
!
!
!
!
!
!!

A MOBILE AND CLOUD-BASED FRAMEWORK FOR PLANT STRESS 

DETECTION FROM CROWDSOURCED VISUAL AND INFRARED IMAGERY 

by 

DANIEL ZUKOWSKI 

B.A., Yale University, 2004 

!!!!!
A thesis submitted to the 

 Faculty of the Graduate School of the  

University of Colorado in partial fulfillment 

of the requirement for the degree of 

Master of Science 

Department of Computer Science 

2016 

!



!!
SIGNATURE PAGE !!!
This thesis entitled: 

A mobile and cloud-based framework for plant stress detection from crowdsourced visual 
and infrared imagery 

written by Daniel Zukowski 
has been approved for the Department of Computer Science !!!!!

       
Nikolaus Correll !!!!

       
Dirk Grunwald !!!!

       
Qin Lv !!

Date    !!
The final copy of this thesis has been examined by the signatories, and we 

find that both the content and the form meet acceptable presentation standards 
of scholarly work in the above mentioned discipline. !

ii



!
ABSTRACT 

!
Zukowski, Daniel (M.S., Computer Science) 

A mobile and cloud-based framework for plant stress detection from crowdsourced visual 

and infrared imagery 

Thesis directed by Assistant Professor Nikolaus Correll 

!
A cloud infrastructure and Android-based system were developed to enable amateurs and 

professionals to make use of laboratory techniques for remote plant disease detection. The 

system allows users to upload and analyze plant data as citizen scientists, helping to 

improve models for remote disease detection in horticultural settings by greatly increasing 

the quantity and diversity of data available for analysis by the community. Techniques 

used in research laboratories for remote disease detection are generally not available to 

home gardeners and small commercial farmers. Lab equipment is cost-prohibitive and 

experiments highly controlled, leading to models that are not necessarily transferable to the 

user’s environment. Plant producers rely on expert knowledge from training, experience, 

and extension service professionals to accurately and reliably diagnose and quantify plant 

health. Techniques for disease detection using visible and infrared imagery have been 

proven in research studies and can now be made available to individuals due to 

advancements in smartphones and low-cost thermal imaging devices. The framework 

presented in this paper provides an internet-accessible data pipeline for image acquisition, 

preprocessing, stereo rectification, disparity mapping, registration, feature extraction, and 

machine learning, designed to support research efforts and to make plant stress detection 

technology readily available to the public. A system of this kind has the potential to benefit  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both researchers and plant growers: producers can collectively create large labeled data 

sets which researchers can use to build and improve detection models, returning value to 

growers in the form of generalizable models that work in real-world horticultural settings. 

We demonstrate the components of the framework and show data from a water stress 

experiment on basil plants performed using the mobile app and cloud-based services.  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CHAPTER 1 

!
INTRODUCTION 

!
 It is widely accepted that a substantial increase in global agricultural output will be 

required in coming decades to support a rising world population. To support an estimated 9 

billion people and their livestock in 2050 will require a 70% increase in global food, animal 

feed and biofuel crop production (FAO 2009). Adding to this challenge is the reality that 

crop yields are significantly limited due to the effects of pathogens, insects, weeds, and 

environmental influences. Fungi, bacteria, and viruses account for 18% of overall crop loss 

(Oerke et al. 2004), while abiotic environmental stressors account for an additional 50% of 

losses (Bray et al. 2000). In situations where these factors are identified early in their 

emergence and properly mitigated, crop yield and profit losses for producers can be 

significantly reduced (Roberts et al. 2006). Equipping growers with the ability to diagnose 

the presence of plant stressors during early onset is important for informing targeted plant 

protection actions aimed at maintaining high quality and quantity in crop yields. Thus, 

early crop stress detection systems deployed worldwide have the potential to improve the 

stability of the food supply needed for a rapidly growing population. 

 Historically, crop health diagnostics have been performed by farmers relying on 

their own expertise and the assistance of professionals and laboratory services. In the field, 

diagrammatic scales are used to identify and estimate severity of disease. Extension service 

professionals often receive emailed images of sick plants from which they then use a variety 

of diagnostic guides and their own experience to determine the plant’s ailment. In the 

laboratory, samples of plant tissue, water, and soil can be analyzed by skilled plant 

pathologists with specialized equipment. These traditional diagnostic methods have long  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been applied in horticultural settings, but is it possible to approach the disease detection 

problem from a computer science perspective? In recent decades, experiments in 

autonomous diagnostics have been conducted with promising results using a variety of data 

sources and analysis techniques. Leveraging advancements in sensor hardware, computer 

vision, and machine learning, researchers have tested the utility of techniques from these 

fields by applying them towards the task of autonomous assessment of plant stressors using 

remotely acquired data. Studies have shown that such autonomous systems can indeed 

make significantly accurate diagnoses without physically interacting with the plant or its 

immediate environment. In some cases these methods can perform better than human 

diagnosticians by detecting diseased plants in visually pre-symptomatic states during 

pathogenesis (Lindenthal et al. 2005; Oerke et al. 2005). These techniques are made 

possible by the observation that biotic and abiotic stressors cause changes in plant color, 

structure, and temperature which alter the spectral properties of plant tissue, particularly 

in visible and infrared wavelengths, and can therefore be measured non-invasively by 

electromagnetic sensors including visible light cameras, infrared thermal imagers, and 

fluorescence and reflectance spectrometers (Mahlein 2016). 

 The general workflow of image-based remote diagnostic pipelines consists of four 

major steps: 1) imaging the plant in multiple wave bands, 2) pre-processing the imagery, 3) 

extracting features, and 4) using statistical methods and machine learning for diagnostic 

tasks related to what Singh et al. (2015) term ICQP tasks: identification, classification, 

quantification, and prediction of stress in plants. Experimental systems have been 

developed to perform one or more of the following tasks: identify the stressor affecting a 

plant, classify a plant into discrete classes of stress level (e.g. low, moderate, and high 

stress), estimate a stress/disease severity level (%), or predict the likelihood a plant will be 

experiencing stress in the future. Many studies aim to create discriminative models  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through supervised machine learning by growing healthy and diseased plants in controlled 

environments from which labeled imagery is used to extract features. Section 1.3 mentions 

several studies that have investigated plant stress ICQP problems in this way. 

 For many years these techniques have been proven to work in controlled 

experimental settings with relatively small data sets, but we would like to test whether 

generalizable and practical models can be produced by crowdsourcing a much larger data 

set from real horticultural environments around the world. Large data sets aimed 

supporting plant stress ICQP research would allow, for example, further investigation into 

the use of powerful techniques such as deep learning (Schmidhuber 2015) which typically 

demand large quantities of training data. Deep learning methods have been applied 

successfully toward computer vision problems such as ImageNet object recognition by 

companies including Google (Szegedy et al. 2015) and Microsoft (Kaiming et al. 2015), or in 

the case of Baidu’s performance leap in speech-to-text transformation from noisy 

environments (Amodei et al. 2015). Baidu’s Andrew Ng describes the mathematical models 

and computing power underlying deep learning as powerful “rocket engines” that can be 

incredibly effective but require adequate “rocket fuel”—large heterogenous sets of training 

data—in order to reach their full potential (Ng 2015). In Baidu’s case, record-breaking 

speech recognition performance was achieved on the data set by artificially increasing the 

size and variation of the data set by applying various transforms and background noise to 

the original training data—methods which may eventually be applied in the framework 

presented in this paper. It is in this spirit that we are producing a publicly accessible 

toolset for mass data collection and analysis—a system we hope may help generate a large 

and heterogenous data set, leading to plant stress detection models and tools that can 

benefit the wider plant-growing community. It is both cost- and time-prohibitive for 

individual research groups to build these large data sets that cover the range of subjects,  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characteristics and conditions encountered in real horticultural settings. Similarly, it is 

cost-prohibitive for growers to employ the laboratory-grade techniques used by researchers 

to perform early remote detection due to the skills, equipment, and advanced computing 

required.  

 It is in pursuit of closing this gap that we have produced an open source mobile and 

cloud-based “big data” framework inspired by citizen science to serve as a locus for the 

advancement of remote disease detection research and application development. A mobile 

app allows users across the world to collect, label, and contribute data using their own 

smartphone with a low-cost thermal imaging attachment. Optical and thermal images are 

uploaded to the cloud and processed through a distributed data pipeline operating as a 

scalable microservices architecture. Processing modules deployed in Docker containers 

work together architecturally as a pipeline to perform preprocessing, feature extraction, 

and machine learning based on proven research methods for evaluating plant stress. As 

data accumulate, and models are developed and tested by researchers and other 

contributors, the community can benefit by utilizing these models in the field to perform 

plant stress ICQP tasks in real production settings. The modular, containerized 

architecture gives individual functional components of the framework the ability scale 

independently according to load, and allows the components of the system to be swapped 

with new ones as better disease assessment techniques emerge from the research 

community and become implemented into the framework. 

!
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!
1.1 Thesis Structure 

!
 Chapter 1 examines plant diagnostics, the spectral effects of stress on plants, related 

work in remote disease detection and citizen science, and new low-cost sensors that make it 

possible for non-researchers to participate in this project. Chapter 2 discusses the 

materials, methods and algorithms used by the framework in its data processing pipeline. 

Chapter 3 describes the mobile and cloud-based architecture of the framework for operation 

in a scalable production setting to support large-scale community involvement. 

Experimental results and conclusions are discussed in Chapter 4. 

!
!
1.2 Conventional methods for plant disease diagnostics 

!
 Growers have traditionally relied on their own knowledge acquired from training 

and experience, or have consulted with diagnosticians and pathologists from private 

industry and public extension services to evaluate crop health. A common in situ method 

used by growers and diagnosticians consists of a visual examination aided by pictorial keys 

that guide the observer in assessing disease type and severity. This approach to visual 

assessment has long been investigated, and the convergence towards standardized 

approaches has led to increased accuracy and reliability of visual assessment methods 

(Bock et al. 2010). Figure 1 shows an example of a visual key designed by Sepúlveda-

Chavera (2013) and used for assessment of powdery mildew in tomato caused by the 

bacterium Solanum esculentum. These keys provide standard scales that can be used by  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trained professionals, but are subject to human error and are only useful for assessing 

disease severity after symptoms have become apparent to the human eye. 

!
 

!
Figure 1: Diagrammatic scale for assessing the severity of powdery mildew in 

tomato (Solanum esculentum). !!!
 Whether symptoms are visible or not, diagnostics can be performed in the laboratory 

by testing plant tissues for the presence of pathogens. Bacterial infections can be diagnosed 

by placing pieces of infected plant tissue into nutrient media to incubate and grow the 

pathogen for identification (Schaad et al. 2001). Biotic pathogens and viruses can be 

identified using polymerase chain reaction (PCR) (Schaad et al. 2002) and enzyme-linked 

immunosorbent assay (ELISA) tests (Saettler et al. 1989; Hampton et al. 1990). Abiotic 

causes can be evaluated by analyzing nutrient content to check for deficiencies in micro- 

and macro-nutrients (Hajiboland 2012) which can produce symptoms similar to those 

caused by biotic agents (Flynn 2003). Tests of the surrounding environment (soil, water,  

6



etc.) can be performed to evaluate the contribution of additional abiotic influences such as 

pH, salinity, pesticides and other environmental pollutants. 

 Laboratory testing is widely used to directly measure potential causal agents. 

However, these diagnostic methods demand specialized skills and equipment, require 

intrusive action to obtain a physical specimen, are expensive to perform, and must be 

repeated frequently. Days or weeks can pass before results are returned to the grower, 

during which the stressor will have had time to increase its potential for crop damage. To 

minimize losses and limit mediation expenditures, stress must be detected as early as 

possible so that the grower can take precise corrective action. Therefore, methods that are 

neither expensive nor invasive, can provide results quickly, and can be repeated often by 

non-experts are needed to improve the ability of growers to perform early detection of plant 

stress. Remote detection methods in particular have the potential to fill this gap, and are 

further explored in the following sections. 

!
!
1.3 Effects of stress on spectral signature of plants 

!
 A plant’s leaf surface, internal cellular structures, pigments, and water content 

influence its appearance in the visible and infrared spectra (Knipling 1970). Stress from 

biotic and abiotic factors can cause changes in these characteristics, altering the spectral 

properties of the plant, and thus providing the rationale for remote sensing applications in 

this area. For example, in visible wavelengths, leaves suffering from chlorosis will turn 

paler in color, becoming more reflective, whereas necrotic lesions may be detectable as dark 

spots on leaves. Water content influences the plant’s emissivity in the thermal infrared 

band, causing plants affected by changes in transpiration rate or tissue health, for instance,  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to exhibit features that can be detected with thermal imaging devices. Oerke et al. (2010) 

showed that scab in apple produces symptoms that become apparent and detectable in the 

thermal infrared 1-3 days before they are detectable in visible light due to a localized 

temperature decrease in the area where lesions later appear. Similarly, Allegre et al. (2006) 

showed that affected regions of leaves in Plasmopara viticola-infected grapevine exhibit 

decreased temperatures compared to non-affected regions. Several studies have evaluated 

the effectiveness of thermal infrared imagery in assessing water stress in crop canopies 

(Blum et al. 1982; Jones et al. 2009; Raza et al. 2014). 

!
!
1.4 Related Work 

!
1.4.1 Remote Disease Detection 

!
 Disease assessment using optical imagery has been performed on tobacco and apple 

(Wijekoon et al. 2008), grapefruit (Bock et al. 2008), and cotton (Camargo and Smith 2009). 

Neumann et al. (2014) used RGB data for detection of disease in sugar beet, and their work 

is particularly relevant to our framework for its use of smartphone cameras and mobile 

apps to address the classification problem in the field. 

 Infrared thermal imaging has been used by Oerke et al. (2011) to detect scab in 

apple, and by Gomez (2014) to detect downy mildew in rose. Presymptomatic detection of 

downy mildew in cucumber has been demonstrated by Lindenthal et al. (2005) and Oerke et 

al. (2005) using infrared thermography. Belasque et al. (2008) used fluorescence 

spectroscopy to detect citrus canker, and a combination of thermal and chlorophyll-  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fluorescence imaging was used by Chaerle et al. (2004) to detect early-stage Cerscospora 

leaf spot in sugar beet. 

 A recurring theme found throughout these studies is the effectiveness of sensor 

fusion—combining data from multiple data sources—in creating stronger predictive models. 

For example, Raza et al. (2014) was able to detect water stress in spinach canopies with an 

accuracy of 97% by using both visible and thermal imagery and a classification model using 

a combination of Support Vector Machine (SVM) and Gaussian Process for Classification 

(GPC). Using color or thermal only, accuracy was lower at 68% and 92%, respectively. Raza 

et al. (2015) also produced a model to detect the presymptomatic presence of powdery 

mildew in tomato by fusing color, thermal infrared, and depth information. Adding the 

third dimension of depth via stereo imaging was shown to consistently improve the model’s 

accuracy when compared to analyses performed using color only, thermal only, and color + 

thermal. This result has led us to include depth data extraction in our framework by 

implementing rectification and disparity modules for processing unconstrained stereo 

imagery from smartphone cameras. 

 Since diseases and other stressors vary in terms of how they affect the spectral 

signature of a plant, a robust and generalizable remote detection system will likely use a 

combination of sensors and processing methods in order to learn useful parameters for 

modeling diseases in various crop types. For this reason, we designed our framework as a 

configurable microservices pipeline so that techniques from past and future studies can 

continue to be applied to the framework in the form of swappable software modules, 

improving the system as new discoveries are made. Section 3.3 discusses this architecture 

in more detail. 

!
!
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1.4.2 Software applications 

!
 Disease assessment using optical imagery has been performed on tobacco and apple 

(Wijekoon et al. 2008), grapefruit (Bock et al. 2008), and cotton (Camargo and Smith 2009). 

Neumann et al. (2014) used RGB data for detection of disease in sugar beet, and their work 

is particularly relevant to our framework for its use of smartphone cameras and mobile 

apps to address the classification problem in the field. Infrared thermal imaging has been 

used by Oerke et al. (2011) to detect scab in apple, and by Gomez (2014) to detect downy 

mildew in rose. Pre-symptomatic detection of downy mildew in cucumber has been 

demonstrated by Lindenthal et al. (2005) and Oerke et al. (2005) using infrared 

thermography. Belasque et al. (2008) used fluorescence spectroscopy to detect citrus canker, 

and a combination of thermal and chlorophyll-fluorescence imaging was used by Chaerle et 

al. (2004) to detect early-stage Cerscospora leaf spot in sugar beet. 

 A recurring theme found throughout these studies is the effectiveness of sensor 

fusion—combining data from multiple data sources—in creating stronger predictive models. 

For example, Raza et al. (2014) was able to detect water stress in spinach canopies with an 

accuracy of 97% by using both visible and thermal imagery and a classification model using 

a combination of Support Vector Machine (SVM) and Gaussian Process for Classification 

(GPC). Using color or thermal only, accuracy was lower at 68% and 92%, respectively. Raza 

et al. (2015) also produced a model to detect the pre-symptomatic presence of powdery 

mildew in tomato by fusing color, thermal infrared, and depth information. Adding the 

third dimension of depth via stereo imaging was shown to consistently improve the model’s 

accuracy when compared to analyses performed using color only, thermal only, and color + 

thermal. This result has led us to include depth data extraction in our framework by  

10



implementing rectification and disparity modules for processing unconstrained stereo 

imagery from smartphone cameras. 

 Since diseases and other stressors vary in terms of how they affect the spectral 

signature of a plant, a robust and generalizable remote detection system will likely use a 

combination of sensors and processing methods in order to learn useful parameters for 

modeling diseases in various crop types. For this reason, we designed our framework as a 

configurable microservices pipeline so that techniques from past and future studies can 

continue to be applied to the framework in the form of swappable software modules, 

improving the system as new discoveries are made. Section 3.3 discusses this architecture 

in more detail. 

!
!
1.4.3 Citizen science 

!
 The driving motivation for developing and providing this framework is the goal of 

enabling a citizen science collaboration with the global community of plant growers in order 

to accelerate and improve research and applications in early plant stress detection 

technology. Whitelaw et al. (2003) defined citizen science as “a process where concerned 

citizens, government agencies, industry, academia, community groups, and local 

institutions collaborate to monitor, track and respond to issues of common community 

[environmental] concern.” While not generally covered in the scientific peer-reviewed 

literature, several citizen science projects involving community-based monitoring (CBM) 

are covered in Conrad & Hilchey’s (2009) review. Notable citizen science projects have 

addressed topics such as radiation and air quality measurements (Safecast) [60], 

taxonomical identification and tracking of wildlife populations (BugGuide and iSpot) [11,  

11



32], climate change through observations of bud burst (BudBurst) [55], and galaxy 

classification (GalaxyZoo) [25]. 

 In recent years, citizen science projects have emerged in the plant science domain 

specifically. The Photosynq project [50] offers a handheld spectrometer and mobile app for 

collecting plant, soil, and water quality data and has led to hundreds of projects by its 

community of more than 1,000 users. Goeau et al (2011) developed a framework for 

taxonomical identification of plant species from smartphone camera photographs. Their 

system includes a mobile app that allows the public to take pictures of plant leaves and 

flowers, perform identification estimation against stored models, and add to the collective 

database for improving identification models. Several apps designed to assist with 

taxonomical identification and plant symptom evaluation can be found in Google Play and 

the Apple App Store [1, 52, 67]. 

!
!
1.5 Low-cost consumer spectral devices 

!
 In 2015, FLIR Systems, Inc. released the second generation of their FLIR One 

thermal imager for Android. As mentioned earlier, thermal imagery has been shown to be 

an effective data source in remote plant stress diagnostics, and thus is likely to be an 

important component of robust disease detection systems. We chose the FLIR One sensor to 

be used with our framework due to its wide availability and relatively low cost (the sensor 

retails for approximately $250). This makes it affordable to individuals who would be 

participants on the citizen science side of the deployed framework, and to researchers who 

may not have budgets for laboratory-grade thermal imaging equipment. According to FLIR, 

the thermal resolution of the device is 0.1 C. Compared to the Cedip Titanium, used by  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Raza (2015), for example, the FLIR One is no doubt a consumer-grade tool—it has lower 

resolution and sensitivity, and lacks a self-cooling system. One goal of our mobile app and 

cloud framework is to evaluate the utility of this device for plant stress detection tasks. We 

also looked at the $250 Seek Thermal smartphone-compatible thermal imaging device, 

however decided not to use it because it currently requires the user to perform manual 

focusing. Support for additional devices such as Seek can be added in the future by 

motivated contributors, as the mobile application code is open source and therefore open to 

improvements and extensions by the community. 

!
!

!
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CHAPTER 2 

!
MATERIALS & METHODS 

!
2.1 Hardware & Software Overview 

!
 An Android application for acquiring and uploading plant imagery and metadata 

was developed and tested on a Galaxy Note 5. The app was designed to integrate with the 

FLIR One thermal imaging camera  (Figure 2) using the Software Development Kit (SDK) 

for Android provided by FLIR Systems, Inc. [22]. Imagery and metadata are uploaded by 

the mobile app to a cluster of Ubuntu 14.04 cloud servers on Amazon’s Elastic Compute 

Cloud (EC2). Imagery is stored in Amazon’s Simple Storage Solution (S3) while metadata 

and extracted features are stored in Postgres [53] and Elasticsearch [17] databases. Optical 

and thermal images are received by an HTTPS API endpoint developed with Ruby on Rails 

[31]. Via a RabbitMQ [56] message bus, data are passed along to multiple microservice 

processing modules in a pipeline configuration deployed in Docker [16] containers. The 

microservice modules perform calibration, preprocessing, registration, rectification, feature 

extraction, and machine learning tasks designed specifically for plant stress detection. 

Functions provided by open-source libraries including OpenCV [9], numpy [45] and scikit-

learn [63] were used in developing several of the processing and learning modules. At the 

time of this writing, a web site is being developed to provide researchers with tools to 

configure, use, and extend the pipeline for plant stress ICQP tasks. An initial pipeline was 

designed and programmed with modules that implement various techniques published in 

the literature, however this debut pipeline represents only one of any number of pipelines 

that can be developed and configured according to the needs of the experimenter. The  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initial pipeline was tested and verified in the basil water stress experiment described in 

Section 4.1. 

Figure 2: FLIR One thermal imager for Android, approx. $250. 

!
!
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2.2 Pipeline 

!
 A block diagram of the cloud framework is shown in Figure 3. A complete list of 

microservice modules, their purpose, and algorithms are described in Table 1. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Figure 3: System architecture block diagram.  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!

Table 1: List of framework modules, subsystem in which they are implemented, and 
algorithms used. !

!
!

Module Purpose Subsystem Algorithms

CalibrationCollection Calibration (image acquisition) Android App -

DistortionModelingService Calibration (lens modeling) Cloud Checkerboard calibration

ImageAcquisiiton Acquisition (plant data) Android App -

IntakeService Store uploaded images in 
Amazon S3 Cloud -

UndistortionService Undistortion Cloud Checkerboard calibration

RegistrationService Rectification Cloud
Oriented FAST Rotated BRIED 
(ORB), 
8-point algorithm

DisparityMappingService Depth representation from 
stereo imagery Cloud Block Matching Stereo (BMS)

RGBExtractionService RGB extraction Cloud -

RGB2LabService RGB to Lab transform Cloud -

RGB2HSIService RGB to HSI transform Cloud -

RGB2CMYKService RGB to CMYK transform Cloud -

PixelFeatureService Pixel-based feature engineering Cloud -

GlobalFeatureService Global feature engineering Cloud -

SVMService SVM model train/test Cloud Support Vector Machine 
(SVM)

LinRegService Linear Regression train/test Cloud Linear Regression

LogRegService Logistic Regression train/test Cloud Logistic Regression

RandomForestService RandomForest train/test Cloud Random Forest

NeuralNetService Neural Network train/test Cloud N-Layer Neural Network with 
Backpropagation and Dropout
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2.3  Data Acquisition 

!
 Plant stress detection experiments using stereo imagery have often employed two or 

more cameras secured in place with mounting hardware to help maintain mechanical 

alignment between imaging elements (Biskup et al. 2007; Sabine et al. 2011; Raza 2015) . 

When cameras are aligned and calibrated to be coplanar, the stereo rectification process is 

simplified by having prior knowledge of the cameras’ spatial relationship. This type of setup 

requires at least two cameras and specialized knowledge for calibrating such camera 

configurations. However, because our framework is intended to be used with a single 

camera-equipped smartphone in conditions where a mounting device may not be available, 

the system must facilitate handheld stereo imaging in an environment of unknown 

geometry. Therefore, the framework must perform stereo image rectification in the 

uncalibrated case, which has been solved a number of ways as shown by Papadimitriou and 

Dennis (1996), Fusiello and Irsara (2008), and Kumar et al. (2010). Also, because of 

differences in the optical properties of camera lenses across smartphones, modeling lens 

distortion for each user’s device is a necessary prerequisite prior to acquiring imagery for 

the purpose of undistorting submitted images prior to rectification. The following sections 

describe the initial modules, processes, and algorithms we have implemented in the 

framework for performing calibration, acquisition, undistortion, rectification, registration, 

feature extraction, and modeling from user-generated optical and thermal imagery. 

!
!
!
!
!
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2.3.1 One-time calibration 

  

 The intrinsic properties of most camera lenses cause the appearance of straight lines 

to bend to some degree either outward from the center of the image, known as barrel 

distortion, or inward towards the center of the image resulting in pincushion distortion 

(Figure 5). Effective stereo image rectification requires undistorted input images which can 

be created by applying a transformation to raw images using information from the lens 

model. For our purposes, it would be difficult to provide pre-generated models for every 

smartphone camera lens that may be used by the community for undistorting user-

submitted imagery. Thus, we recommend that users perform a calibration step to give the 

processing pipeline necessary information to correct for their specific camera’s lens 

distortion prior to performing rectification and extracting 3D information from the stereo 

pair. 

Figure 5: Barrel distortion (left) and pincushion distortion (right). !!!
 The lens calibration module implements the checkerboard technique as described by 

Zhang (2000). A checkerboard pattern is printed out and images are taken from various 

perspectives. Using a set of 10 images (Figure 6) , the calibration algorithm detects the  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checkerboard and measures the distortion in the pattern, estimating camera and distortion 

matrices which are then applied in preprocessing for undistorting images.  

!
!
2.3.2 Image acquisition 

!
 When initiating data collection, the app first instructs the user to find an area of 

interest (AOI) and center it in the field of view at a distance that allows the subject to 

appear prominently in the image. Following on-screen instructions, the user positions the 

device slightly to the left of the AOI, rotates the camera to center the view on the AOI, and 

captures the left image, repeating this process for the right image. Thermal images are also 

captured at this time. The left, right, and thermal images are securely uploaded to the 

cloud via an HTTPS API, providing the raw data for processing through the detection 

pipeline. 

!
!
2.3.3 Metadata 

!
 Prior to image upload, the user is asked to provide additional metadata about the 

subject and its environment. The only required inputs are the type of crop (e.g. tomato, pea, 

cucumber), location (i.e. indoors or outdoors), and lighting conditions. Optional information 

includes ambient air temperature estimate and approximate distance from camera to the 

nearest area of the plant canopy. If known, the user can also report the disease, deficiency, 

or other condition affecting the plant, along with an estimate of confidence (low, medium, 

high). For devices that contain ambient an air temperature sensor (e.g. Samsung S4), the  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current ambient temperature is automatically reported. The current time is automatically 

reported. Geolocation data is reported if authorized by the user. 

!
!
2.4 Processing 

!
2.4.1 Lens distortion correction 

!
 Using the lens distortion information captured during one-time calibration, raw 

optical images are preprocessed to correct for distortion prior to performing stereo 

rectification. Figure 7 shows an image before and after processing by the undistortion 

module. Currently, the framework does not supply a module for undistortion of thermal 

images. The sharp edges in the checkerboard pattern are readily detectable in the visible 

spectrum, but this method cannot be used to correct for distortion from thermal camera 

lenses. Heat at object edges can be conducted by neighboring objects, making detection of 

edge features in thermal imagery difficult and imprecise. Yahyanejad (2011) proposes a 

method for correcting lens distortion in thermal imagery that could be applied to the 

framework in the future. 

!
!
2.4.2 Visual-thermal registration 

!
 The infrared and optical imaging elements of the FLIR One are linearly separated, 

causing captured frames to be unaligned (Figure 8). Therefore, thermal and optical images 

must be registered before generating pixel feature vectors such that color and thermal  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information are located at the same coordinate on the image plane. We use a combination of 

preprocessing, CANNY edge detection (Canny 1986), morphological transforms, masking, 

and direct pixel-intensity-based registration to align the two images. 

 

Figure 8: The offset of thermal and visual imaging elements in the FLIR One (left) 
produce unaligned optical and thermal images (middle) which need to be registered 

to align pixel features (right). !
!
!
2.4.2.1 Foreground isolation 

!
 First, the optical image (Figure 9a) is grayscaled and enhanced by an increase in 

brightness and contrast (Figure 9b). For images where pixel intensity values in the AOI are 

generally darker than the background, the elevated brightness washes out the background 

while preserving the plant outline. We found this to reduce the influence on the CANNY 

detector by diffuse shadow regions around the AOI. For images where subject pixel areas 

are generally of higher intensity compared to the background, the grayscale image is first 

inverted before being processed by the edge detector. To determine whether to invert the 

grayscale, statistics are obtained from the AOI (a square in the center of the image) and  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compared with the area outside of the AOI. The mean value of pixel intensities from inside 

and outside of the AOI are used to determine whether grayscale image inversion is a 

necessary preprocessing step. The CANNY edge detector produces a binarized 2D contour 

image (Figure 9c) which is then repeatedly dilated using the maximum value of a 3x3 

neighborhood around each pixel. Recursive dilation helps to produce enclosed regions 

(Figure 9d) using the result from the initial CANNY detector. Enclosed regions are then 

filled using a mathematical morphological operation (Serra 1982) to produce a rough mask 

(Figure 9e). The mask is then repeatedly eroded (Figure 9f), and enclosed regions below a 

configurable size threshold are eliminated, removing artifacts that occur outside the area 

covered by the subject in the AOI (Figure 9g). The resulting mask is then applied to the 

original optical image to isolate it from the background. After this step, some amount of 

unmasked background area remains (Figure 9h). Thresholding is used to isolate the 

remaining background (Figure 9i), producing a second mask. The second mask is subtracted 

from the first and applied to the original optical image, resulting in an isolated foreground 

with black background (Figure 9j).  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Figure 9: Optical image after each step in foreground isolation. !!!
 For thermal image foreground isolation, a high-contrast false color rendition of the 

thermal image (Figure 10a) is grayscaled (Figure 10b), processed by the CANNY edge 

detector (Figure 10c), and processed through similar dilation (Figure 10d), filling (Figure 

10e), erosion (Figure 10f), and artifact removal (Figure 10g) steps to produce a mask which 

is then applied to the original thermal image for foreground isolation (Figure 10h). The 

processed optical and thermal images and their masks are stored and available for further 

processing, for example, by the registration module. 

!
!!!!!!
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 !
Figure 10: False-color thermal image after each step in the foreground isolation process. !!!

 While this process of foreground isolation works well in the presence of a relatively 

uniform background, and when there is a sufficient difference in mean pixel intensities 

between the AOI and the background, it does not perform well in the case of noisy or 

textured backgrounds, or when there is little difference in intensity between foreground 

and background. More robust methods of edge detection for foreground isolation should 

therefore be explored and incorporated into the framework. Applications of Stationary 

Wavelet Transform, for example, have been shown to match or outperform CANNY edge 

detection in noisy environments (El Menzeni et al 2014) and such approaches are targeted 

for incorporation into the framework in the future.  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2.4.2.2 Registration 

!
 As the authors of Raza et al. (2015) point out, performing optical-thermal image 

registration is difficult using conventional methods due to the divergent representation of 

plant textures in optical and thermal spectra. The lack of surface feature fidelity in the 

thermal image precludes feature-based registration using algorithms like SIFT, SURF or 

ORB, so we instead use a direct pixel-based registration method using the optical and 

thermal masks derived during foreground isolation. Ideal displacement is found by 

iteratively shifting the thermal mask to minimize the sum of squared differences (SSD) 

between it and the optical mask. The displacement found through SSD minimization is 

then applied to the thermal image to achieve a best-fit alignment with the optical image. 

Figure 11 shows a combined thermal and optical image after registration and masking. The 

registered optical and thermal pixel vectors are stored for creating pixel-based features 

used in model training and testing. 

!
!
!
!
!
!
!
!
!
!

!
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Figure 11: Combined visual and false-color thermal image after masking and registration. 

!
!
2.4.3 Stereo rectification 

!
 Rectification is the process of projecting two images taken from different 

perspectives onto a common plane. In our case, images are captured by hand and are thus 

assumed to be non-coplanar. Efficiently generating good disparity maps, and in turn 

extracting depth information, generally requires stereo pairs to be well-rectified. To achieve 

rectification, two images taken from unknown points in space are transformed, or warped, 

such that pairs of conjugate epipolar lines are made collinear and parallel to the x-axis. In 

this projection, a pixel feature in the left image corresponds to a pixel feature in the right 

image with the same y coordinate, but shifted along the x-axis. The magnitude of this shift 

gives a disparity measure which is inversely proportional to depth. The relative depth can  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be calculated for each pixel via triangulation using the disparity between corresponding 

points. Including depth information in remote disease detection models has been shown to 

improve accuracy when compared with models that do not include depth information (Raza 

et al. 2015). Light, humidity, and thermal gradients occur throughout the layers of the 

plant canopy due to occlusion, air flow mechanics, and transpiration variation in leaves at 

different levels. Additionally, symptoms can manifest differently at various levels of the 

canopy. For example, calcium is generally not transportable via phloem in plant tissues and 

thus not available for redistribution, causing calcium deficiencies to become apparent at 

upper levels of the plant canopy where new growth develops. Conversely, nitrogen is more 

easily transported, and deficiencies may first become apparent at lower levels of the canopy 

as new growth borrows available nitrogen from older leaves. Natural senescence in older 

leaves at lower levels of the canopy can cause plants to exhibit morphological features 

similar to those induced by stress factors. Thus, depth information may help models 

distinguish features occurring at different levels of the canopy. 

 The stereo image rectification module in the framework implements the following 

procedures: 

!
1. Identify ORB features in left and right optical images 

2. Find pairs of corresponding ORB features 

3. Estimate the fundamental matrix from feature pairs using the 8-point algorithm 

4. Transform images onto a common plane to achieve epipolar alignment 

!
 Each step is further described below. 

!
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!
2.4.3.1 ORB feature detection 

!
 In the absence of a known geometry describing the coordinates and pose of the 

camera in each image of the stereo pair, features common to both images can be used to 

identify the relative spatial attributes of the camera at the time each of the left and right 

images were obtained. To find these points, local features are identified and described in 

each image using the Oriented FAST and Rotated BRIEF (ORB) algorithm (Rublee et al. in 

2011). The choice of ORB over Scale-Invariant Feature Transform (SIFT) and Speeded-Up 

Robust Features (SURF) was made primarily to avoid patent-based restrictions on the use 

of those algorithms by applications which might be built on top of our open-source 

framework. 

!
!
2.4.3.2 Feature correspondences 

!
 Corresponding features are identified by finding ORB feature pairs from left and 

right images with the least Hamming distance among nearest neighbors, and outliers are 

filtered by the RANSAC algorithm (Fischler and Bolles 1981). Figure 12 shows the top 15 

feature pairs extracted from an example stereo set by the rectification module. 

!
!
!
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!
Figure 12: Top 15 correspondence pairs from ORB. !!

!
2.4.3.3 Rectification 

!
 After extracting ORB features and matching correspondence pairs from the optical 

stereo imagery, rectification is performed using the normalized 8-point algorithm (Hartley 

1997). Left and right images are related by finding the fundamental matrix F which 

encapsulates intrinsic and extrinsic parameters of the camera. For a point x in the left 

image, F determines an epipolar line Fx on which the corresponding point x’ lies in the 

right image. At least eight corresponding points are required to estimate the fundamental 

matrix, though generally more than 8 pairs are used to generate an over-determined result. 

In our framework, at least 10 pairs are used.  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 The fundamental matrix F is used in a projective transformation of the left and right 

images onto a common plane. The result of this projection is a new representation 

satisfying the constraints required for extracting depth information from the stereo pair: 

that all epipolar lines are parallel to the x axis, and that corresponding points have the 

same y-coordinate in each image. Figure 13 shows the parallel-eyed pair of stereo images 

before and after processing by the rectification module.  

!
 

Figure 13: Stereo pair before (top) and after (bottom) rectification. !
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2.4.4 Disparity mapping 

!
 Given a pair of rectified stereo images satisfying the epipolar constraint, the 

distance between corresponding pixels (disparity) along horizontal lines can be calculated. 

Our framework implements a standard Block Matching (BM) algorithm with New Three 

Step Search (NTSS) (Li 1994) in which a configurable NxN pixel search window is used to 

scan across horizontal regions in left and right rectified images to find pixel correspondence 

areas. Matching areas are found by minimizing the sum of absolute differences (SAD) in 

RGB values between blocks. Block matching is computationally efficient and 

straightforward to implement, but superior methods exist and are being pursued for future 

additions to the framework. Specifically, the Guided Dynamic Programming from Block 

Matching Stereo (BM+DP) algorithm described by Nguyen (2014), which uses a 

combination of BM and Symmetric Dynamic Programming Stereo (SDPS) (Gimel’farb 

2002), has been shown by the algorithm’s authors to produce disparity maps with 28% 

lower error compared to SDPS alone, and is a more robust alternative to our initial 

implementation of BM. 

 

!
!
!
!
!
!
!
!
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Figure 14: Grayscale depth images from disparity maps created using Block 
Matching (left) with the framework’s Disparity Mapping module and BM+DP (right) 
produced with the Online Computational Stereo Vision system by Minh Nguyen at 

the University of Auckland. !
!
2.4.5 Color space transform 

!
 Each optical image can be passed through transform modules to extract RGB, 

CMYK, HSI, and Lab color space attributes at each pixel. The transformed color channel 

values are normalized from 0.0-1.0 and stored as 1D arrays for later use as pixel-based 

features for model training or in further processing by the Global Feature Extraction 

module, for instance, to extract statistics from select color channels. The color transforms 

are straightforward arithmetic conversions, with Lab being the only color space with a 

configurable variable to set the white point. Our framework uses the International  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Commission on Illumination (CIE) standard illuminant D50 to set the white point for Lab 

conversion. 

!
!
2.4.6 Feature Extraction 

!
 For each pixel of input data supplied to the framework, 67 characteristics are 

extracted from data processing modules (Table 2) and are available for generating pixel-

based or global feature vectors for training and classification. Each feature is stored in the 

Elasticsearch database as a JSON representation of a scalar or vector of floating point 

values normalized to a range of 0.0-1.0. The framework allows the researcher to define the 

subset of characteristics used to construct the feature vectors according to a user-defined 

configuration. A graphical interface in the web application generates a YAML file for 

setting the feature vector’s characteristics, the processing pipeline steps and their 

parameters, and the machine learning algorithms and their parameters. For example, 

using the SVM module, the user may define the kernel, kernel parameters, and soft-margin 

parameter. 

!
!
!
!
!
!
!
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Characteristic Key Module

RGB: red channel (R) rgb_r RGBExtractionService

RGB: green channel (G) rgb_g RGBExtractionService

RGB: blue channel (B) rgb_b RGBExtractionService

CMYK: cyan channel (C) cmyk_c RGB2CMYKService

CMYK: magenta channel (M) cmyk_m RGB2CMYKService

CMYK: yellow channel (Y) cmyk_y RGB2CMYKService

CMYK: black channel (K) cmyk_k RGB2CMYKService

Lab: lightness (L) lab_l RGB2LabService

Lab: red/green (a) lab_a RGB2LabService

Lab: yellow/blue (b) lab_b RGB2LabService

HSI: hue (H) hsi_h RGB2HSIService

HSI: saturation (S) hsi_s RGB2HSIService

HSI: intensity (I) hsi_i RGB2HSIService

Temperature thermal ThermalExtractionService

Depth disparity DisparityMappingService

RGB: red mean rgb_r_mean GlobalFeatureExtraction

RGB: red mean (masked) rgb_r_masked_mean GlobalFeatureExtraction

RGB: red variance rgb_r_var GlobalFeatureExtraction

RGB: red variance (masked rgb_r_masked_var GlobalFeatureExtraction

RGB: green mean rgb_g_mean GlobalFeatureExtraction

RGB: green mean (masked) rgb_g_masked_mean GlobalFeatureExtraction

RGB: green variance rgb_g_var GlobalFeatureExtraction

RGB: green variance (masked rgb_g_masked_var GlobalFeatureExtraction

RGB: blue mean rgb_b_mean GlobalFeatureExtraction

RGB: blue mean (masked) rgb_b_masked_mean GlobalFeatureExtraction

RGB: blue variance rgb_b_var GlobalFeatureExtraction

RGB: blue variance (masked) rgb_b_masked_var GlobalFeatureExtraction

CMYK: cyan mean cmyk_c_mean GlobalFeatureExtraction
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CMYK: cyan mean (masked) cmyk_c_masked_mean GlobalFeatureExtraction

CMYK: cyan variance cmyk_c_var GlobalFeatureExtraction

CMYK: cyan variance (masked) cmyk_c_masked_var GlobalFeatureExtraction

CMYK: magenta mean cmyk_m_mean GlobalFeatureExtraction

CMYK: magenta mean 

(masked)
cmyk_m_masked_mean GlobalFeatureExtraction

CMYK: magenta varianc cmyk_m_var GlobalFeatureExtraction

CMYK: magenta variance 

(masked)
cmyk_m_masked_var GlobalFeatureExtraction

CMYK: yellow mean cmyk_y_mean GlobalFeatureExtraction

CMYK: yellow mean (masked) cmyk_y_masked_mean GlobalFeatureExtraction

CMYK: yellow variance cmyk_y_var GlobalFeatureExtraction

CMYK: yellow variance 

(masked)
cmyk_y_masked_var GlobalFeatureExtraction

CMYK: black mean cmyk_k_mean GlobalFeatureExtraction

CMYK: black mean (masked) cmyk_k_masked_mean GlobalFeatureExtraction

CMYK: black variance cmyk_k_var GlobalFeatureExtraction

CMYK: black variance (masked) cmyk_k_masked_var GlobalFeatureExtraction

Lab: lightness mean lab_l_mean GlobalFeatureExtraction

Lab: lightness mean (masked) lab_l_masked_mean GlobalFeatureExtraction

Lab: lightness variance lab_l_var GlobalFeatureExtraction

Lab: lightness variance 

(masked)
lab_l_masked_var GlobalFeatureExtraction

Lab: red/green mean lab_a_mean GlobalFeatureExtraction

Lab: red/green mean (masked) lab_a_masked_mean GlobalFeatureExtraction

Lab: red/green variance lab_a_var GlobalFeatureExtraction

Lab: red/green variance 

(masked)
lab_a_masked_var GlobalFeatureExtraction

Lab: yellow/blue mean lab_b_mean GlobalFeatureExtraction

Lab: yellow/blue mean (masked lab_b_masked_mean GlobalFeatureExtraction

Characteristic Key Module
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Table 2: List of 67 features extracted by framework modules and available for 
creating feature vectors. !

!
2.5 Classification 

!
 Five machine learning modules are initially provided by the framework for 

performing binary classification tasks (e.g. healthy vs stressed): Support Vector Machine 

(SVM), Linear Regression, Logistic Regression, Random Forest, and Neural Network. Each 

learning module can take an input vector of arbitrary length by configuring the module to 

select any combination of the 67 extracted features. The neural network training module  

Lab: yellow/blue variance lab_b_var GlobalFeatureExtraction

Lab: yellow/blue variance 

(masked)
lab_b_masked_var GlobalFeatureExtraction

HSI: hue mean hsi_h_mean GlobalFeatureExtraction

HSI: hue mean (masked) hsi_h_masked_mean GlobalFeatureExtraction

HSI: hue variance hsi_h_var GlobalFeatureExtraction

HSI: hue variance (masked) hsi_h_masked_var GlobalFeatureExtraction

HSI: saturation mean hsi_s_mean GlobalFeatureExtraction

HSI: saturation mean (masked) hsi_s_masked_mean GlobalFeatureExtraction

HSI: saturation variance hsi_s_var GlobalFeatureExtraction

HSI: saturation variance 

(masked)
hsi_s_masked_var GlobalFeatureExtraction

HSI: intensity mean hsi_i_mean GlobalFeatureExtraction

HSI: intensity mean (masked) hsi_i_masked_mean GlobalFeatureExtraction

HSI: intensity variance hsi_i_var GlobalFeatureExtraction

HSI: intensity variance 

(masked)
hsi_i_masked_var GlobalFeatureExtraction

Characteristic Key Module
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provides a configurable N-layer artificial neural network with stochastic gradient descent 

(SGD) optimized backpropagation, and supports dropout. The implementation was verified 

using the MNIST dataset for handwritten digit recognition, but has yet to be tested on 

plant classification tasks. As more data is contributed to the system, the neural network 

module will become more practical as these types of networks, when used on pixel matrices, 

generally require large amounts of training data to achieve usable generalization error 

rates. 

!
!
2.5.1 Binary vs. multiclass classification 

!
 Discriminative binary classification with Support Vector Machines, for example, 

works by finding an optimal hyperplane and associated margin which maximally separates 

multidimensional feature vectors onto either side of a classification boundary. If data are 

not linearly separable, the user can configure the framework’s SVM module with radial 

basis function (RBF) and polynomial kernels to map input vectors into a higher 

dimensional space, enabling nonlinear decision boundaries in normally linear classifiers 

such as SVM. Basic implementations of SVM serve to classify, but do not by default provide 

probability estimates or multiclass classification. Extensions to SVM add the ability to 

assign an example to one of more than two classes by using a one-against-one approach in 

which the input vector is tested against all combinations of two classes in the set of classes. 

Using this approach, a binary classification algorithm can be applied to a multiclass 

classification problem by testing examples against K (K-1) / 2 individual binary classifiers 

in a system of K classes. Our initial implementations of the machine learning modules, 

however, provides only binary classification (healthy vs. stressed) but could be extended to  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perform multiclass classification (e.g. low stress, medium stress, high stress) or multiclass 

identification (e.g. plant is infected with pythium, powdery mildew, mosaic virus, etc.) using 

these techniques. An example of modeling with various machine learning modules using 

global features extracted by the framework is explained in Section 4.1 which describes a 

water stress detection experiment performed on basil plants. 

!
!
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CHAPTER 3 

!
FRAMEWORK ARCHITECTURE 

!
3.1 Android application 

!
 A mobile application was developed for data acquisition and labeling. Currently, the 

app is only produced for mobile devices running the Android operating system. The Android 

app performs collection and labeling of data which are uploaded to the cloud for processing 

and classification by the microservices pipeline. It also provides functions for collecting lens 

calibration data, collecting and labeling optical imagery using the built-in camera, and 

collecting thermal and optical infrared imagery using the required FLIR One attachment. 

Future revisions of the application may be designed to support other thermal infrared or 

hyperspectral imaging devices as they come to market. The application was built using 

Android Studio with the FLIR One SDK for Android and, at the time of this writing, is 

available as an APK from the author (see Conclusion for contact information). The app is 

targeted for release in the Google Play app store in the summer of 2016.  

!
!
3.2 Cloud infrastructure 

!
 The framework is designed as a microservices architecture. That is, each service is 

developed, maintained, and deployed individually in order to provide a high level of 

flexibility regarding choice of programming languages and approaches to module 

development. Each step in the data processing pipeline is packaged and deployed as a  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service inside of a Docker container. A RabbitMQ message broker provides the cluster of 

containers with a common message bus for handling the flow of data through the processing 

pipeline. Each microservice subscribes to a processing queue where it listens for messages 

representing workloads to be executed. After each processing step, the next service in the 

pipeline is instructed to carry on the next processing step. 

 Deploying pipeline elements as individually containerized services supports 

portability and scalability, and perhaps most importantly, allows individual developers to 

use their preferred programming languages and code libraries when developing service 

modules. Containerized applications are more portable across host operating systems and 

are designed to overcome challenges of host machine configuration and dependency 

management. New containerized services can be quickly deployed without significant prior 

provisioning of the host system. Wrapping each microservice into its own Docker container 

allows each service in the pipeline to be scaled independently and load balanced as 

bottlenecks in processing are identified. For instance, if the ORB detector in the 

RegistrationService module is found to be a bottleneck in the pipeline, additional 

RegistrationService containers can be deployed and subscribed to a shared task queue, 

dividing jobs among a greater number of service workers, thus distributing the load of that 

specific task. 

!
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CHAPTER 4 

!
FRAMEWORK TESTING & DISCUSSION 

!
4.1 Basil water stress experiment 

!
 An experiment was performed to demonstrate the functionality of the pipeline when 

applied towards detection of water stress in basil plants. Before continuing, this section 

must be prefaced by stating that the results from the stress detection are not statistically 

significant and that the experiment is not to be considered scientific in its execution. That 

is, it was not conducted in a controlled environment, nor were the quantities of healthy and 

water-stressed plants sufficient to claim statistically significant results. The purpose of the 

experiment was to evaluate whether the data processing pipeline is functional, and to 

demonstrate how the framework could be used for a controlled experiment given proper 

resources and protocols in line with horticultural experiments of this type. Nonetheless, 

various models were trained and tested using data acquired and processed by the 

framework and the initial results are promising, validating the functionality of the 

framework and indicating that further experimentation should be performed to formally 

evaluate the framework’s plant stress detection abilities. Furthermore, it should be noted 

that if the initially implemented modules we have provided do not achieve adequate 

performance for specific tasks, the modular and open-source nature of the framework 

provide a foundation for continuous improvement by project participants. 

!
!
!
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4.1.1 Methods 

!
 A group of 24 basil plants (Ocimum basilicum) in 2.5-inch pots were purchased from 

a local nursery. The plants were divided into training and test sets consisting of 16 and 8 

plants, respectively, and were grown in an indoor environment under artificial lighting 

supplied by an AcroOptics CRAVE 24 Reef Flats LED light for 14 hours per day. All plants 

were watered with 100mL of water on Day 1. After Day 1, half of the plants in each set 

received between 50-100 mL of water, and the other half were deprived of water to induce 

stress. Stereo visual and thermal imagery of each plant were collected once per day using 

the FLIR One with our Android application on a Galaxy Note 5 and uploaded to the cloud 

for storage and pipeline processing. Data were collected for a period of 5 days. 

 The experiment produced 140 stereo optical pairs and 140 thermal images which 

were processed by the framework through a pipeline as configured in Fig X. Note that the 

disparity mapping module was not used in this experiment. The Block Matching disparity 

maps produced from the basil imagery acquired with the FLIR One optical camera were 

quite noisy and will need to be further tested and improved before being used with optical 

data from the FLIR One. On the other hand, disparity maps generated from imagery taken 

using the built-in smartphone camera of the Note 5 were of higher quality, perhaps due to 

the higher resolution and better picture quality of the smartphone camera (see Figure 14 

for an example of a disparity map generated from stereo smartphone camera imagery). For 

this reason, only the left optical and thermal images were used in the experiment. 

 For each plant, a vector of 28 global features was produced using the Global Feature 

Extraction module. The features included the global mean and variance from the masked 

thermal data and each channel of the masked RGB, HSI, Lab, and CMYK color spaces. 

Models were trained from these feature vectors using the SVM, Linear Regression, Logistic  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Regression, and Random Forest classifier modules. The SVM model was trained with an 

RBF kernel. The Random Forest Classifier was trained using 100 decision tree estimators, 

and test accuracy was calculated by taking the average test accuracy of 10 random forest 

models. For each training method, the full feature vector of 28 features was used. A second 

test used a subset of five features selected by identifying the top five most significant 

features used by the RF classifier during the first test. Models were trained using all data 

from Days 1-5, and model accuracy was evaluated against data from each day’s test set 

separately, as well as combined data sets from Days 1-5, 2-5, and 3-5. By testing data from 

each day individually, we attempt to evaluate the early detection abilities of the model. In 

other words, we ask the question, “how soon after water deprivation, and how accurately, 

can the model classify plants as stressed?” Results are discussed below.  

!
!
4.1.2 Results 

!
 Table 3 shows the performance of each learning method when tested with single-day 

data sets. Among the four machine learning methods used, the Random Forest classifier 

identified 100% of healthy and stressed plants accurately using data from Day 5. It also 

outperformed the other models with single-day data from Days 2-4, achieving average 

accuracies of 87.5%, 87.5%, and 97.5%, respectively. The Linear Regression classifier 

correctly identified the labeling of 75% of the plants for Day 1. The SVM model performed 

worst, achieving its highest accuracy of 62.5% on Day 5. In general, model accuracy was 

highest for the last days of the test, the time at which the plants were most severely 

affected by water stress. SVM and LogReg classifiers exhibited worse-than-random results 

for data sets from Days 1 and 2. This is likely due to a combination of the plants exhibiting  

44



little stress in early days due to soil buffering capacity (making differentiation from healthy 

plants difficult) and the small size of the test set (8 plants per day), which, as mentioned 

earlier, is too small to make these results conclusive. Further experimentation using larger 

quantities of test data should be performed. 

!
!

Table 3: Accuracy of models tested using data (28 features) from each day individually. !
!
 After training the Random Forest Classifier with all 28 features, variable 

importances were calculated using the technique described by (Reiman 2001) in his original 

paper on Random Forests. The top five most important variables are listed in Table 4. 

Interestingly, the global thermal mean and variance were not very significant influences on 

the Random Forest model, ranking 12th and 14th, respectively. The most important feature 

was found to be the mean value of pixels in the green channel from the RGB color space in 

masked optical images. As the basil plants grew increasingly water-stressed, the leaves 

curled, creating shadowed areas within leaves that would lead to a darker shade of green 

being more prevalent in leaf imagery. Additionally, as leaves curled, the area covered by 

the canopy decreased, exposing more of the underlying soil. The exposed soil manifests as 

proportionally larger dark areas in optical images. We speculate that factors such as these  

Day SVM LinReg LogReg Random Forest

1 0.125 0.75 0.375 0.5

2 0.5 0.625 0.25 0.875

3 0.5 0.625 0.625 0.875

4 0.5 0.625 0.875 0.975

5 0.625 0.75 0.5 1.0
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may have led to the color channel statistics having greater significance than thermal 

statistical features. An experimental setup that occluded the soil area with a material 

matching the dominant background color could help to reduce the influence of exposed soil 

regions on classification. Or, a better foreground isolation algorithm that can isolate the 

plant from both the background and the underlying soil could be developed to focus training 

on features derived only from pixels containing plant tissue. 

!
!

Table 4: Top five variable importances from the Random Forest classifier. !
!
 A second training and testing phase was performed using these top 5 features only, 

and results are reported in Table 5. Limiting the dimensionality of these small data sets 

showed improvements in classification in some cases.  

!
!
!
!

!

Feature Importance

rgb_g_masked_mean 1

cmyk_m_masked_var 2

lab_l_masked_var 3

cmyk_m_masked_mean 4

rgb_b_masked_var 5
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Table 5: Accuracy of models tested using data (top five RF features) from each day individually. 

!!
 Another test was performed using grouped data from Days 1-5, Days 2-5, and Days 

3-5. Results are reported in Table 6 and charted in Figure 15. As expected, model accuracy 

was best when tested on data from later days when water-stressed plants exhibited greater 

changes in morphology compared to earlier days. 

!
!

Table 6: Accuracy of models tested using data from multiple days. !!

Day SVM LinReg LogReg Random Forest

1 0.5 0.625 0.5 0.4

2 0.625 0.75 0.625 0.575

3 0.625 0.75 0.625 0.988

4 0.5 0.875 0.5 0.975

5 0.75 0.875 0.75 1.0

Days SVM LinReg LogReg Random Forest

1-5 0.6 0.775 0.6 0.775

2-5 0.688 0.813 0.594 0.895

3-5 0.67 0.917 0.583 0.958
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Figure 15: Comparison of model accuracies using data from multiple days. !!
!
4.2 Risk and reward: challenges of a public project 

!
 Community involvement and continuous improvement are both essential ingredients 

for success in citizen science and open source projects. Two-sided network effects and 

economies of scale are some of the challenges faced by social networking startups and 

citizen science projects, and are present in this project as well. Before the technology is 

usable by the mainstream, a steady R&D effort is required, which in turn depends on 

contributions from the mainstream. The long-term viability of the project will be realized at 

scale, but only if the two-sided network thrives and all stakeholders find value in its use. 

The future of the framework will depend on contributions from both sides: the mainstream 

plant-growing community submitting labeled imagery, and the researcher/developer 

community improving framework modules and producing usable models and applications  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that return value to plant producers. This leads to a situation of both high risk and high 

reward. Here we explore a few topics for consideration. 

!
!
4.2.1 Expert participation 

!
 Before the system can offer value to producers in the form of automated tools for 

stress detection, at least a few models will need to be developed and proven in field 

conditions. The data for these early improvements will likely come entirely from the expert 

communities already involved in this type of research. Initial outreach will be made to 

researchers, encouraging those with existing data sets to upload their data to the cloud and 

to integrate their development efforts into framework modules, establishing a repository of 

pipelines and models that have already been validated in experimental settings. This is the 

first hurdle—persuading researchers to release their data sets and to allow potentially 

proprietary algorithms to be integrated into the framework and made available to the 

public. Proper attribution and perhaps licensing arrangements to protect intellectual 

property will be important areas of consideration for the research community. Source code 

encryption for proprietary algorithms may also be an option in certain cases if contributors 

are otherwise not comfortable integrating their work. If even a small user base of 

committed early adopters can be cultivated, the rewards will come in the form of a growing 

repository of optical and thermal imagery, case studies, expert feedback, and traction to 

encourage new users to participate. 

!
!
!
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4.2.2 General participation 

!
 The second hurdle involves the other side of the network; the community at large 

will need to be exposed to the technology, understand how to use it effectively for data 

collection and analysis, and derive value from using it in the field. One way to reach the 

public may be through strategic partnerships with organizations that already interface 

with the public. For example, Extension Service professionals and Master Gardener 

program participants have responsibilities imposed by their occupation or certification 

requirements to assist growers with diagnosing and mitigating plant stress in crops. 

Exposing these organizations to our project could lead to a pathway for integration into 

field work by leveraging existing relationships those organizations have with the larger 

plant-growing community. 

!
!
4.2.3 Quality control 

!
 Data submitted by users is at risk of mislabeling and other quality-control issues. To 

mitigate these risks, general use tutorials and training materials should be developed. In 

the case of mislabeled or unlabeled data, experts should be incentivized to assist with 

correcting errors in the public data set. For general data sanitation tasks that require little 

to no expertise, services such as Amazon’s Mechanical Turk could be utilized. Participants 

could also assist with metadata tagging of user-submitted imagery similar to the way 

citizen science project Galaxy Zoo teaches users with little to no astronomy knowledge to 

classify galaxies according to their shape.On the R&D side, some standard measure of 

performance will be needed to compare modules and rank their effectiveness in various  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applications. In the computer vision subfield of disparity mapping, for example, researchers 

test algorithms against stereo images from the Middlebury data set. In object recognition 

research, ImageNet is a typical standard data set. Curating data sets like these, but specific 

to plant stress detection research, may be useful in developing a standardized measure to 

compare and evaluate module and pipeline performances. 

!
!
4.2.4 Overhead costs 

!
 Operating the system in a publicly accessible production environment on the 

internet comes with hosting, bandwidth, and storage costs. These costs are currently being 

covered by the author, but as the system scales, overhead will increase, and additional 

funding will be needed to support the project. This may come in the form of small donations 

by users, public and private grants, and strategic partnerships with research institutions 

and industry players. 

!
!
4.3 Future work 

!
 Immediate improvements are targeted at the registration and disparity mapping 

modules. Plant foreground isolation could be improved by implementing the Stationary 

Wavelet Transform approach used by Raza et al. (2015) to isolate tomato plant tissue from 

background pixels. Disparity mapping is a well-studied and active area of computer vision 

research, and newer, more robust approaches such as BM+DP introduced by Nguyen (2014)  

51



should be implemented to improve the framework’s extraction of 3D information from 

stereo imagery. 

 The framework is currently only accessible by submitting requests to the HTTPS 

API, making it accessible to users with programming experience. However, a graphical web 

interface is being developed at the time of this writing and should continue to be developed 

to enable non-programmers to interact with and utilize the framework. When the web 

interface is functionality, we can begin outreach efforts to engage with individuals and 

organizations in order to cultivate an active community around the project. 

!
!
4.4 Conclusion 

  

 We have presented a novel Android and cloud-based framework designed to support 

data collection, research, and application development in the field of remote plant stress 

detection. An initial experiment using the framework shows that the framework and its 

pipelines function as intended but will require more data, experimentation, and continued 

improvement by contributors to realize its full potential. It is our hope that by providing 

this resource, we can begin to cultivate a common repository of stereo optical and thermal 

imagery of plants in various settings and conditions around the world. These data sets can 

be used by researchers to create robust models that are accessible by plant producers in the 

mainstream community through a variety of user-friendly mobile and web-based 

applications. 

 Source code for the Android application and processing modules are available on the 

author’s Bitbucket page at https://bitbucket.org/dzukowski-masters-thesis/. Interested  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contributors are welcome to contact the author at daniel.zukowski@gmail.com to get 

involved in the project.  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