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ABSTRACT

This paper provides a method of decomposing a subclass of ETOL languages
into deterministic ETOL languages. This allows one to use every known example
of a language which is not a deterministic ETOL language to produce languages

which are not ETOL languages.
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I. INTRODUCTION

The theory of L systems originated from the work of A. Lindenmayer (see
Lindenmayer [ ii]). Although initially proposed as a theory for the development
of filamentous organisms, in the last four years it turned out to be useful and
interesting from both the biological and formal points of view (see, e.g.,
Herman and Rozenberg [g ], and Rozenberg and Salomaa [13]).

One of the central families of L languages (that is languages generated
by L systems) is the family of ETOL languages (see, e.g. Downey [2 ], Rozenberg
[12] and Salomaa [15]). An important research area in the theory of ETOL
systems and languages is to provide results which would facilitate proofs that
certain languages are not ETOL languages. Although some such results are already
available (see, e.g., Ehrenfeucht and Rozenberg [ 4], and Ehrenfeucht and
Rozenberg [ 51), a lot of work in this direction remains to be done.

This paper provides a criterion for proving that some languages are not
ETOL languages. In fact it shows how, in certain cases, to reduce this problem
to proving that some languages are not deterministic ETOL languages (see
Rozenberg [12] and Ehrenfeucht and Rozenberg [6]). This is a great help indeed,
because it is easier to investigate the structure of derivations in a deterministic
ETOL system, and quite a number of examples of languages that are not deterministic
ETOL languages are already available (see, e.g., Ehrenfeucht and Rozenberg [7]
and Ehrenfeucht and Rozenmberg [ 81).

As a corollary of our results we get that the family of ETOL languages is
strictly included in the family of index ﬁanguages of Aho (see, Aho [1 ).
This was quite an important open problem of a rather long standing (see, e.g.,
Downey L 2], Salomaa [15] and Salomaa e D.

We assume the reader to be familiar with rudiments of formal language theory,

e.g. in the scope of the first four chapters of Hopcroft and Ullman [10 ].
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IT. DEFINITIONS
In this section we provide definitions and examples of systems and languages
used in this paper.

Definition 1. An extended table L system without interactions, abbreviated

as an ETOL system, is defined as a four-tuple G = <V, P, w, I> such that:

(1) V is a finite set (called the alphabet of G),

(2) P is a finite set (called the set of tables of G), P ='{Pl, cees Pf}
for some £ > 1, each element of which is a finite subset of V x V*. P satisfies

the following (completeness) condition:

¥P)p (Va), (aa)v* (<a,0> ¢ P),
(3) we V+ (called the axiom of G),

(4) © €V (called the target alphabet of G).

We assume that V, %, and each P in P are nonempty sets.

Definition 2. Let G = <V, P, w, Z> be an ETOL system. Let x ¢ V+,

%
X =3y eee 3 where each aj, 1 <3<k, is an element of V, and let y e V. We

say that x directly derives y in G (denoted x =E% y) if and only if there exist

P in P and Pys> +++» P in P such that Py = <815 07 5 Py = <8y, Gp>5 .ees

Py © (for some o X

%
y in G (denoted x =§$ y) if and only if either (i) there exists a sequence of

%
= <ak, o ceesy O, €V ) and vy = Gy oo O We say that x derives

l’

%
oee i i > = =
words X5 Xqs > x in V (with n > 1) such that X =X X =y and

k I . P =
xozG‘;?xl"é-rxz ;G%Xn’ or (ii) x = y.

Definition 3. Let G = <V, P, w, I> be an ETOL system. The language of G
, % %
{xez :ow =%§%xj.

[

(denoted as L(G)) is defined as L(G)

- Definition 4. An ETOL system G = <V, P, w, I> is called deterministic

(abbreviated EDTOL system) if for each P in P and each a in V there exists exactly

%
one o in V such that <a, o> € P.
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%
Definition 5. Let I be a finite alphabet and K¢ I . K is called an ETOL

(EDTOL) language if and only if there exists an ETOL (EDTOL) system G such that
L(G) = K.
We shall use L(ETOL) and L(EDTOL) to denote the class of ETOL languages

and the class of EDTOL languages, respectively.

Definition 6. An ETOL system G = <V, P, w, I> is called synchronized if for

* %
every X, vy such that x e V LV , vy ¢ V+ and x derives y in at least ome step,

* *
then y e V (V- 2) V.

Definition 7. Let G = <V, P, w, > be an ETOL system with P ='{Pl, cees Pf}.

Let Z €CV. For P in P a P(Z) table is a set of ordered pairs <a, a>, a in V and

* . .
o in V , such that, for each a in (V - Z) each element <a, o> from P is in P(Z), for
each a in Z, P(Z) contains exactly one element <a, o> from P and P(Z) contains

nothing else. An ETOL system H = <V, P, w, > is called the Z-combinatorially

complete version of G if P = {T : for some P in P, T is a P(Z) table}; If Z =V,

then we say that it is the combinatorially complete version of G.

Notation. Let G = <V, P, w, I> be an ETOL system. If <a, o> is an element

of some P in P, then we call it a production (for a in P) and write a <7 o A

derivation in G is a sequence of words (XO, Xys vens xn) such that Xy =W and

x. =)

- < 4 < n-1. R . . . .

576 S for 0 < j < n-1. (We also say that it is a derivation of x in G)

Sometimes by a derivation we shall mean a sequence (x,, ..., x_) together with the
0 n

precise set of productions used in each derivation step but this will always be

clear from the context and should not lead to confusion.

Example 1. Let Gy <{a, b, A, B, C, D, F}, P, CD, {a, b}> where

P = {Pl’ Py» P3} and
Pl='{a—+F,b—-—>~F,A-—>A,B—-—+B,c-»ACB,D-—»fDA},
p.={a—>F, b —F, A—> A, B — B, C —> CB, D —> D},
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P3='{a--—rF,b-—->F,A-—-—->a,B-———~a—b,c-—-—->A, D — A}.

G, is a synchronized EDTOL system and

1
L(Gl) ="t a" i n >0, m> n}.

Example 2. Let G, = <{a, b, A, A', B, B', C, C', F}, P, ABC, {a, b}>
where P = {P} and
P={a — F, b —+F, ¢c —+F, A—> A'A, A—F+a, B— B'B, B —+ b, C —> C'C,

C —+cy, A' —> A', A" ~> a, B' —3 B', B' =4 b, C' —+ C', C' —» c, F —> F}.

G2 is a synchronized (but not deterministic) ETOL system and L(G) = {a" bt et n > 1}.
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III. RESULTS

Theorem 1. Let I3, Iy be two finite disjoint alphabets and let Kj & %,
Ko € I*. Let f be a bijective function from K; onto K. Let K = {wf(w) : w e Ky}.
If K ¢ L(ETOL) then K, K;, K, e L(EDTOL).

Proof

The idea of our proof is to start with an arbitrary ETOL system generating K
and then to construct EDTOL systems generating K, K; and K, respectively. As the
construction is quite involved we have split it up into several steps.

Let K satisfy the statement of the theorem.

Let 6 = <V, P, w, I>, where £ = I; V I,, be a synchronized ETOL system
generating K. By Theorems 3 and 4 in Rozenberg f217, we may assume that w = S,

where S € V - I, and, for every a in V and every P in P, if a - o then either

P
+
o e % or a e(V-3%) .
Now we present, in several steps, our construction.
STEP 1.
(1) (1) (2)  (2)
Let V = {a taeV -2}, V = {a taeV -2}

and V(m) ='{a(m) :aeV -3}, If je{l,2,m}, anda=0b ... b, with k > 1 and

1

by ...y by © V, then o) - bl(j)...bk(j>. Also for § e {1,2,m}, A9 = A, fet
1) (1) (2) . (2) '
Zf ) = {a tae 1} and £, = {a

(F ¢ v(lgt V(Z%J v U 5. et v, = v(laj V<2)L} vi® s U .

:acely}. Let F be a new symbol

For each table P in P we construct a new table P as follows:
) % (1) (1)
(1) if a <> o with o ¢ %;, then a —_—
* (2) P (2
(ii) if a <> o with o ¢ Z,, then a — ’

(iii) if a —> o with o ¢ (V- Z)+, say o b1 ««. b, for some k > 1 and

(ECT!

by, +ev5 b e (V- %), then

k
KON O)
P ‘
3(2)_1f»_a(2)’

P
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P

1 1 2 2 .
a(m) fgi b§ ) ...bé_i bém) bé+1 oo bi ) for every £ in {1, ..., k},

1 1 2 2
a(m) —%ﬁ‘b( ) cee bé_i bé ) cen b; ) for every £ in {1, ..., k},
(iV) F f:% F,

P

(v) for every j in {1,2,m} and every a in V, a(J) -t F,
P

(this is the easiest way to have E'satisfying the completeness condition),
(vi) only productions obtained from (i) through (v) are in P.

Let Pt be a new table such that

P = {a(l) —r a : a(l) £ 251)}&J{a(2) e a:a(2{-+ Eéz)}(J
1) _(2)

{a —> Fiaec V- (2] U3y

Let Py = {P .} U {P:Pe Pk

S(m)

Finally let G; = <Vi, P1, s L>.

STEP 2.

(m)

Let G, = <Vp, Pps 8™, 5> be the v(®

- combinatorially complete version of

Gi1. (Note that Vo = Vi).

STEP 3.

(m:1) =A{a(m:1) m) ¢ V(m)} and v{™i2) ='{a(m:2) 2™ ¢ V(m)}'

Let V : a

g

For each table P in P we construct a new table as follows:

(1) ifaev-y™
(m) (m)

and a —5+‘a, then a —;* Oy

(m) — S @ @)

(m:2)(_7$ b (mi2) a(Z)
P

(ididi) if a(m) € V(m) and a(m)«—§+\u(1), then

(m:2) (2)

and a — O s
‘P

(ii) if a e V and a for some b(m) in V(m), then

2 o ) ml) g ,

o (@:1) —_— o1



(iv) if a(m) £ V(m) and a(m) ~§* a(z), then
a(mzl) ~> [ and a(mzz) — a(Z)
P P

(v) if a(m) € V(m) and a(m) —E» a(l) a(Z), then

a(m:l) (1) (2)

— (), and a(mzz) — .
P P

(vi) only productions obtained from (i) through (v) are in P.

~

Let Pg = {P : P ¢ Py}.

Finally let Gs = <Vg, Pg, 5 ™ 1) g(mi2) o

STEP 4.
L _ (m:1) ,(m:2) . . .
et Gy = <Vy, Py, S S » 1> be the combinatorially complete version
of °G3.
Let 5; = {a(l) —r a 2 (M £ Z%l)} Lf{acz) — i a® € Zéz)}éj
: 1
yla —TF :aevVv, - (Z% ){) 252))}.
— \ . (2)
= 1) ,
Let P _ = {a(l) — N a( - 2(1)} ) {acz) — a a(z) e I, 1}V

vla — F :aceV, - (Zgl)g) Zéz))}.

Let Py = (Py - {p.}) U {P,} and Py = (P, - t?.h v {?t}.
Let Gél) = <v,, P, g(m:1) s(m:Z)’ > and GL(,Z) - <, P, g(m:1) S(m=2), .

To complete the proof of Theorem 1 we have to show that L(Gy) = K, L(Ggl)) = K1
and L(G&z)) = K,.

Let us first prove that L(G;) = K.

We do this by proving that the sequence of ETOL systems G, G1s Go, Gz, Gy has
this property that they all generate the same language.

I) L(G) = L(Gp).

We shall present now the main idea behind the proof of this equality, leaving
to the reader the formal proof.

L(G) < L(G1).



-8-

If one takes a derivation tree in G of a word x of the form X X, with
X; € Zl* and X, € 22*, then (in the bottom—up fashion) one can classify all the
nodes in this tree into three categories: those which contribute to Xq» those
which contribute to X, and those which contribute to both Xy and Xy If a node
belongs to the first category and its label is a then we change it to a(l), if
a node belongs to the second category and its label is a then we change it to
a(z), and if a node belongs to the third category and its label is a then we
change it to a(m). But it clearly follows from the construction of G that such
a derivation tree with one extra level added (corresponding to the application of
P, from Pl) corresponds to a derivation in G, and consequently x is in L(Gl). Thus
L(G) & L(Gl).

L(Gl) < L(G).

If one takes a derivation of ‘a word x in L(Gl) and then omits all superscripts
in the letters of the form a(i> with i in {1,2,m} and also omits the last level
(corresponding to the application of table Pt from Pl), then, clearly, one gets a
valid derivation in L(G). Consequently x is in L(G). Thus L(G) <€ L(G).

I1). L(Gl) = L(G2)°

This equality follows immediately by observing that in each derivation in
Gl each intermediate word contains at most one occurrence of a letter of the form
a(m).

II1). L(G,) = L(Gy).

What Gy does is simply split each derivation tree of a word x in L(Gz) into
two trees (glued together): one corresponding to the derivation of the prefix X
(in Zl*) of x and the second corresponding to the derivation of the suffix xz(in 22*)
of x.

V). L(G,) = L(G

3) 4) °
Clearly L(GA) -t L(G3).

Now let D = = S(m:l) S(m:Z), Yis Yos coes yn) be a derivation in G3 of the

(yo
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* *
word y_ which is of the form B.B, where B, ¢ Z, and 8, & Z,. Let T., ceu, T
n 172 1 1 2 2 1 n

be the sequence of tables from P3 that was applied in this particular derivation.
Let us change derivation D (in a top-down fashion) to derivation

= i~ _ om:l) ((m:2) — — - _= cer T g e

D"(Yo"'s S ’yl’ y2’ sy yn—8182)> with Bl in Zl

1) for every j in {1, ..., n} and every a in V(l%j V(m:l) we rewrite each

, as follows:

occurrence of a in §3ﬂ1 by the same production from Tj’ but it must be a

production used in rewriting an occurrence of a in y, 1°

¢ @

2) for every j in {1, ..., n} and every a in V - ( V(m:l% we rewrite each

occurrence of a in ;3_1 in exaetly the same way it was rewritten in yj—l'

We can note now that, since f is a bijective function, Bl = Bl.

Let us change derivation D (in a top-down fashion) to derivation

m:l :2) = = = el *
= S( ) S(m ), Yys eees Y, = 6152), with 8, in EZ as follows:

(2) (m:2)

3) for every j in {1, ..., n} and every a in V' "'y V we rewrite each

B = (?0

occurrence of a in ;3‘1 by the same production from Tj’ but it must be a production

used in rewriting an occurrence of a in yj 1’

vy

4) for every j in {1, ..., n} and every a in V - ( V(m:Z)) we rewrite each

occurrence of a in yj~l in exactly the same way it was rewritten in yj_z.

We can note now that, since £ is a bijective function, 62 = 82.
It follows immediately from our conclusions about D and:ﬁ that there exists
a derivation of Y, in G4. Thus L(GB) < L(Gé).
From I) through IV) we get that L(G) = L(G4).
But G4 is an EDTOL system and consequently K is in L(EDTOL).
We leave to the reader the obvious proofs that Kl = L(Gil)) and K2 = L(Gé(z)).

Both of these equalities follow easily from the observation that G4 is a

synchronized EDTOL system and in every successful derivation in G4 the last table

(1) (2)
4 4

applied must be Pt. But G and G

are EDTOL systems and consequently both

Kl and K2 are in L(EDTOL).

This completes the proof of Theorem 1.
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IV. APPLICATIONS

First of all, using Theorem 1 and Theorem 2 we can provide examples of
languages which are not in L(ETOL).

Let Wy = {x ¢ {0, 1+ |x| = 2" for some n > O}.

Let us recall the following result proved in Ehrenfeucht and Rozenberg [ 3]
and Ehrenfeucht and Rozenberg [ 7].

Lemma 1. Wl ¢ L(EDTOL).

Let f, be a function from {0, 1+ into {c, d}" defined as follows. TFor

k >1and by, «u., by e {0, 1}, £1(by vev b)) = x x

12...X

" where for every

i in {1, ..., k}

+ d if b

]
oy

Let W2 = {x fl(x) 1 X € Wl}.

Proposition 1. Wz ¢ L(ETOL).

Proof.

f equal to fl restricted to W, and K, equal to the range

If we set K, = W 1 2

1 1
of function f then we have W2 = {x f(x) : x ¢ Kl} where f is a bijective function
onto Kz. Thus if W2 e L(ETOL) then from Theorem 1 it follows that Kl is an EDTOL

language which contradicts Lemma 1. Consequently W2 ¢ L(ETOL).

Let f2 be a homomorphism from {a, b}+ onto {0, l}+ defined by fz(a) =0
and fz(b) = 1., Let
Wa = {x £,(x) : x e {a, b} and |x| = 2" for some n > 0}.

Proposition 2. WB ¢ L(ETOL).

Proof.

If we set K; = {x ¢ {a, b}+ 2 x| = 2" for some n > 0}, f equal to £,
restricted to K1 and K2 = Wl then we have W3 = {x f(x) : X ¢ Kl} where £ is a
bijective function onto K2‘ Thus if W2 € L(ETQL) then from Theorem 1 it follows
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that K, is an EDTOL language which contradicts Lemma 1. Consequently W3 ¢ L(ETOL).

Let f3 be a homomorphism from {a, b, et onto {0, 11" defined by f3(a) =0,
f3(b) = 1 and f3(c) = A. Let f_ bea homomorphism from {a, b, e’ onto {0, l}+
defined by fc(a) = a, fc(b) = b and fc(c) = A, Let

W, = {x fS(X) : x e {a, b, c}" and !fc(x)[ = 2" for some n > 0}.

Proposition 3. W4 ¢ L(ETOL).

Proof.
If we set Kl = {x e {a, b, c}+ : [fc(x)[ = 2" for some n > 0}, £ equal to

f3 restricted to Kl and Kz = Wl then we have W4 = {x f(x) : x ¢ Kl} where £ is

a function onto KZ’ Thus if W2 e L(ETOL) then from Theorem 2 it follows that

K, is an EDTOL language which contradicts Lemma 1. Consequently W3 e L(ETOL).

Note that the function f as defined in the proof of Proposition 2 is not
a bijective function, hence it was necessary to apply Theorem 2 rather than
Theorem 1.

Finally we can settle a quite important open problem of long standing (see,
e.g., Downey [ 2] and Salomaa [16 ]) whether or not the class of ETOL languages
is contained in the class of indexed languages (see Aho [ 1]). Let L(IND)
denote the class of indexed languages. (Now we assume that the reader is
familiar with Aho [11]).

"{z : aez}. Leth be

Theorem 3. Let I be a finite alphabet and let T
a homomorphism from Z* onto E* defined by h(a) = a, for every a in I. Let K
be a context-free language over I such that K is not an EDTOL language. Then
the languageT MK =‘{w(h(w))mir : we K} is in L(IND) but it is not in L(EDTOL).

Proof.

If a language is context-free then it can be generated by a right linear
indexed right linear grammer (see Aho [1], Lemma 6.1). Thus, obviously,
M, e L(IND).

On the other hand from Theorem 1 it follows that MK is not in L(EDTOL).

mir . .
TFor a word X, X denotes the mirror image of x.
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Now we turn to our next theorem.

% %
Theorem 2. Let X %, be two disjoint alphabets and let Klg; Zl’ Kzg;zzz.

1* 72
Let f be a surjective function from K1 onto Kz. Let K = {wf(w) : we Kl}. if
K is in L(ETOL) then
(i) K2 e L(EDTOL), and
(ii) There exists Ei such that E&lgiKl, f(ﬁi) = K2, Ei is in L(EDTOL) and
{wi(w) : we K;} is in L(EDTOL).
Proof.
Most of the proof of this theorem was done already in the proof of Theorem 1.
Let us note that in showing (in the proof of Theorem 1) that L(G) = L(Gl) = L(G2)=

L(G3) = L(G4) the particular property of the function f (its bijectiveness)

was used only in proving that L<G3) = L(GA)'

(1) (2)

and G4

Thus let G, Gl’ Gz, G be defined as in the proof of

30 G G
Theorem 1.

As we still require that f is a surjective (but not necessarily bijective)

. . * . *
function one can clearly see that L(G4) = {Ji@é : 5; £ Zl, and 3§ € 22} where
% % %
for every 8182 in K, where Bl € Zl and 82 € 22, there exists Xi in Zl such that
XiBz is in L(G4). Also it is clear that L(G4)g;?L(G3) where L(GB) = L(G) = K.
Consequently
. * . . - .
. - . ;’ . .

{XR € I; : there exists 5& in I, such that 51{2 is in L(GA)} é;Ki.

But then the theorem follows from the equalities:

K, = L(G(z)), Ei = L(Gil)) and L(G4) = {wf(w) : we Ei}.
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Hence Theorem 3 follows.

For each i > 1, let Zi =’{£, cees E . 2, cees i} and let Bi be the language
generated by the context-free grammar H(Bi) = <{s}, Zi, Pi’ S>, where
Py=1s —[ss] :1<3<i} U (s —[s]:1c;j siluils — [ T:1<3c<ih

J 3 J 3 3.3

Let us recall now two results from Ehrenfeucht and Rozenberg [8 1. (We
assume the reader to be familiar with the notion of a Dyck language, see, e.g.,
Salomaa [i4 ], p. 210).

Lemma 2. For every i > 1, Bi is not in L(EDTOL).

Lemma 3. If K is a Dyck language over an alphabet of at least eight letters

ﬁﬁen K is nst ih L(EDTdL)B

Now from Theorem 3, Lemma 2 and Lemma 3 we have the followiﬁg results.

Corollary 1. For every i > 1, MB e L(IND)-L(ETOL).
- i
Corollary 2. If K is a Dyck language over an alphabet of at least eight

letters, then MK e L(IND)-L(ETOL).
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