
Guiding building owners towards energy 
conservation measures 

 

 

 

 

Sean Kuusinen (EBIO) 

April 9
,
 2014 

 

 

 

Honors Thesis Committee Members 

Dr. Carol Wessman (Advisor, EBIO) 

Dr. Gregor Henze (CEAE) 

Dr. Barbara Demmig-Adams (EBIO) 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

for my parents 

& 

grandpa jack  



 

 

 

Acknowledgments 

A huge thank you is owed to Ecosystems for providing full and unrestricted access to 

their data—without it this project would have certainly been infeasible. Thank you to Henry 

Mueller who provided the original idea and the subsequent guidance through the world of 

building systems and retrofits. My thesis advisor, Carol Wessman, has been instrumental in 

keeping me focused and on track as well as providing feedback throughout the writing process—

thank you Carol. I am greatly appreciative to my committee members Gregor Henze and Barbara 

Demmig-Adams for contributing their time, resources, and feedback. Finally, a big thank you 

goes to the Undergraduate Research Opportunity Program for providing funding.  

  



 

 

 

Abstract 

Energy conservation measures have been identified as the most cost effective way to 

reduce carbon emissions. However, a lack of available information regarding energy 

conservation prevents building owners from investing in energy efficiency. This research 

provides the groundwork for supplying building owners with a simple model to guide retrofit 

decisions in their buildings. Using readily available characteristics of buildings that have 

received a lighting retrofit, the achieved reduction in energy consumption was analyzed using a 

classification and regression tree. This statistical method determines which building attributes are 

most related to reduction in energy use. The results of this process show that simple building 

attributes, including square footage, business type, and vintage, are only responsible for a small 

portion of the variation in energy-use reduction following energy conservation measures. 

However, the classification and regression tree and the random forest methods provide insight 

into how building attributes can be used to explain energy reduction following a lighting retrofit. 

With more attributes, these simple visual tools may show how energy efficiency analysts can 

communicate potential savings to building owners, reducing costs to owners and carbon 

emissions in the atmosphere.  

 

 

 

  



 

 

 

Table of Contents 

Acknowledgments........................................................................................................................... 4 

Abstract ........................................................................................................................................... 5 

Introduction ..................................................................................................................................... 1 

Background ..................................................................................................................................... 2 

Market barriers to energy efficiency ....................................................................................... 3 

Peripheral benefits of energy efficiency investments ............................................................. 4 

Political support for Energy Conservation Measures ............................................................. 5 

Current methods for evaluating energy efficiency.................................................................. 6 

Methods........................................................................................................................................... 7 

Initial Model – Whole building energy consumption by square footage................................ 7 

Second Model – Reduction in energy use following a retrofit ............................................... 8 

Data ......................................................................................................................................... 8 

Classification and Regression Tree ....................................................................................... 10 

Back Pruning and Cross Validation ...................................................................................... 12 

Random Forest ...................................................................................................................... 13 

Results ........................................................................................................................................... 14 

Initial Model – Whole building energy consumption by square footage.............................. 14 

Second Model – Classification and Regression Tree ........................................................... 16 

Discussion ..................................................................................................................................... 20 

More energy saved in smaller buildings ............................................................................... 22 

Systems Approach to Energy Conservation Measures ......................................................... 23 

Vintage and building type ..................................................................................................... 24 

Climate change and building temperature ............................................................................ 24 

Limitations and Further Research ......................................................................................... 25 

Conclusions ................................................................................................................................... 26 

Appendix A: R Code ..................................................................................................................... 27 

References ..................................................................................................................................... 29 

 



 

1 

 

Introduction 

As global greenhouse gas emissions increase and climate change accelerates, humanity 

has approached a crossroads in terms of how it chooses to use energy (Anderson 2013). The 4.86 

million commercial buildings in the United States, totaling 7.16 billion square feet of floor space, 

offer a tremendous opportunity to reduce carbon emissions (EIA 2003). However, practical and 

financial barriers often prevent building owners from investing in energy conservation measures 

(Prindle and Fontane 2009). 

Current methods for evaluating energy conservation measures (ECMs) in buildings are 

not easily scalable, meaning not efficient or practical when applied to a large data set or large 

numbers of buildings (Yeonsook 2011). A new model for ECMs has been introduced, but the 

extensive modeling and statistical knowledge required presents another type of barrier that is 

likely to discourage building owners from pursuing energy conservation (Yeonsook 2011). 

Additionally, complex energy efficiency modeling tools have been shown to be overall less 

accurate than simple models (Earth Advantage Institute 2009). A simple tool that relies on 

easily-attained building characteristics may allow building owners to understand the potential 

savings that result from ECMs. This would remove some of the major barriers to energy 

efficiency, leading to increased investment and reduced carbon emissions. This research seeks to 

understand if simple building characteristics can be used to evaluate the potential savings 

resulting from ECMs, specifically: 

Question: Can simple building attributes be used to classify the energy use reduction as 

the result of energy conservation measures, and can this be used to create a 

simple visual model to aid decision makers? 
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A classification and regression tree (CART) approach is used to explain the variation in 

percent reduction in energy use by splitting the data into homogeneous groups and using 

combinations of explanatory variables, in this case building attributes. This approach identifies 

those building characteristics that can best explain energy savings. This model can then be used 

to evaluate potential savings in buildings based solely on their attributes.  

Background 

Due to moral, political, environmental, and economic implications, anthropogenic, or 

human-caused, climate change is likely to be the foremost issue of the 21
st
 Century. Earth will 

likely become uninhabitable for humans and other large life forms if the total carbon emitted into 

the atmosphere reaches a critical point, somewhere within the range of 5,000 to 10,000 gigatons 

(Hansen et al. 2013). There is at least three times that much carbon available to humans in the 

form of unburned fossil fuels (Hansen et al. 2013). In order to avoid a catastrophic increase in 

temperature, the rate at which carbon is released into the atmosphere will need to be drastically 

slowed (Beinhocker et al. 2008). 

Commercial buildings represent one of the largest opportunities to reduce carbon 

emissions. In the U.S. alone, over two billion tons of CO2 are emitted from commercial buildings 

annually, which accounts for nearly 20% of the country’s emissions (2010 Buildings Energy 

Data Book).  An analysis performed on 643 commercial buildings showed a median energy 

savings of 16% after implementing energy conservation measures (ECMs) (Mills 2004). Energy 

consumption in buildings is expected to rise 1.7% per year until 2025, while total floor area will 

increase 1-2% annually (Ryan 2004). Accounting for external costs such as those resulting from 

increased ocean acidification and decreased biodiversity, energy efficiency investments yield 
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more energy per dollar than investments in fossil fuels (Lovins 1997).  However, policies and 

investments that reduce carbon emissions are unlikely if lawmakers, business owners, and voters 

continue to view such actions as barriers to economic growth (Prindle and Fontane 2009).  

 

Market barriers to energy efficiency 

In order to grow the economy while reducing emissions, the U.S.’s gross domestic 

product (GDP) per ton of CO2 emissions, or carbon intensity, needs to increase by ten times in 

the next forty years (Beinhocker et al. 2008; U.S. Energy-Related Carbon Dioxide Emissions 

2012). Attaining a tenfold increase in efficiency has been recognized as viable by companies as 

big as General Electric (Hawken et al. 1999). Many of the technologies that will enable a radical 

increase in efficiency already exist—light emitting diodes (LEDs) use about one-fifth the energy 

of conventional incandescent lightbulbs (Hawken et al. 1999). 

However, the American Council for an Energy Efficient Economy determined that the 

lack of information regarding efficiency opportunities is the largest reason that these projects are 

overlooked by business owners (Prindle and Fontane 2009). Business owners often forego 

investing in energy conservation measures (ECMs) for three reasons. First, most businesses have 

pressing needs requiring capital investment (Prindle and Fontane 2009). Second, given the 

unknown return of an energy upgrade, building owners often view ECMs as a risky investment 

(Yeonsook 2011). For example, a business owner may opt for the guaranteed return of adding 

another staff member to the sales team over a retrofit with an unknown return on investment. 

Third, for a business owner looking to reduce costs, the rate of return for most energy 

conservation projects is too small to justify the investment (Schendler 2012). 
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Smaller building owners face additional barriers. Over 80% of commercial buildings in 

the United States are less than 50,000 square feet (Prindle and Fontane 2009). Due to financial 

constraints businesses of this size are unlikely to hire an engineer or consultant to evaluate 

energy savings because the cost of hiring an engineer is often greater than the savings that result 

from the ECMs (Prindle and Fontane 2009).  It is estimated that by investing in ECMs, building 

owners in the United States could save a total of $30 billion by 2030 and keep billions of tons of 

CO2 out of the atmosphere (Mills 2009). This is according to an analysis performed on 643 

commercial buildings which showed an annual median 16% energy savings per building (Mills 

2004, 2009). 

Peripheral benefits of energy efficiency investments 

In addition to cost savings, energy conservation helps companies to connect with 

consumers and employees who increasingly put a premium on environmental and social 

responsibility (Engagement 2.0 2010). At the turn of the 21
st
 Century, only a dozen companies 

had reported their corporate social responsibility (CSR) efforts using the international standard 

for reporting provided by the Global Reporting Initiative (GRI). In 2012, a little over a decade 

later, over 3,500 companies reported their CSR efforts using the GRI standards (GRI Report 

2013).  Cumulatively, nearly 6,000 companies have submitted reports at some point in the last 

twelve years (GRI Report 2013).  

There are certainly more companies that emphasize CSR. Some companies such as JBS, 

the world’s largest meat processor, report to the Carbon Disclosure Project, a reporting format 

that emphasizes climate change (JBS CDP Report 2013). Other companies such as Dole, the 

world’s largest banana producer, have chosen to publish independent yet comprehensive CSR 
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reports (Luske 2012). While it is impossible to know exactly how many companies have CSR 

campaigns, a study published in 2010 suggests that 81% of companies have at least some CSR 

information on their websites (CSR Trends 2012). Often, these campaigns address carbon 

emissions reduction either directly by setting a reduction target or indirectly by pledging to 

reduce emissions when possible (CSR Trends 2012). These numbers illustrate the fact that 

corporate social responsibility has become essential to allow businesses big and small to remain 

competitive in a world that increasingly demands responsibility.   

Political support for Energy Conservation Measures 

The business case continues to drive investments in energy conservation. In addition, 

during the last decade politicians and governments have increasingly shown support for energy 

conservation measures (ECMs). In 2007, U.S. President George W. Bush signed the Energy 

Independence and Security Act. Among the many provisions in the act was the requirement that 

all new Federal Buildings are to be fossil-fuel free by 2030 (U.S. House Bill H.R. 6  2007). 

Further legislation required the phasing-out of relatively inefficient light fixtures. In 2011, U.S. 

President Barack Obama initiated the “Better Buildings Initiative” to reduce energy consumption 

by 20% in all commercial buildings by 2020 (White House papers 2011). Cities like Chicago 

have targeted as much as 50% reduction in commercial building energy use (City of Chicago 

Climate Action 2011). Internationally, there is support for ECMs as well. The Intergovernmental 

Panel on Climate Change showed that energy efficiency is the most cost effective way to reduce 

carbon emissions (IPCC 2013). The political support for energy conservation measures 

reinforces the environmental, economic, and consumer pressures to increase energy efficiency.  
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Current methods for evaluating energy efficiency 

Currently, many energy efficiency analysts employ a “best-guess” method in smaller 

buildings to determine opportunities for energy efficiency. Energy efficiency experts routinely 

assume that there are opportunities for efficiency improvements as technology has gotten better 

and buildings are often outdated. While this is quite effective for lighting, it does not reveal less 

conspicuous opportunities in HVAC systems, windows and insulation that are impossible to 

evaluate at-a-glance. 

In bigger buildings, energy use is benchmarked or recorded at a regular, baseline level 

and then compared to similar buildings across a portfolio (Yeonsook 2011). Candidate ECMs are 

then evaluated using transient simulation models to compare the relative benefits of a set of 

ECMs (Yeonsook 2011). This strategy is not scalable, or not efficient or practical when applied 

to a large data set or large numbers of buildings, and does not include a risk analysis (Booth 

2012). Additionally, there is evidence that some complex models have a lower accuracy than 

simple models (Earth Advantage Institute 2009).  

Yoensook 2011 introduced a new methodology for ECM decision making that supports 

large-scale retrofit decisions. This model defines energy flows within a building with a small set 

of parameters, and then calibrates and quantifies uncertain parameters in the model, a likelihood 

function then measures how closely parameter values match observations, which can support a 

risk-based decision making process (Yeonsook 2011). However, the extensive modeling and 

statistical knowledge required for this approach presents another type of barrier that is likely to 

discourage building owners from pursuing ECMs. A new methodology would ideally allow 

building owners to understand the amount potential energy reduction in their building based only 

on a few simple building attributes.  
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Methods 

Two models were developed for the present analysis. The first model was created using 

the means of whole-building energy consumption for buildings in the Mountain West range, 

which includes Arizona, Colorado, Idaho, Montana, Wyoming, New Mexico and Nevada (EIA 

2003). 

The second model used empirical energy consumption data from buildings that received 

energy conservation measures, specifically lighting retrofits. The latter model used several 

building attributes to find how the building attributes influence the percent reduction in energy 

use following a retrofit. 

Initial Model – Whole building energy consumption by square footage 

The initial model correlated expected energy use intensity, expressed as kbtus/sqft/year, 

similar to the measure of automobile energy efficiency, to the size of the building for different 

building types. This showed the expected energy consumption for each building type based on its 

size. This model was based on median energy use intensity for buildings throughout the Rocky 

Mountains based on data from websites such as eSource, the Department of Energy, and the 

Environmental Protection Agency.  Energy use intensity was used to determine kilowatt hours 

consumed per month per square foot. Then, using data from multiple studies that found 

percentage of energy used for cooling, lighting, and miscellaneous loads in each building type, 

baseline energy use was calculated (U.S. Climate Action Report 2010 & Hojjaht and Michaels 

2004). Assuming that most buildings in the Rocky Mountain zone use electricity for cooling and 

gas for heating, the amount of electricity used in each season was extrapolated into these 

categories: hot (Jun-Aug), cool (Dec-Feb), and swing (Mar-May & Sep-Nov). These data were 
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then visualized to allow building owners to understand the potential for energy use reduction 

based on how their building’s energy performance compares to that of similar buildings. 

Second Model – Reduction in energy use following a retrofit  

The second model used a different dataset from the previous model. Empirical data were 

collected from sixteen buildings around the Front Range area in Colorado that received lighting 

retrofits. A Classification And Regression Tree (CART) was used to analyze whether the 

variation in the reduction of energy use after a lighting retrofit can be explained with the 

attributes of the building. In other words, are the simple attributes of a building correlated to the 

amount of energy saved following a lighting retrofit? If so, building owners could use this model 

to understand the energy efficiency reduction potential in their buildings. 

In order to determine which building characteristics influence the reduction in energy use 

following a retrofit, the CART method was used. The resulting model categorizes buildings 

based on how their attributes affect energy reduction following a retrofit. After the tree is built 

using the data, the tree is simplified which produces a streamlined model without sacrificing 

accuracy (Reddy 2010). 

Data 

The buildings used in the analysis conformed to the following parameters: 

1. Located in The Front Range of Colorado (Denver, Boulder and associated suburbs) 

2. Commercial building 

3. Received a lighting retrofit within a 2 year timeframe 

4. Energy consumption data from utility provider available before and after the retrofit  

 

Climate affects electricity load because it is used to cool buildings. Fortunately, climate is 

generally consistent throughout the Front Range, with little variation in annual average 

temperature and precipitation (Figure 1). 
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Figure 1: Average monthly temperatures for Boulder (left) and Denver (right). Source: 

http://www.weather.com/weather/wxclimatology/monthly/graph/USCO0105 

 

The lighting retrofits performed in the various buildings in the sample varied. In most cases, 

compact fluorescent lighting (CFL) was updated with more efficient technology. In some cases, 

light emitting diodes (LEDs) replaced either incandescent lighting or CFLs. 

Monthly whole-building energy consumption (WBEC) date for each building were obtained 

directly from the utility provider, usually Xcel Energy or Platte River Power Authority, for the 

two years preceding the retrofit and the year following.  

Additionally, the following data were acquired for each building: 

1. Business type occupying the building (i.e. office, retail, worship) 

2. Square footage  

3. Vintage, or year built 

 

Generally, these data are available publicly on the county assessor’s website. When the 

building square footage was ambiguous, which was the case for five of the buildings, it was 

confirmed either using documentation from an analyst who had visited the building or by 

measuring the size of the building using satellite images (Google Earth Pro).  Percent decrease in 
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energy usage following lighting retrofit was calculated for each building using whole building 

energy consumption data.  

All buildings included here were used for commercial purposes. The buildings were 

classified based on use (office, retail, and house of worship) since the type of equipment and 

amount of energy used in a building often depends on the type of business occupying the space. 

Additionally, the hours of operation varied based on the business type. Retail businesses often 

stay open later during the peak season in December while offices are closed. Classifying 

buildings into business types served to control for this variation.  

Classification and Regression Tree 

The classification and regression tree (CART) method was used to determine how building 

attributes affect percent reduction in energy use. In the CART process buildings were split, or 

classified, into distinct groups with other like buildings based on the attributes that best split the 

data set into homogenous groups. Then, each group was assigned a percent reduction that best 

fits it. The model is then simplified and the output was a decision, similar to a flow chart that 

shows percent reduction expected based on the attributes of a building. Finally, the CART was 

tested on a new dataset to see how accurately it classified data. This resulted in a rate of error, or 

a misclassification rate.  

In the present analysis, two CART models were created. The first CART was built with all 

sixteen data points, which means this model has no misclassification rate. The second CART was 

built with eleven data points and then cross-validated with the remaining five data points in order 

to find a misclassification rate.  
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Figure 2: A conceptual model of a classification and regression tree. The process finds the building attribute that best 

splits buildings into distinct groups. Then, each group is assigned a response variable that best describes the group.  

A CART explains the variation of a response variable, in this case the percent reduction in 

energy use, by splitting the data into homogeneous groups using combinations of explanatory 

variables, here the building’s attributes (Breiman et al. 1984). This is a simple way of visualizing 

a multiple linear regression, as CART creates a tree that is a visual representation of the 

classification and regression procedure (Ostendorp 2011). This occurs in two steps. First, the tree 

must be built through a process that classifies the data based on its values and the sum of squares 

between classifications (Fridely 2010). The second step, pruning, serves to reduce the 

complexity of the tree, leaving a model that is the most effective while still being simple (Reddy 

2010). The CART algorithm executes a comprehensive search to build a parsimonious tree, or 

one with the fewest number of branches possible (Reddy 2011). CART models are also non-

parametric, meaning they do not rely on assumptions about the data’s distribution (Reddy 2011). 

The first step of the process uses part of the data as a training dataset to build the tree by 

testing the explanatory variables on the response variable (Reddy 2011). Each node constitutes a 

binary decision, such as square footage above and below a certain size, and the tree cascades as 
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such to the end nodes (Ostendorp et al. 2011). The end nodes represent the tree’s response to a 

set of inputs (Ostendorp et al. 2011). At each node, the data are grouped based on how an 

explanatory variable, in this case the building attributes, best splits the data into homogenous 

groups (Ostendorp 2011). An ideal split separates the dataset into classes based on homogeneity 

with regard to one variable, and this process continues until all end nodes contain points of 

uniform class (Ostendorp 2011).  

Once the tree is built, each end group on the tree has a typical response value based on how 

the explanatory variables split (Reddy 2010). This provides an idea of which attributes most 

affect the amount of energy reduction following a retrofit. However, often this means that each 

node only contains one data point, a circumstance called “over-fitting” (Ostendorp 2011). In this 

case, the tree must be “back pruned,” or simplified to reduce the number of splits leaving only 

the ones that most affect the response variable (Ostendorp 2011). Finally, the CART must be 

tested, or cross-validated, with a dataset not included in the original model to determine the 

misclassification rate, or how often the model incorrectly classifies buildings. In this research, 

two CARTs were created. The first uses all sixteen data points to maximize the sample space, 

leaving no cross validation data set. In the second CART, eleven data points were used to build 

the tree, and then the remaining five were used for cross validation. 

Back Pruning and Cross Validation 

 The second step of the CART process reduces the number of splits and leaves only the 

most influential explanatory variables (Ostendorp 2011). Generally, the tree is back-pruned to 

the first node that is within one standard of error of the minimum Rα value, which balances the 

misclassification error rate with a cost penalty for complexity (Breiman et al. 1984). This finds 
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the most parsimonious, or simplest tree, for a minimum Rα value (Ostendorp 2011). In other 

words, the remaining tree balances the best configuration with a minimized misclassification 

rate, and also gives realistic misclassification rates of the final tree (Reddy 2011). Often, back 

pruning can reduce the number of splits by up to 80% (Ostendorp 2011).  Since so few buildings 

were included in the model, back pruning was not necessary, and when applied to the CART 

resulted in only a single node. 

 Cross-validation refers to the process of finding how accurately the model classifies new 

data points. By using a subset of data not included while building the tree, a misclassification 

rate, Rφ, can be found. This serves to find how well the model can classify completely new data 

points. Cross-validation was performed on the second CART. The entire CART process is 

detailed in Appendix A.  

Random Forest  

The random forest partitioning approach uses a large set of classification trees to find 

which explanatory variables most affect the response variable (Shih 2011). Random forests 

randomly test many different sub samples of predictors (i.e. building attributes) at each split on 

the tree (Strobl et al. 2009). Because of this, random forests can more accurately determine how 

a predictor affects the response (Strobl et al. 2009). In addition, this approach ranks the 

explanatory variables in order of how strongly they affect the response (Shih 2011). The results 

of a random forest have been show to more accurately classify data than a single classification 

tree and is particularly useful for small datasets (Strobl et al. 2008).  

In order to find the effect of the explanatory variables on the response, the random forest 

algorithm randomly shuffles the values of the response and explanatory variables, thereby 
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breaking any correlations inherent in the data set (Shih 2011). The difference in model accuracy 

before and after randomization is and averaged over all trees, telling us how important the 

predictor is for the outcome (Strobl et al. 2009). It is calculated by permuting, or changing, the 

combination and magnitude of each explanatory variable and applying it to each split on each 

tree (Shih 2011). Then, the difference between residual sum of squares before and after each split 

is calculated, which is then summed over all splits of all trees for that variable and normalized by 

the standard deviation (Shih 2011). This final number is node impurity, or the measure of a 

variable’s influence on the response variable (Shih 2011).  

In this research, the random forest method was executed once with 500 CARTs created in 

the single run. From these CARTs node impurity, or how much each explanatory variable affects 

the response, was calculated.  

Results 

Initial Model – Whole building energy consumption by square footage 

The initial model was created using data from public sources. Table 1 shows all the 

publicly available Energy Use Intensity (EUI) data that were available online. This model 

demonstrates the potential for energy conservation measures (ECMs) in commercial buildings 

(Figure 3).  
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Table 1: Energy Use Intensity (kbtu/sq.ft/year) throughout the Rocky Mountains for different building types, Q indicates 

that data was not available (EIA, eSource, EPA). 

 
Total West 2003 

83 

Education 78 

Food Sales Q 

Food Service 244 

Health Care 180 

Lodging 104 

Mercantile and Service 
(Retail) 

85 

Office 72 

Public Assembly 91 

Public Order and Safety Q 

Religious Worship 28 

Warehouse and Storage 39 

Other Q 

Vacant Q 
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Figure 3: The initial model based on data collected from online sources (DOE, EPA, eSource). The graphs project the 

expected mean energy use (in kWh) per square foot for (A) offices, (B) parking garages, (C) retail, and (D) warehouses in 

the Rocky Mountains. Each color represents a different season—blue: cool (Dec-Feb), green: swing (Mar-May & Sept-

Nov), and red: hot (Jun-Aug). This allows a building in the Rocky Mountain region to be compared to others, showing the 

amount of potential savings that may result from ECMs.  

Second Model – Classification and Regression Tree 

The second model, based on empirical data, should present building owners with the 

opportunities for energy savings from a different perspective. The model uses both qualitative 

and quantitative building attributes and shows their correlation with the percent reduction in 

energy use following a lighting retrofit. There was a high level of variation in the percent 

reduction of whole-building energy use. Further analyses, such as the coefficient of 

determination (R
2
) were done to begin to pinpoint which building parameters may explain the 
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variation. The attributes of the sixteen buildings included in the model are summarized in Table 

2.   

Table 2: Summary statistics of the 16 buildings included in the model. Square footage includes any basement or garage 

space in the building. Vintage refers to the year in which construction was completed. Percent reduction in whole building 

energy consumption (WBEC) is the difference in the average whole building electricity energy consumption before and 

after the lighting retrofit for the same months of the year (i.e. March through November both before and after the 

retrofit). The p-value is presented for the percent reduction in WBEC—all differences were significant except in two 

cases, which are in bold. The bottom of the table provides a complete summary of each variable including minimum, 

maximum, range, mean, median, and standard deviation.  

Use type Sq footage Vintage % Reduction  

of WBEC 

p-value of % 

reduction of 

WBEC 

Office 2777 1910 37.95 .014 

Office 6708 1972 18.05 .008 

Office 36942 1981 29 .0001 

Office 1727 1977 40.8 .0002 

Office 7063 1961 17.3 .012 

Office 6519 1977 23.3 .014 

Retail 1275 1948 17.6 .0005 

Retail 2165 1976 15.5 .0004 

Retail 502 1981 47.9 3.68e-6 

Retail 10000 1964 14.7 .008 

Retail 938 1971 18.5 .064 

Worship 10192 1957 -3 .40 

Worship 14079 1963 12.2 .0002 

Worship 12816 1947 10.25 .017 

Retail 13121 1986 7.9 .011 

Office 2320 1951 25 .021 

 –     

Mean 8072 1964 20.81  
Median 6614 1968 17.83  

Std Dev 9025 19 13.01  
Min 502 1910 -3.00  
Max 36942 1986 47.90  

Range 36440 76 50.90  

 

 The initial tree was built using all sixteen buildings to reduce the effect of outliers on the 

tree, or in other words using the maximum sample space possible (Figure 4). This tree identifies 

square footage as the most influential variable, with three different classes of size. Cross-

validation was not performed on the first tree, as the entire dataset was used to create it, and 
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hence a misclassification rate cannot be calculated. In other words, there is no confidence rate for 

this tree. 

 In the second tree, two-thirds of the data were used to build the tree and the remaining 

third was use to determine the misclassification rate. The latter tree has a low misclassification 

rate (Rφ = .05), meaning only 5% of the validation dataset was misclassified (Figure 5).  The 

latter tree supports the first tree since both have square footage as the only influential variable 

and show percent reduction. Neither of the trees responded to the back pruning algorithm, likely 

because the dataset was too small to create a circumstance of over fitting, or having one data 

point at each end node.  

 The random forest algorithm shows that the explanatory variables, including square 

footage, vintage, and building type, explain 14.1% of the variation in the percent reduction in 

energy use. The random forest algorithm shows that square footage is the most influential 

variable for on the latter 14.1% of variance in percent reduction, followed by vintage and then 

building use type (Figure 6).  
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Figure 4: Classification and regression tree using all available data points. Back pruning was not viable as it removed all 

nodes other than the root. The misclassification (Rφ) rate was not discoverable because the entire data set was used to 

build the tree, thus cross validation was not possible.  
 

 

Figure 5: A classification tree built using eleven data points, then cross-validated with the remaining five points. 

The misclassification rate (Rφ) is 0 on the right most and middle end nodes, and Rφ = .05 on the left end node. 

This tree has similar classifications and response variables to the first tree that used the entire sample space. 
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Figure 6: Use of the Random Forest algorithm to reveal building attributes that most affect the response variable. In this 

case, square footage has the highest influence, followed by vintage then building type. Node impurity measures how much 

each explanatory variable affects the response variable by finding how the predictive power of the model changes as the 

variable changes. It is calculated by permuting, or changing, the combination and magnitude of each explanatory variable 

and applying it to each split on each tree. Then, the difference between residual sum of squares before and after each split 

is calculated. This is summed over all splits for that variable over all trees to get node impurity. 

Discussion 

The initial model presented here aims to help building owners to see how their building 

compares to others, and therefore the amount of energy and money that could be saved as the 

result of ECMs. The present study shows that the simple building attributes, including square 

footage, vintage, and business type, only explained 14.1% of the variation in percent reduction in 

energy-use following a retrofit. Square footage is the building attribute most responsible for 

variation in percent reduction energy use that can be explained by the variables available here. 
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The CART and random forest models serve to showcase these simple models which can be used 

to help building owners understand the potential energy savings in their buildings. With more 

building attributes than presented here, these methods may be useful to convey potential savings 

following a retrofit. 

The classification and regression tree model, which has a relatively low misclassification 

rate (Rφ), shows that out of the available variables, square footage is the building attribute that 

can be used to most confidently explain percent reduction in energy use following a retrofit. This 

is confirmed by the random forest procedure, in which square footage was found as the most 

influential variable. However, the amount of variation in the energy use reduction explained by 

the building attributes available here is low, only 14.1%. This is consistent with other correlative 

models that only use building characteristics to explain the variation in energy use, which 

explain 11.9 to 14.9% of variation (Guerra et al. 2009). In one study, 71% of the unexplained 

variation was due to occupancy behavior, a metric not included in the present model 

(Sonderegger 1978). The simple models reported here thus cannot be used with confidence to 

show business owners exactly how much they will save with a retrofit, but further research 

accounting for additional characteristics and behaviors may be able to do so.  

The CART and Random Forest processes allow a visual representation of how building 

attributes may affect reduction in energy consumption following a retrofit. These methods may 

be used to simplify the visualization of potential energy savings in commercial buildings. Simple 

models have the potential to allow business owners to easily understand the potential energy 

savings in their buildings using easily measured attributes of their buildings. Moreover, a recent 

study found that simpler energy models tend to be more accurate than complex ones (Earth 

Advantage Institute 2009). A comparison of error rates for simple versus complex energy models 
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shows that the simplest model has the lowest error rate (Earth Advantage Institute 2009). By 

focusing on the most influential drivers of energy use in buildings, simple models can capture 

more of the variation in energy reduction follow a retrofit. This highlights the importance of 

focusing on the most influential drivers, such as occupancy. The methods presented in this study 

may be used to find those most influential variables. Using variables such as envelope type, 

window to wall ratio, number of occupants, occupancy behavior and so forth may lead to a better 

understanding of which variables most affect energy use.  

More energy saved in smaller buildings 

The CART and the random forest algorithms show that square footage has the most 

influence on percent reduction in energy use following a retrofit (14.1%) of the available 

variables. In addition, building size in this data set exhibits an inverse relationship with percent 

energy reduction following a retrofit—smaller buildings show a larger percent reduction in 

energy use. This suggests that smaller buildings somehow respond to the reduction in lighting 

more strongly. In general, lighting retrofits reduce the cooling load because the newer 

technologies burn at a lower temperature than older ones. Perhaps the reduction in cooling load 

is higher per square foot in smaller buildings because these buildings are more sensitive to 

internal temperature changes. In some instances, smaller buildings have been shown to have a 

higher Energy Use Intensity (EUI), or energy consumed per square foot (Chung et al. 2006). This 

might suggest that smaller buildings have more potential to reduce energy use per square foot 

than larger buildings, which should be viewed as good news for small buildings since it may 

boost the smaller return on investment (ROI) that typifies these projects. On the other hand, this 
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is not an argument against retrofitting bigger buildings, as these large lighting retrofits benefit 

from leveraging the fixed costs of the retrofit by replacing many lights. 

In contrast, other data show that building size usually has a linear relationship with 

thermal capacity, or the amount of heat stored within a building (Antonopoulos and Koronaki 

1998). Further research on the correlation between building size and percent energy reduction 

would resolve this discrepancy—either the inverse relationship seen in the present study is a new 

finding or an anomaly in the data due to small sample size. 

Systems Approach to Energy Conservation Measures 

A systems approach to energy conservation occurs when lucrative efficiency projects are 

bundled those that have a slower payback, which leads to significant emissions reductions and 

rates of return that satisfy the shrewdest financial officers (Schendler 2012).  Of the energy 

conservation measures regularly addressed, including HVAC systems, windows, insulation, and 

equipment, lighting retrofits are the simplest and provide the quickest payback, which makes 

them the “lowest hanging fruit” (Hawken et al. 1999; Schendler 2012). Unfortunately, picking 

only the lowest fruit leaves the less lucrative but still carbon-reducing efficiency projects 

untouched; a circumstance termed “cream skimming” (Schendler 2012). The reason for cream 

skimming includes many of the economic barriers discussed above, such as capital restraints and 

high return on investment (ROI) thresholds (Howarth and Andersson 1992). The systems 

approach is a potential solution to cream skimming. In order to achieve a higher ROI, high return 

projects, such as a lucrative lighting retrofit, can be bundled with those that have a lower return, 

such as a new economizer for an HVAC system. The CART and random forest methods may be 
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applied to these scenarios to find which combination of retrofits and building attributes 

maximizes the return on investment following a retrofit.  

Vintage and building type 

Additionally, the vintage of building construction appears to have an impact on the 

reduction in energy use. This is primarily due to the effect of age on the materials and the 

advances in the efficiency of building materials and building technologies (Guerra et al. 2009). 

For example, advances in insulation technologies have resulted in energy savings of as much as 

30% in some cases (Taylor and Lucas 2010).  Ever-changing building codes also affect the 

energy efficiency of a building (Laustsen 2008). Over time, stricter building codes have led to 

higher standards of energy efficiency, which helps explain why vintage is an important variable 

(Laustsen 2008).  

Business type occupying the building had the smallest influence, which is surprising 

considering that the type of lighting retrofit often depends on building type. Office buildings 

usually have compact fluorescent (CFL) tubular fixtures, while retail stores often feature track 

lighting with incandescent bulbs. It is common for offices to upgrade to newer CFL technology 

while retail stores upgrade to more efficient LEDs. Additionally, occupancy tends to vary 

between business type, and occupancy is an influential driver of energy consumption (Chung et 

al. 2006). Despite these trends, business type was not measured as affecting percent reduction in 

energy use following a retrofit.  

Climate change and building temperature 

By 2050, Colorado temperatures are expected to rise significantly, bringing temperatures 

typical of the Kansas border to the Front Range (Ray et al. 2008). This affects whole building 
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energy consumption, as warmer temperatures will lead to increased use of air conditioning 

(Sailor and Pavlova 2003). Generally, an increase in external temperature has a linear correlation 

with internal temperature, with variations depending on building specifications (Coley and 

Kershaw 2010). Models predict that with each degree Celsius of warming of outside air, there 

will be a 2-4% increase in electricity demand, and hence lighting retrofits will be especially 

important to reduce the cooling load on buildings (Sailor et al. 2003). A standard incandescent 

light reaches temperatures around 170°C, almost four times hotter than an LED (Crawford 

2014). Replacing incandescent and fluorescent lighting in buildings throughout Colorado will 

significantly reduce the cooling load due to lighting, helping to offset increasing outdoor 

temperatures. It will also help offset the increased cost of cooling in commercial buildings.  

Limitations and Further Research 

Further work with this type of model will benefit from a few important factors, as there 

are clear limitations of this research. First, this model suffered from a small sample size of 

sixteen buildings. Additionally, there are many building attributes that were ignored to keep the 

model as simple as possible. Future studies may address other building attributes, including but 

not limited to: building materials, building envelope, window-to-wall ratio, surface area-to-

volume ratio, aspect, microclimate, heating ventilation and air conditioning unit specifications, 

occupancy behavior, lighting retrofit treatment, window quality, insulation type, r-factor of 

building materials, surrounding vegetation, wind exposure, damper operation, and mixed mode 

window operation, among others. Building attributes subtly affect energy use (Guerra et al. 

2009). The classification and regression tree approach along with the random forest approach can 
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be used to find which attributes explain the variation of reduction in energy use following a 

retrofit. 

Additionally, the present model includes only three years of utility data for each building, 

in most cases only one year after the retrofit. In order to control for yearly variations (i.e. one 

particularly hot summer), future models would benefit from more years of data.  

Conclusions 

 Energy conservation measures mitigate carbon emissions while allowing economies to 

operate business as usual in a changing climate. This will be an integral part of the effort to slow 

climate change, however the market barriers that prevent building owners from investing in 

energy conservation measures need to be circumvented. The CART and Random Forest methods 

were used to show that square footage, vintage and building type explain 14.1% of variation in 

percent energy reduction following a retrofit. Using the same statistical processes with more 

building attributes will allow analysts to determine which variables most affect percent reduction 

in energy use following a retrofit, which will lead to better models that more confidently 

communicate potential savings to owners. Providing easily accessible and understandable tools 

to building owners will help them do so, ultimately enabling commerce to contribute to the 

reduction of global carbon emissions. 
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Appendix A: R Code 

#Part 1: Set up 

 

#Load the RPART package  

library(rpart) 

 

#Begin by importing the data 

data = read.csv(file.choose()) 

 

#Divide data into a training and cross-validation set 

train = data[1:12,]  #Training set 

valid = data[13:16,] #Cross validation set 

 

#Part 2: Building a CART 

 

#Set seed 

set.seed(2) 

 

#View data 

head(data) 

xtabs ( ~ reduc, data=data) 

colnames(data) 

View(data) 

 

#Develop a CART of this data 

default = rpart.control(minbucket=3, cp=0.05, xval=3) #Set up some default options so we get as 

deep a tree as possible 

tree = rpart(reduc ~ sf + age + class, data = train , method = "class", control = default) 

 

#Plot tree results 

plot(tree,main="CART",branch=0.75,margin=0.1) 

text(tree,cex=0.9,use.n=TRUE) 

 

#This shows how large a tree is needed 

plotcp(tree) 

 

#Now make some predictions with this tree on the validation set  

preds = predict(tree,newdata=valid,type="class") 

preds = as.numeric(preds) - 1 

 

#Find misclassification rate 

errors = as.numeric(preds != valid) 

Rt = sum(errors)/length(errors) 
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errors10 = as.numeric(preds[valid==0] == 1) 

errors01 = as.numeric(preds[valid==1] == 0) 

R10 = sum(errors10)/length(errors) 

R01 = sum(errors01)/length(errors) 

 

#Show the misclassification rates 

print(Rt) 

print(R10) 

print(R01) 

 

#Part 3: Random Forest 

 

library(randomForest) 

 

# Run the random forest the algorithm 

fit = randomForest( reduc ~ sf + age + class, data = data, mtry=1, ntree=500) 

 

# Show results 

print(fit) 

 

# Textual representation the importance of each variable in classifying reduction 

importance(fit) 

 

# Visual representation of importance of each variable in classifying reduction 

  varImpPlot(fit, main="Most Important Variables") 
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