identifiers to denote
source language entities, and program regions: For each definition, the scope rules
specify the program region in which that definition is valid. In Figure 1, the variable
declaration on line 6 is a definition that causes the identifier R to denote a particular Pas-
cal entity. The scope rules of Pascal state that this definition is valid for the region con-
sisting of lines 2 through 14.

A definition is represented in the compiler by a binding between an identifier and a
key. The particular set of (identifier,key) bindings valid at a program point is called the
environment of that program point.” At the occurrence of A in line 10 of Figure 1, the
scope rules of Pascal specify that bindings exist for C, T, A, R, P, and all of the
predefined identifiers of Pascal. At the occurrence of B on the same line, however, only
bindings for A, B and C are valid. Moreover, the binding for A valid at the occurrence
of A is different from the binding for A valid at the occurrence of B.

The concept of an environment can be captured in an abstract data type (ADT).
This ADT provides operations for creating environments, populating them with
(identifier,key) bindings, and carrying out mappings from identifiers to keys based upon
them. If a module that efficiently implements the environment ADT is available, a
compiler’s name analysis task can be carried out by appropriate invocations of that
module’s operations. The module itself is independent of the source language; different
scope rules affect only the way in which the module is invoked.

We describe the structure and operations of the environment ADT algebraically in
Section 2. Section 3 presents a state model of the ADT, and Section 4 shows how that
model can be efficiently implemented by a standard module. In Section 5 we show how
the standard environment module can be used to carry out name analysis for several
important kinds of scope rules, demonstrating that it supports a wide range of compilers.

2. The Environment Abstract Data Type

The computations used during name analysis can be specified algebraically in
terms of three abstract data types:

Identifier — The compiler’s internal representation of an identifier
DefTableKey — The compiler’s internal representation of a key
Environment — The compiler’s internal representation of a scope

Each textually-distinct identifier is represented by a unique value of type Identifier. (The
meaning of “‘textually-distinct” depends, of course, on the source language. A compiler
for Pascal would represent both Xy and xy by the same Identifier value, but a C compiler
would use different Identifier values for these identifiers.) Values of type DefTableKey
provide access to the properties of an object. There is a distinguished DefTableKey
value, NoKey , that provides access to no properties. We shall not explore the details of
the Identifier and DefTableKey ADTs in this paper.

There are as many interesting Environment values as there are distinct scopes in a
program. (‘‘Scope’” was introduced in the ALGOL 60 Report2 as the name for the
region of a program in which the declaration of an identifier denoting a particular entity
is valid.) In most programs, several definitions are valid over identical regions of the pro-
gram and thus the number of distinct scopes is smaller than the number of distinct
(identifier,key) bindings. For example, in Figure 1 the scopes of the field identifiers A, B
and C are identical. The constant, type and variable identifiers in Figure 1 also have
identical scopes, and these scopes are distinct from those of the field identifiers. A third
set of identical scopes, those for the pseudo-variables 1mphclt1y defined by the with
statement, exists in Figure 1. Finally, the Pascal Standard’ defines a scope external to the
program for the required identifiers (e.g. integer, real). Thus four Environment values
would be used by a Pascal compiler when compiling Figure 1 because there are four dis-
tinct scopes in that program.

Although Figure 1 has only four distinct scopes, there are five distinct environ-
ments for program points. Let us consider two of these:

1 The environment for the occurrences of B in lines 10 and 12, and the second
occurrence of A in line 13, contains only bindings for A, B and C. Each identifier
is bound to a key characterizing a field of the record type declared on line 3.

2) The environment for the program points between the keywords record and end in
line 3 contains the bindings of environment (1), plus bindings for T, R, P and all
of the predefined identifiers of Pascal.

The difference between these two environments is that (2) has inherited a number of
bindings valid in the region outside the record declaration. That inheritance is the result
~ of the following scope rule, first stated for ALGOL 60 and since used for almost all
hierarchically-structured programming languages with static binding:

A definition is valid in its own scope and in all nested scopes not containing a
definition for the same identifier.

As a consequence, a definition in a scope hides definitions for the same identifier in
enclosing scopes, which is why environment (2) did not inherit the binding between the

identifier A and the key for the real variable declared on line 5.

Environments (1) and (2) are represented by the same Environment value. The
distinction is embodied in the environment abstract data type by preserving the hierarchi-
cal relationships among the Environment values and providing two access operations.
One of these access operations yields only the bindings in the scope corresponding to a
specified Environment value. That access function would be used to implement environ-
ment (1). The other access function, used to implement environment (2), yields the bind-
ings in the scope corresponding to a specified Environment value and any bindings from
enclosing scopes (provided those bindings are not hidden).

Figure 2% describes the behavior of the environment abstract data type in terms of
Identifier and DefTableKey . The scope hierarchy is conveyed to the ADT through use of
NewScope , whose operand is the Environment value for the scope enclosing the one
being created. KeyInScope makes available only the bindings whose scope is specified
by its first operand, while Key/nEnv makes available the bindings in that scope and all
enclosing scopes. Note that the hiding is accomplished by searching the nest of scopes
hierarchically, from smallest to largest, and returning the first binding found.

Both KeyInScope and KeyInEnv are total functions returning a single value of type
DefTableKey . Some languages, for example Algol 68> and Ada,” allow an environment

Signatures
NewEny : — Environment
NewScope : Environment — Environment
Add: Environment xIdentifier xDefTableKey =~ — Environment
KeyInScope: Environment xIldentifier — DefTableKey
KeyInEny : Environment xIldentifier — DefTableKey
Axioms ;
(Al) KeyInScope (NewEnv (),i) = NoKey
(A2) KeylnScope (NewScope (¢),i) = NoKey
(A3) KeyInScope (Add (e ,iyk)i,) = ifi =i, thenk else KeyInScope (e .i,)
(A4) KeyInEnv (NewEnv (),i) NoKey

(AS) KeyInEnv (NewScope (e),i)
(A6) KeylnEnv (Add (e ,i.k),iy)

KeylnEnv (e ,i)
if i =i, then k else KeyInEnv (e,i,)

o

Figure 2
Algebraic Specification of an Environment ADT

to contain more than one binding for an identifier. An identifier is overloaded in an
environment if that environment contains more than one binding for the identifier. The
key denoted by an overloaded identifier is determined by applying overload resolution
rules to the set of bindings in the environment. We shall return to the question of over-
loading in Section 5, where we show how to handle overloaded identifiers with a stan-
dard environment module,

There are two situations in which a compiler would create a new Environment
value by adding a binding:

1) An identifier definition has been imported from some other context. In this case,
both the identifier and the key to which it is to be bound are known.

2) A new identifier definition has been encountered. In this case, the identifier is
known but the compiler must obtain a new key from the DefTableKey ADT.

Regardless of which of these two situations arise, the compiler must deal with the possi-
bility that a declaration for the identifier already exists in the current scope. Because
these situations arise frequently, and because each is always handled in exactly the same
way, it is convenient to augment the environment ADT with explicit operations to handle
them (Figure 3).

If there is no binding for i in the current scope e, then each of the operations
described by Figure 3 introduces one. Addldn, which would be used in situation (1),
binds i to the key k. Defineldn binds i to a new key that it obtains by invoking the

Signatures

Addldn - Environment xIdentifier xDefTableKey — Boolean xXEnvironment
Defineldn: Environment xldentifier — DefTableKey xEnvironment
Axioms

(A7) Addldn(e.i k) if KeyInScope (e ,i)=NoKey

then (true ,Add (e ,i ,k))

else (false ,e)

if KeyInScope (e ,i)=NoKey

then (k ,Add (e ,i ,k)) where k=NewKey
else (KeyInScope (e ,i),e)

(A8) Defineldn (e i)

Figure 3
Operations to Introduce Bindings

NewKey operation of the DefTableKey abstract data type. The new key is returned so
that the compiler can set its properties. Since the key supplied to Addldn has presumably
already had properties set, Addldn simply returns true to indicate that the definition was
allowed.

If the current scope e already contains a binding for i, Addldn reports that fact by
returning false. Defineldn, on the other hand, conceptually maps all definitions of the
same identifier in one scope to the same key. Hence the situation in which an identifier is
multiply defined has to be indicated by a property associated with that key. In any event,
only the first definition of an identifier in a scope is retained; later definitions of that
identifier are ignored.

Figure 4 shows how the environment ADT might be used to perform name
analysis. Identifier values are denoted by the identifiers themselves in Figure 4, DefT-
ableKey values by k, and Environment values by e,. The invocations of ADT opera-
tions are written next to the constructs with which they are associated. Thus the compiler
must execute a Defineldn operation for the construct in the first line of each program.

The operations invoked in Figures 4a and 4b are identical, but their arguments
differ because of the differing scope rules of C and Pascal. In C, a definition is valid
from the point of definition to the end of the compound statement containing that
definition, while in Pascal a definition is valid throughout the block containing that
definition. This difference in scope rules is manifested in the Environment argument of
the KeyInEnv invocation for i in the definition of m in each figure. In Figure 4a, ¢35 is
used and in Figure 4b e is used. The difference between these two values is that e 5 con-
tains only the bindings that textually precede the use of i in the declaration of m,
whereas e ¢ contains all of the bindings in the entire block.

Note that the order of the invocations of the ADT operations in Figure 4 is deter-
mined by the dependences among them, not by the order in which they are written down.
All of the Defineldn invocations in Figure 4b must be executed before any of the Key-
InEnv invocations, because the latter require e 4 as an argument.

Figure 4b contains an error, because the use of i in the declaration of m precedes
its declaration in the following line. The Pascal Standard prohibits use of an identifier
before its declaration in all cases except the declaration of a pointer type. Many Pascal
compilers do not detect this error: The dependences among the operations in Figure 4b
imply that the compiler must visit all identifier definitions in a block before visiting any
identifier uses. A compiler that is designed to make exactly one pass, in textual order,
over the source program will not be able to satisfy the dependences of Figure 4b without
retaining a representation of the entire tree in memory. (There is a way to use the name
analysis strategy of Fig]ure 4a for Pascal, keeping additional properties to detect the use-
before-definition error.")

A straightforward implementation of the environment ADT uses a single record for
each invocation of NewScope and Add. Each Environment value is a pointer to one of
these records. The record corresponding to an operator invocation simply contains all of
the arguments of that invocation. Since Environment values are pointers, this means that
the records form singly linked lists that can be searched recursively by procedures that

int 1 = 10; Defineldn (e ,i)—kq.e,
P () Defineldn (e ,P)—kq.e5
{ NewScope (e3)—ey
int m = 1i; Defineldn (e 4 m)—ks.€5
KeyInEnv (e 5,0)—k,
int 1 = 20; Defineldn (e 5,i)~k 4.e ¢
printf("%d %d\n", m, 1i); KeylnEnv(egprintf)—ks
KeyInEnv (e g,m)—k4

KeyInEnv (el)—k4

a) According to the scope rules of C

const i = 10; Defineldn (e 1,i)—k,e4
procedure P; Defineldn (e 5,P)—k e
NewScope (e3)—e,
const m = 1i; Defineldn (e 4,m)—k3.e 5
KeyInEnv (e ,i)—k4
i = 20; Defineldn (e 5,i) >k y.e4
begin
writeln(m, 1i); KeylnEnv (egwriteln)—ks
KeyInEnv (e g;m)—k4
KeyInEnv (e ,i)—k4
end;

a) According to the scope rules of Pascal

Figure 4
Name Analysis Using the ADT of Figure 3

exactly implement the axioms A1-A6 of Figure 2.

Each operation except NewScope has a worst case time complexity of O (V) in
this implementation, where N is the number of identifier declarations in the program.
Since the total number of identifier occurrences is proportional to the number of identifier
declarations, and some operation with time complexity O (N) must be invoked for every
identifier occurrence (Addldn or Defineldn for definitions, KeyInEnv or KeylnScope for

uses), the asymptotic time complexity of name analysis as a whole will be O (N2). The
asymptotic storage requirement is O (V') because there is one fixed-length record for each
identifier definition (records corresponding to NewScope operations could be eliminated
by adding two flags to the records corresponding to Add operations).

Another possible implementation uses an array of records, indexed by Identifier
values, for each Environment value. Each record contains a DefTableKey value (possi-
bly NoKey) specifying the binding of its index, and a Boolean value that is true if and
only if the binding occurred in the scope represented by the array. KeylnEnv and Keyln-
Scope are constant time operatlons in this implementation. Unfortunately the asymptotic
space complexity is O (N?), and the total time complexity for name analysis remains
O (N?%): Both NewScope and Add must create new arrays, copying the contents of their
Environment arguments and setting the flags properly. Thus each of these operations has
time complexity O (NV), and the number that must be executed is proportional to N.

3. A State Model for the Environment ADT

The algebraic specification of the environment ADT given in the previous section
has a strict value semantics. Each application of a constructor function (NewEnv, New-
Scope , Add) yields a new Environment value that exists from that time forward. Figure
4 shows, however, that each of these values has a specific ‘‘useful lifetime’’: the portion
of the execution history of the name analysis between the time the value is created and
the time it is last used. This suggests that the definitions of the previous section over-
specify the environment ADT, and that by making a specification that is more precise in
terms of the lifetimes of Environment values we might be able to reduce the cost of name
analysis.

The useful lifetime of an Environment value depends upon the name analysis stra-
tegy used by the compiler, which in turn depends on the scope rules of the source
language. Figure 4 illustrated the effect of the essential difference in scope rules: For
some languages the scope of a definition begins at the defining point and continues to the
end of a region (C-like scope rules); for others the scope of a definition is the entire
region in which it is declared (Pascal-like scope rules). A compiler for a language with
C-like scope rules might carry out its name analysis task during a single text-order traver-
sal of the source program, as illustrated by Figure 4a. Compilers for languages with
Pascal-like scope rules, on the other hand, might traverse every region of the program
twice. During the first traversal they would invoke Addldn or Defineldn at every
definition and ignore all nested regions. The second traversal would invoke KeylnEnv or
KeylnScope at every use of an identifier, and would perform both traversals of each
nested region. (This strategy is compatible with the value dependence of Figure 4b. We
have already pointed out the existence of strategies that retain additional information in
order to avoid two traversals when compiling Pascal.)

Now consider the effect of these strategies on the useful lifetimes of the Environ-
ment values generated by the environment ADT described in the previous section.
NewEnv will be invoked at the beginning of the compilation, and NewScope will be
invoked at the beginning of the traversal of each nested region. KeyInEnv or Keyln-
Scope will be invoked at each use of an identifier. Clients of the abstract data type never

10

invoke Add directly; they add bindings by invoking either Addldn or Defineldn when a
definition is encountered. It is easy to show that if an Environment value is used by
either Addldn or Defineldn , that value will never be used again by either of the strategies
discussed in the previous paragraph. We will therefore assume that Addldn and
Defineldn do not return new Environment values, but instead alter the state of their
Environment argument by adding a binding to the set it represents. (Of course these
operations will have no effect on the state if a binding for their Identifier argument is
already present in their Environment argument.) An Environment value’s state is nothing
but the set of bindings it represents. Thus the environment of a program point is actually
the state of some Environment value.

Figure 5 shows the consequences of this state model for the examples of Figure 4.
Notice that it is no longer possible to determine the order of the invocations from depen-
dences among them. The compiler designer must explicitly take the state of the Environ-
ment value into account when deciding upon the correct invocation sequence. In Figure
Sa the invocation of KeylnEnv for i in the line defining m must precede the invocation
of Defineldn for i in the following line because the latter operation will change the state
of e,. Similarly, the invocation of KeylnEnv for i in the line defining m in Figure 5b
must follow the invocation of Defineldn for i in the following line because only after the
latter operation has the proper state of e, been established.

Let us now consider an implementation of the state model using an array of fixed-
size records to implement each Environment value. The state of the value defines the
content of the array. Each NewEnv and NewScope operation has time complexity O V),
because it must create a new array and either initialize the contents (NewEnv) or copy
the content of another array (NewScope). All other operations, however, require only
constant time. Defineldn and Addldn check a single array element and possibly alter its
content; KeylnScope and KeyInEnv simply access the element. The overall time and
space complexity of name analysis are therefore reduced to O (NxS), where N is the
number of identifier occurrences and S is the number of distinct regions of the program
in which identifiers are declared.

4. A Standard Environment Module

This section presents an implementation of a standard environment module that
supports name analysis in a wide range of compilers. It realizes the state model of the
environment ADT described in the previous section. The basic approach is to use a sin-
gle array of lists of fixed-size records to simulate the implementation discussed at the end
of the previous section. For practical situations both the time and space complexity of
name analysis using this module are O (N). We first give the details of the module and
then analyze its performance.

Figure 6a gives a Pascal definition of the data types manipulated by the module,
and Figure 6b illustrates the state of the data structure in a Pascal compiler during the
processing of line 12 of Figure 1. (Space limitations only permit us to show three of the
StkElt records; there are actually many more.) The dotted rectangle at the right of Figure
6b is the AccessMechanism record, which contains the array and a pointer to the record
representing the Environment value currently encoded in that array. If the Environment

11

int 1 = 10; Defineldn (e ,,i)=k,
P () Defineldn (e ;,P)—k,
{ NewScope (e 1)—e,
int m = i; Defineldn (e 5,m)—k4
KeyInEny (e 5,i)—k 4
int 1 = 20; Defineldn (e 5,i)—k4
printf("%d %d\n", m, 1i); KeylnEnv(e,printf)—ks
KeyInEnv (€,m)—k4
KeyInEnv (€ 4,i)—k 4
}
a) According to the scope rules of C
const 1 = 10; Defineldn (e 1,i)=k
procedure P; Defineldn (e ,P)—k,
NewScope (e)—e,
const m = 1i; Defineldn (e 5,m)—k4
KeyInEnv (ez,i)—-)k4
i = 20; Defineldn (e 5,i)k,
begin
writeln(m, 1i); KeylnEnv(ey,writeln)—ks
KeyInEnv (e 5,m)—k5
KeyInEny (e4,i)—ky
end;

a) According to the scope rules of Pascal

Figure 5
Name Analysis Using A State Model

type

Environment=TEnvImpl; (* Set of Identifier/Definition pairs *)
Scope=TRelElt; (* Single region *)
Access=TAccessMechanism; (* Current access state *)
Envimpl =record (* Addressing environment *)
nested: Access; (* Constant-time access to identifier definitions *)
parent : Environment (* Enclosing environment *)
relate: Scope ; (* Current region *)
end;
RelElt=record
idn: Identifier ; (* Identifier *)
nxt: Scope ; (* Next identifier/definition pair for the current region *)
key: DefTableKey ; (* Definition *)
end;
StkPtr="TStkEls; (* List implementing a definition stack *)
StkElt=record
out: StkPtr; (* Superseded definitions *)
key: DefTableKey; (* Definition *)
e: Environment ; (* Environment containing this definition *)
end;
AccessMechanism=record (* Current state of the access mechanism *)
IdnThl = array (* Stacks of definitions *)
[0.MaxIdn] of StkPtr;
CurrEnv : Environment ; (* Environment represented by the array state *)
end;

a) Data objects for the constant-time access function

i
i
1 . I
1 - i
H Rl
[T 3 Definitions of pre-defined identifiers ; — :
| I
I [}
| [}
1 1
3 —=_1 A
I 1
| X
I i
I T 1
| lddTbl
1 i
1 t
I i
E | R |
[L — >
with-st}

b) The data structure during the analysis of line 12, Figure 1

Figure 6
The Data Structure of the Standard Environment Module

13

value passed to one of the module’s operations is equal to the value specified by this
pointer, then the operation is carried out immediately. Otherwise, the contents of the
array may be adjusted to reflect the Environment value passed.

The nested field of the Envimp! record reflects the actual scope nesting, relative to
the scope represented by the Envimpl record. If the scope pointed to by the CurrEnv
field of the AccessMechanism is either the scope represented by the Envimpl record or a
scope nested within that scope, then the nested field contains a pointer to the
AccessMechanism . Otherwise the nested field contains nil. It is easy to see that
definitions for an environment are on the ‘‘identifier stacks’’ addressed by IdnTb! ele-
ments if and only if the nested field of its Envimpl record points to the AccessMechan-
ism. In Figure 6b, CurrEnv is pointing to the Envimpl record for the with statement
body, which is the environment appropriate for line 12 of Figure 1. The identifiers
defined in the with statement, the identifiers defined in the program block, and the
predefined identifiers are on the identifier stacks. Therefore the nested fields of the
EnvImpl records corresponding to those three regions point to the access mechanism.
The nested field of the Envimpl record corresponding to the body of the record declared
on line 3 of Figure 1 is nil because the field identifiers are not on the identifier stacks.

Figure 7 gives Pascal code that implements the environment access functions
Defineldn and KeylnEnv . Both begin by making certain that the array reflects the situa-
tion in the environment specified by the Environment argument. SetEnv, EnterEnv and
LeaveEny are all private procedures of the environment module. They are used to set up
the array so that it reflects a given environment, and are only invoked if some sort of
change is necessary.

EnterEnv assumes that the array reflects the parent of the environment to be
entered. It scans that environment, pushing a new definition onto the stack for each
identifier in the environment. LeaveEnv reverses this operation, removing the top
definition from the stack for each identifier in the current environment and thus restoring
the array to reflect the parent of the current environment. SetEnv decides on a sequence
of leave and enter operations that will make the array reflect the desired environment. If
definitions for the desired environment are on the identifier stacks, but the desired
environment is not the current one, SetEnv simply leaves environments until the desired
environment is reached. Otherwise, SetEnv sets the environment to the parent of the
desired one and then enters the desired environment.

What is the time complexity of the implementation shown in Figure 7? Clearly
Defineldn and KeyInEnv are O (1) if the array reflects the Environment argument. In
order to account for the time required to maintain the array’s state, we need to examine
the global behavior of the name analyzer. The fundamental question that must be
answered is ‘“How often is a particular region considered during name analysis?’’

Figure 7 will support a name analyzer that shifts its attention arbitrarily among
regions. If each node in the tree is visited a fixed number of times, independent of the
size of the program, the tree traversal can only enter a particular region a fixed number of
times. If the name analyzer only shifts its attention from one region to another when the
tree traversal actually moves from one region to another, then EnterEnv and LeaveEnv
will only be executed a fixed number of times for each region. Both EnterEnv and

14

procedure EnterEnv (e : Environment);

(* Make the state of the array reflect e

On entry-

The state of the array reflects the parent of e

*)
var r: Scope; s : StkPtr;
begin r :=e T .relate;
with e T.parent T nested T do

begin

while r <>nil do

begin new (s); sTew=e;s TAkey =r T.key; s T.out =IdnTbl[r T.idn]; IdnTbl [r T.idnl:=s; r:=r T.nxt; end;

CurrEny =e;
end;

end;

procedure LeaveEnv (¢ : Environment),

(* Make the state of the array reflect the parent of e

On entry-
The state of the array reflects e
*)

var r: Scope; s : StkPtr,
begin r :=e T relate;
with ¢ T.nested T do
begin
while r <>nil do begin s :=IdnTbl [r T.idn1; IanTbl [r T .idn }:=s T.out; dispose (s); r =r T.nxt end;
CurrEnv =e T.parent;
end;
end;
procedure SetEnv (e : Environment),
(* Make the state of the array reflect e *)
begin
if e=nil then Report (DEADLY ,1004(*Invalid environment*),NoPosition ,1);
if e T.nested=nil then begin SetEnv (¢ T parent); EnterEnv (e) end
else with e T.nested T do repeat LeaveEnv (CurrEnv) until CurrEnv=e;
end;
function KeylnEnv (e : Environment ; idn : Identifier): DefTableKey;
begin
with e T.nested T do
begin
if e <>CurrEnv then SetEnv(e);
if IdnTbl [idn }=nil then KeylnEnv =NoKey else KeylnEnv :=IdnTbl [idn]T.key ;
end;
end;
function Defineldn (e : Environment ; idn : Identifier): DefTableKey;
var found: boolean; p : DefTableKey; r: Scope; s: StkPtr;
begin
with e T.nested T do
begin
if e <>CurrEnv then SetEnv (e);
if IdnTbl [idn J=nil then found =false else found =ldnTbl[idn]T e=e:
if found then Defineldn :=IdnTbl [idn 1T key
else
begin p :=NewKey
new (r), r T.idn =idn; r T.key =pr T.nxt :=e TArng ve T.rng =r;
new(s); s T.e:=e; s T.key:=p; s T.out :=ldnTbl [idn1; IdnTbl [idn }:=s ;
Defineldn =p;
end;
end;
end;

Figure 7
Environment Access Operations

15

LeaveEnv execute a constant number of basic operations for each element of the region’s
relate list, which has one entry for each defining occurrence in the region.

Consider a particular region, R. Suppose that R is entered and left T times. Each
time the region is entered, E basic operations are executed for each element of R.relate
(Figure 6a); each time it is left, L operations are executed for each element of R.relate .
Therefore the total number of basic operations executed during the entire compilation for
each element of R.relate would be Tx(E+L). We can therefore ‘‘charge’’ each defining
occurrence in R the time required to execute T x(E +L) basic operations. This shows that
we can ignore the costs of EnterEnv and LeaveEnv, because their only effect is to
increase the cost of Defineldn by a constant amount.

All of the operations of the environment module except KeylnScope and NewEnv
are O (1) in the worst case when implemented as shown in Figure 7. KeyInScope would
also be O(1) if the compiler entered the appropriate region before KeylnScope was
applied. Then all that would be needed would be to verify that the association at the top
of the stack was defined in that region, just as Defineldn does. Taking this approach,
however, would mean that applied occurrences of field identifiers in Pascal constructs
like R.B would require the name analyzer to shift its consideration from the current
region to the region of a record definition and then immediately shift it back again.
Although Figure 7 is quite capable of doing this, it violates our assumption that the
number of times the name analyzer shifts its attention to a given region is independent of
the program size. Thus it makes the cost of EnterEnv and LeaveEnv impossible to
ignore.

In order to salvage our earlier analysis, we must charge the cost of an EnterEnv
operation followed by a LeaveEnv operation to the invocation of KeylnScope that
processes R.B. But since that cost is proportional to the number of fields in R, and the
cost of KeylnScope implemented as a linear search is also proportional to the number of
fields in R, nothing has been gained. Since the search operation is simpler than
EnterEnv followed by LeaveEnv , KeylnScope should not use the array access mechan-
ism.

For most programs, field references like R.B are a small fraction of the total
number of identifier occurrences. Moreover, the number of fields in a record does not
usually grow with overall program size. We can conclude that the implementation of
Figure 7 gives essentially O (1) complexity for every operation of the environment
module except NewEnv. Since NewEnv is O (N) and is executed once, and the other
operations are O (1) and executed O (N) times, the actual growth of the name analysis
time with program size is O (V). This contrasts with the O (V%) growth for the imple-
mentation of Section 2.

S. Additional Environment Access Operations

The data structure of Figure 6 provides easy access to information beyond that
needed to simply map identifiers into keys. For example, to process the with statement
that accesses a record, a Pascal compiler needs access to a list of all of the fields defined
for records of that type. It must create a ‘‘pseudo-variable’’ corresponding to each field.
The address of the pseudo-variable is the sum of the address of the record accessed by

16

the with statement and the relative address of the field within that record, and the type of
the pseudo-variable is the type of the field. Since every record type is a region contain-
ing definitions of all of the fields, such a list must be a component of the standard
environment’s data structure.

When resolving overloading in Algol68 or Ada, the compiler needs to consider
hidden bindings for the overloaded identifiers. Again, the data structure for the standard
environment has these lists. By defining additional operations, we can make these lists
available at very little cost. It is important to note, however, that the additional opera-
tions do not form a part of the environment abstract data type and may not be easy to pro-
vide with other implementations.

In each case, strict value semantics are appropriate for the operations. One opera-
tion returns the desired list, given the Environment (or Environment Xldentifier) value on
which that list is based. Other operations accept a list of the proper type and yield the
information contained in its first element. Finally, an operation accepts a list of the
proper type and returns that list with the first element deleted. Figure 8 defines the neces-
sary operations with their signatures. (Scope and StkPtr are defined in Figure 6a.)

Implementation of the operations of Figure 8 is trivial, provided that we can
guarantee that the lists on which they operate will not be altered during their operation.
This is a reasonable restriction to impose upon the user, given the tasks for which the
operations are intended. The restriction could be checked by the module, but such check-
ing is probably not worthwhile.

6. A More Complex Example

The name analysis examples of Figure 5 illustrate the basic use of the standard
environment module. In this section we show an additional example that illustrates how
so-called ‘‘explicit scope control’’ is handled.® It turns out that some care must be taken

DefinitionsOf : Environment - Scope
1dnOf : Scope — Identifier
KeyOf : Scope — DefTableKey
NextDefinition: Scope — Scope
HiddenBy : Environment xIldentifier — StkPtr
HiddenKey : StkPtr — DefTableKey
NextHidden : StkPtr - StkPtr
Figure 8

Useful Auxiliary Operations

17

to preserve the O (N) time bound when processing languages with this form of visibility
rules.

Figure 9 shows a program fragment written in Modula2.? Each of the comments
could be replaced by a sequence of statements, and the variables indicated in the com-
ments would be visible in those statements. ‘Standard identifiers’’, like CARDINAL , are
visible everywhere.

The construct “MODULE X --- END X;’’ is called a module declaration. A
module declaration explicitly controls the visibility of identifiers. Identifiers declared
outside a module declaration are not visible inside it unless they are standard identifiers
or they have been named in an import list. Identifiers declared inside a module declara-
tion can be made visible outside it if they are included in an export list.

Modula2 also provides procedure declarations, in which the normal Pascal scope
rules apply. Thus the name analysis task of a Modula2 compiler builds and uses environ-
ments in much the same way as the name analysis task of a Pascal compiler. A module
declaration appearing in a region of a program acts as like a sequence of identifier
declarations and uses. The name of the module and the identifiers in the export list are
all declared by the module declaration, and the identifiers in the import list are used.
This effect of the module declaration involves no new concepts, and can be handled by
the techniques discussed earlier in this paper.

A module declaration also has the effect of creating a new scope that is a child of
the root of the environment module’s tree of scopes (see Figure 6b). Identifiers are
defined within a scope created by a module declaration in three ways:

VAR a.,b: CARDINAL
MODULE M ;
IMPORT a; EXPORT w,x;
VAR u,v ,w: CARDINAL ;
MODULE N ;
IMPORT u; EXPORT x.y;
VAR x.y,z: CARDINAL;
(* u,x,y,z are visible here *)
END N;
(*a,u,v,w,x,y are visible here *)
END M;
(* a,b,w,x are visible here *)

Figure 9
A Modula2 Program

18

1) They appear in an import list of the module declaration. Identifier 1 is introduced
into module N in this way (Figure 9).

2) They appear in the export list of a module declared immediately within the module
declaration. Identifier y is introduced into module M in this way (Figure 9). Note
that identifier y is not introduced into the main program because the module N is
not declared immediately within the main program.

3) They are defined by a declaration immediately within the module declaration.
Identifier v is introduced into module M in this way (Figure 9).

How can we implement these rules using our standard environment module?

For simplicity, we shall assume that the compiler builds a tree that represents the
source program. The shape of the tree is determined by the abstract syntax1 of Modula2.
This means, in particular, that each module declaration is represented by a subtree. In
the tree representing Figure 9, module M is represented by a subtree of the program tree
and module N is represented by a subtree of the module M tree. The compiler traverses
the source program tree, visiting nodes and performing computations. Each visit to a
specific kind of node is handled by a single visit procedure. This visit procedure may
perform computations and visit children of its node by invoking the appropriate visit pro-
cedures. Ultimately, the visit terminates when the visit procedure returns.

To implement the Modula2 scope rules, we associate two visit procedures with
module declarations and two with procedure declarations. Figure 10 gives the interface
specifications for the procedures that carry out the first visit, and sketches their algo-
rithms. The effect of these procedures is to traverse the tree depth-first, processing the
identifier declarations that occur at the top level in every module. According to the inter-
face specification, this makes the export list of each module accessible via that module’s
node as a list of (identifier, key) pairs.

It is important to note the difference between visiting a construct and entering the
environment associated with a construct. The routines of Figure 10 visit every procedure
and module in the program. Only ModuleVisit 1 executes any operations of the environ-
ment abstract data type. Addldn verifies that the current environment is the one specified
by its Environment argument, as shown in Figure 7 for Defineldn. If the current
environment is not the desired one, then Addldn invokes SetEnv to enter it. Thus the
visit procedures of Figure 10 create an environment for every module and enter that
environment to define the identifiers declared within it. Note that environment values are
not created for procedures during these visits.

The procedures that carry out the second visit of each module and procedure are
shown in Figure 11. A module visit begins by defining all of the imported identifiers,
which are stored (with the appropriate keys) in a list attached to the module’s node. This
action causes the module’s environment to be entered if it is not already current. Then
the import lists of all immediately-nested modules are constructed. Since each identifier
on an import list of an immediately-nested module is defined in the environment of the
current module, no change of environment is required. Next, all of the identifier uses in
the module’s environment are processed. No change of environment is implied by this
processing either.

19

procedure ModuleVisit 1(node : TreePtr);
(* First visit to a source program tree node representing a local module
On exit-
node T.ExportList =A list of (identifier,key) pairs defining the exported bindings
)

begin
for n:=(* each immediately-nested module declaration *) do ModuleVisit 1(n);
for n:=(* each immediately-nested module procedure *) do ProcVisit 1(n);,
node T.Env :=NewScope (StandardEnvironment);
for n:=(* each immediately-nested module declaration *) do

for (i k) in n T.ExportList do

if not Addldn (node T.Env ,i k) then (* Report an error *);

(* Process all identifier declarations *)
node T.ExportList :=nil;
for i:=(* each identifier on an export list *) do

node T.ExportList :=(i ,KeyInEnv (node T.Env i)) , node T.ExportList;
end;

procedure ProcVisit 1(node : TreePtr);
(* First visit to a source program tree node representing a procedure
On exit-
ModuleVisit 1 has been applied to all local modules
*)
begin
for n:=(* each immediately-nested module declaration *) do ModuleVisit 1(n);
for n:=(* each immediately-nested module procedure *) do ProcVisit 1(n);
end;

Figure 10
Beginning the Name Analysis for Modula2

20

procedure ModuleVisit 2(node : TreePtr);
(* Second visit to a source program tree node representing a local module
On entry-
node | ImportList=A list of (identifier,key) pairs defining the imported bindings
)
begin
for (i k) in node T ImportList do
if not Addldn (node T.Env i k) then (* Report an error *);
for n:=(* each immediately-nested module declaration *) do
begin n T.ImportList :=nil;
for i :=(* each identifier on an export list *) do
n T ImportList :=(i ,KeyInEnv (node T.Env ,i)) , n T ImportList;
end;
(* Process all identifier uses *)
for n:=(* each immediately-nested module procedure *) do ProcVisit2(n);
for n:=(* each immediately-nested module declaration *) do ModuleVisit2(n),
end;

procedure ProcVisit 2(node : TreePtr);
(* First visit to a source program tree node representing a procedure
On exit-
ModuleVisit 2 has been applied to all local modules
)

begin
node T.Env :=NewScope ((*enclosing environment*));
for n:=(* each immediately-nested module declaration *) do

for (i k) in nT.ExportList do

if not Addldn (node T.Env ,i ,k) then (* Report an error *);

(* Process all identifier declarations *)
(* Process all identifier uses *)
for n:=(* each immediately-nested module declaration *) do

begin n T ImportList :=nil;

for i :=(* each identifier on an export list *) do

nT.ImportList :=(i KeyInEnv (node T.Env ,i)) , n TImportList;

end;
for n:=(* each immediately-nested module procedure *) do ProcVisit2(n);
for n:=(* each immediately-nested module declaration *) do ModuleVisit2(n),
end;

Figure 11
Continuing the Modula2 Name Analysis

21

When an immediately-nested procedure is visited, ProcVisit2 uses NewScope to
create the environment for that procedure. It then defines the identifiers exported by
modules immediately contained within that procedure in the procedure’s environment.
This causes the procedure’s environment to be entered. After processing all of the
identifier declarations of the procedure, ProcVisit2 processes the identifier uses and con-
structs import lists for the immediately-nested modules. None of these operations alter
the current environment.

After all of the identifiers that are not included in nested procedures or modules
have been processed, there is no need to remain within or return to the environment of
the current procedure. Thus if that environment is left, it will never be re-entered.
ProcVisit2 now applies itself to each immediately-nested procedure. It creates environ-
ments for those procedures, populates them with definitions, and looks up identifier uses
within them. Each environment is created and then entered exactly once. Only after all
identifier occurrences in a given scope have been dealt with does ProcVisit 2 move on to
another scope. Finally, ProcVisit2 invokes ModuleVisit2 for each immediately-nested
module.

It is easy to see that Figures 10 and 11 enter each module’s environment twice
(once in ModuleVisit1 and once in ModuleVisit2) and each procedure’s environment
once (in ProcVisit2). Thus the complexity analysis of Section 4 holds, and Modula2
name analysis is O (V).

The constraint of a fixed number of environment entries and exits can be met with
visit sequences other than those implied by Figures 10 and 11. For example, in Modu-
leVisit 1 the for statements on the first two lines could be combined into a single traversal
that visited all immediately-nested modules and procedures in textual order. When mak-
ing such simplifications, however, it is important to verify that the constraint is, in fact,
met: If we were to combine the for statements on the last two lines of ProcVisit?2 into a
single traversal that visited all immediately-nested modules and procedures in textual
order then the constraint would be violated!

References
1. D. A. Schmidt, Denotational Semantics, Allyn and Bacon, Newton, MA, 1986.

2. P. Naur, ed., ‘Revised Report on the Algorithmic Language ALGOL 60,
Communications of the ACM, 6, 1-17 (January 1963).

3. ‘Pascal Computer Programming Language’, ANSI/IEEE 770 X3.97-1983,
American National Standards Institute, New York, NY, January 1983.

4. J. V. Guttag and J. J. Horning, ‘The Algebraic Specification of Abstract Data
Types’, Acta Informatica, 10, 27-52 (1978).

5. A. Wijngaarden, B. J. Mailloux, C. H. Lindsey, L. G. L. T. Meertens, C. H. A.
Koster, M. Sintzoff, J. E. L. Peck and R. G. Fisker, ‘Revised Report on the
Algorithmic Language ALGOL 68°, Acta Informatica, 5, 1-236 (1975).

6. ‘Ada Programming Language’, ANSI/MIL-STD-1815A, American National
Standards Institute, New York, NY, February 1983.

22

A. H. J. Sale, ‘A Note on Scope, One-Pass Compilers, and Pascal’, Pascal News,
15, 62-63 (1979).

S. L. Graham, W. N. Joy and O. Roubine, ‘Hashed Symbol Tables for Languages
with Explicit Scope Control’, SIGPLAN Notices, 14, 50-57 (August 1979).

N. Wirth, Programming in Modula-2, Springer Verlag, Heidelberg, 1985. Third
Edition.

