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ABSTRACT

The pros and cons of using simulation during the design phase
of machine development are discussed. An approach using two
levels of simulation models to investigate proposed machine performance
is illustrated by a case study of a parallel processor machine. It is
argued that the approach alleviates some of the liabilities tradition-
ally encountered in machine simulation, and that it is a cost-effective

method of design analysis.






INTRODUCTION

Simulation techniques have been widely used in computer perform-
ance studies, including system selection, design of new systems, and
software tuning of existing systems, [1-3]. Our experiences show that
simulation can be particularly effective when used as a system design
tool; in this paper, the use of simulation during the design of a
parallel processor is described.

In the next section, some design evaluation tools are discussed
along with assets and liabilities of each. Next, a brief overview of
a parallel processor is provided; and finally, the use of two levels
of simulation models in evaluating the design parameters of the parallel
processor is described.

DESIGN EVALUATION TOOLS
Merikallio and Holland have listed a set of possible tools to be
used to evaluate performance measures of alternative designs, [4]:

Mathematical analysis using average values.

Queuing theory models.
Discrete simulation models.

Experimentation with prototypes.
Each of these approaches has its strong and weak points. Models that
predict performance based only on average values of the independent
variables (i.e. input parameters) are relatively easy to analyze; how-
ever, they assume that the variance of such variables is small. If
the variance is large, then an average value model will ignore sporadic
service and request patterns, causing the predicted performance to be
optimistic in terms of the resources required to handle peak loads.
Queuing models are more precise, since they allow service and
request patterns to be described by probability distributions for
the random values of the independent variables, i.e. they allow
the model to incorporate more detail than average value models. Un-
fortunately, as queuing models increase in this level of detail, they
become correspondingly more difficult to solve.
Discrete simulation models allow more detail to be incorporated
into the model, since a program will be written to handle the added
components of the model. Input parameters of a simulation model may



be derived from probability distributions (as in queuing models), or
they may be provided by trace data. The difficulties encountered with
simulation models, (discussed in more detail below) are that they may
be hard to validate and expensive to exercise.

Prototype development is the ultimate design tool in the sense
that the amount of detail is at the lowest level, i.e. it is a copy
of the machine design. Unfortunately, prototypes are expensive to
build and test, and they are also difficult to use to explore a number
of alternative designs.

The design effort for a computer system should use all four
tools. Average value models can be used to make gross performance pre-
dictions which will rule out certain design alternatives. Next, the
remaining alternatives should be analyzed with queuing models, adding
another Tevel of detail. As the queuing models become more and more
detailed, they will eventually become too complex to analyze. Queuing
model studies might also eliminate some of the possible designs from
further consideration. Simulation models should then be used to
handle the increased detail in testing the design alternatives that
have been shown to be acceptable by previous modeling techniques. The
final step is to test the design alternatives, (that are still plaus-
ible), by building one or more prototypes of the designs.

Simulation: Pros and Cons

Any simulation model is a tradeoff between realism and the cost
to simulate that realism. The amount of realism incorporated into the
model is directly reflected by the Tevel of detail incorporated into
that model. At one extreme is a simulation of a queuing model, i.e.
the simulation incorporates a component to sample a request distribution,
one to model a queue, and a third component to model the service of
the request (based on a service time distribution). At the opposite
extreme is a simulation model containing components that are function-
ally equivalent to each component in a real system; the distinction
between the model and the target system lies in the implementation of
each component. The approach advocated here is that several simula-
tion models should exist during the machine design phase, where some
models tend toward the prototype and others tend toward queuing models.



In order to rely on the performance prediction of any model, one
must have confidence in that model. Confidence can be gained in one
of two ways: The simulation model can be werifed by comparing pre-
dicted performance of the model with an independent prediction, or the
simulation program that implements the model can be validated to be a
correct model of the system, and then the program can be verified to
be "correct" with respect to the model definition. If the simulation
model represents a machine that is still in the design phase, then true
validation is impossible, since no real hardware exists that can be
used to compare predicted performance and real performance. One popu-
lar technique used in such situations is to verify the simulation
model and program against an independent queuing model, (e.g. see [5]).
However, others have used simulation models to verify their queuing
model, (e.g. see [6]). Either approach is not Tikely to be a rigorous
validation, since one model is verified by another model.

The alternative course of action is also difficult. One would
like to ensure that the simulation program is equivalent to the design
specifications of the system it models. If one attempts to prove that
the model 1is equivalent to the specifications, then a formal argument
must be put forth which relies on a formal definition of "equivalent".
Current state of the art in proving programs does not seem to indicate
that the approach is viable for large programs. Instead of a formal
proof of equivalence, others have used the idea of machine-aided design
directly from specifications to obtain certifiable programs, (e.g. see
[7]). This appears to be a promising approach to validation.

Another difficulty with simulation (and queuing) models is that
of adequately determining and characterizing the load for the models.
Probability distributions are frequently used to represent individual
parameters, and in some cases, joint probability distributions are
used to interrelate parameters, (e.g., see [8]). When a distribution
function is used to describe a known workload, then a model is being
used to mask out detail of the real world situation. For example, an
exponential distribution is frequently used to represent the inter-
arrival rate of requests to a system, (this assumes that the arrival
pattern is Poisson). Although convenient to use, and easy to argue
for in the absence of real data, the random arrival assumption does



not hold if the requests are interrelated. Distribution functions
should be based on observed patterns if at all possible. Determining
the workload for a nonexistent system has the added problem that no
current workload exists. In order to generate a workload, one must
either hypothesize a workload or else explore the application areas
and environments for which the (nonexistent) system is intended.

Although there are several problems to be overcome when using
simulation, there are also advantages. For models that are too detailed
to handle with queuing theory, simulation is far more cost-effective
than testing unproven prototype designs. It is relatively easy to test
a design, alter the design, and then retest the system when using simu-
Tation. One also has the freedom of judiously eliminating uninterest-
ing detail for particular models by simplifying the model component
that represents that detail. For example, the simulation model of a
computer may be written to investigate memory conflicts; the details
of operation of the processing unit(s) and I/0 processor(s) are of
interest only in terms of the pattern in which they make memory refer-
ences. A simulation model can use distribution functions to describe
the effect of these units without actually including their explicit
actions into the model.

In the remainder of this paper, a case study of a parallel pro=
cessor design effort using simulation is discussed. These techniques
have been used to reduce the amount of difficulty in handling varying
levels of detail, in exploring possible job loads and their repre-
sentations for the machine, and in correctly handling the occurrence
of parallelism.

MULTI ASSOCIATIVE PROCESSOR OVERVIEW

The Multi Associative Processor, hereafter MAP, is a parallel
processor employing 8 control units and 1024 processing elements. (See
Figure 1). Only a brief description of MAP will be given in this sec-
tion, and the interested reader is invited to see the references,
[9,10]. Each control unit, in combination with a subset of the processing
elements, operates on a single instruction stream through the control
unit and multiple data streams, one through each processing element
(i.e. SIMD operation). The instruction execution cycle for one control



unit and one or more processing elements can be described as follows:
The control unit fetches an instruction from the main memory and then
decodes the instruction to obtain a series of low level operations
that each processing element must execute in order to carry out the
instruction. The control unit "broadcasts" this set of operations
over the instruction bus shown in Figure 1, one at a time, to the

set of processing elements that are currently assigned to that control
unit. Each processing element executes the operations on data that
resides in a memory that is local to the processing element. Since
it is unlikely that all instructions will apply to each processing
element that is assigned to the control unit at all times, a mechanism
to temporarily activate or deactivate a given processing element is
required; we refer to this mechanism as an "associative unit".

The processing element memories are loaded sequentially by the
control unit from the main memory. This loading amounts to data load-
ing rather than program loading, since the processing element memory
is not used to store instructions. In order to provide this capability
to transfer data from the main memory to the processing element memo-
ries, a data bus is required, as indicated in Figure 1. The philosophy
of this machine will require high utilization of the instruction bus
system and relatively Tow utilization of the data bus system provided
that high I/0 programs are not executed on the machine. For this rea-
son, and since the data bus will generally be wider than the instruction
bus, the architecture incorporates dedicated instruction buses and
shared data buses. Although the general architecture of the machine is
specified above, and in Figure 1, the parameters of the design are sub-
ject to the actual condition under which the machine might be used.

For example, the main memory is shared among eight control units and
must be designed to support the simultaneous access of all control
units and the I/0 system.

Design studies of the MAP system have primarily concentrated on
the following problem areas:

1. Main Memory conflict among the control units [11].

2. The number of shared data buses required in a MAP syStem [111].

3. Allocation algorithms to reduce data bus conflicts, [12].

4. Operating System Strategies for MAP [13].

5. Measuring the performance of individual MAP programs [14].



In the first two studies, simulation programs were used to investigate
hardware designs; the Tatter three studies investigated software per-
formance using simulation. 1In all cases, a realistic job load for the
machine was generated using other simulations.

TWO-LEVEL SIMULATION MODELS

An immediate difficulty encountered in this project was that no
machine with characteristics similar to MAP was available. Hence, the
uses to be made of such a machine were based on pure conjecture; no
understanding of the job Toad that the system might experience was
known. Clearly, the performance of the machine on a purely hypotheti-
cal job load is of Tittle interest to anyone; some appropriate applica-
tion areas had to be investigated, and individual program requirements
had to be obtained. This led to the development of the first in a set
of hierarchical simulation programs, namely an interpreter for the
machine, (simulating one control unit and an arbitrary number of pro-
cessing elements). The interpreter, described in more detail below,
allowed real MAP programs to be written and tested one at a time. This,
in turn, provided a mechanism for building realistic workloads based on
actual, running MAP programs. However, it did not accurately model
MAP in a number of other respects, e.g. multiple control units were not
simulated, memory conflicts were ignored, shared data bus conflicts were
ignored, etc. The interpreter provides an opportunity for one MAP pro-
gram to execute in a noncompetitive environment.

The overall system performance is dictated by the handling of com-
petitive situatiors. The second level of simulation models handles this
aspect of system operation. As programs were interpreted, a simulated
monitor was used to obtain program performance statistics; these
measures were then available as input data to the second Tevel models.

The First Level Model

The MAP program interpreter, called MAPSIM, is a complex simula-
tion program used to interpret a single MAP program stored in a pseudo
main memory in absolute binary format. Thus, it is used to model a
single control unit and an arbitrary number of processing elements,
allowing actual programs to be written and executed in a noncompetitive



environment (i.e. resources are always immediately available as re-
quired). The input data to MAPSIM includes a designation of the number
of processing elements to be used, the amount of processing element
memory required, and a MAP program in absolute binary form. MAPSIM is
written in the assembly language of the Control Data 6400 (called
COMPASS) since it is desirable that the program be as efficient as
possible during execution. This is necessary due to the large degree
of parallel processing element activity that must be simulated on the
sequential Control Data machine. Even with MAPSIM coded in assembly
language, the simulated time/real time ratio is much greater than one.
(This ratio is dependent on the number of processing elements being
simulated and on the activity of the set of processing elements with
respect to the set of operations being broadcast by the control unit.)

Consider the action taken for each MAP instruction execution.
First, MAPSIM fetches an instruction from the pseudo main memory; this
instruction is then decoded into a set of actions that the active pro-
cessing elements must execute. The operations required to simulate the
effect of a machine instruction do not directly correspond to the
theoretical set of operations broadcast over the instruction bus as
described previously, and thus the utilization of the instruction bus
is not modeled. The set of processing elements currently allocated to
a processing element is separated into two lists; the first 1ist chains
together all currently active processing element descriptors, and the
second 1list includes the remaining processing elements. Therefore,
to apply the instruction to the set of active processing elements, the
1ist of active processing elements must be traversed.

A1T MAP program input and output (to and from the main memery)
is accomplished by including a FORTRAN subroutine, within MAPSIM. The
MAP program then makes "supervisory calls" which are passed on to the
FORTRAN input/output routine. Again, a portion of the target system
is modeled at substantially less detail than other portions.

MAPSIM is used to execute a MAP program, producing user-defined
output. This has proven to be a worthwhile approach, since it has pro-
vided a medium for writing and testing a diversity of programs that
illustrate several application areas for MAP. Additionally, MAPSIM
allows one to write monitoring routines to simulate software and hard-



ware monitors. MAPSIM is designed to call a subroutine named MONITOR
at the completion of each instruction cycle.* If the user does not
wish to monitor his program, the default MONITOR returns control to
MAPSIM. Once the monitor has been called, it is free to inspect any
of the tables maintained by MAPSIM, e.g. the active processing element
Tist, the simulated time, whether or not the instruction made a data
reference to main memory, whether or not the instruction required the
data bus, etc. The output provided by the monitoring routine may be
defined by the user. He may generate a set of full trace data, a
partial trace, or merely collect statistics to define distributions
reflecting the character of the MAP program.

Although MAPSIM has been carefully written in assembly language
to minimize the required execution time, the monitoring routines will
usually be written in some combination of COMPASS and FORTRAN. Al-
though these routines may be called very frequently, they will perform
only a minimal amount of computation. They must also be able to do
flexible I/0. Because of these properties, and since monitoring pro-
grams will frequently change, high Tevel Tanguages should be used to
implement the simulated monitors.

As an example of the use of the monitoring routines, consider
the problem of determining the Toad on the interface between the control
unit and the main memory as generated by a given program. One can dis-
tinguish between instruction fetches and global data references to the
main memory. In order to determine the memory load, then, the monitor
must examine the activity caused by each instruction executed on the
control unit. After each instruction is processed, its execution time
is Tooked up in an operator table. This time is used as the time since
the Tast instruction fetch, and the data can be written to an auxiliary
file to generate the trace of instruction fetches or it can be entered
into a data structure to generate a distribution of the frequency of
instruction fetches.

In order to determine the global data reference distribution, one
must determine if the current instruction referenced memory or not.

* It is also possible td have MAPSIM ¢a114MONITOR only after certain
instructions have been executed. This option is invoked by reassem-
bling MAPSIM with appropriate assembly-time options set.



This information can also be saved in a table. If the instruction
does not reference data, the instruction time is added to an accumula-
tor that keeps track of the time since the last data reference; other-
wise, a portion of the instruction execution time for this instruction
is added to the time since the last reference and then the sum is
entered into a distribution. Again, this data could be used to gener-
ate a full trace of data references.

MAPSIM has been a useful tool for analyzing single program
execution. It has allowed us to explore such potential application
areas as numerical mathematics, operating systems, and operations
research. Furthermore, we have been able to expose several weaknesses
in the original instruction set for the machine; this has resulted in
the impTementation of a second version of the assembler and interpreter.

The first Tevel model does not incorporate resources that are
shared among two or more (programs executing on) control units, and
thus, does not model this resource competition. There are two possible
approaches to study this competition, given that MAPSIM is available.
The first is to increase the level of detail of MAPSIM so that it is
cognizant of shared resources, incorporating other control units into
the interpreter. The second approach is to use a second level of
models, (driven by measurement data from MAPSIM), which are less de-
tailed in terms of program function, but more detailed in that the
utilization of shared resources is taken into account. The first
approach has the advantages of added realism and the ability to model
inter control unit communication mechanisms (e.g. testing variants of
Dijkstra's semaphore operations by independent processes). The dis-
advantage to the first approach is that the interpreter becomes more
and more complex, and hence more difficult to build. It is possible
to make a convincing argument that MAPSIM accurately simulates the
action of a single control unit and a set of processing elements; if
the program is to use quasi-parallel techniques to model multiple con-
trol units, the memory system, and the shared data bus, it is signi-
ficantly more difficult to convince oneself that the code does what is
intended. Despite the disadvantage of complexity, we are currently
implementing a multi control unit interpreter. It will be used pris
marily to study synchronization and communication aspects of MAP and
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not for resource utilization studies. Only if a continuing argument
can be made that the multiple control unit interpreter is "correct"
will it be used for resource utilization studies.

Second Level Models

Second Tevel models correspond to simulation models that are
commonly used to predict the performance of the extension of an exist-
ing system. Such studies typically model an existing system that has
been reconfigured to employ a different CPU, more memory, different
peripherals, etc. The second level models for the MAP study are
analogously based on the first lTevel model (MAPSIM), rather than
existing hardware. Second Tevel models incorporate less detail in
terms of control unit and processing element operation, i.e. they
do not simulate instruction execution. They incorporate more detail
in the sense that shared resources are modeled in order to investigate
the system-wide effects of resource competition. For example, a
second level memory conflict model might include components to repre-
sent the memory system, but not the contents of memory locations;
multiple control unit memory access patterns, but not instruction
execution; I/0 subsystem memory access patterns, but not data items;
and a component to represent data paths between the other components,
which is excluded from the first level model.

This class of simulation models is preferred to a multiple control
unit interpreter because it is less expensive to exercise, and it is
easier to argue that it performs the desired functions. On the other
hand, validity may be more questionable since the level of detail of
a second level model ignores certain facets of operation.

These higher level models are intended for studying individual
aspects of the system. One should be able to write several second
Tevel models to investigate the effect of shared data bus competition,
resource allocation algorithms, operating system strategies, etc.
While it was crucial that MAPSIM be as efficient as possible, the
emphasis on higher level models is for ease in preparing and testing.
Therefore, the second Tevel MAP programs have all been written in
higher Tevel programming languages, including FORTRAN and special
purpose simulation languages.
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The two level approach has had a decided advantage over other

techniques in the area of representing the job load. Individual pro-
grams are executed one-at-a-time on MAPSIM in conjunction with an
appropriate monitor. In most cases, the monitors have gathered pre-
cise trace information describing when the program requires access to
shared facilities, (in the other cases probability distributions were
built to represent program activity). After a sufficient number of
programs have been interpreted in the noncompetitive MAPSIM, the traces
for the programs are used to drive the second Tevel model. Gathering
trace data is extremely simple compared to the work involved with
monitoring a prototype system; the monitors are quickly written, and
they record the exact events required by the higher level model.
If monitor data needs to be filtered before being used, the monitor
can do all filtering on-Tine; no artifact will be introduced, since
the first Tevel simulation will allow all monitoring to be totally
invisible to the monitored program.

Introducing parallelism and resource competition at the second
Tevel is easily handled with monitor traces from MAPSIM. Trace data
for each program is written to a separate file; each record on the
file contains an event, a MAPSIM time of occurrence, and other mis-
cellaneous information. As each record is read from all trace files,
appropriate action is taken and a simulated clock for each program is
updated. Whenever a shared resource conflict occurs, the model re-
solves the conflict, allowing one program to continue, and the other
to be blocked until the first completes its use of the resource. The
first program can then be resumed with the total blocked time added
to the recorded time of occurrence for all succeeding events. A
detailed example of the use of this technique is given in reference [11].

CONCLUSION

The two Tevel simulation approach to the design of the Multi
Associative Processor has provided a cost-effective means of analyzing
several aspects of the performance. The first level has been used to
write and test a wide variety of MAP computer programs, and has allowed
us to monitor these programs in very general ways without introducing
artifact at the Towest level. This approach has the advantages of a
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software monitor in generality and of a hardware monitor in non-
interference. The total computing budget for implementing MAPSIM,
writing MAP programs, monitoring MAP programs, and implementing
second level models to study memory conflict, shared data bus conflict,
resource allocation algorithms, and operating system comparisons was
less than $6,000.

The work has allowed us to test a variety of machine designs,
including two distinct instruction sets for MAP all within two years
at an effort of approximately 12-15 man-months distributed over an
average of 1.5 graduate research assistants and an investigator
working 10% of the time during the academic year and for two months
each during two summers.

Finally, the simulation studies have now come to the point
where a prototype MAP system can be built with good ideas about how it
will perform.
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