Cecil/Cesar User’s Guide

Kurt M. Olender

CU-CS-402-88 June 1988

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Contents

1 Introduction 1
1.1 Background e e e 1
1.2 Cesar Architecture e 2

2 Languages used with Cesar 7
2.1 Cecil: a sequencing constraint language 7

2.1.1 Syntax and semantics 7
2.1.2 Afileexample e 9
2.1.3 DAVErevisited e 10
2.2 Tepee: a tree pattern languageo 11
22,1 Syntax and semantics L e e e e 11
2.2.2 Procedure or function callevents 12
2.2.3 Entry, exit, and predicateevents 13
2.2.4 Tepee patterns for output fileexample 13
2.2.5 Limitations L e e e 14
2.3 Excess: an external routine specification language. 14
2.3.1 Syntax and semantics L. e 14
23.2 Examples e e e 16

3 An Example 17

4 Cesar tools 24
4.1 Introduction e 24
4.2 Atomic source file types 25
4.3 Evaluation tools 25

431 VIEWETS . . . v i it it e e e e e e e e e 25
4.3.2 Generators e 26
4.4 Analysis tools 26
4.4.1 VIEWEIS e, 26
4.4.2 Generators e, 27
4.5 Resolution tools 27
4.5.1 Viewers L e 27
4.5.2 Generators e 28

4.5.3 Errors e e e e e
4.6 Tepeetools L e e e e
4.6.1 Generators e e e e e e e e e
4.6.2 Errors e e e e e e
4.7 Excess tools L L e e e e
471 Generators i e e e e e e e e e e e e
4.7.2 EITOTS . . o v i o e e e e e e e e e
4.8 Cecil tools L e e e e
4.8.1 VIEWEIS v it i e e e e e e e e e e e e e e e e

4.8.3 ErIrors o e e e e e e e e e e

4.9 FORTRAN front-end and graphing tools

A Annotated Odin output

B Cesar Derivation Graph

ii

........................

491 VIEWEIS . . . v o it e e e e e e e e e e e e e e e s

................

List of Figures

1.1 Top level Cesar architecture o i v i v e e e
1.2 Graphing subsystem L e

2.1 Cecil grammaro e e e e e

.......................

2.3 Ceclil constraint for fileevents e e
2.4 Tepee Grammar vttt e e e e e e e e e e e e e e e e e e e

1.3 Analysis and evaluation subsystem . . .
2.2 A common compute/write loop structure
2.5 Tepee patterns for output file operations

........................

2.6 Excess grammar oL 0 e e e e e e e e

3.1 Finite state machine for AQRE #3

4.1 Odin derivation naming conventions

© e s s s s s 3 8 s & s & s v s & = s s e & s o

........................

4.2 Predefined Tepee patterns for FORTRAN

A.1 Timing data for fileexample. L Lo

iii

N

10
10
11
13
15

21

25
34

44

Chapter 1

Introduction

1.1 Background

Cecil is a language for the specification of sequencing constraints in software that is oriented toward
the static evaluation of those constraints. Cesar is a static evaluation system that takes a program,
a Cecil constraint, some other information and determines if (and more importantly, where) a
violation of that Cecil constraint occurs.

The current implementation of Cecil/Cesar has been done in Ada on the Sun-3 workstation
using the Verdix VADS Ada compilation system, version 5.41. The user accesses Cesar through
Odin[1], which is used as a user interface and an object manager. This has the advantage for the
user that when changes are made to a source file, whether it be in the program, Cecil specification,
or other information needed, Odin will automatically re-compute only that information affected
by the change, on the granularity of a file. The Cesar system has been designed to generate data
files in such a way as to minimize the necessary recomputation of information without overloading
Odin with the responsibility of maintaining an excessively large number of files.

At the present time, Cesar supports sequencing evaluation of FORTRAN programs. Additional
tools to support analysis and evaluation of C and Ada programs are under construction. How-
ever, nearly all the commands and possible derivations within Cesar are language independent, so
that few, if any, new commands need be learned to utilize the system with any newly supported
programming language.

This manual will describe only how to invoke the Cesar tools from within Odin and how to
interpret the results obtained. It will not attempt to be a comprehensive guide to the Odin system
itself. The next section of the introduction will briefly outline the architecture of the Cecil/Cesar
system so the reader will have some passing familiarity with the terms and overall structure of the
system when reading the subsequent sections. Chapter 2 gives the details of the three specification
languages used within the Cesar system. Chapter 3 gives an example of the use of Cesar for
sequencing analysis and introduces the most useful tools for the typical use of Cesar. Chapter 4
describes all tools and their invocation for all subsystems.

1.2 Cesar Architecture

The current implementation of Cesar is divided into subsystems as shown in Figure 1.1. The
graphing subsystem and analysis and evaluation subsystem are shown in Figures 1.2 and 1.3.

Each programming language supported will have a set of tools that produce the information
required by Cesar. We partition these tools into parsing and other front end tools that may be
used for other purposes than Cesar, and those specifically built for Cesar.

This latter set, the graphing subsystem, consists of tools to produce a labeled flowgraph and
its associated data objects from a parse tree or some other intermediate form of the language for
each routine, plus a special routine, a super-main program. This super-main program is assumed
to perform all the activities of the run-time system when a program in that language begins and
ends execution. A FORTRAN super-main program will, among other things, allocate space for
variables in COMMON, define those variables declared to be initialized by DATA statements in BLOCK
DATA subprograms, open and close the standard i/o units, and call the user’s main program. This
super-main program is always called .main, since this name is unlikely to conflict with a valid
routine name in most programming languages.

The front end tools available for FORTRAN include a lexical scanner, parser, semantic analyzer,
and viewers for the data objects these tools produce.

The Cecil subsystem consists of front end translator tools for the Cecil sequencing constraint
language. These tools produce a parse tree and the semantic information necessary to drive the
sequencing analysis and evaluation performed by Cesar. Detailed syntax and semantics of Cecil
are described in Section 2.1. There is also a viewing tool for the semantic information generated
by the Cecil semantic analyzer, but not the Cecil parse tree.

The Tepee subsystem consists of a front end translator for the Tepee tree pattern specifica-
tion language. Since a Cecil specification is language independent, the user must specify which
programming language constructs constitute the events in the Cecil constraint. This is done with
Tepee. The detailed syntax and semantics of Tepee are described in Section 2.2.

The Excess subsystem consists of a front end translator for the Excess external specification
language and the necessary tools to produce labeled flowgraph information from the Excess parse
tree. Excess specifications are used to assert effects of routines for which source code is not
available. Examples might be language-defined functions, library routines available only in object
code form, and routines not yet written, or that exist only as stubs. An Excess source file contains
a list of routine specifications that define the sequence of events that occur for each parameter
and global object affected by that particular routine with a regular-expression-like syntax. The
detailed syntax and semantics of Excess are described in Section 2.3.

The analysis and evaluation subsystem consists of the resolution, analysis, and evaluation
phase of Cesar. All these phases are language independent. The resolution phase takes the local
information produced by the language-dependent graphing tools and produces the information
actually needed by the Cesar system. One task performed by the resolution phase is to build a
call graph from call data produced by the graphing system. The call graph is used to control the
computation of the resolved information. Generally, information for a routine cannot be computed
until the information for the routines that it calls is available. Odin handles the correct ordering
of computations based on the call graph.

Tepee Prog. Lang. Excess
source source source
Tepee Prﬁgflarlrll;ngng Excess Cecil
front-end fron%—e f 4 front-end source
Excess
Tepee
patterns Prog. Lang. plzrzrse
parse tree, ce
semantic
data
language .
dependent frcgiztlaln d
graphing
l l
Cecil
labeled semantic
flowgraph data
data
language
independent
analysis
and
evaluation
violation
reports

Figure 1.1: Top level Cesar architecture

Tepee Prog. Lang.

patterns parse tree,
semantic

data

l

graphing
phase

Excess
parse
tree

Prog. Lang.

Excess
graphing
phase

Figure 1.2: Graphing subsystem

labeled
flowgraph
data

Tepee Cemii
patterns ser(;}:; ¢
Resolution

phase

resolved
object,

flowgraph, /
callgraph Cecil

data analysis
l data

‘/ Cecil
evaluation,

Analysis anchor
phase data

State
propagation
data

|

Evaluation
phase

Violation
reports

Figure 1.3: Analysis and evaluation subsystem

Another part of this phase is the resolution of local data into program-wide global data. For
example, it is possible in many languages for a routine to affect data that is not directly visible to it.
In C, this can happen when that routine calls a routine in another file that affects a static variable
in that file. Ada has a similar feature with data objects declared inside a package body. During the
local processing that occurs in the language-dependent part, it is not known what non-parameter
variables may be affected by a call to another routine, since information about that other routine
may not be directly available. Information about which variables a routine may transitively affect
must be computed.

Once resolution has taken place, Cesar computes the state information for a finite state machine
at each node of the resolved flowgraph during the analysis phase followed by an evaluation of
whether or not the program satisfies the Cecil constraint and a determination of the locations of
any violations. The method by which this is done is explained in detail in [2].

Chapter 4 will give a more detailed description of the information computed during all phases.

Chapter 2

Languages used with Cesar

2.1 Cecil: a sequencing constraint language

2.1.1 Syntax and semantics

The language used to specify the actual sequencing constraints is called Cecil. A BNF grammar
of Cecil is given in Figure 2.1.

Cecil is a relatively terse expressional notation for sequencing constraints. The basic term is
the AQRE, or Anchored Quantified Regular Expression. Events are operations that are applied to
objects. The alphabet is the set of events over which the regular expression, or regezp, is defined.
This regular expression defines the sequence of events that must occur. In the grammar, the
alphabet is associated with a spec to simplify expressions where several AQRE terms have the same
alphabet by not requiring the alphabet to be repeated each time.

The basic semantics of an AQRE are that, for each object, the sequence of events on that object
along the number of paths specified by the quantifier from each event in the first anchor (the start
anchor) to the second anchor (the end anchor), non-inclusive, is a sequence in the language denoted
by the regular expression. We should also note that the anchors are optional. The semantics of an
AQRE with one or more anchors omitted is discussed in the example below.

The logical operators, and, or, not, have the expected meaning. The conjunction of two
expressions is satisfied if both expressions are satisfied, the disjunction when at least one is satisfied,
and the negation of an expression when the expression is not satisfied.

The events are identifiers that are any sequence of the upper- or lower-case letters, digits,
underscore, period, or hyphen characters. The question mark is used to represent any single
character in the alphabet, and the hash mark represents the null event. The regular expression
operators are semi-colon for concatenation, vertical bar for union, asterisk for iteration zero or
more times, a plus sign for iteration one or more times, and tilde for complement.

Note that the events in an anchor are not required to be in the alphabet. In general, any
anchor events not in the alphabet are considered to be null events by the regular expression and
are ignored during the analysis phase. All anchors, whether or not they are in the alphabet, are
used during the evaluation phase to locate those nodes in the flowgraph where evaluation is to take
place, in effect delineating the paths that must be examined.

spec

alphabet
expr

aqre
anchor

evtlist
event

quantifier
regexp

e e s s @8 a

alphabet expr
4(> spec c)e

spec ‘and’ spec
spec ‘or’ spec
‘not’ spec

{7 evtlist ‘}’
aqre

‘(expr ‘)
expr ‘and’ expr
expr ‘or’ expr
‘not’ expr
anchor quantifier regexp anchor
‘[evtlist <)

evtlist ¢,” event
event

[a-zA-Z. -]+
‘forall’ | ‘exists’
4(7 regexp 4)7
regexp ‘|’ rexexp
regexp ‘;’ rexexp
regexp ‘*’
regexp ‘+’

" regexp

event

5?7

(#5

Figure 2.1: Cecil grammar

2.1.2 A file example

Some examples are in order. Let s be the event that occurs when a program begins execution
and t be the termination of the program. Every program will have exactly one s event and
exactly one t event for each object. The events open, close, and write will correspond to the
execution of FORTRAN OPEN, CLOSE, and WRITE statements. The object is a FORTRAN i/o unit.
Defining the correspondence between Cecil event names and actual program constructs is discussed
in Section 2.2. We might write a Cecil specification for operations on a file to be used solely for
output as the AQRE:

{open, write, close} [s] forall (open; write*; close)* [t]

This AQRE states that on every path from the entry to the exit of the program, the sequence
of events open, close, and write must occur in the order given by the regular expression. This
Cecil expression is satisfied by a program that never tries to close or write to an unopened file, or
open an already opened file.

The Cecil language gives the user a great deal of flexibility in the analysis performed by allowing
the user to specify exactly what is of interest at the moment. Suppose now that, along with ensuring
that we never try to write to an unopened file, we are also interested in finding sequences where we
open a file, and then close it with no possibility of ever writing to it. In effect, nothing happens.
This is not an error; it will not cause the program to crash. In fact, it may be used to create
an empty file. Even so, it may be something we are interested in looking at more closely. There
may be some code intended to write to the file that was inadvertantly omitted from the program.
Cesar cannot make a distinction between an intentional and unintentional use of the sequence
open; close in a program, but it can allow us to tailor our sequencing specification to locate
instances of that sequence or not as we wish and make distinctions between instances that occur
on every execution path and those on only some execution paths.

With this “ineffectual” construct in mind, we might change the expression above to be:

{ open, write, close } [s] forall (open; write+; close)* [t]

In this expression, we force the existence of at least one write. However, a very frequent
programming construct is to embed a write statement into a loop, where some processing is done
and the results written out, as in the FORTRAN DO loop of Figure 2.2. This program may not
execute the loop at all, depending on the values of J and K, but there is at least the possibility
that the WRITE statement will be executed for some input data. If we prefer to reduce the number
of reports that Cesar generates, (and that we must subsequently examine) we might instead add a
second AQRE to the first Cecil expression with the and operator to state that both AQRE’s must
be satisfied. This second AQRE could be:

{open, write, close} [open] exists write

The end anchor in this AQRE is omitted intentionally. It is often the case that we want to
make some specification about the first or last segment of a sequence of events, and don’t really
care about the rest of the sequence. When we omit the end anchor, we implicitly mean that the
end anchor must be the termination event and append ?* to the regular expression. This AQRE
is shorter to write but otherwise equivalent to

DO 10, I=J,K
CALL DOWORK(DATA(I), RESULT)
WRITE (1,101) RESULT
10 CONTINUE

Figure 2.2: A common compute/write loop structure

{open, write, close} (
[s] forall (open; writek; close)* [t] and
[open] exists write [t] and
exists write [close])

Figure 2.3: Cecil constraint for file events

{open, write, close} [open] exists (write; 7%) [t]

This second AQRE handles a situation where an open event might possibly never lead to a
write by requiring at least one path from every open event to have a write as the first (non-null)
event on it. A similar situation can occur with a close event that never has a write event executed
before it. So our final expression for output file operations could be that given in Figure 2.3

This Cecil expression will ensure that file operations are performed in the correct order, and
that every opening and closing of a file has at least the potential of valid work being performed.

2.1.3 DAVE revisited

Cesar grew out of work by Fosdick and Osterweil[3] with the DAVE static analysis system that
found data flow anomalies such as undefined references. The data flow anomalies discovered by
DAVE and those added by subsequent static data flow analysis systems[4,5, among others] can be
modeled as sequences of the events reference (r), definition (d), and undefinition (u) of variables.
A reference occurs when the value of a variable is used, a definition when the variable is assigned
to, and an undefinition corresponds to the variable obtaining the value undefined. This happens at
initial allocation and final deallocation of a variable, when it has no set value, and in some other
places depending on the programming language. Pascal “undefines” a for loop index variable at
the termination of the loop. DAVE and these other systems fixed the alphabet and sequences that
formed the sequencing constraint and consisted of analyzers that could look only for those fixed
sequences.

We can write Cecil specifications for these data flow anomalies as long as Tepee will permit us
to define a correspondence between the Cecil event name and the program constructs that form
these three operations.

10

patlist 1= patlist 3’ pattern

| pattern
pattern = routinename paramlist ¢’ cecilevent
1= routinename paramlist predvalue ‘2’ cecilevent
| ‘@entry’
| ‘@exit’
routinename ::= identifier
predvalue 1= ‘strue’| ‘=false’
paramlist := paramlist ¢, param
| param
param = identifier
l ‘!’
I 6??
cecilevent = identifier

Figure 2.4: Tepee grammar

As an example, a Cecil expression for an undefined reference is
{r, d, u} forall (r | d) [r]

This expression states that the last event on every path into a reference event must be either a
reference or a definition. An equivalant specification is

{r, d, u} (not (exists u [rj))

which states that it must never be the case that the last event on even one path is an undefinition.

This Cecil expression will find any reference that might possibly be undefined. If instead, we
were concerned with finding only those references that are guaranteed to be undefined, we can
change the exists quantifier to forall, obtaining;:

{r, d, u} (not (forall u [r]))

2.2 Tepee: a tree pattern language

2.2.1 Syntax and semantics

An important task in performing sequencing evaluation with Cesar is defining how to statically
recognize in the program text when an event occurs. The Tepee tree pattern language fulfills this
requirement. Currently, Tepee permits the definition of only very simple patterns, but even these
simple patterns permit us to evaluate very powerful sequencing constraints.

The grammar for Tepee is given in Figure 2.4. A Tepee specification is a list of patterns. The
canonical Tepee pattern defines a procedure or function call. The routine name is the name of

11

the procedure as it would appear in the program. For languages like Ada, this might be required
to be a fully qualified name. In fact, Ada’s overloading presents particular problems that Tepee
does not fully address in its current form, which will be discussed in Section 2.2.5. The routine
name is followed by patterns for the parameters of that procedure. The question mark (an ANY
parameter) means that any parameter will match, in other words, we don’t care what is in that
parameter position. The exclamation point (a BIND parameter) specifies the parameter position
that contains the parse subtree for the object actually being operated on by that event. An identifier
(a CONSTANT parameter) specifies that the parameter position must be filled by exactly that
identifier. This pattern is mapped to the Cecil event name following the colon.

The order in which patterns are listed is significant. If more than one pattern in the list matches
a given construct, the event associated with the first one in the list to match is generated. The
other possible matching events are ignored.

2.2.2 Procedure or function call events

A Tepee pattern matches a procedure or function call if the routine names are identical, have the
same number of parameters, and each parameter in the call matches the corresponding parameter
(by position) in the Tepee pattern.

We might use the Tepee pattern

pop(t, ?) : pop

to map the call of the C procedure with the following definition to a Cecil event in a Cecil sequencing
constraint on stack operations if we are concerned with which stack is being popped and not what
value is removed from the stack.

void pop (s, e) STACK s; int e;
Alternatively, we could use
pop (7, ') : pop

if we were interested in the variable that was receiving the value from the stack. No Tepee parameter
list may have more than one BIND parameter.

In the event the parameter list has no BIND parameter at all, the object that the event operates
on is considered to be the state of the program as a whole, which includes all possible objects. The
pattern

pop(?, X) : pop

has no BIND parameter, so the object that is considered to be popped is the state of the program
as a whole. The “state” is popped whenever procedure pop is called with variable X in its second
parameter position.

12

Q@entry i 8

Qexit . A
open(!) : open;
write(!) i write;
close(!) : close

Figure 2.5: Tepee patterns for output file operations

2.2.3 Entry, exit, and predicate events

Tepee also offers some additional types of event definitions. Two of these are @entry and @exit.
These patterns correspond to the entry and termination events of the program. They never have
any parameters; they apply to every possible object if they are set in the Tepee specification.

Additionally, Tepee permits us to define events that correspond to the evaluation of predicates
within control-flow statements. While in general we cannot determine the value of an expression
statically, predicates are a different matter because their value is directly reflected in the control
flow graph. A conditional statement has two possible control flow exits and we can determine
which of those corresponds to the value of the predicate being false and which true. Thus we can
encode, in a very limited fashion, some dynamically determined information into the events that
we recognize. We do this by adding the qualifiers =true or =false to the pattern. A predicate
matches if it is an event in the Boolean or logical expression of a control flow operation along the
corresponding edge of the control flow graph, and satisfies the other conditions of a match.

Lastly, although a Tepee pattern canonically represents a procedure call, the particular graph-
ing tool may define certain routine names to reflect other program constructs. In a FORTRAN
system, the routine name open may be interpreted as the execution of an OPEN statement, and
the routine name ref as the reference of a variable. These predefined values may change with
every programming language supported. The exact values used should be identifiers that could
never occur in a real program in that language. For that reason, Tepee, Cecil, and Excess permit
identifiers that include hyphens, periods, and underscores in any position, and are case-sensitive.
That should make it relatively easy to find some form for identifiers that is valid in Tepee, Cecil,
and Excess but not in the programming language. FORTRAN identifiers are single case (usually
uppercase), so lowercase might be used for predefined pattern names. C does not permit initial
periods or hyphens, Ada does not permit initial underscores, and so on.

2.2.4 Tepee patterns for output file example

Tepee patterns to map the events in the Cecil output file expression of Section 2.1 to FORTRAN
program constructs are given in Figure 2.5, assuming that open , write , and close are predefined
patterns with exactly one parameter (the i/o unit being operated on).

13

2.2.5 Limitations

Tepee is currently a very limited type of tree pattern with one major problem; we cannot define
parameters that are trees themselves.

One situation where we need that capability is when events correspond to functions and the
object operated on is the value returned by that function. In C, the stdio library routine fopen
is a function that returns a file descriptor value. That value is exactly what we want to bind as
the object being operated on. We might want to define a Tepee pattern for the C fopen as the
assignment of the value returned by fopen to a variable. This might look like:

.asgn (!, fopen(?,"w"))

The first parameter of the .asgn function (which would be predefined by the C graphing tool to
correpond to the C assignment statement) is the variable assigned to, and the second is the value
assigned. This Tepee pattern would match the assignment of an fopen value to a variable. The
initial period of the name .asgn assures that we will never confuse the predefined name with a
functon named asgn.

Another situation where this capability is needed occurs when we must specify additional
constraints on the parameter value than its physical form, such as its type. We could do that by
defining Tepee tree patterns that include type information. This is especially important in Ada
as without the type information, we can not tell the difference between overloaded routine names
defined in the same scope.

As this research progresses, the functionality of Tepee will be increased to permit more powerful
tree patterns.

We can also see that while Tepee as a language is independent of programming language, a given
Tepee specification may be interpreted in different ways by graphing tools for different programming
languages. For this reason, we cannot currently mix routines from different programming languages
in the same program. One current direction of research is to overcome this limitation so that
multiple language programs can be analyzed and evaluated. In one sense, Cesar already does this
with Excess, as we shall see in the next section, so the matter is simply one of finding an effective
implementation technique.

2.3 Excess: an external routine specification language

2.3.1 Syntax and semantics

A common occurrence in the analysis of real programs is the call of a routine for which no source
code exists. Functions predefined in the language, or existing only in object libraries are two exam-
ples. The usual technique to handle these so-called external routines is to make some conservative
assumption about their behavior. The Cesar system permits such a flexible variation of analyses,
however, that there is no single assumption we can make about the behavior of any external rou-
tine. One assumption that might make sense is to let all external routines have no effect, but this
is not very conservative. These external routines may have effects that cause sequencing violations.
We could also assume that external routines always cause violations of a Cecil constraint. This

14

speclist 1= speclist 7}’ spec
| spec

spec u= routinename ‘(” paramlist ‘)’ ‘" globlist ‘]’
| routinename ‘(’ paramlist ¢)’
| routinename ‘[’ globlist ‘]’

routinename ::= identifier
paramlist 1= paramlist ‘,’ regexp
| regexp
globlist n= globlist ¢, global
| global
global u= identifier ‘" regexp

Figure 2.6: Excess grammar

would cause the detection of an error on every path where an external routine is called; it is too
conservative to be practical.

The tack taken by Cesar is to allow the specification by the user of the effects of external
routines via the Excess language. Routines stubbed as an Excess specification are treated exactly
as routines for which the usual source code exists. After the labeled flowgraph is produced by the
Excess front end and graphing tools, there is no distinction made between routines that originated
as Excess specifications and those that originated in the source code. The grammar for Excess is
given in Figure 2.6.

The regular expressions are identical to Cecil regular expressions, with the exceptions that
the tilde complement operator and the question mark “any event” designator are not allowed.
Parameter effects are enclosed in parentheses and consists of a a list of regular expressions. Effects
are related by parameter position; the third parameter of the call of a routine will be associated
with the effect given by the third regular expression in the parameter list.

Since global objects have no position that uniquely defines them, we must explicitly list the
name of the global object with its effect. The name must match exactly the object name that
would be given to that object by the programming language graphing tool.

If a routine name exists in an Excess specification and the number of parameters does not
match the actual call, the extra parameters in the actual call are considered to have no effect. The
quickest way to stub a routine that is to have no effect on any value is to give it one parameter
with the “null event” regular expression as its effect.

Currently, every routine mentioned or called in the source code for which no source code exists
must have an Excess specification. Warnings are generated by Cesar that list any missing routines,
so the user can produce the appropriate Excess stubs.

15

2.3.2 Examples

Assume that in a large FORTRAN program, a library routine called ZYOUTT(X, Y, Z) writes its
three parameters to i/o unit 2 in a single write operation. We want to determine whether this
program satisfies the Cecil constraint of Figure 2.3. The three parameters of ZYOUTT do not affect
the writing to i/o unit 2, so we need only specify an effect for the i/o unit, which is considered to
be a global variable by the FORTRAN graphing system, and is called io_unit.2 by that system.
We would write the Excess specification for that routine as:

ZYOUTT [iounit.2 : write]

Since the parameters all have no effect, and there is at least one global object, we specify only the
global effect. The Excess routine specification must have at least one of either a parameter or a
global. As mentioned previously, any parameters not explicitly listed will be considered to have no
effect.

Now assume that we want to check for any undefined references in that same program. The
FORTRAN WRITE statement only references variables mentioned in it’s expression list, so the effect
would instead be:

ZYOUTT (r, r, 1)

16

Chapter 3

An Example

In this chapter, we will go through a small example of the use of the Cesar system. The format of
the example will be simulated Odin input and output interspersed with explanatory text. We will
give the Odin output with LogLevel=1 to suppress printing of log messages by Odin. Appendix A
gives an example of the log messages for Odin, with commentary, at LogLevel=4 for this example.
The Odin prompt is “->”.

The example to be used is an evaluation of a FORTRAN program for its compliance with the
output file constraint of Figure 2.3. The FORTRAN program to be analyzed is:

-> file.f
PROGRAM FILE
READ *, ICODE
OPEN (UNIT=1, FILE=’junk.out’)
IF (ICODE .NE. 1) THEN
DO 10 I = 1,10
CALL PRINT (I)
10 CONTINUE
ELSE
CALL MYCLOS
ENDIF
CALL MYCLOS
END

SUBROUTINE MYCLOS
CLOSE (1)
RETURN

END

The PRINT routine is not included in the FORTRAN source code, so we must come up with an
Excess specification for it.

-> file.xs
PRINT [io_unit.1 : write, io_unit.stdout : write]

17

PRINT does not act on its parameter with respect to output files, but rather on two global
objects, which happen to be i/o units. We can surmise that PRINT writes the value of I both to
i/o unit 1 and to the standard output, but the value written is irrelevant here. The Tepee patterns
that define the program constructs corresponding to the Cecil events are from Figure 2.5.

-> file.tp

Qentry -
Qexit H
open (!) : open;
close (!) : close;
write (!) : write

To perform the analysis, we must have a .ref file that lists the FORTRAN and Excess source
files that will be used and a .cesar file that lists the .ref file with the Cecil and Tepee source
files.

-> file.ref
file.f
file.xs

-> file.cesar
file.ref
file.cec
file.tp

Having defined these files, we can now ask Odin for the :report derivation which will give us a
violation report for the entire program.

-> file.cesar :report

Routine .main at call DAG node 1
FORWARD : {write,close,open} [s] forall (open; write*; close)* [t]
io_unit.1 { 12}

Routine FILE at call DAG node 2
No violations.

Routine MYCLOS at call DAG node 3
FORWARD : {write,close,open} exists write [close]
io_unit.1 {2}

Routine PRINT at call DAG node 4
No violations.

The :report derivation causes the generation of a violation report for every routine in the program,
whether in FORTRAN or Excess, for the Cecil expression. Routines PRINT and FILE have no

18

violations, but MYCLOS and .main do. If a violation exists, the direction of analysis, AQRE violated,
object name and set of nodes in the flowgraph where violations occur are listed. This report does
not tell us the actual source code that contains the event causing the violation, but that information
is available through other Cesar tools. Now that we know which routines have violations (and which
nodes in the call DAG those routines correspond to), we can track down the violations by asking
Cesar for the events labeling the edges in the flowgraph.

-> file.cesar +node=3 +routine=MYCLOS :prevent

Stmt Fwd Bck Class Event
2 2 3 primitive close(io_unit.1)

We know the analysis is FORWARD, so we look under the Fwd column of the report to find 2, the
location of the violation for MYCLOS. As it happens, there is only one event in MYCLOS and this is
the one we want. This close event came from statement number 2. We find out which statement
that is by asking for the listing of the file in which MYCLOS is located.

-> file.f :list
TOOLPACK FORTRAN 77 SCANNER - RELEASE 2

1 - 1 PROGRAM FILE
2 - 4 READ *, ICODE

3 - 9 OPEN (UNIT=1, FILE=’junk.out’)
4 - 20 IF (ICODE .NE. 1) THEN

5 - 28 DO 10 I = 1,10

6 - 36 CALL PRINT (I)

7 - 42 10 CONTINUE

8 - 45 ELSE

9 - 47 CALL MYCLOS
10 - 50 ENDIF
11 - 52 CALL MYCLOS
12 - 55 END

1 - 58 SUBROUTINE MYCLOS

2 - 61 CLOSE (1)

3 - 66 RETURN

4 - 68 END

Statement 2 in MYCLOS is a CLOSE(1) statement as we expect. We know that some call of MYCLOS
was in a position that had no possibility of a WRITE operation before it. In this example, a simple
examination of the context of the two calls of MYCLOS in FILE shows that the call at statement 9
is the offending one. Unfortunately, at the present time, Cesar cannot directly tell us which calls
caused the violation. The information for this is present, but no tool yet exists to automatically

19

trace down the path on which the violation occurred. Until this tool is added to Cesar, we can
trace it down ourselves with the information that Cesar does provide, but to do that we must know
a little more about how Cesar operates.

As briefly mentioned earlier and explained in more detail in [2], Cesar does its analysis by
propagating the states of a finite state machine through the flowgraph. Let’s look at the analysis
and evaluation of semantic data for the Cecil AQRE that MYCLOS violates. This data is entirely
concerned with a finite state machine. The viewer for the Cecil expression semantic data is called
:pragre . As it happens, the index of the AQRE term we want is 3. The terms are numbered
sequentially in the order of their appearance in the expression.

-> file.cesar +aqre=3 :praqre

For AQRE: {write,close,open} exists write [closel

Analysis data

FORWARD
Transitions
write :{Co, 1) (1, 1}
close : L Co,0) (1, OO}
open :{Co, 0 (1, 0O}

Evaluation data

FORWARD
Quantifier : EXISTS
Accepting States : { 1}
Initial State : 0
Number of States : 2

The analysis data consists of the state transitions for a finite state machine that accepts the regular
expression in the AQRE term (for the FORWARD direction). In the BACKWARD direction, the
finite state machine accepts the reverse of the regular expression. We have taken the liberty of
editing out the BACKWARD portions of the :pragre report to avoid confusion, since we know
that the analysis direction for AQRE #3 is FORWARD. This is a simple two state FSM as depicted
in Figure 3.1. This machine records whether the last event found was write (state 1) or something
else (state 0). Obviously, the accepting state is 1 since we want a write to be the last event
found. The quantifier is exists, so at every close event, the set of states at the node immediately
preceding it (remember events label edges, not nodes) should have a non-empty intersection with
{1}. Look at the state propagation data for MYCLOS.

-> file.cesar +node=3 +routine=MYCLOS :prstate

20

open.close

write
open,close

write

Figure 3.1: Finite state machine for AQRE #3

FORWARD

io_unit.1

Node: 1

{ o}

{o0, 1}
Node: 2

{ o}

{o0, 1}
Node: 3

{ o}

Node: 4

{ o}

Node 2 is the location of the violation. There are two possible state sets, one for each call. The
first is the one causing the violation, {0} is disjoint from {1}. The problem with Cesar currently is
that we don’t know which call caused which state set. This is because these state sets are collected
as a set themselves to avoid the combinatorial explosion of carrying around data from every call
of every routine. It is possible that {0} was caused by more than one call of MYCLOS in a program.
We know where all the calls come from, however, so we can look at the state propagation and event
data for FILE.

-> file.cesar +node=2 +routine=FILE :prevent

21

Stmt Fuwd
3 3
11 7
6 9
9 10
6 12

Class

primitive

in out
in out
in out
in out

call
call
call
call

Event

open(io_unit.1)
MYCLOS’1(io_unit.1)
PRINT’2(io_unit.1)
MYCL0OS?1(io_unit.1)
PRINT’1(io_unit.stdout)

-> file.cesar +node=2 +routine=FILE +aqre=3 :prstate

FORWARD

io_unit.1

Node: 1

{ 0}
Node: 2

{ o}
Node: 3

{ o}
Node: 4

{ o}
Node: 5

{ o}
Node: 6

{o0, 1}
Node: 7

{0, 1}
Node: 8

{ o}
Node: 9

{0, 1}
Node: 10

{ o}
Node: 11

{ 0}
Node: 12

{ 1}

Node: 1

io_unit.stdout

22

{ o}
Node: 2

{ 0}
Node: 3

{ 0}
Node: 4

{ o}
Node: 5

{ 0%}
Node: 6

{0, 1}
Node: 7

{0, 1}
Node: 8

{o0, 1}
Node: 9

{0, 1}
Node: 10

{ o}
Node: 11

{o, 1}
Node: 12

{0, 1}

The :prevent report tells us that the FORWARD nodes corresponding to the MYCLOS calls are 7
and 10. The call at node 10 passes {0} and is the source of the problem. This node corresponds
to the call at statement 9, or the one inside the ELSE clause as we would expect.

23

Chapter 4

Cesar tools

4.1 Introduction

Each subsystem contains tools that are used to generate information, tools to view that information,
and tools to cause Odin to derive or collect the proper information for input to the generator and
viewer tools. We will term this last category Cesar internal tools although they are not necessarily
implemented using only the internal tools provided by the Odin system.

Generally, the user need only be concerned with the viewing tools, as a request for an object
generated by that tool will cause Odin to automatically invoke the other tools necessary to produce
it. Odin will also avoid re-computing any data object when that object is still in its cache and no
object on which it depends has been changed. Only viewer tools are displayed by the Odin help
system when HelpLevel is set to 1.

At times, however, errors may occur during the generation of data and the user may have to
request the error, warning, or other derivations of these data objects to track down the error. In
each of the following sections, we will first list the viewing tools, then the generation tools, and
give an indication of the errors that might occur. Unless otherwise noted, additional information
about an error can be obtained by applying either :err or :warn to the offending derivation. Any
occurrence of the error message “Internal error” should be reported to the author. Additional
help from Odin for all tools can obtained by setting HelpLevel to 2. We will ignore the Cesar
internal tools in this manual altogether. Their description can be found in the Odin derivation
graph source for Cesar in Appendix B.

The Cesar system derivations follow a naming convention on the suffixes of the derivation
names as listed in Figure 4.1. As the derivations are described, occasional slight deviations from
this convention, as well as other naming conventions, will become apparent. These sections will
take the format of giving a sample Odin derivation command and describing the output produced.

24

nam a Cesar internal derivation

spec a Cesar internal derivation

a set of objects for a single module (file)

a set of objects for a single node in the call DAG

a set of objects upon which a single call DAG node depends
a set of objects for all routines in the program

a set of objects that are themselves sets

Zogowng

Figure 4.1: Odin derivation naming conventions

4.2 Atomic source file types

The Odin system assumes that there is a set of base types from which all other information can
be derived in some way. The types listed here are the atomic source types used by Cesar.

file.f
A FORTRAN source file.

file.xs
An Excess source file.

file.tp
A Tepee source file.

file.cec
A Cecil source file.

file.ref
A reference file containing the names of all FORTRAN and Excess source files for all routines
in the program.

file.cesar
A file listing the reference, Cecil, and Tepee source files to be used for a given evaluation, in
that order.

4.3 Evaluation tools

4.3.1 YViewers

file.cesar :report
View the node locations of violations of an entire Cecil constraint for every routine in the
program. This is the derivation that one would use most often. Note that any logical

25

file.

file.

4.3.2

file.

file.

4.4

4.4.1

file.

file.

file.

negations in the Cecil expression are pushed down to the individual AQRE terms using
DeMorgan’s Laws, and that this is reflected in the report.

cesar +node=2 +routine=NAME :preval
View the node locations of violations of an entire Cecil constraint for a specific routine.

cesar +node=2 +routine=NAME +aqre=2 :prvio

View the node locations of violations for a single routine and AQRE in a Cecil constraint.
This does not reflect the possible negation of the AQRE in the original specification, and is
mostly for debugging purposes.

Generators

cesar +node=2 +routine=NAME :eval
Compute the node locations of violations of an entire Cecil constraint for a single routine.

cesar +node=2 +routine=NAME +aqre=2 :vio
Compute the node locations of violations for a single AQRE in a Cecil constraint for a single
routine.

Analysis tools

Viewers

cesar +aqre=2 :analdir

The direction of analysis for a single AQRE. FORWARD indicates that the analysis was per-
formed by propagating states from the entry of the flowgraph toward the exit, and BACK-
WARD from the exit toward the entry. The direction chosen depends on the anchor sets
specified and whether @entry or @exit Tepee patterns correspond to events in the anchor
sets. Current restrictions are that one of the anchor sets must be either the entry event or the
termination event. This may occur implicitly when one of the anchors is omitted from the
AQRE term or explicitly when the event in the anchor set is bound to either @entry or @exit
in the Tepee patterns. The direction chosen will be from the anchor that corresponds to entry
or exit (either explicitly or by omission) toward the other set. If both anchors correspond to
entry or exit, then FORWARD is chosen.

cesar +node=2 +routine=NAME +aqre=2 :prrelsum

Print relations for each object that describe the effect of a routine from its entry to exit.
These effects are possible finite state machine transitions. “Entry” and “exit” depend on the
direction of analysis.

cesar +node=2 +routine=NAME +aqre=2 :prreltbl

Print relations for each object that describe the effect of a routine from its entry to every
other node on that object. This is a superset of :prrelsum. Again, “entry” depends on the
direction of analysis.

26

file.cesar +node=2 +aqre=2 :prinit
View the sets of finite state machine states that are passed to routines called by any routine
in this call DAG node.

file.cesar +node=2 +routine=NAME +aqre=2 :prstate
Print the actual states of the finite state machine that might be in effect at each node of the
flowgraph from the relation table data for every call of that routine.

4.4.2 Generators

file.cesar +node=2 :relsum
Contains the raw transition effect summary (:rsumS) and table data (:rtblS) described
above for every routine in a call DAG node.

file.cesar +node=2 :stateprop
Contains the raw state propagation data described above for every routine in a call DAG
node (:ssumS), as well as the initial state data for every call of a routine by a routine in the
call DAG node (:init).

file.cesar +node=2 +routine=NAME +aqre=2 :ancloc
The nodes corresponding to anchor events in the flowgraph for a routine where evaluation
must take place.

4.5 Resolution tools

4.5.1 Viewers

file.cesar :srcnam ;
The names of all routines in the program, including Excess routines.

file.cesar :prcdag
View the call DAG. This is actually a DAG of the strongly connected components of the
call graph. Since in general, a programming language may permit recursion, the call graph
may contain cycles. To process routines in the proper order during resolution, analysis, and
evaluation, Odin requires an acyclic graph. Routines that are mutually recursive are all
processed simultaneously by the remaining tools using an iterative algorithm, when that is
required.

file.cesar :prcdl
The node label portion of :prcdag.

file.cesar :prcds
The graph structure portion of :prcdag.

file.cesar :prcgrf, file.cesar :prcgl, file.cesar :prcgs
The same information as above for the call graph instead of the DAG.

27

file.

file.

file.

file.

file.

file.

file.

cesar +node=2 :prresrou

The names of routines located in or called by routines in a single call DAG node, in the
particular order used by the resolution data. The node number can be obtained from :prcgs
or :prcdag.

cesar +node=2 +routine=NAME :prresobj

View the object resolution data. This consists of a list of the object names, their index
in the resolution data structure, a table listing the object index for parameter objects by
parameter position, and a table listing the index of non-parameter objects in the resolution
data structures of other routines. The node number for a given routine can be obtained from
iprcgs or :precdag.

cesar +node=2 +routine=NAME :prresevt

View the event resolution data for a single routine. This consists of a mapping from flowgraph
edges to resolved events, an updated flowgraph structure and edge-to-statement-number map-
ping. The resolved events use information from the object resolution data as indices into
tables produced by other tools.

cesar +node=2 +routine=NAME :prfgrf
View the flowgraph structure portion of :prresevt.

cesar +node=2 +routine=NAME :prevent
View the event labeling portion of :prresevt.

cesar +routine=NAME :prnode
View the node in the call DAG where a routine is located. This information is also provided
for all routines in :prcdl but this separate tool is also provided.

cesar +node=2 +routine=NAME :prcloc
Print data about the location of events corresponding to calls of other routines. This is a
subset of the :prfesl data.

4.5.2 Generators

file.

file.

file.

file.

cesar +node=2 :resobj
The raw object resolution data for every routine in a single call DAG node.

cesar +node=2 +routine=NAME :resevt
The raw event resolution data for a single routine. This is one case where we are not required
to process all mutually recursive routines together.

cesar :cgrf
The raw call graph data. It contains the call graph structure (:cgs) and node labels (:cgl).

cesar :cdag
The raw call DAG data. It contains the call DAG structure (:cds) and node labels (:cdl).

28

file.cesar +node=2 :dagplan
Contains the names of routines in the specified node of the call DAG (:sccplan), the names
of routines and DAG node numbers of routines called by any routine in this DAG node
(:depplan), and call DAG nodes that contain routines calling any routine in this DAG node
(:supplan).

file.cesar +node=2 +routine=NAME :cloc
Compute the raw call location data. This is a subset of :resevt that gives only the locations
of the call events, so we may pass initial states to called routines during state propagation.

4.5.3 Errors

Errors will be generated by :pcgrf if a routine is mentioned or called by another routine, but does
not have a routine definition either in source code or in Excess. The derivation :pcgrf :err will
list the names of these routines.

4.6 Tepee tools

4.6.1 Generators

file.tp :tpfe
The Tepee front end. Produces a structure that maps from routine names to a list of possible
parameter patterns for that name.

4.6.2 Errors

Syntax errors may occur. Locations of the detected errors will be found in the :tpfe :err deriva-
tion.

4.7 Excess tools

4.7.1 Generators

file.xs :xsfe
The Excess front end. Produces a parse tree structure.

file.xs :xsgrf
The Excess grapher. Produces a flowgraph structure, edge-to-event labeling, call data, object
data, edge-to-statement number labeling, variable name resolution data, and list of routine
names. See Section 4.9 for more detail on this information.

4.7.2 Errors

Syntax errors can be generated by :xsfe. Error locations are listed in the :xsfe :err derivation.

29

4.8 Ceclil tools

4.8.1 Viewers

file.cec :aqrekey
Lists the key numbers of all AQRE terms in the Cecil expression. These will be integers
from 1 to the number of AQRE terms in the expression and are used as parameters in most
resolution, analysis, and evaluation tools.

file.cec taqre=2 :praqre
View the semantic information for a single AQRE in the Cecil expression. The value of the
aqre parameter is an integer from the range given by :aqrekey. This information consists of
the finite state machine transition functions, initial, crash, and accepting states, and lists of
the anchor events.

4.8.2 Generators

file.cec :cecfe
The Cecil front end. Generates a parse tree.

file.cec :cecsem
Generates the semantic data that is used to locate anchors (:ancU), for analysis (: cadU), and
for evaluation (:cedU) for each separate AQRE in the Cecil expression.

4.8.3 Errors

Syntax errors can be generated by :cecfe. Error locations are given by the :err derivation. If the
finite state machine for the regular expression is too large, :cecsem will generate an error. The
current limit is 8 states, including a crash state.

4.9 FORTRAN front-end and graphing tools

All the FORTRAN front end tools are based on the IST/TOOLPACK tool set currently being
distributed by Numerical Algorithms Group, Ltd. as described in [6].

4.9.1 Viewers

file.f :list
View a listing of the FORTRAN source as produced by the lexical scanner. This listing gives
both token numbers and statement numbers in each FORTRAN program unit which are used
later on by other FORTRAN tools and by Cesar tools.

file.f :istpst
View the FORTRAN symbol table for all program units in a single file.

30

file.f :istppt
View the FORTRAN parse tree for all program units in a single file.

file.f :istpfg
View the flowgraph as generated by IST/TOOLPACK routines for all program units in a
single file. This flowgraph is used as a basis for the Cesar flowgraphs.

file.f :fpls
View the parser listing. This listing is generally uninteresting, but is available. Parsing errors
are listed in the :fprs :err derivation.

file.f :fxls
View the semantic analysis listing. This listing is generally uninteresting, but is available.
Semantic errors are listed in the :fsem :err derivation.

file.cesar +routine=NAME :prvarnam
View the set of variables that correspond to a single object in a single routine. This may be
a set due to explicit EQUIVALENCE statements or the implicit equivalences of COMMON block
definitions that are not identical.

In general, object names for FORTRAN are chosen as follows:

Variables in COMMON or equivalenced to variables in COMMON:
Common block name and offset in bytes. Blank common is called .COMMON
Examples: COMBLK.44, .COMMON.O

Non-equivalenced local variables, formal parameters:

Name of routine and variable.
Examples: SUBR.VAR, FUNC.PAR

I/O units:

“jounit” and unit number, “stdin”, or “stdout”
Examples: iounit.1, io.unit.stdin

Variables in local equivalences:

Name of the routine, “eqv-”, local equivalence class number.
Examples: SUBR.eqv-1, FUNC.eqv-2

4.9.2 Generators

file.f :fscn
The FORTRAN lexical scanning information. Contains the token stream (:ftkn), comment
file (:fcmt), and listing (:£sls). This last is identical to :flist above.

file.f :fprs
The FORTRAN parse information. Contains the basic parse tree (:fbpt), parser listing
(:fpls), symbol table (:fbst), and comment index (:fbci).

31

file.

file.

file.

file.

file.

4.9.3

f :fsem
The FORTRAN semantic analysis information. Contains an extended parse tree (:fxpt),
extended symbol table (:fxst), an extended attribute table (:fxat) and a semantic listing
(:£x1s).

f :fcan

The FORTRAN canonical parse tree. Contains a canonical parse tree (:fcpt) and symbol
table (:fcst). The canonical parse tree is the extended parse tree with some modifications
made for easier flowgraph generation in the : ££grf tool. These modifications include altering
all FORTRAN arithmetic if statements with only two different target labels to logical if
statements and adding a unique CONTINUE statement to terminate every DO loop.

f :ffgrf

The FORTRAN flowgraph information. Contains a set of flowgraph structures (:ffgsM),
mappings from flowgraph edges to the parse tree node for the statement corresponding to
that edge (:££plM), mappings from flowgraph edges to the actual statement number for that
statement (:ffslM) and a list of the names of all routines found in that file (:frouM). All
but the last derivation are Odin compound objects, since a single file may contain more than
one routine definition. For the purposes of Cesar, each FORTRAN ENTRY statement defines
a new routine. The :varnamM object has been described above. An object group consists of
data about the objects found in the routine.

f +tepee=(file.tp :tpfe) :flocal

This alters some of the data produced by :£ffgrf to conform to what Cesar expects and does
the actual pattern matching of the Tepee pattern to the FORTRAN parse tree. Again, since
a single FORTRAN file may contain more than one routine, each component of :flocal
except :flocalM is a set. The components are mappings from edges to events (:ffelM),
object groups (:fogrp), call data (:fcalllM), mappings from object names to variable names
(:fvarnamM), and global information used to build the super-main routine (:fgloball).

ref +tepee=(file.tp :tpfe) :fmain

The super-main routine data for FORTRAN. Composed of the data objects produced by
the union of :ffgrf and :flocal, :fmainfel, :fmainfgs, :fmainvarnam, :fmaincall,
:fmainogrp, and :fmainfsl. '

Errors

Syntax and semantic errors may be detected. The locations of the errors are available in the
appropriate :err derivations. The :flocal tool may detect a file with more than one main
program unit and :fmain may detect more than one main subprogram unit across all source files.

The :

fmain tool may also detect that there is no main subprogram unit in the source files. Exactly

one main subprogram unit is required in a single analysis group.

32

4.9.4 Predefined Tepee routine names for FORTRAN

Figure 4.2 lists the predefined routine names for FORTRAN statements in Tepee. All routines are
considered to accept the indicated number of parameters. The identifiers z and y may be any of
the three types of Tepee parameters, ANY, BIND, or CONSTANT, depending on what is desired
to be an event. The figure shows the Tepee pattern alongside a typical FORTRAN construct that
matches that pattern.

Note that the commutative expressional operators will be matched in two different configura-
tions. For example eq(!, 0)=true is a pattern that will test for a variable being equal to 0 in a
predicate. The FORTRAN :flocal tool will attempt to match this pattern with the parameters
in the positions listed, and in the reverse order. This is not strictly necessary, as we can give two
different Tepee patterns to reflect commutativity, but it is convenient.

33

asgn (z,y) X=Y

ref (z) reference to variable X

def (z) definition of variable X
undef (z) undefinition of variable X
rewind (z) REWIND i/o unit
backspace (z) BACKSPACE i/o unit z

open (z) OPEN i/o unit z

close (2) CLOSE i/o unit z

write () WRITE, PRINT to i/o unit z
read (2) READ from i/o unit z

end_of file (z) END=i/o keyword (predicate)
erroronio (z) ERR=i/o keyword (predicate)

eqv (z,y) X .EQV. Y (predicate)
neqv (z,y) X .NEQV. Y (predicate)
or (z,y) X .OR. Y (predicate)
and (z,y) X .AND. Y (predicate)
not (z) .NOT. X (predicate)
It (z,y) X .LT. Y (predicate)
le (z,y) X .LE. Y (predicate)
eq (z,y) X .EQ. Y (predicate)
ne (z,y) X .NE. Y (predicate)
gt (z,9) X .GT. Y (predicate)
ge (z,y) X .GE. Y (predicate)
plus (z,y) X +Y

minus (2z,y) X -y

mul (z,y) X %Y

div (z,y) X/Y

exp (z,9) X+ Y

Figure 4.2: Predefined Tepee patterns for FORTRAN

34

Bibliography

[1] Geoffrey M. Clemm, The Odin System: An Extensible Object Manager for Software Environ-
ments, Ph. D. Thesis, University of Colorado, 1986.

[2] Kurt M. Olender and Leon J. Osterweil, “Specification and static evaluation of sequencing
constraints in software”, Proc. of the Workshop on Software Testing, Banff, Alberta, July
1986, pp 2-9.

[3] Lloyd G. Fosdick and Leon J. Osterweil, “DAVE—a validation, error detection and documen-
tation system for FORTRAN programs”, Software—Practice and Experience, Vol. 6, 1976,
pp. 473-486.

[4] Stefan M. Freudenberger, On the Use of Global Optimization Algorithms for the Detection of
Semantic Programming Errors, Ph. D. Thesis, Courant Institute, New York University, 1984.

[5] Rieder and Conradi, “FORTVER—a FORTRAN verifier”, Proc. of the 8th Int’l. Conf. on
Software Engineering, Sept. 1986.

[6] Leon J. Osterweil, “TOOLPACK—An Experimental Software Development Environment Re-
search Project”, IEEE Trans. on Software Engineering, Vol. SE-9, Nov. 1983, pp. 673-685.

35

Appendix A

Annotated Odin output

This output was generated with LogLevel=4. All tool invocations are shown. Normally, Odin
prints the full path name of all source files and derived objects. We have taken the liberty of
removing all but the base file name to make the output more readable.

The first task is to build the call graph. That requires the call data from the routines and the
super-main program, which in turn requires that the source files be compiled.

-> file.cesar :report

** Generating file.cesar :ces

**% Generating file.cesar :cgrf

** Generating file.ref :prog

** Generating file.tp :tpfe

** Generating file.ref +tepee=(file.tp :tpfe) :calll
** Generating file.f :fscn

** Generating file.f :fprs

** Generating file.f :fsem

** Generating file.f :fcan

** Generating file.f :ffgrf

**% Generating file.f +tepee=(file.tp :tpfe) :flocal

** Generating file.xs :xsfe

** Generating file.xs :xsgrf

** Generating file.ref +tepee=(file.tp :tpfe) :callU
k% Generating file.ref +tepee=(file.tp :tpfe) :fgloball
**% Generating file.xs :xsfglobalM

** Generating file.ref +tepee=(file.tp :tpfe) :varnamN
** Generating file.ref +tepee=(file.tp :tpfe) :varnamU
** Generating file.ref +tepee=(file.tp :tpfe) :fmain
** Generating file.ref +tepee=(file.tp :tpfe) :pcgrf
**% Generating file.cesar :cdag

Now that the call DAG has been generated, we must build the actual report by creating an Odin
specification for the :preval derivations of each individual routine. This requires the list of the

36

AQRE term indices obtained by compiling the Cecil source file.

K%
*k
Kok
*3%k
*%
*ok
K0k
*k
*ok
*ok
*ok

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

file.
file.
file.
file,
file.
file.
file.
file.
file.
file.
file.

Now we must do the

*ok
*ok
*ok
*ok
*ok
*ok
*ok
*ok
*k
* %
*ok
Kok
*ok
*ok
*k
Kok
*ok
*ok
*ok

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

file.
file.
file.
file.

file

file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.

file

file.
file.

cesar
cesar
cesar
cesar
cec @
cec
cec
cec
cec
cecC
cecC

:cesref
:cesname
ireport

ragqrekeyptr

cecfe

:cecsem

raqrekeyU
rancU @1 :key
:ancU @2 :key
:ancU @3 :key
raqrekey

resolution phase tasks for every routine. We start at the root of the call
graph and traverse downward, building Odin specifications of the data required. Remember that
derivations ending in plan, spec, nam are merely there to build the Odin specifications we need
to cause the right data to be generated.

cesar +node=’1’ :dagplan

cesar +node=’1’ +routine=’.main’ :viospec
cesar +node=’1’ +routine=’.main’ +aqre=’1’ :ssumnaml
cesar +node=’1’ :grfspec

.cesar +node=’1’ +routine=’.main’ :ornamlN
cesar +node=’1’ :ogrpSN

cesar +node=’1’ :ogrpS

cesar +node=’1’ :ordep

cesar +node=’2’ :dagplan

cesar +node=’2’ :ogrpSN

ref +tepee=(file.tp :tpfe) :ogrpU

ref +tepee=(file.tp :tpfe) :ogrpU @FILE
cesar +node=’2’ :o0grpS

cesar +node=’2’ :ordep

cesar +node=’3’ :dagplan

cesar +node=’3’ :ogrpSN

.ref +tepee=(file.tp :tpfe) :ogrpU @MYCLOS
cesar +node=’3’ :ogrpS

cesar +node=’3’ :ordep

We can now build the object resolution data for nodes 3 and 4, which are leaves of the call DAG.
The :rovD, :rptD, :rgtD, ordD are the object resolution data on which this node is dependent,
and happen to be empty for leaves of the call DAG. Given the data for the leaves we can traverse
back up the call DAG and build the object resolution data for the internal nodes as well.

**% Generating file.cesar +node=’3’ :rovD

37

Kok
*k
*ok
Kok
*ok
Kok
*ok
*ok
*ok
Kok
*ok
Kok
*ok
Kok
*ok
Kok
%%
*k
*k
Kok
*k
Kok
*ok
*ok

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar

file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar

+node=’3’ :rptD
+node=’3’ :rgtD
+node=’3’ :orsD
+node=’3’ :resobj
+node=’4’ :dagplan
+node=’4’ :o0grpSN
file.ref +tepee=(file.tp :tpfe) :ogrpU @PRINT
+node=’4’ :ogrpS
+node=’4’ :ordep
+node=’4’ :rovD
+node=’4’ :rptD
+node=’4’ :rgtD
+node=’4’ :orsD
+node=’4’ :resobj
+node=’2’ :rovD
+node=’2’ :rptD
+node=’2’ :rgtD
+node=’2’ :orsD
+node=’2’ :resobj
+node=’1’ :rovD
+node=’1’ :rptD
+node=’1’ :rgtD
+node=’1’ :orsD
+node=’1’ :resobj

file.cesar

Given the object resolution data, we can build the event resolution data for each routine. The
event resolution data depends only on the object resolution data and the original flowgraph for
each routine, so we can do this in any order we wish. Odin actually triggers the event resolution
data computation by requesting the analysis data.

*k
*k
Kk
Kok
*ok
*ok
*k
Kok
Kok
*k
Kok
*ok
*k
*k

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar
file.cesar

+node=’1"
+node=’1"

+routine=’.main’ :fgnamlN
+routine=’.main’ :fgnamU
+routine=’.main’ :fgspec

+node=*1’
+node=’1’
+node=’1"
+node=’1"’
+node=’1"
+node=’1"
+node=’2’

+routine=’.main’ :ornamU
+routine=’.main’ :orspec
+routine=’.main’ :resevt
+routine=’.main’ :cloc
:clocS

:rfgsS

:rfelS

+aqre=’1’ :analspec
:grispec

+routine="FILE’ :fgnamlN
file.ref +tepee=(file.tp :tpfe) :felll

38

** Generating file.ref +tepee=(file.tp :tpfe) :fellU

** Generating file.ref +tepee=(file.tp :tpfe) :felU Q@FILE

** Generating file.ref :fgsU

** Generating file.ref :fgsU QFILE

** Generating file.ref :fslU

** Generating file.ref :fslU QFILE

** Generating file.cesar +routine=’FILE’ :fgnamU

** Generating file.cesar +routine=’FILE’ :fgspec

**% Generating file.cesar +node=’2’ +routine=’FILE’ :ornamlN
** Generating file.cesar +node=’2’ +routine=’FILE’ :ornamU
** Generating file.cesar +node=’2’ +routine=’FILE’ :orspec
** Generating file.cesar +node=’2’ +routine=’FILE’ :resevt
**% Generating file.cesar +node=’2’ :rfgsS

** Generating file.cesar +node=’2’ :rfelS

** Generating file.cesar +node=’2’ +routine=’FILE’ :cloc

**% Generating file.cesar +node=’2’ :clocS

*% Generating file.cesar +node=’2’ +aqre=’1’ :analspec

** Generating file.cesar +node=’3’ :grfspec

** Generating file.cesar +routine=’MYCLOS’ :fgnamN

** Generating file.ref +tepee=(file.tp :tpfe) :felU @MYCLOS
** Generating file.ref :fgsU @MYCLOS

** Generating file.ref :fslU @MYCLOS

** Generating file.cesar +routine=’MYCL0S’ :fgnamU

** Generating file.cesar +routine=’MYCLOS’ :fgspec

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ :ornamN
** Generating file.cesar +node=’3’ +routine=’MYCL0S’ :ornamU
** Generating file.cesar +node=’3’ +routine=’MYCLOS’ :orspec
**% Generating file.cesar +node=’3’ +routine=’MYCLOS’ :resevt
**% Generating file.cesar +node=’3’ :rfgsS

** Generating file.cesar +node=’3’ :rfelS

**% Generating file.cesar +node=’3’ +routine=’MYCL0OS’ :cloc
** Generating file.cesar +node=’3’ :cloc$S

We have computed the event resolution data for node 3, a leaf, so we can compute the analysis
data for it, and then go back up the call DAG. The analysis data for a node depends on the
analysis data of its descendents in the call DAG. We have to do this for all AQRE terms in the
Cecil expression. The analysis data computations are somewhat intermixed with the evaluation
data because of the way Odin makes requests and traverses the call DAG. Data is computed when
all its required inputs are available.

** Generating file.cesar +node=’3’ +aqre=’1’ :analspec
**% Generating file.cesar +node=’3’ +aqre=’1’ :rsumD

** Generating file.cesar +aqre=’1’ :aqrenamlN

**% Generating file.cesar +aqre=’1’ :aqrenamU

39

*ok
*k
*k
*ok
*k
*k
*%
%ok
*%k
%k
* %
*ok
*k
*ok
*ok
* %k
*ok
*k
*k
*k
%k
*ok
*ok
Kok
ok
Kok
*ok
*k
*%
*ok
*ok
Kok
*k
%k
*ok
*ok
Kok
*k
*ok
*%
*k
*ok
*ok

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.
file.

cesar
cesar
cesar
cesar
cesar
cesar

cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar
cesar

+aqre=’1’
:tpfeptr

+agre=’1’
+node=’3’
+node=’4’

ragrespec

ranaldir
+aqre=’1’
:grfspec

+routine=’PRINT’ :fgnamN
ref +tepee=(file.tp :tpfe) :felU Q@PRINT
ref :fgsU @PRINT
ref :fs1U QPRINT
+routine=’PRINT’ :fgnamU
+routine=’PRINT’ :fgspec

+node=’4"
+node=’4’
+node=’4’
+node=’4’
+node=’4’
+node=’'4’
+node=’4’
+node=’4’
+node=’'4’
+node=’4’
+node=’4’
+node=’2"’
+node=’2’
+node=’1"
+node=’1"
+node=’1"
+node=’1’
+node=’1’
+node=’1"
+node=’1’
+node=’1"’
+node=’1’
+node="1"
+node=’2"’
+node=’3’
+node=’3’
+aqre=’2’
+aqre=’2’
+aqre=’2’
+aqre=’2’
+node=’3’
+node=’4’

irelsum

+routine=’PRINT’ :ornamlN
+routine=’PRINT’ :ornamU
+routine=’PRINT’ :orspec
+routine=’PRINT’ :resevt
:rfgsS

:rfelS

+routine=’PRINT’ :cloc
:clocS

+aqre=’1’ :analspec
+aqre=’1’ :rsumD

+aqre=’1’ :relsum
+agre=’1’ :rsumD

+agre=’1’ :relsum
+agre=’1’ :rsumD

+aqre=’1’ :relsum
+aqre=’1’ :initD

+aqre=’1’ :stateprop
+routine=’.main’ +aqre=’1’
+routine=’.main’ +aqre=’1’
+routine=’.main’ +aqre=’1’
+routine=’.main’ +aqre=’1’
+routine=’ .main’ +aqre=’2’
+aqre=’2’ :analspec
+aqre=’2’ :analspec
+aqre=’2’ :analspec
+aqre=’2’ :rsumD

raqrenami

:aqrenamU

raqrespec

ranaldir

+aqre=’2’ :relsum
+aqre=’2’ :analspec

40

:ssumnamU
:ssumptr
rancloc
1vio

: ssumnamiN

*%
Kok
*ok
Kok
*ok
*k
Kk
*ok
$k
*k
*k
*ok
*ok
*%
*%
*ok
Kok
*k
*k
*ok
*ok
*ok
* ok
*ok
*ok
*ok
*ok
Kok
*ok
Kok
*ok
¥k
Kk
Kok
*ok
*ok
*ok
*ok
*k
* %
*ok
Kok
*%

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

file.cesar +node=’4’
file.cesar +node=’4’
file.cesar +node=’2’
file.cesar +node=’2’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’2’
file.cesar +node=’3’
file.cesar +node=’3’
file.cesar +aqre=’3’
file.cesar +aqre=’3’
file.cesar +aqre=’3’
file.cesar +aqre=’3’
file.cesar +node=’3’
file.cesar +node=’4’
file.cesar +node=’4’
file.cesar +node=’4’
file.cesar +node=’2’
file.cesar +node=’2’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar :cecfe
file.cesar :cecsem
file.cesar +node=’1’
file.cesar +node=’1’
file.cesar :txtlist
file.cec :txtset
file.cesar :dirset

+agre=’2’
+aqre=’2’
+agre=’2’
+aqre=’2’
+aqre=’2’
+aqre=’2’
+aqre=’2’
taqre=’2’
+routine=’
+routine=’
+routine=’
+routine=’
+routine=’
+aqre=’3’
+aqre=’3’
+agre=’3’
+aqre=’3’
ragrenamN
raqrenamU
tagrespec
ranaldir
+aqre=’3’
+aqre=’3’
+aqre=’3’
+aqre=’3’
+aqre=’3’
+aqre=’3’
+aqre=’3’
+aqre=’3’
+aqre=’3’
+aqre=’3’
+routine=’
+routine=’
+routine=’
+routine=’
+routine=’
+routine=’
+routine=’

41

:rsumD

trelsum

:rsumD

:relsum

:rsumD

:relsum

:initD
:stateprop
.main’ +aqre=’2’
.main’ +aqre=’2’
.main’ +aqre=’2’
.main’ +aqre=’2’
.main’ +aqre=’3’
:analspec
:analspec
:analspec
:rsumbD

trelsum
tanalspec

:rsumD

:relsum

:rsumD

:relsum

:rsumD

‘relsum

:initD
:stateprop
.main’ +aqre=’3’
.main’ +aqre=’3’
.main’ +aqre=’3’
.main’ +aqre=’3’
.main’ :vioU
.main’ :anclocU
.main’ :eval

:ssumnamU
:ssumptr
rancloc
:vio

: ssumnami

:ssumnamU
!ssumptr
tancloc
:vio

** Generating file.cesar :dirlist

The analysis data is computed for all routines, and the evaluation data computed for the root of
the call DAG. We traverse back down to compute the rest of the routines for all AQRE terms.

** Generating file.cesar +node=’1’ +routine=’.main’ :preval

** Generating file.cesar +node=’2’ +routine=’FILE’ :viospec

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’1’ :ssumnamN
** Generating file.cesar +node=’2’ +aqre=’1’ :initD

** Generating file.cesar +node=’2’ +aqre=’1’ :stateprop

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’1’ :ssumnamU
** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’1’ :ssumptr

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’1’ :ancloc

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’1’ :vio

*% Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’2’ :ssumnaml
** Generating file.cesar +node=’2’ +aqre=’2’ :initD

** Generating file.cesar +node=’2’ +aqre=’2’ :stateprop

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’2’ :ssumnamU
** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’2’ :ssumptr

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’2’ :ancloc

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’2’ :vio

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’3’ :ssumnaml
** Generating file.cesar +node=’2’ +aqre=’3’ :initD

** Generating file.cesar +node=’2’ +aqre=’3’ :stateprop

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’3’ :ssumnamU
** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’3’ :ssumptr

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’3’ :ancloc

** Generating file.cesar +node=’2’ +routine=’FILE’ +aqre=’3’ :vio

** Generating file.cesar +node=’2’ +routine=’FILE’ :vioU

**% Generating file.cesar +node=’2’ +routine=’FILE’ :anclocU

** Generating file.cesar +node=’2’ +routine=’FILE’ :eval

** Generating file.cesar +node=’2’ +routine=’FILE’ :preval

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ :viospec

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’1’ :ssumnaml
** Generating file.cesar +node=’3’ +aqre=’1’ :initD

** Generating file.cesar +node=’3’ +aqre=’1’ :stateprop

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’1’ :ssumnamU
** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’1’ issumptr
** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’1’ :ancloc
** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’1’ :vio

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’2’ :ssumnamll
** Generating file.cesar +node=’3’ +aqre=’2’ :initD

** Generating file.cesar +node=’3’ +aqre=’2’ :stateprop

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’2’ :ssumnamU

42

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’2’ :ssumptr
** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’2’ :ancloc
** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’2’ :vio

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’3’ :ssumnamN
** Generating file.cesar +node=’3’ +aqre=’3’ :initD

** Generating file.cesar +node=’3’ +aqre=’3’ :stateprop

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’3’ :ssumnamU
** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’3’ :ssumptr
** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’3’ :ancloc
** Generating file.cesar +node=’3’ +routine=’MYCLOS’ +aqre=’3’ :vio

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ :vioU

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ :anclocU

*% Generating file.cesar +node=’3’ +routine=’MYCL0S’ :eval

** Generating file.cesar +node=’3’ +routine=’MYCLOS’ :preval

** Generating file.cesar +node=’4’ +routine=’PRINT’ :viospec

** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’1’ :ssumnaml
** Generating file.cesar +node=’4’ +aqre=’1’ :initD

** Generating file.cesar +node=’4’ +aqre=’1’ :stateprop

** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’1’ :ssumnamU
** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’1’ :ssumptr
** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’1’ :ancloc
** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’1’ :vio

** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’2’ :ssumnaml
** Generating file.cesar +node=’4’ +aqre=’2’ :initD

** Generating file.cesar +node=’4’ +aqre=’2’ :stateprop

** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’2’ :ssumnamU
** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’2’ :ssumptr
** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’2’ :ancloc
** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’2’ :vio

** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’3’ :ssumnaml
** Generating file.cesar +node=’4’ +aqre=’3’ :initD

** Generating file.cesar +node=’4’ +aqre=’3’ :stateprop

** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’3’ :ssumnamU
**% Generating file.cesar +node=’4’ +routine=’PRINT’ +agre=’3’ :ssumptr
** Generating file.cesar +node=’4’ +routine=’PRINT’ +aqre=’3’ :ancloc
** Generating file.cesar +node=’4’ +routine=’PRINT’ +agre=’3’ :vio

** Generating file.cesar +node=’4’ +routine=’PRINT’ :vioU

** Generating file.cesar +node=’4’ +routine=’PRINT’ :anclocU

** Generating file.cesar +node=’4’ +routine=’PRINT’ :eval

** Generating file.cesar +node=’4’ +routine=’PRINT’ :preval

** Generating file.cesar :report :.cat

All derivations are complete. Odin can print the final report, which is as shown previously. The
total derivation took about 2 minutes, 50 seconds elapsed time, of which about 60 seconds was

43

Phase Time(sec)
resolution 5.9
analysis 25.0
evaluation 9.6
FORTRAN 3.6
Cecil 5.6
Tepee 0.3
Fxcess 0.8
Cesar internal 8.8
TOTAL 59.6

Figure A.1: Timing data for file example

actually spent in the various tools. Times for the various phases are listed in Figure A.

44

Appendix B

Cesar Derivation Graph

cesar
ATOMIC
"required program and specification files for a CESAR run"
ces <
refptr-ref "names of program source files"#
cecptr-cec "Cecil sequencing specification"#
tpptr~tp "Tepee tree pattern''k
>
"composite object for Cesar analysis''*:
STRUCT
! cesar
cesname

"Cesar grp ODIN name'*:
NAME
: cesref

cesref(.null)
"ref to Cesar grp"#:
USER copy_first.cmd
ces

*** The sequencing evaluation subsystem
User interface tools
report(preval@)
"report of violations of all routines for all aqre’s":
USER report.cmd
:ocdl
cesname

preval

"violations of all aqre’s for a routine':
USER preval.cmd

45

eval
rovptr
txtlist
dirlist
rounam
rounod

prancloc
"anchor locations in a routine":
USER prancloc.cmd
ancloc
rovptr
analdir

prvio
"violations of an aqre in a routine":
USER prvio.cmd
vio
rovptr

prinit
"initial state summary for a cdag node":
USER prinit.cmd
init
rovD
rrv

prstate
"sequencing analysis state propagation results':
USER prprop.cmd
ssumptr
rovptr
analdir

ssumptr ssum
"state summary for a routine/aqre''*:
USER ssumspec.cmd
: (ssumnamU)

ssumnamU(.null)
"union of ssum for a routine''s:
FLATTEN
: (ssumnamll)

ssumnamN(.nulle)
"nested union of ssums for a routine'k:
USER ssumnam.cmd
dagnode
cesname

. refptr
: PARAMETERS < routine aqre >

working tools

eval
"violations of all aqre’s for a routine'*:
USER eval.cmd
(vioU)
cecexp
(anclocU)
anclocU(ancloc)
"anchor locations of all aqre’s for a routine''*:
UNION
(ancloch)
vioU(vio)
"set of violations of all aqre’s for a routine'*:
UNION
(violl)
viospec <
vioN(vioQ) "nested vio set of all aqre’s for routine#
anclocN(ancloc@) "nested ancloc set of all aqre’s for routine"#
rounam "name of routine'*
rounod "node of routine'*
>
"violation and anchor locations for all aqre’s for a routine'#:
USER viospec.cmd
: aqrekeyptr
dagnode
cesname
PARAMETERS < routine >
vio
"violations of an aqre in a routine''s:
USER mkvio.cmd
ssumptr
cedptr
ancloc
: analdir
stateprop<
ssumS[ssum] "sequence state summary set'*
init "initial state mapping'*
>

"sequencing state summary data'*:
USER stateprop.cmd
(clocs)

(rtbls)
(initD)
(orsD)
(orsS)
rrv
recurs
cedptr
analdir

***x The sequencing analysis subsystem

User interface routines
prreltbl
"sequencing analysis relation table':
USER prreltbl.cmd
: rtblptr
. rovptr
: analdir

prrelsunm
"sequencing analysis relation summary':
USER prrelsum.cmd
! rsumptr
¢ rovptr
¢ analdir

Working routines

rsspec <
rsumptr rsum "rsum for a routine'x
rtblptr rtbl "rtbl for a routine'*
>
"relation data for a routine'*:
USER rsspec.cmd
(rsnamU)

rsnamU(.null)
"union of rsum for a routine'x:
FLATTEN
: (rsnanll)

rsnaml(.nullQ)
"nested union of rsums for a routine''k:
USER rsnam.cmd
: dagnode
cesname
: refptr

48

: PARAMETERS < routine aqre >

relsum <
rsumS [rsum] ‘"rsums’s of cdag node'#
rtblS [rtbl] 'rtbls’s of cdag node'"*

>
"relation data for a cdag node''*:
USER relsum.cmd
: (rfgsS)
(rfels)
(orsS)
(clocs)
(rsumD)
D orrv
: recurs
: cadptr
: analdir
rsumD (rsum)
"rsum’s reqd by a cdag node"*:
UNION
(rsumbDN)
initD(init)
"init’s reqd by a cdag node"*:
UNION
: (initDN)
analspec <
rsumDN(rsum@) ‘"nested rsum’s reqd by a cdag node"*
initDN(init@) "nested init’s reqd by a cdag node'#

>
“"analysis data for a cdag node'*:
USER analspec.cmd

: depplan

: supplan

! cesname

: refptr

: PARAMETERS < agre >

locations of anchors and analysis direction

ancloc
"node location of anchor events'*:
USER ancloc.cmd
. orsptr
: rfel
: ancptr

: analdir

dirlist
"list of analysis directions for all agre’s’:
CAT
:(dirset)
dirset(analdir@)
"set of analysis directions for all aqre’s':
USER dirlist.cmd
: cesname
. aqrekeyptr
analdir

"direction in which to run analysis':
USER pickdir.cmd
. ancptr
: tpfeptr

*** Event resolution subsystem
User interface routines
prresevt(.null)
"flowgraph/event resolution data':
COLLECT
‘prevt
iprrigs

prigrf
"resolved flowgraph structure":
USER prfg.cmd
¢ rigs

prevent
"resolved flowgraph event and statement labels':
USER prevent.cmd
: rfel
¢ risl
D rrv
! rovptr

prcloc
"call location table for a routine':
USER prclt.cmd
¢ cloc
¢ rovptr
T orrv

working routines
collections of resolved flowgraph data for a cdag node

50

clocS(cloc)
"cloc’s of a cdag node'*:
UNION
(clocSK)

rfelS(rfel)
"rfel’s of a cdag node"*:
UNION
(rfelSN)

rigsS(rfgs)
"rfgs’s of a cdag node"*:
UNION
(rfgssSN)

grfspec <
rfgsSN(rfgs@) "nested rfgs’s of a cdag node"*
rfelSN(rfel®) "nested ffel’s of a cdag node"*
clocSN(cloc@) "nested cloc’s of a cdag node'*
>
"graph data for a cdag node'"*:
USER grfspec.cmd

:dagnode

:sccplan

:cesname

:refptr

cloc
"location of calls'*:
USER cloc.cmd
rorsptr
:rfel
(TIV

resevt <
rfgs 'Resolved fgs''*
rfel "Resolved fel''x
rfsl "Resolved fsl'#
>
"resolved fgrf/event data'*:
USER resevt.cmd
¢ felptr
: fgsptr
: fslptr
. rovptr
. rptptr
: rgtptr
T rrv

Object resolution subsystem
User interface routines
prresobj
"object resolution data":
USER prresobj.cmd
. rovptr
. rptptr
i rgtptr
. orsptr
i rrv

Working routines
orspec <

rovptr“rov "rov for a routine'*

rptptr rpt "rpt for a routine'*

rgtptrirgt "rgt for a routine'x

orsptriors "ors for a routine'#

>

"object resolution data for a routine''*:
USER orspec.cmd
: (ornamV)

ornamU(.null)
"union of object resolution data for a routine''k:
FLATTEN
: (ornaml)

ornamN(.null@)
"nested union of object resolution data for a routine'*:
USER ornam.cmd
: cesname
¢ refptr
: PARAMETERS < node routine >

resobj <
rovS [rov] "rov’s for a cdag node'x
rptS [rpt] *"rpt’s for a cdag node"#
rgtS [rgt]l "rgt’s for a cdag node's
orsS [ors] "ors’s for a cdag node'*
>
"objres data for cdag node'*:
USER resobj.cmd

: (ogrps)

: (rovD)

: (rptD)

: (xgtD)

: (orsD)

LIrv

rovD(rov)
"rov’s reqd by a cdag node''*:
UNION
: (xrovDN)

rptD(rpt)
"rpt’s reqd by a cdag node''*:
UNION
: (xptDN)

rgtD(rgt)
"rgt’s reqd by a cdag node''*:
UNION
: (rgtDN)

orsD{ors)
"ors’s reqd by a cdag node''*:
UNION
: (orsDN)

ordep <
rovDN(rovQ) "nested rov’s reqd by a cdag node"*
rptDN(rptQ) "nested rpt’s reqd by a cdag node'*
rgtDN(rgt@) ‘“nested rgt’s reqd by a cdag node'#
orsDN(ors@) "nested ors’s reqd by a cdag node'*
>
"object resolution data required by a cdag node'*:
USER ordep.cmd

:depplan

:refptr

:cesname

unresolved flowgraph data for a given routine
fgspec <

felptr~fel '"fel for the routine'*

fgsptr fgs "fgs for the routine'*

fslptr"fsl "fsl for the routine's*

>

"unresolved flowgraph data for a single routine'*:
USER fgspec.cmd
(fgnamU)

fgnamU(.null)
"names of unresolved flowgraph data for a single routine'*:
FLATTEN
: (fgnamlN)

fgnamN(.null@)
"ODIN names of unresolved flowgraph data for single routine '*:
USER fgnam.cmd
: refptr
: tpptr
: PARAMETERS < routine >

collect object groups for al routines in a cdag node

ogrpS(ogrp)
"ogrp’s for a cdag node'*:
UNION
: (ogrpsSN)

ogrpSN(ogrp@)
"nested ogrps for a cdag node'x:
USER ogrpspec.cmd
:dagnode
:sccplan
:refptr
:tpptr

*** Call graph subsystem

User interface routines
prnode
"node in call dag where routine is located":
USER cgrflook.cmd
tcdn
:PARAMETERS < routine >

prcdag(.null)
"dag of strongly connected components in call graph':
COLLECT
tpredl
iprecds

prcdl
"call dag labels':
USER prcdl.cmd
icdl

prcds
"call dag structure":
USER prfg.cmd
rcds

pregri(.null)

"call graph data":
COLLECT
iprecgl
:pregs

precgl
""call graph labels':
USER prcgl.cmd
rcgl

prcgs
"call graph structure":
USER prfg.cmd
1cgs

prresrou(.null)

"names of routines in/called by call dag node in resolution order":
COLLECT

rrv

Working routines
dagplan <
dagnode ‘''cdag node''*
sccplan 'planning data for routines in cdag node"*
- depplan "planning data for called source routines''*
supplan ‘"planning data for calling source routines®*

rrv "resolved routine name vector'*
recurs "recursiveness boolean''*
>

"ODIN planning data for cdag node's*:
USER dagplan.cmd
icds
tcdl
:PARAMETERS < node >

cdag <
cds '"cdag structure''#
cdl "cdag routine name set node label's
cdn "cdag node-> routine name mapping'*

>
"scc dag of cgrf'*:
USER cdag.cmd
1cgs
tcgl
cgrf <
cgs"pcgs@ "ref to cgrf structure's
cglopcgle "ref to cgrf label'#
cgn"pcgn@ "ref to cgrf routine name mapping'*

55

"reqd cgrf for Cesar run'x:
USER cgrfspec.cmd
:refptr
(tpptr

pegrf <
pcgs "cgrf structure''*
pcgl "cgri label's
pcgn "cgrf routine name mapping''#
>
"cgrf data'*:
USER cgrf.cmd
(callu)
: maincall

Call data collection

callU(call)
"program call data set'*:
UNION
¢ (calll)
callN(call)

"set of module call data sets'"*:
P-HOMOMORPHISM (:callM)
: (prog)

Object group data collections
ogrpU(ogrp)
"set of module object group sets''*:
P-HOMOMORPHISM (:ogrpM)
: (prog)

Variable name data collections
prvarnam
"names of variables represented by (possible) objects in a routine":
USER prvarnam.cmd
:varnamspecU

varnamspecU(.null)
"var name resolve spec for routine''*:
FLATTEN
(varnamspecll)

varnamspecN(.nulle)
"ODIN name of var name resolve for routine's:
USER varnamspec.cmd
: refptr
. tpptr

56

: PARAMETERS < routine >

varnamU(varnam)
"set of object->variable name maps'*:
UNION
: (varnamN)

varnaml (varnam)
"set of module object—>variable name map sets''*:
P-HOMOMORPHISM (:varnaml)
: (prog)

Event data collections
felU(fel)
"program fel set'*:
UNION
: (fell)

felN(fel)
"module fel sets'x*:
P-HOMOMORPHISM (:fellM)
: (prog)

Flowgraph collections

srcnam
"names of routines in program source':
CAT
: (roull)
roul(rouM)
"module routine name lists''*:
HOMOMORPHISM (:roulM)
: (prog)
fgsU(fgs)
"program fgrf structure set'*:
HOMOMORPHISM (:fgsM)
: (prog)
£s1U(fsl)

"program fsl set'x:
HOMOMORPHISM (:fsl1M)
: (prog)

*xx £77 subsystem
User interface routines
list <= flist

flist(.null)

"Fortran-77 listing":

COLLECT
: fsls
istpig
"Fortran-77 IST/TOOLPACK flowgraph":
USER istpfg.cmd
. fept
: fcest
istpat
"£77 semantic attribute table':
USER istpat.cmd
¢ fxst
¢ fxat
istpst
"Fortran-77 canonical symbol table':
USER istpst.cmd
: fcst
istppt
"Fortran-77 canonical parse tree':
USER istppt.cmd
: fept
: fest
£77 local call, event, object group data
felM <= ffelM
ogrpM <= fogrpM
callM <= fcallM
varnamM <= fvarnamM
mainfel <= fmainfel
mainogrp <= fmainogrp
maincall <= fmaincall
mainvarnam <= fmainvarnam
mainfgs <= fmainfgs
mainfsl <= fmainfsl
fmain <
fmainfel "£77 main prog fel"*
fmainfgs "£77 main prog fgs''*
fmainvarnam "£77 main prog varnam''#
fmaincall "£77 main prog call"x
fmainogrp "£77 main prog ogrp"*
fmainfsl "£77 main prog fsl'*
>

"£77 main program local data'#:
USER fmain.cmd
(fgloball)
: varnamU
: PARAMETERS < tepee >

fglobalU(fglobalM)
"set of all 77 module global data''*:
P-HOMOMORPHISM (:fgloball)

(prog)

flocal <
ffelM[ffell "£77 module flowgraph event label'x
fogrpMlfogrpl "£77 module object group'*
fcallM[fcall] "£77 module call data'*
fvarnamM[fvarnam] "£77 module object to variable name map"*
fglobalM "£77 module global data'*
>

"£77 module local data'*:
USER flocal.cmd

. fept

: fest

: fxat

: frouM

: ffplM

: PARAMETERS < tepee >

77 fgri data

fgs <= figs
fsl <= ffsl

fgsM <= ffgsM
fslM <= ffslM
rouM <= frouM

figrf <
ffgsM[ffgs] "£77 module fgrf structures's
ffs1M[ffsl] "£77 module stmt-number fgrf edge-labels"*
fEfplM[ffpl] "f77 module parse-tree fgrf edge-labels'#
frouM "f77 list of routine names in a file'#
>

"£77 module local fgrf data'x:
USER ffgrf.cmd
: fept
: fest

Canonicalized f77 parse tree
fcan <

59

fept "£77 canonical parse tree'*
fcst "£77 canonical symbol table'*
>
"£77 canonical parse structure''*:
USER fcan.cmd

. fxpt

. fxst

: femt

f77 semantic analysis information

fsem <
fxpt "f77 extended parse tree'*
fxst "f77 extended symbol table'x
fxat "£77 extended attribute table''*
fxls "£77 semantic analyzer listing"#
>

"£77 semantic analyzexr''* :
USER fsem.cmd
: fbpt
: fbst

77 syntactic analysis information

fprs <
fobpt "£77 basic parse tree'*
fbst "f77 basic symbol table''*
fbci "£77 basic comment index table'*
fpls "£77 parser error list's
>

"£77 parser'#:
USER fprs.cmd

: ftkn

: femt

77 lexical analysis information

fscn <
ftkn "£77 token stream''*
fcmt "£77 comment table''*
fsls "£77 scanner listing"#
>
"£77 scanner'*
USER fscn.cmd
: £
src <= £
£
ATOMIC

60

"Fortran-77 source file"

Handling a f77 multiple-file program. Assume each file is a module.
prog(src)
"references to program source files''s:
COMPOUND
: ref

ref
ATOMIC
"list of source/Excess file names"

*xx The Cecil sequencing specification language subsystem
User interface routines

praqre
"Cecil AQRE semantic data':
USER praqre.cmd
tcedptr
:cadptr
rancptr
(txtptr

aqrespec <
cedptr”ced ''name of ced'"*
cadptr”cad 'name of cad'#*
ancptr”anc "name of anc''x
txtptr txt ''name of txt'#*
>
"ODIN name of AQRE data for single aqre''*:
USER aqrespec.cmd
(aqrenamU)

aqrenamU(.null)
"set of ODIN names of AQRE data for a single aqre"*:
UNION
(agrenaml)

aqrenamiN(.null@)
"set of ODIN names of AQRE data for single aqre'#:
USER agrenam.cmd
cesname
: cecptr
PARAMETERS < aqre >

Working routines

agrekeyptr-aqrekey@
"pointer to aqrekey object'*:

61

USER aqrekeyptr.cmd
rcecptr

aqrekey
"keys of aqre’s for a cecil expression":
CAT
: (agrekeyU)

aqrekeyU(.simple)
"union of keys of aqre’s for a Cecil expression'#:
HOMOMORPHISM (:key)
: (ancl)

txtlist " txtset@
"pointer to list of agre text objects''k:
USER txtlist.cmd

icecptr
txtset
"set of aqre text objects':
CAT
1txtU
cecsem <

ancU[anc] "Cecil anchor data set'=*
cadU[cad] "Cecil analysis data set'*
cedU[ced] "Cecil evaluation data set''*
txtU[txt] "text of the AQRE"*
cecexp "Cecil expression structure'*
>

"Cecil semantic analysis'"*:

USER cecsem.cmd

:cecfe
cecfe
"Cecil syntax tree"*:
USER cecfe.cmd
:cec
cec

ATOMIC
"Cecil source code"

x The Excess external sequencing assertion language subsystem

graph data for an Excess module

fgs <= xsfgs
fel <= xsfel
rou <= xsrou

62

ogrp <= Xsogrp
varnam <= Xsvarnam
fsl <= xsfsl
call <= xscal

fgsM <= xsfgsM
felM <= xsfelM
rouM <= xsrouM
ogrpM <= xsogrpM
varnamM <= xsvarnamM
fs1M <= xsfslM
callM <= xscalM

We must add a tool that generates '.main" global information for

every supported programming language. This should be easy since

we know that that empty data structure’s file looks like.

Every supported programming language will have to collect information
from all modules and we want to have "Excess'" files treated exactly
like other program files. E. g. Fortran is a list of 2 empty sets and
the nil identifier in Lisp format (() () ()), one paren per line.

H oK ¥ R ¥ W W

fglobalM <= xsfglobalM
xsfgloball
"empty FORTRAN global information's*:
USER xsfglobal.cmd

: xsfe
xsgrf <
xsfgsMixsfgs] "fgs for Excess module'*
xsfelM[xsfell "fel for Excess module's*
xscalM[xscall "call data for Excess module'*
xsogrpM[xsogrp] "ogrp for Excess module'*
xsfs1M[xsfsl] "fsl’s for Excess module'#
xsvarnamM[xsvarnam] "varnams for Excess module"*
xsroul "names of routines for Excess module'*
>

"graph data for Excess module"*:
USER xsgrf.cmd
: xsfe

Excess front end tool

xsfe
"Excess intermediate form'"*:
USER xsfe.cmd
: Xxs
src <= X8
Xs

ATOMIC

"Excess source code"

*** The Tepee event pattern language subsystem
tpfeptr~tpfe@
"pointer to Tepee front end intermediate form''*:
USER tpspec.cmd
. tpptr

tpfe
"Tepee front end'"*:
USER tpfe.cmd
¢ tp
tp

ATOMIC
"Tepee source code"

Standard Specification Header

err "errors generated while producing derivation for display"
ERROR
(.view)

warn 'warnings generated while producing derivation for display"
WARNING
(.view)

name "names of the elements of a compound file"
NAME
. compound

key "key values (for selection)" :
KEY
.simple

union (.null) "union of the elements of a compound file'
UNION
(. compound)

.stat <= .derived
.stat <= .c.name
.stat <= .cat

.view <= .c.name
.view <= .cat
.view <= .s.name

.view <= .simple

.c.name "names of elts of composite file'"* :
NAME
.composite

.cat "contents of compound file'x :
CAT
(. compound)

.exror "errors gen’d while producing drvn"# :
ERROR
(.derived)

.cmpd (.null) "files named in ref file''* :
COMPOUND
.simple

.s.name "names of sentinels watching a file"* :
NAME
.sentinel

.sentinel (.null) "sentinels watching a file"* :
SENTINEL
.simple
*| : .cmpd"

.check (.null) "check effect of copy command file'#* :
COPYTST
(.copy_sntU)
(.copy_dsc)
: PARAMETERS < (check) >

.copy_sntU (.null) "sentinels of dests of copy command file"* :
UNION

: (.copy_snt)

.copy_snt (.null) "sentinels of dests of copy command file'"* :
HOMOMORPHISM (:.sentinel)
(.copy_dst)

.copy_dsc (.null) "descr of copy command'# :
COLLECT

(.copy_org)
(.copy_dst)

65

.copy_chk <
.copy_org (.null) "origin files in copy command file"#
.copy_dst (.null) "dest files in copy command file"#
> "files in a copy command file'* :
COPYCHK
.simple

66

