Atomic Layer Etching of Metal Oxides

and Atomic Layer Deposition of Metal Fluorides

by

Younghee Lee

B.S., Seoul National University, 1999

M.S., Seoul National University, 2001

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Doctor of Philosophy

Department of Chemistry and Biochemistry

2015

This thesis entitled:

Atomic Layer Etching of Metal Oxides and Atomic Layer Deposition of Metal Fluorides written by Younghee Lee

has been approved for the Department of Chemistry and Biochemistry

Professor Steven M. George

Professor Carl A. Koval

Date_____

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

Lee, Younghee (Ph.D., Chemistry)

Atomic Layer Etching of Metal Oxides and Atomic Layer Deposition of Metal Fluorides Thesis directed by Professor Steven M. George

Atomic control of thin film growth and removal is essential for semiconductor processing. Atomic layer deposition (ALD) is a thin film deposition technique that is based on self-limiting surface reactions that deposit thin conformal films with atomic scale precision. The ALD of metal fluorides has been limited by the difficulty of handling the hydrogen fluoride (HF) precursor that is necessary for metal fluoride film growth. The use of HF-pyridine as an HF reservoir has allowed the development of metal fluoride ALD processes such as AlF₃, LiF, lithium ion conducting (AlF₃)(LiF)_x alloy, ZrF₄, HfF₄, MnF₂, MgF₂, and ZnF₂. AlF₃ ALD was studied using trimethylaluminum (TMA) and HF at temperatures from 150-300 °C by *in situ* techniques such as quartz crystal microbalance (QCM), quadrupole mass spectrometry (QMS) and Fourier transform infrared (FTIR) spectroscopy. *Ex situ* characterization of the films was conducted using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE), grazing incidence X-ray diffraction (GIXRD), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS). These high quality metal fluoride ALD films will be useful for many applications such as optical coatings and Lewis acid catalysts.

"Reverse ALD", i.e. atomic layer etching (ALE), is a film removal technique that is able to remove thin films with atomic level control. Current ALE processes based on halogen adsorption and ion-enhancement are inherently directional processes that lead to an anisotropic removal of material. New thermal approaches for Al₂O₃ and HfO₂ ALE were demonstrated using Sn(acac)₂ and HF as the reactants. *In situ* and *ex situ* studies showed that thermal ALE of Al₂O₃ and HfO₂ is possible at temperatures from 150-250°C. In the proposed reaction mechanism, the HF reactant fluorinates the metal oxide surfaces to form the corresponding metal fluoride and H₂O as reaction products. The Sn(acac)₂ reactant induces a ligand exchange reaction to produce volatile SnF(acac) and Al(acac)₃ or Hf(acac)₄. This etching approach based on fluorination and ligand exchange is general and can be applied to other metal oxides, as well as metal nitrides, metal phosphides, metal arsenides and elemental metals. Thermally driven ALE processes will provide an important tool for isotropically etching materials at the atomic scale.

"We discovered something today."

John Bardeen (1908-1991)

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Steven George, for his support throughout my PhD study. Steve has always provided me with wonderful advice and encouraged me to pursue projects that I truly enjoy. I have enjoyed being a part of a great team. Andrew Cavanagh taught me everything I needed to know around the lab as well as preformed the XPS experiments for these studies. Virginia Anderson taught me about XRR measurements and supported me. Jaime DuMont conducted all of the FTIR studies in this study. Matthias Young guided me through XRD analysis. Daniel Higgs assisted me in studying the mechanical properties of our materials. Huaxing Sun also performed XPS experiments. Tim Porcelli helped conduct the AFM and SEM measurements. I am also grateful to the rest of the former and current George group members who have always been there to help me. I would like to thank our excellent collaborators, especially Dani PiPer and Professor Sehee Lee for the measurements of ion conductivity. I am very grateful to my friends, parents, and family. Ingrid and Rick made me love Boulder even more. My parents have always been supportive. I would like to thank my wonderful wife, Dayoung for being with me. This work was funded by the National Renewable Energy Laboratory, the Department of Energy, and the National Science Foundation.

CONTENTS

CHAPTER

1	Introduction	1
	1.1 Atomic Layer Deposition	
	1.2 Atomic Layer Etching	
	1.3 Outline of Remaining Chapters	
	1.4 References	
2	ALD of AlF ₃ Using Trimethylaluminum and Hydrogen Fluoride	23
	2.1 Introduction	
	2.2 Experimental	
	2.2A Viscous Flow Reactor with in situ QCM and QMS	
	2.2B FTIR Spectroscopy	
	2.2C Ex situ Film Characterization using XRR, XRD and SE	
	2.2D XPS and RBS	
	2.3 Results and Discussion	
	2.3A Growth of AlF ₃ Films	
	2.3B Nucleation and Reaction Mechanism for AlF ₃ ALD	
	2.3C. <i>Ex situ</i> AlF ₃ Film Characterization	
	2.4 Conclusions	
	2.5 Acknowledgements	
	2.6 References	
3 Li	ALD of LiF and Lithium Ion Conducting $(AlF_3)(LiF)_x$ Alloys Using Trimethylaluministic ithium Hexamethyldisilazide and Hydrogen Fluoride	um, 60

- 3.1 Introduction
- 3.2 Experimental

- 3.2A Viscous Flow Reactor with in situ QCM and QMS
- 3.2B XRR, GIXRD, and SE
- 3.2C XPS
- 3.2D ICP-MS and IC
- 3.2E EIS
- 3.3 Results and Discussion
 - 3.3A Growth of LiF Films
 - 3.3B Growth of (AlF₃)(LiF)_x Alloy Films
 - 3.3C Ex situ analysis of LiF and (AlF₃)(LiF)_x Alloy Films
 - 3.3D Measurement of Ionic Conductivity of (AlF₃)(LiF)_x Alloy Films by EIS
- 3.4 Conclusions
- 3.5 Acknowledgements
- 3.6 References
- 4 ALD of Metal Fluorides Using Various Metal Precursors and Hydrogen Fluoride 95
 - 4.1 Introduction
 - 4.2 Experimental
 - 4.2A Viscous Flow Reactor with in situ QCM
 - 4.2B Ex situ Film Characterization Using XRR, XRD, SE, and XPS
 - 4.3 Results and Discussion
 - 4.3A. Growth of ZrF₄ Films Using Tetrakis(ethylmethylamido)zirconium and HF
 - 4.3B. Growth of ZrF₄ Films Using or Zirconium tert-butoxide and HF
 - 4.3C Growth of HfF₄ Films Using tetrakis(dimethylamido)hafnium and HF
 - 4.3D Growth of MnF₂ Films Using Bis(ethylcyclopentadienyl)manganese and HF
 - 4.3E Growth of MgF₂ Films Using Bis(ethylcyclopentadienyl)magnesium and HF
 - 4.3F Growth of ZnF2 Films Diethylzinc and HF
 - 4.3G Reaction Mechanism and Stoichiometry
 - 4.3H Ex situ Film Characterization Using XRR, XRD, SE, and XPS
 - 4.4 Conclusions

- 4.5 Acknowledgements
- 4.6 References

5 Atomic Layer Etching of Al₂O₃ Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)₂ and HF 132

- 5.1 Introduction
- 5.2 Experimental
 - 5.2A Viscous Flow Reactor Equipped for in situ QCM Measurements
 - 5.2B Sample Preparation and *ex situ* Film Analysis
- 5.3 Results and Discussion
- 5.4 Generality and Advantages of Thermal ALE Approach
- 5.5 Conclusions
- 5.6 Acknowledgements
- 5.7 References

6.. Mechanism of Thermal Al_2O_3 Atomic Layer Etching Using Sequential Reactions with $Sn(acac)_2$ and HF 167

- 6.1 Introduction
- 6.2 Experimental
 - 6.2A Viscous Flow Reactor Equipped for in situ QCM Measurements
 - 6.2B FTIR Spectroscopy Measurements
- 6.3 Results and Discussion
 - 6.3A QCM Measurements versus Temperature
 - 6.3B FTIR Studies of Al₂O₃ ALE
 - 6.3C Studies of Al₂O₃ ALE Nucleation
 - 6.3D Proposed Al₂O₃ ALE Reaction Mechanism
- 6.4 Conclusions
- 6.5 Acknowledgements
- 6.6 References

7.. Atomic Layer Etching of HfO₂ Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)₂ and HF 207

7.1 Introduction

- 7.2 Experimental
 - 7.2A Viscous Flow Reactor Equipped for in situ QCM Measurements
 - 7.2B Si Wafers, XRR, XPS and SE
 - 7.2C FTIR Spectroscopy Measurements
- 7.3 Results and Discussion
 - 7.3A QCM Measurements
 - 7.3B XRR, XPS and SE Measurements
 - 7.3C FTIR Spectroscopy Measurements
 - 7.3D Nucleation Behavior and Proposed HfF₄ Formation
 - 7.3E Proposed HfO₂ ALE Reactions
- 7.4 Conclusions
- 7.5 Acknowledgements
- 7.6 References
- 8 Bibliography

253

TABLES

- **Table 1-1.** Various metal precursors used for metal fluorides ALD.
- **Table 2-1.** ΔM_{TMA} , ΔM_{HF} , MGPC, ΔM_{TMA} /MGPC, and x for AlF₃ ALD at differenttemperatures. ΔM_{TMA} , ΔM_{HF} , and MGPC are expressed in units of ng/(cm² cycle).Growth rate is expressed in unit of Å/cycle
- Table 4-1. Metal fluorides, metal precursors, acronym of metal precursors, and the bubbler temperature.
- **Table 4-2.** Metal fluorides, Metal fluorides, acronym of metal precursors, MGPC, and number of HF on metal fluoride.
- Table 4-3. Metal fluorides, acronym of metal precursors, growth rate at 150°C, density, and the refractive index.
- **Table 5-1.** ΔM_{Sn} , ΔM_{HF} and MCPC for Al₂O₃ ALE at different temperatures.
- **Table 5-2.** Atomic Layer Etching Reactions for Various Materials
- **Table 6-1**. ΔM_{Sn} , ΔM_{HF} , MCPC, ΔM_{Sn} /MCPC, x, and x(MCPC) for Al₂O₃ ALE at different temperatures. ΔM_{Sn} , ΔM_{HF} , MCPC, and x(MCPC) are expressed in units of ng/(cm² cycle).
- **Table 7-1**. ΔM_{Sn} , ΔM_{HF} , MCPC, ΔM_{Sn} /MCPC, x, and x(MCPC) for HfO₂ ALE at different temperatures. ΔM_{Sn} , ΔM_{HF} , MCPC and x(MCPC) are expressed in units of ng/(cm² cycle).

FIGURES

- **Figure 1-1.** Schematic of the general ALD process based on sequential, self-limiting surface reactions.
- **Figure 1-2.** Schematic of surface chemistry for Al₂O₃ ALD using TMA and H₂O as the reactants.
- **Figure 1-3.** Cross-sectional TEM image of Intel's MOSFET employing high-k gate dielectrics grown by ALD.
- Figure 1-4. Molecular structures of various metal precursors such as metal alkyls (TMA & DEZ), cyclopentadienyls (Mn(*Et*Cp)₂ & Mg(*Et*Cp)₂), alkylamides (TDMAH & DEMAZ), silyamides (LiHMDS), alkoxides (ZTB), and β-diketonates (Sn(acac)₂). Molecular structures omitted CH₂ and CH for clarity.
- **Figure 1-5.** Schematic of (a) the planar FET and (b) FinFET.
- Figure 1-6. Schematic of the process steps in an ALE cycle for a silicon film etched by chlorine and argon.
- Figure 1-7. Schematic of (a) anisotropic etching; (b) isotropic etching; (c) Undercut etching by isotropic etching.
- Figure 1-8. Generic schematic of the thermal Al₂O₃ ALE process etched by HF and Sn(acac)₂.
- **Figure 2-1.** Mass gain versus time during 200 AlF₃ ALD cycles with TMA and HF as the reactants on Al₂O₃ at 150 °C using the reaction sequence of (1-30-1-30).
- **Figure 2-2.** Enlargement of mass gain versus time for three sequential TMA and HF exposures during AlF₃ ALD in the steady-state, linear growth regime shown in Figure 2-1.
- **Figure 2-3.** (a) MGPC, ΔM_{TMA} , and ΔM_{HF} and (b) $M_{TMA}/MGPC$ ratio during 200 AlF₃ ALD cycles with TMA and HF as the reactants on Al₂O₃ at 150 °C.

- **Figure 2-4.** (a) ΔM_{TMA} versus versus number of TMA minidoses with the HF exposure fixed at 1.0 s. (b) ΔM_{HF} versus versus number of HF minidoses with the TMA exposure fixed at 1.0 s.
- **Figure 2-5.** Film thickness versus number of cycles for 800 AlF₃ ALD cycles with TMA and HF as the reactants on Si(100) at 150 °C determined by XRR and SE measurements.
- Figure 2-6. Mass spectrometer signals for m/z= 16, 20 and 52 for CH₄, HF and pyridine, respectively, during three AlF₃ ALD cycles at 150 °C. These signals were recorded at the same time as the mass changes shown in Figure 2-2.
- **Figure 2-7.** (a) Mass gain per cycle (MGPC) and (b) growth rate versus reaction temperature using reaction sequence of (1-30-1-30).
- **Figure 2-8.** FTIR spectra versus AlF₃ ALD cycles on initial Al₂O₃ surface. These spectra are all referenced to the initial Al₂O₃ film on the SiO₂ nanoparticles.
- Figure 2-9. Difference FTIR spectra after (a) 1st TMA exposure on initial Al₂O₃ surface and
 (b) 1st HF exposure after 1st TMA exposure. The difference spectra are referenced to spectra recorded immediately prior to the TMA and HF exposures.
- Figure 2-10. FTIR difference spectra during AlF₃ ALD. (a) Difference spectrum after the TMA exposure referenced to the spectrum after the previous HF exposure (TMA-HF) and (b) Difference spectrum after the HF exposure referenced to the spectrum after the previous TMA exposure (HF-TMA).
- Figure 2-11. Proposed reaction mechanism for AlF₃ ALD using TMA and HF as the reactants.
- **Figure 2-12.** Sputter depth profile of AlF₃ film measured by X-ray photoelectron spectroscopy.
- **Figure 2-13.** Rutherford backscattering spectrum of 800 cycles of AlF₃ ALD film on 20 cycles of Al₂O₃ ALD film on carbon substrate.
- Figure 2-14. Density and refractive index for AlF₃ ALD films grown at various temperatures.
- **Figure 3-1.** Mass gain versus time during 100 cycles of LiHMDS and HF reaction at 150 °C using the reaction sequence of (1-30-1-30).

- **Figure 3-2.** Enlargement of mass gain versus time for three sequential LiHMDS and HF reactions in the steady-state, linear growth regime shown in Figure 3-1.
- **Figure 3-3.** MGPC and ΔM_{Li} /MGPC ratio during 100 cycles of LiHMDS and HF reaction at 150 °C: (a) MGPC, ΔM_{Li} , and ΔM_{HF} ; (b) M_{Li} /MGPC ratio.
- Figure 3-4. Mass spectrometer signals for (a) m/z= 65 for HMDS; (b) m/z= 17 for NH₃ and m/z=20 for HF; (c) m/z=77 and 47 for FSi(CH)₃ respectively, during three LiF ALD cycles at 150°C shown in Figure 3-2.
- Figure 3-5. Proposed reaction mechanism of LiF ALD using LiHMDS and HF.
- **Figure 3-6.** MGPC and growth rate versus reaction temperature using reaction sequence of (1-30-1-30): (a) MGPC; (b) Growth rate.
- **Figure 3-7.** Mass gain versus time during 40 sequences of $AlF_3:LiF = 1:1$ reaction at 150 °C using the reaction sequence of (1-30-1-30)-(1-30-1-30).
- **Figure 3-8.** Enlargement of mass gain versus time for three sequential TMA, HF, LiHMDS and HF reactions in the steady-state, linear growth regime shown in Figure 3-7.
- **Figure 3-9.** MGPS and $\Delta M_{AIF3}/MGPS$ ratio during 40 sequences of AlF₃:LiF= = 1:1 reaction at 150 °C: (a) MGPS, $\Delta M_{AIF3}/MGPS$ ratio ΔM_{AIF3} , and ΔM_{LiF} ; (b) $\Delta M_{AIF3}/MGPS$ ratio.
- Figure 3-10. Mass spectrometer signals for (a) m/z= 16 for CH4; (b) m/z= 20 for HF; (c) m/z=77 and 47 for FSi(CH)₃, HF respectively, during 40 sequences of AlF₃:LiF= = 1:1 reaction at 150 °C shown in Figure 3-7.
- **Figure 3-11.** Proposed reaction mechanism of (AlF₃)(LiF)_x alloy film consisting of AlF₃ ALD subcycle and LiF ALD subcycle.
- **Figure 3-12.** Film thickness versus number of sequences for $AlF_3:LiF = 1:1$ reaction at 150 °C on Si (100) substrates determined by XRR and SE measurements.
- **Figure 3-13.** Grazing Incidence X-ray diffraction of (a) (AlF₃)(LiF)_x alloy film; (b) LiF ALD film.
- Figure 3-14. Schematic of symmetric coin cell and equivalent circuit

- Figure 3-15. Total resistance of symmetric coin cell measured by electrochemical impedance spectroscopy (EIS) prepared using (a) 800 sequences of (AlF₃)(LiF)_x alloy film;
 (b) 400 sequences (AlF₃)(LiF)_x alloy film.
- Figure 4-1. (a) Mass gain versus time during 200 ZrF₄ ALD cycles with TEMAZ and HF as the reactants on ZrO₂ at 150 °C using the reaction sequence of (1-40-1-40);
 (b) Enlargement of mass gain versus time for three sequential TEMAZ and HF exposures during ZrF₄ ALD in the steady-state, linear growth regime.
- **Figure 4-2.** (a) MGPC, ΔM_{TEMAZ} , and ΔM_{HF} and (b) $M_{TEMAZ}/MGPC$ ratio during 200 ZrF₄ ALD cycles with TEMAZ and HF as the reactants on ZrO₂ at 150 °C.
- **Figure 4-3.** (a) ΔM_{TEMAZ} versus versus number of TEMAZ minidoses with the HF exposure fixed at 1.0 s. (b) ΔM_{HF} versus versus number of HF minidoses with the TEMAZ exposure fixed at 1.0 s.
- Figure 4-4. (a) Mass gain versus time during 200 ZrF₄ ALD cycles with ZTB and HF as the reactants on ZrO₂ at 150 °C using the reaction sequence of (1-40-1-40);
 (b) Enlargement of mass gain versus time for three sequential ZTB and HF exposures during ZrF₄ ALD in the steady-state, linear growth regime.
- Figure 4-5. (a) Mass gain versus time during 200 HfF₄ ALD cycles with TDMAH and HF as the reactants on HfO₂ at 150 °C using the reaction sequence of (1-40-1-40);
 (b) Enlargement of mass gain versus time for three sequential TDMAH and HF exposures during HfF₄ ALD in the steady-state, linear growth regime.
- Figure 4-6. (a) Mass gain versus time during 200 MnF₂ ALD cycles with Mn(EtCp)₂ and HF as the reactants on MnO at 150 °C using the reaction sequence of (1-40-1-40);
 (b) Enlargement of mass gain versus time for three sequential Mn(EtCp)₂ and HF exposures during MnF₂ ALD in the steady-state, linear growth regime.
- Figure 4-7. (a) Mass gain versus time during 200 MgF₂ ALD cycles with Mg(EtCp)₂ and HF as the reactants on MgO at 150 °C using the reaction sequence of (1-40-1-40);
 (b) Enlargement of mass gain versus time for three sequential Mg(EtCp)₂ and HF exposures during MgF₂ ALD in the steady-state, linear growth regime.

- Figure 4-8. (a) Mass gain versus time during 400 ZnF₂ ALD cycles with DEZ and HF as the reactants on ZnO at 150 °C using the reaction sequence of (1-30-1-30);
 (b) Enlargement of mass gain versus time for three sequential DEZ and HF exposures during ZnF₂ ALD in the steady-state, linear growth regime.
- **Figure 4-9.** Proposed reaction mechanism for ZrF₄ ALD using TEMAZ and HF as the reactants.
- **Figure 4-10.** Proposed reaction mechanism for MnF₂ ALD using Mn(EtCp)₂ and HF as the reactants.
- **Figure 4-11.** Sputter depth profile of (a) ZrF₄ film; (b) HfF₄ film measured by X-ray photoelectron spectroscopy.
- **Figure 4-12.** Refractive index for metal fluorides ALD films grown at 150 °C in the spectral range between 240 and 1700 nm using the Sellmeier model.
- **Figure 5-1** Mass change versus time for Al₂O₃ ALE using sequential Sn(acac)₂ and HF exposures at 200°C.
- **Figure 5-2** Expansion of linear region of Figure 5-1 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 200°C.
- **Figure 5-3** Mass change per cycle (MCPC) versus precursor exposure time at 200°C for (a) Sn(acac)₂ and (b) HF.
- **Figure 5-4** Mass change versus time for Al₂O₃ ALE using sequential Sn(acac)₂ and HF exposures at 150°C.
- **Figure 5-5** Expansion of linear region of Figure 5-4 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 150°C.
- **Figure 5-6** Temperature dependence of (a) ΔM_{Sn} and ΔM_{HF} and (b) MCPC for Al₂O₃ ALE.
- Figure 5-7 X-ray reflectivity scans showing x-ray intensity versus incident angle for Al₂O₃ films on Si(100). (a) Initial Al₂O₃ film grown using 150 Al₂O₃ ALD cycles; and Al₂O₃ films after various numbers of Al₂O₃ ALE cycles: (b) 50 cycles, (c) 100 cycles, (d) 200 cycles and (e) 400 cycles.

- Figure 5-8 X-ray reflectivity and spectroscopic ellipsometry measurements of Al₂O₃ film thickness versus number of Al₂O₃ ALE cycles for initial Al₂O₃ ALD films grown using (a) 150 Al₂O₃ ALD cycles and (b) 100 Al₂O₃ ALD cycles.
- **Figure 5-9** Schematic of proposed reaction mechanism for Al₂O₃ ALE showing (A) Sn(acac)₂ reaction and (B) HF reaction.
- **Figure 6-1** Mass change versus time for Al₂O₃ ALE using sequential Sn(acac)₂ and HF exposures at 150, 175, 200, 225 and 250°C.
- **Figure 6-2** Expansion of linear region of Figure 6-1 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 150, 200 and 250°C.
- **Figure 6-3** (a) Mass change after the $Sn(acac)_2$ exposure (ΔM_{Sn}), mass change after the HF exposure (ΔM_{HF}) and mass change per cycle (MCPC) versus number of ALE cycles at 200°C. (b) $\Delta M_{Sn}/MCPC$ ratio versus number of ALE cycles.
- Figure 6-4 (a) Arrhenius plot of the MCPC. The slope yields an activation barrier of E= 6.6 kcal/mole. (b) Arrhenius plot of 1/(integrated absorbance) for the acetylacetonate vibrational features. The slope yields an activation barrier of E= 6.2 kcal/mole.
- **Figure 6-5** Infrared absorbance showing the growth of Al-O stretching vibrations in bulk Al₂O₃ versus number of Al₂O₃ ALD cycles at 200°C. These FTIR spectra were referenced to the initial ZrO₂ nanoparticles.
- Figure 6-6 Infrared absorbance showing the loss of Al-O stretching vibration in bulk Al₂O₃ versus number of Al₂O₃ ALE cycles at 200°C. These FTIR spectra were referenced to the initial ZrO₂ nanoparticles.
- Figure 6-7 Infrared absorbance from the acetylacetonate vibrations during Al₂O₃ ALE at 200, 250 and 300°C after (a) Sn(acac)₂ exposures and after (b) HF exposures. These FTIR spectra were referenced to the initial ZrO₂ nanoparticles.
- **Figure 6-8** Expansion of first two ALE cycles in Figure 6-1 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 150, 175, 200, 225 and 250°C.

- **Figure 6-9** Infrared absorbance showing the Al-O stretching vibrations in bulk Al₂O₃ and the acetylacetonate vibrational features for the first Sn(acac)₂ and HF exposures at 200°C. These FTIR spectra were referenced to the initial ZrO₂ nanoparticles.
- **Figure 6-10** Infrared absorbance after the first $Sn(acac)_2$ exposure and first HF exposure on an Al_2O_3 film at 200 °C. These FTIR spectra were referenced to the SiO₂ nanoparticles coated with the Al_2O_3 film.
- Figure 6-11 Infrared absorbance during Al₂O₃ ALE at 200°C, 250°C and 300° recorded after the Sn(acac)₂ exposures and HF exposures. These FTIR spectra were referenced to the SiO₂ nanoparticles coated with the Al₂O₃ film.
- Figure 6-12 Difference infrared absorbance during Al₂O₃ ALE at 200°C, 250°C and 300°C. The difference spectra recorded after the Sn(acac)₂ and HF exposures were referenced using the spectra after the previous HF and Sn(acac)₂ exposures, respectively.
- **Figure 6-13** Schematic of proposed surface chemistry for Al₂O₃ ALE showing (A) Sn(acac)₂ reaction and (B) HF reaction.
- **Figure 7-1** Pictures of Sn(acac)₂ and HF-pyridine precursors.
- **Figure 7-2** Mass change versus time for HfO₂ ALE using sequential Sn(acac)₂ and HF exposures at 200°C.
- **Figure 7-3** Expansion of linear region of Figure 7-2 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 200°C.
- **Figure 7-4** (a) Mass change after the $Sn(acac)_2$ exposure (ΔM_{Sn}), mass change after the HF exposure (ΔM_{HF}) and mass change per cycle (MCPC) versus number of ALE cycles at 200°C. (b) $\Delta M_{Sn}/MCPC$ ratio versus number of ALE cycles.
- **Figure 7-5** Mass change per cycle (MCPC) versus exposure time for (a) Sn(acac)₂ and (b) HF.
- **Figure 7-6** (a) Mass change versus time during five cycle of HfO₂ ALD and then ten HF exposures on the HfO₂ ALD film. (b) ΔM_{Sn} and ΔM_{HF} during HfO₂ ALE for a Sn(acac)₂ exposure of 1.0 s and variable HF exposure.

- **Figure 7-7** Mass change versus time for HfO₂ ALE using sequential Sn(acac)₂ and HF exposures at 150, 175, 200, 225 and 250°C.
- **Figure 7-8** Temperature dependence of (a) ΔM_{Sn} and ΔM_{HF} and (b) MCPC for HfO₂ ALE.
- Figure 7-9 X-ray reflectivity scans showing x-ray intensity versus incident angle for HfO₂ films on Si(100). (a) Initial HfO₂ film grown using 150 HfO₂ ALD cycles; and HfO₂ films after various numbers of HfO₂ ALE cycles: (b) 50 cycles, (c) 100 cycles, (d) 200 cycles and (e) 400 cycles.
- Figure 7-10 X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) measurements of HfO₂ film thickness versus number of HfO₂ ALE cycles for initial HfO₂ ALD films grown using (a) 150 HfO₂ ALD cycles and (b) 100 HfO₂ ALD cycles.
- Figure 7-11 Absolute infrared absorbance showing the growth of Hf-O stretching vibrations in bulk HfO₂ versus number of HfO₂ ALD cycles at 200°C. These FTIR spectra were referenced to the initial SiO₂ particles.
- Figure 7-12 Absolute infrared absorbance showing the loss of Hf-O stretching vibration in bulk HfO₂ versus number of HfO₂ ALE cycles at 200°C. These FTIR spectra were referenced to the initial SiO₂ particles.
- **Figure 7-13** Expansion of first two ALE cycles in Figure 7-6 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 150, 175, 200, 225 and 250 °C.
- Figure 7-14 Absolute infrared absorbance showing the Hf-O stretching vibrations in bulk
 HfO₂ and the acac vibrational features for the first Sn(acac)₂ and HF exposures at 200°C. These FTIR spectra were referenced to the initial SiO₂ particles.
- Figure 7-15 (a) 1. Difference spectrum after HF exposure on an initial HfO₂ film. The reference spectrum was the initial HfO₂ film on the SiO₂ nanoparticles. 2. Difference spectrum after the subsequent Sn(acac)₂ exposure. The reference spectrum was the previous FTIR spectrum after the HF exposure. (b) Difference spectrum after removal of 10 cycles of HfO₂ ALD from the SiO₂ nanoparticles. The reference spectrum was the FTIR spectrum after 10 cycles of HfO₂ ALD on the SiO₂ nanoparticles.
- **Figure 7-16** Absolute infrared absorbance showing the growth of Hf-F stretching vibrations in HfF₄ films versus number of HfF₄ ALD cycles at 150°C. These FTIR spectra are

referenced to the initial HfO_2 film on the SiO₂ nanoparticles after the first HF exposure.

Figure 7-17 Schematic of proposed surface chemistry for HfO₂ ALE showing (A) Sn(acac)₂ reaction and (B) HF reaction.

CHAPTER 1

INTRODUCTION

1.1 Atomic Layer Deposition

Atomic layer deposition (ALD) is a film growth method based on sequential, selflimiting surface reactions.¹ Because of its self-limiting nature, a very conformal continuous thin film can be grown with atomic layer control.¹ A typical ALD reaction consists of two sequential half reactions. Figure 1-1 shows a schematic for a general ALD process. During the first half sequence, gas molecule (A) reacts with the surface of the substrate to form a new surface saturated by (A). A purge step removes excess (A) molecules. During the second sequence, gas molecule (B) reacts with the surface formed by (A) to produce another surface terminated by (B). A purge step removes excess (B) molecules. As this ALD reaction is repeated, a thin film is deposited.

Figure 1-1. Schematic of the general ALD process based on sequential, self-limiting surface reactions (Ref. 1).

The Al₂O₃ ALD reaction using trimethylaluminum (TMA) and H₂O is the most well established ALD process. A schematic of the surface chemistry for Al₂O₃ ALD using TMA and H₂O is shown in Figure 1-2. In reaction A, there is a hydroxylated surface that is produced after several Al₂O₃ ALD cycles on the initial substrate. When TMA molecules are exposed to react with –OH groups on the surface, Al-CH₃ bonds are formed and methane molecules are produced as a reaction byproduct. In the second reaction B, H₂O molecules are brought into the surface to convert Al-CH₃ bonds into Al-OH bonds. This Al₂O₃ ALD reaction repeats until the ALD reaction stops and a certain Al₂O₃ ALD thickness is achieved.

The overall reaction for Al₂O₃ ALD is very exothermic. HSC chemistry shows that the formation of Al₂O₃ from the reaction between TMA and H₂O is very favorable having $\Delta H =$ -376 kcal/(2 mol. Al) or -188 kcal/(1 mol. Al) at 0°C.²

$$2\text{Al}(\text{CH}_3)_3 + 3\text{H}_2\text{O} \rightarrow \text{Al}_2\text{O}_3 + 6\text{CH}_4 \qquad \Delta \text{H} = -376 \text{ kcal}$$
(1)

This reaction is very favorable due to the formation of strong Al-O bond. ALD reactions are typically accomplished using thermal chemistry. However, plasma ALD is sometimes employed to enhance the surface reactions.³

ALD process can grow very conformal Al₂O₃ ALD films on high aspect ratio structures. A conformal Al₂O₃ ALD film can be grown on a Si wafer with a trench structure.⁴ An Al₂O₃ ALD film can be coated on nanoparticles conformally using a rotary reactor.⁵ The thin films grown by ALD are continuous and pinhole free. These conformal films are key for applications such as high-k dielectrics in semiconductor devices^{6,7} or as protective coatings in Li ion batteries.^{8,9}

Figure 1-2. Schematic of surface chemistry for Al₂O₃ ALD using TMA and H₂O as the reactants.

ALD films have been commercialized by the semiconductor industry. Figure 1-3 shows a TEM image of a single transistor from Intel's 45 nm technology.¹⁰ Intel has applied HfO_2 ALD films as their high-k dielectric in 45 nm metal-oxide field effect transistor (MOSFET) in 2007.¹⁰ The dielectric HfO_2 layer is located between the metal gate and the silicon. ALD of HfO_2 has replaced thermally grown SiO₂ to achieve higher performance with low cost.^{10,11}

A wide range of materials from metal oxides to metals can be grown by ALD.¹² ALD of metal oxides, nitrides, and sulfides has been developed using H₂O, NH₃, and H₂S respectively.¹² ALD of metal fluorides has proven difficult because HF is not a benign reactant. Most of the metal fluoride ALD processes have avoided using HF.¹²

The overall reaction for AlF₃ ALD from TMA and HF is very exothermic. HSC chemistry shows that the formation of AlF₃ is very favorable having $\Delta H = -240$ kcal/(1 mol. Al) at 0°C.²

$$Al(CH_3)_3 + 3HF \rightarrow AlF_3 + 3CH_4 \qquad \Delta H = -240 \text{ kcal}$$
(2)

This AlF₃ formation reaction in equation 2 is an even more favorable than Al₂O₃ formation in equation 1 due to the formation of a very strong Al-F bond. Although this overall reaction is very thermochemically favorable, AlF₃ ALD has not been demonstrated until recently.^{13,14}

A hydrogen fluoride-pyridine (HF-pyridine) solution comprised of 70% HF and 30% pyridine was employed as a fluorine precursor for the study of AlF₃ ALD.^{13,14} HF-pyridine, known as Olah's reagent, is a commercially available precursor. Use of gaseous HF from HF-pyridine enables the safe handling of anhydrous HF. Because HF-pyridine is a liquid at room temperature and has an equilibrium with a small amount of gaseous HF, the problems of

Figure 1-3. Cross-sectional TEM image of Intel's MOSFET employing high-k gate dielectrics grown by ALD (Ref. 10).

using HF from compressed gas cylinders can be avoided. With static exposures and no pumping on our ALD reactor, the vapor pressure of HF over the HF-pyridine solution was 90-100 Torr at room temperature. This pressure is approximately 1/8 of the vapor pressure of pure HF at room temperature.

$$(HF)_{9} \cdot Pyridine \leftrightarrow (HF)_{9-x} \cdot Pyridine + xHF$$
(3)

The mass spectrometer measurements have revealed that HF is the dominant species in the vapor pressure of HF-pyridine. These results can be understood as a high boiling azeotrope.

The use of HF-pyridine as a convenient reservoir for anhydrous HF enabled the development for ALD process of many metal fluorides such as LiF, lithium ion conducting (AlF₃)(LiF)_x alloy, ZrF₄, HfF₄, MnF₂, MgF₂, and ZnF₂. The metal precursors utilized for these processes include metal alkyls, cyclopentadienyls, alkylamides, silylamides, and alkoxides. These precursors, listed in order of increasing reactivity, have been employed for ALD of metal oxides. Various metal precursors employed for the demonstration of metal fluorides ALD are summarized in Table 1-1. The molecular structures of various metal precursors are illustrated in Figure 1-4. ALD of many other metal fluorides can also be developed using HF from HF-pyridine solution.

One question someone may ask is whether metal β -diketonates will work as ALD precursors for metal fluoride ALD. Metal β -diketonates are not typically used for ALD reactions even though they tend to have decent vapor pressures. Because of the strong bond between the metal and the oxygens in a β -diketonate ligand, metal β -diketonates are not usually reactive to H₂O to form metal oxides. A plasma or a strong oxidant such as ozone is frequently required to enhance the surface reaction.

Various Metal Precursor	Acronym
Trimethylaluminum	TMA
Diethylzinc	DEZ
Bis(ethylcyclopentadienyl) manganese	Mn(<i>Et</i> Cp) ₂
Bis(ethylcyclopentadienyl) magnesium	Mg(<i>Et</i> Cp) ₂
Tetrakis(dimethylamido) hafnium	TDMAH
Tetrakis(ethylmethylamido) zirconium	TEMAZ
Lithium hexamethyldisilazide	LiHMDS
Zirconium <i>tert</i> -butoxide	ZTB
Tin acetylacetonate	Sn(acac) ₂

Table 1-1.Various metal precursors used for metal fluorides ALD.

Figure 1-4. Molecular structures of various metal precursors such as metal alkyls (TMA & DEZ), cyclopentadienyls ($Mn(EtCp)_2 \& Mg(EtCp)_2$), alkylamides (TDMAH & DEMAZ), silyamides (LiHMDS), alkoxides (ZTB), and β -diketonates ($Sn(acac)_2$). Molecular structures omitted CH₂ and CH for clarity.

HF, however, is very interesting molecule and may interact differently with metal β diketonates than H₂O. HF is a weak Brønsted acid in solution and is able to provide a proton. HF can act differently in the gas phase or on the surface, emphasizing the Lewis basicity of HF due to an electron-rich fluorine. Therefore, the reactivity between metal β -diketonates and HF is not straightforward.

Tin(II) acetylacetonate (Sn(acac)₂) is a commercially available metal β -diketonate precursor. It is a liquid at room temperature and has a good vapor pressure at ~100°C, which is also shown in Figure 1-4. Sn(acac)₂ was utilized as the tin precursor for the demonstration of SnS ALD.¹⁵

Reactivity between $Sn(acac)_2$ and HF would produce SnF_2 ALD films. SnF_2 is stable at atmospheric pressures, which is necessary for *ex situ* characterization. While other fluorides have possible applications such as optical coatings, Lewis acid catalysts, and solid state electrolytes, SnF_2 is not a very useful material except as an ingredient in more expensive toothpastes (e.g., Crest Pro Health[®]) where is replaces the more common ingredient, sodium fluoride (NaF).

1.2 Atomic Layer Etching

Curiosity on the reactivity between $Sn(acac)_2$, a metal β -diketonate, and HF to grow SnF_2 ALD films led to the discovery of "thermal" atomic layer etching (ALE), which is a technology that the semiconductor industry has been desperately searching for.^{16,17} This ALE process is based on sequential, self-limiting thermal reactions that enable an isotropic etching of material with atomic layer control.^{18,19}

Moore's Law predicts that the number of transistors in a chip will be approximately doubled every 24 months.²⁰ To meet the requirements for the miniaturization of devices the devices will need to be designed three dimensionally. ^{16,21} Figure 1-5a shows schematic of a planar field effect transistor (FET).²¹ Basically, a FET is a switch. The charge carriers, either electrons or holes, travel from the source to the drain through the channel created by the field that is applied on the gate. As the feature size of the transistor gets smaller than 20 nm, the leakage current through this channel becomes a challenge.²¹ To address this issue, the semiconductor industry has employed a three dimensional structure; e.g., the FinFET in 2012.²² The FinFET illustrated in Figure 1-5b²¹ takes its name from the shape of the narrow semiconductor structure that looks like the dorsal fin of a shark. By wrapping around the channel with a gate dielectric, the FinFET technology is able to turn on and off very effectively.^{21,22} This FinFET technology has led to lower power consumption and higher performance while adding little cost.²²

To make three dimensional structures such as the fin in the FinFET structure, an anisotropic dry etching process such as reactive ion etching (RIE) is typically employed. This RIE process is based on the Bosch process,²³ where the bottom of a Si substrate is etched by a SF₆ plasma while a thin polymeric layer is simultaneously deposited on the sidewalls by a C₄F₈ plasma. This plasma process can damage the Si substrate. A more precise and gentle process will be required for devices as with nanometer feature sizes.

The process of removing material at the atomic scale has been known for 25 years under different names such as atomic layer etching²⁴, digital etching²⁵ or layer-by-layer etching²⁶. This processes are all based on energetic ion or neutral atom bombardment.

Figure 1-5. Schematic of (a) the planar FET and (b) FinFET. (ref 21)

These processes aim for anisotropic etching of semiconductors such as Si^{25-27} , Ge, ^{28,29} GaAs,³⁰ and InP.³¹ ALE processes have been accomplished using either Cl or F adsorption that followed by the removal of surface species using Ar⁺ ion or neutral Ar or Ne bombardment. The schematic of this process is shown in Figure 1-6³².

The ALE of metal oxides such as Al₂O₃,³³ HfO₂,³⁴ ZrO₂,³⁵ and TiO₂ ³⁶ and SiO₂^{37,38} has been reported because the removal of the dielectric layer is needed to make contacts at the source and drain. Most reported ALE processes, including the first ALE patent,²⁴ are not based on the thermal processes. The process based on ion-enhanced removal of materials is inherently directional and leads to an anisotropic etching of the material. In contrast, most ALD processes are accomplished with thermal processes that result in conformal depositions. The first ALD patent by T. Suntola published in 1977 also used a thermal process.³⁹

The comparison of an anisotropic etching with an isotropic etching is shown in Figure 1-7a and 1-7b. An isotropic etching of material is necessary to create three dimensional structures such as the Gate-All-Around (GAA) transistor.¹⁷ Isotropic etching of the patterned area enables to undercut shown is Figure 1-7c. Currently, wet chemical techniques are the only available isotropic etch processes. Wet etching becomes more challenging when the size of the device approaches the nanometer scale due to capillary forces.¹⁷ An isotropic dry etching with atomic layer control should be able to replace wet etching methods for nanoscale structures. Isotropic etching could also be employed to clean the sidewalls after plasma etching.¹⁷ The ability to make the surface smooth by removing rough surfaces and defects would be very desirable in channels with nanometer size.¹⁷ These aspects of isotropic etching could be accomplished by thermal ALE.

Figure 1-6. Schematic of the process steps in an ALE cycle for a silicon film etched by chlorine

and argon. (ref. 32)

Figure 1-7. Schematic of (a) anisotropic etching; (b) isotropic etching; (c) Undercut etching by isotropic etching.

Turning around ALD surface chemistry is fundamentally difficult because ALD reactions are very exothermic. An alternative strategy for ALE needs to be developed. Thermal ALE is considered the reverse of ALD processes and has only been reported very recently (2015).^{18,19}

Figure 1-8 shows the generic schematic of thermal Al₂O₃ ALE. A fluorination step conducted by HF exposure converts Al₂O₃ surface to an intermediate AlF₃ layer. A purge step removes an excess HF and H₂O produced from the surface. Subsequent ligand exchange reaction of AlF₃ proceeded by Sn(acac)₂ produces volatile etch products. A purge step removes these etch products such as SnF(acac) and Al(acac)₃.

The overall proposed reaction can be expressed as:

$$Al_2O_3 + 6HF + 6Sn(acac)_2 \rightarrow 2Al(acac)_3 + 6SnF(acac) + 3H_2O$$
(4)

This Al₂O₃ ALE reaction based on fluorination and ligand exchange is general and could be expanded to ALE of other materials such as other metal oxides, as well as metal nitrides, metal phosphides, metal arsenides and elemental metals. Thermally driven ALE process will provide an important tool for an isotropic etching of materials at the atomic scale.

1.3 Outline of Remaining Chapters

Chapter 2 will demonstrate the ALD of AlF₃ using TMA and HF. HF-pyridine will be employed as a HF source. AlF₃ ALD will serve as a model system providing a basic understanding for ALD of many other metal fluorides. This work has been presented at *the 13th International Conference on Atomic Layer Deposition*, San Diego, California, July 28-31, 2013.

Figure 1-8. Generic schematic of the thermal Al₂O₃ ALE process etched by HF and Sn(acac)₂

This chapter, entitled "Atomic Layer Deposition of AlF₃ Using Trimethylaluminum and Hydrogen Fluoride" by Younghee Lee, Jaime W. DuMont, Andrew S. Cavanagh, and Steven M. George, has been submitted for publication in *Journal of Physical Chemistry C* 2015.

Chapter 3 will show ALD of LiF using lithium hexamethyldisilazide and hydrogen fluoride. This chapter will also show the development of lithium ion conducting (AlF₃)(LiF)_x alloys by the combination of AlF₃ ALD and LiF ALD. This work has been presented at *the 14th International Conference on Atomic Layer Deposition*, Kyoto, Japan, June 15-18, 2014. This chapter, entitled "ALD of LiF and Lithium Ion Conducting (AlF₃)(LiF)_x Alloys Using Trimethylaluminum, Lithium Hexamethyldisilazide and Hydrogen Fluoride" by Younghee Lee, Daniela M. Piper, Andrew S. Cavanagh, Matthias J. Young, Se-Hee Lee and Steven M. George, has been prepared for submission to a peer-reviewed journal.

Chapter 4 will review ALD of various metal fluorides such as ZrF₄, HfF₄, MnF₂, MgF₂, and ZnF₂. Different metal precursors including metal alkoxides, metal amides, and metal cyclopentadienyl will be employed to demonstrate the generality of an approach using HF derived from HF-pyridine as a F source. This work will be presented at *the 15th International Conference on Atomic Layer Deposition*, Portland, Oregon, June 28-July 1, 2015. This chapter, entitled "Atomic Layer Deposition of Metal Fluorides Using Various Metal Precursors and Hydrogen Fluoride" by Younghee Lee, Huaxing Sun, and Steven M. George, has been prepared for submission to a peer-reviewed journal.

Chapter 5 will demonstrate the ALE of Al_2O_3 using sequential, self-limiting, thermal reactions with $Sn(acac)_2$ and HF. This is the first report of a thermal ALE process. This chapter, entitled "Atomic Layer Etching of Al_2O_3 Using Sequential, Self-Limiting Thermal Reactions

with Sn(acac)₂ and HF" by Younghee Lee and Steven M. George, has been published in *ACS Nano* 2015, 9, 2061.

Chapter 6 will discuss the temperature dependence and the mechanism of the thermal ALE of Al₂O₃ using sequential reactions with Sn(acac)₂ and HF. This chapter entitled "Mechanism of Thermal Al₂O₃ Atomic Layer Etching Using Sequential Reactions with Sn(acac)₂ and HF" by Younghee Lee, Jaime W. DuMont and Steven M. George has been submitted for publication in *Chemistry of Materials* 2015.

Chapter 7 will describe the ALE of HfO₂ using sequential, self-limiting, thermal reactions with Sn(acac)₂ and HF. This chapter, entitled "Atomic Layer Etching of HfO₂ Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)₂ and HF" by Younghee Lee, Jaime W. DuMont and Steven M. George, has been published in *ECS Journal of Solid State Science and Technology* 2015, 4, N5013. This paper is part of *JSS Focus Issue on Atomic Layer Etching and Cleaning*.

A provisional application for patent based on the thermal ALE has been filed.

1.4 References

- (1) George, S. M. *Chem. Rev.* **2010**, 110, 111.
- (2) HSC Chemistry; HSC Chemistry 5.1, Outokumpu Research Oy: Pori, Finland.
- Profijt, H. B.; Potts, S. E.; van de Sanden, M. C. M.; Kessels, W. M. M. J. Vac. Sci. Technol. A 2011, 29, 050801.
- Ritala, M.; Leskela, M.; Dekker, J. P.; Mutsaers, C.; Soininen, P. J.; Skarp, J. Chem.
 Vap. Deposition 1999, 5, 7.
- (5) McCormick, J. A.; Cloutier, B. L.; Weimer, A. W.; George, S. M. J. Vac. Sci. Technol., A 2007, 25, 67.
- (6) Groner, M. D.; Elam, J. W.; Fabreguette, F. H.; George, S. M. *Thin Solid Films* 2002, 413, 186.
- (7) Gusev, E. P.; Cabral, C.; Copel, M.; D'Emic, C.; Gribelyuk, M. *Microelectron. Eng.* 2003, 69, 145.
- Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. J. Electrochem. Soc. 2010, 157, A75.
- Jung, Y. S.; Cavanagh, A. S.; Riley, L. A.; Kang, S. H.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. *Adv. Mater.* 2010, 22, 2172.
- Mistry, K. et al. 2007 IEEE International Electron Devices Meeting, Vols 1 and 2
 2007, 247.
- (11) Bohr, M. T.; Chau, R. S.; Ghani, T.; Mistry, K. *IEEE Spectrum* **2007**, 44, 29.
- Miikkulainen, V.; Leskela, M.; Ritala, M.; Puurunen, R. L. J. Appl. Phys. 2013, 113, 021301.
- (13) Lee, Y.; Cavanagh, A. S.; George, S. M. Atomic Layer Deposition of AlF₃ Using Trimethylaluminum and Hydrogen Fluoride-Pyridine, *Proceedings of the 13th International Conference on Atomic Layer Deposition, San Diego, California, July* 28-31, 2013.

- (14) Lee, Y.; DuMont, J. W.; Cavanagh, A. S.; George, S. M. Submitted to J. of Phys. Chem. C 2015.
- (15) Kim, J. Y.; George, S. M. J. Phys. Chem. C 2010, 114, 17597.
- (16) Kuhn, K. J. *IEEE Trans. Electron Devices* **2012**, 59, 1813.
- (17) Carver, C. T.; Plombon, J. J.; Romero, P. E.; Suri, S.; Tronic, T. A.; Turkot Jr., R.
 B. ECS J. Solid State Sci. Technol, 2015, 4, N5005.
- (18) Lee, Y.; George, S. M. ACS Nano **2015**, 9, 2061.
- (19) Lee, Y.; DuMont, J. W.; George, S. M. ECS J. Solid State Sci. Technol. 2015, 4, N5013.
- (20) Moore, G. *Electron. Lett.* **1965**, 38.
- (21) Ahmed, K.; Schuegraf, K. *IEEE Spectrum* **2011**, 48, 50.
- (22) Auth, C. et al. Symposium on VLSI Technology Digest of Technical Papers 2012.
- (23) Laermer, F.; Schilp, A. U.S. Patent No. 5,501,893 **1996**.
- (24) Yoder, M. N. U.S. Patent No. 4,756,794 1987.
- Horiike, Y.; Tanaka, T.; Nakano, M.; Iseda, S.; Sakaue, H.; Nagata, A.; Shindo, H.;
 Miyazaki, S.; Hirose, M. J. Vac. Sci. Technol., A 1990, 8, 1844.
- (26) Matsuura, T.; Murota, J.; Sawada, Y.; Ohmi, T. *Appl. Phys. Lett.* **1993**, 63, 2803.
- (27) Athavale, S. D.; Economou, D. J. J. Vac. Sci. Technol., A **1996**, 14, 3702.
- (28) Matsuura, T.; Sugiyama, T.; Murota, J. Surf. Sci. **1998**, 402, 202.
- (29) Sugiyama, T.; Matsuura, T.; Murota, J. *Appl. Surf. Sci.* **1997**, 112, 187.
- (30) Lim, W. S.; Park, S. D.; Park, B. J.; Yeom, G. Y. Surf. Coat. Tech. 2008, 202, 5701.
- Park, S. D.; Oh, C. K.; Bae, J. W.; Yeom, G. Y.; Kim, T. W.; Song, J. I.; Jang, J. H.
 Appl. Phys. Lett. 2006, 89, 043109.
- (32) Lee, C. G. N.; Kanarik, K. J.; Gottscho, R. A. J. Phys. D: Appl. Phys. 2014, 47.
- Min, K. S.; Kang, S. H.; Kim, J. K.; Jhon, Y. I.; Jhon, M. S.; Yeom, G. Y. *Microelectron. Eng.* 2013, 110, 457.

- Park, J. B.; Lim, W. S.; Park, B. J.; Park, I. H.; Kim, Y. W.; Yeom, G. Y. J. Phys. D Appl. Phys. 2009, 42, 055202.
- (35) Lim, W. S.; Park, J. B.; Park, J. Y.; Park, B. J.; Yeom, G. Y. J. Nanosci. Nanotechnol. 2009, 9, 7379.
- (36) Park, J. B.; Lim, W. S.; Park, S. D.; Park, Y. J.; Yeom, G. Y. J. Korean Phys. Soc.
 2009, 54, 976.
- Metzler, D.; Bruce, R. L.; Engelmann, S.; Joseph, E. A.; Oehrlein, G. S. J. Vac. Sci. Technol. A 2014, 32, 020603.
- (38) Rauf, S.; Sparks, T.; Ventzek, P. L. G.; Smirnov, V. V.; Stengach, A. V.; Gaynullin,
 K. G.; Pavlovsky, V. A. J. Appl. Phys. 2007, 101, 033308.
- (39) Suntola, T.; Antson, J. U.S. Patent No. 4,058,430 1977.

CHAPTER 2

Atomic Layer Deposition of AlF₃ Using Trimethylaluminum and Hydrogen Fluoride

2.1. Introduction

AlF₃ is a dielectric material with a low refractive index¹⁻² and wide band gap >10 eV.³⁻⁴ AlF₃ has high transmission at infrared (IR), ultraviolet (UV) and deep UV wavelengths.^{1,5-7} These properties make AlF₃ useful for optical coatings. Aluminum fluoride (AlF₃) has also been demonstrated as an excellent protective film for Li ion batteries.⁸⁻⁹ AlF₃ films enhance the cycling stability of anode and cathode materials, and also improve the thermal stability by suppressing exothermal side reactions.⁸⁻¹⁰ In addition, AlF₃ is employed as heterogeneous catalyst for the production of chlorofluorocarbons (CFCs) due to its strong Lewis acidity.¹¹⁻¹³

AlF₃ films have been grown by physical vapor deposition techniques such as sputtering,¹⁴⁻¹⁵ thermal evaporation,^{3,6,16} electron beam deposition,^{1,5} and ion-assisted deposition.¹⁷⁻¹⁸ AlF₃ films have also been grown by atomic layer deposition (ALD). ALD is a technique based on sequential, self-limiting surface reactions that deposits extremely conformal and continuous thin films with atomic level control.¹⁹ We initially reported AlF₃ ALD using

trimethylaluminum (TMA) and HF from a HF-pyridine solution.²⁰ AlF₃ ALD has also been demonstrated recently using a halide-halide exchange reaction with AlCl₃ and TiF₄.²¹

In this paper, the growth of AlF₃ ALD films using TMA and HF as the reactants was examined using *in situ* quartz crystal microbalance (QCM), quadrupole mass spectrometer (QMS) and Fourier transform infrared (FTIR) spectroscopy measurements. The reactions were performed at temperatures between 75 °C and 300 °C. The AlF₃ film thickness and density were determined with *ex situ* X-ray reflectivity (XRR). The AlF₃ film thickness and refractive index were measured with spectroscopic ellipsometry (SE). The structure of the AlF₃ films was examined with grazing incidence X-ray diffraction (GIXRD). The composition of the AlF₃ ALD film was also determined with X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectrometry (RBS).

2.2. Experimental

2.2A. Viscous Flow Reactor with in situ QCM and QMS

The ALD reactions were performed in a viscous flow ALD reactor equipped with an *in situ* QCM and QMS at temperatures between 75 °C and 300 °C.²²⁻²³ A mechanical pump (Pascal 2015SD, Alcatel) was used maintain vacuum conditions in the ALD reactor. Reactants were dosed into a N₂ carrier gas. A mass flow controllers (Type 1179A, MKS) supplied a constant N₂ carrier gas flow of 150 sccm. This N₂ gas flow resulted in a base pressure of ~1 Torr in the reactor. A PID temperature controller (2604, Eurotherm) kept the reactor at a fixed temperature within \pm 0.04 °C. A bakeable capacitance manometer (Baratron 121A, MKS) monitored pressure change during reaction. The AlF₃ ALD reactions were performed using TMA (97 %, Sigma-Aldrich), and HFpyridine (70 wt% HF, Sigma-Aldrich) as the reactants. Use of gaseous HF from HF-pyridine enables the safe handling of anhydrous HF. HF-pyridine is a liquid at room temperature and is known as Olah's reagent.²⁴ HF-pyridine was transferred to a stainless steel bubbler in a dry N₂filled glove bag. The HF-pyridine solution has an equilibrium with gaseous HF. Our mass spectrometer measurements have revealed that HF is the dominant species in the vapor pressure of HF-pyridine. With static exposures with no pumping in our ALD reactor, the vapor pressure HF over the HF-pyridine solution was 90-100 Torr at room temperature. Each AlF₃ ALD experiment was conducted on a fresh Al₂O₃ ALD film. The Al₂O₃ ALD films were prepared using TMA and H₂O (Chromasolv for HPLC, Sigma-Aldrich). The TMA, HF-pyridine, and H₂O precursors were held at room temperature.

A film deposition monitor (Maxtek TM-400, Inficon) was used to perform the *in situ* QCM measurements. The QCM sensors were polished, 6 MHz, AT-cut (Colorado Crystal Corp.) and RC-cut (Colnatec) quartz crystals with gold electrodes. The QCM sensor was secured in the bakeable single sensor head (BSH-150, Inficon) and sealed with high temperature epoxy (Epo-Tek H21D, Epoxy technology). Deposition on the back-side of the QCM sensor was prevented by flowing an additional 20 sccm of N₂ through the QCM housing.²² This additional N₂ was supplied using a bellows-sealed metering valve (SS-4BMG, Swagelok).

Quadrupole mass spectrometry (QMS) was performed on the vapor phase species in the ALD reactor. Measurements were performed with a residual gas analyzer (RGA 200, Stanford Research Systems). The gases produced during the ALD reactions were sampled using an aperture with a diameter of 50 μ m. The aperture separated the pressure of the ALD reactor at ~1 Torr from the pressure of the QMS region at ~1 ×10⁻⁷ Torr. To maintain these pressures with a

conductance between the two regions, the QMS region was differentially pumped with a turbomolecular pump (V70LP, Varian). A dual thoriated-iridium (ThO₂/Ir) filament was used for electron emission in the mass spectrometer. The ionization energy was 70 eV. A Faraday cup was used as the detector.

2.2B. Fourier Transform Infrared (FTIR) Spectroscopy

The *in situ* FTIR studies were performed in a reactor equipped with an FTIR spectrometer that has been described previously.²⁵ The reactor was pumped using a mechanical pump (TRIVAC D8B, Oerlikon Leybold Vacuum). The FTIR spectrometer (Nicolet 6700 FTIR, Thermo Scientific) utilized a liquid-N₂-cooled mercury cadmium telluride (MCT-B) detector. Dry, CO₂-free air was employed to purge the spectrometer, mirror, and detector setup. Each spectrum consisted of a total of 100 scans at 4 cm⁻¹ resolution from 400 to 4000 cm⁻¹.

The transmission FTIR measurements were performed on high surface area SiO₂ nanoparticles (99.5%, US Research Nanomaterials) with an average diameter of 15-20 nm. The high surface area of these nanoparticles was needed to enhance the number of surface species in the infrared beam. The SiO₂ nanoparticles absorb infrared radiation between 400-650 cm⁻¹, 700-875 cm⁻¹, and 925- 1400 cm⁻¹. These absorption regions leave available windows to observe absorbance from the AIF₃ ALD film. Sample preparation involved pressing the SiO₂ nanoparticles into a tungsten grid support (Tech-Etch).²⁶⁻²⁷ The tungsten grids had dimensions of 2×3 cm². Each grid was 50 µm thick with 100 grid lines per inch.

The tungsten grid was resistively heated using a DC power supply (6268B, 20V/ 20A, Hewlett-Packard). The voltage output of the power supply was controlled by a PID temperature controller (Love Controls 16B, Dwyer Instruments). A type K thermocouple was attached to the

bottom of the tungsten grid with epoxy (Ceramabond 571, Aremco) that attached and electrically isolated the thermocouple.

The AlF₃ ALD reactions were performed using sequential exposures of TMA (97 %, Sigma-Aldrich), and HF from HF-pyridine (70 wt% HF, Sigma-Aldrich). To achieve self-limiting behavior on the high surface area particle substrates, the AlF₃ ALD films were deposited using two consecutive TMA doses with exposure times of 2.0 s and two consecutive HF doses with exposure times of 2.0 s. These exposure times produced pressure transients of ~450 mTorr and ~500 mTorr above the base pressure for TMA and HF, respectively. A 180 s purge time was utilized after each reactant exposure.

Reactants were dosed into a flowing N₂ carrier gas stream. A mass flow controller supplied the constant N₂ carrier gas flow rate of 50 sccm. This N₂ gas flow resulted in a base pressure of ~0.650 Torr in the reactor. The TMA, HF-pyridine, and H₂O precursors were held at room temperature. Each AlF₃ ALD experiment was conducted on a fresh initial Al₂O₃ ALD film. The Al₂O₃ ALD films were prepared using 3 ALD cycles with TMA and H₂O (Chromasolv for HPLC, Sigma-Aldrich) as the reactants.

2.2C. Ex situ Film Characterization using XRR, XRD and SE

For *ex situ* measurements, boron-doped Si (100) wafers (p-type, Silicon Valley Microelectronics) were used as the substrates. The Si wafer was cleaved into 2.5 cm by 2.5 cm samples. These samples were cleaned with acetone, isopropanol, and deionized water and dried with N_2 gas.

The film thicknesses and the density were determined using *ex situ* XRR measurements. The XRR measurements were performed with a high resolution X-ray diffractometer (Bede D1, Jordan Valley Semiconductors) using a Cu K α (λ = 1.540 Å) X-ray tube. The filament current was 35 mA and the voltage was 40 kV. The step size and acquisition time for all the XRR scans were 10 arcsec and 5 s, respectively. The XRR scans were modeled with the Bede REFS software package (Bede REFS, Jordan Valley Semiconductors) to determine film thickness, surface roughness, and film density. The film structure was examined by grazing incidence X-ray diffraction (GIXRD) using the same X-ray diffractometer.

The film thicknesses and refractive index were measured using spectroscopic ellipsometry (SE). These measurements were performed using a spectroscopic ellipsometer (M-2000, J. A. Woollam) employing a spectral range from 240 to 1700 nm with an incidence angle of 75°. Measurement of Ψ and Δ were modeled with the CompleteEASE software package (CompleteEASE, J. A. Woollam) and a Sellmier model.²⁸ The Sellmeier model is commonly used for optically transparent films such as metal fluoride films.²⁸

2.2D. X-ray Photoelectron Spectroscopy and Rutherford Backscattering Spectrum

The film composition was determined by X-ray photoelectron spectroscopy (XPS). The XPS instrument (PHI 5600, RBD Instruments) used a monochromatic Al K α X-rays source (1486.6 eV). Survey scans were measured with a pass energy of 93.9 eV and a step size of 0.400 eV. Depth profiles were obtained using Ar ion sputtering. A pass energy of 58.7 eV and a step size was 0.250 eV was used for the depth profiling analysis. An electron beam neutralizer was employed at 17.8 mA. Data was collected with the Auger Scan software package (Auger Scan, RBD Instruments) and analyzed with the Casa XPS software package (Casa XPS, Casa Software).

The RBS analysis was performed in the Nanofabrication Center at the University of Minnesota. Glassy carbon plates (Type 2, 1 mm thick, Alfa Aesar) with dimensions of 1.2 cm by 1.2 cm were used as the substrates for RBS analysis. The glassy carbon substrates were cleaned with acetone, isopropanol, and deionized water and dried with N₂ gas. Initially, Al₂O₃ ALD films were deposited as an adhesion layer on the glassy carbon plates using 20 cycles of Al₂O₃ ALD. The AlF₃ films were then deposited using 800 cycles of AlF₃ ALD. The incident 2 MeV beam of He⁺ ions was integrated to 40 μ C of total charge per point using an ion detector positioned at 165° relative to the incident ion beam. The backscattered ions were collected using a microchannel plate detection system. RBS spectra were acquired using a MAS 1700 pelletron tandem ion accelerator (5SDH) equipped with charge exchange RF plasma source (National Electrostatics Corporation) and RBS 400 analytical endstation (Charles Evans & Associates). The data was modeled using a QUARK software package.²⁹

2.3. Results and Discussion

2.3A. Growth of AlF₃ Films

Figure 1 shows the QCM measurements of mass gain during 200 cycles of AlF₃ ALD at 150° C using TMA and HF. The initial layer on the QCM sensor was an Al₂O₃ ALD film grown with 200 cycles of Al₂O₃ ALD using TMA and H₂O as the reactants. The reaction sequence of one AlF₃ ALD cycle consisted of a 1 s dose of TMA, 30 s of N₂ purge, a 1 s dose of HF, and 30 s of N₂ purge. This reaction sequence is designated as (1-30-1-30). The TMA and HF doses produced pressure transients of 40 mTorr and 100 mTorr, respectively. The AlF₃ ALD growth is very linear with a mass gain per cycle (MGPC) of 31 ng/(cm² cycle). In addition, AlF₃ ALD nucleates nearly immediately on the initial Al₂O₃ ALD surface.

Figure 2 shows the mass gain during three sequential AlF₃ ALD cycles at 150°C using the reaction sequence (1-30-1-30). These three cycles were the 148th, 149th, and 150th AlF₃ ALD cycles in Figure 1. The mass gains are very distinct. The mass increase after the TMA exposure is $\Delta M_{TMA} = 22$ ng/(cm² cycle). The mass increase after the HF exposure is $\Delta M_{HF} = 9$ ng/(cm² cycle). The MGPC was 31 ng/(cm² cycle).

Figure 2-1. Mass gain versus time during 200 AlF₃ ALD cycles with TMA and HF as the reactants on Al₂O₃ at 150 $^{\circ}$ C using the reaction sequence of (1-30-1-30).

Figure 2-2. Enlargement of mass gain versus time for three sequential TMA and HF exposures during AlF₃ ALD in the steady-state, linear growth regime shown in Figure 2-1.

Figure 3 displays the MGPC and the $\Delta M_{TMA}/MGPC$ ratio during 200 cycles of AlF₃ ALD using a reaction sequence of (1-30-1-30). The MGPC is 31 ng/(cm² cycle) and consists of constant mass gains of $\Delta M_{TMA} = 22$ ng/(cm² cycle) and $\Delta M_{HF} = 9$ ng/(cm² cycle). Except for the first 3 AlF₃ ALD cycles, the $\Delta M_{TMA}/MGPC$ ratio is constant at 0.71. The MGPC and the $\Delta M_{TMA}/MGPC$ ratio were nearly independent of the purge time. Extended purge times of 120 s slightly decreased the MGPC to ~29 ng/(cm² cycle). However, the $\Delta M_{TMA}/MGPC$ ratio remained at 0.71. The $\Delta M_{TMA}/MGPC$ ratio will be used later to determine the reaction stoichiometry.

The self-limiting behavior of the TMA and HF reactions for AlF₃ ALD was also examined using *in situ* QCM experiments. Figure 4a and 4b show the mass gains during the TMA and HF exposures, respectively, at 150°C. For each of these exposures, the previous reactant exposure had reached saturation. Each minidose consisted of an exposure time of 0.5 s and a purge time of 30 s. Both reactions displayed self-limiting behavior. ΔM_{TMA} versus minidoses of TMA reached the plateau of $\Delta M_{TMA} = ~22$ ng/(cm² cycle) after one minidose. Similarly, ΔM_{HF} versus minidoses of HF leveled off at $\Delta M_{HF} = ~9$ ng/(cm² cycle) after one minidose.

Figure 5 displays the film thickness for 20, 50, 100, 200, 400, and 800 cycles of AlF₃ ALD on a Si wafer at 150°C as determined by *ex situ* XRR and SE analysis. The thickness measurements from XRR and SE were nearly identical. The AlF₃ ALD growth on the silicon wafers was linear with a growth rate of 1.0 Å/cycle at 150° C. The density of these AlF₃ ALD films obtained from XRR was 2.9 g/cm³. This density is slightly less than the bulk density of 3.10 g/cm^3 for crystalline AlF₃.³⁰ The thickness variation between samples grown in the reactor at different spatial locations using 800 cycles of AlF₃ ALD revealed good spatial uniformity

Figure 2-3. (a) MGPC, ΔM_{TMA} , and ΔM_{HF} and (b) $M_{TMA}/MGPC$ ratio during 200 AlF₃ ALD cycles with TMA and HF as the reactants on Al₂O₃ at 150 °C.

Figure 2-4. (a) ΔM_{TMA} versus versus number of TMA minidoses with the HF exposure fixed at 1.0 s. (b) ΔM_{HF} versus versus number of HF minidoses with the TMA exposure fixed at 1.0 s.

Figure 2-5. Film thickness versus number of cycles for 800 AlF_3 ALD cycles with TMA and HF as the reactants on Si(100) at 150 °C determined by XRR and SE measurements.

within $\pm 1\%$ as measured by XRR analysis. The films grown using 800 cycles of AlF₃ ALD were very smooth with a surface roughness of 4 -5 Å.

The growth rate of 1.0 Å/cycle at 150°C obtained by the XRR analysis can be compared with the MGPC of 31 ng/(cm² cycle) obtained by the QCM measurements. This comparison is possible using the density of 2.9 g/cm³ obtained by XRR analysis. Using this density, the MGPC of 31 ng/(cm² cycle) is equivalent to a growth rate of 1.1 Å/cycle. There is excellent agreement between the AlF₃ ALD growth rates determined using QCM and XRR measurements.

Grazing incidence X-ray diffraction (GIXRD) analysis revealed that the AlF₃ ALD films were amorphous. The AlF₃ ALD films remain amorphous even after annealing at 500°C in argon. The AlF₃ ALD films were also stable in air. The thickness, film density, and film roughness of AlF₃ films did not change after storage in atmosphere for one month.

Figure 6 reveals some of the gas phase species detected by the quadrupole mass spectrometer during AlF₃ ALD using sequential TMA and HF exposures. These mass spectrometry signals were recorded at the same time as the mass gains shown in Figure 2. The targeted gas phase species were the CH₄ reaction product at m/z=16, the HF reactant at m/z=20 and the pyridine species at m/z=52. Results are shown for three AlF₃ ALD cycles using the reaction sequence (1-30-1-30).

The mass signal at m/z = 16 in Figure 6 appears during both the TMA and HF exposures. This mass signal is assigned to CH₄ reaction product during the HF exposure. HF reacts with Al-CH₃* surface species to produce CH₄. TMA also reacts with HF on the surface to produce CH₄. In addition, some of the m/z=16 mass signal is also produced as a cracking fragment of TMA. Mass spectrometer analysis performed after the TMA reaction reached saturation showed that cracking of TMA could account for ~1/3 of the m/z=16 mass signal observed in Figure 6.

Figure 2-6. Mass spectrometer signals for m/z= 16, 20 and 52 for CH₄, HF and pyridine, respectively, during three AlF₃ ALD cycles at 150°C. These signals were recorded at the same time as the mass changes shown in Figure 2-2.

Figure 6 also indicates that a mass signal at m/z=20 is coincident only with the HF exposures. This mass signal is assigned to the HF reactant. The QMS does not detect a mass signal at m/z = 52 or m/z=79. These mass signals are the two largest mass cracking fragments for pyridine.³¹ These results indicate that the HF-pyridine solution has a negligible pyridine vapor pressure. In contrast, the vapor pressure of pyridine at 20°C is ~15 Torr.³² The negligible pyridine vapor pressure is consistent with the stabilization of pyridine with HF in a high boiling point azeotrope.³³ Additional experiments with pure pyridine solutions clearly showed substantial mass signals at m/z = 52 and m/z = 79.

Additional experiments examined the growth of AlF₃ ALD films at various substrate temperatures. Figure 7a shows the temperature dependence of the MGPC from *in situ* QCM measurements. The MGPC can be converted to the growth rate in Å/cycle using the film density of 2.9 g/cm³ measured by XRR. These growth rates are shown in Figure 7b. In addition, Figure 7b also displays the growth rates determined from *ex situ* XRR and SE measurements. The agreement between the *in situ* and *ex situ* measurements of the growth rate is very good. A maximum growth rate of 1.5 Å/cycle was obtained at 100 °C. A summary of the temperature-dependent growth rates is given in Table 1.

Both Figure 7a and Figure7b show that the AlF₃ ALD growth rate decreases at higher temperatures. The progressive decrease in the AlF₃ ALD growth rate could be explained by the loss of surface species responsible for growth at higher temperature. A similar decrease in ALD growth rate was observed for the temperature dependence of Al₂O₃ ALD.³⁴ In addition, the AlF₃ ALD growth rate becomes negative at temperatures >250°C. At these higher temperatures, the TMA and HF exposures are able to etch the AlF₃ ALD films.

Figure 2-7. (a) Mass gain per cycle (MGPC) and (b) growth rate versus reaction temperature using reaction sequence of (1-30-1-30).

Temperature (°C)	MGPC	Growth Rate	ΔМтма	$\Delta M_{ m HF}$	ΔM _{TMA} / MGPC	X
75	38.7	1.27	28.3	10.4	0.73	0.67
100	44.4	1.43	29.7	14.8	0.67	0.99
125	38.1	1.25	26.2	12.0	0.69	0.88
150	31.4	1.02	22.3	9.1	0.71	0.78
175	22.7	0.74	16.7	6.0	0.73	0.67
200	13.2	0.50	9.3	3.9	0.70	0.83

Table 2-1. ΔM_{TMA} , ΔM_{HF} , MGPC, ΔM_{TMA} /MGPC, and x for AlF₃ ALD at different

temperatures. ΔM_{TMA} , ΔM_{HF} , and MGPC are expressed in units of ng/(cm² cycle). Growth rate is expressed in unit of Å/cycle The AlF₃ etching may occur by the reaction: $AlF_3 + 2Al(CH_3)_3 \rightarrow 3AlF(CH_3)_2$. In this reaction, TMA accepts fluorine from AlF₃ to form AlF(CH₃)₂. The –CH₃ from TMA is transferred to the substrate and forms additional AlF(CH₃)₂. This etching process is related to the thermal atomic layer etching (ALE) for Al₂O₃ and HfO₂ films that has been observed using Sn(acac)₂ and HF reactants.³⁵⁻³⁶ However, in this case, the etching of AlF₃ by TMA is not self-limiting. The AlF₃ etching rate at 250 and 300°C is dependent on the length of the TMA exposure. We will report AlF₃ ALE using Sn(acac)₂ and HF in a future publication.

2.3B. Nucleation and Reaction Mechanism for AIF₃ ALD

FTIR vibrational spectroscopy was used to monitor AlF₃ ALD and identify the surface species present during AlF₃ ALD. Figure 8 shows the growth of absorbance in the frequency range from 500-800 cm⁻¹ during AlF₃ ALD cycles on Al₂O₃ ALD films on SiO₂ nanoparticles. This FTIR spectrum was referenced to the FTIR spectrum for the Al₂O₃ ALD film on the SiO₂ nanoparticles. The absorbance progressively increases versus number of AlF₃ ALD cycles. The growth of absorbance in the frequency range from 500-800 cm⁻¹ is attributed to the Al-F stretching vibration in AlF₃. Earlier vibrational studies have observed the absorption of Al-F stretching vibrations in AlF₃ at 500-800 cm⁻¹.^{16,37-39}

Figure 8 also monitors an absorbance loss at ~800-1050 cm⁻¹ after the first AlF₃ ALD cycle. To explore this absorbance loss, FTIR spectra were recorded during nucleation after the first TMA exposure and first HF exposure during AlF₃ ALD. Figure 9 displays these FTIR spectra that were again referenced the FTIR spectrum for the Al₂O₃ ALD film on the Si nanoparticles. There is a slight absorbance loss at ~1000 cm⁻¹ and absorbance gain at 650-850 cm⁻¹ after the first TMA exposure. The slight absorbance loss at ~1000 cm⁻¹ is attributed to the removal of an Al-OH vibrational feature on the initial Al₂O₃ ALD film. This loss has been

Figure 2-8. FTIR spectra versus AlF₃ ALD cycles on initial Al₂O₃ surface. These spectra are all referenced to the initial Al₂O₃ film on the SiO₂ nanoparticles.

Figure 2-9. Difference FTIR spectra after (a) 1st TMA exposure on initial Al₂O₃ surface and (b) 1st HF exposure after 1st TMA exposure. The difference spectra are referenced to spectra recorded immediately prior to the TMA and HF exposures.

observed before during Al_2O_3 ALD growth.⁴⁰⁻⁴¹ The absorbance gain at 650-850 cm⁻¹ is attributed to the growth of more Al_2O_3 after the reaction of TMA with AlOH* surface species.

An absorbance loss also occurs between 800-1050 cm⁻¹ after the first HF exposure. This absorbance loss is in the range of the Al-O stretching vibrations in Al₂O₃ and results from the loss of Al₂O₃. In addition, there is an absorbance gain at 500-800 cm⁻¹. This absorbance gain is again attributed to the Al-F stretching vibration in AlF₃.³⁷⁻³⁹ These absorbance losses and gains are consistent with the conversion of Al₂O₃ to AlF₃ by the reaction Al₂O₃ + 6HF \rightarrow 2AlF₃ + 3H₂O. This reaction is thermochemically favorable and spontaneous with $\Delta G = -63$ kcal at 150°C.⁴²

The conversion of Al₂O₃ to AlF₃ only occurs during nucleation of AlF₃ ALD after the first HF exposure. Figure 8 shows that the pronounced absorbance loss between 800-1050 cm⁻¹ remains fairly constant versus number of AlF₃ ALD cycles. There is a reduction of the absorbance loss in the frequency range of 800-950 cm⁻¹ with the number of AlF₃ ALD cycles. The absorbance loss is progressively reduced by the growth of absorbance from the Al-F stretching vibrations.

Figure 10 shows the FTIR difference spectra for two consecutive TMA and HF exposures. These difference spectra are referenced to the spectra after the previous reactant exposure. Figure 10a shows the difference spectrum after the TMA exposure referenced to the spectrum after the previous HF exposure (TMA-HF). Figure 10a reveals absorbance gains for vibrational features at ~650-600, 725, 1450, and ~2800-3000 cm⁻¹. These positive absorbance features are all consistent with the vibrational features of molecular (CH₃)₂AlF.⁴³ The absorbance features at 600-650, 725 and 1450 cm⁻¹ are attributed to the Al-F stretching mode of

 $(CH_3)_2AIF$, the CH₃ rocking mode and the CH₃ asymmetric deformation, respectively.⁴³ The positive features between 2800 – 3000 cm⁻¹ are consistent with the C-H stretches of $(CH_3)_2AIF$.⁴³

The TMA exposure also results in negative features at 900, 1250, 1650 and ~3000- 3675 cm⁻¹ that are attributed to the removal of HF surface species. The negative feature at 900 cm⁻¹ is attributed to an out-of-plane librational mode.⁴⁴ The features at 1250 and 1650 cm⁻¹ are attributed to the transverse and longitudinal vibrations of the FHF⁻ ion.⁴⁵ The absorbance features at ~3000- 3675 cm⁻¹ are attributed to the stretching vibrations of isolated and hydrogen-bonded Al-(HF)* surface species absorbed on AlF₃ surfaces, respectively.⁴⁶

Figure 10b displays the difference spectrum after the HF exposure referenced to the spectrum after the previous TMA exposure (HF-TMA). Most of the absorbance features that were added as a result of the previous TMA exposure are removed by the subsequent HF exposure. Negative absorbance features at 725, 1450 and 2800-3000 cm⁻¹ are consistent with the removal of $(CH_3)_2AIF^*$ surface species.⁴³ Positive absorbance features at 900, 1250, 1650 and ~3000- 3675 cm⁻¹ also indicate that the HF reabsorbs to the surface. A positive absorbance feature between 600 - 650 cm⁻¹ indicates that AI-F species are also added during HF exposures. This bulk AIF₃ vibrational mode grows steadily with the number of reaction cycles as shown in Figure 8.

Based on the results from the QCM and FTIR measurements, Figure 11 presents a schematic showing the proposed reaction mechanism. In reaction A, TMA molecules react with HF molecules adsorbed on the surface to yield AlF(CH₃)₂ and CH₄ molecules as the reaction products. The AlF(CH₃)₂ species remain adsorbed on the surface. In reaction B, HF converts the adsorbed AlF(CH₃)₂ species to AlF₃. CH₄ is again a reaction product and additional HF molecules may remain on the surface.

Figure 2-10. FTIR difference spectra during AlF₃ ALD. (a) Difference spectrum after the TMA exposure referenced to the spectrum after the previous HF exposure (TMA-HF) and (b) Difference spectrum after the HF exposure referenced to the spectrum after the previous TMA exposure (HF-TMA).

Figure 2-11. Proposed reaction mechanism for AlF₃ ALD using TMA and HF as the reactants.

The more general surface chemistry for AlF₃ ALD can be expressed by:

(A)
$$AlF_3|xHF^* + Al(CH_3)_3 \rightarrow AlF_3|AlF_x(CH_3)_{3-x}^* + xCH_4$$
 (2)

(B)
$$AlF_3|AlF_x(CH_3)_{3-x}^* + 3HF \rightarrow AlF_3|AlF_3|xHF^* + (3-x)CH_4$$
 (3)

The asterisks designate the surface species. The vertical lines distinguish the various surface species. The parameter x quantifies the number of HF molecules adsorbed on the surface relative to the number of AlF₃ species deposited during one AlF₃ ALD cycle. x=1 indicates one HF per AlF₃ on the surface as shown in Figure 11. x=1 is also consistent with AlF(CH₃)₂ as the adsorbed surface species in Figure 11.

Based on this surface chemistry, the $\Delta M_{TMA}/MGPC$ ratio can be determined by:

$$\frac{\Delta M_{\rm TMA}}{M_{\rm GPC}} = \frac{\Delta M_{\rm TMA}}{\Delta M_{\rm TMA} + \Delta M_{\rm HF}} = \frac{M_{TMA} - \mathbf{x} \cdot M_{CH_4}}{M_{TMA} + 3M_{HF} - 3M_{CH_4}} = \frac{M_{TMA} - \mathbf{x} \cdot M_{CH_4}}{M_{AlF3}} \tag{4}$$

In equation 4, M_{TMA} , M_{HF} , M_{CH4} , and M_{AlF3} are the molar masses of TMA, HF, CH₄, and AlF₃ respectively. The equation for x is:

$$x = \frac{1}{M_{CH_4}} \left[M_{TMA} - M_{AlF_3} \left(\frac{\Delta M_{TMA}}{M_{GPC}} \right) \right] = \frac{1}{16} \left[72.1 - 84 \left(\frac{\Delta M_{TMA}}{M_{GPC}} \right) \right]$$
(5)

The $\Delta M_{TMA}/MGPC$ ratio and x can be determined from the mass changes obtained by the QCM measurements. A $\Delta M_{TMA}/MGPC$ ratio of 0.71 was determined from the QCM measurements at 150°C shown in Figure 4b. This ratio of 0.71 is close to the ratio of 0.67 based on the proposed mechanism in Figure 11 where x=1.

The ratio varied slightly at the different reaction temperatures. The $\Delta M_{TMA}/MGPC$ ratios were 0.73, 0.67, 0.69, 0.71, 0.73 and 0.70 at 75, 100, 125, 150, 175 and 200°C, respectively. The corresponding x values were 0.67, 0.99, 0.88, 0.78, 0.67 and 0.83 at 75, 100, 125, 150, 175

and 200°C, respectively. These values are summarized in Table 1. An x value of x=0.99 or nearly x=1 is observed at 100°C. The maximum AlF₃ ALD growth rate of 1.43 Å/cycle is also measured at 100°C. x values <1 are consistent with a mixture of AlF(CH₃)₂ and Al(CH₃)₃ on the surface after the TMA exposure.

The mass changes measured during the QCM experiments support the existence of HF and AlF(CH₃)₂ species on the surface after the HF and TMA exposures. A binding interaction is expected between HF and the AlF₃ surface. Strong coordination of HF on α -AlF₃ and β -AlF₃ surfaces has been predicted with DFT calculations.⁴⁷⁻⁴⁸ AlF₃ is a Lewis acid. The F in HF can act as a Lewis base. Together AlF₃ and HF have a strong Lewis acid-base interaction. TMA and AlF(CH₃)₂ are also Lewis acids. The F in Al-F* species on the surface can act as a Lewis base. A strong Lewis acid-base interaction is also expected between Al-F* and either TMA or AlF(CH₃)₂.

2.3C. Ex situ AlF₃ Film Characterization

Figure 12 shows an X-ray photoelectron spectroscopy (XPS) sputter depth profile of an AlF₃ ALD film. The film is almost entirely aluminum and fluorine after removal of the adventitious surface carbon. Oxygen impurities are detected at ~2 at%. The oxygen impurity may result from water that could be produced in the reaction of HF with metal oxide inside the stainless steel reactor. Carbon and nitrogen impurities are below the detection limit of XPS. The ratio between the calibrated aluminum and fluorine XPS signals is 1:2.4. The preferential sputtering of fluorine may explain the low fluorine signals.¹⁷⁻¹⁸

Figure 13 shows the Rutherford backscattering spectrum (RBS) of a film grown using 800 cycles of AlF₃ ALD. A glassy carbon substrate is used instead of a silicon wafer because

Figure 2-12. Sputter depth profile of AlF₃ film measured by X-ray photoelectron spectroscopy.

Figure 2-13. Rutherford backscattering spectrum of 800 cycles of AlF₃ ALD film on 20 cycles of Al₂O₃ ALD film on carbon substrate.

Figure 2-14. Density and refractive index for AlF₃ ALD films grown at various temperatures.
aluminum and silicon have similar atomic masses and overlapping RBS signals. An Al₂O₃ ALD film grown on the glassy carbon served as an adhesion layer. The RBS spectrum observed an aluminum peak at 1.1 MeV and a fluorine peak around 0.8 MeV. The aluminum to fluorine ratio is 1:2.85 based on the peak areas. This ratio is consistent with nearly stoichiometric AlF₃. Carbon or nitrogen is not observed in the film within the detection limits of RBS.

The film density and refractive index was also measured for AlF₃ films grown using 200 AlF₃ ALD cycles at different temperatures. These results are presented in Figure 14. The film density is nearly constant at 2.9 g/cm³ at all reaction temperatures. This density is ~94 % of the bulk density of 3.1 g /cm³ for crystalline AlF₃.³⁰ Refractive indices of the films grown at different reaction temperatures are also constant at n= 1.36. These refractive indices were measured by SE at 589 nm and were obtained using the Sellmeier model.

The measured refractive index of n=1.36 is consistent with n= 1.38 for bulk AlF₃ at 589 nm^2 and n= 1.36 at 600 nm for an AlF₃ film grown using the electron beam technique.¹ The extinction coefficient for the AlF₃ films is zero because the AlF₃ ALD film is transparent in the range between 240 nm and 1700 nm resulting from the wide band gap of > 10 eV for AlF₃.³⁻⁴ The film roughness of 4 Å - 5 Å as measured by XRR is also nearly constant at all the reaction temperatures. This very smooth film is consistent with amorphous AlF₃ ALD films. AlF₃ film grown by other vacuum techniques have also displayed amorphous structure.^{6,14,16,49}

2.4. Conclusions

AlF₃ ALD films were grown over a range of temperatures from 75°C to 300°C using TMA and HF from HF-pyridine as the reactants. The AlF₃ ALD was examined using *in situ*

quartz crystal microbalance (QCM), quadrupole mass spectrometer (QMS) and Fourier transform infrared (FTIR) spectroscopy. The maximum mass gain per cycle (MGPC) for AlF₃ ALD of 44 ng/(cm² cycle) occurred at 100°C. The MGPC then decreased progressively at higher temperatures. The MGPC became negative at T> 250°C. At these higher temperatures, the TMA and HF were able to etch the underlying AlF₃ films.

FTIR measurements observed an absorbance increase at 500-800 cm⁻¹ during AlF₃ ALD. This absorbance increase was attributed to the Al-F stretching vibrations. The FTIR analysis also monitored the nucleation of AlF₃ ALD on Al₂O₃ substrates. The first HF exposure was able to convert Al₂O₃ to AlF₃. The FTIR spectra also revealed AlF(CH₃)₂ and HF species on the surface after the TMA and HF exposures, respectively. In addition, mass spectrometry measurements demonstrated that HF is the main gaseous species in equilibrium with the HFpyridine solution.

Ex situ X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) measurements were also employed to measure the AlF₃ ALD film thicknesses. The AlF₃ ALD growth rate measured by XRR and SE was 1.43 Å/cycle at 100°C. XPS and RBS measurements showed that the AlF₃ ALD films were nearly stoichiometric AlF₃ with an oxygen impurity of only ~2 at%. AlF₃ ALD may be useful for a number of applications such as ultraviolet optical films, protective coatings for the electrodes of Li ion batteries and Lewis acid catalytic films.

2.5. Acknowledgements

This research was funded by the Department of Energy through the DOE-BATT program. Additional funding was provided by the National Science Foundation (CHE-1306131). The authors thank Dr. Greg Haugstad in the Nanofabrication Center at the University of

Minnesota for the RBS measurement. The authors also thank for Markus Neuber for the GIXRD measurement.

2.6. References

- Pellicori, S. F.; Colton, E. Fluoride Compounds for Ir Coatings, *Thin Solid Films* 1992, 209, 109-115.
- (2) Staritzky, E.; Asprey, L. B. Aluminum Trifluoride, Alf3, Anal Chem 1957, 29, 984-984.
- Barriere, A. S.; Lachter, A. Optical-Transitions in Disordered Thin-Films of Ionic Compounds MgF2 and AiF3 as a Function of Their Conditions of Preparation, *Appl Optics* 1977, *16*, 2865-2871.
- Konig, D.; Scholz, R.; Zahn, D. R. T.; Ebest, G. Band diagram of the AlF3/SiO2/Si system, *J Appl Phys* 2005, 97,
- (5) Bridou, F.; Cuniot-Ponsard, M.; Desvignes, J. M.; Richter, M.; Kroth, U.; Gottwald, A. Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60-124 nm), and its application to optical designs, *Opt Commun* **2010**, *283*, 1351-1358.
- (6) Lee, C. C.; Liu, M. C.; Kaneko, M.; Nakahira, K.; Takano, Y. Characterization of AlF3 thin films at 193 nm by thermal evaporation, *Appl Optics* 2005, 44, 7333-7338.
- Niisaka, S.; Saito, T.; Saito, J.; Tanaka, A.; Matsumoto, A.; Otani, M.; Biro, R.; Ouchi, C.; Hasegawa, M.; Suzuki, Y.; Sone, K. Development of optical coatings for 157-nm lithography. I. Coating materials, *Appl Optics* 2002, *41*, 3242-3247.
- (8) Sun, Y. K.; Lee, M. J.; Yoon, C. S.; Hassoun, J.; Amine, K.; Scrosati, B. The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries, *Adv Mater* 2012, *24*, 1192-1196.
- Ding, F.; Xu, W.; Choi, D. W.; Wang, W.; Li, X. L.; Engelhard, M. H.; Chen, X. L.; Yang,
 Z. G.; Zhang, J. G. Enhanced performance of graphite anode materials by AlF3 coating for
 lithium-ion batteries, *J Mater Chem* 2012, 22, 12745-12751.
- Myung, S. T.; Lee, K. S.; Yoon, C. S.; Sun, Y. K.; Amine, K.; Yashiro, H. Effect of AlF3 Coating on rhermal Behavior of Chemically Delithiated Li-0.35[Ni1/3Co1/3Mn1/3]O-2, J Phys Chem C 2010, 114, 4710-4718.
- Herron, N.; Farneth, W. E. The design and synthesis of heterogeneous catalyst systems, *Adv Mater* 1996, *8*, 959-968.

- (12) Kemnitz, E.; Gross, U.; Rudiger, S.; Shekar, C. S. Amorphous metal fluorides with extraordinary high surface areas, *Angew Chem Int Edit* **2003**, *42*, 4251-4254.
- (13) Kemnitz, E.; Menz, D. H. Fluorinated metal oxides and metal fluorides as heterogeneous catalysts, *Prog Solid State Ch* **1998**, *26*, 97-153.
- (14) Taki, Y. Film structure and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography, *Vacuum* **2004**, *74*, 431-435.
- (15) Iwahori, K.; Furuta, M.; Taki, Y.; Yamamura, T.; Tanaka, A. Optical properties of fluoride thin films deposited by RF magnetron sputtering, *Appl Optics* **2006**, *45*, 4598-4602.
- (16) Heitmann, W. VACUUM EVAPORATED FILMS OF ALUMINUM FLUORIDE, *Thin Solid Films* **1970**, *5*, 61-&.
- (17) Schink, H.; Kolbe, J.; Zimmermann, F.; Ristau, D.; Welling, H., "Reactive ion-beam-sputtering of fluoride coatings for the UV/VUV range", at Proc. SPIE June 1, 1991.
- (18) Targove, J. D.; Bovard, B. G.; Lingg, L. J.; Macleod, H. A. Densification of Aluminum Fluoride Thin-Films by Ion-Assisted Deposition, *Thin Solid Films* **1988**, *159*, L57-L59.
- (19) George, S. M. Atomic Layer Deposition: An Overview, *Chem Rev* 2010, 110, 111-131.
- (20) Lee, Y.; Cavanagh, A. S.; George, S. M. Atomic Layer Deposition of AlF₃ Using Trimethylaluminum and Hydrogen Fluoride-Pyridine, Proceedings of the 13th International Conference on Atomic Layer Deposition, San Diego, California, July 28-31, 2013.
- Mäntymäki, M.; Heikkilä, M. J.; Puukilainen, E.; Mizohata, K.; Marchand, B.; Räisänen, J.; Ritala, M.; Leskelä, M. Atomic Layer Deposition of AlF₃ Thin Films Using Halide Precursors *Chem. Mater.* 2014, 27, 604-611.
- (22) Elam, J. W.; Groner, M. D.; George, S. M. Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition, *Rev Sci Instrum* 2002, 73, 2981-2987.
- (23) Lee, Y.; Yoon, B.; Cavanagh, A. S.; George, S. M. Molecular Layer Deposition of Aluminum Alkoxide Polymer Films Using Trimethylaluminum and Glycidol, *Langmuir* 2011, 27, 15155-15164.
- (24) Olah, G. A.; Nojima, M.; Kerekes, I. Synthetic Methods and Reactions .2. Hydrofluorination of Alkenes, Cyclopropane and Alkynes with (Trialkylamine) Reagents, *Synthesis-Stuttgart* 1973, 779-780.

- (25) DuMont, J. W.; George, S. M. Pyrolysis of Alucone Molecular Layer Deposition Films Studied Using In Situ Transmission Fourier Transform Infrared Spectroscopy, *Journal of Physical Chemistry C (In Press)* 2015,
- (26) Ballinger, T. H.; Wong, J. C. S.; Yates, J. T. Transmission Infrared-Spectroscopy of High Area Solid-Surfaces - A Useful Method for Sample Preparation, *Langmuir* 1992, 8, 1676-1678.
- (27) Ferguson, J. D.; Weimer, A. W.; George, S. M. Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles, *Thin Solid Films* **2000**, *371*, 95-104.
- (28) D. Shannon, R.; Shannon, R. C.; Medenbach, O.; Fischer, R. X. Refractive Index and Dispersion of Fluorides and Oxides, *Journal of Physical and Chemical Reference Data* 2002, *31*, 931-970.
- (29) Lennard, W. N., QUARK ver. 1.3, 2001 http://www.physics.uwo.ca/~wlennard.
- (30) CRC Handbook of Chemistry and Physics; 85th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2005.
- (31) Linstrom, P. J.; Mallard, W. G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).
- (32) van der Meulen, P. A.; Mann, R. F. The Vapor Pressure of Pyridine, *J. Am. Chem. Soc.* 1931, *53*, 451-453.
- (33) Atkins, P. W. *Physical Chemistry, 5th Edition*; Oxford University Press: Oxford 1994.
- (34) Ott, A. W.; Klaus, J. W.; Johnson, J. M.; George, S. M. Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry, *Thin Solid Films* **1997**, 292, 135-144.
- (35) Lee, Y.; DuMont, J. W.; George, S. M. Atomic Layer Etching of HfO₂ Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)₂ and HF, J. Solid State Sci. Technol. (In Press) 2015,
- Lee, Y.; George, S. M. Atomic Layer Etching of Al₂O₃ Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)2 and HF, ACS Nano 2015, 9, 2061-2070.
- Gross, U.; Ruediger, S.; Kemnitz, E.; Brzezinka, K.-W.; Mukhopadhyay, S.; Bailey, C.;
 Wander, A.; Harrison, N. Vibrational analysis study of aluminum trifluoride phases, *J. Phys. Chem. A* 2007, *111*, 5813-5819.

- Koenig, R.; Scholz, G.; Scheurell, K.; Heidemann, D.; Buchem, I.; Unger, W. E. S.; Kemnitz, E. Spectroscopic characterization of crystalline AlF3 phases, *J. Fluorine Chem.* 2010, *131*, 91-97.
- (39) Utkin, A. N.; Girichev, G. V.; Giricheva, N. I.; Khaustov, S. V. STRUCTURE AND VIBRATIONAL FREQUENCIES OF ALUMINUM TRIFLUORIDE AND GALLIUM TRIFLUORIDE, J. Struct. Chem. 1986, 27, 212-215.
- (40) Ferguson, J. D.; Weimer, A. W.; George, S. M. Atomic layer deposition of Al2O3 films on polyethylene particles, *Chem Mater* 2004, *16*, 5602-5609.
- (41) Goldstein, D. N.; McCormick, J. A.; George, S. M. Al₂O₃ Atomic Layer Deposition with Trimethylaluminum and Ozone Studied by in Situ Transmission FTIR Spectroscopy and Quadrupole Mass Spectrometry, *J Phys Chem C* 2008, *112*, 19530-19539.
- (42) *HSC Chemistry*; HSC Chemistry 5.1, Outokumpu Research Oy: Pori, Finland.
- (43) Weidlein, J.; Krieg, V. VIBRATIONAL SPECTRA OF DIMETHYL AND DIETHYL ALUMINUM FLUORIDE, *Journal of Organometallic Chemistry* **1968**, *11*, 9-&.
- (44) Giguere, P. A.; Zengin, N. SPECTRE INFRAROUGE DE HF A LETAT CRISTALLIN, *Canadian Journal of Chemistry-Revue Canadienne De Chimie* **1958**, *36*, 1013-1019.
- (45) Buslov, D. K.; Sushko, N. I.; Yukhnevich, G. V. The IR spectrum of liquid hydrogen fluoride, *Journal of Optical Technology* **2003**, *70*, 28-30.
- (46) Ayotte, P.; Hebert, M.; Marchand, P. Why is hydrofluoric acid a weak acid?, *Journal of Chemical Physics* 2005, 123,
- (47) Bailey, C. L.; Wander, A.; Mukhopadhyay, S.; Searle, B. G.; Harrison, N. M. Adsorption of HF and HCl on the beta-AlF(3) (100) surface, *Phys Chem Chem Phys* 2008, *10*, 2918-2924.
- Bailey, C. L.; Mukhopadhyay, S.; Wander, A.; Searle, B. G.; Harrison, N. M. Structure and Stability of alpha-AlF3 Surfaces, *J Phys Chem C* 2009, *113*, 4976-4983.
- (49) Pulker, H. K. CHARACTERIZATION OF OPTICAL THIN-FILMS, *Appl Optics* 1979, 18, 1969-1977.

CHAPTER 3

Atomic Layer Deposition of LiF and Lithium Ion Conducting (AlF₃)(LiF)_x Alloys Using Trimethylaluminum, Lithium Hexamethyldisilazide and Hydrogen Fluoride

3.1. Introduction

LiF is an important material for lithium ion batteries due to its role in solid electrolyte interface (SEI) layer.^{1,2} At 13.6 eV,³ LiF has one of the largest bandgaps of any known material, which leads to its transparency in deep ultraviolet, making it appealing for optical coatings.⁴ LiF has also been widely employed in the electron injection layer of organic light-emitting diodes (OLED)^{5,6} to reduce the work function of Al cathode.⁷

LiF films have been grown by physical vapor deposition methods such as thermal evaporation⁸⁻¹³, sputtering^{14,15}, electron beam deposition^{16,17}, pulsed laser deposition.^{18,19} Atomic layer deposition (ALD) of LiF was demonstrated using TiF₄ as F precursor recently.²⁰ LiF and metal fluorides can form alloys having high ionic conductivity.^{8,21-23} For example, (AlF₃)(LiF)_x alloys grown by thermal evaporation can serve as a solid state electrolytes because their ionic conductivities are ~10⁶ S/cm.^{8,21,22} Lithium ion conducting films are very important as solid state electrolytes and protective coatings for lithium ion batteries. ALD is a film growth technique based on sequential, self-limiting surface reactions, which enables subnananometer control of conformal thin films.²⁴ ALD of metal oxides, nitrides, and sulfides has been developed using H₂O, NH₃, and H₂S respectively.²⁵ ALD of metal fluorides has proven difficult because HF is not a benign reactant.²⁶ Most ALD of metal fluorides has been performed using alternative F precursors rather than HF.²⁶⁻²⁹

HF-pyridine that consists of 70% HF and 30% pyridine has been employed as a F precursor for AlF₃ ALD.³⁰ HF-pyridine is a liquid at room temperature, which enables the safe handling of HF not using a pressurized cylinder of HF.³¹ HF-pyridine serves as a reservoir for anhydrous HF forming equilibrium mixture between stable (HF)_{9-x}-pyridine complex and small amount of gaseous xHF.

The growth of LiF ALD film and reaction mechanism using LiHMDS and HF are examined by *in situ* techniques, such as quartz crystal microbalance (QCM) and quadrupole mass spectrometer (QMS) at reaction temperatures between $125 \,^{\circ}$ C and $250 \,^{\circ}$ C. The growth of (AlF₃)(LiF)_x alloy film and reaction mechanism are also examined by the combination of AlF₃ and LIF ALD. The film properties such as refractive index and film density are studied by *ex situ* techniques such as X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE)

Crystalline LiF and (AlF₃)(LiF)_x alloy films grown at 150 °C were confirmed by grazing incidence X-ray diffraction (GIXRD). This dense film with a low refractive index is important for optical coatings. X-ray photoelectron spectroscopy (XPS) confirmed that the film consisted of Li and F or Al, Li, and F. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of the LiF film of Li:F=1:1.1 and (AlF₃)(LiF)_x alloy film of Al:Li:F=1:2.7: 5.4 for (AlF₃)(LiF)_x alloy film. Lithium ion conductivity for (AlF₃)(LiF)_x alloy film was measured as $\sigma = 7.5 \times 10^{-6}$ S/cm.

3.2. Experimental section

3.2A. Viscous Flow Reactor Equipped with in situ QCM and QMS Measurements

The ALD reactions were performed in the viscous flow reactor equipped with an *in situ* quartz crystal microbalance (QCM) and a quadrupole mass spectrometer (QMS) at temperatures between $125 \,^{\circ}$ C and $250 \,^{\circ}C^{32,33}$. A film deposition monitor (Maxtek TM-400, Inficon) monitored *in situ* QCM experiments. The QCM sensor with quartz crystal (polished and gold coated AT-cut, 6MHz, Colorado Crystal Corp.) was placed in the bakeable single sensor head (BSH-150, Inficon) and sealed with high temperature epoxy (Epo-Tek H21D, Epoxy technology). A PID temperature controller (2604, Eurotherm) kept the reactor at a fixed temperature within ± 0.04 °C. A capacitance manometer (Baratron 121A, MKS) monitored pressure change during reaction.

Quadrupole mass spectrometry (QMS) was performed on the vapor phase species in the ALD reactor. Measurements were performed with a residual gas analyzer (RGA 200, Stanford Research Systems). The gases produced during ALD reaction were sampled via an aperture. The aperture separated two distinct pressure regions, the ALD reactor (~1 Torr) and the QMS region (~1 × 10-7 Torr). In order to maintain these pressures with an open conductance between the two regions, the QMS region was differentially pumped with a turbo molecular pump (V70LP, Varian). The aperture radius was 25 μ m. A dual thoriated-iridium (ThO2/Ir) filament was used for electron emission in the mass spectrometer. The ionization energy was 70 eV. A Faraday cup was used as the detector.

The LiF ALD reactions were studied with LiHMDS (95%, Gelest) and HF-pyridine (70 wt% HF, Sigma-Aldrich). HF-pyridine was transferred to a stainless steel bubbler in a dry nitrogen-filled glove bag. Although HF-pyridine minimizes the risks from employing HF, the inhalation of fumes and the contact with skin should be avoided

The LiHMDS was transferred to stainless steel bubblers in a dry nitrogen-filled glove bag and maintained at 115 °C. A mechanical pump (Pascal 2015SD, Alcatel) pumped the reactants with a nitrogen carrier gas. The mass flow controllers (Type 1179A, MKS) supplied a constant nitrogen carrier gas flow of 150 sccm. Deposition of back-side of the crystal was prevented from additional purge gas flow of 20 sccm supplied using a metering bellows-sealed valve (SS-4BMG, Swagelok) into the QCM housing. The total nitrogen gas flow of 170 sccm produced a base pressure of ~1 Torr in the reactor.

3.2B. X-ray reflectivity (XRR), grazing incidence X-ray diffraction (GIXRD), and spectroscopic ellipsometry (SE)

Boron doped Si (100) wafers (p-type, Silicon Valley Microelectronics) was used for the substrates for ALD deposition. The Si wafer was cleaved into ~2.5 cm by ~2.5 cm substrates. The substrates were cleaned with acetone, isopropanol, and deionized water and dried with nitrogen gas.

The film thicknesses and the density were analyzed by *ex situ* X-ray reflectivity (XRR). A high resolution X-ray diffractometer (Bede D1, Jordan Valley Semiconductors) using Cu K α ($\lambda = 1.540$ Å) radiation recorded the XRR scans. The filament current in the X-ray tube was 35 mA and the voltage was 40 kV. A step size and an acquisition time used for all XRR scans were 10 arcsec and 5 s, respectively. The XRR scans were fit by modeling software (Bede REFS, Jordan Valley Semiconductors) to analyze film thickness, surface roughness, and film density. The crystallinity was examined by grazing incidence X-ray diffraction (GIXRD) with the samples rotated at ω =0.5°, a step size of 0.01°, and a count time of 3s.

The film thicknesses and refractive index were also determined using reflective spectroscopic ellipsometry (SE). These measurements were performed using a spectroscopic ellipsometer (M-2000, J. A. Woollam) employing a spectral range from 240 to 1700 nm with an incidence angle of 75 degree. The measurement of Ψ and Δ yielded the film thicknesses and refractive index using the control and analysis software (CompleteEASE, J. A. Woollam) with a Sellmier model.

3.2C. X-ray Photoelectron Spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MS), and ionic chromatography (IC)

The film composition was determined by X-ray photoelectron spectroscopy (XPS). X-ray photoelectron spectrometer (PHI 5600, RBD Instruments) used monochromatic Al K α X-rays of 1486.6 eV. Survey scans of the sample surfaces were measured with a pass energy of 93.9 eV and a step size of 0.400 eV. A depth profile was measured using Ar ion sputtering. A pass energy of 58.7 eV and a step size was 0.250 eV was used for the depth profiling analysis. An electron beam neutralizer was employed at 17.8 mA. Data was obtained with the control program (Auger Scan, RBD Instruments) and analyzed by the software (CASA XPS, Casa Software).

For determination of stoichiometry of LiF and $(AlF_3)(LiF)_x$ alloy films, ICP-MS and IC were employed. LiF and AlF₃ have solubility of 0.134g and 0.50g in 100g of water respectively.³⁴ LiF and $(AlF_3)(LiF)_x$ alloy films on a silicon wafer were dissolved in DI water. Dissolution of 800 cycles of LiF ALD (~60µg) in 30 g of DI water yielded ~2ppm concentration. SE confirmed LiF film and $(AlF_3)(LiF)_x$ alloy films were dissolved completely. Lithium and aluminum were analyzed by ICP-MS (SCIEX Elan DRC-e, Perkin Elmer). Fluorine cannot be analyzed by ICP-MS because it has a higher ionization energy than the argon used as medium. Analysis of F was performed with liquid ion chromatography system (Dionex Series 4500i, Thermo).

3.2D. Electrochemical impedance spectroscopy (EIS) measurements

Electrochemical impedance spectroscopy (EIS) was performed using the potentiostat (VMP3, Biologic). The AC impedance measurements were recorded using a signal with an amplitude of 5 mV and a frequency from 1 MHz to 10 mHz. EIS was conducted in symmetric coin-type form factor cells (Pred Materials) with an electrode area of 1.27 cm² in the following configuration: (AIF₃)(LiF)_x alloy ALD film on Cu foil current collector / liquid electrolyte (EC/DEC 1M LiPF₆, Soulbrain) with the separator / (AIF₃)(LiF)_x alloy ALD film on Cu foil current collector. Two thicknesses of (AIF₃)(LiF)_x alloy ALD film were tested for a more accurate analysis of ionic conduction through the films.

3.3. Results and Discussion

3.3A. Growth of LiF Films

Figure 1 shows the plot of mass gain during 100 cycles of LiF ALD at 150°C using LiHMDS and HF monitored by quartz crystal microbalance (QCM). The reaction sequence of one ALD cycle consists of 1 s dose of LiHMDS, 30 s of nitrogen purge, 1 s dose of HF, and 30 s of nitrogen purge. This reaction sequence is denoted as (1-30-1-30). There is a very linear growth showing a mass gain per cycle (MGPC) of 12 ng/(cm² cycle). To measure the steady-state growth rate on a fully nucleated surface, ~300 cycles of LiF ALD was deposited on 200

Figure 3-1. Mass gain versus time during 100 cycles of LiHMDS and HF reaction at 150 °C using the reaction sequence of (1-30-1-30).

Figure 3-2. Enlargement of mass gain versus time for three sequential LiHMDS and HF reactions in the steady-state, linear growth regime shown in Figure 3-1.

cycles of Al₂O₃ ALD before QCM measurements. This high number of nucleation cycles is probably due to the complicated reaction between LiF ALD and initial Al₂O₃ surface.

Figure 2 shows three sequential LiF ALD reactions recorded by QCM during 78th, 79th, and 80th cycles using the reaction sequence of (1-30-1-30). The mass increase after LiHMDS exposure is $\Delta M_{Li} = 67$ ng/(cm² cycle). Mass loss after HF exposure is $\Delta M_{HF} = -55$ ng/(cm² cycle). Steps for a large mass gain followed by a large mass loss indicate an absorption of a molecule with a high molecular weight during LiHMDS exposure followed by leaving a large ligand from the surface during HF exposure.

The self-limiting behavior LiF ALD was also examined by mass gain as function of number of minidoses of each reactant consisting of 0.5 s of dose and 30 s of purge at 150°C. Both reactants showed self-limiting reactions. ΔM_{Li} versus minidoses of LiHMDS reached the plateau of at $\Delta M_{Li} = ~67$ ng/(cm² cycle) using one 0.5 s of minidose. Similarly, ΔM_{HF} versus minidoses of HF leveled off at $\Delta M_{HF} = ~55$ ng/(cm² cycle) using one 0.5 s of minidose.

Figure 3 displays the MGPC and the ratio of mass gain during the LiHMDS exposure to the total mass gain ($\Delta M_{Li}/MGPC$) during 100 cycles. The MGPC of 12 ng/(cm² cycle) consists of $\Delta M_{Li} = 67$ ng/(cm² cycle) and $\Delta M_{HF} = -55$ ng/(cm² cycle). The $\Delta M_{Li}/MGPC$ ratio stays on the line of 5.6. This ratio can be used to determine the surface chemistry from the calculation using molar mass of each species.³³ This ratio of 5.6 will be discussed later.

Figure 4 reveals the species in the gas phase monitored during the same LiF reactions shown in Figure 2. Figure 4a-c show the mass spectrum obtained by quadrupole mass spectrometer (QMS). The hexamethydisilazane (HMDS) peak of m/z = 65 as a reaction byproduct does not appear during either LiHMDS or HF cycles as shown in Figure 4a. The HF peak of m/z = 20 appears during HF exposure shown in Figure 4b. Figure 4c also shows an

Figure 3-3. MGPC and $\Delta M_{Li}/MGPC$ ratio during 100 cycles of LiHMDS and HF reaction at 150 °C: (a) MGPC, ΔM_{Li} , and ΔM_{HF} ; (b) $M_{Li}/MGPC$ ratio.

Figure 3-4. Mass spectrometer signals for (a) m/z= 65 for HMDS; (b) m/z= 17 for NH₃ and m/z=20 for HF; (c) m/z=77 and 47 for FSi(CH)₃ respectively, during three LiF ALD cycles at 150°C shown in Figure 3-2.

increased background signal of $> 10^{-10}$ Torr for NH₃ at m/z = 17 during LiF reaction. Before the LiF reaction it was $< 10^{-11}$ Torr. This increase may be due to some spillover from m/z=16. Another possibility is that this significant increase of m/z = 17 may indicates strong interaction between NH₃ and HF through acid-base interaction in the gas phase. Interestingly, QMS detects peaks from FSi(CH₃)₃ of both m/z = 77 and m/z = 47 shown in Figure 4c. Formation of FSi(CH₃)₃ suggests the decomposition of HMDS by HF into NH₃ and FSi(CH₃)₃. Formation of FSi(CH₃)₃ between HMDS, (CH₃)₃SiNHSi(CH₃)₃, and F⁻ in the gas phase was previously studied in the tube reactor with He flow by mass spectrometry.³⁵ Possible reaction pathways for these species include:

$$(CH_3)_3SiNHSi(CH_3)_3 + HF \rightarrow FSi(CH_3)_3 + (CH_3)_3SiNH_2$$
(1a)

$$(CH_3)_3SiNH_2 + HF \rightarrow FSi(CH_3)_3 + NH_3$$
(1b)

$$(CH_3)_3SiNHSi(CH_3)_3 + 2HF \rightarrow 2FSi(CH_3)_3 + NH_3$$
(2)

The QMS did not observe peaks from $(CH_3)_3SiNH_2$, m/z = 89, 88, and 87. Absence of $(CH_3)_3SiNH_2$ peaks and significant increase of NH_3 m/z=17 suggest HMDS decomposes completely to two FSi(CH₃)₃ and one NH_3 by HF shown in equation 2

Figure 5 illustrates the proposed reaction mechanism. In reaction A, an initial surface of LiF is assumed from several LiF ALD reactions. When LiHMDS molecules are exposed to the surface, LiHMDS physisorbs on the surface. In reaction B, HF molecules are exposed to the surface to break Li-HMDS to form Li-F. During this reaction HMDS on the surface can be decomposed into two FSi(CH₃)₃ and NH₃ by HF molecules during HF exposure. The assumption of LiHMDS adsorption on the surface during reaction A is based on the mass gain

Figure 3-5. Proposed reaction mechanism of LiF ALD using LiHMDS and HF.

ratio during LiHMDS exposure obtained by QCM experiment. With the amount of HF present on the surface for each LiF represented as "x", the surface chemistry can be expressed by

(A)
$$\text{LiF}|\text{xHF}^* + \text{LiHMDS} \rightarrow \text{LiF}|\text{LiF}_x(\text{HMDS})_{1-x}^* + x \cdot (\text{FSi}(\text{CH}_3)_3 + 1/2\text{NH}_3)$$
 (3a)

(B)
$$\text{LiF}|\text{LiF}_{x}(\text{HMDS})_{1-x}^{*} + 3\text{HF} \rightarrow \text{LiF}|\text{LiF}|x\cdot\text{HF}^{*} + (1-x)\cdot(\text{FSi}(\text{CH}_{3})_{3} + 1/2\text{NH}_{3})$$
 (3b)

The ratio $\Delta M_{Li}/MGPC$ can be calculated from:

$$\frac{\Delta M_{Li}}{MGPC} = \frac{\Delta M_{Li}}{\Delta M_{Li} + \Delta M_{HF}} = \frac{M_{LiHMDS} - x \cdot (M_{HMDS})}{M_{LiF}}$$
(4)

where M_{LiHMDS} , M_{HMDS} , and M_{LiF} are the molar masses of LiHMDS, HMDS, and LiF, respectively.

In the absence of HF on the surface (x = 0), the reaction should progress with only LiHMDS adsorption on LiF surface. The $\Delta M_{Li}/MGPC$ ratio for x = 0 is 6.5 from equation 4. The LiHMDS mass gain ratio of 5.6 from QCM experiment is close to the ratio of 6.5 based on LiHMDS adsorption with no surface HF in Figure 5a. With the assumption of one HF per LiF surface species(x = 1), the $\Delta M_{Li}/MGPC$ ratio is 0.23. This is much smaller than the LiHMDS mass gain ratio of 5.6 from QCM experiments. In this case we should be able to see mass gain instead of mass loss from HF adsorption in the reaction B, which we do not see. The ratio of 5.6 approximately corresponds to one HF molecule per seven LiF surface species, where x = 0.14. The LiHMDS mass gain ratio, and therefore the amount of surface HF, was nearly constant between 125°C° and 175°C. The ratio slightly increased to 6.8 at 200°C. This indicates adsorption of HF on LiF surface may be prevented at higher reaction temperature of ~200°C, however a negligible amount of HF is present at lower temperatures. This result is obviously different from AlF₃ ALD which has always has a significant amount of HF on the AlF₃ surface.³⁰ Adsorption of LiHMDS on LiF surface can be explained by strong interactions of Si in LiHMDS with F in LiF surface and N in LHMDS with Li in LiF. Stable Si-N-Li-F ring structures were reported in solution chemistry previously.³⁶⁻³⁸

The growth of LiF ALD film on the silicon wafer is relatively linear having the growth rate of 0.5-0.6 Å /cycle measured by X-ray reflectivity (XRR) and by spectroscopic ellipsometry (SE). The density of the films grown >400 cycles of LiF ALD measured by XRR is 2.6 g/cm^3 . The bulk density of LiF is 2.64 g /cm. 3,34 The close agreement with the bulk LiF density suggests LiF ALD is crystalline. GIXRD confirmed the LiF film grown using 800 cycles of LiF ALD at 150°C was crystalline. LiF films grown by other vacuum techniques also show crystallinity.^{10,20,39} Thin films prepared using 100 cycles and 200 cycles of ALD show 2.0 g /cm³ and 2.5 g /cm³ less dense films probably due to nucleation delay. The films grown using 800 cycles of LiF ALD have a roughness of 50 - 60 Å as modeled by XRR and SE. The growth rate calculated using a MGPC obtained by QCM experiment and the density measured by XRR yields 0.5 Å /cycle. The thickness, the film density, and film roughness of LiF film do not show noticeable changes after storage in atmosphere after one month. These results indicate LiF grown by ALD is not hygroscopic in the atmosphere. Refractive index were measured at the wavelength of 589 nm obtained by SE based on the Sellmeier model. The Sellmeier model is commonly used for optically transparent films such as metal fluoride films.^{30,40} The extinction coefficient is zero because LiF ALD film are transparent in the range of between 240 nm and 1700 nm due to the wide band gap =13.6 eV.^{3,13} This refractive index of 1.37 is achieved at 400 cycles of ALD. This refractive index of 1.37 is consistent with $1.39^{4,10}$ at 590 nm for the bulk $LiF^{4,10}$, 1.39¹⁰ at 600 nm for the film grown by thermal evaporation and 1.37–1.39²⁰ grown by ALD using Li(thmd) and TiF₄.

Figure 6 shows the temperature dependence of the MGPC and the growth rate. The MGPC obtained from QCM experiment at the different temperatures is shown in Figure 6a. This MGPC can be converted to the growth rate using the film density measured by XRR shown in Figure 6b. The growth rates calculated from the thickness of 400 cycles ALD measured by XRR and SE are shown in Figure 6b together. The calculation of growth rate using the thickness yields a different growth rate calculated from MGPC and density because the film growth suffers from nucleation delay. All the growth rates are in good agreement, with a maximum growth rate of 0.5–0.6 Å / cycle at 150 °C. The growth rate decreases at higher temperature, probably due to a decrease in LiHMDS adsorption. A slight decrease in the growth rate is also observed at the lower temperature of 125 °C.

3.3B. Growth of (AlF₃)(LiF)_x Alloy Films

Figure 7 displays the plot of mass gain during 40 sequences of $(AlF_3)(LiF)_x$ alloy ALD at 150°C monitored by QCM. One sequence $(AlF_3)(LiF)_x$ alloy ALD consists of AlF₃ subcycle and LiF ALD subcycle. This reaction sequence is denoted as (1-30-1-30)-(1-30-1-30). There is a very linear growth showing a mass gain per sequence (MGPS) of 22 ng/(cm² sequence). To measure the steady-state growth rate on a fully nucleated surface, ~200 sequence of $(AlF_3)(LiF)_x$ alloy film was deposited on 200 cycles of AlF₃ ALD before QCM measurements. This high number of nucleation cycles is probably due to the complicated reaction between AlF₃ ALD and LiF ALD.

Figure 8 shows three sequential $(AlF_3)(LiF)_x$ alloy ALD reactions recorded by QCM using the reaction sequence of (1-30-1-30)-(1-30-1-30). This alloy sequence consists of one AlF₃ subcycle and one LiF subcycle, which can be considered separately. The shape of mass

Figure 3-6. MGPC and growth rate versus reaction temperature using reaction sequence of (1-30-1-30): (a) MGPC; (b) Growth rate.

gain during AlF₃ subcycle is not the same as shown in AlF₃ ALD. There is no noticeable mass gain after HF exposure. The shape of mass change during LiF cycle is very similar to LiF ALD. The mass increase after AlF₃ subcycle is $\Delta M_{AlF3} = 12 \text{ ng/(cm}^2 \text{ cycle})$. The mass gain after LiF subcycle is $\Delta M_{LiF} = 10 \text{ ng/(cm}^2 \text{ cycle})$. Steps for a large mass gain followed by a large mass loss indicate an absorption of a molecule with a high molecular weight during LiHMDS exposure followed by leaving a large ligand from the surface during HF exposure.

Figure 9 displays the MGPS and the ratio of mass gain during AlF₃ subcycle to the total mass gain ($\Delta M_{AlF3}/MGPS$) during 40 sequences. MGPS is the sum of mass changes during each fluoride subcycle. The MGPS of 22 ng/(cm² cycle) consists of $\Delta M_{AlF3} = 12$ ng/(cm² cycle) and $\Delta M_{LiF} = 10$ ng/(cm² cycle). The $\Delta M_{AlF3}/MGPS$ ratio stays on the line of 0.54. This ratio means that the alloy film consists of 54 wt. % of AlF₃ and 46% wt. % of LiF. This ratio can be used to determine the stoichiometry between Al and Li.

The molar mass of fluorides alloy is equal to the sum of molar mass of AlF₃ and the molar mass of LiF.

$$AlF_3 + x \cdot LiF \rightarrow (AlF_3)(LiF)_x$$
 (5)

The ratio $\Delta M_{AIF3}/MGPS$ can be calculated from:

$$\text{Ratio} = \frac{\Delta M_{\text{AlF3}}}{\text{MGPS}} = \frac{\Delta M_{\text{AlF3}}}{\Delta M_{\text{AlF3}} + \Delta M_{\text{LiF}}} = \frac{M_{AlF3}}{M_{AlF3} + xM_{LiF}}$$
(6a)

$$0.54 = \frac{84}{84 + x26} \tag{6b}$$

where M_{AlF3} and M_{LiF} are the molar masses of AlF₃ and LiF, respectively.

Figure 3-7. Mass gain versus time during 40 sequences of $AlF_3:LiF = 1:1$ reaction at 150 °C using the reaction sequence of (1-30-1-30)-(1-30-1-30).

Figure 3-8. Enlargement of mass gain versus time for three sequential TMA, HF, LiHMDS and HF reactions in the steady-state, linear growth regime shown in Figure 3-7.

Figure 3-9. MGPS and $\Delta M_{AlF3}/MGPS$ ratio during 40 sequences of AlF₃:LiF= = 1:1 reaction at 150 °C: (a) MGPS, $\Delta M_{AlF3}/MGPS$ ratio ΔM_{AlF3} , and ΔM_{LiF} ; (b) $\Delta M_{AlF3}/MGPS$ ratio.

The ratio and molar masses yields x=2.8. It is interesting that this stoichiometry, x=2.8 is very similar to the stoichiometry of only thermodynamically stable phase is Li_3AlF_6 . ICP-MS determined x = 2.7 in this film, which is pretty consistent with QCM result.

Figure 10 reveals the species in the gas phase monitored during the same three sequential $(AIF_3)(LiF)_x$ alloy ALD reactions shown in Figure 8. Figure 10a-c show the mass spectrum obtained by quadrupole mass spectrometer (QMS). The methane (CH₄) peak of m/z = 16 as a reaction byproduct appear during AIF₃ subcycle either TMA or HF cycles as shown in Figure 10a. The HF peak of m/z = 20 appears during HF exposure either during AIF₃ or LiF subcycle shown in Figure 10b. QMS detects peaks from FSi(CH₃)₃ of both m/z = 77 and m/z = 47 due to the formation of FSi(CH₃)₃ shown in Figure 10c.

Figure 11 illustrates the proposed reaction mechanism for $(AlF_3)(LiF)_x$ alloy ALD reactions. In reaction A, an initial surface of $(AlF_3)(LiF)_x$ alloy film is assumed prepared by several $(AlF_3:LiF)=1:1$ ALD reactions. When TMA molecules are exposed to the surface, TMA adsorbs on the surface. In reaction B, HF molecules are exposed to the surface to form AlF3 and CH₄ as a byproduct. In reaction C, there is LiHMDS adsorption. And HF exposed in the reaction D form LiF and FSi(CH₃)₃ and ammonia as byproducts confirmed by QMS. Individual ratios during AlF₃ and LiF subcycles are consistent with the assumption of TMA and LiHMDS adsorption on the surface during reaction A and C based on the mass gain ratio obtained by QCM experiment.

Figure 3-10. Mass spectrometer signals for (a) m/z= 16 for CH₄; (b) m/z= 20 for HF; (c) m/z=77 and 47 for FSi(CH)₃, HF respectively, during 40 sequences of AlF₃:LiF= = 1:1 reaction at 150 °C shown in Figure 3-7.

Figure 3-11. Proposed reaction mechanism of (AlF₃)(LiF)_x alloy film consisting of AlF₃ ALD subcycle and LiF ALD subcycle.

(D)

(C)

3.3C. Ex situ Analysis of LiF and (AlF₃)(LiF)_x Alloy Films

Figure 12 shows the plot of film thickness at the different number of sequences measured by XRR and SE. The plot of film thickness of $(AlF_3)(LiF)_x$ alloy ALD grown on silicon wafer at 50 100, 200, 400, 600, and 800 cycles. Growth of $(AlF_3)(LiF)_x$ alloy ALD film on the silicon wafer is linear having the growth rate of 0.9 Å/sequence measured by XRR and SE. The density of the films grown >200 sequences of $(AlF_3)(LiF)_x$ alloy ALD measured by XRR is 2.6 g /cm³. Refractive index of the films is 1.36 measured by SE. The film density of the films closes to LiF ALD (2.6 g /cm³.) rather than AlF₃ (2.9 g /cm³.) consistent with more LiF contents in alloys film. The thickness, the film density, and film roughness of alloy film do not show noticeable changes after storage in atmosphere after one month. These results indicate alloy grown by ALD is not hygroscopic in the atmosphere. Refractive indices were measured at the wavelength of 589 nm obtained by SE based on the Sellmeier model. This refractive index of 1.36 is achieved >200 sequences of ALD.

Figure 13a shows GIXRD of the films grown using 800 sequences of (AlF₃)(LiF)_x alloy film at 150°C showing a crystalline peaks corresponding to Li₃AlF₆ phase. Alloy films grown using thermal evaporation and ALD was amorphous. GIXRD of LiF film is shown in Figure 13b as a comparison. Figure 13b shows GIXRD of the films grown using 800 cycles of LiF at 150°C showing a crystalline structure. (111), (200), and (220) peaks are observed. LiF grown using thermal evaporation and ALD were also crystalline.^{10,20,39}

The depth profile of LiF and $(AlF_3)(LiF)_x$ alloy films obtained by X-ray photoelectron spectroscopy (XPS). The LiF film consists of lithium and fluorine after removal of adventitious surface carbon. The $(AlF_3)(LiF)_x$ alloy film consists of aluminum, lithium and fluorine after

Figure 3-12. Film thickness versus number of sequences for $AlF_3:LiF = 1:1$ reaction at 150 °C on Si (100) substrates determined by XRR and SE measurements.

Figure 3-13. Grazing Incidence X-ray diffraction of (a) (AlF₃)(LiF)_x alloy film; (b) LiF ALD film.

removal of adventitious surface carbon. Oxygen impurities are not detected for both films. Carbon, nitrogen, and silicon impurities are below the detection limit of XPS for both films. This absence of C, N, and Si in the film may be related with breakdown of HMDS ligand by HF shown in QMS experiments. The ratio between lithium and fluorine of LiF film is one to 0.73 that is quite off from stoichiometric LiF. The preferential sputtering of fluorine could explain why the measurements are off-stoichiometry.^{30,41}

To determine the stoichiometry between lithium and fluorine, inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography (IC) were performed. The LiF film grown using 800 cycles of ALD was dissolved in the DI water. Dissolution of LiF film was confirmed by SE. Lithium contents in LiF solution was measured by ICP-MS. ICP-MS can not analyze F because ionization energy of F is higher than argon that is used as medium. IC was employed to determine F contents in LiF solution. Atomic ratio of Li:F was determined as 1:1.1. ICP-MS and IC also determined (AlF₃)(LiF)_x alloy film grown using 800 sequence of ALD. Atomic ratio of Al:Li:F=1:2.7:5.4 in this film, which is consistent with QCM result.

3.3D. Measurement of Ionic Conductivity of (AIF3)(LiF)x Alloy Films by EIS Using the Symmetric Coin Cell

Figure 14a shows the schematic of a typical coin cell. A coin cell consist of top and bottom cases and gasket between them to isolate negative and positive terminals. There are two working electrodes and the separator between them to prevent short circuit. There are also a spring and a stainless steel spacer for better contact. To measure ionic conductivity, two symmetric coin cells were prepared. The symmetric coin cell means two working electrodes are identical. The (AlF₃)(LiF)_x fluorides alloy film on the copper foil are employed as working electrodes.

Figure 3-14. Schematic of symmetric coin cell and equivalent circuit
Figure 14b shows the schematic of the equivalent circuit of the symmetric coin cell. The total resistance of a coin cell consists of twice of resistance of fluorides alloy film and the resistance of liquid electrolytes.

$$\mathbf{R}_{\text{tot}} = \mathbf{R}_{\text{(AIF3)(LiF)x}} + \mathbf{R}_{\text{liquid elect.}} + \mathbf{R}_{\text{(AIF3)(LiF)x}} = 2 \times \mathbf{R}_{\text{(AIF3)(LiF)x}} + \mathbf{R}_{\text{liquid elect.}}$$
(7a)

Two coin cells with two different thicknesses of $(AlF_3)(LiF)_x$ alloy films were prepared for the measurement of the ionic conductivity of $(AlF_3)(LiF)_x$ alloy films. These two different thickness can exclude the possible issue of the contact resistance and the nucleation. Film thicknesses of 73 nm and 32 nm were prepared using 800 and 400 sequences measured on the Si wafer grown together by XRR.

The Nyquist plot measured by electrochemical impedance spectroscopy (EIS) shows two different x-intercepts in Figure 15a and figure 15b. The x-intercept represents the total resistance of the coin cell. The difference in resistances in Figure 15a and Figure 15b is due to the different thicknesses of two fluorides alloy films. The resistance of the liquid electrolyte is constant. And now there is two equations and two unknowns.

$$2 \times R_{73nm} + R_{liq.elect.} = 4.45 \,\Omega \tag{7b}$$

$$2 \times R_{32nm} + R_{liq.elect.} = 3.63 \ \Omega \tag{7c}$$

$$2 \times (R_{73nm} - R_{32nm}) = 0.82 \ \Omega \tag{8}$$

Ionic conductivity of 7.5×10^{-6} S/cm is obtained at room temperature using the thickness, the area and resistance of the film.

$$\sigma = \frac{t}{A \times R} = \frac{73 \text{ nm} - 32 \text{ nm}}{(1.33 \text{ cm}^2) \times (0.41 \Omega)} = 7.5 \times 10^{-6} \text{ S/cm}$$
(9)

Figure 3-15. Total resistance of symmetric coin cell measured by electrochemical impedance spectroscopy (EIS) prepared using (a) 800 sequences of (AlF₃)(LiF)_x alloy film;
(b) 400 sequences (AlF₃)(LiF)_x alloy film.

This ionic conductivity of 7.5×10^{-6} S/cm is slightly higher than the ionic conductivity of 1.0×10^{-6} S/cm for AlLiF₄ film grown by thermal evaporation.⁸ The crystallinity of (AlF₃)(LiF)_x alloy film grown by ALD may be responsible for this higher ionic conductivity. The fluorides allow film grown by thermal evaporation was amorphous.⁸ This ionic conductivity of 7.5×10^{-6} S/cm of (AlF₃)(LiF)_x alloy film also yields the conductivity of liquid electrolyte of 1.05×10^{-2} S/cm.

$$\sigma_{\rm LE} = \frac{420\,\mu\text{m}}{(1.33\,\text{cm}^2) \times (2.99\,\Omega)} = 1.05 \times 10^{-2} \,\text{S/cm}$$

3.4. Conclusions

The ALD reactions of LiF using LiHMDS and HF were studied to understand the ALD film at the reaction temperatures between 125 °C and 250 °C. The growth rate was 0.5 - 0.6A/cycle at 150 °C. The reaction mechanism was LiHMDS adsorption. The ALD reactions of (AlF₃)(LiF)_x alloy film using TMA, LiHMDS and HF were also studied to understand the ALD film at the reaction temperatures between 150 °C. The growth rate was 0.9 A/sequence at 150 °C. The reaction mechanism was TMA and LiHMDS adsorptions. XPS showed impurities such as carbon, oxygen, nitrogen, and silicon LiF and (AlF₃)(LiF)_x alloy films were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF₃)(LiF)_x alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF₃)(LiF)_x alloy film. EIS measurement revealed that lithium ion conductivity (AlF₃)(LiF)_x alloy film was measured as $\sigma = 7.5 \times 10^{-6}$ S/cm.

3.5. Acknowledgements

This research was funded by the Department of Energy through the DOE-BATT program. The authors thank Dr. Fred Luiszer at LEGS at the University of Colorado Boulder for ICP-MS and IC measurement.

3.6. References

- (1) Peled, E.; Golodnitsky, D.; Ardel, G. J. Electrochem. Soc. 1997, 144, L208.
- (2) Verma, P.; Maire, P.; Novak, P. Electrochim. Acta 2010, 55, 6332.
- (3) Roessler, D. M.; Walker, W. C. J. Phys. Chem. Solids 1967, 28, 1507.
- (4) Li, H. H. J. Phys. Chem. Ref. Data 1976, 5, 329.
- (5) Hung, L. S.; Tang, C. W.; Mason, M. G. Appl. Phys. Lett. 1997, 70, 152.
- Jabbour, G. E.; Kippelen, B.; Armstrong, N. R.; Peyghambarian, N. Appl. Phys. Lett. 1998, 73, 1185.
- (7) Prada, S.; Martinez, U.; Pacchioni, G. Physical Review B 2008, 78.
- (8) Oi, T.; Miyauchi, K. Mater. Res. Bull. 1981, 16, 1281.
- (9) Schulz, L. G. J. Chem. Phys. 1949, 17, 1153.
- (10) Montereali, R. M.; Baldacchini, G.; Martelli, S.; Docarmo, L. C. S. Thin Solid Films 1991, 196, 75.
- (11) Smith, J. L.; Budenste.Pp J. Appl. Phys. 1969, 40, 3491.
- (12) Kim, H.; King, A. H. J. Mater. Res. 2008, 23, 452.
- (13) Lapianosmith, D. A.; Eklund, E. A.; Himpsel, F. J.; Terminello, L. J. Appl. Phys. Lett. 1991, 59, 2174.
- (14) Li, C. L.; Guo, X. X.; Gu, L.; Samuelis, D.; Maier, J. Adv. Funct. Mater. 2011, 21, 2901.
- (15) Li, C. L.; Gu, L.; Maier, J. Adv. Funct. Mater. 2012, 22, 1145.
- (16) Kumar, M.; Khan, S. A.; Rajput, P.; Singh, F.; Tripathi, A.; Avasthi, D. K.; Pandey, A. C. J. Appl. Phys. 2007, 102.
- (17) Kumar, M.; Rajput, P.; Khan, S. A.; Avasthi, D. K.; Pandey, A. C. Appl. Surf. Sci. 2010, 256, 2199.
- (18) Henley, S. J.; Ashfold, M. N. R.; Pearce, S. R. J. Appl. Surf. Sci. 2003, 217, 68.
- (19) Perea, A.; Gonzalo, J.; Afonso, C. N.; Martelli, S.; Montereali, R. M. Appl. Surf. Sci. 1999, 138, 533.
- Mantymaki, M.; Hamalainen, J.; Puukilainen, E.; Munnik, F.; Ritala, M.; Leskela, M. Chem. Vap. Deposition 2013, 19, 111.
- (21) Oi, T., US4367267 1983.
- (22) Oi, T. Mater. Res. Bull. 1984, 19, 451.

- (23) Oi, T.; Miyauchi, K., Mater. Res. Bull. 1981, 16 1281-1289.
- (24) George, S. M. Chem. Rev. 2010, 110, 111.
- (25) Miikkulainen, V.; Leskela, M.; Ritala, M.; Puurunen, R. L. J. Appl. Phys. 2013, 113, 021301.
- (26) Ylilammi, M.; Rantaaho, T. J. Electrochem. Soc. 1994, 141, 1278.
- (27) Pilvi, T.; Hatanpaa, T.; Puukilainen, E.; Arstila, K.; Bischoff, M.; Kaiser, U.; Kaiser, N.; Leskela, M.; Ritala, M. J. Mater. Chem. 2007, 17, 5077.
- (28) Pilvi, T.; Puukilainen, E.; Kreissig, U.; Leskela, M.; Ritala, M. Chem. Mater. 2008, 20, 5023.
- (29) Putkonen, M.; Szeghalmi, A.; Pippel, E.; Knez, M. J. Mater. Chem. 2011, 21, 14461.
- (30) Lee, Y.; DuMont, J. W.; Cavanagh, A. S.; George, S. M. Submitted to Journal of Physical Chemistry C 2015.
- (31) Olah, G. A.; Nojima, M.; Kerekes, I. Synthesis-Stuttgart 1973, 779.
- (32) Elam, J. W.; Groner, M. D.; George, S. M. Rev. Sci. Instrum. 2002, 73, 2981.
- (33) Lee, Y.; Yoon, B.; Cavanagh, A. S.; George, S. M. Langmuir 2011, 27, 15155.
- (34) CRC Handbook of Chemistry and Physics; 85th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2005.
- (35) Krouse, I. H.; Wenthold, P. G. J. Am. Soc. Mass Spectrom. 2005, 16, 697.
- (36) Stalke, D.; Keweloh, N.; Klingebiel, U.; Noltemeyer, M.; Sheldrick, G. M. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences 1987, 42, 1237.
- (37) Dippel, K.; Klingebiel, U.; Sheldrick, G. M.; Stalke, D. Chemische Berichte-Recueil 1987, 120, 611.
- (38) Walter, S.; Klingebiel, U.; Noltemeyer, M. Chemische Berichte-Recueil 1992, 125, 783.
- (39) Mantymaki, M.; Hamalainen, J.; Puukilainen, E.; Sajavaara, T.; Ritala, M.; Leskela, M. Chem. Mater. 2013, 25, 1656.
- (40) D. Shannon, R.; Shannon, R. C.; Medenbach, O.; Fischer, R. X. J. Phys. Chem. Ref. Data 2002, 31, 931.
- (41) Targove, J. D.; Bovard, B. G.; Lingg, L. J.; Macleod, H. A. Thin Solid Films 1988, 159, L57.

CHAPTER 4

Atomic Layer Deposition of Metal Fluorides Using Various Metal Precursors and Hydrogen Fluoride

4.1. Introduction

Metal fluorides are important dielectric materials with a low refractive index and high transmission at ultraviolet (UV), deep UV and infrared (IR) wavelengths.¹⁻³ These properties of metal fluorides are useful for optical coatings. Metal fluorides are also employed as heterogeneous catalyst for the production of chlorofluorocarbons (CFCs) due to its strong Lewis acidity.⁴⁻⁶

Metal fluorides films have been grown by physical vapor deposition techniques such as sputtering,^{7,8} thermal evaporation,⁹⁻¹¹ electron beam deposition,^{1,12} and ion-assisted deposition.^{13,14} Metal fluorides films have also been grown by atomic layer deposition (ALD). ALD is a technique based on sequential, self-limiting surface reactions that deposits extremely conformal and continuous thin films with atomic level control.¹⁵

Most ALD of metal fluorides has been performed using alternative F precursors rather than HF. The first report for metal fluoride ALD such as CaF₂, SrF₂, and ZnF₂ employed NH₄F solid as F source.¹⁶ NH₄F was delivered by sublimation at 80°C into the reactor and decomposed to NH₃ and HF at the reaction temperatures between 260°C and 400°C.¹⁶ ALD of MgF₂,^{17,18} LaF₃,¹⁹ YF₃,²⁰ and LiF²¹ has been demonstrated using either TiF₄ or TaF₅ as F source. The ligand exchange between metal 2,2,6,6-tetramethyl-3,5-heptanedionate (M(tmhd)_x) and TiF₄ or TaF₅ yields the metal fluoride (MF_x) layer and volatile Ti(tmhd)₄ or Ta(tmhd)₅ as a byproduct. Another approach has employed the plasma or the ozone ALD with hexafluoroacetylacetonate as a fluorine source to grow MgF₂, CaF₂ and LaF₃ thin films.²²

We initially reported ALD of AlF₃ using trimethylaluminum (TMA) and HF from a HF-pyridine solution.^{23,24} ALD of LiF, and $(AlF_3)(LiF)_x$ alloy film alloy film was also reported using lithium hexametyldisilazide (LiHMDS) using the same F precursor.^{23,25}

In this paper, the growth of metal fluorides ALD films using HF derived from HFpyridine as F precursor. Various metal precursors such as tetrakis(ethylmethylamido) zirconium, zirconium *tert*-butoxide, tetrakis(dimethylamido) hafnium, bis(ethylcyclopentadienyl) manganese, bis(ethylcyclopentadienyl) magnesium, diethylzinc, TMA and LiHMDS are employed for ALD of metal fluorides such as ZrF₄, HfF₄, MnF₂, MgF₂, ZnF₂, AlF₃, and LiF. ALD of metal fluorides was examined using *in situ* quartz crystal microbalance (QCM) at 150 °C. The thickness and density of metal fluoride films were determined with *ex situ* X-ray reflectivity (XRR). The film thickness and refractive index were measured with spectroscopic ellipsometry (SE). The composition of the metal fluorides ALD film was also determined with X-ray photoelectron spectroscopy (XPS).

4.2. Experimental

4.2A. Viscous Flow Reactor with *in situ* QCM

The ALD reactions were performed in the viscous flow reactor equipped with an *in situ* quartz crystal microbalance (QCM) at 150° C.^{26,27} A mechanical pump (Pascal 2015SD, Alcatel) was used maintain vacuum conditions in the ALD reactor. Reactants were dosed into a N₂ carrier gas. Mass flow controllers (Type 1179A, MKS) supplied a constant N₂ carrier gas flow of 150 sccm. This N₂ gas flow resulted in a base pressure of ~1 Torr in the reactor. A PID temperature controller (2604, Eurotherm) kept the reactor at a fixed temperature within ± 0.04 °C. A bakeable capacitance manometer (Baratron 121A, MKS) monitored pressure change during reaction.

The metal fluoride ALD reactions were performed using various metal precursors such as tetrakis(ethylmethylamido) zirconium (TEMAZ, 99.99%, Sigma Aldrich,), zirconium *tert*-butoxide (ZTB, 99%, Strem), tetrakis(dimethylamido) hafnium (TDMAH, 99.99%, Sigma Aldrich), bis(ethylcyclopentadienyl) manganese (Mn(EtCp)₂, 98%, Strem), bis(ethylcyclopentadienyl) magnesium (Mg(EtCp)₂, 98%, Strem), diethylzinc (DEZ, Zn 52.0 %, Sigma-Aldrich), trimethylaluminum (TMA, 97 %, Sigma-Aldrich) and lithium hexamethyldisilazide (LiHMDS, 95%, Gelest), and HF-pyridine (70 wt% HF, Sigma-Aldrich) as the reactants. The bubbler temperatures for TEMAZ, ZTB, TDMAH, Mn(EtCp)₂, Mg(EtCp)₂ and LiHMDS were held at 112, 65, 67, 100, 92, and 115°C and summarized in Table 1. Use of gaseous HF from HF-pyridine enables the safe handling of anhydrous HF. HF-pyridine is a liquid at room temperature and is known as Olah's reagent.²⁸ HF-pyridine was transferred to a stainless steel bubbler in a dry N₂-filled glove bag. The HF-pyridine solution has an equilibrium with gaseous HF. Our mass spectrometer measurements have revealed that HF is the dominant species in the vapor pressure of HF-pyridine. With static exposures with no pumping in our

Metal Fluorides	Metal Precursor	Acronym	Bubbler Tempeature (°C)
ZrF ₄	Tetrakis(ethylmethylamido) zirconium	TEMAZ	112
ZrF ₄	Zirconium <i>tert</i> -butoxide	ZTB	65
HfF4	Tetrakis(dimethylamido) Hafnium	TDMAH	67
MnF ₂	Bis(ethylcyclopentadienyl) Manganese	Mn(EtCp)2	100
MgF ₂	Bis(ethylcyclopentadienyl) Magnesium	Mg(EtCp) ₂	90
ZnF ₂	Diethylzinc	DEZ	RT
AlF ₃	Trimethylaluminum	ТМА	RT
LiF	Lithium hexamethyldisilazide	LiHMDS	115

Table 4-1.Metal fluorides, metal precursors, acronym of metal precursors, and the bubblertemperature

ALD reactor, the vapor pressure HF over the HF-pyridine solution was 90-100 Torr at room temperature.

Each metal fluoride ALD experiment was conducted on a fresh metal oxide film grown by ALD at 150°C. The initial metal oxide ALD films were prepared using corresponding metal precursors and H₂O (Chromasolv for HPLC, Sigma-Aldrich). The TMA, DEZ, HF-pyridine, and H₂O precursors were held at room temperature.

A film deposition monitor (Maxtek TM-400, Inficon) was used to perform the *in situ* QCM measurements. The QCM sensors were polished, 6 MHz, AT-cut (Colorado Crystal Corp.) and RC-cut (Colnatec) quartz crystals with gold electrodes. The QCM sensor was secured in the bakeable single sensor head (BSH-150, Inficon) and sealed with high temperature epoxy (Epo-Tek H21D, Epoxy technology). Deposition on the back-side of the QCM sensor was prevented by flowing an additional 20 sccm of N₂ through the QCM housing.²⁶ This additional N₂ was supplied using a bellows-sealed metering valve (SS-4BMG, Swagelok).

4.2B. Ex situ Film Characterization using XRR, GIXRD, SE, and XPS

For *ex situ* measurements, boron-doped Si (100) wafers (p-type, Silicon Valley Microelectronics) were used as the substrates. The Si wafer was cleaved into 2.5 cm by 2.5 cm samples. These samples were cleaned with acetone, isopropanol, and deionized water and dried with N_2 gas.

The film thicknesses and the density were determined using *ex situ* XRR measurements. The XRR measurements were performed with a high resolution X-ray diffractometer (Bede D1, Jordan Valley Semiconductors) using a Cu K α (λ = 1.540 Å) X-ray tube. The filament current was 35 mA and the voltage was 40 kV. The step size and acquisition time for all the XRR scans were 10 arcsec and 5 s, respectively. The XRR scans were modeled with the Bede REFS software package (Bede REFS, Jordan Valley Semiconductors) to determine film thickness, surface roughness, and film density.

The film thicknesses and refractive index were measured using spectroscopic ellipsometry (SE). These measurements were performed using a spectroscopic ellipsometer (M-2000, J. A. Woollam) employing a spectral range from 240 to 1700 nm with an incidence angle of 75°. Measurement of Ψ and Δ were modeled with the CompleteEASE software package (CompleteEASE, J. A. Woollam) and a Sellmier model.²⁹ The Sellmeier model is commonly used for optically transparent films such as metal fluoride films.²⁹

The film composition was determined by X-ray photoelectron spectroscopy (XPS). The XPS instrument (PHI 5600, RBD Instruments) used a monochromatic Al Kα X-rays source (1486.6 eV). Survey scans were measured with a pass energy of 93.9 eV and a step size of 0.400 eV. Depth profiles were obtained using Ar ion sputtering. A pass energy of 58.7 eV and a step size was 0.250 eV was used for the depth profiling analysis. An electron beam neutralizer was employed at 17.8 mA. Data was collected with the Auger Scan software package (Auger Scan, RBD Instruments) and analyzed with the Casa XPS software package (Casa XPS, Casa Software).

4.3. Results and Discussion

4.3A. Growth of ZrF₄ Films Using Tetrakis(ethylmethylamido)zirconium (TEMAZ) and HF

Figure 1a shows the QCM measurements of mass gain during 200 cycles of ZrF_4 ALD at 150°C using tetrakis(ethylmethylamido) zirconium (TEMAZ) and HF. The initial layer on the QCM sensor was a ZrO_2 ALD film grown with 200 cycles of ZrO ALD using TEMAZ and H₂O

Figure 4-1. (a) Mass gain versus time during 200 ZrF₄ ALD cycles with TEMAZ and HF as the reactants on ZrO₂ at 150 °C using the reaction sequence of (1-40-1-40);
(b) Enlargement of mass gain versus time for three sequential TEMAZ and HF exposures during ZrF₄ ALD in the steady-state, linear growth regime.

as the reactants.³⁰ The reaction sequence of one ZrF_4 ALD cycle consisted of a 1 s dose of TEMAZ, 40 s of N₂ purge, a 1 s dose of HF, and 40 s of N₂ purge. This reaction sequence is designated as (1-40-1-40). The TEMAZ and HF doses produced pressure transients of 20 mTorr and 100 mTorr, respectively. The ZrF_4 ALD growth is very linear with a mass gain per cycle (MGPC) of 35.5 ng/(cm² cycle). In addition ZrF_4 ALD on Al₂O₃ initial surface showed nearly identical results.

Figure 1b shows the mass gain during three sequential ZrF₄ ALD cycles at 150°C using the reaction sequence (1-40-1-40). These three cycles were the 98th, 99th, and 100th ZrF₄ ALD cycles in Figure 1a. The mass changes show very distinct steps. The mass increase after the TEMAZ exposure is $\Delta M_{TEMAZ} = 39.2 \text{ ng/(cm}^2 \text{ cycle})$. The mass change after the HF exposure is $\Delta M_{HF} = -3.7 \text{ ng/(cm}^2 \text{ cycle})$. The MGPC was 35.5 ng/(cm² cycle). Figure 2 displays the MGPC and the $\Delta M_{TEMAZ}/MGPC$ ratio during 200 cycles of ZrF₄ ALD using a reaction sequence of (1-40-1-40). The MGPC is 35.5 ng/(cm² cycle) and consists of constant mass gains of $\Delta M_{TEMAZ} =$ 39.2 ng/(cm² cycle) and $\Delta M_{HF} = -3.7 \text{ ng/(cm}^2 \text{ cycle})$. Except for the first 3 ZrF₄ ALD cycles, the $\Delta M_{TMA}/MGPC$ ratio is constant at 1.1. ZrF₄ ALD nucleates nearly immediately on the initial ZrO₂ ALD surface. The MGPC and the $\Delta M_{TEMAZ}/MGPC$ ratio were nearly independent of the purge time. Extended purge times of 120 s slightly decreased the MGPC to ~33 ng/(cm² cycle). However, the $\Delta M_{TEMAZ}/MGPC$ ratio remained at ~1.1. The $\Delta M_{TEMAZ}/MGPC$ ratio was summarized in Table 2. This ratio will be used later to determine the reaction stoichiometry.

The self-limiting behavior of the TEMAZ and HF reactions for ZrF₄ ALD was also examined using *in situ* QCM experiments. Figure 3a and 3b show the mass gains during the TEMAZ and HF exposures, respectively, at 150°C. For each of these exposures, the previous reactant exposure had reached saturation. Each minidose consisted of an exposure time of 0.5 s

Figure 4-2. (a) MGPC, ΔM_{TEMAZ} , and ΔM_{HF} and (b) $M_{TEMAZ}/MGPC$ ratio during 200 ZrF₄ ALD cycles with TEMAZ and HF as the reactants on ZrO₂ at 150 °C.

Metal Fluorides	Metal Precursor	MGPC (ng/(cm ² cycle))	Ratio at 150°C	X : # of HF on MFy
ZrF ₄	TEMAZ	35.5	1.10	2.4
ZrF ₄	ZTB	29.8	1.41	2.0
HfF ₄	TDMAH	57.2	1.02	2.2
MnF ₂	Mn(EtCp) ₂	15.6	2.61	0
MgF ₂	Mg(EtCp) ₂	12.3	3.22	0.12
ZnF ₂	DEZ	33.5	1.24	-0.02
AlF ₃	ТМА	31.4	0.71	0.78
LiF	(LiHMDS)	12.2	5.61	0.14

Table 4-2. Metal fluorides, Metal fluorides, acronym of metal precursors, MGPC, and number of HF on metal fluoride.

Figure 4-3. (a) ΔM_{TEMAZ} versus versus number of TEMAZ minidoses with the HF exposure fixed at 1.0 s. (b) ΔM_{HF} versus versus number of HF minidoses with the TEMAZ exposure fixed at 1.0 s.

and a purge time of 40 s. Both reactions displayed self-limiting behavior. ΔM_{TEMAZ} versus minidoses of TEMAZ reached the plateau of $\Delta M_{TEMAZ} = \sim 40 \text{ng/(cm}^2 \text{ cycle})$ after one minidose. Similarly, ΔM_{HF} versus minidoses of HF leveled off at $\Delta M_{HF} = \sim 5 \text{ ng/(cm}^2 \text{ cycle})$ after one minidose.

The growth rates determined from *ex situ* XRR and SE measurements. ZrF₄ film was grown on Si wafer using 400 cycles of TEMAZ and HF reaction at 150 °C. XRR and SE measured the film thickness of ZrF₄ ALD as 342 Å and 337 Å respectively. These thicknesses were consistent with 0.86 Å / cycle and 0.84 Å / cycle. The MGPC 35.5 ng/(cm² cycle) obtained by *in situ* QCM can be converted to the growth rate in Å /cycle using the film density. XRR also measured the film has density of 4.1 g/cm³. This converted growth rate was 0.87 Å / cycle. The agreement between the *in situ* and *ex situ* measurements of the growth rate is very good. This density of 4.1 g/cm³ is ~93 % of the bulk density of 4.43 g /cm³ for crystalline ZrF4.³¹ The surface roughness was measured as 4 Å by XRR. SE determined the refractive index of 1.55 at 589 nm and were obtained using the Sellmeier model. The measured refractive index of n=1.55 is consistent with amorphous ZrF4 n=1.56³² at 633 nm, crystalline ZrF4 n=1.59³², n=1.62¹, for e-beam grown ZrF4 film at 600 nm. The ZrF4 ALD films were also stable in air. The thickness, film density, and film roughness of ZrF4 films did not change after storage in atmosphere for one month.

4.3B. Growth of ZrF₄ Films Using Zirconium tert-butoxide (ZTB) and HF

Figure 4a shows the QCM measurements of mass gain during 200 cycles of ZrF_4 ALD at 150°C using zirconium *tert*-butoxide (ZTB) and HF. The initial layer on the QCM sensor was a ZrO₂ ALD film grown with 200 cycles of ZrO ALD using ZTB and H₂O as the reactants.³³ The

Figure 4-4. (a) Mass gain versus time during 200 ZrF₄ ALD cycles with ZTB and HF as the reactants on ZrO₂ at 150 °C using the reaction sequence of (1-40-1-40);
(b) Enlargement of mass gain versus time for three sequential ZTB and HF exposures during ZrF₄ ALD in the steady-state, linear growth regime.

reaction sequence was (1-40-1-40). The ZTB and HF doses produced pressure transients of 5 mTorr and 100 mTorr, respectively. The ZrF₄ ALD growth is very linear with a mass gain per cycle (MGPC) of 29.8 ng/(cm² cycle). There is a nucleation periods of ~12 cycles. In addition ZrF₄ ALD on Al₂O₃ initial surface showed similar results. Figure 4b shows the mass gain during three sequential ZrF₄ ALD cycles at 150°C using ZTB by the reaction sequence (1-40-1-40). These three cycles were the 98th, 99th, and 100th ZrF₄ ALD cycles in Figure 4a. The mass changes shows very distinct steps. The mass increase after the ZTB exposure is $\Delta M_{ZTB} = 42.0$ ng/(cm² cycle). The MGPC was 29.8 ng/(cm² cycle). $\Delta M_{ZTB}/MGPC$ ratio averaged from 100-200 cycles of ZrF₄ ALD using a reaction sequence of (1-40-1-40) was ~1.4.

The growth rates determined from *ex situ* XRR and SE measurements. ZrF₄ film was grown on Si wafer using 400 cycles of ZTB and HF reaction at 150°C. XRR and SE measured the film thickness of ZrF₄ ALD as 252 Å and 249 Å respectively. These thicknesses were consistent with 0.63 Å / cycle and 0.62 Å / cycle. The MGPC of 29.8 ng/(cm² cycle) obtained by *in situ* QCM can be converted to the growth rate in Å /cycle using the film density. XRR also measured the film has density of 4.7 g/cm³. This converted growth rate was 0.63 Å / cycle. The agreement between the *in situ* and *ex situ* measurements of the growth rate is very good. This density of 4.7 g/cm³ is 106 % of the bulk density of 4.43 g /cm³ for crystalline ZrF4.³¹ The surface roughness was measured as 4 Å by XRR. SE determined the refractive index of 1.62 at 589 nm and were obtained using the Sellmeier model. The measured refractive index of n=1.55 is consistent with n=1.56³² for amorphous ZrF4 at 633 nm, n=1.59³² for crystalline ZrF4 at 600 nm, and n=1.62¹ at 600 nm for ZrF4 film grown by e-beam. The ZrF4

ALD films were also stable in air. The thickness, film density, and film roughness of ZrF₄ films did not change after storage in atmosphere for one month.

4.3C. Growth of HfF₄ Films Using Tetrakis(dimethylamido)hafnium (TEMAH) and HF

Figure 5a shows the QCM measurements of mass gain during 200 cycles of HfF₄ ALD at 150°C using Tetrakis(dimethylamido) hafnium (TDMAH) and HF. The initial layer on the QCM sensor was a HfO₂ ALD film grown with 200 cycles of HfO₂ ALD using TDMAH and H₂O as the reactants.³⁰ The reaction sequence was (1-40-1-40). Figure 5b shows the mass gain during three sequential HfF₄ ALD cycles at 150°C using the reaction sequence (1-40-1-40). These three cycles were the 98th, 99th, and 100th HfF₄ ALD cycles in Figure 5a. The mass changes shows very distinct steps. The mass increase after the TDMAH exposure is $\Delta M_{TDMAH} = 58.4$ ng/(cm² cycle). The mass change after the HF exposure is $\Delta M_{HF} = -1.2$ ng/(cm² cycle). The MGPC was 57.2 ng/(cm² cycle). $\Delta M_{TDMAH}/MGPC$ ratio averaged from 100-200 cycles of HfF₄ ALD using a reaction sequence of (1-40-1-40) was 1.0. The growth rate for HfF₄ decreases at higher temperatures. The progressive decrease in the HfF₄ ALD growth rate could be explained by the loss of surface species responsible for growth at higher temperature.

The growth rates determined from *ex situ* XRR and SE measurements. HfF₄ film was grown on Si wafer using 400 cycles of TDMAH and HF reaction at 150°C. XRR and SE measured the film thickness of HfF₄ ALD as 320 Å and 339 Å respectively. These thicknesses were consistent with 0.80 Å / cycle and 0.85 Å / cycle. The MGPC 57.2 ng/(cm² cycle) obtained by *in situ* QCM can be converted to the growth rate in Å /cycle using the film density. XRR also measured the film has density of 6.8 g/cm³. This converted growth rate was 0.84 Å / cycle. The agreement between the *in situ* and *ex situ* measurements of the growth rate is very good. This

Figure 4-5. (a) Mass gain versus time during 200 HfF₄ ALD cycles with TDMAH and HF as the reactants on HfO₂ at 150 °C using the reaction sequence of (1-40-1-40);
(b) Enlargement of mass gain versus time for three sequential TDMAH and HF exposures during HfF₄ ALD in the steady-state, linear growth regime.

density of 6.8 g/cm³ is ~96 % of the bulk density of 7.1 g /cm³ for crystalline HfF4.³¹ The surface roughness was measured as 5 Å by XRR. SE determined the refractive index of 1.55 at 589 nm and were obtained using the Sellmeier model. The measured refractive index of n=1.55 is consistent with e-beam evaporated HfF₄ n=1.57 at 600 nm ² sputtered HfF₄ film n=1.59³⁴ at 600 nm n=1.62,¹ for e-beam grown HfF₄ film at 600 nm. The HfF₄ ALD films were also stable in air. The thickness, film density, and film roughness of HfF₄ films did not change after storage in atmosphere for one month.

4.3D. Growth of MnF₂ Films Using Bis(ethylcyclopentadienyl)manganese (Mn(EtCp)₂) and HF

Figure 6a shows the QCM measurements of mass gain during 200 cycles of MnF₂ ALD at 150°C using Bis(ethylcyclopentadienyl) manganese (Mn(EtCp)₂) and HF. The initial layer on the QCM sensor was a MnO ALD film grown with 200 cycles of MnO ALD using Mn(EtCp)₂ and H₂O as the reactants. ³⁵ The reaction sequence was (1-40-1-40). Nucleation over ~40 cycles was observed. Figure 6b shows the mass gain during three sequential MnF₂ ALD cycles at 150°C using the reaction sequence (1-40-1-40). These three cycles were the 98th, 99th, and 100th MnF₂ ALD cycles in Figure 6a. The mass changes shows very distinct steps. The mass increase after the Mn(EtCp)₂ exposure is $\Delta M_{Mn(EtCp)2} = 40.8$ ng/(cm² cycle). The mass loss after the HF exposure is $\Delta M_{HF} = -25.2$ ng/(cm² cycle). The MGPC was 15.6 ng/(cm² cycle).

of (1-40-1-40) was 2.6.

The growth rates determined from ex situ XRR and SE measurements. MnF₂ film was

Figure 4-6. (a) Mass gain versus time during 200 MnF₂ ALD cycles with Mn(EtCp)₂ and HF as the reactants on MnO at 150 °C using the reaction sequence of (1-40-1-40);
(b) Enlargement of mass gain versus time for three sequential Mn(EtCp)₂ and HF exposures during MnF₂ ALD in the steady-state, linear growth regime.

grown on Si wafer using 400 cycles of Mn(EtCp)₂ and HF reaction at 150°C. XRR and SE measured the film thickness of MnF₂ ALD as 172 Å and 179 Å respectively. These thicknesses were consistent with 0.43 Å/ cycle and 0.45 Å/ cycle. The MGPC 15.6 ng/(cm² cycle) obtained by *in situ* QCM can be converted to the growth rate in Å/cycle using the film density. XRR also measured the film has density of 3.8 g/cm³. This converted growth rate was 0.41 Å/ cycle. The agreement between the *in situ* and *ex situ* measurements of the growth rate is very good. This density of 3.8 g/cm³ is ~95 % of the bulk density of 3.98 g/cm³ for crystalline MnF₂.³¹ The surface roughness was measured as 26 Å by XRR. This high surface roughness suggests the MnF₂ ALD film is crystalline. SE determined the refractive index of 1.50 at 589 nm and were obtained using the Sellmeier model. The measured refractive index of n=1.50 is consistent with the refractive index n=1.47-1.50 for MnF₂³⁶ at 589nm. The MnF₂ ALD films were also stable in air. The thickness, film density, and film roughness of MnF₂ films did not change after storage in atmosphere for one month.

4.3E. Growth of MgF₂ Using Films Bis(ethylcyclopentadienyl)magnesium (Mg(EtCp)₂) and HF

Figure 7a shows the QCM measurements of mass gain during 200 cycles of MgF₂ ALD at 150°C using Bis(ethylcyclopentadienyl) manganese (Mg(EtCp)₂) and HF. The initial layer on the QCM sensor was a MgO ALD film grown with 200 cycles of MgO ALD using Mg(EtCp)₂ and H₂O as the reactants.³⁷ The reaction sequence was (1-40-1-40). Figure 7b shows the mass gain during three sequential MgF₂ ALD cycles at 150°C using the reaction sequence (1-40-1-40). These three cycles were the 98th, 99th, and 100th MgF₂ ALD cycles in Figure 7a. The mass changes

Figure 4-7. (a) Mass gain versus time during 200 MgF₂ ALD cycles with Mg(EtCp)₂ and HF as the reactants on MgO at 150 °C using the reaction sequence of (1-40-1-40);
(b) Enlargement of mass gain versus time for three sequential Mg(EtCp)₂ and HF exposures during MgF₂ ALD in the steady-state, linear growth regime.

shows very distinct steps. The mass increase after the Mg(EtCp)₂ exposure is $\Delta M_{Mg(EtCp)2} = 39.5$ ng/(cm² cycle). The mass loss after the HF exposure is $\Delta M_{HF} = -27.2$ ng/(cm² cycle). The MGPC was 12.3 ng/(cm² cycle). $\Delta M_{Mg(EtCp)2}/MGPC$ ratio averaged from 100-200 cycles of MgF₂ ALD using a reaction sequence of (1-40-1-40) was 3.2.

The growth rates determined from ex situ XRR and SE measurements. MgF₂ film was grown on Si wafer using 400 cycles of Mg(EtCp)₂ and HF reaction at 150°C. XRR and SE measured the film thickness of MgF₂ ALD as 154 Å and 153 Å respectively. These thicknesses were consistent with 0.39 Å / cycle and 0.38 Å / cycle. The MGPC 12.3 ng/(cm² cycle) obtained by *in situ* QCM can be converted to the growth rate in Å /cycle using the film density. XRR also measured the film has density of 3.1 g/cm³. This converted growth rate was 0.40 Å / cycle. The agreement between the *in situ* and *ex situ* measurements of the growth rate is very good. This density of 3.1 g/cm³ is ~98 % of the bulk density of 3.15 g/cm³ for crystalline MgF₂.³¹ The surface roughness was measured as 12 Å by XRR. This high surface roughness suggests the MgF₂ ALD film is crystalline. SE determined the refractive index of n=1.40 at 589 nm and were obtained using the Sellmeier model. The measured refractive index of n=1.40 is consistent with the refractive index $n=1.38-1.39^{36}$ at 589nm for MgF₂ and $n=1.38^{34}$ at 600 nm for the MgF₂ film grown by sputtering. The MgF₂ ALD films were also stable in air. The thickness, film density, and film roughness of MgF₂ films did not change after storage in atmosphere for one month.

Figure 4-8. (a) Mass gain versus time during 400 ZnF₂ ALD cycles with DEZ and HF as the reactants on ZnO at 150 °C using the reaction sequence of (1-30-1-30);
(b) Enlargement of mass gain versus time for three sequential DEZ and HF exposures during ZnF₂ ALD in the steady-state, linear growth regime.

sequence was (1-30-1-30). Figure 8b shows the mass gain during three sequential ZnF₂ ALD cycles at 150 °C using the reaction sequence (1-30-1-30). These three cycles were the 198th, 199th, and 200th ZnF₂ ALD cycles in Figure 8a. The mass changes shows very distinct steps. The mass increase after the DEZ exposure is $\Delta M_{DEZ} = 41.4$ ng/(cm² cycle). The mass loss after the HF exposure is $\Delta M_{HF} = -7.9$ ng/(cm² cycle). The MGPC was 33.5 ng/(cm² cycle). ΔM_{DEZ} /MGPC ratio averaged from 200-400 cycles of ZnF₂ ALD using a reaction sequence of (1-30-1-30) was 1.2.

The growth rates determined from *ex situ* XRR and SE measurements. ZnF₂ film was grown on Si wafer using 400 cycles of DEZ and HF reaction at 150°C. XRR and SE measured the film thickness of ZnF₂ ALD as 357Å and 336Å respectively. These thicknesses were consistent with 0.89 Å/ cycle and 0.84 Å/ cycle. The MGPC 33.5 ng/(cm² cycle) obtained by *in situ* QCM can be converted to the growth rate in Å/cycle using the film density. XRR also measured the film has density of 4.9 g/cm³. This converted growth rate was 0.68 Å/ cycle. The disagreement between the *in situ* and *ex situ* measurements of the growth rate suggests the surface enhanced nucleation. This density of 4.9 g/cm³ is ~100 % of the bulk density of 4.9 g /cm³ for crystalline ZnF₂.³¹ The surface roughness was measured as 44 Å by XRR. This high surface roughness suggests the ZnF₂ ALD film is crystalline. SE determined the refractive index of 1.49 at 589 nm and were obtained using the Sellmeier model. The refractive index of n=1.50-1.53 for ZnF₂³⁶ at 589nm. The ZnF₂ ALD films were stored in the desiccator until the *ex situ* measurements due to the known instability in air.

4.3G. Reaction Mechanism and Stoichiometry.

Figure 9 presents a schematic showing the proposed reaction mechanism for ZrF_4 . In reaction A, TEMAZ, $Zr(NEtMe)_4$ molecules react with HF molecules adsorbed on the surface to yield $ZrF_2(NEtMe)_2$ and HNEtMe molecules as the reaction products. The $ZrF_2(NEtMe)_2$ species remain adsorbed on the surface. In reaction B, HF converts the adsorbed $ZrF_2(NEtMe)_2$ species to ZrF_4 . HNEtMe is again a reaction product and additional HF molecules may remain on the surface.

The more general surface chemistry for ZrF₄ALD can be expressed by:

(A)
$$ZrF_4|xHF^* + Zr(NEtMe)_4 \rightarrow ZrF_4|ZrF_x(NEtMe)_{4-x}^* + x HNEtMe$$
 (2)

(B)
$$\operatorname{ZrF}_4|\operatorname{ZrF}_x(\operatorname{NEtMe})_{4-x}^* + 4\operatorname{HF} \rightarrow \operatorname{ZrF}_4|\operatorname{ZrF}_4| \operatorname{xHF}^* + (4-x)\operatorname{CH}_4$$
 (3)

The asterisks designate the surface species. The vertical lines distinguish the various surface species. The parameter x quantifies the number of HF molecules adsorbed on the surface relative to the number of ZrF_4 species deposited during one Metal fluorides ALD cycle. x=2 indicates one HF per ZrF_4 on the surface as shown in Figure 9.

Based on this surface chemistry, the $\Delta M_{\text{TEMAZ}}/\text{MGPC}$ ratio can be determined by:

$$\frac{\Delta M_{\text{TEMAZ}}}{\text{MGPC}} = \frac{\Delta M_{\text{TEMAZ}}}{\Delta M_{\text{TEMAZ}} + \Delta M_{\text{HF}}} = \frac{M_{\text{TEMAZ}} - \mathbf{x} \cdot M_{\text{HNEtMe}}}{M_{ZrF4}}$$
(4)

In equation 4, M_{TEMAZ} , M_{HF} , M_{NEtMe} , and M_{ZrF4} are the molar masses of TEMAZ, HF, HNEtMe, and ZrF₄ respectively. The equation for x is:

$$x = \frac{1}{M_{\text{HNEtMe}}} \left[M_{TEMAZ} - M_{ZrF_4} \left(\frac{\Delta M_{\text{TEMAZ}}}{\text{MGPC}} \right) \right] = \frac{1}{59.1} \left[323.6 - 167.2 \left(\frac{\Delta M_{\text{TEMAZ}}}{\text{MGPC}} \right) \right]$$
(5)

Figure 4-9. Proposed reaction mechanism for ZrF_4 ALD using TEMAZ and HF as the reactants.

The $\Delta M_{TEMAZ}/MGPC$ ratio and x can be determined from the mass changes obtained by the QCM measurements. A $\Delta M_{TEMAZ}/MGPC$ ratio of 1.1 was determined from the QCM measurements at 150°C shown in Figure 2b. This ratio of 1.1 is close to the ratio of 1.2 based on the proposed mechanism in Figure 9 where x=2. These values are summarized in Table 2. An x value of nearly x=2.0~2.4 is observed for HfF₄ and ZrF₄. An x= 0.78 for AlF₃.

 ZrF_4 is strong Lewis acid.³⁸ The F in HF can act as a Lewis base. Together ZrF_4 and HF have a strong Lewis acid-base interaction. TEMAZ are also Lewis acids. The F in Zr-F* species on the surface can act as a Lewis base. A strong Lewis acid-base interaction is also expected between $Zr-F^*$ and either TEMAZ. HfF₄ and AlF₃ are also strong Lewis acids, which follow the same trend as ZrF_4 .^{23,24} ZrF_4 and HfF₄.³⁸ Figure 10 represents a schematic showing the proposed reaction mechanism for MnF₂. In reaction A, Mn(EtCp)₂ molecules adsorbed on the MnF₂ surface. In reaction B, HF converts the adsorbed Mn(EtCp)₂ species to MnF₂. xHCpEt is a reaction product and additional HF molecules may remain on the surface.

The more general surface chemistry for MnF₂ ALD can be expressed by:

(A)
$$MnF_2|xHF^* + Mn(EtCp)_2 \rightarrow MnF_2|MnF_x(EtCp)_{2-x}^* + xHCpEt$$
 (6)
(D) $M_2 = M_2 = (T_1(C_1)_2 + x_2)ME_2 + M_2 = (M_2 + M_2) + (M_2 +$

(B)
$$MnF_2|MnF_x(EtCp)_{2-x}^* + 2HF \rightarrow MnF_2|MnF_2|xHF^* + (2-x) HCpEt$$
 (7)

The asterisks designate the surface species. The vertical lines distinguish the various surface species. The parameter x quantifies the number of HF molecules adsorbed on the surface relative to the number of MnF_2 species deposited during one MnF_2 ALD cycle. x=0 indicates no HF per MnF_2 on the surface as shown in Figure 10.

Based on this surface chemistry, the $\Delta M_{Mn(EtCp)2}/MGPC$ ratio can be determined by:

Figure 4-10. Proposed reaction mechanism for MnF_2 ALD using $Mn(EtCp)_2$ and HF as the reactants.

$$\frac{\Delta M_{Mn(EtCp)2}}{MGPC} = \frac{\Delta M_{Mn(EtCp)2}}{\Delta M_{Mn(EtCp)2} + \Delta M_{HF}} = \frac{M_{Mn(EtCp)2} - x \cdot M_{HCpEt}}{M_{MnF2}}$$
(8)

In equation 8, $M_{Mn(EtCp)2}$, M_{HF} , M_{HCpEt} , and M_{MnF2} are the molar masses of Mn(EtCp)₂, HF, HCpEt, and MnF₂ respectively.

The equation for x is:

$$x = \frac{1}{M_{\text{HCpEt}}} \left[M_{Mn(EtCp)2} - M_{MnF2} \left(\frac{\Delta M_{Mn(EtCp)2}}{MGPC} \right) \right] = \frac{1}{94.2} \left[241.2 - 92.9 \left(\frac{\Delta M_{Mn(EtCp)2}}{MGPC} \right) \right]$$
(9)

The $\Delta M_{Mn(EtCp)2}/MGPC$ ratio and x can be determined from the mass changes obtained by the QCM measurements. A $\Delta M_{Mn(EtCp)2}/MGPC$ ratio of 2.6 was determined from the QCM measurements at 150°C. This ratio of 2.6 is close to the ratio of 2.6 based on the proposed mechanism in Figure10 where x=0. x values ≈ 0 for MgF₂, MnF₂, and ZnF₂, and LiF.

 MnF_2 is a weak Lewis acid. MnF_2 can not interact with F in HF. The F in Mn-F* species on the surface can act as a Lewis base. A Lewis acid-base interaction is expected between Mn-F* and Mn(EtCp)₂.

MgF₂ is also weak Lewis acid.³⁹ Lewis acidity of ZnF_2 is lower than MgF₂:⁴⁰ LiF is weak Lewis base.³⁹ MgF₂, ZnF₂, and LiF have little interaction with F in HF. There is not enough room for HF coordination on metal fluorides such as MnF₂ and MgF₂, and LiF. Metal fluorides such as MnF₂ and MgF₂ do not have a strong Lewis acid-base interaction with HF. Mn(EtCp)₂ and Mn(EtCp)₂ are not strong Lewis acids. LiHMDS is a Lewis base.

4.3H. Ex situ Film Characterization Using XRR, SE, and XPS

Figure 4-11. Sputter depth profile of (a) ZrF₄ film; (b) HfF₄ film measured by X-ray photoelectron spectroscopy.

Figure 11a shows an X-ray photoelectron spectroscopy (XPS) sputter depth profile of an ZrF₄ ALD film grown with TEMAZ and HF. Most of the film is zirconium and fluorine after removal of the adventitious surface carbon. Some oxygen impurities >4-5% are detected at the film surface. This may indicate some strong interaction of ZrF₄ with the moisture.⁴¹ Oxygen impurities in the bulk film of ~1.1% may result from water that could be produced in the reaction of HF with metal oxide inside the stainless steel reactor. Carbon impurities in the film are detected at ~3.4 at%. Nitrogen impurities are below the detection limit of XPS. The ratio between the calibrated zirconium and fluorine in XPS signals is less than 1:2. This result is consistent with the XPS result of AlF₃ and LiF ALD film having off stoichiometry.²³⁻²⁵ Other techniques such as Rutherford backscattering spectrum (RBS) confirmed that the AlF₃ film was stoichiometric even though XPS of AlF₃ was not stoichiometric.^{23,24} The preferential sputtering of fluorine may explain the low fluorine signals.^{13,14,24,42}

 ZrF_4 ALD film grown with ZTB and HF was also analyzed by XPS sputter depth profile. ZrF₄ ALD film grown with ZTB and HF has no carbon in the film. However, oxygen impurities are detected at ~10%. This unexpected high oxygen impurities in the ZrF₄ film grown with ZTB precursor may suggest that the inclusion of oxygen originated from alkoxide ligand. ZTB precursor is very moisture sensitive. This may also suggest that the film is not stable to air to form the partial oxide in the fluoride film.

Figure 11b shows an XPS sputter depth profile of an HfF₄ ALD film grown with TDMAH and HF. The film consists of entirely hafnium and fluorine after removal of adventitious surface carbon. Oxygen, carbon, and nitrogen impurities are not detected in the HfF₄ film. The ratio between the calibrated hafnium and fluorine determined by XPS signals is
less than 1:2.5 again quite off from stoichiometric HfF₄ probably due to the preferential sputtering of F.

Other metal fluorides films were also analyzed by XPS sputter depth profile. MnF_2 ALD film has oxygen impurities of ~0.9% in the film. Carbon impurities are not detected in the MnF_2 ALD film. The ratio between the calibrated manganese and fluorine determined by XPS signals was 1:2.4.

MgF₂ ALD film consists of magnesium and fluorine having oxygen impurities of ~1.0 % in the film. Carbon impurities are not detected in the MgF₂ film. The ratio between the calibrated magnesium and fluorine determined by XPS signals was 1:1.3.

The film density of metal fluoride films are determined by XRR and are summarized in Table 3. All densities of metal fluorides are >93% of the bulk density. More than 100% density for ZrF_4 grown by ZTB and HF is attributed to ~10% of oxygen impurity in ZrF_4 grown using ZTB. The density of d= 5.68 g/cm³ for bulk ZrO_2 is much higher than the density of for bulk ZrF_4 .³¹

Figure 12 shows the refractive indices of the metal fluoride ALD films in the spectral range between 240 and 1700 nm using the Sellmeier model. The refractive index measured by SE at 589 nm was also summarized in Table 3. The highest refractive index n=1.55 for ZrF4 ALD film and n=1.55 for HfF4 ALD film were obtained grown by TEMAZ and TDMAH respectively. ZrF4 ALD film grown by ZTB has higher refractive index n=1.62 due to ~10% oxygen impurity. Other fluoride films have consistent refractive indices with the reported ones. The lowest refractive index n=1.36 for AlF3 ALD film and n=1.37 for LiF ALD film were obtained.

Metal Fluorides	Metal Precursor	Growth rate at 150°C (Å/cycle)	Density (g/cm ³)	n at 589nm
ZrF ₄	TEMAZ	0.9	4.1	1.55
ZrF ₄	ZTB	0.6	4.7	1.62
HfF ₄	TDMAH	0.8	6.8	1.55
MnF ₂	Mn(EtCp) ₂	0.4	3.8	1.50
MgF ₂	Mg(EtCp) ₂	0.4	3.1	1.40
ZnF ₂	DEZ	0.7	4.9	1.49
AlF ₃	TMA	1.0	2.9	1.36
LiF	LiHMDS	0.5	2.6	1.37

Table 4-3. Metal fluorides, acronym of metal precursors, growth rate at 150°C, density, and the refractive index.

Figure 4-12. Refractive index for metal fluorides ALD films grown at 150 °C in the spectral range between 240 and 1700 nm using the Sellmeier model.

4.4. Conclusions

Metal fluorides ALD films were grown at 150°C using various metal precursors and HF from HF-pyridine as the reactants. The Metal fluorides ALD was examined using *in situ* quartz crystal microbalance (QCM). The growth rate for metal fluorides ALD obtained from *in situ* QCM and *ex situ* X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) measurements showed very good agreements. XPS measurements showed that most of the metal fluorides ALD films were pure fluoride films having little oxygen impurity of ~1 at%. Metal fluorides ALD may be useful for a number of applications such as ultraviolet optical films, and Lewis acid catalytic films.

4.5. Acknowledgements

This research was funded by the Department of Energy through the DOE-BATT program.

4.6. References

- (1) Pellicori, S. F.; Colton, E. Thin Solid Films 1992, 209, 109.
- (2) Kruschwitz, J. D. T.; Pawlewicz, W. T. Appl. Opt. 1997, 36, 2157.
- Niisaka, S.; Saito, T.; Saito, J.; Tanaka, A.; Matsumoto, A.; Otani, M.; Biro, R.; Ouchi, C.;
 Hasegawa, M.; Suzuki, Y.; Sone, K. Appl. Opt. 2002, 41, 3242.
- (4) Herron, N.; Farneth, W. E. Adv. Mater. (Weinheim, Ger.) 1996, 8, 959.
- (5) Kemnitz, E.; Gross, U.; Rudiger, S.; Shekar, C. S. Angewandte Chemie-International Edition 2003, 42, 4251.
- (6) Kemnitz, E.; Menz, D. H. Prog. Solid State Chem. 1998, 26, 97.
- (7) Taki, Y. Vacuum 2004, 74, 431.
- (8) Iwahori, K.; Furuta, M.; Taki, Y.; Yamamura, T.; Tanaka, A. Appl. Opt. 2006, 45, 4598.
- (9) Heitmann, W. Thin Solid Films 1970, 5, 61.
- (10) Lee, C. C.; Liu, M. C.; Kaneko, M.; Nakahira, K.; Takano, Y. Appl. Opt. 2005, 44, 7333.
- (11) Barriere, A. S.; Lachter, A. Appl. Opt. 1977, 16, 2865.
- Bridou, F.; Cuniot-Ponsard, M.; Desvignes, J. M.; Richter, M.; Kroth, U.; Gottwald, A. Opt. Commun. 2010, 283, 1351.
- (13) Schink, H.; Kolbe, J.; Zimmermann, F.; Ristau, D.; Welling, H. In Proc. SPIE 1990; Vol. Laser-Induced Damage in Optical Materials, p 327.
- (14) Targove, J. D.; Bovard, B. G.; Lingg, L. J.; Macleod, H. A. Thin Solid Films 1988, 159, L57.
- (15) George, S. M. Chem Rev 2010, 110, 111.
- (16) Ylilammi, M.; Rantaaho, T. J. Electrochem. Soc. 1994, 141, 1278.
- (17) Pilvi, T.; Hatanpaa, T.; Puukilainen, E.; Arstila, K.; Bischoff, M.; Kaiser, U.; Kaiser, N.; Leskela, M.; Ritala, M. J. Mater. Chem. 2007, 17, 5077.
- (18) Pilvi, T.; Puukilainen, E.; Kreissig, U.; Leskela, M.; Ritala, M. Chem. Mater. 2008, 20, 5023.
- (19) Pilvi, T.; Puukilainen, E.; Arstila, K.; Leskela, M.; Ritala, M. Chem. Vap. Deposition 2008, 14, 85.
- (20) Pilvi, T.; Puukilainen, E.; Munnik, F.; Leskela, M.; Ritala, M. Chem. Vap. Deposition 2009, 15, 27.

- Mantymaki, M.; Hamalainen, J.; Puukilainen, E.; Munnik, F.; Ritala, M.; Leskela, M. Chem. Vap. Deposition 2013, 19, 111.
- (22) Putkonen, M.; Szeghalmi, A.; Pippel, E.; Knez, M. J. Mater. Chem. 2011, 21, 14461.
- (23) Lee, Y.; Cavanagh, A. S.; George, S. M. Atomic Layer Deposition of AlF3 Using Trimethylaluminum and Hydrogen Fluoride-Pyridine, Proceedings of the 13th International Conference on Atomic Layer Deposition, San Diego, California, July 28-31, 2013.
- (24) Lee, Y.; DuMont, J. W.; Cavanagh, A. S.; George, S. M. Submitted to Journal of Physical Chemistry C 2015.
- (25) Lee, Y.; Piper, D. M.; Cavanagh, A. S.; Young, M. J.; Lee, S.-H.; George, S. M. Atomic Layer Deposition of Lithium Ion Conducting (AlF3)(LiF)x Alloys Using Trimethylaluminum, Lithium Hexamethyldisilazide and Hydrogen Fluoride-Pyridine, Proceedings of the 14th International Conference on Atomic Layer Deposition, Kyoto, Japan, June 15-18, 2014.
- (26) Elam, J. W.; Groner, M. D.; George, S. M. Rev. Sci. Instrum. 2002, 73, 2981.
- (27) Lee, Y.; Yoon, B.; Cavanagh, A. S.; George, S. M. Langmuir 2011, 27, 15155.
- (28) Olah, G. A.; Nojima, M.; Kerekes, I. Synthesis-Stuttgart 1973, 779.
- (29) D. Shannon, R.; Shannon, R. C.; Medenbach, O.; Fischer, R. X. J. Phys. Chem. Ref. Data 2002, 31, 931.
- (30) Hausmann, D. M.; Kim, E.; Becker, J.; Gordon, R. G. Chem. Mater. 2002, 14, 4350.
- (31) CRC Handbook of Chemistry and Physics; 85th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2005.
- (32) Almeida, R. M.; Morais, P. J. J. Non-Cryst. Solids 1995, 184, 93.
- (33) Kukli, K.; Ritala, M.; Leskela, M. Chem. Vap. Deposition 2000, 6, 297.
- (34) Martin, P. M.; Olsen, L. C.; Johnston, J. W.; Depoy, D. M. Thin Solid Films 2002, 420, 8.
- (35) Burton, B. B.; Fabreguette, F. H.; George, S. M. Thin Solid Films 2009, 517, 5658.
- (36) Shannon, R. D.; Shannon, R. C.; Medenbach, O.; Fischer, R. X. J. Phys. Chem. Ref. Data 2002, 31, 931.
- (37) Burton, B. B.; Goldstein, D. N.; George, S. M. J. Phys. Chem. C 2009, 113, 1939.
- (38) Benjamin, S. L.; Levason, W.; Pugh, D.; Reid, G.; Zhang, W. J. Dalton Trans. 2012, 41, 12548.

- (39) Molten Salt Chemistry: An Introduction and Selected Applications; Mamantov, G.; Marassi, R., Eds., 1987; Vol. 202
- (40) Guo, Y.; Wuttke, S.; Vimont, A.; Daturi, M.; Lavalley, J. C.; Teinz, K.; Kemnitz, E. J. Mater. Chem. 2012, 22, 14587.
- (41) Waters, T. N. J. Inorg. Nucl. Chem. 1960, 15, 320.
- (42) Allen, T. H.; Lehan, J. P.; Larry C. McIntyre, J. In Proc. SPIE 1990; Vol. Optical Thin Films III: New Developments, p 277

CHAPTER 5

Atomic Layer Etching of Al₂O₃ Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)₂ and HF

5.1. Introduction

Atomic layer deposition (ALD) is a thin film growth technique based on sequential, selflimiting surface reactions.¹ ALD can deposit extremely conformal thin films with atomic layer control. ALD has developed rapidly over the last 10-15 years to meet many industrial needs such as the miniaturization of semiconductor devices.¹ ALD can deposit a wide range of materials from metal oxides to metals.² ALD is typically accomplished using thermal chemistry. However, sometimes plasma ALD is employed to enhance the surface reactions.³

In contrast, atomic layer etching (ALE) is a thin film removal technique based on sequential, self-limiting surface reactions.⁴⁻⁶ ALE can be viewed as the reversal of ALD. ALE should be able to remove thin films conformally and isotropically with atomic layer control. Compared with the large number of ALD processes,² ALE processes have not been defined for as many materials. In addition, no thermal chemical processes have been reported for ALE. The ALE processes that have been reported have used excitation such as ion-enhanced or energetic

noble gas atom-enhanced surface reactions.⁴⁻⁶ Most of the reported ALE processes have adsorbed a halogen on the surface of the material. Ion or noble gas atom bombardment is then used to desorb halogen compounds that etch the material.⁴⁻⁶

Most of the reports of ALE have focused on the ALE of Si, Ge, compound semiconductors, oxides and carbon substrates. Si ALE has been accomplished using either Cl or F adsorption that is subsequently followed by the removal of silicon halides using Ar⁺ ion bombardment.⁵⁻¹⁰ Very similar approaches are employed for Ge ALE.¹¹⁻¹² Alternative approaches for Si ALE utilize energetic neutral Ar beam bombardment.¹³ GaAs ALE has been demonstrated using Cl adsorption followed by excitation with either Ar⁺ ions,¹⁴ 100 eV electrons,¹⁵ or UV radiation.¹⁶⁻¹⁷ InP ALE has also been accomplished using Cl adsorption and energetic neutral Ne beam bombardment.¹⁸

The ALE of a variety of oxides have been reported based on the adsorption of Cl using BCl₃ and the removal of chloride compounds using an energetic Ar atom neutral beam. This approach has been used for the ALE of Al_2O_3 ,¹⁹ HfO₂,²⁰ ZrO₂,²¹ and TiO₂.²² SiO₂ ALE has also been performed using fluorocarbon adsorption followed by Ar⁺ ion bombardment.²³⁻²⁴ The ALE of various carbon substrates have also been accomplished using oxygen radical adsorption followed by material removal using Ar⁺ ion bombardment or an energetic Ar neutral beam. This approach has been demonstrated for graphite,²⁵ graphene²⁶ and polymer material.²⁷

Developing thermal self-limiting ALE reactions that are the reversal of ALD reactions will be difficult. Thermal ALD reactions are typically exothermic and extremely favorable thermochemical reactions.¹ These thermal reactions are spontaneous with negative ΔG values where G is the Gibbs free energy. Performing ALD reactions in reverse will not occur because of these thermodynamic considerations. The challenge for thermal ALE reactions is to find alternative, self-limiting, reactions with different reactants that are exothermic and display negative ΔG values to ensure a spontaneous reaction.

In this paper, sequential exposures of tin(II) acetylacetonate (Sn(acac)₂) and hydrogen fluoride (HF) are employed for the thermal ALE of Al₂O₃. The thermal Al₂O₃ ALE reactions are examined using quartz crystal microbalance (QCM) studies. The Al₂O₃ film thicknesses are measured using x-ray reflectivity (XRR) analysis. The QCM and XRR measurements can determine if the Al₂O₃ etching is linear versus the number of Sn(acac)₂ and HF reaction cycles. The QCM measurements can evaluate whether the Al₂O₃ ALE is self-limiting versus the Sn(acac)₂ and HF exposure times. This new method for ALE based on sequential, self-limiting, thermal reactions with Sn(acac)₂ and HF as the reactants broadens the strategies for ALE reactions.

5.2. Results & Discussion

Figure 1 shows the mass change during 100 ALE cycles of Sn(acac)₂ and HF reactions on an Al₂O₃ surface at 200°C. The initial Al₂O₃ ALD film on the QCM surface was prepared by 100 cycles of Al₂O₃ ALD using TMA and H₂O at 200°C. One ALE cycle consisted of a Sn(acac)₂ dose of 1 s, an N₂ purge of 30 s, a HF dose of 1 s, and a second N₂ purge of 30 s. This reaction sequence is denoted as 1-30-1-30. Pressure transients during Sn(acac)₂ and HF doses were 20 mTorr and 80 mTorr, respectively.

The etching of the Al₂O₃ film in Figure 1 is very linear and displays a mass change per cycle (MCPC) = -8.4 ng/(cm² cycle). This MCPC corresponds to an etch rate of 0.28 Å/cycle based on the Al₂O₃ ALD film density of 3.0 g/cm³ measured by XRR. All ALE cycles show

mass loss resulting from the etching of the Al₂O₃ film except during the first ALE cycle. The first cycle displays mass gains of $\Delta M_{Sn} = 57 \text{ ng/cm}^2$ and $\Delta M_{HF} = 13 \text{ ng/cm}^2$.

The mass gain for ΔM_{Sn} on the first cycle is attributed to $Sn(acac)_2$ adsorption on the hydroxylated Al₂O₃ surface. $Sn(acac)_2$ could adsorb either molecularly as $Sn(acac)_2^*$ or dissociatively as $Sn(acac)^*$ and $(acac)^*$ where the asterisks designate a surface species. This adsorption would lead to a mass increase. In addition, the mass gain for ΔM_{HF} on the first cycle is attributed to the formation of AlF₃ by the reaction of HF with the underlying Al₂O₃ surface. The reaction Al₂O₃ + 6HF \rightarrow 2AlF₃ + 3H₂O is spontaneous with ΔG = -58 kcal at 200°C.²⁸ AlF₃ formation has also been confirmed by *in situ* Fourier transform infrared (FTIR) spectroscopy studies that will be presented in another publication.²⁹ The first cycle of Sn(acac)₂ and HF exposures establishes the initial Sn(acac)₂ and AlF₃ species on the Al₂O₃ substrate.

Figure 2 shows an enlargement of the mass losses versus time at 200 °C for three cycles in the steady state linear etching regime in Figure 1. There is a gradual mass decrease after a short mass gain coinciding with the Sn(acac)₂ exposure. This behavior suggests Sn(acac)₂ adsorption followed by either Sn(acac)₂ desorption and/or the removal of reaction products. A mass loss of $\Delta M_{Sn} = -8.1$ ng/cm² was observed after 1 s of Sn(acac)₂ exposure. In contrast, the HF exposure leads to little mass loss. A mass loss of $\Delta M_{HF} = -0.28$ ng/cm² was observed after 1 s of HF exposure.

Figure 5-1 Mass change versus time for Al₂O₃ ALE using sequential Sn(acac)₂ and HF exposures at 200°C.

Figure 5-2 Expansion of linear region of Figure 5-1 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 200°C.

Figure 3 examines the self-limiting nature of the Al₂O₃ ALE reactions at 200°C. These MCPCs were measured versus different reactant exposure times. Figure 3a shows the self-limiting behavior of the Sn(acac)₂ reaction using different Sn(acac)₂ exposure times with a single 1 s exposure of HF. A constant N₂ purge of 30 s was used after each exposure. This reaction sequence can be denoted as x-30-1-30. The MCPC versus Sn(acac)₂ exposure time decreases quickly and levels off at MCPC = -8 ng/(cm² cycle).

Figure 3b examines the self-limiting behavior of the HF reaction using different HF exposure times with a single 1 s exposure of $Sn(acac)_2$. This reaction sequence can be denoted as 1-30-x-30. The MCPC versus HF exposure time deceases and then levels off. The slow change in the MCPC beyond -8 ng/(cm² cycle) for longer HF exposures > 1 s is believed to be caused by larger HF background pressures and longer HF residence times that lead to some chemical vapor etching (CVE) during the $Sn(acac)_2$ exposures. Figures 3a and 3b together show that the $Sn(acac)_2$ and HF reactions display nearly self-limiting behavior. The MCPC = -8 ng/(cm² cycle) for 1 s exposures of $Sn(acac)_2$ and HF was independent of purge time for purge times between 20 s and 120 s.

Figure 4 shows the mass change during 100 ALE cycles of Sn(acac)₂ and HF reactions on an Al₂O₃ surface at 150 °C using a reaction sequence of 1-30-1-30. The initial Al₂O₃ film was prepared by 100 cycles of Al₂O₃ ALD using TMA and H₂O at 150 °C. The etching of the Al₂O₃ film is very linear with MCPC = -4.1 ng/(cm² cycle). This MCPC corresponds to an etch rate of 0.14 Å/cycle based on the Al₂O₃ ALD film density of 3.0 g/cm³ measured by XRR.

Figure 5-3 Mass change per cycle (MCPC) versus precursor exposure time at 200°C for (a) Sn(acac)₂ and (b) HF.

Figure 5-4 Mass change versus time for Al₂O₃ ALE using sequential Sn(acac)₂ and HF exposures at 150°C.

Figure 5 shows an enlargement of the mass losses versus time at 150°C for three cycles in the steady state linear etching regime in Figure 4. There are distinct differences between the mass changes during the etching reactions at 200°C and 150°C. A mass gain of $\Delta M_{Sn} = +0.19$ ng/cm² was observed after the Sn(acac)₂ exposure for 1 s at 150°C. In contrast, a mass loss of $\Delta M_{Sn} = -8.1$ ng/cm² was obtained at 200°C. This difference may be attributed to more stable Sn(acac)₂ reaction products on the surface at 150°C.

A mass decrease of $\Delta M_{HF} = -4.3 \text{ ng/cm}^2$ was observed after the HF exposure for 1 s at 150°C. This mass decrease is much larger than the mass decrease of $\Delta M_{HF} = -0.28 \text{ ng/cm}^2$ at 200°C. However, if more Sn(acac)₂ reaction products remain on the surface following the Sn(acac)₂ exposure at 150°C, then more Sn(acac)₂ reaction products can be lost during the HF reaction. This behavior would explain the mass gain after the Sn(acac)₂ exposure and larger mass loss after the HF exposure at 150°C.

The ΔM_{Sn} , ΔM_{HF} , and MCPC values at all the reaction temperatures are shown in Figure 6. All ALE reactions were performed using a reaction sequence of 1-30-1-30 on initial Al₂O₃ surfaces. Figure 6a displays the ΔM_{Sn} and ΔM_{HF} values obtained at different reaction temperatures. ΔM_{Sn} displays a slight mass gain at 150°C and progressively larger mass losses at higher temperatures. In contrast, ΔM_{HF} displays a mass loss at temperatures between 150-200°C and mass gains at higher temperatures.

Figure 6b shows the MCPC where MCPC = $\Delta M_{Sn} + \Delta M_{HF}$. All the temperatures display a mass loss and the mass loss is larger at higher temperatures. The MCPC in Figure 6b correlates well with ΔM_{Sn} in Figure 6a. This correspondence shows that the mass change during the Sn(acac)₂ reaction is primarily responsible for the temperature dependence of the mass loss

Figure 5-5 Expansion of linear region of Figure 5-4 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 150°C.

Figure 5-6 Temperature dependence of (a) ΔM_{Sn} and ΔM_{HF} and (b) MCPC for Al₂O₃ ALE.

during Al₂O₃ ALE. ΔM_{Sn} , ΔM_{HF} , and MCPC at the different reaction temperatures are summarized in Table 1.

Al₂O₃ ALE was also examined using *ex situ* XRR studies. For these experiments, Al₂O₃ ALD films with a thickness of 172 Å were grown on Si(100) wafers at 200 °C. These Al₂O₃ ALD films were deposited using 150 cycles of TMA and H₂O with a reaction sequence of 1-20-1-20. Figure 7 displays XRR scans of the Al₂O₃ ALD films on the Si wafers versus number of Sn(acac)₂ and HF reaction cycles at 200 °C. The XRR scans have been displaced from each other for clarity in presentation. These XRR scans are consistent with very uniform and smooth Al₂O₃ films.

Figure 7a shows the XRR scan of the initial Al₂O₃ ALD film grown on Si(100). The Al₂O₃ ALD film thickness of 172 Å can be obtained by fitting the reflected x-ray intensity versus incident angle. Figure 7b, 7c, 7d, and 7e show XRR scans of the etched Al₂O₃ film after 50, 100, 200, and 400 ALE cycles at 200°C, respectively. The Al₂O₃ thicknesses decrease with increasing number of ALE cycles. This decreasing film thickness is revealed by the longer modulation periods for the x-ray intensity versus angle after higher numbers of ALE cycles. The position of the critical angle of all the etched Al₂O₃ films is also constant. This constant critical angle indicates that there is no change of the film density during the ALE reactions.

The etched Al₂O₃ films are very smooth and do not roughen versus Al₂O₃ ALE. The XRR measurements yielded a roughness of the initial Al₂O₃ ALD film of ~5 Å. The surface roughness obtained by XRR analysis then decreased to ~2-3 Å after 50, 100, 200, and 400 ALE

Temperature(°C)	<u>AMsn</u> ng/(cm ² cycle)	<u>ΔM_{HF}</u> ng/(cm ² cycle)	MCPC ng/(cm ² cycle)
150	0.19	-4.3	-4.1
175	-3.2	-2.4	-5.6
200	-8.1	-0.28	-8.4
225	-14.6	2.3	-12.3
250	-24.0	5.7	-18.3

Table 5-1. ΔM_{Sn} , ΔM_{HF} and MCPC for Al₂O₃ ALE at different temperatures.

Figure 5-7 X-ray reflectivity scans showing x-ray intensity versus incident angle for Al₂O₃ films on Si(100). (a) Initial Al₂O₃ film grown using 150 Al₂O₃ ALD cycles; and Al₂O₃ films after various numbers of Al₂O₃ ALE cycles: (b) 50 cycles, (c) 100 cycles, (d) 200 cycles and (e) 400 cycles.

cycles at 200°C. The XRR measurements suggest that the ALE process is able to smooth the surface of the initial Al₂O₃ films. The error in these XRR surface roughness measurements is ~1 Å. Atomic force microscope (AFM) measurements also examined the Al₂O₃ film after Al₂O₃ ALE at 200°C. The AFM root-mean squared (RMS) surface roughness was 2.0 Å, 3.5 Å and 3.7 Å for the bare Si(100) wafer, an Al₂O₃ ALD film on Si(100) grown using 150 Al₂O₃ ALD cycles and the same Al₂O₃ film etched using 400 Al₂O₃ ALE cycles, respectively. This AFM analysis indicates that the Al₂O₃ film remains smooth during Al₂O₃ ALE.

Figure 8 shows the XRR measurements of the initial Al_2O_3 film thickness and the Al_2O_3 film thickness after 50, 100, 200, and 400 ALE cycles at 200°C. For the Al_2O_3 films with an initial thickness of 172 Å in Figure 8a, the film thickness versus number of ALE cycles is very linear and yields an etch rate of 0.27 Å/cycle. The spectroscopic ellipsometry (SE) measurements on these same samples yield an etch rate of 0.27 Å/cycle with an initial Al_2O_3 ALD film thickness of 166 Å. The initial thickness of the Al_2O_3 film is not used to obtain the etch rate because of the mass gain that occurs on the first ALE cycle.

The y-intercepts for the linear least squares fitting in Figure 8a are 176 Å and 169 Å by XRR and SE, respectively. These thicknesses are slightly higher than initial thicknesses of 172 Å and 166 Å measured by XRR and SE, respectively. These larger thicknesses originate from the mass gain that occurs during nucleation of the ALE process on the first ALE cycle. The SE analysis also determined a refractive index of n=1.70 for the Al₂O₃ film at a wavelength of 589 nm. This refractive index for the Al₂O₃ film remained at n=1.69-1.70 after 50, 100 and 200 ALE cycles.

Figure 5-8 X-ray reflectivity and spectroscopic ellipsometry measurements of Al₂O₃ film thickness versus number of Al₂O₃ ALE cycles for initial Al₂O₃ ALD films grown using (a) 150 Al₂O₃ ALD cycles and (b) 100 Al₂O₃ ALD cycles.

XRR measurements were also performed on Al₂O₃ ALD films with a thickness of 113 Å that were grown on Si(100) wafers. These Al₂O₃ ALD films were deposited at 200°C using 100 cycles of TMA and H₂O with a reaction sequence of 1-20-1-20. Figure 8b displays the film thickness versus number of Sn(acac)₂ and HF reaction cycles at 200°C. The XRR measurements yield an Al₂O₃ ALE etch rate of 0.26 Å/cycle. The SE measurements also yield an etch rate of 0.25 Å/cycle with an initial Al₂O₃ ALD film thickness of 109 Å. The initial thickness of the Al₂O₃ film is again not employed to determine the etch rate because of the mass gain that occurs on the first ALE cycle.

The y-intercepts for the linear least squares fitting in Figure 8b are 116 Å and 110 Å by XRR and SE, respectively. These thicknesses are again slightly higher than the initial thicknesses of 113 Å and 109 Å measured by XRR and SE, respectively. These larger thicknesses originate from the mass gain that occurs on the first ALE cycle. After 400 ALE cycles for this thinner Al₂O₃ film, the XRR and SE measurements in Figure 8b indicate that the Al₂O₃ film is completely removed from the Si(100) wafer.

X-ray photoelectron spectroscopy (XPS) measurements were employed to determine the elements on the Al₂O₃ film after Al₂O₃ ALE. The XPS analysis measured Sn $3d_{5/2}$ XPS signals of 1 at% and F 1s XPS signals of 6 at% after 200 or 400 Al₂O₃ ALE cycles after the HF exposure. These XPS signals are consistent with AlF₃ formation and residual Sn(acac)₂ adsorption products. The Sn and F XPS signals were removed completely below the XPS detection limit after Ar ion sputtering for 2 minutes. This sputtering time is the time required to remove adventitious carbon from the surface.

Figure 9 shows the schematic for the proposed ALE reaction mechanism. This mechanism is based on the mass changes during the Sn(acac)₂ and HF exposures as determined by the QCM measurements. During the Sn(acac)₂ reaction (A), the Sn(acac)₂ reacts with the AlF₃ layer on the Al₂O₃ substrate. This AlF₃ layer is formed from the reaction of Al₂O₃ with HF after several ALE reactions on the initial Al₂O₃ surface. The Sn(acac)₂ reacts with the AlF₃ layer to form volatile SnF(acac) and Al(acac)₃ reaction products and SnF(acac)* surface species. The slow loss of mass in Figures 2 and 5 after the Sn(acac)₂ exposure is attributed to the slow desorption of acac species.³⁰⁻³¹ SnF₂ formation is unlikely because Sn(acac)₂ is expected to react with AlF₃ to form volatile SnF(acac) and Al(acac)₃ until depleting the AlF₃ layer. After the AlF₃ layer is lost resulting from Al(acac)₃ and SnF(acac) product formation, there may be a strong interaction between SnF(acac)* surface species adsorbed to the Al₂O₃ substrate.

During the HF reaction (B), HF reacts with the underlying Al₂O₃ surface to form a new AlF₃ layer. Figure 5 illustrates that this reaction has a rapid mass change. This fast mass change is attributed to the favorable thermochemistry for the Al₂O₃ + 6HF \rightarrow 2AlF₃ + 3H₂O reaction.²⁸ The formation of the AlF₃ layer also leads to the removal of the SnF(acac)* species. The reaction of HF with SnF(acac)* species to form SnF₂ can not be ruled out. However, SnF₂ surface species would be expected to react with Sn(acac)₂ to form SnF(acac)* again during the Sn(acac)₂ exposure. In addition, HF also provides hydrogen to form H₂O as a reaction product. This reaction removes the oxygen in Al₂O₃. The AlF₃ layer is then ready for the next Sn(acac)₂ reaction.

Figure 5-9 Schematic of proposed reaction mechanism for Al₂O₃ ALE showing (A) Sn(acac)₂ reaction and (B) HF reaction.

The overall proposed reaction can be expressed as:

$$Al_2O_3 + 6HF + 6Sn(acac)_2 \rightarrow 2Al(acac)_3 + 6SnF(acac) + 3H_2O$$
(1)

This overall reaction can be divided into the $Sn(acac)_2$ and HF reactions:

(A) $Al_2O_3|2AlF_3^* + 6Sn(acac)_2 \rightarrow$

$$Al_2O_3|xSnF(acac)^* + 2Al(acac)_3 + (6-x)SnF(acac)$$
(2)

(B)
$$Al_2O_3|xSnF(acac)^* + 6HF \rightarrow 2AlF_3^* + xSnF(acac) + 3H_2O$$
 (3)

The asterisks indicate the surface species and the vertical lines are used to separate the various surface species. The Al₂O₃ shown in Equations 2 and 3 is the amount of Al₂O₃ that is etched during the ALE reactions. x is a parameter determined by the ΔM_{Sn} and ΔM_{HF} mass changes. To obtain agreement with the ΔM_{Sn} and ΔM_{HF} mass changes in Table 1, x = 0.74, 0.46, 0.29, 0.19, and 0.15 at 150, 175, 200, 225 and 250°C, respectively. Note that AlF₃ is the key reaction intermediate. The production of all the Al(acac)₃ is assumed to occur during reaction (A). This assumption needs to be confirmed by mass spectrometry studies. Al(acac)₃ is a stable metal β -diketonate with a vapor pressure of ~3-4 Torr at 150 °C.³²⁻³⁴

The temperature dependence of ΔM_{Sn} and ΔM_{HF} is believed to be dependent on the surface species present after the Sn(acac)₂ and HF exposures. The larger mass gains after the Sn(acac)₂ exposure and the larger mass losses after the HF exposure at lower temperatures can be explained by more Sn(acac)₂ adsorption products on the surface after the Sn(acac)₂ exposure at lower temperatures. The larger mass gains after the HF exposure and the larger mass losses after the Sn(acac)₂ exposure at lower temperatures. The larger mass gains after the HF exposure and the larger mass losses after the Sn(acac)₂ exposure at higher temperatures can be explained by more AlF₃ species on the surface after the HF exposure at higher temperatures.

Equations 2 and 3 present the surface chemistry for the Sn(acac)₂ and HF reactions as determined by the QCM measurements. Complementary *in situ* Fourier transform infrared (FTIR) vibrational spectroscopy studies have shown that there are surface species that do not change during the Sn(acac)₂ and HF reactions. These surface species are not observed by the QCM measurements that only detect a change in mass. More detail on the reaction mechanism and the temperature dependence of Al₂O₃ ALE using both QCM and FTIR studies will be presented in another publication.²⁹

5.3. Generality and Advantages of Thermal ALE Approach

The ALE of other materials including metal oxides, metal nitrides, metal phosphides, metal sulfides and metal arsenides should be possible using sequential, self-limiting thermal reactions with Sn(acac)₂ and HF as the reactants. Sn(acac)₂ can readily react with HF to form SnF(acac). Sn-F bond formation is expected to be favorable because tin has a high affinity for fluorine.³⁵ The Sn-F bond enthalpy is 466.5 kJ/mole in the diatomic SnF molecule.³⁶ The reaction of Sn(acac)₂ with fluorine to form SnF(acac) enables Sn(acac)₂ to release an acac ligand to the surface. Metals easily form complexes with acac ligands and have comparable stabilities.³⁷ The hydrogen from HF can combine with either oxygen, nitrogen, phosphorous, sulfur or arsenic from the metal oxide, metal nitride, metal phosphide, metal sulfide or metal arsenide to form H₂O, NH₃, PH₃, H₂S or AsH₃, respectively.

ALE reactions for various metal oxides, metal nitrides, metal phosphides, metal sulfides, and metal arsenides are given in Table 2. The ALE of many other metal oxides, metal nitrides, metal phosphides, metal sulfides and metal arsenides may also be possible using Sn(acac)₂ and HF. The reaction efficiency may be dependent on the volatility of the metal acetylacetonate

Metal Oxides

 $Al_2O_3 + 6Sn(acac)_2 + 6HF \rightarrow 2Al(acac)_3 + 6SnF(acac) + 3H_2O$ $HfO_2 + 4Sn(acac)_2 + 4HF \rightarrow Hf(acac)_4 + 4SnF(acac) + 2H_2O$

Metal Nitrides

 $GaN + 3Sn(acac)_2 + 3HF \rightarrow Ga(acac)_3 + 3SnF(acac) + NH_3$ InN + 3Sn(acac)_2 + 3HF \rightarrow In(acac)_3 + 3SnF(acac) + NH_3

Metal Phosphides $AlP+ 3Sn(acac)_2 + 3HF \rightarrow Al(acac)_3 + 3SnF(acac) + PH_3$ $InP+ 3Sn(acac)_2 + 3HF \rightarrow In(acac)_3 + 3SnF(acac) + PH_3$

Metal Sulfides $ZnS+ 2Sn(acac)_2 + 2HF \rightarrow Zn(acac)_2 + 2SnF(acac) + H_2S$ $PbS+ 2Sn(acac)_2 + 2HF \rightarrow Pb(acac)_2 + 2SnF(acac) + H_2S$

Metal Arsenides

 $GaAs+3Sn(acac)_2+3HF \rightarrow Ga(acac)_3+3SnF(acac)+AsH_3$ InAs+3Sn(acac)_2+3HF \rightarrow In(acac)_3+3SnF(acac)+AsH_3

Table 5-2. Atomic Layer Etching Reactions for Various Materials

reaction product. For example, many metal oxides, in addition to Al₂O₃, should be etched by the Sn(acac)₂ and HF reactants including HfO₂, ZrO₂, Fe₂O₃, Co₂O₃, Cr₂O₃, Sc₂O₃ and Ga₂O₃. These metal oxides all produce etch products, M(acac)₃ or M(acac)₄, with vapor pressures of ~1 Torr at 150°C.^{34,38-39}

The ALE of elemental metals could also be performed using sequential exposures of $Sn(acac)_2$ and HF. The surface of the elemental metal would first be oxidized using an oxidant such as O_2 or O_3 . The metal oxide could then be etched with $Sn(acac)_2$ and HF. Alternatively, the surface of the elemental metal could be nitrided, phosphided, sulfided or arsenided prior to etching the metal nitride, metal phosphide, metal sulfide or metal arsenide, respectively, with $Sn(acac)_2$ and HF.

Other Sn β -diketonates may also serve as etching reactants besides Sn(acac)₂ with acac= acetylacetonate. Many other β -diketone ligands on the Sn metal center are possible such as hfac= hexafluoroacetylacetonate, tfac= trifluroacetylacetonate, and tmhd= tetramethylheptanedionate.^{35,40} Different β -diketone ligands can change the physical properties of the metal β -diketonate.³⁷ For example, fluorine substituted β -diketone ligands generally show higher vapor pressure.³⁷

Other metal β -diketonates, in addition to Sn-based compounds, could also react with HF to yield β -diketone ligands that could then form the etch products. The possible advantage of using different metal β -diketonates may be their more favorable vapor pressure, thermal stability, reaction kinetics or thermochemistry. Metal β -diketonates with metals in higher oxidation states can bind to more β -diketone ligands.³³⁻³⁴ The larger number of β -diketone ligands may facilitate the etching of the metal oxide. However, Sn(acac)₂ with tin in the +2 oxidation state has an open

coordination sphere and a readily available electron lone-pair that may facilitate fluorine binding to tin.³⁵

There is also the possibility that the ALE of metal oxides would be possible with HCl or HBr instead of HF as a reactant. For example, the reaction of HCl with $Sn(acac)_2$ could produce SnCl(acac). This Sn chloride β -diketonate compound was produced earlier by the reaction of $Sn(acac)_2$ and $SnCl_2$.^{35,40} The Sn-Cl bond energy in the diatomic SnCl molecule is 414 kJ/mole.⁴¹ This bond energy is only slightly less than the bond energy of 466.5 kJ/mole in the diatomic SnF molecule.^{36,41}

The advantage of using HCl or HBr would be avoiding the use of HF and its safety concerns. However, HCl and HBr are also chemically corrosive. A possible disadvantage of HCl or HBr is the lower stability of metal chlorides and metal bromides compared with metal fluorides for metal oxides, metal nitrides, metal phosphides and metal arsenides. The AlF₃ layer plays a key role as a reaction intermediate in the proposed reaction mechanism for Al₂O₃ ALE. The stability of the metal fluoride reaction intermediate may be critical for the ALE mechanism for self-limiting reactions based on Sn(acac)₂ and HF.

The absolute etch rate may also differ between various metal oxides during ALE with Sn(acac)₂ and HF as the reactants. The etch rate may be dependent upon the residual coverage of acetylacetonate species on the metal oxide surface. Higher acetylacetonate coverages may block surface sites and prevent the adsorption of Sn(acac)₂ or formation of the metal fluoride layer. This site-blocking by acetylacetonate surface species may reduce the etch rate. Site-blocking by hfac and hfacH was recently demonstrated during Pt ALD and Pd ALD using Pt(hfac)₂ and Pd(hfac)₂, respectively.³⁰⁻³¹ The temperature dependence of the Al₂O₃ ALE may be attributed to the lower residual coverage of acetylacetonate surface species at higher temperatures. Other

ligands on the metal β -diketonate may alter the residual coverage of ligands on the metal oxide surface and change the etch rate.

There are advantages to the thermal ALE approach compared with ALE based on halogen adsorption and ion or energetic neutral noble atom bombardment. The thermal ALE approach avoids any damage to the underlying substrate resulting from high energy ions or energetic neutrals. Ions from plasmas have been implicated in the performance degradation of high-k/metal gate stacks.⁴² Using neutral noble gas beams is able to mitigate the structural and electrical damage caused by ions.⁸

ALE based on ion or neutral noble atom bombardment also requires line-of-sight to the substrate. This requirement can be used advantageously to minimize undercutting with directional ions or energetic neutral atoms during ALE. However, this line-of-sight requirement is detrimental if conformality is required for the etching. The line-of-sight requirement is also limited to the relatively small surface areas that are subjected to ion or neutral noble atom bombardment. The thermal ALE approach will be particularly important for etching high surface area and high aspect ratio structures.

5.4. Conclusions

 Al_2O_3 ALE was observed using Sn(acac)₂ and HF as the reactants. The sequential, selflimiting thermal reactions of Sn(acac)₂ and HF etched Al₂O₃ linearly with atomic level precision. Al_2O_3 ALE was demonstrated at temperatures from 150-250 °C. The sequential Sn(acac)₂ and HF reactions were self-limiting versus reactant exposure as revealed by QCM studies. The QCM studies also measured MCPC values that increased with temperature from -4.1 ng/(cm² cycle) at 150°C to -18.3 ng/(cm² cycle) at 250°C. These mass losses per cycle correspond to etch rates from 0.14 Å/cycle at 150°C to 0.61 Å/cycle at 250°C. The linear removal of Al₂O₃ was confirmed by XRR analysis. The XRR studies measured Al₂O₃ ALE etch rates of 0.27 Å/cycle at 200°C. The Al₂O₃ films also remained smooth during Al₂O₃ ALE.

The overall etching reaction is believed to follow the reaction: $Al_2O_3 + 6Sn(acac)_2 + 6HF \rightarrow 2Al(acac)_3 + 6SnF(acac) + 3H_2O$. In the proposed reaction mechanism, AlF₃ is the key reaction intermediate. The Sn(acac)₂ reactant donates acac to the AlF₃ layer on the Al₂O₃ substrate to produce Al(acac)₃. The HF reactant forms the AlF₃ reaction intermediate from Al₂O₃ and allows SnF(acac) and H₂O to leave as reaction products. The ALE of many other metal oxides besides Al₂O₃ should also be possible using Sn(acac)₂, or other metal β -diketonates, together with HF. This ALE reaction mechanism should also be applicable for the ALE of metal nitrides, metal phosphides, metal sulfides and metal arsenides.

5.5. Experimental Methods

5.5A. Viscous Flow Reactor Equipped for in situ QCM Measurements

The ALE reactions at 150-250 °C were performed in a viscous flow ALD reactor.⁴³⁻⁴⁴ A proportional-integral-derivative (PID) temperature controller (2604, Eurotherm) stabilized the temperature in the reactor to within ± 0.04 °C. A capacitance manometer (Baratron 121A, MKS) measured the pressure in the reactor. The ALD reactor was equipped with an *in situ* quartz crystal microbalance (QCM).⁴³ The RC-cut quartz crystal⁴⁵ (gold coated and polished, 6 MHz, Colnatec) was placed in a sensor head (BSH-150, Inficon) and then sealed with high temperature

epoxy (Epo-Tek H21D, Epoxy technology). All *in situ* QCM measurements were recorded by a thin film deposition monitor (Maxtek TM-400, Inficon).

The Al₂O₃ ALE reactions were performed using sequential exposure of tin(II) acetylacetonate (Sn(acac)₂, 37-38% Sn, Gelest) and HF-pyridine (70 wt% HF, Sigma-Aldrich). HF-pyridine is a liquid at room temperature and has an equilibrium with gaseous HF.⁴⁶ The HF pressure from HF-pyridine is >2-3 Torr at room temperature. The two pneumatic valves and one metering valve used for HF dosing produced HF pressure transients of ~80 mTorr. HF-pyridine enabled the safe handling of anhydrous HF. Note that HF-pyridine can be dangerous if not utilized properly. Sn(acac)₂ and HF-pyridine were transferred to stainless steel bubblers in a dry N₂-filled glove bag. The stainless steel bubbler containing Sn(acac)₂ was held at 100°C. The one pneumatic valve used for Sn(acac)₂ dosing produced Sn(acac)₂ pressure transients of ~20 mTorr. The Al₂O₃ films were grown with Al₂O₃ ALD using TMA (97 %, Sigma-Aldrich) and H₂O (Chromasolv for HPLC, Sigma-Aldrich). The HF-pyridine, TMA, and H₂O precursors were maintained at room temperature.

The reactor was pumped using a mechanical pump (Pascal 2015SD, Alcatel). The base pressure of the reactor without any N₂ flow was ~10 mTorr. Separate mass flow controllers were used to provide N₂ carrier gas for each reactant. An additional mass flow controller streamed N₂ gas through the reactor. These three separate mass flow controllers (Type 1179A, MKS) delivered a constant total flow of 150 sccm of ultra high purity (UHP) N₂ carrier gas into the reactor. Additional N₂ gas flow of 20 sccm using a metering bellows-sealed valve (SS-4BMG, Swagelok) prevented deposition on the backside of the QCM crystal.⁴³ The total N₂ gas flow of 170 sccm produced a background N₂ pressure of ~1 Torr in the reactor.

5.5B. Sample Preparation and ex situ Film Analysis

Boron-doped Si(100) wafers (p-type, Silicon Valley Microelectronics) were cut into samples with dimensions of 2.5 cm by 2.5 cm. These substrates were used for Al_2O_3 ALD deposition. The Si wafers were first rinsed with acetone, isopropanol, and deionized water. Subsequently, the Si wafers were dried with UHP N₂ gas.

The *ex situ* x-ray reflectivity (XRR) scans were recorded by a high resolution x-ray diffractometer (Bede D1, Jordan Valley Semiconductors) using Cu K α (λ = 1.540 Å) radiation. The filament voltage and current in the x-ray tube were 40 kV and 35 mA, respectively. A 10 arcsec step size and a 5 s acquisition time were used for recording all XRR scans with a range of 300 to 6000 arcsec. The analysis software (Bede REFS, Jordan Valley Semiconductors) fitted the XRR scans to determine film thickness, film density and surface roughness.

Spectroscopic ellipsometry (SE) determined the film thicknesses and refractive index. The measurement of Ψ and Δ were recorded using a spectroscopic ellipsometer (M-2000, J. A. Woollam) with a spectral range of 240 to 1700 nm and an incidence angle of 75°. The analysis software (CompleteEASE, J. A. Woollam) fitted Ψ and Δ based on a Sellmeier model to determine the thicknesses and refractive index of the film.⁴⁷

X-ray photoemission spectroscopy (XPS) analysis was performed using a PHI 5600 Xray photoelectron spectrometer using a monochromatic Al K α source. The XPS data were collected using Auger Scan (RBD Enterprises, Inc., Bend, OR). The XPS data were analyzed in CASA XPS (Casa Software Ltd, UK). Atomic force microscope (AFM) analysis was performed using an EasyScan 2 (Nanosurf) with a dynamic force module. The scan software (EasyScan 2, Nanosurf) measured the RMS roughness using a 5 μ m × 5 μ m image size.
5.6. Acknowledgements

This research was funded by the National Science Foundation (CHE-1306131). Additional personnel support for YL was provided by the Department of Energy through the DOE-BATT program. The authors thank Dr. Huaxing Sun for the x-ray photoelectron spectroscopy (XPS) analysis of elemental film composition. The authors also thank Timothy J. Porcelli for the atomic force microscopy (AFM) measurements of surface roughness.

5.7. References

- (1) George, S. M. Atomic Layer Deposition: An Overview. *Chem. Rev.* **2010**, *110*, 111-131.
- Miikkulainen, V.; Leskela, M.; Ritala, M.; Puurunen, R. L. Crystallinity of Inorganic Films Grown by Atomic Layer Deposition: Overview and General Trends. *J. Appl. Phys.* 2013, *113*, 021301.
- Profijt, H. B.; Potts, S. E.; van de Sanden, M. C. M.; Kessels, W. M. M. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. *J. Vac. Sci. Technol. A* 2011, 29, 050801.
- (4) Agarwal, A.; Kushner, M. J. Plasma Atomic Layer Etching Using Conventional Plasma Equipment. J. Vac. Sci. Technol. A 2009, 27, 37-50.
- (5) Athavale, S. D.; Economou, D. J. Molecular Dynamics Simulation of Atomic Layer Etching of Silicon. J. Vac. Sci. Technol. A 1995, 13, 966-971.
- (6) Athavale, S. D.; Economou, D. J. Realization of Atomic Layer Etching of Silicon. J. Vac. Sci. Technol. B 1996, 14, 3702-3705.
- (7) Kubota, N. A.; Economou, D. J.; Plimpton, S. J. Molecular Dynamics Simulations of Low-Energy (25-200 eV) Argon Ion Interactions with Silicon Surfaces: Sputter Yields and Product Formation Pathways. J. Appl. Phys. 1998, 83, 4055-4063.
- (8) Park, S. D.; Lim, W. S.; Park, B. J.; Lee, H. C.; Bae, J. W.; Yeom, G. Y. Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO₂ using BCl₃ and Ar Neutral Beam. *Electrochem. Solid State Lett.* **2008**, *11*, H71-H73.
- Sakaue, H.; Iseda, S.; Asami, K.; Yamamoto, J.; Hirose, M.; Horiike, Y. Atomic Layer Controlled Digital Etching of Silicon. *Jpn. J. Appl. Phys. 1* 1990, *29*, 2648-2652.
- Yamamoto, J.; Kawasaki, T.; Sakaue, H.; Shingubara, S.; Horiike, Y. Digital Etching
 Study and Fabrication of Fine Si Lines and Dots. *Thin Solid Films* 1993, 225, 124-129.
- (11) Matsuura, T.; Sugiyama, T.; Murota, J. Atomic-Layer Surface Reaction of Chlorine on Si and Ge Assisted by an Ultraclean ECR Plasma. *Surf. Sci.* **1998**, *402*, 202-205.
- (12) Sugiyama, T.; Matsuura, T.; Murota, J. Atomic-Layer Etching of Ge Using an Ultraclean ECR Plasma. *Appl. Surf. Sci.* 1997, *112*, 187-190.
- Park, S. D.; Lee, D. H.; Yeom, G. Y. Atomic Layer Etching of Si(100) and Si(111) Using Cl₂ and Ar Neutral Beam. *Electrochem. Solid State Lett.* 2005, *8*, C106-C109.

- (14) Lim, W. S.; Park, S. D.; Park, B. J.; Yeom, G. Y. Atomic Layer Etching of (100)/(111)
 GaAs with Chlorine and Low Angle Forward Reflected Ne Neutral Beam. *Surf. Coat. Tech.* 2008, 202, 5701-5704.
- Meguro, T.; Hamagaki, M.; Modaressi, S.; Hara, T.; Aoyagi, Y.; Ishii, M.; Yamamoto, Y.
 Digital Etching of GaAs New Approach of Dry Etching to Atomic Ordered Processing.
 Appl. Phys. Lett. **1990**, *56*, 1552-1554.
- Meguro, T.; Ishii, M.; Sugano, T.; Gamo, K.; Aoyagi, Y. Control of the Etching Reaction of Digital Etching Using Tunable UV Laser Irradiation. *Appl. Surf. Sci.* 1994, 82-3, 193-199.
- (17) Maki, P. A.; Ehrlich, D. J. Laser Bilayer Etching of GaAs Surfaces. *Appl. Phys. Lett.* 1989, 55, 91-94.
- (18) Park, S. D.; Oh, C. K.; Bae, J. W.; Yeom, G. Y.; Kim, T. W.; Song, J. I.; Jang, J. H. Atomic Layer Etching of InP Using a Low Angle Forward Reflected Ne Neutral Beam. *Appl. Phys. Lett.* **2006**, *89*, 043109.
- (19) Min, K. S.; Kang, S. H.; Kim, J. K.; Jhon, Y. I.; Jhon, M. S.; Yeom, G. Y. Atomic Layer Etching of Al₂O₃ Using BCl₃/Ar for the Interface Passivation Layer of III-V MOS Devices. *Microelectron. Eng.* **2013**, *110*, 457-460.
- (20) Park, J. B.; Lim, W. S.; Park, B. J.; Park, I. H.; Kim, Y. W.; Yeom, G. Y. Atomic Layer Etching of Ultra-Thin HfO₂ Film for Gate Oxide in MOSFET Devices. *J. Phys. D Appl. Phys.* 2009, 42, 055202.
- (21) Lim, W. S.; Park, J. B.; Park, J. Y.; Park, B. J.; Yeom, G. Y. Low Damage Atomic Layer Etching of ZrO₂ by Using BCl₃ Gas and Ar Neutral Beam. *J. Nanosci. Nanotechnol.* 2009, *9*, 7379-7382.
- Park, J. B.; Lim, W. S.; Park, S. D.; Park, Y. J.; Yeom, G. Y. Etch Characteristics of TiO₂
 Etched by Using an Atomic Layer Etching Technique with BCl₃ Gas and an Ar Neutral Beam. *J. Korean Phys. Soc.* 2009, *54*, 976-980.
- (23) Metzler, D.; Bruce, R. L.; Engelmann, S.; Joseph, E. A.; Oehrlein, G. S. Fluorocarbon Assisted Atomic Layer Etching of SiO₂ using Cyclic Ar/C₄F₈ Plasma. J. Vac. Sci. Technol. A 2014, 32, 020603.

- Rauf, S.; Sparks, T.; Ventzek, P. L. G.; Smirnov, V. V.; Stengach, A. V.; Gaynullin, K. G.; Pavlovsky, V. A. A Molecular Dynamics Investigation of Fluorocarbon Based Layer-by-layer Etching of Silicon and SiO₂. *J. Appl. Phys.* 2007, *101*, 033308.
- (25) Kim, Y. Y.; Lim, W. S.; Park, J. B.; Yeom, G. Y. Layer by Layer Etching of the Highly Oriented Pyrolythic Graphite by Using Atomic Layer Etching. *J. Electrochem. Soc.* 2011, 158, D710-D714.
- Lim, W. S.; Kim, Y. Y.; Kim, H.; Jang, S.; Kwon, N.; Park, B. J.; Ahn, J.-H.; Chung, I.;
 Hong, B. H.; Yeom, G. Y. Atomic Layer Etching of Graphene for Full Graphene Device
 Fabrication. *Carbon* 2012, *50*, 429-435.
- (27) Vogli, E.; Metzler, D.; Oehrlein, G. S. Feasibility of Atomic Layer Etching of Polymer Material Based on Sequential O₂ Exposure and Ar Low-Pressure Plasma-Etching. *Appl. Phys. Lett.* 2013, *102*, 253105.
- (28) HSC Chemistry; HSC Chemistry 5.1, Outokumpu Research Oy: Pori, Finland.
- (29) Lee, Y.; DuMont, J. W.; George, S. M. Mechanism of Thermal Al₂O₃ Atomic Layer Etching Using Sequential Reactions with Sn(acac)₂ and HF. *In preparation for submission to Chemistry of Materials*
- (30) Anderson, V. R.; Leick, N.; Clancey, J. W.; Hurst, K. E.; Jones, K. M.; Dillon, A. C.; George, S. M. Atomic Layer Deposition of Platinum Nanoparticles on Titanium Oxide and Tungsten Oxide Using Platinum(II) Hexafluoroacetylacetonate and Formalin as the Reactants. J. Phys. Chem. C 2014, 118, 8960-8970.
- (31) Goldstein, D. N.; George, S. M. Surface poisoning in the nucleation and growth of palladium atomic layer deposition with Pd(hfac)(2) and formalin. *Thin Solid Films* 2011, *519*, 5339-5347.
- Berg, E. W.; Truemper, J. T. Vapor Pressure-Temperature Data for Various Metal Beta-Diketone Chelates. *Anal. Chim. Acta* 1965, *32*, 245-252.
- Eisentraut, K. J.; Sievers, R. E. Thermogravimetric Studies of Metal Beta-Diketonates. J. Inorg. Nucl. Chem. 1967, 29, 1931-1936.
- (34) Fahlman, B. D.; Barron, A. R. Substituent Effects on the Volatility of Metal Beta-Diketonates. *Adv. Mater. Opt. Electr.* 2000, *10*, 223-232.
- (35) Ewings, P. F. R.; Harrison, P. G.; Fenton, D. E. Derivatives of Divalent Germanium, Tin, and Lead. 5. Bis-(Pentane-2,4-Dionato)-Tin(II),Bis(1,1,1-Trifluoropentane-2,4-Dionato)-

Tin(II), and Bis(1,1,1,5,5,5-Hexafluoropentane-2,4-Dionato)-Tin(II). J. Chem. Soc.-Dalton Trans. **1975**, 821-826.

- (36) Zimbov, K.; Hastie, J. W.; Margrave, J. L. Mass Spectrometric Studies at High Temperatures. 24. Thermodynamics of Vaporization of SnF₂ and PbF₂ and Dissociation Energies of SnF and PbF. *Trans. Faraday Soc.* **1968**, *64*, 861-867.
- Mehrotra, R. C.; Bohra, R.; Gaur, D. P. *Metal Beta-Diketonates and Allied Derivatives*;
 Academic Press: London, 1978.
- Morozova, N. B.; Zherikova, K. V.; Baidina, I. A.; Sysoev, S. V.; Semyannikov, P. P.;
 Yakovkina, L. V.; Smirnova, T. P.; Gelfond, N. V.; Igumenov, I. K.; Carta, G.; Rossetto,
 G. Volatile Hafnium(IV) Compounds with Beta-Diketonate and Cyclopentadienyl
 Derivatives. J. Phys. Chem. Solids 2008, 69, 673-679.
- (39) Zherikova, K. V.; Morozova, N. B.; Zelenina, L. N.; Sysoev, S. V.; Chusova, T. P.;
 Igumenov, I. K. Thermal Properties of Hafnium(IV) and Zirconium(IV) Beta-Diketonates. J. Therm. Anal. Calorim. 2008, 92, 729-734.
- Bos, K. D.; Budding, H. A.; Bulten, E. J.; Noltes, J. G. Tin(II) Bis(1,3-Diketonates) and Tin(II) 1,3-Diketonate Chlorides. *Inorg. Nucl. Chem. Lett.* 1973, *9*, 961-963.
- (41) CRC Handbook of Chemistry and Physics; 85th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2005.
- (42) Hussain, M. M.; Song, S.-C.; Barnett, J.; Kang, C. Y.; Gebara, G.; Sassman, B.;
 Moumen, N. Plasma-Induced Damage in High-k/Metal Gate Stack Dry Etch. *IEEE Elect. Device Lett.* 2006, 27, 972-974.
- (43) Elam, J. W.; Groner, M. D.; George, S. M. Viscous Flow Reactor with Quartz Crystal Microbalance for Thin Film Growth by Atomic Layer Deposition. *Rev. Sci. Instrum.* 2002, *73*, 2981-2987.
- (44) Lee, Y.; Yoon, B.; Cavanagh, A. S.; George, S. M. Molecular Layer Deposition of Aluminum Alkoxide Polymer Films Using Trimethylaluminum and Glycidol. *Langmuir* 2011, 27, 15155-15164.
- (45) Riha, S. C.; Libera, J. A.; Elam, J. W.; Martinson, A. B. F. Design and Implementation of an Integral Wall-Mounted Quartz Crystal Microbalance for Atomic Layer Deposition. *Rev. Sci. Instrum.* 2012, 83, 094101.

- (46) Olah, G. A.; Nojima, M.; Kerekes, I. Synthetic Methods and Reactions .2.
 Hydrofluorination of Alkenes, Cyclopropane and Alkynes with (Trialkylamine) Reagents. *Synthesis-Stuttgart* 1973, *12*, 779-780.
- (47) Shannon, R. D.; Shannon, R. C.; Medenbach, O.; Fischer, R. X. Refractive Index and Dispersion of Fluorides and Oxides. *J. Phys. Chem. Ref. Data* **2002**, *31*, 931-970.

CHAPTER 6

Mechanism of Thermal Al₂O₃ Atomic Layer Etching Using Sequential Reactions with Sn(acac)₂ and HF

6.1. Introduction

Atomic layer etching (ALE) is a technique that can remove thin films with atomic layer control using sequential, self-limiting surface reactions.¹⁻³ ALE is the opposite of atomic layer deposition (ALD) which can provide conformal and atomic layer controlled film deposition.⁴ ALD and ALE are both important techniques to provide thin film engineering at the atomic level.⁵⁻⁶ ALE processes have been previously reported using ion-enhanced or energetic noble gas atom-enhanced surface reactions.¹⁻³ During these ALE processes, a halogen is first adsorbed on the surface of the material. Ion or noble gas atom bombardment is then used to desorb halogen compounds that etch the material. Based on this process, ALE has been reported for Si,^{2-3,7-11} Ge,^{6,12} and compound semiconductors.¹³⁻¹⁶ ALE has also been demonstrated for a variety of metal oxides¹⁷⁻²¹ and various carbon substrates.²²⁻²⁴

The ALE of Al_2O_3 was recently reported using sequential, self-limiting thermal reactions with $Sn(acac)_2$ and HF as the reactants.²⁵ The Al_2O_3 samples were Al_2O_3 atomic layer deposition (ALD) films grown using trimethylaluminum and H_2O . The HF source was HF-pyridine. The linear removal of Al_2O_3 was observed at temperatures from 150-250°C without the use of ion or noble gas atom bombardment. An Al_2O_3 ALE etch rate of 0.27 Å/cycle was measured at $200°C.^{25}$ The ALE etch rates also increased at higher temperatures. The $Sn(acac)_2$ and HF thermal reactions were both self-limiting versus exposure. The Al_2O_3 films also did not roughen versus number of Al_2O_3 ALE cycles.²⁵ In addition, the ALE of HfO₂ has also been recently demonstrated using $Sn(acac)_2$ and HF as the reactants.²⁶

The overall Al₂O₃ etching reaction was proposed to follow the reaction: Al₂O₃ + $6Sn(acac)_2 + 6HF \rightarrow 2Al(acac)_3 + 6SnF(acac) + 3H_2O.^{25}$ In the surface reactions, the Sn(acac)₂ reactant was suggested to donate acac to the substrate to produce Al(acac)₃. The HF reactant was suggested to allow SnF(acac) and H₂O to leave as reaction products.²⁵ An adlayer of AlF₃ was proposed to exist on the Al₂O₃ surface after HF exposures.²⁵ Sn(acac)₂ adsorption products were proposed to exist on the Al₂O₃ surface after Sn(acac)₂ exposures.

In this study, quartz crystal microbalance (QCM) measurements determined the Al₂O₃ etch rates and the mass changes after individual Sn(acac)₂ and HF exposures versus temperature. The temperature-dependence of the mass change per cycle (MCPC) and the individual mass changes during the Sn(acac)₂ and HF exposures helped to formulate a mechanism for Al₂O₃ ALE. In addition, FTIR vibrational spectroscopy analysis was able to monitor the Al₂O₃ etching and characterize the surface species after the Sn(acac)₂ and HF exposures. The combination of these QCM and FTIR studies leads to the understanding of the key reaction intermediates during Al₂O₃ ALE and the reaction mechanism for thermal Al₂O₃ ALE.

6.2. Experimental

6.2A. Viscous Flow Reactor Equipped for *in situ* QCM Measurements

Al₂O₃ ALE was monitored using *in situ* QCM experiments in a viscous flow reactor.²⁷ The QCM sensor was an RC-cut quartz crystal²⁸ (gold coated and polished, 6 MHz, Colnatec). This QCM sensor was mounted in the bakeable sensor head (BSH-150, Inficon) and then sealed with high temperature epoxy (Epo-Tek H21D, Epoxy technology). All the QCM measurements were recorded by a film deposition monitor (Maxtek TM-400, Inficon). The reactor temperature was maintained by a PID temperature controller (2604, Eurotherm) at 150-250 °C during the reactions. The pressure in the reactor was measured using a bakeable capacitance manometer (Baratron 121A, MKS).

The reactor was pumped using a mechanical pump (Pascal 2015SD, Alcatel). A constant N_2 carrier gas flow of 150 sccm was streamed through the reactor. This N_2 gas flow was supplied by three separate mass flow controllers (Type 1179A, MKS). An additional N_2 purge gas flow of 20 sccm passed through the QCM housing and prevented deposition on the back side of the QCM sensor. The base pressure in the reactor resulting from the total N_2 gas flow of 170 sccm was ~1 Torr.

Al₂O₃ ALE was performed using tin(II) acetylacetonate (Sn(acac)₂, 37-38% Sn, Gelest) and HF-pyridine (70 wt% HF, Sigma-Aldrich) as the reactants. HF-pyridine is known as "Olah's reagent" and is a convenient reservoir for anhydrous HF.²⁹ The HF pressure from HF-pyridine is >2-3 Torr at room temperature. Sn(acac)₂ and HF-pyridine were transferred to stainless steel bubblers in a dry N₂-filled glove bag. The Sn(acac)₂ precursor was maintained at 100°C and produced a pressure transient of 15-20 mTorr using a pneumatic valve for dosing. The HF- pyridine precursor was held at room temperature and produced a pressure transient of 80 mTorr using a two pneumatic valves and one metering valve for dosing.

The Al₂O₃ films were grown on the QCM sensor by Al₂O₃ ALD. The Al₂O₃ ALD films were grown using at least 100 cycles of Al₂O₃ ALD using TMA (97 %, Sigma-Aldrich) and H₂O (deionized water, Chromasolv for HPLC, Sigma-Aldrich). The TMA and H₂O precursors were held at room temperature. The Al₂O₃ films were grown on the QCM sensor before each ALE reaction.

6.2B. FTIR Spectroscopy Measurements

The *in situ* FTIR studies were performed in a reactor equipped with an FTIR spectrometer that has been described previously.³⁰ The reactor was pumped using a mechanical pump (TRIVAC D8B, Oerlikon Leybold Vacuum). The FTIR spectrometer (Nicolet 6700 FTIR, Thermo Scientific) utilized a liquid-N₂-cooled mercury cadmium telluride (MCT-B) detector. Dry, CO₂-free air was employed to purge the spectrometer, mirror, and detector setup. Each spectrum consisted of a total of 100 scans at 4 cm⁻¹ resolution from 400 to 4000 cm⁻¹.

The transmission FTIR measurements were performed on high surface area ZrO_2 nanoparticles (99.95%, US Research Nanomaterials Inc.) with an average diameter of 20 nm and high surface area SiO₂ nanoparticles (99.5%, US Research Nanomaterials Inc.) with an average diameter of 15-20 nm. The ZrO₂ nanoparticles absorb infrared radiation between ~400-800 cm⁻¹. The SiO₂ nanoparticles absorb infrared radiation between 400-650 cm⁻¹, 700-875 cm⁻¹, and 925-1400 cm⁻¹. These absorption regions leave open available windows to observe absorbance from the species in Al₂O₃ ALD and Al₂O₃ ALE. The high surface area of these nanoparticles was needed to enhance the signal-to-noise ratio.³¹ Sample preparation involved pressing the ZrO₂ or SiO₂ nanoparticles into a tungsten grid support (Tech-Etch).³¹⁻³² The tungsten grids had dimensions of 2×3 cm². Each grid was 50 µm thick with 100 grid lines per inch.

The tungsten grid could be resistively heated using a DC power supply (6268B, 20V/ 20A, Hewlett-Packard). The voltage output of the power supply was controlled by a PID temperature controller (Love Controls 16B, Dwyer Instruments, Inc.). A type K thermocouple was attached to the bottom of the tungsten grid with epoxy (Ceramabond 571, Aremco) that attached and electrically isolated the thermocouple.

A consistent cleaning procedure of the ZrO_2 nanoparticles/grid support was used to produce a reproducible starting surface. Prior to film deposition, the temperature of the sample support was increased to 500 °C for ~2 minutes to degas and clear adventitious carbon from the ZrO_2 nanoparticles. Since this procedure also depleted the hydroxyl groups from the ZrO_2 surface, a ~2 s H₂O dose was used to rehydroxylate the surface. This procedure consistently removed any carbon-related vibrational modes and resulted in a clean ZrO_2 starting surface with absorbances attributed only to the O-H stretching vibrations and bulk ZrO_2 modes. This cleaning procedure was not utilized for the SiO₂ nanoparticles because rehydroxylation of the SiO₂ surface is very difficult following dehydroxylation.³³

The Al₂O₃ ALE reactions were performed using sequential exposures of tin(II) acetylacetonate (Sn(acac)₂, 37-38% Sn, Gelest) and HF-pyridine (70 wt% HF, Sigma-Aldrich). Static dosing of the ALE precursors was utilized to achieve self-limiting behavior on the high surface area particle substrates. Each Sn(acac)₂ exposure consisted of a ~1.0 Torr static dose for 15 s followed by a 120 s purge. Each HF-pyridine exposure consisted of a ~1.5 Torr static dose for 15 s followed by a 120 s purge. The Al₂O₃ films were grown by Al₂O₃ ALD using TMA (97 %, Sigma-Aldrich) and H₂O (Chromasolv for HPLC, Sigma-Aldrich). The HF-pyridine, TMA, and H₂O precursors were maintained at room temperature. The stainless steel bubbler containing $Sn(acac)_2$ was held at 100°C.

For a direct comparison between the FTIR studies at different temperatures, the sample remained fixed during Al₂O₃ ALD and Al₂O₃ ALE. An Al₂O₃ film was grown using 10 cycles of Al₂O₃ ALD at 200°C. Subsequently, 10 cycles of Al₂O₃ ALE were performed at 200°C followed by 8 cycles of Al₂O₃ ALE at both 250°C and 300°C. The FTIR spectra monitored at 250°C and 300°C were recorded during the last two cycles of Al₂O₃ ALE.

6.3. Results and Discussion

6.3A. QCM Measurements versus Temperature

Figure 1 displays the mass change during 100 ALE cycles of Al₂O₃ using Sn(acac)₂ and HF reactions at 150°C, 175°C, 200°C, 225°C, and 250°C. A report of some of these QCM results was presented earlier.²⁵ The initial Al₂O₃ ALD films were grown by 100 cycles of Al₂O₃ ALD using TMA and H₂O with a sequence of 1-20-1-20. One ALE cycle consisted of a Sn(acac)₂ exposure of 1 s, an N₂ purge of 30 s, a HF exposure of 1 s, and a second N₂ purge of 30 s. This reaction sequence is represented as 1-30-1-30.

The mass changes versus time during Al₂O₃ ALE are very linear for all temperatures. The mass change per cycle (MCPC) increases with temperature from -4.1 ng/(cm² cycle) at 150 °C to -18.3 ng/(cm² cycle) at 250 °C.²⁵ These MCPCs correspond to etch rates that vary from 0.14 Å/cycle at 150 °C to 0.61 Å/cycle at 250 °C. The determination of these etch rates is based on the Al₂O₃ ALD film density of 3.0 g/cm³.

Figure 6-1 Mass change versus time for Al₂O₃ ALE using sequential Sn(acac)₂ and HF exposures at 150, 175, 200, 225 and 250°C.

Figure 2a, 2b, and 2c shows an enlargement of the mass changes during three cycles in the steady state etching regime for Al₂O₃ ALE at 150°C, 200°C, and 250°C, respectively, in Figure 1. Figure 2a shows a gradual mass decrease after a small mass gain during the Sn(acac)₂ exposure at 150°C. A small mass gain of $\Delta M_{Sn} = +0.19$ ng/cm² was observed after the Sn(acac)₂ exposure for 1 s at 150°C. This behavior suggests Sn(acac)₂ adsorption followed by either the removal of reaction products and/or Sn(acac)₂ desorption. In contrast, a mass decrease of ΔM_{HF} = -4.3 ng/cm² was observed after the HF exposure for 1 s at 150°C. This mass decrease is consistent with the removal of Sn(acac)₂ surface reaction products.

The mass changes are different at 200°C. After a Sn(acac)₂ exposure for 1 s at 200°C, Figure 2b shows a mass loss of $\Delta M_{Sn} = -8.1 \text{ ng/cm}^2$. In addition, an HF exposure for 1 s leads to a small mass loss of $\Delta M_{HF} = -0.28 \text{ ng/cm}^2$. The mass changes continue to evolve at 250°C. Figure 2c shows a larger mass loss of $\Delta M_{Sn} = -24.0 \text{ ng/cm}^2$ after 1 s of Sn(acac)₂ exposure at 250°C. In contrast, the HF exposure leads to a mass gain instead of a mass loss. A mass gain of $\Delta M_{HF} = +5.7 \text{ ng/cm}^2$ was observed after 1 s of HF exposure.

The differences between the mass changes at different temperatures can be qualitatively understood in terms of more stable Sn(acac)₂ surface reaction products at lower temperature and more AlF₃ formation at higher temperatures. If more surface species remain following Sn(acac)₂ exposures at lower temperatures, then there is a mass gain after the Sn(acac)₂ reaction and more surface species that can be lost during the HF reaction. Likewise, larger mass losses after the Sn(acac)₂ exposure and mass gains following the HF exposure at higher temperature can be qualitatively understood in terms of AlF₃ formation. More AlF₃ may form by the reaction of HF with Al₂O₃ at higher temperatures. This AlF₃ layer is then removed by the Sn(acac)₂ exposure and leads to a pronounced mass loss.

Figure 6-2 Expansion of linear region of Figure 6-1 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 150, 200 and 250°C.

Figure 3 shows the MCPC and the $\Delta M_{Sn}/MCPC$ ratio during 100 cycles at 200°C. The MCPC is defined by MCPC = $\Delta M_{Sn} + \Delta M_{HF}$. Figure 3a displays ΔM_{Sn} , ΔM_{HF} and MCPC for the same 100 cycles of Al₂O₃ ALE reaction on the Al₂O₃ surface at 200°C as shown in Figure 1. The MCPC reaches a steady-state value of -8.4 ng/(cm² cycle) after 3 cycles of a nucleation. Figure 3b displays the $\Delta M_{Sn}/MCPC$ ratio during the same 100 cycles. The $\Delta M_{Sn}/MCPC$ ratio reaches a steady-state value of 0.97 after 3 cycles of nucleation. The $\Delta M_{Sn}/MCPC$ ratio will be used to describe the stoichiometry of the Al₂O₃ ALE reactions.

 ΔM_{Sn} , ΔM_{HF} , MCPC, and the ΔM_{Sn} /MCPC ratio at 150-250 °C are summarized in Table 1. All temperatures display a mass loss and the mass loss is larger at higher temperatures. The mass change after the Sn(acac)₂ exposure, ΔM_{Sn} , is mostly responsible for the temperature dependence of the MCPC. An Arrhenius plot is employed to characterize this temperature dependence. Figure 4a shows the Arrhenius plot for the temperature-dependent MCPC. This Arrhenius plot yields an activation of 6.6 ± 0.4 kcal/mole for Al₂O₃ ALE.

Figure 6-3 (a) Mass change after the $Sn(acac)_2$ exposure (ΔM_{Sn}), mass change after the HF exposure (ΔM_{HF}) and mass change per cycle (MCPC) versus number of ALE cycles at 200°C. (b) $\Delta M_{Sn}/MCPC$ ratio versus number of ALE cycles.

Figure 6-4 (a) Arrhenius plot of the MCPC. The slope yields an activation barrier of E= 6.6 kcal/mole. (b) Arrhenius plot of 1/(integrated absorbance) for the acetylacetonate vibrational features. The slope yields an activation barrier of E= 6.2 kcal/mole.

Temperature (°C)	МСРС	ΔM_{Sn}	ΔM _{HF}	ΔM _{Sn} /MCPC	X	x(MCPC)
150	-4.1	0.19	-4.3	-0.067	0.74	-3.0
175	-5.6	-3.2	-2.4	0.57	0.46	-2.6
200	-8.4	-8.1	-0.28	0.97	0.29	-2.4
225	-12.3	-14.6	2.3	1.2	0.19	-2.4
250	-18.3	-24.0	5.7	1.3	0.15	-2.7

Table 6-1. ΔM_{Sn} , ΔM_{HF} , MCPC, ΔM_{Sn} /MCPC, x, and x(MCPC) for Al₂O₃ ALE at different temperatures. ΔM_{Sn} , ΔM_{HF} , MCPC, and x(MCPC) are expressed in units of ng/(cm² cycle).

6.3B. FTIR Studies of Al₂O₃ ALE

In situ FTIR spectra of Al₂O₃ films grown on ZrO₂ nanoparticles using 10 Al₂O₃ ALD cycles at 200°C are shown in Figure 5. These FTIR spectra are referenced to the initial ZrO₂ nanoparticles. The absorbance feature between 800-1000 cm⁻¹ is attributed to the Al-O stretching vibrations in bulk Al₂O₃. The absorbance of the Al-O stretching vibrations in amorphous Al₂O₃ is broad and ranges from ~550-1030 cm⁻¹. ^{31,34-36} The breadth of this expected absorbance feature is not observed in Figure 5. The strong absorption from the ZrO₂ nanoparticles at \leq 800 cm⁻¹ partially obscures the infrared absorbance of the Al-O stretching vibrations the Al-O stretching vibrations. The absorbance feature for the Al-O stretching vibration grows progressively with the Al₂O₃ ALD cycles.

FTIR spectra during the etching of the Al₂O₃ ALD films on the ZrO₂ nanoparticles at 200°C are shown in Figure 6. These FTIR spectra were recorded after the Sn(acac)₂ exposures and are referenced to the initial ZrO₂ nanoparticles. The absorbance feature from the Al-O stretching vibrations between 800-1000 cm⁻¹ decreases progressively with Al₂O₃ ALE cycles. Infrared absorbance features also appear between 1250-1650 cm⁻¹ that are attributed to acetylacetonate vibrations from the Sn(acac)₂ surface reaction products.³⁴⁻³⁵ The absorbance from these acetylacetonate vibrations remains approximately constant after the Sn(acac)₂ exposures versus number of Al₂O₃ ALE cycles.

The FTIR spectra of the absorbance from the acetylacetonate vibrations during Al_2O_3 ALE at 200, 250 and 300°C are shown after $Sn(acac)_2$ and HF exposures in Figure 7a and Figures 7b, respectively. The absorbance from the acetylacetonate surface species, such as $SnF(acac)^*$, $Sn(acac)^*$ or $acac^*$, decreases at higher temperatures after the $Sn(acac)_2$ exposures

Figure 6-5 Infrared absorbance showing the growth of Al-O stretching vibrations in bulk Al₂O₃ versus number of Al₂O₃ ALD cycles at 200°C. These FTIR spectra were referenced to the initial ZrO₂ nanoparticles.

Figure 6-6 Infrared absorbance showing the loss of Al-O stretching vibration in bulk Al₂O₃ versus number of Al₂O₃ ALE cycles at 200°C. These FTIR spectra were referenced to the initial ZrO₂ nanoparticles.

Figure 6-7 Infrared absorbance from the acetylacetonate vibrations during Al₂O₃ ALE at 200, 250 and 300°C after (a) Sn(acac)₂ exposures and after (b) HF exposures. These FTIR spectra were referenced to the initial ZrO₂ nanoparticles.

in Figure 7a. The astericks are used to indicate surface species. This behavior illustrates that the $Sn(acac)_2$ surface reaction products are more stable at lower surface temperatures.

Figure 7b reveals that the absorbances from the acetylacetonate vibrational features are much lower following the HF exposures. The loss of acetylacetonate vibrational features is expected because HF is believed to react with acetylacetonate species to produce volatile reaction products such as SnF(acac). The absorbance of the remaining acetylacetonate species after HF exposures also decreases dramatically at 300°C. This behavior indicates that HF exposures are able to remove nearly all the acetylacetonate species at 300°C.

6.3C. Studies of Al₂O₃ ALE Nucleation

QCM and FTIR measurements were employed to study the nucleation of Al₂O₃ ALE during the first Sn(acac)₂ and HF exposures. Figure 8 shows an enlargement of mass changes during the first two Al₂O₃ ALE cycles for the various temperatures in Figure 1. The first Sn(acac)₂ exposure displays mass gains of $\Delta M_{Sn} = 52-61$ ng/cm² at 150-250°C resulting from Sn(acac)₂ surface reaction products on the Al₂O₃ film such as Sn(acac)* and acac*. To estimate the coverage of Sn(acac)₂* species on the surface, the sites on the Al₂O₃ surface can be approximated using the density of 3.0 g/cm³ for Al₂O₃ ALD films. This mass density is equivalent to a number density of $\rho = 1.77 \times 10^{22}$ "Al₂O₃ units"/cm³. This number density yields an estimate for the number of "Al₂O₃ units" on the Al₂O₃ surface of $\rho^{2/3} = 6.80 \times 10^{14}$ "Al₂O₃ units"/cm² assuming a square lattice. This coverage of "Al₂O₃ units" represents an Al₂O₃ mass of 115 ng/cm².

Figure 6-8 Expansion of first two ALE cycles in Figure 1 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 150, 175, 200, 225 and 250°C.

The coverage of Sn(acac)₂* can then be approximated based on the mass gain of 61 ng/cm². This mass gain is equivalent to 1.16×10^{14} Sn(acac)₂ molecules/cm². The normalized coverage of Sn(acac)₂* species relative to "Al₂O₃ units" on the surface is 1.16×10^{14} Sn(acac)₂ molecules/cm² / 6.80×10^{14} "Al₂O₃ units"/cm² = 0.17 Sn(acac)₂ species/ "Al₂O₃ unit". This coverage is reasonable given that Sn(acac)₂ may dissociate into Sn(acac)* and acacH*. In addition, the acetylacetonate ligand is bulky and expected to occupy more than one "Al₂O₃ unit" on the Al₂O₃ surface.

The first HF exposure on the Al₂O₃ surface previously exposed to Sn(acac)₂ shows mass gains of $\Delta M_{HF} = 13-17 \text{ ng/cm}^2$ at 150-250°C. In contrast, the first HF exposure on a fresh Al₂O₃ surface prior to Sn(acac)₂ exposures shows mass gains of $\Delta M_{HF} = 35-38 \text{ ng/cm}^2$ at 150-250°C. The difference between these mass gains is caused by the amount of Sn(acac)₂ reaction products that are removed by the HF exposures and result in a mass loss.

The coverage of HF or HF reaction products can be approximated based on the mass gain of 38 ng/cm² following HF exposures on fresh Al₂O₃ surfaces. Assuming that HF is the adsorption product, the mass gain is equivalent to 1.14×10^{15} HF molecules/cm². The normalized coverage of HF species relative to "Al₂O₃ units" on the surface is $(1.14 \times 10^{15} \text{ HF} \text{ molecules/cm}^2) / (6.80 \times 10^{14} \text{ "Al}_2\text{O}_3 \text{ units"}) = 1.68 \text{ HF/"Al}_2\text{O}_3 \text{ units"}$. This estimated HF coverage is larger than the number of "Al₂O₃ units" on the Al₂O₃ substrate.

The HF may also react with the Al₂O₃ substrate by the reaction: Al₂O₃ + 6HF \rightarrow 2AlF₃ + 3H₂O. The reaction of HF with γ -Al₂O₃ to produce AlF₃ has been observed 250°C.³⁶ This reaction is predicted to be spontaneous over the temperature range from 150-250°C.³⁷ The Gibbs free energy changes are negative and decrease slightly in absolute magnitude from ΔG = -63.1 kcal at 150°C to ΔG = -53.8 kcal at 250°C.³⁷

Assuming that AlF₃ is the reaction product, the mass gain of 38 ng/cm² is equivalent to an AlF₃ coverage of 6.93×10^{14} AlF₃ molecules/cm². The normalized coverage of AlF₃ relative to "Al₂O₃ units" on the surface is (6.93×10^{14} AlF₃ molecules/cm²) / (6.80×10^{14} "Al₂O₃ units"/cm²) = 1.02 AlF₃ / "Al₂O₃" unit. This estimated AlF₃ coverage is very similar to the number of "Al₂O₃ units" on the Al₂O₃ substrate.

After the HF exposure, the next $Sn(acac)_2$ exposure reacts with the AlF₃ or HF adlayer on the Al₂O₃ substrate. Figure 8 shows that mass losses begin with this second $Sn(acac)_2$ exposure and continue with the subsequent HF exposure. Except for the first ALE cycle shown in Figure 8, all subsequent $Sn(acac)_2$ and HF exposures lead to mass loss resulting from the etching of the Al₂O₃ film.

The nucleation of the Al₂O₃ ALE process was also observed by the FTIR studies. Figure 9 shows the FTIR spectra during the first Al₂O₃ ALE cycle. These FTIR spectra are referenced to the initial ZrO₂ nanoparticles. The infrared absorbance corresponding to the Al-O stretching vibration in bulk Al₂O₃ between 800-1000 cm⁻¹ decreases slightly with the first Sn(acac)₂ exposure. This decrease is attributed to Sn(acac)₂ adsorbing on the thin Al₂O₃ film and perturbing the Al-O vibrational modes. Pronounced vibrational features associated with acetylacetonate species on the Al₂O₃ substrate at 1250-1650 cm⁻¹ are also observed in Figure 9 after the Sn(acac)₂ exposure.³⁴⁻³⁵

Figure 6-9 Infrared absorbance showing the Al-O stretching vibrations in bulk Al₂O₃ and the acetylacetonate vibrational features for the first Sn(acac)₂ and HF exposures at 200°C. These FTIR spectra were referenced to the initial ZrO₂ nanoparticles.

Figure 9 also shows that an additional reduction occurs in absorbance features corresponding to the Al-O vibrational modes after the first HF exposure. This reduction is consistent with the conversion of some Al_2O_3 to AlF_3 . Figure 9 also shows that the vibrational features of the acetylacetonate species are also decreased after the first HF exposure. This decrease is consistent with HF reacting with the Sn(acac)₂ surface reaction products to remove some acetylacetonate species from the Al_2O_3 substrate.

Figure 10 displays the infrared absorbance spectra after the first Sn(acac)₂ exposure and first HF exposure on Al₂O₃ films at 200°C. In contrast to Figures 5, 6 and 9, these FTIR experiments were performed on SiO₂ nanoparticles. Unlike ZrO₂ nanoparticles that absorb infrared radiation between ~400-800 cm⁻¹, SiO₂ nanoparticles absorb infrared radiation between 925-1400 cm⁻¹, 700-875 cm⁻¹, and 400-650 cm⁻¹. The SiO₂ nanoparticles have an open window at lower frequency to observe the species involved in Al₂O₃ ALD and Al₂O₃ ALE.

The spectra in Figure 10 were referenced to the SiO₂ nanoparticles and the Al₂O₃ ALD film that coated the SiO₂ nanoparticles. The acetylacetonate features were again observed at 1250-1650 cm⁻¹. In addition, an absorbance feature at 500-800 cm⁻¹ appeared after the 1st HF exposure. This feature was assigned to the Al-F stretching vibration in the AlF₃ layer that forms from Al₂O₃ during the HF exposure.³⁸⁻⁴⁰ There was also an absorbance loss observed at ~1000 cm⁻¹ that corresponds with the removal of some absorbance from the Al-O stretching vibration in Al₂O₃ upon AlF₃ formation.

Figure 11 displays the FTIR spectra during Al₂O₃ ALE at 200°C, 250°C and 300°C. These spectra were again referenced to the SiO₂ nanoparticles coated with the Al₂O₃ ALD film.

Figure 6-10 Infrared absorbance after the first Sn(acac)₂ exposure and first HF exposure on an Al₂O₃ film at 200°C. These FTIR spectra were referenced to the SiO₂ nanoparticles coated with the Al₂O₃ film.

Figure 6-11 Infrared absorbance during Al₂O₃ ALE at 200°C, 250°C and 300° recorded after the Sn(acac)₂ exposures and HF exposures. These FTIR spectra were referenced to the SiO₂ nanoparticles coated with the Al₂O₃ film.

Spectra are shown after both the $Sn(acac)_2$ exposures and HF exposures. The absorbance feature from acetylacetonate surface species at 1250-1650 cm⁻¹ were present after all the $Sn(acac)_2$ exposures. The acetylacetonate surface species decreased with increasing temperature after both $Sn(acac)_2$ and HF exposures. In addition, the acetylacetonate surface species were nearly completely removed from the surface by the HF exposure at 300°C.

Figure 11 also reveals that a loss from the absorbance feature assigned to the Al-O stretching vibration in Al₂O₃ occurs at 200°C, 250°C and 300°C. This loss appears at 825-1050 cm⁻¹ because the absorbance gain from the Al-F stretching vibrations of AlF₃ at 500-800 cm⁻¹ partially obscures the loss from the Al-O stretching vibrations in Al₂O₃ at lower frequencies. The spectra after the Sn(acac)₂ and HF exposures in the region from 500-1050 cm⁻¹ were not substantially different at 200°C and 250°C. In contrast, the spectra were distinctly different at 300°C where the absorbance from the Al-F stretching vibration is nearly completely removed after the Sn(acac)₂ exposure and then reappears after the HF exposure. The spectrum at the bottom of Figure 11 is provided for reference and shows the expected absorbance loss corresponding to 10 cycles of Al₂O₃ ALD.

Figure 12 shows the difference infrared absorbance spectra during Al₂O₃ ALE at 200°C, 250°C and 300°C. Spectra are displayed after both the Sn(acac)₂ exposures and HF exposures. These difference spectra correspond to the absolute spectra shown in Figure 11. These difference spectra are referenced with respect to the sample after the previous reactant exposure.

The difference spectra in Figure 12 highlight the absorbance changes that occur during the sequential ALE reactions. The absorbance changes for the acetylacetonate surface species are nearly equal and mirror images of each other after the Sn(acac)₂ and HF exposures at 200°C,

Figure 6-12 Difference infrared absorbance during Al₂O₃ ALE at 200°C, 250°C and 300°C.
 The difference spectra recorded after the Sn(acac)₂ and HF exposures were referenced using the spectra after the previous HF and Sn(acac)₂ exposures, respectively.

250°C and 300°C. In contrast, the absorbance from Al-F vibrations in the AlF₃ adlayer shows little change at 200°C and nearly mirror image changes after the $Sn(acac)_2$ and HF exposures at 250°C. At 300°C, the absorbance for the Al-F stretching vibration dramatically appears after the HF exposure and is lost after the $Sn(acac)_2$ exposure.

6.3D. Proposed Al₂O₃ ALE Reaction Mechanism

Figure 13 shows the schematic for the proposed Al₂O₃ ALE surface chemistry. This possible picture for Al₂O₃ ALE is derived from the mass changes during the Sn(acac)₂ and HF exposures as determined by the QCM measurements and the vibrational absorbances observed by the FTIR spectroscopy analysis. This scheme does not include species, such as possible acetylacetonate species, that do not change during the Sn(acac)₂ and HF exposures. This scheme also assumes that the HF reaction produces AlF₃ on the Al₂O₃ film.

During the Sn(acac)₂ reaction (A), Sn(acac)₂ reacts with the AlF₃ layer on the Al₂O₃ substrate. The reaction between Sn(acac)₂ and AlF₃ is probably facilitated by Lewis acid-base interactions. The electron lone pair on Sn(acac)₂ acts as a Lewis base.⁴¹ AlF₃ is strong Lewis acid either as a molecule or as a molecular solid.⁴²⁻⁴⁴ The reaction between Sn(acac)₂ and AlF₃ forms volatile SnF(acac) and Al(acac)₃ reaction products and SnF(acac)* surface species.

After the AlF₃ layer is lost resulting from Al(acac)₃ and SnF(acac) product formation, there may be a strong interaction between the SnF(acac)* surface species and the underlying Al₂O₃ substrate. The electron lone pair on SnF(acac)* can again act as a Lewis base and bind on Lewis acid sites on Al₂O₃. This interaction may lead to SnF(acac)* species adsorbed to the Al₂O₃ substrate.

Figure 6-13 Schematic of proposed surface chemistry for Al₂O₃ ALE showing (A) Sn(acac)₂ reaction and (B) HF reaction.

During the HF reaction (B), HF reacts with the $SnF(acac)^*$ surface species and the underlying Al_2O_3 surface to form a AlF₃ layer. In addition, HF also provides hydrogen to form H_2O as a reaction product. This reaction removes the oxygen in Al_2O_3 . The AlF₃ layer is then ready for the next $Sn(acac)_2$ reaction.

The overall reaction can be written as:

$$Al_2O_3 + 6HF + 6Sn(acac)_2 \rightarrow 2Al(acac)_3 + 6SnF(acac) + 3H_2O$$
(1)

This overall reaction can be separated into the $Sn(acac)_2$ and HF reactions:

(A) $Al_2O_3|2AlF_3^* + 6Sn(acac)_2 \rightarrow$

$$Al_2O_3|xSnF(acac)^* + 2Al(acac)_3 + (6-x)SnF(acac)$$
(2)

(B)
$$Al_2O_3|xSnF(acac)^* + 6HF \rightarrow 2AlF_3^* + xSnF(acac) + 3H_2O$$
 (3)

These reactions include only species that change during the Sn(acac)₂ and HF exposures. There may be other surface species present that do not change during the Sn(acac)₂ and HF exposures. The asterisks indicate the surface species and the vertical lines are used to separate the various surface species. AlF₃ is the key reaction intermediate. The production of all the Al(acac)₃ is assumed to occur during reaction (A). Al(acac)₃ is a stable metal β -diketonate with a vapor pressure of ~3-4 Torr at 150°C.⁴⁵⁻⁴⁷

The Al₂O₃ shown in Equations 2 and 3 is the amount of Al₂O₃ that is etched during the ALE reactions. Table 1 shows that the amount of Al₂O₃ that is etched during one Al₂O₃ ALE cycle increases with temperature. The Arrhenius plot of the temperature dependence of the MCPCs in Figure 4 yielded an activation barrier of $E= 6.6 \pm 0.4$ kcal/mole. 2AlF₃* and SnF(acac)* are also the amounts added during the HF and Sn(acac)₂ reactions, respectively. x
quantifies $SnF(acac)^*$ after the $Sn(acac)_2$ exposures relative to the amount of Al_2O_3 that is etched in one Al_2O_3 ALE cycle.

The parameter x in Equations 2 and 3 is determined by the ΔM_{Sn} , ΔM_{HF} and MCPC values. x can be calculated from the ΔM_{Sn} /MCPC ratio using the equation:

$$\mathbf{x} = (2 \times 84.0 - 102.0(\Delta M_{\text{Sn}} / \text{MCPC}))/236.8$$
(4)

where 84.0, 102.0 and 236.8 are the molecular weights for AlF_3 , Al_2O_3 and SnF(acac), respectively. The temperature dependence of the x values is x= 0.74, 0.46, 0.29, 0.19, and 0.15 at 150, 175, 200, 225 and 250°C, respectively. These x values are included in Table 1.

The parameter x defines the SnF(acac)* species after the Sn(acac)₂ exposures relative to the amount of Al₂O₃ that is etched in one Al₂O₃ ALE cycle. Consequently, the product x(MCPC) provides a measure of the SnF(acac)* species on the surface after the Sn(acac)₂ exposures. The x(MCPC) values are included in Table 1. These x(MCPC) values are fairly constant at all the temperatures. This behavior indicates that the SnF(acac)* coverage is nearly constant at the different temperatures.

The difference infrared absorbance spectra in the acetylacetonate region of the spectra in Figure 12 are consistent with a constant coverage of $SnF(acac)^*$ species at the different temperatures. Figure 12 shows that the changes in the absorbance in the acetylacetonate region after $Sn(acac)_2$ and HF exposures are very similar at 200, 250 and 300 °C. This constant absorbance change can be identified with the $SnF(acac)^*$ surface species that are added and then removed during the $Sn(acac)_2$ and HF exposures, respectively, as described by Equations 2 and 3.

The SnF(acac)* coverage after the Sn(acac)₂ exposures can be determined from the amount of Al₂O₃ that is etched in one Al₂O₃ ALE cycle. For example, the MCPC of -5.6 ng/cm² at 175 °C represents a coverage of 3.3×10^{13} "Al₂O₃ units"/cm². This conversion is based on 1.69×10^{-22} g/"Al₂O₃ unit". This coverage of "Al₂O₃ units" multiplied by the x value of 0.46 at 175 °C yields a SnF(acac)* coverage of 1.52×10^{13} SnF(acac)*/cm². The MCPC and x values at the other temperatures also yield similar SnF(acac)* coverages that vary from $1.38-1.77 \times 10^{13}$ SnF(acac)*/cm².

The nearly constant SnF(acac)* coverage of ~1.5 × 10¹³ SnF(acac)*/cm² can be compared with the number of "Al₂O₃ units" on the Al₂O₃ surface of 6.80×10^{14} "Al₂O₃ units"/cm² assuming a square lattice. The normalized coverage of SnF(acac)* relative to "Al₂O₃ units" on the surface is (~1.5 × 10¹³ SnF(acac)*/cm²) / (6.80×10^{14} "Al₂O₃ units"/cm²) = ~0.022 SnF(acac)*/ "Al₂O₃" unit. This normalized coverage is ~2.2% of an "Al₂O₃ unit" monolayer. This coverage may represent a saturated monolayer of SnF(acac)* species on the Al₂O₃ surface. The normalized coverage of ~2.2% is somewhat low. However, perhaps the SnF(acac)* species bind only on particular Lewis acid sites on the Al₂O₃ surface.

Although the absolute SnF(acac)* coverage after the Sn(acac)₂ exposures is very similar at the different temperatures, the FTIR experiments reveal that the total coverage of acetylacetonate species has a large change with temperature as shown in Figure 7. Figure 4b shows the effective Arrhenius dependence of 1/(integrated absorbance) for the acetylacetonate vibrational features at 200, 250 and 300°C in Figure 7a after the HF exposures. This effective Arrhenius plot yields an activation barrier of $E= 6.2 \pm 1.5$ kcal/mole. This activation barrier is close to the activation barrier derived from the temperature-dependent MCPC values in Figure 4. Nearly identical results were obtained from the effective Arrhenius analysis of the coverage of acetylacetonate species after the $Sn(acac)_2$ exposure.

The correlation between the Arrhenius plots in Figure 4 suggests that the MCPC is inversely dependent on the coverage of acetylacetonate species remaining on the surface after the HF or Sn(acac)₂ exposures. An inverse dependence between MCPC and the coverage of acetylacetonate species would be expected if there is a site-blocking effect of acetylacetonate species on Al₂O₃ ALE. Similar site-blocking effects of acetylacetonate species were observed for Pt ALD and Pd ALD.⁴⁸⁻⁴⁹

The proposed reactions for Al₂O₃ ALE are very similar to the reactions proposed earlier for HfO₂ ALE.²⁶ Both Al₂O₃ ALE and HfO₂ ALE display etching rates that increase at higher temperatures. These temperature dependent etching rates are both believed to be correlated inversely with the acetylacetonate coverage on the substrate after the HF or Sn(acac)₂ exposures. The Al(acac)₃ and Hf(acac)₄ etching products are both volatile. Both Al₂O₃ and HfO₂ form stable fluorides upon exposure to HF. The etching rates for Al₂O₃ ALE are somewhat higher than the etching rates for HfO₂ ALE. These differences may be related to the more favorable thermochemistry for Al₂O₃ ALE. The Δ G for the HF reaction with HfO₂ is not as favorable as the Δ G for the HF reaction with Al₂O₃.³⁷

6.4. Conclusions

In situ quartz crystal microbalance (QCM) and Fourier transform infrared (FTIR) spectroscopy measurements were used to explore the mechanism of thermal Al₂O₃ atomic layer etching (ALE) using Sn(acac)₂) and HF as the reactants. The mass change per cycle (MCPC) for

Al₂O₃ ALE varied with temperature from -4.1 ng/(cm² cycle) at 150 °C to -18.3 ng/(cm² cycle) at 250 °C. These temperature dependent etch rates yielded an activation barrier for Al₂O₃ ALE of $E= 6.6 \pm 0.4$ kcal/mole. The mass changes after the Sn(acac)₂ and HF exposures were also dependent on temperature. The mass changes after the Sn(acac)₂ exposures indicated that more Sn(acac)₂ surface reaction products were present at lower temperatures. The mass changes after the HF exposures indicated that more AlF₃ species were present at higher temperatures.

FTIR spectroscopy measurements monitored the Al₂O₃ ALE and quantified the acetylacetonate surface species versus temperature. A connection was observed between the MCPC values and the absorbance from the acetylacetonate species. The Al₂O₃ ALE rate was inversely dependent on the acetylacetonate surface species. This behavior suggested that the acetylacetonate surface species may have a site-blocking effect on Al₂O₃ ALE. Difference infrared absorbance spectra also revealed that there was a constant absorbance change in the acetylacetonate spectral region at all temperatures. This constant absorbance change may be attributed to the constant coverage of SnF(acac)* species after the Sn(acac)₂ exposures at all temperatures determined by the QCM analysis.

The nucleation of the Al₂O₃ ALE was also explored using QCM and FTIR measurements. The conversion of Al₂O₃ to AlF₃ was consistent with a large mass gain and loss of infrared absorbance of Al-O stretching vibrations after the initial HF exposure on the Al₂O₃ film. The formation of AlF₃ after the initial HF exposure and the presence of AlF₃ on the surface after each HF exposure during Al₂O₃ ALE was also observed by FTIR experiments. These results suggest that AlF₃ is the key reactive intermediate during Al₂O₃ ALE. The HF exposure converts Al₂O₃ to AlF₃ and then the AlF₃ is removed by Sn(acac)₂.

6.5. Acknowledgements

This research was funded by the National Science Foundation (CHE-1306131). Additional personnel support for YL was provided by the Department of Energy through the DOE-BATT program.

6.6. References

- (1) Agarwal, A.; Kushner, M. J. Plasma Atomic Layer Etching Using Conventional Plasma Equipment. J. Vac. Sci. Technol. A 2009, 27, 37-50.
- Athavale, S. D.; Economou, D. J. Molecular Dynamics Simulation of Atomic Layer Etching of Silicon. J. Vac. Sci. Technol. A 1995, 13, 966-971.
- (3) Athavale, S. D.; Economou, D. J. Realization of Atomic Layer Etching of Silicon. J. Vac. Sci. Technol. B 1996, 14, 3702-3705.
- (4) George, S. M. Atomic Layer Deposition: An Overview. *Chem. Rev.* **2010**, *110*, 111-131.
- (5) Leskela, M.; Ritala, M. Atomic layer deposition chemistry: Recent developments and future challenges. *Angew. Chem. Int. Ed.* **2003**, *42*, 5548-5554.
- (6) Marchack, N.; Chang, J. P. Perspectives in nanoscale plasma etching: what are the ultimate limits? *J. Phys. D Appl. Phys.* **2011**, *44*, 174011.
- (7) Kubota, N. A.; Economou, D. J.; Plimpton, S. J. Molecular Dynamics Simulations of Low-Energy (25-200 eV) Argon Ion Interactions with Silicon Surfaces: Sputter Yields and Product Formation Pathways. J. Appl. Phys. 1998, 83, 4055-4063.
- Park, S. D.; Lee, D. H.; Yeom, G. Y. Atomic Layer Etching of Si(100) and Si(111) Using Cl₂ and Ar Neutral Beam. *Electrochem. Solid State Lett.* 2005, *8*, C106-C109.
- (9) Park, S. D.; Lim, W. S.; Park, B. J.; Lee, H. C.; Bae, J. W.; Yeom, G. Y. Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO₂ using BCl₃ and Ar Neutral Beam. *Electrochem. Solid State Lett.* **2008**, *11*, H71-H73.
- Sakaue, H.; Iseda, S.; Asami, K.; Yamamoto, J.; Hirose, M.; Horiike, Y. Atomic Layer Controlled Digital Etching of Silicon. *Jpn. J. Appl. Phys. 1* 1990, *29*, 2648-2652.
- (11) Yamamoto, J.; Kawasaki, T.; Sakaue, H.; Shingubara, S.; Horiike, Y. Digital Etching Study and Fabrication of Fine Si Lines and Dots. *Thin Solid Films* 1993, 225, 124-129.
- (12) Sugiyama, T.; Matsuura, T.; Murota, J. Atomic-Layer Etching of Ge Using an Ultraclean ECR Plasma. *Appl. Surf. Sci.* 1997, *112*, 187-190.
- (13) Lim, W. S.; Park, S. D.; Park, B. J.; Yeom, G. Y. Atomic Layer Etching of (100)/(111)
 GaAs with Chlorine and Low Angle Forward Reflected Ne Neutral Beam. *Surf. Coat. Tech.* 2008, 202, 5701-5704.

- Meguro, T.; Hamagaki, M.; Modaressi, S.; Hara, T.; Aoyagi, Y.; Ishii, M.; Yamamoto, Y.
 Digital Etching of GaAs New Approach of Dry Etching to Atomic Ordered Processing.
 Appl. Phys. Lett. 1990, 56, 1552-1554.
- Meguro, T.; Ishii, M.; Sugano, T.; Gamo, K.; Aoyagi, Y. Control of the Etching Reaction of Digital Etching Using Tunable UV Laser Irradiation. *Appl. Surf. Sci.* 1994, 82-3, 193-199.
- Park, S. D.; Oh, C. K.; Bae, J. W.; Yeom, G. Y.; Kim, T. W.; Song, J. I.; Jang, J. H.
 Atomic Layer Etching of InP Using a Low Angle Forward Reflected Ne Neutral Beam.
 Appl. Phys. Lett. 2006, 89, 043109.
- (17) Lim, W. S.; Park, J. B.; Park, J. Y.; Park, B. J.; Yeom, G. Y. Low Damage Atomic Layer Etching of ZrO₂ by Using BCl₃ Gas and Ar Neutral Beam. *J. Nanosci. Nanotechnol.* 2009, *9*, 7379-7382.
- (18) Metzler, D.; Bruce, R. L.; Engelmann, S.; Joseph, E. A.; Oehrlein, G. S. Fluorocarbon Assisted Atomic Layer Etching of SiO₂ using Cyclic Ar/C₄F₈ Plasma. *J. Vac. Sci. Technol. A* 2014, *32*, 020603.
- (19) Min, K. S.; Kang, S. H.; Kim, J. K.; Jhon, Y. I.; Jhon, M. S.; Yeom, G. Y. Atomic Layer Etching of Al₂O₃ Using BCl₃/Ar for the Interface Passivation Layer of III-V MOS Devices. *Microelectron. Eng.* **2013**, *110*, 457-460.
- (20) Park, J. B.; Lim, W. S.; Park, B. J.; Park, I. H.; Kim, Y. W.; Yeom, G. Y. Atomic Layer Etching of Ultra-Thin HfO₂ Film for Gate Oxide in MOSFET Devices. *J. Phys. D Appl. Phys.* 2009, 42, 055202.
- Park, J. B.; Lim, W. S.; Park, S. D.; Park, Y. J.; Yeom, G. Y. Etch Characteristics of TiO₂
 Etched by Using an Atomic Layer Etching Technique with BCl₃ Gas and an Ar Neutral Beam. *J. Korean Phys. Soc.* 2009, *54*, 976-980.
- (22) Kim, Y. Y.; Lim, W. S.; Park, J. B.; Yeom, G. Y. Layer by Layer Etching of the Highly Oriented Pyrolythic Graphite by Using Atomic Layer Etching. *J. Electrochem. Soc.* 2011, 158, D710-D714.
- Lim, W. S.; Kim, Y. Y.; Kim, H.; Jang, S.; Kwon, N.; Park, B. J.; Ahn, J.-H.; Chung, I.;
 Hong, B. H.; Yeom, G. Y. Atomic Layer Etching of Graphene for Full Graphene Device
 Fabrication. *Carbon* 2012, *50*, 429-435.

- (24) Vogli, E.; Metzler, D.; Oehrlein, G. S. Feasibility of Atomic Layer Etching of Polymer Material Based on Sequential O₂ Exposure and Ar Low-Pressure Plasma-Etching. *Appl. Phys. Lett.* 2013, *102*, 253105.
- (25) Lee, Y.; George, S. M. Atomic Layer Etching of Al2O3 Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)2 and HF. *Submitted to ACS Nano*
- (26) Lee, Y.; DuMont, J. W.; George, S. M. Atomic Layer Etching of HfO2 Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)2 and HF. Submitted to Journal of Solid State Science & Technology
- (27) Elam, J. W.; Groner, M. D.; George, S. M. Viscous Flow Reactor with Quartz Crystal Microbalance for Thin Film Growth by Atomic Layer Deposition. *Rev. Sci. Instrum.* 2002, *73*, 2981-2987.
- (28) Riha, S. C.; Libera, J. A.; Elam, J. W.; Martinson, A. B. F. Design and Implementation of an Integral Wall-Mounted Quartz Crystal Microbalance for Atomic Layer Deposition. *Rev. Sci. Instrum.* 2012, *83*, 094101.
- (29) Olah, G. A.; Nojima, M.; Kerekes, I. Synthetic Methods and Reactions .2.
 Hydrofluorination of Alkenes, Cyclopropane and Alkynes with (Trialkylamine) Reagents. *Synthesis-Stuttgart* 1973, *12*, 779-780.
- (30) DuMont, J. W.; George, S. M. Pyrolysis of Alucone Molecular Layer Deposition Films Studied Using In Situ Transmission Fourier Transform Infrared Spectroscopy. Submitted to Journal of Physical Chemistry C
- (31) Ferguson, J. D.; Weimer, A. W.; George, S. M. Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles. *Thin Solid Films* 2000, *371*, 95-104.
- (32) Ballinger, T. H.; Wong, J. C. S.; Yates, J. T. Transmission Infrared-Spectroscopy of High Area Solid-Surfaces - A Useful Method for Sample Preparation. *Langmuir* 1992, 8, 1676-1678.
- (33) Sneh, O.; George, S. M. THERMAL-STABILITY OF HYDROXYL-GROUPS ON A WELL-DEFINED SILICA SURFACE. J. Phys. Chem. 1995, 99, 4639-4647.
- (34) Nakamoto, K.; Martell, A. E.; McCarthy, P. J. INFRARED SPECTRA OF METAL CHELATE COMPOUNDS .3. INFRARED SPECTRA OF ACETYLACETONATES OF DIVALENT METALS. J. Am. Chem. Soc. 1961, 83, 1272-&.

- (35) Tayyari, S. F.; Milani-nejad, F. Vibrational assignment of acetylacetone. *Spectrochim. Acta A* 2000, *56*, 2679-2691.
- (36) Jia, W.-Z.; Lu, J.-Q.; Chen, P.; Wang, Y.-J.; Luo, M.-F. A novel method for the synthesis of well-crystallized beta-AlF3 with high surface area derived from gamma-Al2O3. *J. Mater. Chem.* 2011, 21, 8987-8990.
- (37) HSC Chemistry; HSC Chemistry 5.1, Outokumpu Research Oy: Pori, Finland.
- Gross, U.; Ruediger, S.; Kemnitz, E.; Brzezinka, K.-W.; Mukhopadhyay, S.; Bailey, C.;
 Wander, A.; Harrison, N. Vibrational analysis study of aluminum trifluoride phases. *J. Phys. Chem. A* 2007, *111*, 5813-5819.
- Koenig, R.; Scholz, G.; Scheurell, K.; Heidemann, D.; Buchem, I.; Unger, W. E. S.;
 Kemnitz, E. Spectroscopic characterization of crystalline AlF3 phases. *J. Fluorine Chem.* **2010**, *131*, 91-97.
- (40) Utkin, A. N.; Girichev, G. V.; Giricheva, N. I.; Khaustov, S. V. STRUCTURE AND VIBRATIONAL FREQUENCIES OF ALUMINUM TRIFLUORIDE AND GALLIUM TRIFLUORIDE. J. Struct. Chem. 1986, 27, 212-215.
- (41) Ewings, P. F. R.; Harrison, P. G.; Fenton, D. E. Derivatives of Divalent Germanium, Tin, and Lead. 5. Bis-(Pentane-2,4-Dionato)-Tin(II),Bis(1,1,1-Trifluoropentane-2,4-Dionato)-Tin(II), and Bis(1,1,1,5,5,5-Hexafluoropentane-2,4-Dionato)-Tin(II). J. Chem. Soc.-Dalton Trans. 1975, 821-826.
- (42) Ball, D. W. AB-INITIO STUDIES OF ALH3-H2O, ALF3-H2O, AND ALCL3-H2O
 COMPLEXES. J. Phys. Chem. 1995, 99, 12786-12789.
- (43) Krahl, T.; Vimont, A.; Eltanany, G.; Daturi, M.; Kemnitz, E. Determination of the acidity of high surface AlF3 by IR spectroscopy of adsorbed CO probe molecules. *J. Phys. Chem. C* 2007, *111*, 18317-18325.
- (44) Wander, A.; Bailey, C. L.; Searle, B. G.; Mukhopadhyay, S.; Harrison, N. M.
 Identification of possible Lewis acid sites on the beta-AlF3(100) surface: an ab initio total energy study. *Phys. Chem. Chem. Phys.* 2005, *7*, 3989-3993.
- Berg, E. W.; Truemper, J. T. Vapor Pressure-Temperature Data for Various Metal Beta-Diketone Chelates. *Anal. Chim. Acta* 1965, *32*, 245-252.
- (46) Eisentraut, K. J.; Sievers, R. E. Thermogravimetric Studies of Metal Beta-Diketonates. J. *Inorg. Nucl. Chem.* 1967, 29, 1931-1936.

- (47) Fahlman, B. D.; Barron, A. R. Substituent Effects on the Volatility of Metal Beta-Diketonates. *Adv. Mater. Opt. Electr.* 2000, *10*, 223-232.
- (48) Anderson, V. R.; Leick, N.; Clancey, J. W.; Hurst, K. E.; Jones, K. M.; Dillon, A. C.; George, S. M. Atomic Layer Deposition of Platinum Nanoparticles on Titanium Oxide and Tungsten Oxide Using Platinum(II) Hexafluoroacetylacetonate and Formalin as the Reactants. J. Phys. Chem. C 2014, 118, 8960-8970.
- (49) Goldstein, D. N.; George, S. M. Surface poisoning in the nucleation and growth of palladium atomic layer deposition with Pd(hfac)(2) and formalin. *Thin Solid Films* 2011, *519*, 5339-5347.

Chapter 7

Atomic Layer Etching of HfO₂ Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)₂ and HF

7.1. Introduction

Atomic layer etching (ALE) is a thin film removal technique based on sequential, selflimiting surface reactions.¹⁻³ ALE can be viewed as the reverse of atomic layer deposition (ALD).⁴ ALE is able to remove thin films with atomic layer control. ALD and ALE are able to provide the necessary processing techniques for surface engineering at the atomic level.^{5, 6} This atomic level control is needed for the nanofabrication of a wide range of nanoscale devices.⁷

Until recently, ALE processes have been reported using only ion-enhanced or energetic noble gas atom-enhanced surface reactions.¹⁻³ In these ALE processes, a halogen is adsorbed on the surface of the material. Subsequently, ion or noble gas atom bombardment is used to desorb halogen compounds that etch the material. Using this approach, ALE has been reported for Si,^{2, 3, 8-12} Ge,^{6, 13} and compound semiconductors.¹⁴⁻¹⁷ ALE has also been demonstrated for a variety of metal oxides.^{7, 18-20} Additional ALE studies have been conducted on various carbon substrates.²¹⁻²³

The ALE of Al_2O_3 was recently reported using sequential, self-limiting thermal reactions with $Sn(acac)_2$ and HF as the reactants.²⁴ The linear removal of Al_2O_3 was observed at temperatures from 150-250°C without the use of ion or noble gas atom bombardment. Al_2O_3

ALE etch rates varied with temperature from 0.14 Å/cycle at 150 °C to 0.61 Å/cycle at 250 °C.²⁴ The Sn(acac)₂ and HF thermal reactions were both self-limiting versus reactant exposure. In addition, the Al₂O₃ films were smoothed by Al₂O₃ ALE cycles.²⁴ The overall Al₂O₃ etching reaction was proposed to be: Al₂O₃ + 6Sn(acac)₂ + 6HF \rightarrow 2Al(acac)₃ + 6SnF(acac) + 3H₂O.²⁴

HfO₂ is an important high k dielectric material that is a replacement for SiO₂ in gate oxides in metal oxide semiconductor field effect transistors (MOSFET).^{25, 26} The HfO₂ films used in the gate stack have been grown using ALD.²⁷ The HfO₂-based gate oxide was introduced in 2007 for the 45 nm node in complementary MOSFET technology.²⁸ HfO₂ is also being employed as the gate dielectric in FinFET structures.^{29, 30} Etching of HfO₂ films may be needed to define the gate dielectric thickness.⁷ To meet these needs, HfO₂ ALE has been previously developed using BCl₃ to adsorb chlorine on the HfO₂ material.⁷

In this study, a new approach for HfO₂ ALE is demonstrated using sequential, selflimiting thermal reactions with Sn(acac)₂ and HF as the reactants. Quartz crystal microbalance (QCM) measurements are used to study HfO₂ ALE. The QCM analysis obtains the HfO₂ etch rates and the mass changes after individual Sn(acac)₂ and HF exposures. The mass change per cycle (MCPC) and the individual mass changes during the Sn(acac)₂ and HF exposures are used to develop a mechanism for HfO₂ ALE. In addition, Fourier transform infrared (FTIR) analysis is able to monitor HfO₂ ALE and characterize the Sn(acac)₂ and HF reaction products on the surface. This new approach for HfO₂ ALE offers an alternative and may have advantages relative to ALE methods based on ions or energetic neutrals.

7.2. Experimental

7.2A. Viscous Flow Reactor Equipped for *in situ* QCM Measurements

The ALE reactions were performed in a viscous flow ALD reactor.³¹ The reaction temperatures varied from 150-250 °C. A proportional-integral-derivative (PID) temperature controller (2604, Eurotherm) maintained the temperature to within ±0.04 °C. The pressure was measured in the reactor using a capacitance manometer (Baratron 121A, MKS). The ALD reactor was equipped with an *in situ* QCM.³¹ An RC-cut quartz crystal³² (gold coated and polished, 6 MHz, Colnatec) was positioned in a sensor head (BSH-150, Inficon). The sensor head was then sealed with high temperature epoxy (Epo-Tek H21D, Epoxy technology). A thin film deposition monitor (Maxtek TM-400, Inficon) was used to record the QCM measurements.

Sequential exposure of tin(II) acetylacetonate (Sn(acac)₂, 37-38% Sn, Gelest) and HFpyridine (70 wt% HF, Sigma-Aldrich) were employed for the HfO₂ ALE reactions. These precursors are shown in Figure 1. Use of gaseous HF from HF-pyridine enables the safe handling of anhydrous HF. HF-pyridine is a liquid at room temperature and is known as Olah's reagent.³³ The HF-pyridine solution has an equilibrium with gaseous HF. Our mass spectrometer analysis has shown that HF dominates the vapor pressure of HF-pyridine. Our measurement of the vapor pressure of HF-pyridine was 90-100 Torr at room temperature.

Sn(acac)₂ and HF-pyridine were transferred to stainless steel bubblers in a dry N₂-filled glove bag. The Sn(acac)₂ precursor was held at 100 °C to produce a vapor pressure of 15-20 mTorr. The HF-pyridine precursor was maintained at room temperature. The HfO₂ films were grown by HfO₂ ALD using tetrakisdimethylamido hafnium (TDMAH) (\geq 99.99%, Sigma-Aldrich) and H₂O (Chromasolv for HPLC, Sigma-Aldrich) at 200 °C. TDMAH was transferred

Figure 7-1 Pictures of Sn(acac)₂ and HF-pyridine precursors.

to a stainless steel bubbler and maintained at 67° C to produce a vapor pressure of 20 mTorr. The H₂O precursor was held at room temperature.

A mechanical pump (Pascal 2015SD, Alcatel) was used to pump the reactor. A constant total flow of 150 sccm of ultra high purity (UHP) N₂ carrier gas into the reactor was delivered by three separate mass flow controllers (Type 1179A, MKS). Additional N₂ gas flow of 20 sccm was provided using a metering bellows-sealed valve (SS-4BMG, Swagelok) to prevent deposition on the backside of the QCM crystal.³¹ A base pressure of ~1 Torr in the reactor was produced by the total N₂ gas flow of 170 sccm.

7.2B. Si Wafers, X-ray Reflectivity, X-ray Photoelectron Spectroscopy and Spectroscopic Ellipsometry

The x-ray reflectivity (XRR), x-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry (SE) experiments were performed on boron-doped Si (100) wafers (p-type, Silicon Valley Microelectronics). These wafers were cut into samples with dimensions of 2.5 cm by 2.5 cm. These substrates were used for HfO₂ ALD deposition and then for subsequent HfO₂ ALE experiments. Prior to HfO₂ ALD, the Si wafers were rinsed with acetone, isopropanol, and deionized water and then dried with UHP N₂ gas.

The *ex situ* XRR scans were recorded using a high resolution x-ray diffractometer (Bede D1, Jordan Valley Semiconductors) employing Cu K α ($\lambda = 1.540$ Å) radiation. The filament voltage and current in the x-ray tube were 40 kV and 35 mA, respectively. A 10 arcsec step size and a 5 s acquisition time were used for recording all XRR scans with a range of 300 to 6000 arcsec. The analysis software (Bede REFS, Jordan Valley Semiconductors) fitted the XRR scans to determine film thickness, film density and surface roughness.

X-ray photoemission spectroscopy (XPS) analysis was performed using a PHI 5600 Xray photoelectron spectrometer using a monochromatic Al Kα source. The XPS data were collected using Auger Scan (RBD Instruments). The XPS data were analyzed in CASA XPS (Casa Software Ltd.).

SE analysis determined the film thicknesses and refractive index. The measurement of Ψ and Δ were recorded using a spectroscopic ellipsometer (M-2000, J. A. Woollam) with a spectral range of 240 to 1700 nm and an incidence angle of 75°. The analysis software (CompleteEASE, J. A. Woollam) fitted Ψ and Δ based on a Sellmeier model to determine the thicknesses and refractive index of the film.³⁴

7.2C. FTIR Spectroscopy Measurements

The *in situ* transmission FTIR measurements of HfO₂ ALE were performed in a reactor equipped with an FTIR spectrometer.³⁵ The FTIR spectrometer (Nicolet 6700 FTIR from Thermo Scientific) utilized a high-sensitivity liquid-N₂-cooled mercury cadmium telluride (MCT-B) detector. The spectrometer, mirror, and detector were purged with dry, CO₂-free air. A total of 100 scans at 4 cm⁻¹ resolution from 400 to 4000 cm⁻¹ were recorded for each collected spectrum.

The transmission FTIR measurements were performed on high surface area SiO₂ nanoparticles (99.5%, US Research Nanomaterials Inc.) with an average diameter of 15-20 nm. The high surface area of these particles improved the signal-to-noise ratio compared with a flat sample.³⁶ Sample preparation involved pressing the SiO₂ nanoparticles into a tungsten grid support (Tech-Etch).^{36, 37} The tungsten grids were 2 x 3 cm². Each grid was 50 μ m thick with 100 grid lines per inch.

The tungsten grid could be resistively heated using a DC power supply (6268B, 20V/ 20A, Hewlett-Packard). The voltage output of the power supply was controlled by a PID temperature controller (Love Controls 16B, Dwyer Instruments, Inc.). A type K thermocouple was attached to the bottom of the tungsten grid with Epoxy (Ceramabond 571, Aremco) that served to attach and electrically isolate the thermocouple during the experiment.

The HfO₂ films were grown with HfO₂ ALD using TDMAH and H₂O. The HfO₂ ALE reactions were performed using sequential exposures of Sn(acac)₂ and HF-pyridine. Static dosing of both the ALD and ALE precursors was utilized to achieve self-limiting behavior on the high surface area SiO₂ particles. During HfO₂ ALD, each TDMAH exposure consisted of a ~1.0 Torr static dose for 30 s followed by a 240 s purge. For the H₂O reaction, each exposure consisted of a ~1.0 Torr static dose for 30 s followed for 30 s followed by a 240 s purge.

During HfO₂ ALE, each Sn(acac)₂ exposure consisted of a ~1.0 Torr static dose for 30 s followed by a 240 s purge. For the HF reaction, each HF-pyridine exposure consisted of a ~1.0 Torr static dose for 30 s followed by a 240 s purge. For these FTIR experiments, the HF-pyridine and H₂O precursors were maintained at room temperature. The stainless steel bubbler containing Sn(acac)₂ was held at 100°C. The stainless steel bubbler containing TDMAH was held at 70°C.

HfF₄ films were deposited using HfF₄ ALD with sequential exposures of TDMAH and HF-pyridine. The HfF₄ films were grown on a fresh HfO₂ ALD film that was prepared using three HfO₂ ALD cycles with TDMAH and H₂O as the reactants. Static dosing of the reactants was utilized to achieve self-limiting behavior of the surface reactions on the high surface area SiO₂ particles. During HfF₄ ALD, each TDMAH exposure consisted of a ~1.0 Torr static dose

for 30 s followed by a 240 s purge. Each HF exposure consisted of a ~1.0 Torr static dose for 30 s followed by a 240 s purge.

7.3. Results & Discussion

7.3A. QCM Measurements

Figure 2 displays the mass change during 100 ALE cycles of sequential $Sn(acac)_2$ and HF reactions on an HfO₂ surface at 200°C. The initial HfO₂ film on the QCM sensor was deposited using 100 cycles of HfO₂ ALD with TDMAH and H₂O as the reactants at 200°C. One ALE cycle was defined by a $Sn(acac)_2$ dose of 1.0 s, an N₂ purge of 30 s, a HF dose of 1.0 s, and a second N₂ purge of 30 s. This reaction sequence is designated as 1-30-1-30. The pressure transients during the $Sn(acac)_2$ and HF-pyridine exposures were 20 mTorr and 80 mTorr, respectively.

The etching of the HfO₂ film in Figure 2 is linear and is consistent with a mass change per cycle (MCPC) = 11.1 ng/(cm² cycle). This MCPC corresponds to an etch rate of 0.116 Å /cycle based on the HfO₂ ALD film density of 9.6 g/cm³ that was measured by XRR analysis. All of the ALE cycles display a mass loss as a result of etching the HfO₂ film except during the first ALE cycle. The first cycle shows mass gains of $\Delta M_{Sn} = 71 \text{ ng/cm}^2$ and $\Delta M_{HF} = 6 \text{ ng/cm}^2$.

The mass gain for ΔM_{Sn} on the first cycle is assigned to $Sn(acac)_2$ adsorption on the HfO₂ surface. The $Sn(acac)_2$ could either adsorb associatively as $Sn(acac)_2^*$ or dissociatively as $Sn(acac)^*$ and $(acac)^*$. The asterisks designate a surface species. The mass gain for ΔM_{HF} on the first cycle is explained by HF adsorption or the formation of HfF₄ or HfF_x species by the reaction of HF with the underlying HfO₂ surface. The reaction HfO₂ + 4HF \rightarrow HfF₄ + 2H₂O is

Figure 7-2 Mass change versus time for HfO₂ ALE using sequential Sn(acac)₂ and HF exposures at 200°C.

spontaneous with ΔG = -19 kcal at 200°C.³⁸ This first cycle establishes the initial Sn(acac)₂ and HF, HfF₄ or HfF_x species on the HfO₂ substrate.

Figure 3 displays an enlargement of the mass changes versus time at 200 °C for three cycles in the steady state linear etching regime in Figure 2. There is a gradual mass decrease after a small mass gain coinciding with the Sn(acac)₂ exposure. This behavior suggests Sn(acac)₂ adsorption followed by either Sn(acac)₂ desorption and/or the removal of reaction products. A mass change of $\Delta M_{Sn} = -4.8 \text{ ng/cm}^2$ was observed after 1.0 s of Sn(acac)₂ exposure. A mass change of $\Delta M_{HF} = -6.3 \text{ ng/cm}^2$ was observed after 1.0 s of HF exposure. The experimental variation of these mass changes was measured over 50 HfO₂ ALE cycles. The standard deviation on the ΔM_{Sn} and ΔM_{HF} mass changes was $<0.1 \text{ ng/cm}^2$.

Figure 4 shows the MCPC and the $\Delta M_{Sn}/MCPC$ ratio during 100 cycles of HfO₂ ALE at 200°C. The MCPC is defined by MCPC = $\Delta M_{Sn} + \Delta M_{HF}$. The standard deviation on the MCPC was also <0.1 ng/cm². Figure 4a displays ΔM_{Sn} , ΔM_{HF} and MCPC for the same 100 cycles of HfO₂ ALE on the HfO₂ film at 200 °C as shown in Figure 2. The MCPC varies from -26 ng/(cm² cycle) to -17 ng/(cm² cycle) over the second to fifth ALE cycles. The MCPC decreases to a steady-state value of -11.1 ng/(cm² cycle) after ~20 HfO₂ ALE cycles. These first 20 HfO₂ ALE cycles prior to reaching the steady state values define the nucleation regime.

Figure 4b displays the $\Delta M_{Sn}/MCPC$ ratio during the same 100 cycles as shown in Figure 4a. This $\Delta M_{Sn}/MCPC$ ratio varies from 0.78 to 0.64 over the second to fifth ALE cycles. The ratio then slowly decreases to a steady-state value of 0.43 after the first ~20 HfO₂ ALE cycles in the nucleation regime. This $\Delta M_{Sn}/MCPC$ ratio will be used to determine the stoichiometry of the ALE surface reactions. The standard deviations on the $\Delta M_{Sn}/MCPC$ ratio was <0.005.

Figure 7-3 Expansion of linear region of Figure 2 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 200°C.

Figure 7-4 (a) Mass change after the $Sn(acac)_2$ exposure (ΔM_{Sn}), mass change after the HF exposure (ΔM_{HF}) and mass change per cycle (MCPC) versus number of ALE cycles at 200°C. (b) $\Delta M_{Sn}/MCPC$ ratio versus number of ALE cycles.

Figure 5 examines the self-limiting nature of the $Sn(acac)_2$ and HF reactions during HfO₂ ALE at 200°C. These MCPC values were measured versus different reactant exposure times. Figure 5a shows the self-limiting behavior of the $Sn(acac)_2$ reaction using different $Sn(acac)_2$ exposure times with a single 1.0 s exposure of HF. A constant N₂ purge of 30 s was used after each exposure. This reaction sequence can be denoted as x-30-1-30. The MCPC versus $Sn(acac)_2$ exposure time decreases quickly and levels off at MCPC = -11 ng/(cm² cycle).

Figure 5b examines the self-limiting behavior of the HF reaction using different HF exposure times with a single 1.0 s exposure of Sn(acac)₂. This reaction sequence can be denoted as 1-30-x-30. The MCPC versus HF exposure time decreases and does not level off after longer HF exposure times. The HF reaction does not appear to be self-limiting versus HF exposure. The lack of self-limiting behavior for the HF exposure may indicate that the HF reaction has not reached saturation. Much larger HF exposures may be necessary to complete the surface reaction.

Another possibility is that the larger HF exposures lead to larger HF background pressures and longer HF residence times in the reactor. If some HF residual pressure remains during the Sn(acac)₂ exposure, then the HfO₂ substrate can be continuously etched with HF and Sn(acac)₂ by chemical vapor etching (CVE). CVE is the reverse of chemical vapor deposition (CVD) and occurs when the two precursors required for ALE are present at the same time.³⁹

Additional experiments were performed to understand the lack of self-limiting behavior for the HF exposure. Figure 6a shows five cycles of HfO₂ ALD followed by ten individual HF exposures at 200°C. The first HF exposure displays a mass gain of $\Delta M_{HF} = 37.8 \text{ ng/cm}^2$. Subsequent HF exposures display no additional mass change. These results indicate that the HF

 Figure 7-5
 Mass change per cycle (MCPC) versus exposure time for (a) Sn(acac)₂ and (b)

 HF.

Figure 7-6 (a) Mass change versus time during five cycle of HfO₂ ALD and then ten HF exposures on the HfO₂ ALD film. (b) ΔM_{Sn} and ΔM_{HF} during HfO₂ ALE for a Sn(acac)₂ exposure of 1.0 s and variable HF exposure.

reaction has reached saturation. This behavior is consistent with the self-limiting adsorption of HF on HfO₂. In addition, HF does not spontaneously etch HfO₂.

Figure 6b shows the ΔM_{Sn} and ΔM_{HF} values for variable HF exposure times with a $Sn(acac)_2$ exposure time of 1.0 s. The ΔM_{HF} values are fairly constant at approximately -6 ng/(cm² cycle). This behavior indicates that the ΔM_{HF} values are not responsible for the lack of self-limiting behavior observed in Figure 5b. In contrast, the ΔM_{Sn} values increase progressively with HF exposure time for a fixed Sn(acac)₂ exposure time of 1.0 s. This increasing mass loss during the Sn(acac)₂ exposure is attributed to HfO₂ CVE caused by the presence of both HF and Sn(acac)₂. At longer HF exposure times, more HF residual pressure is believed to be present during the Sn(acac)₂ exposure. This HF residual pressure together with the fixed Sn(acac)₂ exposure time of 1.0 s leads to HfO₂ CVE.

Additional experiments performed at longer purge times than 30 s after the HF exposures did lead to more self-limiting behavior. However, the MCPC continued to increase versus HF exposure time. HF is difficult to purge completely after long HF exposures. The results in Figure 5b should be self-limiting with effective HF purging after HF exposures.

Figure 7 displays the mass change during 100 HfO₂ ALE cycles using sequential $Sn(acac)_2$ and HF reactions at 150°C, 175°C, 200°C, 225°C, and 250°C. The initial HfO₂ films were grown before HfO₂ ALE at the same temperatures. These HfO₂ films were deposited by 100 cycles of HfO₂ ALD using TDMAH and H₂O with a sequence of 1-20-1-20. Using the same reaction conditions as employed for the results in Figures 2 and 3, one HfO₂ ALE cycle consisted of a $Sn(acac)_2$ exposure of 1.0 s, an N₂ purge of 30 s, a HF exposure of 1.0 s, and a second N₂ purge of 30 s.

Figure 7-7 Mass change versus time for HfO₂ ALE using sequential Sn(acac)₂ and HF exposures at 150, 175, 200, 225 and 250°C.

The HfO₂ ALE mass changes are linear for all temperatures. The MCPC was determined at steady state after the first 20 HfO₂ ALE cycles. The MCPC increases at higher temperatures. The MCPC was -6.7, -8.3, -11.1, -11.9, and -11.2 ng/(cm² cycle) at 150, 175, 200, 225, and 250°C, respectively. These MCPCs correspond to etch rates of 0.070, 0.087, 0.116, 0.124, and 0.117 Å/cycle at 150, 175, 200, 225 and 250°C, respectively. These etch rates in Å/cycle are based on the HfO₂ ALD film density of 9.6 g/cm³. The MCPC values are essentially equivalent at 200, 225 and 250°C. The differences in the mass change after 100 cycles for these temperatures are determined mostly by the mass changes in the nucleation regime during the first 20 HfO₂ ALE cycles.

The ΔM_{Sn} , ΔM_{HF} , and MCPC values at the various reaction temperatures are shown in Figure 8. All HfO₂ ALE reactions were performed using a reaction sequence of 1-30-1-30 on initial HfO₂ films. Figure 8a shows that ΔM_{Sn} displays a slight mass gain at 150 °C and progressively larger mass losses at higher temperatures. In contrast, ΔM_{HF} displays mass losses over the entire temperature range. The mass losses are slightly less at higher temperatures.

Figure 8b reveals that the MCPC increases with temperature between 150 and 200°C. The MCPC values are nearly equivalent at 200, 225 and 250°C. The MCPC in Figure 8b correlates with ΔM_{Sn} in Figure 8a. This correspondence indicates that the mass change during the Sn(acac)₂ reaction is primarily responsible for the temperature dependence of the mass loss during HfO₂ ALE. The ΔM_{Sn} , ΔM_{HF} , MCPC and $\Delta M_{Sn}/MCPC$ values at the different reaction temperatures are summarized in Table 1. Based on previous results for Al₂O₃ ALE,^{24, 40} the temperature dependence of the MCPC values is believed to be dependent on the amount of acetylacetonate surface species remaining after the Sn(acac)₂ and HF exposures.

Figure 7-8 Temperature dependence of (a) ΔM_{Sn} and ΔM_{HF} and (b) MCPC for HfO₂ ALE.

Temperatur e (°C)	МСРС	ΔMsn	$\Delta M_{ m HF}$	ΔM _{Sn} / MCPC	x	x(MCPC)
150	-6.7	0.37	-7.1	-0.058	1.1	-7.6
175	-8.3	-1.7	-6.6	0.20	0.90	-7.4
200	-11.1	-4.8	-6.3	0.43	0.69	-7.7
225	-11.9	-6.1	-5.8	0.51	0.62	-7.4
250	-11.2	-5.6	-5.6	0.50	0.63	-7.0

Table 7-1. ΔM_{Sn} , ΔM_{HF} , MCPC, ΔM_{Sn} /MCPC, x, and x(MCPC) for HfO₂ ALE at different temperatures. ΔM_{Sn} , ΔM_{HF} , MCPC and x(MCPC) are expressed in units of ng/(cm² cycle).

7.3B. XRR, XPS and SE Measurements

Ex situ XRR studies also examined HfO₂ ALE. These XRR experiments employed HfO₂ ALD films with a thickness of 144 Å that were grown on Si(100) wafers. These HfO₂ ALD films were deposited using 150 cycles of TDMAH and H₂O at 200°C with a reaction sequence of 1-20-1-20. Figure 9 shows XRR scans of the HfO₂ ALD films on the Si wafers versus number of Sn(acac)₂ and HF reaction cycles at 200°C. The XRR scans have been displaced from each other for clarity. These XRR scans reveal uniform and smooth HfO₂ films.

Figure 9a displays the XRR scan of the initial HfO₂ ALD film grown on Si(100) wafers. The HfO₂ ALD film thickness of 144 Å can be obtained by fitting the reflected x-ray intensity versus incident angle. Figure 9b, 9c, 9d, and 9e show XRR scans of the etched HfO₂ film after 50, 100, 200, and 400 ALE cycles at 200°C, respectively. The HfO₂ thicknesses decrease with increasing number of ALE cycles. This decreasing film thickness leads to the decrease in the modulation of the x-ray intensity versus angle with higher numbers of ALE cycles.

The etched HfO₂ films are smooth and do not roughen versus HfO₂ ALE. The XRR measurements yielded a roughness of the initial HfO₂ ALD film of ~6 Å. The surface roughness then decreased to ~3-4 Å after 50, 100, 200, and 400 ALE cycles. The ALE process is able to smooth the surface of the initial HfO₂ films. The error in these XRR surface roughness measurements is ~1 Å. The position of the critical angle of all the etched HfO₂ films is also constant. This constant critical angle indicates that there is no change of the film density during the ALE reactions.

Figure 7-9 X-ray reflectivity scans showing x-ray intensity versus incident angle for HfO₂ films on Si(100). (a) Initial HfO₂ film grown using 150 HfO₂ ALD cycles; and HfO₂ films after various numbers of HfO₂ ALE cycles: (b) 50 cycles, (c) 100 cycles, (d) 200 cycles and (e) 400 cycles.

Figure 10 shows the XRR measurements of the initial HfO₂ film thickness and the HfO₂ film thicknesses after 50, 100, 200, and 400 ALE cycles at 200 °C. For the HfO₂ films with an initial thickness of 144 Å in Figure 10a, the film thickness versus number of ALE cycles is linear and yields an etch rate of 0.11 Å/cycle. The SE measurements on these same samples yield an etch rate of 0.11 Å/cycle with an initial HfO₂ ALD film thickness of 143 Å. The initial thickness of the HfO₂ film was not used to obtain the etch rate because of the mass gain on the first cycle and the nucleation regime that occurs during first 20 ALE cycles. The SE analysis also determined a refractive index of n=2.07 for the HfO₂ film at a wavelength of 589 nm. This refractive index for the HfO₂ film remained at n=2.07-2.09 after 50, 100, 200, and 400 ALE cycles.

XRR measurements were also performed on HfO₂ ALD films with a thickness of 87 Å that were grown on Si(100) wafers. These HfO₂ ALD films were deposited at 200°C using 100 cycles of TDMAH and H₂O with a reaction sequence of 1-20-1-20. Figure 10b displays the film thickness versus number of Sn(acac)₂ and HF reaction cycles at 200°C. The XRR measurements yield an HfO₂ ALE etch rate of 0.11 Å/cycle. The SE measurements also yield an etch rate of 0.12 Å/cycle with an initial HfO₂ ALD film thickness of 87 Å. The initial thickness of the HfO₂ film is again not employed to determine the etch rate because of the mass gain that occurs on the first ALE cycle and the nucleation regime that occurs during the first 20 ALE cycles.

X-ray photoelectron spectroscopy (XPS) analysis was used to determine the elements on the HfO₂ film after HfO₂ ALE. The XPS analysis measured Sn $3d_{5/2}$ XPS signals of 0.47-0.61 at% and F 1s XPS signals of 4.0-4.1 at% after 200 or 400 Al₂O₃ ALE cycles after the HF

Figure 7-10 X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) measurements of HfO₂ film thickness versus number of HfO₂ ALE cycles for initial HfO₂ ALD films grown using (a) 150 HfO₂ ALD cycles and (b) 100 HfO₂ ALD cycles.

exposure. These XPS signals are consistent with residual $Sn(acac)_2$ adsorption products and the formation of HfF₄ or HfF_x surface species. The Sn and F XPS signals were removed to below the XPS detection limit after Ar ion sputtering for 2 minutes. This sputtering time also removes adventitious carbon from the surface.

7.3C. FTIR Spectroscopy Measurements

In situ FTIR spectra of HfO₂ ALD films grown using 10 cycles of TDMAH and H₂O at 200°C are shown in Figure 11. These FTIR spectra are difference spectra referenced to the initial SiO₂ nanoparticle substrate. The prominent absorbance feature between 500–800 cm⁻¹ is attributed to the Hf-O stretching vibrations in bulk HfO₂.^{41, 42} The absorbance of the Hf-O stretching vibrations in amorphous HfO₂ is broad and ranges from ~200-750 cm⁻¹.⁴¹⁻⁴³ The breadth of this expected absorbance feature is not observed in Figure 11. The strong absorption from the SiO₂ nanoparticles at \leq 500 cm⁻¹ obscures the infrared absorbance of the Hf-O stretching vibrations at \leq 500 cm⁻¹.

The infrared absorbance of the Hf-O stretching vibration between 500–800 cm⁻¹ increases progressively versus number of HfO₂ ALD cycles. In addition to these Hf-O vibrational features, a negative absorption feature appears in Figure 11 at ~1250 cm⁻¹ along with the positive absorption feature at ~1000 cm⁻¹. The negative absorption feature at ~1250 cm⁻¹ is assigned to the loss of absorbance from Si-O-Si stretching vibrations in the SiO₂ substrate.⁴⁴ The positive absorption feature at ~1000 cm⁻¹ is attributed to the gain of absorbance from Si-O-Hf stretching

Figure 7-11 Absolute infrared absorbance showing the growth of Hf-O stretching vibrations in bulk HfO₂ versus number of HfO₂ ALD cycles at 200°C. These FTIR spectra were referenced to the initial SiO₂ particles.
vibrations in hafnium silicate.^{41, 44, 45} The hafnium silicate forms almost entirely during the first two HfO₂ ALD cycles on the SiO₂ nanoparticles at 200°C.

Figure 12 shows the FTIR spectra after 4, 6, 8, and 10 ALE cycles at 200 °C. These spectra were recorded after the Sn(acac)₂ exposures. Decreasing absorbance for the Hf-O stretching vibration at 500–800 cm⁻¹ versus ALE cycles is consistent with HfO₂ etching. There is also a corresponding decrease in absorbance of the Si-O-Hf vibrations in hafnium silicate at ~1000 cm⁻¹. Infrared absorbance for the Sn(acac)₂ adsorption products is also observed in Figure 12 in the range between 1250-1750 cm⁻¹. These vibrational features are derived from the acetylacetonate (acac) constituents.^{46, 47} These features are consistent with either Sn(acac)₂*, SnF(acac)* or acac* adsorbed on the HfO₂ substrate

7.3D. Nucleation Behavior and Proposed HfF₄ Formation

Figure 13 displays an enlargement of the mass changes from Figure 7 during the first two ALE cycles on HfO₂ films. The first Sn(acac)₂ exposure shows mass gains of $\Delta M_{Sn} = 68-72$ ng/cm² at 150-250 °C resulting from adsorption products of Sn(acac)₂ such as Sn(acac)* and acacH*. To estimate the coverage of Sn(acac)₂* species on the surface, the sites on the HfO₂ surface can be approximated using the HfO₂ density of 9.6 g/cm³. This mass density is equivalent to a number density of $\rho = 2.7 \times 10^{22}$ "HfO₂ units"/cm³. This number density yields an estimate for the number of "HfO₂ units" on the HfO₂ surface of $\rho^{2/3} = 9.10 \times 10^{14}$ "HfO₂ units"/cm² assuming a square lattice. This coverage of "HfO₂ units" represents an HfO₂ mass of 320 ng/cm².

Figure 7-12 Absolute infrared absorbance showing the loss of Hf-O stretching vibration in bulk HfO₂ versus number of HfO₂ ALE cycles at 200°C. These FTIR spectra were referenced to the initial SiO₂ particles.

Figure 7-13 Expansion of first two ALE cycles in Figure 6 showing the individual mass changes during the sequential Sn(acac)₂ and HF exposures at 150, 175, 200, 225 and 250°C.

The coverage of Sn(acac)₂* can then be approximated based on the mass gain of 72 ng/cm². This mass gain is equivalent to $1.37 \times 10^{14} \text{ Sn}(\text{acac})_2$ molecules/cm². The normalized coverage of Sn(acac)₂* species relative to "HfO₂ units" on the surface is $1.37 \times 10^{14} \text{ Sn}(\text{acac})_2$ molecules/cm² / 9.10 x 10^{14} "HfO₂ units"/cm² = 0.15 Sn(acac)₂ species/HfO₂ unit. This coverage is reasonable given that Sn(acac)₂ may dissociate into Sn(acac)* and acacH*. In addition, the acac ligand is bulky and expected to occupy more than one "HfO₂ unit" on the HfO₂ surface.

The first HF exposure on the surface previously exposed to $Sn(acac)_2$ shows mass gains of $\Delta M_{HF} = 3.8 \text{ ng/cm}^2$ at 150-250 °C. These mass gains may be affected by the loss of $Sn(acac)_2$ adsorption products. The mass gains following HF exposures on an initial HfO₂ film can be used to estimate the coverage of HF or HF reaction products. A mass gain of 37.8 ng/cm² is observed after HF exposures on an initial HfO₂ film at 200 °C in Figure 6a. Assuming that HF is the adsorption product, this mass gain is equivalent to 1.14 x 10¹⁵ HF molecules/cm². The normalized coverage of HF species relative to "HfO₂ units" on the surface is 1.14 x 10¹⁵ HF molecules/cm² / 9.10 x 10¹⁴ "HfO₂ units"/cm² = 1.25 HF/HfO₂ unit.

The HF may also react with the HfO₂ substrate by the reaction: HfO₂ + 4HF \rightarrow HfF₄ + 2H₂O. This reaction is predicted to be spontaneous over the temperature range from 150-250°C. The Gibbs free energy changes are negative and decrease slightly in absolute magnitude from ΔG = -22 kcal at 150 °C to ΔG = -16 kcal at 250°C.³⁸ Assuming that HfF₄ is the reaction product, the mass gain of 37.8 ng/cm² on an initial HfO₂ film at 200°C is equivalent to a HfF₄ coverage of 5.17 x 10¹⁴ HfF₄ molecules/cm². The normalized coverage of HfF₄ relative to "HfO₂ units" on the surface is 5.17 x 10¹⁴ HfF₄ molecules/cm² / 9.10 x 10¹⁴ "HfO₂ units"/cm² = 0.57 HfF₄/HfO₂ unit.

Assuming either HF or HfF₄ products, the estimated coverages after the HF exposure are comparable with the number of "HfO₂ units" on the HfO₂ substrate. These coverages are consistent with the rapid and self-limiting fluorination of the HfO₂ surface. In contrast, slow fluorination kinetics of bulk HfO₂ were observed during HF exposures.⁴⁸ Thermogravimetric studies showed that bulk HfO₂ did not begin fluorination under HF exposure until >350°C.⁴⁸ In addition, HfF₄ was not observed as a product by x-ray diffraction analysis until higher temperatures between 450-580°C.⁴⁸ The fluorination of the HfO₂ surface occurs much more readily than the fluorination of bulk HfO₂ substrates.

After the HF exposure, the next $Sn(acac)_2$ exposure reacts with the HfF₄ or HF adlayer on the HfO₂ substrate. Figure 13 shows that mass losses begin with this second $Sn(acac)_2$ exposure and continue with the subsequent HF exposure. Except for the first ALE cycle shown in Figure 13, all subsequent $Sn(acac)_2$ and HF exposures lead to mass loss resulting from the etching of the HfO₂ film.

The nucleation of the HfO₂ ALE process was also observed by the FTIR studies. Figure 14 shows FTIR spectra that are referenced to the starting SiO₂ substrate during the first HfO₂ ALE cycle. For these FTIR spectra, HF was exposed first to the initial HfO₂ film to monitor the surface fluorination to form HfF₄ or HfF_x surface species. With the first HF exposure, a portion of the Hf-O absorbance feature decreases between 625 - 800 cm⁻¹. There is also another absorbance decrease between ~800-900 cm⁻¹. These changes may correspond with the conversion of Hf-O stretching vibrations to Hf-F stretching vibrations.

Figure 7-14 Absolute infrared absorbance showing the Hf-O stretching vibrations in bulk HfO₂ and the acac vibrational features for the first Sn(acac)₂ and HF exposures at 200°C. These FTIR spectra were referenced to the initial SiO₂ particles.

The infrared absorbance between 500-650 cm⁻¹ decreases after the first Sn(acac)₂ exposure. This decrease is attributed to the removal of HfF₄ or HfF_x surface species. For an HfF₄ adlayer, this removal may occur by the reaction HfF₄ + 4Sn(acac)₂ \rightarrow Hf(acac)₄ + 4SnF(acac). Sn(acac)₂ may also adsorb on the thin HfO₂ film and perturb the Hf-O vibrational modes. In addition, pronounced vibrational features associated with acac species on the HfO₂ substrate at 1250-1750 cm⁻¹ are observed in Figure 14 after the Sn(acac)₂ exposure.

Because the loss in absorbance from HfO₂ and the gain in absorbance from HfF₄ or HfF_x surface species occur in the same frequency range, difference FTIR spectra were recorded during the first HF and first Sn(acac)₂ exposures on the initial HfO₂ film to distinguish the HfF₄ or HfF_x surface species produced by the first HF exposure. Figure 15a shows the difference spectra after the first HF exposure. The first HF exposure produces a gain in absorbance between 500 – 650 cm⁻¹ and a loss in absorbance between 650 - 925 cm⁻¹. The reference spectrum for this FTIR spectrum was the initial HfO₂ film on the SiO₂ nanoparticles. The gain in absorbance between 500 - 650 cm⁻¹ that is centered at ~585 cm⁻¹ is attributed to the HfF₄ or HfF_x surface species.

Figure 15a also shows that the subsequent $Sn(acac)_2$ exposure removes the absorbance feature associated with the HfF₄ or HfF_x surface species. The reference spectrum for this FTIR spectrum was the previous FTIR spectrum recorded after the HF exposure. This loss of absorbance is expected from the $Sn(acac)_2$ reaction with the HfF₄ or HfF_x surface species. There is also much less absorbance loss at 650 - 925 cm⁻¹ associated with the higher frequency portion of the absorbance for the Hf-O stretching vibration. The $Sn(acac)_2$ removes the HfF₄ or HfF_x surface species without significantly perturbing the underlying HfO₂ film. For comparison, Figure 15b displays the absorbance loss expected after the removal of an HfO₂ ALD film that was grown using ten HfO₂ ALD cycles.

Figure 7-15 (a) 1. Difference spectrum after HF exposure on an initial HfO₂ film. The reference spectrum was the initial HfO₂ film on the SiO₂ nanoparticles. 2. Difference spectrum after the subsequent Sn(acac)₂ exposure. The reference spectrum was the previous FTIR spectrum after the HF exposure. (b) Difference spectrum after removal of 10 cycles of HfO₂ ALD from the SiO₂ nanoparticles. The reference spectrum was the FTIR spectrum after 10 cycles of HfO₂ ALD on the SiO₂ nanoparticles.

The absorbance feature between $500 - 650 \text{ cm}^{-1}$ that is centered at ~585 cm⁻¹ is attributed to HfF₄ or HfF_x surface species. The frequency of this absorbance feature is slightly lower than the expected frequency of 645 - 650 cm⁻¹ for Hf-F stretching vibrations in HfF₄.^{49, 50} To determine the Hf-F stretching vibrational frequency in ultrathin HfF₄ films, HfF₄ ALD films were grown on a thin HfO₂ ALD film on SiO₂ nanoparticles using TDMAH and HF. The FTIR spectra versus number of HfF₄ ALD cycles are displayed in Figure 16. These FTIR spectra are referenced to the initial HfO₂ film on the SiO₂ nanoparticles.

The initial HfF₄ ALD film after two HfF₄ ALD cycles displays increased absorbance in a broad peak centered at ~585 cm⁻¹. The absorbance from these Hf-F stretching vibrations then shifts to higher frequencies with increasing number of HfF₄ ALD cycles. After ~20 HfF₄ ALD cycles, the absorbance peak shifts to ~640 cm⁻¹. This frequency is very close to the frequency of 645-650 cm⁻¹ for the Hf-F stretching vibrations in HfF₄.^{49, 50} These results argue that the absorbance feature in Figure 15a between 500 – 650 cm⁻¹ that is centered at ~585 cm⁻¹ is derived from HfF₄ or HfF_x surface species. The Hf-F stretching vibration has a lower frequency in HfF_x surface species or in ultrathin HfF₄ films.

7.3E. Proposed HfO₂ ALE Reactions

Figure 17 shows the schematic for the proposed HfO_2 ALE surface chemistry. This possible picture for HfO_2 ALE is derived from the mass changes during the $Sn(acac)_2$ and HF exposures as determined by the QCM measurements and the vibrational absorbances observed

Figure 7-16 Absolute infrared absorbance showing the growth of Hf-F stretching vibrations in HfF_4 films versus number of HfF_4 ALD cycles at 150°C. These FTIR spectra are referenced to the initial HfO_2 film on the SiO₂ nanoparticles after the first HF exposure.

Figure 7-17 Schematic of proposed surface chemistry for HfO₂ ALE showing (A) Sn(acac)₂ reaction and (B) HF reaction.

by the FTIR spectroscopy analysis. This scheme includes only surface species that change during the $Sn(acac)_2$ and HF exposures. This scheme also assumes that the HF reaction produces HfF₄ on the HfO₂ film.

During the $Sn(acac)_2$ reaction (A), $Sn(acac)_2$ reacts with the HfF₄ layer on the HfO₂ substrate to form volatile SnF(acac) and $Hf(acac)_4$ reaction products and $SnF(acac)^*$ surface species. After the HfF₄ layer is lost resulting from Hf(acac)₄ and SnF(acac) product formation, there may be a strong interaction between $SnF(acac)^*$ surface species and the underlying HfO₂ substrate. This interaction may lead to some $SnF(acac)^*$ species adsorbed to the HfO₂ substrate.

During the HF reaction (B), HF reacts with some of the $SnF(acac)^*$ surface species and the underlying HfO₂ surface to form a HfF₄ layer. In addition, HF also provides hydrogen to form H₂O as a reaction product. This reaction removes the oxygen in HfO₂. The HfF₄ layer is then ready for the next Sn(acac)₂ reaction.

The overall proposed reaction can be expressed as:

$$HfO_2 + 4HF + 4Sn(acac)_2 \rightarrow Hf(acac)_4 + 4SnF(acac) + 2H_2O$$
(1)

This overall reaction can be divided into the $Sn(acac)_2$ and HF reactions:

(A) $HfO_2|HfF_4^* + 4Sn(acac)_2 \rightarrow$

$$HfO_{2}|xSnF(acac)^{*} + Hf(acac)_{4} + (4-x)SnF(acac)$$
(2)

(B)
$$HfO_2|xSnF(acac)^* + 4HF \rightarrow HfF_4^* + xSnF(acac) + 2H_2O$$
 (3)

These reactions include only the species that change during the $Sn(acac)_2$ and HF exposures. The asterisks indicate the surface species and the vertical lines are used to separate the various surface species. Note that HfF₄ is the key reaction intermediate. The production of all the Hf(acac)₄ is assumed to occur during reaction (A). Hf(acac)₄ is a stable metal β -diketonate with a vapor pressure of ~0.1 Torr at 150 °C.^{51, 52}

The HfO₂ shown in Equations 2 and 3 is the amount of HfO₂ that is etched in one HfO₂ ALE cycle. x quantifies the coverage of SnF(acac)* on the surface after the Sn(acac)₂ exposures relative to the amount of HfO₂ that is etched in on HfO₂ ALE cycle. x can be determined from the $\Delta M_{Sn}/MCPC$ ratio using the equation:

$$\mathbf{x} = (254.5 - 210.5(\Delta M_{\text{Sn}}/\text{MCPC}))/236.8 \tag{4}$$

where 254.5, 210.5 and 236.8 are the molecular weights for HfF₄, HfO₂ and SnF(acac), respectively. The x values are 1.1, 0.90, 0.69, 0.62, and 0.63 at 150, 175, 200, 225 and 250°C, respectively. Table 1 lists all the x and MCPC values.

x defines the SnF(acac)* species after the Sn(acac)₂ exposures relative to the amount of HfO_2 that is etched in one HfO_2 ALE cycle. Consequently, the product x(MCPC) provides a measure of the SnF(acac)*surface species after the Sn(acac)₂ exposures. The x(MCPC) values are included in Table 1. These x(MCPC) values are fairly constant at all the temperatures. This behavior indicates that the SnF(acac)* coverage is nearly constant at all the temperatures after the Sn(acac)₂ exposures. This coverage may represent a saturated monolayer for SnF(acac)* on the HfO₂ surface.

The proposed reactions for HfO₂ ALE are similar to the reactions proposed earlier for $Al_2O_3 ALE$.²⁴ Both HfO₂ ALE and $Al_2O_3 ALE$ display etching rates that increase at higher temperatures. These temperature dependent etching rates are believed to be correlated inversely with the acetylacetonate coverage remaining on the substrate after the Sn(acac)₂ exposure.^{24, 40} The Hf(acac)₄ and Al(acac)₃ etching products are both volatile. The vapor pressure of Hf(acac)₄

at 150°C is ~0.1 Torr.^{51, 52} The vapor pressure of Al(acac)₃ at 150°C is ~3-4 Torr.⁵³⁻⁵⁵ Both HfO₂ and Al₂O₃ form stable fluorides upon exposure to HF. However, the Hf(acac)₄ etching product may become unstable at >100°C.⁵² The Δ G for the HF reaction with HfO₂ is also not as favorable as the Δ G for the HF reaction with Al₂O₃.³⁸ These factors may lead to etching rates for Al₂O₃ ALE that are higher than the etching rates for HfO₂ ALE.

7.3F. Extensions to Other Materials and Advantages of Thermal ALE

The ALE of other materials should be possible using sequential, self-limiting thermal reactions with $Sn(acac)_2$ and HF as the reactants.²⁴ The prospective materials include other metal oxides, metal nitrides, metal phosphides, metal sulfides and metal arsenides.²⁴ The $Sn(acac)_2$ and HF reactants should be generally useful because $Sn(acac)_2$ can readily react with fluorine to form SnF(acac). Sn-F bond formation is favorable because tin has a high affinity for fluorine.⁵⁶ The Sn-F bond enthalpy is 466.5 kJ/mole in the diatomic SnF molecule.⁵⁷

The reaction of Sn(acac)₂ with fluorine to form SnF(acac) enables Sn(acac)₂ to release an acac ligand to the surface. Metals easily form complexes with acac ligands and have comparable stabilities.⁵⁸ The hydrogen from HF can also combine with either oxygen, nitrogen, phosphorous, sulfur or arsenic from the metal oxide, metal nitride, metal phosphide, metal sulfide or metal arsenide to form H₂O, NH₃, PH₃, H₂S or AsH₃, respectively.²⁴ The ALE of elemental metals should also be possible by first oxidizing the metal and then etching the resulting metal oxide.²⁴ Alternatively, elemental metals could be directly fluorinated to form the metal fluoride and then the metal fluoride could be removed by Sn(acac)₂.

There are advantages to the thermal ALE approach compared with ALE based on halogen adsorption and ion or energetic neutral noble atom bombardment. The thermal ALE approach avoids any damage to the underlying substrate resulting from high energy ions or energetic neutrals.⁵⁹ ALE based on ion or neutral noble atom bombardment requires line-of-sight to the substrate. This requirement can be used advantageously to minimize undercutting with directional ions or energetic neutral atoms during ALE. However, this line-of-sight requirement is limited to the small surface areas that are subjected to ion or neutral noble atom bombardment. In contrast, the thermal ALE approach will be useful for etching larger samples. The thermal ALE approach will also be important for etching high surface area samples and high aspect ratio structures.

7.4. Conclusions

HfO₂ ALE was demonstrated using Sn(acac)₂ and HF as the reactants. The sequential, self-limiting thermal reactions of Sn(acac)₂ and HF etched HfO₂ linearly with atomic level precision. HfO₂ ALE was observed at temperatures from 150-250°C. The Sn(acac)₂ reaction was self-limiting versus reactant exposure as revealed by QCM studies. However, the HF reaction was weakly self-limiting presumably because of a high residence time for HF and chemical vapor etching (CVE) caused by the presence of both Sn(acac)₂ and HF in the reactor.

The QCM studies measured MCPC values of -6.7, -8.3, -11.1, -11.9, and -11.2 ng/(cm² cycle) at 150, 175, 200, 225, and 250°C, respectively. These mass changes per cycle correspond to etch rates of 0.070, 0.087, 0.116, 0.124, and 0.117 Å/cycle at 150, 175, 200, 225 and 250°C, respectively. The linear removal of HfO₂ was confirmed by XRR analysis. The XRR studies measured HfO₂ ALE etch rates of 0.11 Å/cycle at 200°C. The HfO₂ films also were smoothed

by HfO_2 ALE. HfO_2 ALE was also observed by FTIR spectroscopy analysis that monitored the loss of the Hf-O stretching vibration of bulk HfO_2 versus number of $Sn(acac)_2$ and HF reaction cycles. FTIR analysis also monitored absorbance features that were consistent with HfF_4 or HfF_x surface species as a reaction intermediate.

The HfO₂ etching is believed to follow the reaction: $HfO_2 + 4Sn(acac)_2 + 4HF \rightarrow$ Hf(acac)₄ + 4SnF(acac) + 2H₂O. In the proposed reaction mechanism, HfF₄ or HfF_x is the key reaction intermediate. The Sn(acac)₂ reactant donates acac to the HfF₄ or HfF_x adlayer on the HfO₂ substrate to produce Hf(acac)₄. The HF reactant forms the HfF₄ or HfF_x reaction intermediate from HfO₂ and allows SnF(acac) and H₂O to leave as reaction products. The ALE of many other metal oxides besides HfO₂ should also be possible using sequential Sn(acac)₂ and HF exposures. This ALE reaction mechanism should also be applicable for the ALE of metal nitrides, metal phosphides, metal arsenides and elemental metals.

7.5. Acknowledgements

This research was funded by the National Science Foundation (CHE-1306131). Additional personnel support for YL was provided by the Department of Energy through the DOE-BATT program.

7.6. References

- 1. A. Agarwal and M. J. Kushner, J. Vac. Sci. Technol. A, 27, 37 (2009).
- 2. S. D. Athavale and D. J. Economou, J. Vac. Sci. Technol. A, 13, 966 (1995).
- 3. S. D. Athavale and D. J. Economou, J. Vac. Sci. Technol. B, 14, 3702 (1996).
- 4. S. M. George, *Chem. Rev.*, **110**, 111 (2010).
- 5. M. Leskela and M. Ritala, Angew. Chem. Int. Ed., 42, 5548 (2003).
- 6. N. Marchack and J. P. Chang, J. Phys. D Appl. Phys., 44, 174011 (2011).
- 7. J. B. Park, W. S. Lim, B. J. Park, I. H. Park, Y. W. Kim and G. Y. Yeom, *J. Phys. D Appl. Phys.*, **42**, 055202 (2009).
- 8. N. A. Kubota, D. J. Economou and S. J. Plimpton, J. Appl. Phys., 83, 4055 (1998).
- 9. S. D. Park, D. H. Lee and G. Y. Yeom, *Electrochem. Solid State Lett.*, 8, C106 (2005).
- 10. S. D. Park, W. S. Lim, B. J. Park, H. C. Lee, J. W. Bae and G. Y. Yeom, *Electrochem. Solid State Lett.*, **11**, H71 (2008).
- 11. H. Sakaue, S. Iseda, K. Asami, J. Yamamoto, M. Hirose and Y. Horiike, *Jpn. J. Appl. Phys. 1*, **29**, 2648 (1990).
- J. Yamamoto, T. Kawasaki, H. Sakaue, S. Shingubara and Y. Horiike, *Thin Solid Films*,
 225, 124 (1993).
- 13. T. Sugiyama, T. Matsuura and J. Murota, *Appl. Surf. Sci.*, **112**, 187 (1997).
- 14. W. S. Lim, S. D. Park, B. J. Park and G. Y. Yeom, Surf. Coat. Tech., 202, 5701 (2008).
- 15. T. Meguro, M. Hamagaki, S. Modaressi, T. Hara, Y. Aoyagi, M. Ishii and Y. Yamamoto, *Appl. Phys. Lett.*, **56**, 1552 (1990).
- 16. T. Meguro, M. Ishii, T. Sugano, K. Gamo and Y. Aoyagi, *Appl. Surf. Sci.*, **82-3**, 193 (1994).
- 17. S. D. Park, C. K. Oh, J. W. Bae, G. Y. Yeom, T. W. Kim, J. I. Song and J. H. Jang, *Appl. Phys. Lett.*, **89**, 043109 (2006).
- 18. J. B. Park, W. S. Lim, S. D. Park, Y. J. Park and G. Y. Yeom, *J. Korean Phys. Soc.*, **54**, 976 (2009).
- 19. D. Metzler, R. L. Bruce, S. Engelmann, E. A. Joseph and G. S. Oehrlein, *J. Vac. Sci. Technol. A*, **32**, 020603 (2014).

20. K. S. Min, S. H. Kang, J. K. Kim, Y. I. Jhon, M. S. Jhon and G. Y. Yeom, *Microelectron*. *Eng.*, **110**, 457 (2013).

21. Y. Y. Kim, W. S. Lim, J. B. Park and G. Y. Yeom, *J. Electrochem. Soc.*, **158**, D710 (2011).

22. W. S. Lim, Y. Y. Kim, H. Kim, S. Jang, N. Kwon, B. J. Park, J.-H. Ahn, I. Chung, B. H. Hong and G. Y. Yeom, *Carbon*, **50**, 429 (2012).

23. E. Vogli, D. Metzler and G. S. Oehrlein, Appl. Phys. Lett., 102, 253105 (2013).

24. Y. Lee and S. M. George, ACS Nano, 9, 2061 (2015).

25. J. H. Choi, Y. Mao and J. P. Chang, Mater. Sci. Eng., R, 72, 97 (2011).

26. J. Robertson, Eur. Phys. J. Appl. Phys., 28, 265 (2004).

27. M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee and K. Fujihara, *Appl. Phys. Lett.*, **81**, 472 (2002).

K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler,
 A. Cappellani, R. Chau, C. H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D.
 Hanken, M. Hatttendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S.
 Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pei,
 C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L.
 Schifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P.

Vandervoorn, S. Williams and K. Zawadzki, 2007 IEEE International Electron Devices Meeting, Vols. 1 and 2, 247 (2007).

29. T. Rudenko, N. Collaert, S. De Gendt, V. Kilchytska, M. Jurczak and D. Flandre, *Microelectron. Eng.*, **80**, 386 (2005).

30. A. Tsormpatzoglou, D. H. Tassis, C. A. Dimitriadis, M. Mouis, G. Ghibaudo and N. Collaert, *Semicond. Sci. Technol.*, **24** (2009).

31. J. W. Elam, M. D. Groner and S. M. George, *Rev Sci Instrum*, **73**, 2981 (2002).

32. S. C. Riha, J. A. Libera, J. W. Elam and A. B. F. Martinson, *Rev Sci Instrum*, **83**, 094101 (2012).

33. G. A. Olah, M. Nojima and I. Kerekes, Synthesis-Stuttgart, 12, 779 (1973).

 R. D. Shannon, R. C. Shannon, O. Medenbach and R. X. Fischer, *J. Phys. Chem. Ref. Data* 31, 931 (2002).

35. J. W. DuMont and S. M. George, *Journal of Physical Chemistry C (In Press)*

- 36. J. D. Ferguson, A. W. Weimer and S. M. George, *Thin Solid Films*, **371**, 95 (2000).
- 37. T. H. Ballinger, J. C. S. Wong and J. T. Yates, *Langmuir*, **8**, 1676 (1992).
- 38. M. Putkonen, A. Szeghalmi, E. Pippel and M. Knez, J Mater Chem, 21, 14461 (2011).
- 39. R. Steger and R. Masel, *Thin Solid Films*, **342**, 221 (1999).
- 40. Y. Lee, J. W. DuMont and S. M. George, *Submitted to Chemistry of Materials*.
- 41. D. A. Neumayer and E. Cartier, J. Appl. Phys., 90, 1801 (2001).
- 42. Y. Wang, M. T. Ho, L. V. Goncharova, L. S. Wielunski, S. Rivillon-Amy, Y. J. Chabal,

T. Gustafsson, N. Moumen and M. Boleslawski, Chem. Mater., 19, 3127 (2007).

- 43. D. Ceresoli and D. Vanderbilt, *Phys. Rev. B*, **74** (2006).
- 44. V. Cosnier, M. Olivier, G. Theret and B. Andre, J. Vac. Sci. Technol., 19, 2267 (2001).
- 45. L. Khomenkova, *Physica B*, **453**, 19 (2014).
- 46. K. Nakamoto, A. E. Martell and P. J. McCarthy, J. Am. Chem. Soc., 83, 1272 (1961).
- 47. S. F. Tayyari and F. Milani-nejad, *Spectrochim. Acta A*, **56**, 2679 (2000).

48. B. M. Vilakazi, O. S. Monnahela, J. B. Wagener, P. A. B. Carstens and T. Ntsoane, *J. Fluorine Chem.*, **141**, 64 (2012).

49. A. Buechler, D. H. Dugre and J. B. Berkowitz, J. Chem. Phys., 34, 2202 (1961).

50. V. N. Bukhmarina, S. L. Dobychin, Y. B. Predtechenskii and V. G. Shklyarik, *Zhurnal Fizicheskoi Khimii*, **60**, 1775 (1986).

51. N. B. Morozova, K. V. Zherikova, I. A. Baidina, S. V. Sysoev, P. P. Semyannikov, L. V. Yakovkina, T. P. Smirnova, N. V. Gelfond, I. K. Igumenov, G. Carta and G. Rossetto, *J. Phys. Chem. Solids*, **69**, 673 (2008).

52. K. V. Zherikova, N. B. Morozova, L. N. Zelenina, S. V. Sysoev, T. P. Chusova and I. K. Igumenov, *J. Therm. Anal. Calorim.*, **92**, 729 (2008).

- 53. E. W. Berg and J. T. Truemper, Anal. Chim. Acta, 32, 245 (1965).
- 54. K. J. Eisentraut and R. E. Sievers, J. Inorg. Nucl. Chem., 29, 1931 (1967).
- 55. B. D. Fahlman and A. R. Barron, *Adv. Mater. Opt. Electr.*, **10**, 223 (2000).
- 56. P. F. R. Ewings, P. G. Harrison and D. E. Fenton, J Chem Soc Dalton, 821 (1975).
- 57. K. Zimbov, J. W. Hastie and J. L. Margrave, *T Faraday Soc*, **64**, 861 (1968).
- 58. R. C. Mehrotra, R. Bohra and D. P. Gaur, *Metal Beta-Diketonates and Allied Derivatives*,

p. viii, Academic Press, London (1978).

59. M. M. Hussain, S.-C. Song, J. Barnett, C. Y. Kang, G. Gebara, B. Sassman and N. Moumen, *IEEE Elect. Device Lett.*, **27**, 972 (2006).

Chapter 8

BIBLIOGRAPHY

- 1. HSC Chemistry. HSC Chemistry 5.1, Outokumpu Research Oy: Pori, Finland.
- Agarwal, A.; Kushner, M. J., Plasma Atomic Layer Etching Using Conventional Plasma Equipment. *Journal of Vacuum Science & Technology A* 2009, 27 (1), 37-50.
- 3. Ahmed, K.; Schuegraf, K., Transistor Wars. *IEEE Spectrum* **2011**, 48 (11), 50-66.
- Allen, T. H.; Lehan, J. P.; McIntyre, J. L. C. Ion-Beam-Sputtered Metal Fluorides, *Proc.* SPIE December 1, 1990; 1990; p 277
- 5. Almeida, R. M.; Morais, P. J., Preparation and Characterization of Amorphous ZrF₄ Thin-Films. *Journal of Non-Crystalline Solids* **1995**, 184, 93-97.
- Anderson, V. R.; Leick, N.; Clancey, J. W.; Hurst, K. E.; Jones, K. M.; Dillon, A. C.; George, S. M., Atomic Layer Deposition of Platinum Nanoparticles on Titanium Oxide and Tungsten Oxide Using Platinum(II) Hexafluoroacetylacetonate and Formalin as the Reactants. *The Journal of Physical Chemistry C* 2014, 118 (17), 8960-8970.
- Athavale, S. D.; Economou, D. J., Molecular Dynamics Simulation of Atomic Layer Etching of Silicon. *Journal of Vacuum Science & Technology A* 1995, 13 (3), 966-971.
- Athavale, S. D.; Economou, D. J., Realization of Atomic Layer Etching of Silicon. Journal of Vacuum Science & Technology B 1996, 14 (6), 3702-3705.
- 9. Atkins, P. W., Physical Chemistry, 5th Edition. Oxford University Press: Oxford 1994.
- Auth, C. et al., A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors. Symposium on VLSI Technology Digest of Technical Papers 2012.
- 11. Ayotte, P.; Hebert, M.; Marchand, P., Why Is Hydrofluoric Acid a Weak Acid? *Journal* of Chemical Physics **2005**, 123 (18).

- Bailey, C. L.; Mukhopadhyay, S.; Wander, A.; Searle, B. G.; Harrison, N. M., Structure and Stability of alpha-AlF₃ Surfaces. *Journal of Physical Chemistry C* 2009, 113 (12), 4976-4983.
- Bailey, C. L.; Wander, A.; Mukhopadhyay, S.; Searle, B. G.; Harrison, N. M., Adsorption of HF and HCl on the beta-AlF₃ (100) Surface. *Physical Chemistry Chemical Physics* 2008, 10 (20), 2918-2924.
- Ball, D. W., Ab Initio Studies of AlH₃-H₂O, AlF₃-H₂O, and AlCl₃-H₂O Complexes. *Journal of Physical Chemistry* **1995**, 99 (34), 12786-12789.
- Ballinger, T. H.; Wong, J. C. S.; Yates, J. T., Transmission Infrared-Spectroscopy of High Area Solid-Surfaces - A Useful Method for Sample Preparation. *Langmuir* 1992, 8 (6), 1676-1678.
- Barriere, A. S.; Lachter, A., Optical-Transitions in Disordered Thin-Films of Ionic Compounds MgF₂ and AlF₃ as a Function of Their Conditions of Preparation. *Applied Optics* 1977, 16 (11), 2865-2871.
- Benjamin, S. L.; Levason, W.; Pugh, D.; Reid, G.; Zhang, W. J., Preparation and Structures of Coordination Complexes of the Very Hard Lewis Acids ZrF₄ and HfF₄. *Dalton Transactions* 2012, 41 (40), 12548-12557.
- Berg, E. W.; Truemper, J. T., Vapor Pressure-Temperature Data for Various Metal beta-Diketone Chelates. *Analytica Chimica Acta* 1965, 32 (3), 245-252.
- Bohr, M. T.; Chau, R. S.; Ghani, T.; Mistry, K., The High-k Solution. *IEEE Spectrum* 2007, 44 (10), 29-35.
- Bos, K. D.; Budding, H. A.; Bulten, E. J.; Noltes, J. G., Tin(II) Bis(1,3-Diketonates) and Tin(II) 1,3-Diketonate Chlorides. *Inorganic and Nuclear Chemistry Letters* 1973, 9 (9), 961-963.
- Bridou, F.; Cuniot-Ponsard, M.; Desvignes, J. M.; Richter, M.; Kroth, U.; Gottwald, A., Experimental Determination of Optical Constants of MgF₂ and AlF₃ Thin Films in the Vacuum Ultra-violet Wavelength Region (60-124 nm), and Its Application to Optical Designs. *Optics Communications* 2010, 283 (7), 1351-1358.
- Buechler, A.; Dugre, D. H.; Berkowitz, J. B., Infrared Spectra of Some Group IV Halides. *Jouranl of Chemical Physics* 1961, 34 (6), 2202-&.

- 23. Bukhmarina, V. N.; Dobychin, S. L.; Predtechenskii, Y. B.; Shklyarik, V. G., Infrared-Spectra and Raman-Scattering Spectra of ZrF₄ and HfF₄ Mmolecules Isolated in Ne and Ar Matrices. *Zhurnal Fizicheskoi Khimii* **1986**, 60 (7), 1775-1777.
- Burton, B. B.; Fabreguette, F. H.; George, S. M., Atomic Layer Deposition of MnO Using Bis(ethylcyclopentadienyl)manganese and H₂O. *Thin Solid Films* 2009, 517 (19), 5658-5665.
- Burton, B. B.; Goldstein, D. N.; George, S. M., Atomic Layer Deposition of MgO Using Bis(ethylcyclopentadienyl)magnesium and H₂O. *Journal of Physical Chemistry C* 2009, 113 (5), 1939-1946.
- Buslov, D. K.; Sushko, N. I.; Yukhnevich, G. V., The IR Spectrum of Liquid Hydrogen Fluoride. *Journal of Optical Technology* 2003, 70 (1), 28-30.
- Carver, C. T.; Plombon, J. J.; Romero, P. E.; Suri, S.; Tronic, T. A.; Turkot Jr., R. B., Atomic Layer Etching: An Industry Perspective. *ECS Journal of Solid State Science and Technology*, 2015, 4 (6), N5005-N5009.
- 28. Ceresoli, D.; Vanderbilt, D., Structural and Dielectric Properties of Amorphous ZrO₂ and HfO₂. *Physical Review B* **2006**, 74 (12) 125108.
- Cho, M. H.; Roh, Y. S.; Whang, C. N.; Jeong, K.; Nahm, S. W.; Ko, D. H.; Lee, J. H.; Lee, N. I.; Fujihara, K., Thermal Stability and Structural Characteristics of HfO₂ Films on Si (100) Grown by Atomic Layer Deposition. *Applied Physics Letters* 2002, 81 (3), 472-474.
- Choi, J. H.; Mao, Y.; Chang, J. P., Development of Hafnium Based High-k Materials-A Review. *Materials Science and Engineering*, R 2011, 72 (6), 97-136.
- Cosnier, V.; Olivier, M.; Theret, G.; Andre, B., HfO₂-SiO₂ Interface in PVD Coatings. *Journal of Vacuum Science & Technology* 2001, 19 (5), 2267-2271.
- Ding, F.; Xu, W.; Choi, D. W.; Wang, W.; Li, X. L.; Engelhard, M. H.; Chen, X. L.;
 Yang, Z. G.; Zhang, J. G., Enhanced Performance of Graphite Anode Materials by AlF₃
 Coating for Lithium-ion Batteries. *Journal of Materials Chemistry* 2012, 22 (25), 12745-12751.
- Dippel, K.; Klingebiel, U.; Sheldrick, G. M.; Stalke, D., 4-Membered (Sinsio) Rings by Lif Elimination - Crystal-Structure of an 8-Membered (Flinsi) Ring. *Chemische Berichte-Recueil* 1987, 120 (4), 611-616.

- DuMont, J. W.; George, S. M., Pyrolysis of Alucone Molecular Layer Deposition Films Studied Using In Situ Transmission Fourier Transform Infrared Spectroscopy. *Journal of Physical Chemistry C* (In Press) 2015.
- 35. Eisentraut, K. J.; Sievers, R. E., Thermogravimetric Studies of Metal Beta-Diketonates. *Journal of Inorganic and Nuclear Chemistry* **1967**, 29 (8), 1931-1936.
- Elam, J. W.; Groner, M. D.; George, S. M., Viscous Flow Reactor with Quartz Crystal Microbalance for Thin Film Growth by Atomic Layer Deposition. *Review of Scientific Instruments* 2002, 73 (8), 2981-2987.
- 37. Ewings, P. F. R.; Harrison, P. G.; Fenton, D. E., Derivatives of Divalent Germanium, Tin, and Lead. 5. Bis-(Pentane-2,4-Dionato)-Tin(II),Bis(1,1,1-Trifluoropentane-2,4-Dionato)-Tin(II), and Bis(1,1,1,5,5,5-Hexafluoropentane-2,4-Dionato)-Tin(II). *Journal of the Chemical Society, Dalton Transactions* 1975, (9), 821-826.
- 38. Fahlman, B. D.; Barron, A. R., Substituent Effects on the Volatility of Metal Beta-Diketonates. *Advanced Materials for Optics and Electronics* **2000**, 10 (3-5), 223-232.
- 39. Ferguson, J. D.; Weimer, A. W.; George, S. M., Atomic Layer Deposition of Ultrathin and Conformal Al₂O₃ Films on BN particles. *Thin Solid Films* **2000**, 371 (1-2), 95-104.
- 40. Ferguson, J. D.; Weimer, A. W.; George, S. M., Atomic Layer Deposition of Al₂O₃ Films on Polyethylene Particles. *Chemistry of Materials* **2004**, 16 (26), 5602-5609.
- 41. George, S. M., Atomic Layer Deposition: An Overview. *Chemical Reviews* 2010, 110 (1), 111-131.
- 42. Giguere, P. A.; Zengin, N., SPECTRE INFRAROUGE DE HF A LETAT CRISTALLIN. *Canadian Journal of Chemistry-Revue Canadienne De Chimie* **1958**, 36 (6), 1013-1019.
- Goldstein, D. N.; George, S. M., Surface Poisoning in the Nucleation and Growth of Palladium Atomic Layer Deposition with Pd(hfac)₂ and Formalin. *Thin Solid Films* 2011, 519 (16), 5339-5347.
- Goldstein, D. N.; McCormick, J. A.; George, S. M., Al₂O₃ Atomic Layer Deposition with Trimethylaluminum and Ozone Studied by in Situ Transmission FTIR Spectroscopy and Quadrupole Mass Spectrometry. *Journal of Physical Chemistry C* 2008, 112 (49), 19530-19539.

- Groner, M. D.; Elam, J. W.; Fabreguette, F. H.; George, S. M., Electrical Characterization of Thin Al₂O₃ Films Grown by Atomic Layer Deposition on Silicon and Various Metal Substrates. *Thin Solid Films* **2002**, 413 (1-2), 186-197.
- Gross, U.; Ruediger, S.; Kemnitz, E.; Brzezinka, K.-W.; Mukhopadhyay, S.; Bailey, C.;
 Wander, A.; Harrison, N., Vibrational Analysis Study of Aluminum Trifluoride Phases.
 Journal of Physical Chemistry A 2007, 111 (26), 5813-5819.
- Guo, Y.; Wuttke, S.; Vimont, A.; Daturi, M.; Lavalley, J. C.; Teinz, K.; Kemnitz, E., Novel Sol-Gel Prepared Zinc Fluoride: Synthesis, Characterisation and Acid-Base Sites Analysis. *Journal of Materials Chemistry* 2012, 22 (29), 14587-14593.
- Gusev, E. P.; Cabral, C.; Copel, M.; D'Emic, C.; Gribelyuk, M., Ultrathin HfO₂ Films Grown on Silicon by Atomic Layer Deposition for Advanced Gate Dielectrics Applications. *Microelectronic Engineering* 2003, 69 (2-4), 145-151.
- Hausmann, D. M.; Kim, E.; Becker, J.; Gordon, R. G., Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors. *Chemistry of Materials* 2002, 14 (10), 4350-4358.
- Heitmann, W., Vacuum Evaporated Films of Aluminum Fluoride. *Thin Solid Films* 1970, 5 (1), 61.
- Henley, S. J.; Ashfold, M. N. R.; Pearce, S. R. J., The Structure and Composition of Lithium Fluoride Films Grown by Off-axis Pulsed Laser Ablation. *Applied Surface Science* 2003, 217 (1-4), 68-77.
- 52. Herron, N.; Farneth, W. E., The Design and Synthesis of Heterogeneous Catalyst Systems. *Advanced Materials* **1996**, 8 (12), 959-968.
- 53. Horiike, Y.; Tanaka, T.; Nakano, M.; Iseda, S.; Sakaue, H.; Nagata, A.; Shindo, H.; Miyazaki, S.; Hirose, M., Digital Chemical Vapor-Deposition and Etching Technologies for Semiconductor Processing. *Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films* 1990, 8 (3), 1844-1850.
- 54. Hung, L. S.; Tang, C. W.; Mason, M. G., Enhanced Electron Injection in Organic Electroluminescence Devices Using an Al/LiF Electrode. *Applied Physics Letters* 1997, 70 (2), 152-154.

- 55. Hussain, M. M.; Song, S.-C.; Barnett, J.; Kang, C. Y.; Gebara, G.; Sassman, B.; Moumen, N., Plasma-Induced Damage in High-k/Metal Gate Stack Dry Etch. *IEEE Electron Device Letters* 2006, 27 (12), 972-974.
- Iwahori, K.; Furuta, M.; Taki, Y.; Yamamura, T.; Tanaka, A., Optical Properties of Fluoride Thin Films Deposited by RF Magnetron Sputtering. *Applied Optics* 2006, 45 (19), 4598-4602.
- Jabbour, G. E.; Kippelen, B.; Armstrong, N. R.; Peyghambarian, N., Aluminum Based Cathode Structure for Enhanced Electron Injection in Electroluminescent Organic Devices. *Applied Physics Letters* 1998, 73 (9), 1185-1187.
- Jia, W.-Z.; Lu, J.-Q.; Chen, P.; Wang, Y.-J.; Luo, M.-F., A Novel Method for the Synthesis of Well-Crystallized beta-AlF₃ with High Surface Area Derived from gamma-Al₂O₃. *Journal of Materials Chemistry* 2011, 21 (25), 8987-8990.
- Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H., Enhanced Stability of LiCoO₂ Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition. *Journal of the Electrochemical Society* 2010, 157 (1), A75-A81.
- Jung, Y. S.; Cavanagh, A. S.; Riley, L. A.; Kang, S. H.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H., Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries. *Advanced Materials* 2010, 22 (19), 2172-2176.
- Kemnitz, E.; Gross, U.; Rudiger, S.; Shekar, C. S., Amorphous Metal Fluorides with Extraordinary High Surface Areas. *Angewandte Chemie-International Edition* 2003, 42 (35), 4251-4254.
- Kemnitz, E.; Menz, D. H., Fluorinated Metal Oxides and Metal Fluorides as Heterogeneous Catalysts. *Progress in Solid State Chemistry* 1998, 26 (2), 97-153.
- 63. Khomenkova, L., Analysis of PL Spectrum Shape of Si-based Materials as a Tool for Determination of Si Crystallites' Distribution. *Physica B* **2014**, 453, 19-25.
- 64. Kim, H.; King, A. H., Grain Growth and Texture Development in Lithium Fluoride Thin Films. *Journal of Materials Research* **2008**, 23 (2), 452-462.

- Kim, J. Y.; George, S. M., Tin Monosulfide Thin Films Grown by Atomic Layer Deposition Using Tin 2,4-Pentanedionate and Hydrogen Sulfide. *Journal of Physical Chemistry C* 2010, 114 (41), 17597-17603.
- 66. Kim, Y. Y.; Lim, W. S.; Park, J. B.; Yeom, G. Y., Layer by Layer Etching of the Highly Oriented Pyrolythic Graphite by Using Atomic Layer Etching. *Journal of the Electrochemical Society* 2011, 158 (12), D710-D714.
- Koenig, R.; Scholz, G.; Scheurell, K.; Heidemann, D.; Buchem, I.; Unger, W. E. S.; Kemnitz, E., Spectroscopic Characterization of Crystalline AlF₃ Phases. *Journal of Fluorine Chemistry* 2010, 131 (1), 91-97.
- Konig, D.; Scholz, R.; Zahn, D. R. T.; Ebest, G., Band Diagram of the AlF₃/SiO₂/Si
 System. *Journal of Applied Physics* 2005, 97 (9).
- Krahl, T.; Vimont, A.; Eltanany, G.; Daturi, M.; Kemnitz, E., Determination of the Acidity of High Surface AlF₃ by IR Spectroscopy of Adsorbed CO Probe Molecules. *Journal of Physical Chemistry C* 2007, 111 (49), 18317-18325.
- Krouse, I. H.; Wenthold, P. G., Fluorotrimethylsilane Affinities of Anionic Nucleophiles: A Study of Fluoride-induced Desilylation. *Journal of the American Society for Mass Spectrometry* 2005, 16 (5), 697-707.
- Kruschwitz, J. D. T.; Pawlewicz, W. T., Optical and Durability Properties of Infrared Transmitting Thin Films. *Applied Optics* 1997, 36 (10), 2157-2159.
- Kubota, N. A.; Economou, D. J.; Plimpton, S. J., Molecular Dynamics Simulations of Low-Energy (25-200 eV) Argon Ion Interactions with Silicon Surfaces: Sputter Yields and Product Formation Pathways. *Journal of Applied Physics* 1998, 83 (8), 4055-4063.
- Kuhn, K. J., Considerations for Ultimate CMOS Scaling. *IEEE Transactions on Electron Devices* 2012, 59 (7), 1813-1828.
- Kukli, K.; Ritala, M.; Leskela, M., Low-Temperature Deposition of Zirconium Oxide-Based Nanocrystalline Films by Alternate Supply of Zr[OC(CH₃)₃]₄ and H₂O. *Chemical Vapor Deposition* 2000, 6 (6), 297-302.
- Kumar, M.; Khan, S. A.; Rajput, P.; Singh, F.; Tripathi, A.; Avasthi, D. K.; Pandey, A. C., Size Effect on Electronic Sputtering of LiF Thin Films. *Journal of Applied Physics* 2007, 102 (8).

- 76. Kumar, M.; Rajput, P.; Khan, S. A.; Avasthi, D. K.; Pandey, A. C., Substrate Effect on Electronic Sputtering Yield in Polycrystalline Fluoride (LiF, CaF₂ and BaF₂) Thin Films. *Applied Surface Science* **2010**, 256 (7), 2199-2204.
- Laermer, F.; Schilp, A. Plasma Polymerizing Temporary Etch Atop U.S. Patent No. 5,501,893 1996.
- Lapianosmith, D. A.; Eklund, E. A.; Himpsel, F. J.; Terminello, L. J., Epitaxy of LiF on Ge(100). *Applied Physics Letters* 1991, 59 (17), 2174-2176.
- Lee, C. C.; Liu, M. C.; Kaneko, M.; Nakahira, K.; Takano, Y., Characterization of AlF₃
 Thin Films at 193 nm by Thermal Evaporation. *Applied Optics* 2005, 44 (34), 7333-7338.
- Lee, C. G. N.; Kanarik, K. J.; Gottscho, R. A., The Grand Challenges of Plasma Etching: A Manufacturing Perspective. *Journal of Physics D-Applied Physics* 2014, 47 (27).
- 81. Lee, Y.; Cavanagh, A. S.; George, S. M., Atomic Layer Deposition of AlF₃ Using Trimethylaluminum and Hydrogen Fluoride-Pyridine, *Proceedings of the 13th International Conference on Atomic Layer Deposition*, San Diego, California, July 28-31, 2013.
- Lee, Y.; DuMont, J. W.; Cavanagh, A. S.; George, S. M., Atomic Layer Deposition of AlF3 Using Trimethylaluminum and Hydrogen Fluoride. *Submitted to Journal of Physical Chemistry C* 2015.
- Lee, Y.; DuMont, J. W.; George, S. M., Mechanism of Thermal Al₂O₃ Atomic Layer Etching Using Sequential Reactions with Sn(acac)₂ and HF. *Submitted to Chemistry of Materials* 2015.
- Lee, Y.; DuMont, J. W.; George, S. M., Atomic Layer Etching of HfO2 Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)₂ and HF. *ECS Journal of Solid State Science and Technology* 2015, 4 (6), N5013-N5022.
- Lee, Y.; George, S. M., Atomic Layer Etching of Al₂O₃ Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)₂ and HF. *ACS Nano* 2015, 9, 2061-2070.
- Lee, Y.; Piper, D. M.; Cavanagh, A. S.; Young, M. J.; Lee, S.-H.; George, S. M., .
 Atomic Layer Deposition of Lithium Ion Conducting (AlF₃)(LiF)_x Alloys Using Trimethylaluminum, Lithium Hexamethyldisilazide and Hydrogen Fluoride-Pyridine, *Proceedings of the 14th International Conference on Atomic Layer Deposition*, Kyoto, Japan, June 15-18, **2014**.

- Lee, Y.; Yoon, B.; Cavanagh, A. S.; George, S. M., Molecular Layer Deposition of Aluminum Alkoxide Polymer Films Using Trimethylaluminum and Glycidol. *Langmuir* 2011, 27 (24), 15155-15164.
- 88. Lennard, W. N., QUARK ver. 1.3, 2001 http://www.physics.uwo.ca/~wlennard.
- 89. Leskela, M.; Ritala, M., Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges. *Angewandte Chemie-International Edition* **2003**, 42 (45), 5548-5554.
- 90. Li, C. L.; Gu, L.; Maier, J., Enhancement of the Li Conductivity in LiF by Introducing Glass/Crystal Interfaces. *Advanced Functional Materials* **2012**, 22 (6), 1145-1149.
- Li, C. L.; Guo, X. X.; Gu, L.; Samuelis, D.; Maier, J., Ionic Space-Charge Depletion in Lithium Fluoride Thin Films on Sapphire (0001) Substrates. *Advanced Functional Materials* 2011, 21 (15), 2901-2905.
- 92. Li, H. H., Refractive Index of Alkali Halides and Its Wavelength and Temperature Derivatives. *Journal of Physical and Chemical Reference Data* **1976**, 5 (2), 329-528.
- Lide, D. R., CRC Handbook of Chemistry and Physics. 85th ed.; CRC Press: Boca Raton, FL, 2005.
- Lim, W. S.; Kim, Y. Y.; Kim, H.; Jang, S.; Kwon, N.; Park, B. J.; Ahn, J.-H.; Chung, I.;
 Hong, B. H.; Yeom, G. Y., Atomic Layer Etching of Graphene for Full Graphene Device Fabrication. *Carbon* 2012, 50 (2), 429-435.
- 95. Lim, W. S.; Park, J. B.; Park, J. Y.; Park, B. J.; Yeom, G. Y., Low Damage Atomic Layer Etching of ZrO₂ by Using BCl₃ Gas and Ar Neutral Beam. *Journal of Nanoscience and Nanotechnology* 2009, 9 (12), 7379-7382.
- 96. Lim, W. S.; Park, S. D.; Park, B. J.; Yeom, G. Y., Atomic Layer Etching of (100)/(111) GaAs with Chlorine and Low Angle Forward Reflected Ne Neutral Beam. *Surface and Coatings Technology* 2008, 202 (22-23), 5701-5704.
- 97. Linstrom, P. J.; Mallard, W. G., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).
- 98. Maki, P. A.; Ehrlich, D. J., Laser Bilayer Etching of GaAs Surfaces. *Applied Physics Letters* **1989**, 55 (2), 91-94.
- Mamantov, G.; Marassi, R., Molten Salt Chemistry: An Introduction and Selected Applications. 1987; Vol. 202

- Mantymaki, M.; Hamalainen, J.; Puukilainen, E.; Munnik, F.; Ritala, M.; Leskela, M.,
 Atomic Layer Deposition of LiF Thin Films from Lithd and TiF₄ Precursors. *Chemical Vapor Deposition* 2013, 19 (4-6), 111-116.
- 101. Mantymaki, M.; Hamalainen, J.; Puukilainen, E.; Sajavaara, T.; Ritala, M.; Leskela, M., Atomic Layer Deposition of LiF Thin Films from Lithd, Mg(thd)₂, and TiF₄ Precursors. *Chemistry of Materials* **2013**, 25 (9), 1656-1663.
- Mäntymäki, M.; Heikkilä, M. J.; Puukilainen, E.; Mizohata, K.; Marchand, B.; Räisänen, J.; Ritala, M.; Leskelä, M., Atomic Layer Deposition of AlF₃ Thin Films Using Halide Precursors *Chemistry of Materials* 2014, 27, 604-611.
- 103. Marchack, N.; Chang, J. P., Perspectives in Nanoscale Plasma Etching: What Are the Ultimate Limits? *Journal of Physics D: Applied Physics* **2011**, 44 (17), 174011.
- 104. Martin, P. M.; Olsen, L. C.; Johnston, J. W.; Depoy, D. M., Investigation of Sputtered HfF₄ Films and Application to Interference Filters for Thermophotovoltaics. *Thin Solid Films* 2002, 420, 8-12.
- Matsuura, T.; Murota, J.; Sawada, Y.; Ohmi, T., Self-Limited Layer-by-Layer Etching of Si by Alternated Chlorine Adsorption and Ar⁺ Ion Irradiation. *Applied Physics Letters* 1993, 63 (20), 2803-2805.
- Matsuura, T.; Sugiyama, T.; Murota, J., Atomic-Layer Surface Reaction of Chlorine on Si and Ge Assisted by an Ultraclean ECR Plasma. *Surface Science* 1998, 402 (1-3), 202-205.
- 107. McCormick, J. A.; Cloutier, B. L.; Weimer, A. W.; George, S. M., Rotary Reactor for Atomic Layer Deposition on Large Quantities of Nanoparticles. *Journal of Vacuum Science & Technology A* 2007, 25 (1), 67-74.
- Meguro, T.; Hamagaki, M.; Modaressi, S.; Hara, T.; Aoyagi, Y.; Ishii, M.; Yamamoto,
 Y., Digital Etching of GaAs New Approach of Dry Etching to Atomic Ordered
 Processing. *Applied Physics Letters* 1990, 56 (16), 1552-1554.
- Meguro, T.; Ishii, M.; Sugano, T.; Gamo, K.; Aoyagi, Y., Control of the Etching Reaction of Digital Etching Using Tunable UV Laser Irradiation. *Applied Surface Science* 1994, 82-3, 193-199.
- Mehrotra, R. C.; Bohra, R.; Gaur, D. P., Metal Beta-Diketonates and Allied Derivatives.
 Academic Press: London, 1978; p viii, 382 p.

- Metzler, D.; Bruce, R. L.; Engelmann, S.; Joseph, E. A.; Oehrlein, G. S., Fluorocarbon
 Assisted Atomic Layer Etching of SiO₂ using Cyclic Ar/C₄F₈ Plasma. *Journal of Vacuum Science & Technology A* 2014, 32 (2), 020603.
- Miikkulainen, V.; Leskela, M.; Ritala, M.; Puurunen, R. L., Crystallinity of Inorganic Films Grown by Atomic Layer Deposition: Overview and General Trends. *Journal of Applied Physics* 2013, 113 (2), 021301.
- 113. Min, K. S.; Kang, S. H.; Kim, J. K.; Jhon, Y. I.; Jhon, M. S.; Yeom, G. Y., Atomic Layer Etching of Al₂O₃ Using BCl3/Ar for the Interface Passivation Layer of III-V MOS Devices. *Microelectronic Engineering* **2013**, 110, 457-460.
- 114. Mistry, K. e. a., A 45nm logic technology with high-k plus metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging.
 2007 IEEE International Electron Devices Meeting, Vols 1 and 2 2007, 247-250.
- Montereali, R. M.; Baldacchini, G.; Martelli, S.; Docarmo, L. C. S., LiF Films Production and Characterization. *Thin Solid Films* 1991, 196 (1), 75-83.
- 116. Moore, G., Cramming More Components onto Integrated Circuits. *Electronics Letters* 1965, 38 (8).
- Morozova, N. B.; Zherikova, K. V.; Baidina, I. A.; Sysoev, S. V.; Semyannikov, P. P.;
 Yakovkina, L. V.; Smirnova, T. P.; Gelfond, N. V.; Igumenov, I. K.; Carta, G.; Rossetto,
 G., Volatile Hafnium(IV) Compounds with Beta-Diketonate and Cyclopentadienyl
 Derivatives. *Journal of Physics and Chemistry of Solids* 2008, 69 (2-3), 673-679.
- Myung, S. T.; Lee, K. S.; Yoon, C. S.; Sun, Y. K.; Amine, K.; Yashiro, H., Effect of AlF₃ Coating on rhermal Behavior of Chemically Delithiated Li_{0.35}[Ni_{1/3}Co_{1/3}Mn_{1/3}]O₂. *Journal of Physical Chemistry C* 2010, 114 (10), 4710-4718.
- Nakamoto, K.; Martell, A. E.; McCarthy, P. J., Infrared Sectra of Metal Chelate Compounds .3. Infrared Spectra of Acetylacetonates of Divalent Metals. *Journal of the American Chemical Society* 1961, 83 (6), 1272-&.
- Neumayer, D. A.; Cartier, E., Materials Characterization of ZrO₂-SiO₂ and HfO₂-SiO₂
 Binary Oxides Deposited by Chemical Solution Deposition. *Journal of Applied Physics* 2001, 90 (4), 1801-1808.

- Niisaka, S.; Saito, T.; Saito, J.; Tanaka, A.; Matsumoto, A.; Otani, M.; Biro, R.; Ouchi, C.; Hasegawa, M.; Suzuki, Y.; Sone, K., Development of Optical Coatings for 157-nm Lithography. I. Coating Materials. *Applied Optics* 2002, 41 (16), 3242-3247.
- 122. Oi, T. Amorphous Lithium Fluoaluminate. U.S. Patent No. 4,367,267 1983.
- Oi, T., Ionic-Conductivity of LiF Thin-Films Containing Divalent or Trivalent Metal Fluorides. *Materials Research Bulletin* 1984, 19 (4), 451-457.
- Oi, T.; Miyauchi, K., Amorphous Thin-Film Ionic Conductors of mLiF.nAlF₃. *Materials Research Bulletin* 1981, 16 (10), 1281-1289.
- Olah, G. A.; Nojima, M.; Kerekes, I., Synthetic Methods and Reactions .2.
 Hydrofluorination of Alkenes, Cyclopropane and Alkynes with (Trialkylamine) Reagents. *Synthesis-Stuttgart* 1973, (12), 779-780.
- Ott, A. W.; Klaus, J. W.; Johnson, J. M.; George, S. M., Al₂O₃ Thin Film Growth on Si(100) Using Binary Reaction Sequence Chemistry. *Thin Solid Films* 1997, 292 (1-2), 135-144.
- 127. Park, J. B.; Lim, W. S.; Park, B. J.; Park, I. H.; Kim, Y. W.; Yeom, G. Y., Atomic Layer Etching of Ultra-Thin HfO₂ Film for Gate Oxide in MOSFET Devices. *Journal of Physics D: Applied Physics* 2009, 42 (5), 055202.
- 128. Park, J. B.; Lim, W. S.; Park, S. D.; Park, Y. J.; Yeom, G. Y., Etch Characteristics of TiO₂ Etched by Using an Atomic Layer Etching Technique with BCl₃ Gas and an Ar Neutral Beam. *Journal of the Korean Physical Society* **2009**, 54 (3), 976-980.
- Park, S. D.; Lee, D. H.; Yeom, G. Y., Atomic Layer Etching of Si(100) and Si(111)
 Using Cl₂ and Ar Neutral Beam. *Electrochemical and Solid-State Letters* 2005, 8 (8),
 C106-C109.
- 130. Park, S. D.; Lim, W. S.; Park, B. J.; Lee, H. C.; Bae, J. W.; Yeom, G. Y., Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO₂ using BCl₃ and Ar Neutral Beam. *Electrochemical and Solid-State Letters* **2008**, 11 (4), H71-H73.
- 131. Park, S. D.; Oh, C. K.; Bae, J. W.; Yeom, G. Y.; Kim, T. W.; Song, J. I.; Jang, J. H., Atomic Layer Etching of InP Using a Low Angle Forward Reflected Ne Neutral Beam. *Applied Physics Letters* 2006, 89 (4), 043109.

- Peled, E.; Golodnitsky, D.; Ardel, G., Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. *Journal of the Electrochemical Society* 1997, 144 (8), L208-L210.
- 133. Pellicori, S. F.; Colton, E., Fluoride Compounds for IR Coatings. *Thin Solid Films* 1992, 209 (1), 109-115.
- Perea, A.; Gonzalo, J.; Afonso, C. N.; Martelli, S.; Montereali, R. M., On the Growth of LiF Films by Pulsed Laser Deposition. *Applied Surface Science* 1999, 138, 533-537.
- Pilvi, T.; Hatanpaa, T.; Puukilainen, E.; Arstila, K.; Bischoff, M.; Kaiser, U.; Kaiser, N.; Leskela, M.; Ritala, M., Study of a Novel ALD Process for Depositing MgF₂ Thin Films. *Journal of Materials Chemistry* 2007, 17 (48), 5077-5083.
- Pilvi, T.; Puukilainen, E.; Arstila, K.; Leskela, M.; Ritala, M., Atomic Layer Deposition of LaF₃ Thin Films Using La(thd)₃ and TiF₄ as Precursors. *Chemical Vapor Deposition* 2008, 14 (3-4), 85-91.
- 137. Pilvi, T.; Puukilainen, E.; Kreissig, U.; Leskela, M.; Ritala, M., Atomic Layer Deposition of MgF₂ Thin Films Using TaF₅ as a Novel Fluorine Source. *Chemistry of Materials* 2008, 20 (15), 5023-5028.
- Pilvi, T.; Puukilainen, E.; Munnik, F.; Leskela, M.; Ritala, M., ALD of YF₃ Thin Films from TiF₄ and Y(thd)₃ Precursors. *Chemical Vapor Deposition* **2009**, 15 (1-3), 27-32.
- Prada, S.; Martinez, U.; Pacchioni, G., Work Function Changes Induced by Deposition of Ultrathin Dielectric Films on Metals: A Theoretical Analysis. *Physical Review B* 2008, 78 (23).
- 140. Profijt, H. B.; Potts, S. E.; van de Sanden, M. C. M.; Kessels, W. M. M., Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. *Journal of Vacuum Science & Technology A* 2011, 29 (5), 050801.
- 141. Pulker, H. K., Characterization of Optical Thin Films. *Applied Optics* 1979, 18 (12), 1969-1977.
- Putkonen, M.; Szeghalmi, A.; Pippel, E.; Knez, M., Atomic Layer Deposition of Metal Fluorides Through Oxide Chemistry. *Journal of Materials Chemistry* 2011, 21 (38), 14461-14465.
- Rauf, S.; Sparks, T.; Ventzek, P. L. G.; Smirnov, V. V.; Stengach, A. V.; Gaynullin, K. G.; Pavlovsky, V. A., A Molecular Dynamics Investigation of Fluorocarbon Based

Layer-by-layer Etching of Silicon and SiO₂. *Journal of Applied Physics* **2007**, 101 (3), 033308.

- 144. Riha, S. C.; Libera, J. A.; Elam, J. W.; Martinson, A. B. F., Design and Implementation of an Integral Wall-Mounted Quartz Crystal Microbalance for Atomic Layer Deposition. *Review of Scientific Instruments* 2012, 83 (9), 094101.
- 145. Ritala, M.; Leskela, M.; Dekker, J. P.; Mutsaers, C.; Soininen, P. J.; Skarp, J., Perfectly Conformal TiN and Al₂O₃ Films Deposited by Atomic Layer Deposition. *Chemical Vapor Deposition* **1999**, 5 (1), 7-9.
- Robertson, J., High Dielectric Constant Oxides. *European Physical Journal Applied Physics* 2004, 28 (3), 265-291.
- Roessler, D. M.; Walker, W. C., Electronic Spectrum of Crystalline Lithium Fluoride. Journal of Physics and Chemistry of Solids 1967, 28 (8), 1507-&.
- 148. Rudenko, T.; Collaert, N.; De Gendt, S.; Kilchytska, V.; Jurczak, M.; Flandre, D., Effective Mobility in FinFET Structures with HfO₂ and SiON Gate Dielectrics and TaN Gate Electrode. *Microelectronic Engineering* **2005**, 80, 386-389.
- Sakaue, H.; Iseda, S.; Asami, K.; Yamamoto, J.; Hirose, M.; Horiike, Y., Atomic Layer Controlled Digital Etching of Silicon. *Japanese Journal of Applied Physics Part 1* 1990, 29 (11), 2648-2652.
- Schink, H.; Kolbe, J.; Zimmermann, F.; Ristau, D.; Welling, H. Reactive Ion-Beam-Sputtering of Fluoride Coatings for the UV/VUV Range, *Proceedings of SPIE June 1*, 1991; p 327.
- 151. Schulz, L. G., The Structure and Growth of Evaporation LiF and NaCl Films on Amorphous Substrates. *Journal of Chemical Physics* **1949**, 17 (11), 1153-1162.
- Shannon, R. D.; Shannon, R. C.; Medenbach, O.; Fischer, R. X., Refractive Index and Dispersion of Fluorides and Oxides. *Journal of Physical and Chemical Reference Data* 2002, 31 (4), 931-970.
- 153. Smith, J. L.; Budenste, P. P., Dielectric Breakdown in Thin Evaporated Films of CaF₂, MgF₂, NaF, and LiF. *Journal of Applied Physics* 1969, 40 (9), 3491-&.
- Sneh, O.; George, S. M., Thermal Stability of Hydroxyl Groups on a Well-Defined Silica Surface. *Journal of Physical Chemistry* 1995, 99 (13), 4639-4647.

- 155. Stalke, D.; Keweloh, N.; Klingebiel, U.; Noltemeyer, M.; Sheldrick, G. M., From Lithiated Aminofluorosilanes to Monomeric and Dimeric Iminosilanes. *Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences* **1987**, 42 (10), 1237-1244.
- 156. Staritzky, E.; Asprey, L. B., Aluminum Trifluoride, AlF₃. *Analytical Chemistry* 1957, 29 (6), 984-984.
- 157. Steger, R.; Masel, R., Chemical Vapor Etching of Copper Using Oxygen and 1,1,1,5,5,5 Hexafluoro-2,4-Pentanedione. *Thin Solid Films* 1999, 342 (1-2), 221-229.
- Sugiyama, T.; Matsuura, T.; Murota, J., Atomic-Layer Etching of Ge Using an Ultraclean ECR Plasma. *Applied Surface Science* 1997, 112, 187-190.
- 159. Sun, Y. K.; Lee, M. J.; Yoon, C. S.; Hassoun, J.; Amine, K.; Scrosati, B., The Role of AlF₃ Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries. *Advanced Materials* **2012**, 24 (9), 1192-1196.
- Suntola, T.; Antson, J. Method for Producing Compound Thin Films. U.S. Patent No. 4,058,430 1977.
- Taki, Y., Film Structure and Optical Constants of Magnetron-Sputtered Fluoride Films for Deep Ultraviolet Lithography. *Vacuum* 2004, 74 (3-4), 431-435.
- 162. Targove, J. D.; Bovard, B. G.; Lingg, L. J.; Macleod, H. A., Densification of Aluminum Fluoride Thin-Films by Ion-Assisted Deposition. *Thin Solid Films* **1988**, 159, L57-L59.
- Tayyari, S. F.; Milani-nejad, F., Vibrational Assignment of Acetylacetone. Spectrochimica Acta Part A 2000, 56 (14), 2679-2691.
- 164. Tsormpatzoglou, A.; Tassis, D. H.; Dimitriadis, C. A.; Mouis, M.; Ghibaudo, G.; Collaert, N., Electrical Characterization and Design Optimization of FinFETs with a TiN/HfO₂ Gate Stack. *Semiconductor Science and Technology* **2009**, 24 (12).
- 165. Utkin, A. N.; Girichev, G. V.; Giricheva, N. I.; Khaustov, S. V., Structure and Vibrational Frequencies of Aluminum trifluoride and Gallium Trifluoride. *Journal of Structural Chemistry* **1986**, 27 (2), 212-215.
- van der Meulen, P. A.; Mann, R. F., The Vapor Pressure of Pyridine. *Journal of the American Chemical Society* 1931, 53, 451-453.
- Verma, P.; Maire, P.; Novak, P., A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-ion Batteries. *Electrochimica Acta* 2010, 55 (22), 6332-6341.

- 168. Vilakazi, B. M.; Monnahela, O. S.; Wagener, J. B.; Carstens, P. A. B.; Ntsoane, T., A Thermogravimetric Study of the Fluorination of Zirconium and Hafnium Oxides with Anhydrous Hydrogen Fluoride Gas. *Journal of Fluorine Chemistry* **2012**, 141, 64-68.
- 169. Vogli, E.; Metzler, D.; Oehrlein, G. S., Feasibility of Atomic Layer Etching of Polymer Material Based on Sequential O₂ Exposure and Ar Low-Pressure Plasma-Etching. *Applied Physics Letters* 2013, 102 (25), 253105.
- Walter, S.; Klingebiel, U.; Noltemeyer, M., Insertion, Isomerization, and Cycloaddition Reactions of Lithiated Aminofluorosilanes. *Chemische Berichte-Recueil* 1992, 125 (4), 783-788.
- Wander, A.; Bailey, C. L.; Searle, B. G.; Mukhopadhyay, S.; Harrison, N. M.,
 Identification of Possible Lewis Acid Sites on the beta-AlF₃(100) surface: An Ab initio
 Total Energy Study. *Physical Chemistry Chemical Physics* 2005, 7 (23), 3989-3993.
- Wang, Y.; Ho, M. T.; Goncharova, L. V.; Wielunski, L. S.; Rivillon-Amy, S.; Chabal, Y. J.; Gustafsson, T.; Moumen, N.; Boleslawski, M., Characterization of Ultra-Thin Hafnium Oxide Films Grown on Silicon by Atomic Layer Deposition Using Tetrakis(ethylmethyl-amino)hafnium and Water Precursors. *Chemistry of Materials* 2007, 19 (13), 3127-3138.
- Waters, T. N., Some Investigations in the Zirconium Tetrafluoride-Water System. Journal of Inorganic & Nuclear Chemistry 1960, 15 (3-4), 320-328.
- Weidlein, J.; Krieg, V., Vibrational Spectra of Dimethyl- and Diethylaluminium Fluoride. *Journal of Organometallic Chemistry* 1968, 11 (1), 9.
- Yamamoto, J.; Kawasaki, T.; Sakaue, H.; Shingubara, S.; Horiike, Y., Digital Etching Study and Fabrication of Fine Si Lines and Dots. *Thin Solid Films* 1993, 225 (1-2), 124-129.
- Ylilammi, M.; Rantaaho, T., Metal Fluoride Thin-Films Prepared by Atomic Layer Deposition. *Journal of the Electrochemical Society* 1994, 141 (5), 1278-1284.
- 177. Yoder, M. N. Flooding Diamond Surface with Pulse of Nitrogen Dioxide, Impacting with Pulse of Ions of Noble and Hydrogen Gases *U.S. Patent No. 4,756,794 A* **1987**.
- Zherikova, K. V.; Morozova, N. B.; Zelenina, L. N.; Sysoev, S. V.; Chusova, T. P.; Igumenov, I. K., Thermal Properties of Hafnium(IV) and Zirconium(IV) Beta-Diketonates. *Journal of Thermal Analysis and Calorimetry* 2008, 92 (3), 729-734.
179. Zimbov, K.; Hastie, J. W.; Margrave, J. L., Mass Spectrometric Studies at High Temperatures. 24. Thermodynamics of Vaporization of SnF₂ and PbF₂ and Dissociation Energies of SnF and PbF. *Transactions of the Faraday Society* **1968**, 64 (544P), 861-867.