
Choosing a Set of Partitions to Collect

in a Connectivity-Based Garbage Collector

Martin Hirzel Harold N. Gabow Amer Diwan
{hirzel,hal,diwan}@cs.colorado.edu

Department of Computer Science
University of Colorado, Boulder 80309-0430

Technical Report CU-CS-958-03
August 8, 2003

Abstract

Connectivity-Based Garbage Collection is a new fam-
ily of garbage collection algorithms that are based on
potential object connectivity properties. Objects are
placed into partitions based on a static connectivity
analysis. When the program needs memory, the col-
lector can choose a set of partitions to do a garbage
collection on. This choice should maximize the ex-
pected benefit in reclaimed memory, while minimiz-
ing the cost in expended work. We formalize this
problem and present the flow-based chooser, an algo-
rithm that uses network flow to find an optimal solu-
tion. We compare it to the greedy chooser, a simpler
algorithm that may not find an optimal solution.

1 Problem statement

A connectivity-based garbage collector (Cbgc) di-
vides the set O of heap objects into a set P of par-
titions based on a conservative estimate of their con-
nectivity [6]. A partitioning (m,P, E) of the objects
consists of a partition map m : O → P and a partition
dag (P,E) (a dag is a directed acyclic graph). The
partition map m associates each object o ∈ O with its
partition m(o) ∈ P . The edges E of the partition dag
represent the may-point-to relations. In other words,
if a pointer may exist between two heap objects, then
either the objects must be in the same partition, or
there must exist an edge between their partitions in
the partition dag. Figure 1 gives an example parti-
tioning.

When the Cbgc needs to free up some memory,
it scavenges a subset C ⊆ P of the partitions. The
goal is to choose C such that (i) the objects in C can
be collected independently from the rest of the heap,

o1

o2

o4

o3

o5

o6

o7

o8

p1

p2

p3

Figure 1: Example partitioning. Solid boxes are ob-
jects, solid arrows are pointers, dashed ovals are par-
titions, and dashed arrows are partition edges.

and (ii) the benefit/cost ratio for collecting C is as
high as possible.

For the independence property (i), we make use of
the connectivity information that the partition dag
gives us: we pick a set C ⊆ P of partitions that is
closed under the predecessor relation (q ∈ C∧(p, q) ∈
E ⇒ p ∈ C). When an object in C is not reachable
from the roots via any objects in C, it is not reachable
from the roots via any objects in O, and is therefore
garbage; its memory can be reclaimed.

For the benefit/cost ratio property (ii), we start out
by estimating the local cost and benefit of collecting
an individual partition. This estimate is represented
by a pair of functions dead, live : P → N mapping
partitions to nonnegative integers. The number of
dead objects dead(p) in a partition p is the benefit of
collecting it, since their memory can be reclaimed for
reuse. The number of live objects live(p) in a par-
tition p is the cost of collecting it, since they need

1

to be traversed before unreachable objects can be re-
claimed as garbage. In this write-up, we assume the
problem of coming up with the two functions dead
and live has already been solved.

Figure 2 shows an example of a partition dag with
cost/benefit estimates. For instance, partition p1

may contain objects pointing to objects in p3, and
we estimate that p2 contains four dead objects and
three live objects (4 : 3).

p1

p2

p3

p4

p5

dead(p) : live(p) 1:12

6:3

10:3

2:2

4:3

Figure 2: Example partition dag annotated with the
estimated dead and live functions.

We define the quality of a set C of partitions
as quality(C) =

∑
p∈C dead(p)/

∑
p∈C live(p). The

problem that we are interested in in this technical
report is the following:

Given a partition dag (P,E) and a pair of
functions dead, live : P → N, find a closed
subset C ⊆ P of partitions that maximizes
quality(C).

The solution to this problem may not be uniquely
defined. The naive algorithm of computing the qual-
ity of all closed sets of partitions has complexity
O(2P).

Table 1 shows all closed subsets of the partition
dag in Figure 2 and their quality. The best quality
set is {p2, p5}.

2 The flow-based chooser

The flow-based chooser finds an optimal solution to
the problem stated in 1. It does so by reducing it to
a max-weight closed set problem, for which the lit-
erature has solutions using network flow algorithms.
Section 2.1 describes the reduction, Section 2.2 re-
views some basics on network flow, and Section 2.3 re-
views the solution to the max-weight closed set prob-
lem from the literature.

Table 1: Qualities of closed subsets of the partition
dag in Figure 2.

Closed set C ⊆ P Quality
p1 p2 p3 7/17 =0.41
p1 p2 p3 p4 13/20 =0.65
p1 p2 p3 p5 17/20 =0.85
p1 p2 p3 p4 p5 23/23 =1.00

(empty set) 0/0 =undefined
p1 2/2 =1.00

p2 4/3 =1.33
p2 p4 10/6 =1.67
p2 p4 p5 16/9 =1.78
p2 p5 14/6 =2.33

2.1 Reduction to max-weight closed
set problem

In Section 2.1.1 we prove two lemmas and make some
observations that allow us to reduce the Cbgc par-
tition selection problem to the max-weight closed set
problem. In Section 2.1.2, we formulate the algo-
rithm that does that. Section 2.1.3 describes how
our algorithm uses geometry so it needs to solve only
a logarithmic number of instances of the max-weight
closed set problem.

2.1.1 Preparation

One difficulty of the problem we are trying to solve
is that the properties of individual partitions do not
simply add up (d1

l1
+ d2

l2
6= d1+d2

l1+l2
). Therefore, our first

goal is to reduce the problem to one where they do
add up. To this end, we define a family w : R×P →
R of weight functions on partitions. For each real
number x ∈ R, the weight function wx : P → R
is given by wx(C) = dead(p) − x · live(p). Table 2
shows the weights wx for the example in Figure 2
and x = 21

11 .

Table 2: The weight function w(21
11) for the partitions

in Figure 2.
Partition p p1 p2 p3 p4 p5

dead(p)
live(p)

2
2

4
3

1
12

6
3

10
3

w(21
11)(p) − 20

11 − 19
11 − 241

11
3
11

47
11

Lemma 1 gives a feeling for how the weight-
functions are related to our problem.

Lemma 1 For all x ∈ R and all non-empty closed
sets of partitions C ⊆ P , we have

2

(i) 0 ≤
∑

p∈C wx(p)⇔ x ≤ quality(C)
(ii) 0 ≥

∑
p∈C wx(p)⇔ x ≥ quality(C)

(ii) 0 =
∑

p∈C wx(p)⇔ x = quality(C)

Proof. Part (i) can be seen by symbol-pushing:
0≤

∑
p∈C wx(p) ⇔

0≤
(∑

p∈C dead(p)− x · live(p)
)

⇔

0≤
(∑

p∈C dead(p)
)
− x ·

(∑
p∈C live(p)

)
⇔

x≤
(∑

p∈C dead(p)
)
/
(∑

p∈C live(p)
)

⇔
x≤ quality(C)

In the above, we used the property that the domain
of the functions live and dead is non-negative.
We required that C is non-empty, since otherwise
quality(C) = 0/0 is undefined. The proof for the
other two parts of the lemma is analogous. 2

Using Lemma 1, we can show how the solution of
maximizing a straight sum correlates with the solu-
tion of our problem at hand. Let K be the set of
non-empty closed subsets of P .

Lemma 2 For all x ∈ R, we have

(i) 0 ≤ max
C∈K

{ ∑
p∈C

wx(p)

}
⇒ x ≤ max

C∈K
{quality(C)}

(ii) 0 ≥ max
C∈K

{ ∑
p∈C

wx(p)

}
⇒ x ≥ max

C∈K
{quality(C)}

(iii) 0 = max
C∈K

{ ∑
p∈C

wx(p)

}
⇒ x = max

C∈K
{quality(C)}

Proof. For part (i), let C1 be a witness for
the premise, in other words, let C1 ∈ K sat-
isfy 0 ≤

∑
p∈C1

wx(p). Then by Lemma 1,
we have x ≤ quality(C1). Since we also have
quality(C1) ≤ maxC∈K{quality(C)}, we get the
conclusion x ≤ maxC∈K{quality(C)}.
Part (ii) can be seen with a proof by contradic-
tion. Assume that 0 ≥ maxC∈K{

∑
p∈C wx(p)},

but that x < maxC∈K{quality(C)}. Then there
exists a closed set of partitions C2 ∈ K for which
x < quality(C2). By Lemma 1 that means that∑

p∈C2
wx(p) > 0. But then we would have∑

p∈C2
wx(p) > maxC∈K{

∑
p∈C wx(p)}, contradict-

ing the maximality.
Part (iii) follows from the conjunction of parts (i)
and (ii). 2

In Section 2.3, we will see how to find a solution
(along with a witness) to the max-weight closed set
problem

max
C∈K∪{∅}

{ ∑
p∈C

wx(p)
}

.

Here, we sketch how to use that know-how to find a
solution (along with a witness) to our main problem

max
C∈K
{quality(C)}.

The basic idea is to try different values for x and to
use Lemma 2 to search for an xM that satisfies

xM = max
C∈K
{quality(C)}.

We first observe some properties of the search
space.

1. For every partition q that has no predeces-
sors (¬∃p . (p, q) ∈ E), the singleton set of
partitions {q} is closed ({q} ∈ K). Hence,
xmin = max{quality({q}) | ¬∃p . (p, q) ∈ E} is
a lower bound on xM . For example, in Fig-
ure 2, xmin = max{quality({p}) | p ∈ {p1, p2}} =
quality({p2}) = 4

3 .

2. Either
∑

p∈P dead(p) = 0, or the solution
has positive quality, and hence contains at
least one partition. We will ignore the case∑

p∈P dead(p) = 0, since in that case, it would
not make sense to attempt scavenging at all. Let
xmax = max{quality({p})} be the best quality of
any singleton set of partitions (including single-
ton sets of partitions with predecessor, which are
not closed). Since the quality of a set of parti-
tions is at most as high as the quality of its best
member, xmax is an upper bound on xM . For ex-
ample, in Figure 2, xmax = max{quality({p})} =
quality({p5}) = 10

3 .

3. Let D =
∑

p∈P dead(p) and L =
∑

p∈P live(p)).
We know that xM must be of the form d/l where
0 < d ≤ D and 0 < l ≤ L. Hence, there are
O(DL) valid values for xM . For example, in Fig-
ure 2, D = 23 and L = 23, so xM must be of the
form d/l with 0 < d ≤ 23 and 0 < L ≤ 23. Note
that in general D 6= L.

2.1.2 Flow-based chooser algorithm

We can now formulate the algorithm, see Figure 3.
If D is the total number of dead objects, L the total
number of live objects, P the number of nodes and
E the number of edges in the partition dag, then the
total complexity of the algorithm is

O
(

log(DL) ·
(

min{D,L}+ PE log
(

P 2

E

)))
The algorithm works as follows. Lines 1 and 2

initialize [low, high] to the range in which the solu-
tion of the partition selection problem must reside.

3

action complexity
1 low← xmin = max{quality({q}) | ¬∃p . (p, q) ∈ E}; P +
2 high← xmax = max{quality({p})}; P +
3 do{ (
4 choose x = d

l such that low ≤ x ≤ high ∧ 0 < d ≤ D ∧ 0 < l ≤ L min{D,L}+
and such that x halves the search space;

5 find yx, Cx such that yx = max
C∈K∪{∅}

{ ∑
p∈C

wx(p)
}

=
∑

p∈Cx

wx(p); PE log(P 2/E) +

6 if(Cx = {} ∨ 0 > yx){ max{
7 high← max{d

l |
d
l < x ∧ 0 < d ≤ D ∧ 0 < l ≤ L}; min{D,L}

8 }else if(0 < yx){ ,
9 low← min{d

l |
d
l > x ∧ 0 < d ≤ D ∧ 0 < l ≤ L}; min{D,L}

10 } }
11 }while(Cx = {} ∨ 0 6= yx);) · log(DL) +
12 return Cx; 1

Figure 3: Algorithm for flow-based chooser.

The do-while-loop in lines 3 to 11 repeatedly solves
max-weight closed set problems for values of x in
the search space, and uses the solution yx to either
narrow the range [low, high] or to determine that it
has found the solution to the Cbgc partition selec-
tion problem. Line 4 chooses an x that is a possible
solution between low and high such that the search
space is halved (see Section 2.1.3). Line 5 solves the
max-weight closed set problem for the weight func-
tion w = wx (see Section 2.3), finding the maximum
weight yx and a witness set of partitions Cx that has
the maximum weight. If Cx is empty or 0 > yx, then
x was too large and line 7 sets high to a possible so-
lution value d

l just below x. If 0 < yx, then x was
too small and line 9 sets low to a possible solution
value d

l just above x. When the algorithm has found
a non-empty set Cx that maximizes

∑
p∈Cx

wx(p),
then according to Lemmas 1 and 2 the set Cx is also
a solution to the Cbgc partition selection problem,
and the algorithm terminates.

2.1.3 Search space halving

The search space for solutions to the Cbgc partition
selection problem is {d/l | 0 < d ≤ D ∧ 0 < l ≤ L}.
Figure 4 visualizes the search space for D = L = 23
as a two-dimensional grid of numbers.

Each number in the search space corresponds to a
ray originating in (0, 0). Figure 4 shows the rays cor-
responding to low = 4

3 and high = 10
3 . The solution

xM must be one of the fractions in the area between
the rays.

Without loss of generality we assume that D
L ≤ low,

in other words, both rays low and high are above the
diagonal of the rectangular solution grid. We pick

live

10/3

dead

4/3

high

low

21/11

d’

l

l

h

l

Figure 4: Solution space.

d′ = lcm(low.dead, high.dead); in Figure 4, we have
d′ = lcm(4, 10) = 20. The rays low and high intersect
the line dead = d′ at ll = low.live · d′/low.dead and
lh = high.live · d′/high.dead.

We are looking for a point that halves the area
of the triangle ((0, 0), (d′, ll), (d′, lh)). Let Al be the
area of the triangle ((0, 0), (d′, ll), (d′, 0)), which is
1
2 (d′ · ll), and let Ah be the area of the triangle
((0, 0), (d′, lh), (d′, 0)), which is 1

2 (d′ ·lh). We are look-
ing for a point x′ = (d′, lx) such that Ax = 1

2 (d′ ·lx) =
1
2 (Al + Ah). It is easy to see that lx = 1

2 (ll + lh).
Line 4 of the algorithm in Figure 3 finds an x′ =

4

d′/lx as described above, and then rounds it to the
closest x = d/l that corresponds to a point in the
grid, i.e. that satisfies 0 < d ≤ D and 0 < l ≤ L.
For example, for low = 4

3 and high = 10
3 , we have

x′ = 10.5
20 , and the closest legal x is 11

21 .

2.2 Flow networks

Before we look at max-weight closed sets in Sec-
tion 2.3, let us review some folklore on flow networks,
as described e.g. in [3] chapter 27.

A flow network consists of a set V of vertices, with
two special vertices s, t ∈ V , the source s and the sink
t, and a capacity function c : V × V → R+. It can
be represented as a graph with edges E = {(p, q) ∈
V × V | c(p, q) > 0}.

A flow is a function f : V × V → R on pairs of
vertices in a flow network that satisfies the three flow
properties

• Capacity constraint: for all p, q ∈ V , we require
f(p, q) ≤ c(p, q).

• Skew symmetry: for all p, q ∈ V , we require
f(p, q) = −f(q, p).

• Flow conservation: for all p ∈ V \ {s, t}, we re-
quire

∑
q∈V f(p, q) = 0.

The value value(f) of a flow is the total flow com-
ing out of the source, in other words value(f) =∑

q∈V f(s, q). A max-flow is a flow of maximum value
for its network. A flow defines a residual capacity
function cf (p, q) = c(p, q) − f(p, q) on pairs of ver-
tices.

A cut is a partition (S, T) of the vertices of a flow
network into a source side S ⊂ V with s ∈ S and a
sink side T = V \S with t ∈ T . The capacity c(S, T)
of a cut is the total capacity of the edges that cross the
partition, in other words, c(S, T) =

∑
p∈S,q∈T c(p, q).

A min-cut is a cut of minimum capacity for its net-
work.

There is a duality between max-flows and min-cuts.

Theorem 1 (Max-flow min-cut.)
max
f flow

{value(f)} = min
(S,T) cut

{c(S, T)}

Proof. See [3] page 593. This theorem is also
constructive: given a max-flow, you can find a
min-cut by choosing all vertices reachable from s via
edges with positive residual capacities as S. 2

The max-flow problem is to find a max-flow along
with a witness. The fairly straight-forward lift-to-
front algorithm from [3] page 621 solves it in O(V 3).

The Goldberg-Tarjan algorithm is an extension of the
lift-to-front algorithm that solves the problem even
faster, namely in O(V E log(V 2/E)) [4].

2.3 Max-weight closed sets

Max-weight closed set problems and their solution
using network flow are described on pages 719-721 of
[1]. We modify the problem slightly by solving for
sets that are closed under the predecessor relation,
instead of closed under the successor relation as in
[1].

A max-weight closed set problem consists of a par-
tial order (P,<) and a weight function w : P → R on
elements of P . The goal is to find a closed set C ⊆ P
with maximum weight

∑
p∈C w(p). Here, a set C is

closed if for all q ∈ C, we have p < q ⇒ p ∈ C. Note
that this definition differs from [1].

For example, the partial order in Figure 2 together
with the weight function in Table 2 defines a max-
weight closed set problem.

The first step is to construct a flow network from
the max-weight closed set problem. We partition the
elements of P into P+ = {p ∈ P | w(p) ≥ 0} and
P− = {p ∈ P | w(p) < 0}. For the vertices V of the
flow problem, we choose two additional vertices s, t
as source and sink and set V = P+∪P−∪{s, t}. The
capacity function c : V × V → R+ ∪∞ is defined as

• c(s, p) = w(p) for each p ∈ P+

• c(p, t) = −w(p) for each p ∈ P−

• c(q, p) = ∞ whenever p < q (this differs from
[1], since the sets we are interested in are closed
under the predecessor relation)

For example, the weights from Table 2 partition
P = {p1, p2, p3, p4, p5} into P+ = {p4, p5} and P− =
{p1, p2, p3}, yielding the flow network in Figure 5.

p4

p5

p3

p1

p2

11

19

11

20

11

241

s t

47

113

11

Figure 5: Example flow network.

The second step is to find a min-cut (S, T) in the
flow network. The set S \ {s} is a max-weight closed
set. To see why this is true, we need a few lemmas.

5

Lemma 3 A min-cut in a network constructed by
the first step above has finite capacity.

Proof. The cut ({s}, V \ {s}) has finite capacity,
since there are no vertices p ∈ V with c(s, p) = ∞.
The capacity of a min-cut is less than or equal to
the capacity of ({s}, V \ {s}). Hence, the capacity of
a min-cut is finite. 2

Lemma 4 A subset C ⊆ P of the partial order is
closed if and only if {s} ∪ C gives a cut with finite
capacity.

Proof.
C is closed⇔ (q ∈ C ∧ p < q)⇒ p ∈ C

⇔ q 6∈ C ∨ ¬(p < q) ∨ p ∈ C
⇔ (q ∈ C ∧ p 6∈ C)⇒ ¬(p < q)
⇔ (q ∈ C ∧ p 6∈ C)⇒ c(q, p) <∞
⇔ c({s} ∪ C, {t} ∪ (P \ C)) <∞

2

Lemma 5 If c(S, T) is finite, then

c(S, T) =
∑

p∈P+

w(p)−
∑

p∈(S\{s})

w(p).

Proof. Being finite, the cut (S, T) can only cross
edges involving s or t. More precisely, the capacity is
the total capacity of edges going from s to T , which
is

∑
p∈T c(s, p), plus the total capacity of edges going

from S to t, which is
∑

p∈S c(p, t). We can now easily
see the lemma:

c(S, T)

=
∑
p∈T

c(s, p) +
∑
p∈S

c(p, t)

=
∑

p∈(P+\(P+∩S))

c(s, p) +
∑

p∈(P−∩S)

c(p, t)

=
∑

p∈P+

c(s, p)−
∑

p∈(P+∩S)

c(s, p) +
∑

p∈(P−∩S)

c(p, t)

=
∑

p∈P+

w(p)−
∑

p∈(P+∩S)

w(p) +
∑

p∈(P−∩S)

(−w(p))

=
∑

p∈P+

w(p)−
∑

p∈(S\{s})

w(p)

2

Now we can show that the reduction from a max-
weight closed set problem to a min-cut problem
worked.

Theorem 2 If (S, T) is a min-cut of the flow net-
work, then S \ {s} is a max-weight closed set of the
partial order (P,<).

Proof. A min-cut minimizes c(S, T), and accord-
ing to Lemma 5 that is equivalent to minimizing∑

p∈P+ w(p) −
∑

p∈(S\{s}) w(p). Since
∑

p∈P+ w(p)
is constant, that means that the min-cut maximizes∑

p∈(S\{s}) w(p). Lemma 4 states that we have
indeed maximized over all closed sets. 2

When there are multiple min-cuts (S, T), we choose
the one with the largest S using a depth-first search
starting at t.

Figure 6 shows a max-flow in the flow network
from Figure 5. A min cut is S = {s, p2, p4, p5}, T =
{p1, p3, t}, since the residual capacities cf (p2, p3) =
cf (p2, t) = 0. (Note that cf (p3, p2) 6= 0, but that is
the wrong direction). The max-weight closed set is
therefore {p2, p4, p5} with a weight of − 19

11 + 3
11 + 47

11 =
31
11 .

p4

p5

p3

p1

p2

s t

47

11
:0

:

:0

0 : 0 :

:0
:0

3

11
: 19

11

11

20

:
19

11

19

11

19

11

241

11

Figure 6: Max-flow in network from Figure 5.

3 The greedy chooser

The flow-based chooser from Section 2 finds an opti-
mal solution to the Cbgc partition selection problem
from Section 1. We also developed the greedy chooser,
which is much simpler, but may not find an optimal
solution.

3.1 Greedy chooser algorithm

The greedy chooser works as follows [6]:

1. Initialize C ← ∅.

2. For each partition q, let A(q) = {p ∈ P \ C |
p →∗ q} be the set that contains all ancestors
of q that have not yet been chosen. Since the
ancestor relation is reflexive, q is an ancestor of
itself.

3. Find the partition p with the highest
quality(A(p)).

6

4. If dead(C) is not yet enough to satisfy the current
allocation request, or if quality(C) < quality(C ∪
A(q)),

(a) then C ← C ∪A(p), and go back to Step 2,
(b) else return the choice C.

3.2 The greedy chooser is not optimal

Figure 7 shows an example of a partition dag an-
notated with the estimated dead and live functions.
For this example, the greedy chooser will not find the
optimal solution.

p1 p2

p3

p4

dead(p) : live(p)
3:0

3:0

2:1 0:2

Figure 7: Example where the greedy chooser is not
optimal.

Table 3 shows all closed subsets of the partition
dag in Figure 7 and their quality. The greedy chooser
would start by choosing C1 = {p1}, which has a qual-
ity of 2/1 = 2.00. Then, it would consider adding
another partition with its ancestor set. But all of the
three possibilities C2 = {p1, p2}, C3 = {p1, p2, p3},
or C4 = {p1, p2, p4} have worse qualities than what
has already been chosen. The only better choice,
which the flow-based chooser would find, is Copt =
{p1, p2, p3, p4} with a quality of 2.67, but the greedy
chooser does not consider it, since it involves adding
more than the ancestor set of a single partition.

Table 3: Qualities of closed subsets of the partition
dag in Figure 7.

Closed set C ⊆ P Quality
p1 p2 2/3 =0.67

(empty set) 0/0 =undefined
p1 p2 p3 5/3 =1.67
p1 p2 p4 5/3 =1.67
p1 2/1 =2.00
p1 p2 p3 p4 8/3 =2.67

4 Results

We generated traces of Java benchmarks executing
on Jikes RVM (formerly called Jalapeño [2]). These

traces list all object allocations and pointer writes,
as well as the precise times when objects become un-
reachable [5]. Using these traces, we simulate var-
ious garbage collectors in our GC simulator gcSim.
Among other things, gcSim includes simple imple-
mentations of the flow-based and greedy choosers
in Java. The traces and the source code for gc-
Sim are available at http://www.cs.colorado.edu/
~hirzel/gcSim. For details on our methodology
see [6].

Table 4 shows our results. Here is how to read it:

Programs: There is one row for each of our bench-
marks. They are sorted by their total allocation
in bytes, which gives an indication of their size.
The program power allocated the fewest bytes
(70MB), the program javac allocated the most
bytes (553MB).

GC work per time: This metric indicates the cost
in time of garbage collection. The unit is (bytes
copied / bytes allocated).

Maximum footprint: This metric indicates the
cost in space of garbage collection. The unit is
(maximum footprint / heap size in bytes).

Average and maximum work per GC: These
metrics indicate the pause times for garbage
collections. The unit is (bytes copied at current
GC / heap size in bytes).

Average time choose: This metric is the average
wall clock time for running the Java implemen-
tations of the choosers in gcSim, on a 1.4GHz
Pentium 4 with 1GB of RAM. The unit is sec-
onds.

AOF and AOG: These are abbreviations for the
Cbgc configurations. AOF uses the flow-based
chooser, and AOG uses the greedy chooser. Both
use the allocsite-dynamic partitioning and oracle
estimator described in [6].

The metrics “GC work per time”, “maximum foot-
print”, and “average and maximum work per GC”
evaluate how the quality of the chooser affects overall
GC performance. If the chooser makes good choices,
the numbers are lower; if it makes bad choices, they
are higher. We see that in almost all cases, the flow-
based and the greedy chooser make choices of iden-
tical quality. The only exceptions occur for the pro-
grams ipsixql, xalan, and pseudojbb. We did not in-
vestigate the cause for these variations. For ipsixql,
the greedy chooser turns out to improve overall GC
performance. At first glance, this seems to contradict

7

http://www.cs.colorado.edu/~hirzel/gcSim
http://www.cs.colorado.edu/~hirzel/gcSim

Table 4: Experimental results.
Program GC Work Maximum Work per GC Average

per Time Footprint Average Maximum Time Choose
AOF AOG AOF AOG AOF AOG AOF AOG AOF AOG

power 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.11s 0.13s
deltablue 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 1.33s 0.10s
bh 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.19s 0.11s
health 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.62s 0.11s
db 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 0.34s 0.10s
compress 0.000 0.000 0.498 0.498 0.000 0.000 0.000 0.000 3.97s 0.04s
mtrt 0.057 0.057 0.530 0.530 0.000 0.000 0.037 0.037 2.14s 0.12s
ipsixql 0.151 0.137 0.532 0.518 0.000 0.000 0.054 0.049 4.81s 0.13s
jess 0.236 0.236 0.538 0.538 0.001 0.001 0.046 0.046 6.69s 0.18s
jack 0.092 0.092 0.537 0.537 0.000 0.000 0.047 0.047 3.03s 0.15s
xalan 0.333 0.328 0.536 0.561 0.001 0.001 0.045 0.130 12.62s 0.32s
pseudojbb 0.239 0.240 0.550 0.549 0.000 0.000 0.081 0.081 4.25s 0.18s
javac 0.234 0.234 0.564 0.564 0.000 0.000 0.076 0.076 5.02s 0.24s

the optimality of the flow-based chooser; but it can
happen if the choosers make different choices of simi-
lar quality that lead to different fragmentation effects
down the line.

The wall-clock times have to be taken with a grain
of salt, since we put little effort into optimizing the
choosers. The flow-based chooser implemented in gc-
Sim uses the cubic lift-to-front flow algorithm de-
scribed in [3], but in the literature, there are algo-
rithms with better complexity (e.g. [4]). The greedy
chooser is not very efficient either, it builds up aux-
iliary data structure for every choice that could be
cached in a better implementation.

Table 4 shows that the wall-clock time of the flow-
based chooser is quite high. In fact, given that a GC
should take less than around 0.3 seconds to be im-
perceptible by the user, we can probably not afford
it, even if we can optimize it by an order of magni-
tude. The greedy chooser performs much better, and
with a little more optimization, its choice times will
be acceptable.

5 Conclusions

We looked at two choosers for Cbgc: flow-based and
greedy. In theory, the flow-based chooser is opti-
mal, while the greedy chooser can make sub-optimal
choices. In practice, the quality of the two choosers
is usually almost the same. From a prototype im-
plementation, the flow-based chooser appears to be
too slow, whereas the greedy chooser is probably us-
able. Nevertheless, the flow-based chooser was im-
portant for our experiments; at the very least, it

helped demonstrate that the greedy chooser makes
good choices in practice.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin. Net-
work Flows Theory, Algorithms, and Applica-
tions. Prentice Hall, 1993.

[2] B. Alpern, C. R. Attanasio, J. J. Barton,
M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi,
S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo,
J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shep-
herd, S. E. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapeño virtual machine.
IBM Systems Journal, 39(1), 2000.

[3] T. Cormen, C. Leiserson, and R. Rivest. Intro-
duction to Algorithms. MIT press, 1990.

[4] A. V. Goldberg and R. E. Tarjan. A new approach
to the maximum-flow problem. Journal of the
ACM (JACM), pages 921–940, 1988.

[5] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S.
McKinley, and D. Stefanović. Error-free garbage
collection traces: How to cheat and not get
caught. In Measurement and Modeling of Com-
puter Systems (SIGMETRICS), 2002.

[6] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-
based garbage collection. In Object-Oriented Pro-
gramming, Systems, Languages, and Applications
(OOPSLA), 2003.

8

