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Very long baseline interferometry (VLBI) specifically same-beam interferometry (SBI), and

dual-satellite geolocation are two fields of research not previously connected. This is due to the

different application of each field, SBI is used for relative interplanetary navigation of two satellites

while dual-satellite geolocation is used to locate the source of a radio frequency (RF) signal. In

this dissertation however, we leverage both fields to create a novel method for multi-satellite orbit

determination (OD) using time difference of arrival (TDOA) and frequency difference of arrival

(FDOA) measurements. The measurements are double differenced between the satellites and the

stations, in so doing, many of the common errors are canceled which can significantly improve

measurement precision.

Provided with this novel OD technique, the observability is first analyzed to determine the

benefits and limitations of this method. In all but a few scenarios the measurements successfully

reduce the covariance when examining the Cramér-Rao Lower Bound (CRLB). Reduced observ-

ability is encountered with geostationary satellites as their motion with respect to the stations is

limited, especially when only one baseline is used. However, when using satellite pairs with greater

relative motion with respect to the stations, even satellites that are close to, but not exactly in a

geostationary orbit can be estimated accurately. We find that in a strong majority of cases the

OD technique provides lower uncertainties and solutions far more accurate than using conventional

OD observables such as range and range-rate while also not being affected by common errors and

biases. We specifically examine GEO-GEO, GEO-MEO, and GEO-LEO dual-satellite estimation

cases. The work is further extended by developing a relative navigation scenario where the chief

satellite is assumed to have perfect knowledge, or some small amount of uncertainty considered but
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not estimated, while estimating the deputy satellite state with respect to the chief. Once again the

results demonstrate that the TDOA and FDOA OD results are favorable with faster dynamics over

classical measurements.

This dissertation not only explores the OD side, but also gaps in geolocation research. First

the mapping of ephemeris uncertainty to the geolocation covariance to provide a more realistic

covariance was implemented. Furthermore, the geolocation solution was improved by appending

a probabilistic altitude constraint to the posterior covariance, significantly reducing the projected

geolocation uncertainty ellipse. The feasibility of using the geolocation setup to passively locate a

LEO satellite was also considered. Finally the simulated results were verified using a long-arc of

real data. The use of FDOA for small-body navigation and gravity recovery was also examined as

an extended application.
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Chapter 1

Introduction

[T]he problem of orbit

determination was of a sort

which Newton said belonged to

the most difficult in

mathematical astronomy.

Eric Temple Bell

1.1 Background

In 1769 a Finnish-Swedish mathematician named Anders Johan Lexell, an assistant and

collaborator of Leonhard Euler, was starting to make a name for himself with the processing of

astronomical observations in a manner that would lay the groundwork for modern statistical orbit

determination (OD) [79]. Lexell used the transit of Venus of 1769 to compute the solar parallax,

formulating a system of equations that utilized the whole set of observation data obtained from

all over the world each with varying levels of accuracy [79]. In the same year he determined the

orbit of a 1769 comet followed by another in 1770, the latter discovered by Messier, would come to

be known as Lexell’s comet [17, 54]. Only a few years later Lexell investigated observations of a

new body discovered by William Herschel, first thought to be another comet, but actually turned

out to be the 7th planet, Uranus. After analyzing Uranus’ orbit he concluded there must be an

8th planet as its motion could not be explained using only the gravitational influence of the other
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known planets. In 1846, his inference was proven to be correct with the discovery of Neptune.

Lexell’s early OD works used at its basis the publishings of Johannes Kepler with his three

laws of planetary motion [48, 49] and Isaac Newton’s law of gravitation [64]. Newton had previously

devised a method for computing an orbit but his efforts used a deterministic approach, meaning the

same number of observations were used as there were unknowns. Edmond Halley was the first to

use Newton’s OD method in his famous computation of Halley’s comet’s orbit. Other giants of the

time such as Lambert, Lagrange, Legendre and Laplace made significant contributions to the early

field of OD. Perhaps the most famous, however, is the German mathematician Carl Friedrich Gauss

who, at the turn of the 19th century, is credited with inventing the ‘method of least squares’ (with

some help from Legendre), taking Lexell’s work another step further, and fitting the best orbit

given a large set of observations [6]. Gauss’ genius still prevails to this day with many of the future

discoveries deeply rooted in his early estimation work. Around the time of Gauss, Thomas Bayes

had published a formulation that allows a hypothesis to be updated contingent on the introduction

of new information. However, Bayes had never applied his theorem to OD problems, it was not

until Laplace generalized his formulation, that it was used in mathematical astronomy. Modern

estimation research is firmly grounded in Bayes’ theorem, with Baysian inference providing the core

approach.

A century later, at the turn of the 20th, Ronald Fisher developed the method of Maximum

Likelihood Estimation (MLE). Fisher proposed that given a random variable defined by a proba-

bility density function (PDF) the MLE of the random variable (generally the state) is the value of

the state that maximizes the PDF of the state conditioned on the observations. When a Gaussian

density function is used for the random variable, the MLE and Bayes estimate are identical [83].

Then, during the late 1950s, with the advent of the digital computer, Rudolph Kalman ex-

tended the classical filtering and prediction problem with his recursive Kalman filter [47] (technically

Peter Swerling published a practically identical algorithm only a few years before, yet the technique

has retained Kalman’s name) allowing for rigorous and far more complex force models to describe

the motion of satellites. Around the same time, the start of the space race between the USA and
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the USSR caused an explosion of artificial satellites to be launched around the Earth and into

deep space. The space race sparked a large increase in OD research interest along with the other

astrodynamics sub-disciplines. The next section describes in basic terms the orbit determination

problem itself.

1.2 Fundamentals of Orbit Determination

Gauss’ stochastic rather than deterministic approach submits to the fact that all models,

dynamical or measurement are subject to contain errors. Dynamical models for example cannot

perfectly predict the forces that include stochastic processes such as the atmosphere or solar radia-

tion pressure. Furthermore, even the conservative forces may not be known exactly either, even if

they are not stochastic. An example is the central body’s gravity field as that is highly dependent

on the mass distribution which may not be entirely known, if at all. Measurement models often

contain errors due to clock biases or drift in the tracking station or satellite. Delays caused by

an imperfectly modeled tropo- and ionosphere can further add to the errors. As a result of these

potential error sources the OD problem is formulated in a statistical sense where the law of large

numbers applies. As the number of observations increase the estimate of the satellite state is ex-

pected to approach the truth state. This is effectively an optimization problem where the optimal

estimated state is the state that minimizes the distance between it and all the observations.

Provided that we have a tracking station as shown in Figure 1.1 which has some arbitrary

measurement, such as range (ρ) and range-rate (ρ̇), or angle (θ) and angle-rate (θ̇), or something

else entirely, we need to process these measurements (shown with red ‘+’ marks) over a time span

to obtain an estimated trajectory. The method that allows this is called filtering, which can be

either formulated as a batch process (all measurements at once) or a sequential process which

updates the estimated state after each new measurement is added. In all but the simplest of cases

the observations do not directly measure the state, rather, a mapping is required between the

measurement types and the state. In OD, this relationship is usually non-linear, and because the

dynamics are non-linear too, the equations are linearized about a reference trajectory.
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1.2. Uniform Gravity Field Model 3

Figure 1.2.1: Uniform gravity field trajectory.

Consequently, the process of observation and estimation must be repeated con-
tinually as the vehicle’s motion evolves. Furthermore, the orbit determination
procedure may be used to obtain better estimates of the location of tracking sta-
tions, adjust the station clocks, calibrate radar biases, obtain a better estimate of
geophysical constants, and so on. In fact, any observable quantity directly affect-
ing either the motion of the vehicle or the observation-state relationship can be
determined by appropriately using the observational data.

To formulate the orbit determination problem, we will use elements of prob-
ability and statistics as well as matrix theory. Appendixes A and B contain intro-
ductory material on these topics.

1.2 UNIFORM GRAVITY FIELD MODEL

To illustrate some of the basic ideas involved in the orbit determination pro-
cess, consider the flight of a vehicle moving under the influence of a uniform
gravitational field, as shown in Fig. 1.2.1. In the preliminary design of the trajec-
tory, an initial state X∗

0 (i.e., the initial position and the initial velocity vectors), is

Spacecraft

+
+
+ + +

++ +
+
+
+ + +++

+
+
+
+ + +++ + ++

+

+
+ ++

+ +
+ + + +

+
+ + +

++ + + + +

Figure 1.1: OD problem (adapted from [83])

The non-linear dynamics can be written as,

Ẋ(t) = F (X(t), t). (1.1)

When written as a Taylor series we obtain,

Ẋ(t) = F (X, t) = F (X∗, t) +

[
∂F (t)

∂X(t)

]∗
[X(t)−X∗(t)] + H.O.T, (1.2)

where, evaluation using the reference trajectory is denoted by [ ]∗ and,

A(t) =

[
∂F (t)

∂X(t)

]∗
. (1.3)

The deviation, x(t) from the reference trajectory is,

x(t) = X(t)−X∗(t). (1.4)

With some rearranging of Eq. 1.2 and ignoring higher order terms, the time evolution of the

deviation can be expressed as,
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ẋ(t) = A(t)x(t). (1.5)

The solution of which commonly utilizes the state transition matrix (STM),

x(t) = Φ(t, tk)xk, (1.6)

where xk is the value of x at tk and is mapped to time t using the STM, Φ(t, tk). The STM is

obtained by integrating,

Φ̇(t, tk) = A(t)Φ(t, tk), (1.7)

with initial conditions Φ(tk, tk) = I.

The nonlinear measurement expression can be written as,

Yk = G(Xk, tk) + εk k = 1, ..., l (1.8)

where Yk for k = 1, ..., l is a set of observations. Therefore, the nonlinear measurement mapping

function, G(Xk, tk) maps a state at time tk to the measurement space. Errors in the observations

are represented by ε.

Similar to the linearized dynamics model, the measurement model can also be linearized

about the reference trajectory. Setting up the Taylor series expansion,

Yk = G(Xk, tk) + εk = G(X∗k, tk) +

[
∂G(Xk, tk)

∂Xk

]∗
[Xk −X∗k] + H.O.T + εk. (1.9)

The first order partial, or mapping matrix, required by the filter is defined as,

H̃k =

[
∂G(Xk, tk)

∂Xk

]∗
. (1.10)

The measurement deviation or prefit residual is,

yk = Yk −G(X∗k, tk), (1.11)
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where Yk is the actual set of observations and G(X∗k, tk) are the computed set of observations on

the reference trajectory. Rearranging Eq. 1.9 and ignoring higher order terms we obtain,

yk = H̃kxk + εk k = 1, ..., l (1.12)

Using the STM we can express all observations of the state at a single epoch,

Hk = H̃kΦ(tk, t0) k = 1, ..., l (1.13)

Now that the two main functions of a filter are defined, namely the linearized dynamics and

measurement equations, we can define Gauss’ least-squares as the minimization of the observation

errors using the following performance index,

J(x) =
1

2
ε>ε. (1.14)

Substituting Eq. 1.12 into 1.14 we obtain,

J(x) =
1

2
(y −Hx)> (y −Hx) . (1.15)

Because we are attempting to minimize the performance index, we take the first and second deriva-

tives. The second derivative must be positive to ensure that it is indeed a minimization rather than

maximization of the measurement errors. Taking the first derivative and setting the expression

equal to zero, the most basic and fundamental expression for obtaining the best estimate of the

spacecraft state is found,

x̂ = (H>H)−1H>y. (1.16)

Where, x̂ is the best estimate of the deviation state. Furthermore, we find that H>H must be

positive definite to ensure minimality, which is synonymous with being full rank. Since the filter

developed here is fundamentally based in statistical inference, the state is actually described as a

PDF with the final estimate of the state having values that maximizes the PDF.
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Armed with the basic knowledge of estimation theory, we delve into an overview of inter-

ferometry which forms one of the two basis for the research in this dissertation. Following the

interferometry subsection, an overview of radio frequency (RF) localization is provided as the sec-

ond basis for this research. These two bases are merged to obtain an innovative method for OD of

multiple satellites.

1.3 Interferometry Overview

In OD, range and conventional Doppler are commonly used and were solely relied upon until

the 1980s for deep space radio tracking [85]. However, some limitations exist that are alleviated

with another technique known as Very Long Baseline Interferometry (VLBI), already known to

radio astronomers, it was developed for OD in the late 1970s [85]. One of these range and Doppler

limitations is the lack of angular or plane of sky positioning information that is available with

the VLBI system. The VLBI technique is particularly powerful when multiple, angularly close,

spacecraft are tracked simultaneously as it provides much stronger information than is obtained

by tracking a single spacecraft [8]. Same Beam Interferometry (SBI) is an example of a VLBI

implementation for tracking two spacecraft at once within the same beamwidth of a radio antenna.

As a result of this simultaneous tracking, common errors along the four ray paths from the two

spacecraft and two ground stations can be double differenced, first between the receivers and

then the spacecraft, resulting in a very precise measurement, see Figure 1.2 [8, 20]. Furthermore,

differenced carrier phase and Doppler are less sensitive to station location errors and poorly modeled

dynamics [19, 30].

SBI has a long history, not only for OD but also for scientific purposes. In 1972 during Apollo

16, the Lunar Rover was tracked relative to the Lunar Module in this manner, and lunar libra-

tions were measured using signals from the Apollo Lunar Surface Experiments Package (ALSEP)

transmitters [15]. Then in 1985 the winds of Venus were measured by differentially tracking atmo-

spheric balloons with respect to the Vega Spacecraft [69]. In 1990, SBI was successfully applied

for deep-space navigation of Pioneer 12 and the Magellan spacecraft around Venus [8, 20]. It was
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shown that Doppler plus SBI has better accuracy compared to Doppler plus differenced Doppler

by a factor of four and better than Doppler only by a factor of 18 [20]. VLBI was also used for the

Galileo and Mars Observer missions where, in some situations, it provided at least 5 times more

accuracy than that determined from several days of range and conventional Doppler [85].

The geometry for SBI is shown in Figure 1.2(a), with two widely separated transceivers.

The distance between the receivers is the baseline and often spans intercontinental distances. The

beamwidth of the transmitted signal encompasses both the primary and secondary satellite since

they are assumed to have a small angular separation, this is especially true in the case of deep space

navigation where the distances can be far larger than the separation of two spacecraft orbiting or

navigating to the same celestial body. The signal is then returned from both spacecraft and acquired

by both receivers. This geometry is ideal for double differencing of observables and eliminating or

reducing common errors.

Primary! Secondary!

T/RX2!T/RX1!
Baseline (B)!

�✓

✓
⌧

(a) SBI geometry

Primary!

T/RX2!T/RX1!

Quasar!

Baseline (B)!
✓

⌧

(b) ∆DOR geometry

Figure 1.2: Example VLBI configurations

With SBI the antennas accumulate the spacecraft signal phase at each of the stations where

the double difference phase ∆2φ, is computed as follows [8, 44],
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∆2φ = (φ12(t)− φ11(t))− (φ22(t)− φ21(t)) + b. (1.17)

Where, φij is the phase of the signal transmitted at spacecraft i and received at station j, and

b is the unknown integer bias. To resolve the integer bias, sufficient a-priori knowledge on the

spacecraft states must be provided which is usually not the case. As result, only the relative states

can be estimated rather than the absolute spacecraft states, unless the phase bias is also estimated

and some additional tricks are used. The delay τ , between the two stations is computed by,

τ(t) =
∆2φ

f
. (1.18)

Where f is the signal frequency. To relate the time delay to plane of sky information we can

approximate the measurement equation as,

τ(t) =
(B cos θ)∆θ

c
. (1.19)

The angle θ is between the baseline (B) and the direction of the spacecraft, whereas ∆θ is the dif-

ference in θ between the two spacecraft [8]. The SBI measurement equation in Eq. 1.18 is similar to

the time difference of arrival (TDOA) measurement used throughout this dissertation. Differenced

Doppler (sometimes referred to as narrow-band VLBI) is commonly used in conjunction with SBI

and is collected by the two receivers for a single spacecraft [20]. By using the SBI geometry and

also differencing the differenced Doppler between the two spacecraft we obtain double differenced

Doppler which is effectively frequency difference of arrival (FDOA) which, like TDOA, has not yet

been previously investigated for OD. The full details of the TDOA and FDOA measurements are

left for chapter 2.

A similarly strong interferometric observable is ∆-Differential One-way Ranging (∆DOR)

which also provides plane-of sky information and is shown in Figure 1.2(b). Rather than having

two spacecraft on which to perform OD simultaneously, only one is targeted at a time where the

second spacecraft is replaced with a known radio source such as a quasar. Due to the well-known
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position of the extra-galactic object, the spacecraft plane-of-sky position can be computed relative

to this source very precisely. The delay τ , can be computed in a similar fashion as with SBI, using

Figure 1.2(b) we obtain,

τ(t) =
B cos θ

c
. (1.20)

Generally with ∆DOR the stations slew between the quasar and the spacecraft because it is unlikely

for both to be within the same beamwidth of the antenna up to a maximum angular separation of

15 degrees. Once again the measurements are double differenced to remove many common errors

[1].

In summary, the geometrical setup used in VLBI, specifically SBI, is used to generate the

double differenced range, and double differenced Doppler measurements. In this thesis however,

rather than correlating with the phase of the signal, the modulation on the signal is used instead

in order to obtain absolute state information, similar to the field of RF localization described next.

1.4 Radio Frequency Localization Overview

Since the dawn of the space age satellites have been employed to uncover the locations

of transmitters for intelligence purposes. Two of the first such satellites were Grab and Poppy,

launched in June 1960 and December 1962 respectively, these were early electronic intelligence

(ELINT) satellites under the development of the Naval Research Laboratory (NRL). Grab was an

acronym for Galactic Radiation and Background Satellite which was a cover mission for Tattletale

– the actual code name of Grab. Grab and Poppy’s purpose was to intercept Soviet radar signals

in an effort to provide a tactical advantage during the height of the cold war [57]. During the early

days of satellite geolocation, there was a heavy focus on its military application.

Geolocating signals, however, is not limited to the intelligence community and can be used

to locate an airplane’s, ship’s or personal emergency beacon for rescue purposes as well [70]. By

the 1990s a need was shown to exist for an international Search and Rescue (SAR) system since
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thousands of lives were lost each year in accidents that could otherwise be mitigated. As a result

the United States, Canada, France, Norway, United Kingdom and the former USSR developed the

Cospas-Sarsat system [70]. This system is still in use today and continues to evolve and improve.

In 2013, a Medium Earth Orbit SAR (MEOSAR) system was proposed that would independently

provide distress beacon location information. The previously implemented Geosynchronous Earth

Orbit SAR (GEOSAR) system only provided location information if it was available from an ex-

ternal source which was then modulated into the beacon message [2]. MEOSAR instead uses a

dual-satellite geolocation method with TDOA and FDOA which provide lines of position (LOP) in

the North-South and East-West directions respectively shown by the blue lines in Figure 1.3. The

intersection of the two LOPs is the location of the unknown transmitter or in this case the distress

signal. The transmitters and receivers in the box of Figure 1.3 is referred to as the reference side,

while the unknown transmitter is referred to as the secondary transmitter.

TX!
RX1! TXRef!

Primary! Secondary!

RX2!

⇢t
1

⇢t
2 ⇢1

⇢r
1 ⇢2 ⇢r

2

Figure 1.3: Geolocation geometry

Another geolocation application, perhaps not immediately obvious, is for the positioning of

transmitters with deliberate or undeliberate access to satellite communication channels [34, 75]. A

famous example of deliberate interference was in 1986, when “Captain Midnight” hijacked the Home

Box Office’s Galaxy II transponder to protest their price [55]. Naturally, accidental interference is

more common with hundreds of events recorded per year (as of 1995) and likely to grow with an
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increase in traffic [5].

These listed examples of satellite geolocation are the most common and many applications

fall within one of these categories. The methods available for satellite geolocation, however, are

widely varied. Reference [32] lists a number of typical geolocation techniques some of which are:

• Single-satellite geolocation based on direction finding,

• Multi-satellite geolocation using TDOA,

• Dual-satellite geolocation using TDOA and FDOA.

The geolocation research within this dissertation implements the dual-satellite form as illus-

trated by Figure 1.3. The geolocation research focuses on the mitigation of interference signals,

but irrespective of the application a more accurate geolocation solution is always desired and the

key drivers are addressed using both real and simulated data.

1.5 Original Dissertation Contributions

In this dissertation the field of relative deep-space satellite navigation with VLBI is merged

with the field of satellite geolocation to employ an innovative approach to multi-satellite OD. Both

∆DOR and SBI are a form of measurement types that in most circumstances only allows for relative

angular navigation due to the unresolved nature of the integer ambiguity in the phase correlation.

On the other hand, the geolocation process has a similar setup with a baseline formed between

two stations, but where one of the stations’ location is unknown, and where two satellites are also

within the same beamwidth of the transmitters. The difference is that the geolocation setup is

based around the Earth rather than in deep space, and knowledge on the satellites is often times

assumed perfect or the uncertainty is simply ignored. The TDOA and FDOA measurement types

used in geolocation are also double differenced just like with VLBI, but the correlation occurs on

the modulation of the wave rather than the phase itself thereby eliminating the integer ambiguity.

Figure 1.4 cites some of the most fundamental works for both of these fields.

In Figure 1.5 we show the merging of the two fields to create this new technique for multi-
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[37]

[13]
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[40]
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[33]

[12]

[11]

Figure 1.4: Fundamental literature to the fields of VLBI and geolocation

satellite OD, the references listed in the overlap is work produced by the author. The geometry

and measurements used are those from the geolocation field but rather than locating an unknown

transmitter we define a baseline just like with VLBI and instead estimate the states of the two

satellites. Due to the lack of the integer ambiguity with the TDOA and FDOA measurements, the

absolute states can be estimated of the two satellites rather than just their relative states. Another

way to explain this new OD setup is that the TDOA and FDOA observables generate LOPs on

the surface of the Earth, but unless the estimated satellite states are in their true position the

intersection of the LOPs will not coincide with the location of the secondary transmitter. Therefore

the satellite states are perturbed until the LOPs do indeed line up with the known location of the

secondary transmitter.

Provided that we have a novel OD technique with applications to geolocation we naturally

arrive at the following thesis statement:

Thesis Statement

Precise orbit determination of neighboring spacecraft is achievable with time (TDOA)
and frequency (FDOA) double differenced measurements derived from the geoloca-
tion community and implemented with an SBI geometry. Incorporating the impact
of ephemeris uncertainty on geolocation accuracy is an important step toward co-
variance realism, and the associated improvement in orbit determination solutions
of the relay satellites increases geolocation accuracy significantly.
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Figure 1.5: Merging of two fields that forms a new innovative technique for multi-satellite OD

In support of this thesis statement we investigate the feasibility of using TDOA and FDOA

for OD in both an absolute and relative sense. We also explore the effect of the OD solution

uncertainty on the geolocation accuracy. The main contributions of this dissertation are listed

below by topic:

• Dual-satellite OD:

∗ Observability analysis to determine dual-satellite OD tractability with TDOA and

FDOA;

∗ High-fidelity architecture for neighboring dual-satellite OD capable of handling real

data;

• Relative OD:

∗ Implementation of non-linear relative navigation of two satellites with TDOA and

FDOA;

• Geolocation of unknown RF sources:

∗ Development of a consider batch filter to ensure covariance realism;
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∗ Implementation of a probabilistic altitude constraint to significantly reduce projected

covariance;

∗ Understanding of the three-dimensional shape of the geolocation covariance;

∗ Development of simultaneous ephemeris and source localization estimation;

• Satellite localization:

∗ OD of a sub GEO satellite using dual-satellite GEO configuration for GPS denied

environments;

• Filter extension:

∗ Derivation of the Square-Root Unscented Schmidt-Kalman Filter, a consider SR-UKF.

The following is a list of journal publications and conferences that constitute the backbone

of this dissertation:

Journal Papers

• [25] J. Geeraert and J. McMahon. Square-Root Unscented Schmidt-Kalman Filter. Jour-

nal of Guidance Control and Dynamics, 2017. [Accepted]

• [22] J. Geeraert and J. McMahon. Dual-Satellite Geolocation with Ephemeris Correction

and Uncertainty Mapping. IEEE Transactions on Aerospace and Electronic Systems, 2017.

[Paper In Review]

• [23] J. Geeraert and J. McMahon. Dual-Satellite Orbit Determination with Time and

Frequency Difference of Arrival. Journal of Guidance Control and Dynamics, 2017. [Sub-

mitted]

• J. Geeraert and J. McMahon. Relative Orbit Determination with Time and Frequency

Difference of Arrival Measurements. Journal of Guidance Control and Dynamics, 2017.

[Work in Progress]
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Conferences

• J. Geeraert and S. Nandi. Quicklook: A Testbed for an Automated Orbit Determination

System using the Cassini Spacecraft. 21st Improving Space Operations Workshop, 2015.

• [21] J. Geeraert, B. Jones and J. McMahon. Improving Geolocation Accuracy through

Refined Satellite Ephemeris Estimation in an Ill-Conditioned System. AIAA/AAS Astro-

dynamics Specialist Conference, 2015.

• [27] J. Geeraert, J. McMahon, and B. Jones. Orbit Determination Observability of the

Dual-Satellite Geolocation System with TDOA and FDOA. AIAA/AAS Astrodynamics

Specialist Conference, 2016.

• [26] J. Geeraert, J. McMahon. and S. Hesar. Small Body Navigation and Gravity Esti-

mation using Angle and FDOA Observables. AIAA/AAS Astrodynamics Specialist Con-

ference, 2017.

• [24] J. Geeraert and J. McMahon. Relative Orbit Determination of Multiple Satellites

Using Double Differenced Measurements. AMOS, 2017.

1.6 Dissertation Organization

This first chapter provides historical context and background of the general orbit determi-

nation problem. We specifically introduce the interferometric data type, upon which TDOA and

FDOA are heavily based. We also introduce the RF localization problem because the OD research

in this dissertation is directly applicable. The original contributions are summarized along with

journal and conference publications. Finally the thesis is outlined in the dissertation organization.

Chapter 2 introduces the dynamical models used in the filters which starts with the simple

2-body problem and goes up to the full JPL ephemeris model. All of the measurement models used

throughout this dissertation are also derived and explained here including their partials. Finally, a

brief mention is given to the use of coordinate systems, as they play a significant role in real-world
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navigation applications. The OD tools developed are capable of processing real-world data and

therefore include all the necessary coordinate transformation details and fidelity.

Chapter 3 discusses the preliminaries on OD filters. It includes the batch, various Kalman

Filter (KF) variations including the conventional, extended and unscented versions, square-root

information filters in addition to smoothing and considered parameters.

Chapter 4 first provides an extensive observability analysis, and second an investigation into

the use of TDOA and FDOA for dual-satellite OD in the following configurations: GEO-LEO,

GEO-MEO, and GEO-GEO. Each of these cases are run along side more conventional range and

range-rate observables to establish a baseline of comparison.

Chapter 5 focuses on solving the relative OD problem with two-body dynamics only, again

using TDOA and FDOA. Three configurations are used: a GEO chief + a LEO-to-GEO deputy,

a leader-follower setup with a LEO-to-GEO chief and deputy, and finally a close orbiting deputy

in a relative bounded case with orbits ranging from LEO to GEO. In all three cases, two variants

are examined, one where the chief has perfect knowledge, and another where the chief has some

uncertainty considered.

Chapter 6 introduces RF localization, first geolocation and then satellite localization. Ge-

olocation has a number of different methods, a two-step process which first does OD on the dual

satellites and second performs the actual geolocation with a consider batch filter. Another method

is a one-step process which simultaneously solves for the dual satellite ephemeris as well as the

unknown RF source. The former is more flexible as the OD can be performed at any time before

the geolocation step and then propagated to the time of geolocation. To further improve the ac-

curacy of the geolocation solution a probabilistic altitude constraint is implemented. The satellite

localization also utilizes the two-step process where the dual-satellite ephemeris is first estimated,

and then the state of the unknown satellite is determined passively by routing the signals through

the dual satellite configuration. This has close ties to the Tracking and Data Relay Satellite Sys-

tem (TDRSS) and is useful if there is no direct link with the satellite to be localized and no GPS

information available.
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Chapter 7 illustrates the OD and geolocation methods applied to a long-arc of real data. A

pass-through analysis is conducted to determine how well an estimated orbit can predict a future

satellite state as well as a long and short arc overlap analysis to determine the magnitude of the

errors.

Chapter 8 demonstrates the use of FDOA for other OD applications, such as small body

navigation and gravity field estimation. In this chapter we show its use along side optical obser-

vations for navigation around Eros and also compare the results to those obtained with range and

range-rate.

Finally chapter 9 provides a quick summary of this dissertation in addition to concluding

remarks and potential areas of future research.



Chapter 2

Preliminaries

2.1 Dynamical Models

This section on the dynamical models details the forces acting upon the spacecraft which

include both gravitational and non-conservative forces such as Solar Radiation Pressure (SRP).

We first start out by introducing the most fundamental gravitational law which is the interaction

between two celestial bodies or a celestial body and a spacecraft. Then the gravitational laws

are generalized to include up to N bodies, which is known as the N-body problem. From there,

we include perturbative gravitational forces such as those from a non-spherical body, and finally

outline the SRP models implemented.

2.1.1 Two-Body Problem

Understanding the two-body problem is fundamental to the field of celestial mechanics and

astrodynamics. We define an inertial coordinate system N defined by the (X,Y,Z) axes in Figure

2.1, meaning the frame is not accelerating. We assume that the two bodies m1 and m2 are perfectly

symmetrical so that they act like point masses from their centers. Furthermore, we assume that

the only force present is the gravitational force acting between the two bodies along the vector r.

Starting from Newton’s second law,

F = m
dv

dt
= mr̈ (2.1)

and Newton’s law of Gravitation,
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Figure 2.2.1: The problem of two bodies: M1 and M2 are spheres of constant,
uniform density. The position vectors of the spheres refer to their respective geo-
metrical center, which also coincide with the center of mass of the sphere.

exhaustive treatise on orbital mechanics, since excellent books already exist (e.g.,
Szebehely and Mark, 1998; Vallado, 2001; Bond and Allman, 1996; Chobotov,
1996; Prussing and Conway, 1993; Danby, 1988; Roy, 1988; Battin, 1999; and
Schaub and Junkins, 2003). The philosophy in this chapter is to provide the key
steps in the development and its interpretation, especially within the context of
the main purpose related to the determination of the orbit. With this philosophy,
many details are left to you, although the preceding list of references provides
most of the details.

2.2 PROBLEM OF TWO BODIES: GENERAL

PROPERTIES

The classic problem of two bodies was solved by Newton, which is repeated
in a modern form by all treatises on celestial mechanics. The classic treatment
describes the motion of two point masses. However, human experience demon-
strates that the Earth has physical dimensions, and a point mass Earth is a serious
stretch of the imagination. Nevertheless, a spherical body with constant, uniform
mass distribution can be shown to be gravitationally equivalent to a point mass.
Thus, as a more realistic approximation to the physical characteristics of a planet,
a spherical body will be used in the following development.

Consider the motion of two spheres of mass M1 and M2, as illustrated in Fig.
2.2.1. No restrictions are placed on the magnitude of these masses, so for illus-

m

m

Figure 2.1: Two-body problem (adapted from[83])

F = G
m1m2

r3
r (2.2)

we can write the equations of motion of both bodies in the inertial frame as,

m1r̈1 = G
m1m2

r3
r (2.3)

and,

m2r̈2 = G
m1m2

r3
r. (2.4)

Then, the relative motion of body 2 with respect to body 1 can be described as,

r̈ = r̈2 − r̈1. (2.5)

Substituting in Eqs. 2.3 and 2.4 into Eq. 2.5 while also defining µ = G(m1 +m2) we obtain,

r̈2B = − µ
r3

r. (2.6)

The subscript 2B is used to denote the two-body acceleration for the remainder of this disserta-

tion. In most applications involving a satellite or spacecraft m1 >> m2, and therefore µ can be
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approximated as simply µ = Gm1. Equation 2.6 illustrates the inverse square relationship of the

acceleration with distance from the center of the central body.

2.1.2 N-Body Problem

The two-body problem can be used to model the gravitational effect of a spacecraft around

a primary body as a first order method of analysis. However, in reality there are many additional

gravitational forces acting upon a spacecraft, the degree to which these forces have an impact varies,

but in order to improve a model’s fidelity, more of these gravitational forces should be included.

For example, a GEO spacecraft will have as the primary force, the gravitational attraction of the

Earth but will also experience gravitational forces from the Moon, Sun, Venus and Jupiter. In this

section we generalize the problem to a system of N-bodies, where we can compute the gravitational

forces acting on the ith body from body 1 to N, see Figure 2.2 for a visual representation.2.2. Problem of Two Bodies: General Properties 19

Figure 2.2.1: The problem of two bodies: M1 and M2 are spheres of constant,
uniform density. The position vectors of the spheres refer to their respective geo-
metrical center, which also coincide with the center of mass of the sphere.

exhaustive treatise on orbital mechanics, since excellent books already exist (e.g.,
Szebehely and Mark, 1998; Vallado, 2001; Bond and Allman, 1996; Chobotov,
1996; Prussing and Conway, 1993; Danby, 1988; Roy, 1988; Battin, 1999; and
Schaub and Junkins, 2003). The philosophy in this chapter is to provide the key
steps in the development and its interpretation, especially within the context of
the main purpose related to the determination of the orbit. With this philosophy,
many details are left to you, although the preceding list of references provides
most of the details.

2.2 PROBLEM OF TWO BODIES: GENERAL

PROPERTIES

The classic problem of two bodies was solved by Newton, which is repeated
in a modern form by all treatises on celestial mechanics. The classic treatment
describes the motion of two point masses. However, human experience demon-
strates that the Earth has physical dimensions, and a point mass Earth is a serious
stretch of the imagination. Nevertheless, a spherical body with constant, uniform
mass distribution can be shown to be gravitationally equivalent to a point mass.
Thus, as a more realistic approximation to the physical characteristics of a planet,
a spherical body will be used in the following development.

Consider the motion of two spheres of mass M1 and M2, as illustrated in Fig.
2.2.1. No restrictions are placed on the magnitude of these masses, so for illus-
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mN
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i

i
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Figure 2.2: N-body problem

The vector sum of all the gravitational forcing acting on i can be represented as

F = −Gmim1

r31i
r1i − · · · − −G

mimN

r3Ni
rNi. (2.7)

Which can be written using a summation as follows,
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F = −Gmi

N∑
j=1
j 6=i

mj

r3ji
rji. (2.8)

Consequently we can write the inertial equation of motion for the ith body as,

r̈i = −G
N∑
j=1
j 6=i

mj

r3ji
rji. (2.9)

If we assume that body 1 is the Earth and body 2 is the spacecraft and bodies 3 to N represent

all other relevant gravitational bodies affecting the spacecraft, then the relative acceleration of the

spacecraft about Earth becomes,

r̈12 = −Gm1 +m2

r312
r12 +G

N∑
j=3

mj

(
r2j
r32j
− r1j
r31j

)
. (2.10)

The first part of Eq. 2.10 is the gravitational effect due to the Earth alone and is identical to

that of the 2-body equation of motion. The second part consists of the gravitational effects of

all other bodies. The first term in the parenthesis is called the direct effect, because it describes

the acceleration of the jth body on the spacecraft. The second term in the parenthesis is called

the indirect effect because it is the effect that the other bodies have on body 1, in this case the

Earth. When the position of the Earth changes as a result of the N bodies’ effect, it also carries

through to the equation of motion for the spacecraft. Often times when orbiting the Earth, the

only other gravitational attractors taken into account are the Moon and the Sun, we can also utilize

their specific symbols to improve readability of the equation. If that is the case, we can write the

spacecraft equation of motion due to point mass bodies of gravity as,

r̈sat = r̈2B + r̈NB (2.11)

Where, r̈2B is defined by Eq. 2.6 using a gravitational parameter of the Earth µL, and the Sun

and Moon gravitational accelerations are defined by,
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r̈NB = −µs
(

rs,sat
r3s,sat

− rs,L
r3s,L

)
− µd

(
rd,sat
r3d,sat

− rd,L
r3d,L

)
. (2.12)

Rather than integrate the N-body problem for all the major celestial bodies in the solar

system, the Jet Propulsion Laboratory (JPL) has already done this to a very high fidelity. Using

numerous of observations from a variety of sources, JPL fits the data to generate high accuracy

ephemeris products that can be used for operations and research. JPL releases these ephemeris files

as Development Ephemerides (DE) and in this dissertation the DE405 ephemeris is implemented.

The DE405 ephemeris provides position and velocity data between 1600 AD and 2170 AD in the

form of Chebyshev coefficients which can be interpolated for any time within the valid range of

years. The DE405 uses the International Celestial Reference Frame (ICRF) unlike previous versions

which uses the dynamical equator and equinox of J2000. The difference between the dynamical

J2000 reference frame and the ICRF is at a level of 0.01 arcsec, and determined with an accuracy

of 0.003 arcsec [1, 61].

2.1.3 Geopotential Model

In both the two-body and N-body problem, the masses are assumed to be perfectly spherical

and therefore acting as point masses. To further improve the fidelity of the dynamics the non-

sphericity of the central body is modeled. The acceleration can be written as the gradient of

the geopotential function U . A subscript NS is used to denote the acceleration due to the non-

sphericity.

r̈NS = ∇U (2.13)

Where U is expanded in a series of Legendre polynomials,

U =
µ

r

∞∑
l=2

l∑
m=0

(
R

r

)l
Pl,m(sinφac) [Cl,m cos(mλ) + Sl,m sin(mλ)] . (2.14)
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R is the reference radius of the central body, Pl,m are the associated Legendre functions, φgc is

the geocentric latitude of the satellite, λ is the longitude of the satellite, and Cl,m and Sl,m are

the spherical harmonics coefficients for the lth degree and mth order [31]. For Earth’s spherical

harmonics coefficients we use the GRACE Gravity Model 2 (GGM02) and while it is complete up

to degree and order 200, we use up to degree and order 10 for the OD and geolocation applications

about the Earth and up to degree and order 15 for navigation about the asteroid Eros. The

geopotential coefficients with m = 0 are the zonal coefficients and do not depend on longitude,

when m < n they are known as the tesseral coefficients and when m = n they are known as the

sectorial coefficients [61]. It should be noted that the use of the geopotential function from Eq.

2.14 is only valid for points outside of the circumscribing sphere of the body. Hence care needs

to be taken when navigating about an asteroid such as Eros which has an elongated shape and is

much longer than it is wide, or other irregularly shaped celestial bodies.

2.1.4 Solar Radiation Pressure Model

SRP is the largest non-gravitational force acting on a spacecraft, other than Earth’s (or

potentially other celestial body’s) atmospheric drag encountered by low flying satellites. The force

imparted, due to the reflection or absorption of photons, is dependent on a number of factors,

including the shape, orientation and optical properties [58]. In this section we discuss three different

SRP models starting with the cannonball model, a low fidelity zeroth order model, going up to the

Fourier coefficient model which can be very high fidelity depending on the number of coefficients

and accuracy of the satellite model used.

2.1.4.1 Cannonball Model

The cannonball model assumes the satellite is perfectly spherical with constant optical prop-

erties over the whole surface. The SRP force points directly away from the Sun as the incident

light rays in the tangential direction cancel perfectly due to symmetry. Naturally due to these

assumptions the cannonball model is only a zeroth order approximation of a complex many faceted
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satellite. The acceleration due to SRP is provided in 2.15,

r̈SRP = −pSRCr
As
m

rs,sat
rs,sat

. (2.15)

The solar radiation pressure, pSR, is assumed to be a constant and the value used is 4.52 × 10−6

Pa at 1 AU. The value of pSR is found by dividing the solar constant flux by the speed of light,

essentially rearranging Einstein’s mass and energy relation.

pSR =
1357 W/m2

3× 108 m/s
= 4.52× 10−6 Pa (2.16)

Equation 2.16 is valid at 1 AU only, because the solar radiation pressure varies inversely with the

distance we can relate the value of pSR at other distances from the Sun by the following relation,

pSR = pSR1AU

1AU

r2s,sat
. (2.17)

Note that the distance rs,sat, carries units of AU for consistency. Next, looking at the other

variables in Eq. 2.15, the satellite area exposed to the Sun is As and the satellite mass is m.

The reflectivity and optical properties of the spacecraft are bundled together in the Cr variable

which varies between 0 and 2 and was initially designated as γ [51, 86]. Notice that Cr
As
m is a

grouping of terms known as the Area [times] Gamma Over Mass (AGOM) parameter. Due to the

linearity between the three variables that make up AGOM, it is impossible to estimate all three of

the parameters together. Often times both As and m are difficult to determine if one is not the

operator of the satellite, consequently in this research the area-to-mass ratio is set to 1. Therefore

when estimating the coefficient of reflectivity Cr the effects of both the area as well as the mass

will impact the estimate. In essence we are actually estimating the AGOM parameter instead.

2.1.4.2 Fourier Coefficient Model

The Fourier coefficient model derived by Ref. [72] and expanded upon by Ref. [58] is

briefly described, for more detail see the aforementioned references. The Fourier coefficient model
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characterizes the acceleration due to the Sun’s irradiation on N number of surface elements used

to model the spacecraft (or even small bodies) by taking into account the orientation of the surface

element as well as its optical properties. This can be represented as a Fourier expansion shown as

follows,

r̈SRP =
P (R)

m

∞∑
n=0

[An(δs) cos(nλs) + Bn(δs) sin(nλs)] . (2.18)

In Eq. 2.18, we divide my the mass m, to obtain the acceleration rather than the force of the

cumulative radiation pressure on the spacecraft. The function P (R) is the solar pressure as a

function of the distance R from the Sun such that,

P (R) =
G1

R2
(2.19)

where G1 is the solar radiation constant of approximately 1×1014 kg-km/s2. The SRP acceleration

is also a function of the solar latitude δs and the solar longitude λs. The Fourier coefficients An and

Bn have units of area and capture the information associated with the spacecraft’s shape, optical

properties, and the Sun’s location in the spacecraft body frame and can be estimated in a filter. The

Fourier coefficient model is higher fidelity than the cannonball model because a spacecraft, in the

majority of cases, does not behave like a uniform sphere with constant optical properties, rather,

a spacecraft has many angled faces made of various materials which can be better approximated

using the Fourier SRP model.

2.1.4.3 SRP Shadow Model

The cannonball and Fourier coefficient SRP models both employ a shadow model to ensure

the SRP force is adjusted depending on the shadow condition. With an Earth-orbiting spacecraft,

the Earth regularly occults the Sun from the spacecraft point of view while the Moon does so on

a much more sporadic and rare basis. Both of these celestial bodies have shadows through which

the spacecraft may pass. Consequently we adjust the SRP equation to include a fractional term,
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Sun! Earth!
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rsat

Figure 2.3: SRP shadow model geometry

ν, where 1 is fully lit, 0 is fully eclipsed and between 0 and 1 is a partial eclipse. Equation 2.20

defines ν with the assumption that φ >> φs [36].

ν =



1, θ ≥ φ+ φs

θ−φ
2φs

+ 1
2 , φ− φs ≤ θ < φ+ φs

0, θ < φ− φs

(2.20)

The angles are illustrated in Figure 2.3, where Rs and R are the radius of the Sun and the radius

of the occulting body respectively. The vector from the center of the Sun to the spacecraft is

rs,sat, and the vector from the center of the occulting body to the spacecraft is rsat. The angles

are computed as follows,

θ = cos−1
(

rs,sat · rsat
rs,satrsat

)
(2.21)

and,

φs = sin−1
(

Rs
rs,sat

)
(2.22)

and finally,

φ = sin−1
(
R

rsat

)
. (2.23)
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2.2 Measurement Models

In this section we define all of the measurement models used throughout this dissertation

along with their partials for direct use in the filter. We start off by introducing the two primary

measurements: TDOA and FDOA, then we briefly discuss some of the associated media corrections.

In subsequent sections, the range, range-rate and optical measurements are presented as well.

2.2.1 Time and Frequency Difference of Arrival

Figure 2.4 illustrates the setup to generate the TDOA and FDOA measurements. The receiver

(RX) dishes marked by RX1 and RX2 each represent a single receiver channel rather than the actual

physical number of RXs required. Therefore in the current setup, while two RXs could be used, a

single RX with two channels would likely be preferred. The two RXs and the reference transmitter

(TXRef) are generally located in the same complex with i number of arbitrary TXs located across

the continent to generate large baselines.

TX! RX1! TXRef!

Primary! Secondary!

RX2!

⇢t
1

⇢t
2 ⇢1

⇢r
1 ⇢2 ⇢r

2

i

Baseline (B)!

Figure 2.4: TDOA/FDOA geometry, antennas in box are at same location

A waveform is generated by both the ith TX and the reference TX (not necessarily the

same waveform) which is intercepted by both the primary and secondary satellites. A bent pipe

architecture on the satellites immediately returns the signals back to Earth which are then acquired

by the RXs. Temporarily ignoring the reference TX we see that the waveform generated by the ith

TX is received by both RX1 and RX2, despite being the same waveform when emitted, the difference



29

in path lengths to each of the satellites and the difference in relative motion causes a time delay

and Doppler shift between the two received signals. Generally the time delay and Doppler shift are

estimated jointly in order to determine either one adequately, which is done through a generalized

form of the correlation process known as the complex ambiguity function (CAF) [78],

A(τ, f) =

∫ T

0
[s1(t)s

∗
2(t+ τ)] e−j2πftdt. (2.24)

Where, s1(t) and s2(t) are the two waveforms to be correlated, where ∗ represents the complex

conjugate. The correlation time for all simulated data is 3 minutes, this means a TDOA and

FDOA measurement is generated with the same frequency. The time delay and frequency offsets

are τ and f respectively. The values of τ and f that maximize |A(τ, f)| are known as the differential

time offset (DTO) and the differential frequency offset (DFO) respectively. Since the reference TX

was previously ignored these DTO and DFO values correspond to the ith TX denoted by the

superscript t such that we have a DTOt and DFOt. Similarly we can correlate the waveforms

from the reference TX to obtain DTOr and DFOr where the superscript r indicates the values

associated with the reference TX. Finally the difference of the DTOs between the ith and reference

TX is TDOA,

TDOA = DTOt −DTOr. (2.25)

While the difference of the DFOs between the ith and reference TX is FDOA,

FDOA = DFOt −DFOr. (2.26)

A key driver for the TDOA/FDOA system to work is that both satellites are required to be within

the beamwidth or an accompanying side lobe of the transmitting antenna, inevitably restricting

the angular separation of the two satellites [37]. Smaller antennas are consequentially preferred as

they have wider beamwidths and provide a stronger signal to the secondary satellite which in turn

improves the correlation of the DTO and DFO estimation [12].
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The previous equations for TDOA and FDOA show how those measurements are acquired

using hardware. In the following part we describe the actual models used for these measurements

that allow the acquired TDOA and FDOA measurements to be related to the states of the satellites.

The satellite positions and velocities relative to the stations can be modeled as ranges and

range-rates. By deriving the measurement models we show that one of the major strengths of these

observables is the cancellation of many common errors. We start by defining the pseudo-range as

ρ̃ shown in Eq. 2.27,

ρ̃ = ρ+ cδRX + cδTX + δρatm + ε. (2.27)

Where ρ is the true range, c is the speed of light, δRX is the receiver delay due to clock bias, δTX

is the transmitter delay also due to clock bias, δρatm are the path delays caused by the tropo and

ionosphere, and finally ε are any other unaccounted for measurement errors. In a similar fashion

the pseudo-range-rate ˙̃ρ is defined as the time derivative of pseudo-range,

˙̃ρ = ρ̇+ cδ̇RX + cδ̇TX + δ̇ρatm + ζ. (2.28)

Where, ρ̇ is the true range-rate, δ̇RX is the receiver clock drift rate, δ̇TX is the transmitter clock

drift rate, δ̇ρatm is the tropo and ionospheric delay rate, and finally ζ are the additional unaccounted

for measurement errors. Note that in Eqs. 2.27 and 2.28 these are one-way range and range-rates,

therefore a TX can mean the actual ground-based TX but also the satellite. Similarly a RX can

mean the ground-based receiver but also the satellite depending on whether the range or range-rate

is an uplink or a downlink signal.

A DTO is the time difference between the signals acquired by the ground receivers with the

signal relayed through the primary and secondary satellite transmitted from the same TX. The

signal path in a DTO includes both the uplink and the downlink portion, from the transmitter to

the satellite and from the satellite to its respective receiver. Using Eq. 2.27 a DTO measurement

can be written as follows:
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DTO∗ =
1

c

[
(ρ∗2 + cδ∗sat2 +��

�cδ∗TX + δ∗ρatm2
+ ε∗2) + (ρ2 + cδRX2 + cδsat2 + δρatm2

+ ε2)−

(ρ∗1 + cδ∗sat1 +��
�cδ∗TX + δ∗ρatm1

+ ε∗1)− (ρ1 + cδRX1 + cδsat1 + δρatm1
+ ε1)

] (2.29)

where,

ρ∗i =
√

(xi − x∗TX)2 + (yi − y∗TX)2 + (zi − z∗TX)2, (2.30)

and

ρi =
√

(xi − xRXi)
2 + (yi − yRXi)

2 + (zi − zRXi)
2. (2.31)

Where, c is the speed of light, and ∗ is either t or r correspondingly for the secondary or reference

transmitter, and ρ is the signal path length defined by either Eq. 2.30 or Eq. 2.31. From Eq. 2.29

we see that the TX delays cancel so that we end up with Eq. 2.32.

DTO∗ =
1

c

[
(ρ∗2 + cδ∗sat2 + δ∗ρatm2

+ ε∗2) + (ρ2 + cδRX2 + cδsat2 + δρatm2
+ ε2)−

(ρ∗1 + cδ∗sat1 + δ∗ρatm1
+ ε∗1)− (ρ1 + cδRX1 + cδsat1 + δρatm1

+ ε1)
] (2.32)

Recall from Eq. 2.25 that TDOA is comprised of the secondary DTO minus the reference DTO,

therefore using Eq. 2.32 we obtain,

TDOA =
1

c

[
(ρt2 +��

�cδtsat2 + δtρatm2
+ εt2) +

((((
((((

(((
((((

((

(ρ2 + cδRX2 + cδsat2 + δρatm2
+ ε2)−

(ρt1 +��
�cδtsat1 + δtρatm1

+ εt1)−
(((

((((
(((

((((
(((

(ρ1 + cδRX1 + cδsat1 + δρatm1
+ ε1)

]
−

1

c

[
(ρr2 +��

�cδrsat2 + δrρatm2
+ εr2) +

((((
(((

((((
(((

(((

(ρ2 + cδRX2 + cδsat2 + δρatm2
+ ε2)−

(ρr1 +��
�cδrsat1 + δrρatm1

+ εr1)−
((((

((((
(((

((((
((

(ρ1 + cδRX1 + cδsat1 + δρatm1
+ ε1)

]
.

(2.33)

Using TDOA, the downlink legs cancel as do the clock biases of the satellite. Cleaning up and

re-arranging Eq. 2.33 we get,

TDOA =
1

c

[
ρt2 − ρr2 + ρr1 − ρt1

]
+
(
δrρatm1

− δrρatm2
− δtρatm1

+ δtρatm2

)
+(

εr1 − εr2 − εt1 + εt2
)
.

(2.34)
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Equation 2.34 shows that we are left with the uplinks, atmospheric delays, as well as unaccounted

for range errors. Examining the atmospheric errors we see that they effectively cancel to zero

because the signal path to satellite 1 and 2 is nearly identical over the first 10’s of kilometers. In

effect we can say that δrρatm1
≈ δrρatm2

and δtρatm1
≈ δtρatm2

as the localized atmospheric effects over

each of the TXs are the same. Finally the unaccounted for range errors are generally in the noise

and are due differences in, for example, the time varying thermal noise of the receivers. While

the unaccounted for range errors are not completely canceled, they are significantly reduced in

magnitude due to the differencing between the secondary TX and reference TX. As a result the

final TDOA equation is reduced to,

TDOA =
1

c

[
ρt2 − ρr2 + ρr1 − ρt1

]
. (2.35)

Just like DTO, the differential frequency offset (DFO) which includes both the uplink and

downlink components of the signal path can be written using the pseudo range-rate shown in Eq.

2.28 as follows:

DFO∗ =
1

c

[(
f∗TX ·

(
ρ̇∗2 + cδ̇∗sat2 + cδ̇∗TX + δ̇∗ρatm2

+ ζ∗2
)

+

(f∗TX − ftrl1) ·
(
ρ̇2 + cδ̇sat2 + cδ̇TX2 + δ̇ρatm2

+ ζ2

))
−(

f∗TX ·
(
ρ̇1
∗ + cδ̇∗sat1 + cδ̇∗TX + δ̇∗ρatm1

+ ζ∗1
)

+

(f∗TX − ftrl2) ·
(
ρ̇1 + cδ̇RX1 + cδ̇sat1 + δ̇ρatm1

+ ζ1

))]
.

(2.36)

where,

ρ̇∗i = (vi − v∗TX) · ri − r∗TX
ρ∗i

=


ẋi − ẋ∗TX
ẏi − ẏ∗TX
żi − ż∗TX

 ·
1

ρ∗i


xi − x∗TX
yi − y∗TX
zi − z∗TX


, (2.37)
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and

ρ̇i = (vi − vRXi) ·
ri − rRXi

ρi

=


ẋi − ẋRXi

ẏi − ẏRXi

żi − żRXi

 ·
1

ρi


xi − xRXi

yi − yRXi

zi − zRXi


. (2.38)

First the transmit frequencies of the reference and secondary transmitter are defined as f rTX

and f tTX respectively. Next the translation frequency or the deliberate shift in frequency by the

satellite’s translation oscillators is defined as ftrl1 and ftrl2 for the primary and secondary satellite

respectively. The time derivatives of the paths, also known as the line-of-sight velocities, are defined

as ρ̇.

Recall from Eq. 2.26 that FDOA is comprised of the secondary DFO minus the reference

DFO, therefore using Eq. 2.39 we obtain,

FDOA =
1

c

[(
f tTX ·

(
ρ̇t2 + cδ̇tsat2 + cδ̇tTX + δ̇tρatm2

+ ζt2

)
+

(f tTX − ftrl1) ·
(
ρ̇2 + cδ̇sat2 + cδ̇TX2 + δ̇ρatm2

+ ζ2

))
−(

f tTX ·
(
ρ̇1
t + cδ̇tsat1 + cδ̇tTX + δ̇tρatm1

+ ζt1

)
+

(f tTX − ftrl2) ·
(
ρ̇1 + cδ̇RX1 + cδ̇sat1 + δ̇ρatm1

+ ζ1

))]
−

1

c

[(
f rTX ·

(
ρ̇r2 + cδ̇rsat2 + cδ̇rTX + δ̇rρatm2

+ ζr2

)
+

(f rTX − ftrl1) ·
(
ρ̇2 + cδ̇sat2 + cδ̇TX2 + δ̇ρatm2

+ ζ2

))
−(

f rTX ·
(
ρ̇1
r + cδ̇rsat1 + cδ̇rTX + δ̇rρatm1

+ ζr1

)
+

(f rTX − ftrl2) ·
(
ρ̇1 + cδ̇RX1 + cδ̇sat1 + δ̇ρatm1

+ ζ1

))]
.

(2.39)

The FDOA terms do not cancel as cleanly as with TDOA due to the TX frequency pre-multiplier

for all the terms. If the TX frequencies are identical however then all the clock drift terms do

completely cancel and the atmospheric drift delays are nearly identical while the unaccounted

for range-rate errors are significantly reduced as well so that the following FDOA measurement

equation is realized,
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FDOA =
fTX
c

[
ρ̇t1 − ρ̇t2 − ρ̇r1 + ρ̇r2

]
. (2.40)

If on the other hand the TX frequencies are nearly equal then the clock drift terms do not cancel

exactly but are significantly reduced so that we can still approximate FDOA as,

FDOA =
1

c

[
f ttr
(
ρ̇t1 + ρ̇1 − ρ̇t2 − ρ̇2

)
− f rtr (ρ̇r1 + ρ̇1 − ρ̇r2 − ρ̇2)

]
. (2.41)

In this dissertation we use the approximate form so that two different TX frequencies can be

inputted if desired. If the two TX frequencies inputted are the same however, the approximate

form effectively turns into Eq. 2.40. The following section goes through the partials of the TDOA

and FDOA measurements for use in the filter.

2.2.1.1 Time and Frequency Difference of Arrival Partials

In filtering, the measurement equation is linearized which means the first term of the Taylor

series is needed. The first term, of course refers to the first order partial of the measurement

equation with respect to the states which is also known as the measurement mapping matrix. For

the following partials we assume that the state is,

X =

[
r>1 v>1 Cr1 r>2 v>2 Cr2

]>
. (2.42)

This estimated state vector is used in the dual-satellite state estimation problem discussed in chapter

4. In the relative estimation case discussed in chapter 5 a different state vector is estimated, but

throughout that research a UKF is implemented so no partials are required for that filter. The

measurement mapping matrix using Eq. 2.42 is shown below,

H̃k =

[
∂G(Xk, tk)

∂Xk

] ∣∣∣∣∣
Xref

=

T1 01×3 0 T2 01×3 0

F1 J1 0 F2 J2 0

 ∈ R2×14.

(2.43)
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The coefficient of reflectivity is not a parameter within the measurement model, consequently

columns 3 and 6 are both zero. In addition, TDOA is not a function of the velocity, therefore those

partials are also zero. The resulting submatrices of the analytical partials are shown next. First we

look at Ti, which is the partial of TDOA defined by Eq. 2.35 with respect to the position vector

of the satellite, ri. The subscript i refers to either satellite 1 or 2. The component form of this

partial is given by Eq. 2.44,

T>i =
(−1)i−1

c


xi−xrTX

ρri
+

xtTX−xi
ρti

yi−yrTX
ρri

+
ytTX−yi

ρti

zi−zrTX
ρri

+
ztTX−zi

ρti


=

(−1)i−1

c

[
ri−rrTX
ρri

+
rtTX−ri

ρti

]
∈ R3×1.

(2.44)

After Ti, there is Fi, which is the partial of FDOA defined by Eq. 2.41 with respect to the position

vector of the satellite, ri. Rewriting Fi in terms of DFOs for conciseness we obtain,

F>i = F>DFOt
i
− F>DFOr

i
∈ R3×1 (2.45)

Where F>
DFOt

i
and F>DFOr

i
are calculated by Eq. 2.46.

F>DFO∗i = (−1)i−1
f∗TX
cρ∗i


1−

(
u∗xi,TX

)2
−u∗xi,TX

u∗yi,TX
−u∗xi,TX

u∗zi,TX

−u∗yi,TX
u∗xi,TX

1−
(
u∗yi,TX

)2
−u∗yi,TX

u∗zi,TX

−u∗zi,TX
u∗xi,TX

−u∗zi,TX
u∗yi,TX

1−
(
u∗zi,TX

)2




v∗xi,TX

v∗yi,TX

v∗zi,TX



+ (−1)i−1
(f∗TX − ftrli)

cρi


1−

(
uxi,RX

)2 −uxi,RXuyi,RX −uxi,RXuzi,RX

−uyi,RXuxi,RX 1−
(
uyi,RX

)2 −uyi,RXuzi,RX

−uzi,RXuxi,RX −uzi,RXuyi,RX 1−
(
uzi,RX

)2




vxi,RX

vyi,RX

vzi,RX

 . (2.46)

All terms are previously defined except for u and v. There are two variations of both u and v

associated with either the transmitter or receiver shown in Eqs. 2.47-2.50. Note that for conciseness
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ζ is a stand-in variable for the components x, y and z.

u∗ζi,TX
=
ζi − ζ∗TX

ρ∗i
(2.47)

v∗ζi,TX
= ζ̇i − ζ̇∗TX (2.48)

uζi,RX
=
ζi − ζRXi

ρi
(2.49)

vζi,RX
= ζ̇i − ζ̇RXi (2.50)

The last submatrix in H̃k is Ji, which is the partial of FDOA defined by Eq. 2.41 with respect to

the velocity vector of the satellite, vi. Once more for conciseness we can write Ji in terms of DFOs,

J>i = J>DFOt
i
− J>DFOr

i
∈ R3×1. (2.51)

Where J>
DFOt

i
and J>DFOr

i
are computed by Eq. 2.52,

J>DFO∗i = (−1)i−1
f∗TX
c


u∗xi,TX

u∗yi,TX

u∗zi,TX

+ (−1)i−1
(f∗TX − ftrli)

c


uxi,RX

uyi,RX

uzi,RX

 (2.52)

where u is defined by Eqs. 2.47 and 2.49. Similar to Eq. 2.46 the translation frequencies in Eq.

2.52 also cancel when substituted back into Eq. 2.51.

2.2.1.2 Time and Frequency Difference of Arrival Troposphere and Ionosphere

Corrections

Using TDOA the atmospheric path delays are canceled almost perfectly, with FDOA it

depends on the whether the frequencies of the transmitters are the same or not. If they are

not, then larger atmospheric path delays may be encountered. In order to address these errors a

correction is added to the TDOA and FDOA measurement that accounts for the delays from the

tropo- and ionosphere, the following setup is obtained from Ref. [41] and chapter 9 of Ref. [66].

The TDOA correction is,

δTDOA =
1

c

[
δρt2 − δρr2 + δρr1 − δρt1

]
. (2.53)
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Where,

δρ∗i = dTrop∗i + dIono∗i (2.54)

Where, dTrop and dIono are the tropo- and ionosphere corrections for the path associated with

satellite i and transmitter ∗. The FDOA correction is,

δFDOA =
1

c

[
f ttr
(
δρ̇t1 + δρ̇1 − δρ̇t2 − δρ̇2

)
− f rtr (δρ̇r1 + δρ̇1 − δρ̇r2 − δρ̇2)

]
. (2.55)

Where,

δρ̇∗i =
(dTrop∗i (t)− dTrop∗i (t− dt))− (dIono∗i (t)− dIono∗i (t− dt))

dt
(2.56)

and,

δρ̇i =
(dTropi(t)− dTropi(t− dt))− (dIonoi(t)− dIono∗i (t− dt))

dt
. (2.57)

The troposphere model used is,

dTrop = zhmh + zwmw (2.58)

Where, zh and zw are zenith delays, while mh and mw are mapping functions. The zenith delays

are defined as follows,

zh =
0.0022768P

ψ
(2.59)

where, P is the pressure in millibars and,

ψ = 1− 2.66× 10−3 cos(2φgd)− 2.8× 10−7h (2.60)

where, φgd is the geodetic latitude of the ground stations in radians and h is the height above the

WGS84 ellipsoid in meters. The zw zenith delay is defined as,

zw = 2.2768× 10−3
1255/T + 0.05

ψ
(2.61)
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where T is the temperature in Kelvin and ψ is previously defined in Eq. 2.60. The mh and mw

Vienna mapping functions are provided in Ref. [66] as well as Ref [41].

The ionosphere model used is,

dIono = 40.309
TEC(t, ri)

f2
F (2.62)

where,

F =
[
1− ri cosα

R

]−1/2
(2.63)

where α is the elevation of the spacecraft with respect to the ground station and R is a value from

the TEC map file.

2.2.2 Light-Time Correction

The TDOA and FDOA measurements are recorded by the receivers and time-tagged at a time

t. This means the signal was transmitted by the satellite at time t minus the downlink time, τdwn or

at time td. In many cases there is a small delay between the satellite receiving and re-transmitting

the signal, therefore the signal was received by the satellite at time td minus the delay, τdel or at

time tdd. Finally the signal was transmitted at time tdd minus the uplink time, τup or at time tddu.

As a consequence both the uplink and the downlink require a fixed-point iteration in order to solve

for the path length, ρ [61]. The downlink segment is computed first and then the uplink since we

must go in reverse from the time the signal was received. For simplicity, the equations below are

generalized and the specific satellite and transmitter/receiver subscripts are not included,

ρdwn = cτdwn = ||rsat(t− τdwn)− rrec(t)||2. (2.64)

The downlink path is thus the difference of the position of the satellite from whence the signal

departed and the position of the receiver at which the signal was received. Continuing backwards,

the uplink path is,

ρup = cτup = ||rsat(t− τdwn − τdel)− rtr(t− τdwn − τdel − τup)||2. (2.65)
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The uplink path is therefore the difference of the position of the satellite at which the signal was

received and the position of the transmitter from whence the signal departed. Due to this light-

time correction, care should be taken to ensure that the positions of the satellite, transmitters

and receivers are computed at the appropriate times when calculating the TDOA and FDOA

measurements.

2.2.3 Range and Range-Rate

A number of times within this dissertation, other measurement observables such as range and

range-rate are utilized as well, primarily for comparison purposes with TDOA and FDOA. While

TDOA and FDOA have a high fidelity level with media and light time corrections, the range and

range-rate measurement equations are assumed to be instantaneous. If the range and range-rate

measurements are used for comparison to TDOA and FDOA the geometry from Figure 2.5 is used.

T/RX! T/RX!

Primary! Secondary!

⇢t
2

⇢r
1 ⇢r

2

T/RX! T/RX!

ρt
1

i

Baseline (B)!

Figure 2.5: Range/range-rate geometry, antennas in box are at same location

The antennas inside each box are at the same location and actually represent channels rather

than physical antennas. The two stations would be in the same locations as those found with

TDOA and FDOA so as to reproduce the same baseline.

The range is computed by differencing the satellite position vector from the station position

vector and taking the L2-norm,
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ρ = ||rsat − r||2 (2.66)

The measured range is not the true range but rather the pseudo-range as defined by Eq. 2.27

reproduced below,

ρ̃ = ρ+ cδRX + cδTX + δρatm + ε. (2.67)

The extra terms corrupting the true range can be estimated using a range bias.

The range-rate observable is computed by taking the velocity vector in the direction of ρ such

that we have,

ρ̇ = ρ̇>ρ̂ (2.68)

Once again, the measured range-rate is not the true range-rate which is corrupted by clock bias

drifts and other errors. The measured range-rate is the pseudorange-rate previously shown in Eq.

2.28 reproduced below,

˙̃ρ = ρ̇+ cδ̇RX + cδ̇TX + δ̇ρatm + ζ. (2.69)

The extra terms bias terms can also be estimated similar to range.

2.2.3.1 Range and Range-Rate Partials

For the following partials we assume that the state is,

X =

[
r>1 v>1 Cr1 r>2 v>2 Cr2

]>
. (2.70)

This estimated state vector is used in the dual-satellite state estimation problem discussed in chapter

4. In the relative estimation case discussed in chapter 5 a different state vector is estimated, but

throughout that research a UKF is implemented so no partials are required for that filter. The

measurement mapping matrix using Eq. 2.70 is shown below,
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H̃k =

[
∂G(Xk, tk)

∂Xk

] ∣∣∣∣∣
Xref

=

 R1 01×3 0 R2 01×3 0

RR1 RV1 0 RR2 RV2 0

 ∈ R2×14.

(2.71)

The partials with respect to the satellite position and velocity are shown below:

Ri =
∂ρ

∂ri
= ρ̂> ∈ R1×3 (2.72)

and,

RRi =
∂ρ̇

∂ri
=
ρ̇>

ρ

[
I3×3 − ρ̂ρ̂>

]
∈ R1×3 (2.73)

and,

RVi =
∂ρ̇

∂vi
= ρ̂> ∈ R1×3. (2.74)

The partials with respect to the station rather than the satellite would have the same magnitude

but would be in the opposite direction.

2.2.4 Angles: Azimuth and Elevation

Another set of observables used in this dissertation is optical, referring to the azimuth and

elevation angles. The angles shown in this section however, are not taken from a central body such

as Earth, but rather from a spacecraft around the central body measuring the angles to another

spacecraft also orbiting the central body where the central body is the origin or zero angle of both

azimuth and elevation, see Figure 2.6.

The azimuth and elevation angles made between the observed satellites, main satellite (from

which the angles are taken) and central body must be measured on a plane which must now be

defined, and is shown in Figure 2.6(a) for clarity. The normal to this plane is a vector pointing from
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the main satellite towards the central body CoM illustrated by the blue arrow in Figure 2.6(b).

This normal vector is coincident with the camera LOS and is defined as the spacecraft body b̂1

axis. The unit vector from the central body to the main satellite is defined as follows,

N r̂m =
N rm
rm

=


N x̂m

N ŷm

N ẑm

 . (2.75)

The ˆ indicates the vector is of unit length, a ˆ is also used on the vector’s components to denote

that they are normalized. The superscript N specifies that the vector is expressed in the inertial

frame. With the LOS vector b̂1 defined as the negative of Eq. 2.75, the plane is still free to rotate

about b̂1, so another constraint is required to fix the plane. The b̂2 vector is constrained to the

plane of n̂1 and n̂2 and finally b̂3 completes the right-hand rule.

AzE

i

El

(a) View towards central body along LOS from m

N

n̂1

n̂2

n̂3
B

b̂1
b̂2

b̂3

E

i

m

(b) Inertial and body frame geometry

Figure 2.6: Geometry for angles observables: E is the central body, m is the main satellite and i
are the observed satellites

As a result the spacecraft attitude is defined and constrained to the b̂ basis vectors. To

compute the azimuth and elevation angles of the satellites, their position vectors with respect to

the main satellite must be known in the body frame rather than the inertial frame. We start by

defining the body frame basis vectors in terms of the inertial components as shown in Eq. 2.76.
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
b̂1

b̂2

b̂3

 =


−N x̂m −N ŷm −N ẑm
−N ŷm√

(N x̂m)2+(N ŷm)2
−
√

1− (N ŷm)2

(N x̂m)2+(N ŷm)2
0

−N ẑm
√

1− (N ŷm)2

(N x̂m)2+(N ŷm)2

N ŷNm ẑm√
(N x̂m)2+(N ŷm)2

N x̂m

√
1− (N ŷm)2

(N x̂m)2+(N ŷm)2
−

(N ŷm)2√
(N x̂m)2+(N ŷm)2


(2.76)

Next, the inertial basis vectors in the inertial frame is trivial and shown in Eq. 2.77.


n̂1

n̂2

n̂3

 =


1 0 0

0 1 0

0 0 1

 (2.77)

Using Eqs. 2.76 and 2.77 a rotation matrix can be constructed from the inertial frame N to the

main satellite body frame B denoted by [BN ] and illustrated in Eq. 2.78 [71].

[BN ] =


b̂1 · n̂1 b̂1 · n̂2 b̂1 · n̂3

b̂2 · n̂1 b̂2 · n̂2 b̂1 · n̂3

b̂3 · n̂1 b̂3 · n̂2 b̂3 · n̂3

 (2.78)

Then the position vector from the main satellite the ith satellite is computed,

N rmi =N ri −N rm. (2.79)

Using the previously found rotation matrix, the main satellite to satellite vector is rotated into the

body frame. The resulting components are used in the azimuth and elevation equations.

Brmi = [BN ]N rmi =


Bxmi

Bymi

Bzmi

 (2.80)

Finally the azimuth (Az) and elevation (El) angles are then computed as follows

Azi = tan−1
(Bymi
Bxmi

)
, (2.81)
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and

Eli = tan−1
(

Bzmi√
(Bxmi)2 + (Bymi)2

)
. (2.82)

For implementation in the code the atan2 function is used to ensure that the angle has the correct

sign. The azimuth and elevation observables are used in chapter 8 in conjunction with FDOA for

small-body navigation around the asteroid Eros.

2.3 Coordinate Frames

The developed OD framework using TDOA and FDOA must have the capability to process

real data, consequently the coordinate frames that are used must be consistent and have a high

fidelity. Often times, in the dual-satellite estimation case, the a-priori state vector of the satellites

is in the form of a Two-Line Element (TLE) which is propagated using the SGP4 orbit propagator

to the time of the first measurement. This propagation occurs in the True Equator, Mean Equinox

(TEME) of Date where the x-axis points along the mean vernal equinox and the z-axis points

along the true rotation axis of the Earth at the specified date or coordinate epoch [1]. Then the

TEME state vector is rotated into the inertial dynamical mean equator, mean equinox (MEME)

J2000 reference frame using the IAU 1976 precession theory, full 106-term IAU 1980 nutation

theory, and the 1982 equation of the equinoxes with the kinematic correction terms. Then the

J2000 state is converted to the Geocentric Celestial Reference Frame (GCRF) a realization of the

International Celestial Reference System (ICRS) which is the most current fundamental inertial

coordinate system. The GCRF frame is closely aligned with the J2000 frame with an angular

difference of only 0.01 arcsec, and determined with an accuracy of 0.003 arcsec [60]. Finally if

desired, the GCRF state can also be outputted in the International Terrestrial Reference Frame

(ITRF) an Earth centered Earth fixed reference frame, the rotation uses the following equations:

rITRF = Π(t)Θ(t)N(t)P (t)rGCRF (2.83)
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and,

vITRF = Π(t)Θ(t)N(t)P (t)vGCRF + Π(t)
dΘ(t)

dt
N(t)P (t)rGCRF (2.84)

where, Π is the polar motion, Θ is the Earth transformation matrix, N is the nutation trans-

formation matrix, and P is the precession transformation matrix. On occasion the GCRF state

is outputted as an Earth-Fixed Greenwhich (EFG) reference frame which is a pseudo-Earth fixed

geocentric reference frame because the polar motion is ignored.



Chapter 3

Orbit Determination Filters

In this chapter a relatively brief overview of the filters used throughout this dissertation work

are described. Because this is an OD dissertation filtering lies at the heart of the methodology.

We start out with the most basic filter, the batch processor with regular inversion but then also

explore other numerical methods such as Cholesky decomposition and singular value decomposition

(SVD) as well as a the correlation or scaled form. The consider batch filter is also derived for use

with the geolocation estimation side. Then we explore sequential filters such as the Kalman filter

(KF), extended Kalman filter (EKF) and square-root information filter (SRIF) with and without

smoothing and state noise compensation (SNC) process noise. Finally we look at the unscented

Kalman filter (UKF) in square-root form and we extend the field of filtering ever so slightly by

deriving the square-root unscented Schmidt-Kalman filter (SR-USKF) a consider SR-UKF.

3.1 Batch Processor

The Batch processor as the name suggests processes all observations over a given time span

in a single batch, this is unlike the sequential processors such as the KF which is discussed later.

The most basic derivation of the Batch filter was in fact already shown in chapter 1.2, we duplicate

the least-squares solution below for convenience,

x̂ =
(
H>H

)−1
H>y. (3.1)
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Generally, a weighted estimate based on the uncertainty of the measurements is more accurate and

is preferred. There may also be some previous a-priori information available. We can re-derive the

best estimate equation which include these additional parameters, and in so doing we obtain the

following equation,

x̂0 =
(
H>R−1H + P̄−10

)−1 (
H>R−1y + P̄−10 x̄0

)
. (3.2)

Where R is the measurement covariance matrix, P̄ is the a-priori state covariance matrix and x̄

is the a-priori state deviation. With the Batch processor all the information is mapped back to a

single time, often times the epoch, denoted by the subscript 0. Equation 3.2 can also be written in

terms of the information and normal matrices as follows,

x̂ = Λ−1N. (3.3)

Where Λ is the information matrix and N is the normal vector. From Eq. 3.3 it is clear that the

inverse of the information matrix must be taken to find the best estimate of the state deviation. In

some cases this inversion can cause numerical issues which is why there are other methods in place

such as the Cholesky decomposition and the singular value decomposition which are discussed in

the two subsequent sections. Furthermore, the batch processor in this research uses the scaled form

of the measurement equation to reduce the condition number which is discussed in chapter 4.1.4.

Recall that the estimate is a deviation rather than the actual state of the spacecraft as a

result of the linearization process. In order to obtain the actual state estimate the estimated state

deviation is added to the reference state or the state about which the filter was originally linearized,

usually the best estimate of the state at the time. This is illustrated below in Eq. 3.4,

X̂∗0 = X∗0 + x̂0. (3.4)

The Batch processor can be iterated as many times as necessary where with each iteration the

previous iteration’s solution is used as the next iteration’s reference trajectory. The iterations can
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be stopped when the estimated state deviation is below some specified tolerance, often times only

three to five iterations are required to obtain a very accurate estimate of the spacecraft state, where

the measurement residuals are all the way down into the noise. Figure 3.1 outlines the complete

Batch processor in a step-by-step procedure.

196 Chapter 4. Fundamentals of Orbit Determination

(A) Initialize for this iteration:

Set i = 1. Set ti−1=t0, X∗(ti−1)=X∗
0, Φ(ti−1, t0)=Φ(t0, t0)=I .

If there is an a priori estimate, set Λ = P −1
0 and set N = P −1

0 x̄0.
If there is no a priori estimate, set Λ = 0 and set N = 0.

❄
(B) Read the next observation: ti, Yi, Ri.

❄
Integrate reference trajectory and state transition matrix from ti−1 to ti.
Ẋ∗ = F (X∗(t), t) with initial conditions X∗(ti−1)
A(t) = [∂F (X, t)/∂X]∗, where ∗ means evaluated on the nominal
trajectory.
Φ̇(t, t0) = A(t)Φ(t, t0) with initial conditions Φ(ti−1, t0).
This gives X∗(ti),Φ(ti, t0).

❄
Accumulate current observation

H̃i = [∂G(X, ti)/∂X]∗
yi = Yi −G(X∗

i , ti)
Hi = H̃iΦ(ti, t0)
Λ=Λ+ HT

i R−1
i Hi

N = N + HT
i R−1

i yi

❄

4.6. Computational Algorithm for the Batch Processor 197

❄
If ti < tfinal:

i = i + 1. Thus:
ti becomes ti−1
X∗(ti) becomes X∗(ti−1)
Φ(ti, t0) becomes Φ(ti−1, t0)
Go to (B) and read the next observation.

If ti ≥ tfinal:

Go to (C) and solve normal equations.

❄
(C) Solve normal equations.

The normal equations are Λx̂0 = N . The covariance is P0 = Λ−1.

❄✑✑✑✑
◗◗◗◗

✑✑✑✑
◗◗◗◗

Has process
converged?

✛ Yes

❄

No
✓
✒

✏
✑

STOP

Iterate.

Update the nominal trajectory:
Replace X∗

0 with X∗
0 + x̂0.

Shift x̄0 to be with respect to
the updated X∗

0, as follows:
x̄0 = x̄0 − x̂0.

Use the original value of P 0.

Go to (A) and use the new
values for X∗

0 and x̄0.

✛
✓
✒

✏
✑

to (A)

Figure 4.6.1: Batch processing algorithm flo w chart.Figure 3.1: Batch processor flow chart (adapted from [83])

3.1.1 Cholesky Decomposition

The Cholesky Decomposition can be used to solve for the estimated state rather than doing an

inversion. This technique is particularly useful when the number of estimated states are extremely

large. An example would be the gravity field. If the Cholesky decomposition is used, the advantage



49

will be increased numerical accuracy since forward and backward substitutions can be used which

are algebraic manipulations rather than a matrix inverse. We can decompose Λ from Eq. 3.3 as,

Λ = R>R (3.5)

then,

R>Rx̂ = N → R>z = N where, z = Rx̂. (3.6)

As a result since R is upper triangular z can be solved for using forward substitution and x̂

can be then solved for using backward substitution, both of which are numerically stable.

3.1.2 Singular Value Decomposition (SVD)

Another method to solve for the best estimate of the state deviation without using an inverse

is through SVD. The SVD of any real m by n matrix H is,

H = UΣV> where, U ∈ Rm×m, V ∈ Rn×n, Σ ∈ Rm×n. (3.7)

Where U and V are orthogonal matrices and Σ are singular values. An orthogonal matrix is a

square matrix where QQ> = I and Q> = Q−1. It preserves the dot product of vectors, and

therefore acts as an isometry of Euclidean space, such as a rotation or reflection. Consequently

because an orthogonal matrix only rotates or reflects, we have: ∀ vector x, ‖Qx‖ = ‖x‖ = (xx>)
1
2 .

If U and V were square then instead of SVD it would be eigenvector/value decomposition. Because

H is not square however, Eq. 3.7 defines the pseudoinverse of H. SVD like Cholesky Decomposition

also increases numerical accuracy because the condition number of H is not squared compared to

Eq. 3.2. Now using the pseudoinverse of H we have,

x̂ = VΣ+U>y, (3.8)
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which operates on H directly. Solving the least-square problem using SVD arguably provides the

most numerically stable solution, but is computationally intensive to compute.

3.1.3 Consider Batch Processor

The consider Batch filter is a filtering technique for including the uncertainty of unestimated

parameters to improve the covariance realism. There are several reasons as to why certain param-

eters are simply considered over being estimated. The first reason is to reduce the computational

cost and time of the filter by not estimating low impact parameters, but often times it is still a

good idea to include their uncertainty. The second reason is that some parameters may not be

completely observable, in that case estimating these parameters is not an option and considering

them instead is the next best alternative. The state, just like in the conventional Batch processor,

is X, but the new consider parameters are called C. The first order partials with respect to the

states and consider parameters are then defined as A(t) and B(t):

A(t) =

[
∂F (t)

∂X(t)

] ∣∣∣∣∣
Xref

(3.9)

B(t) =

[
∂F (t)

∂C

] ∣∣∣∣∣
Cref

(3.10)

The STM due to the estimated states is the same as with the conventional Batch filter shown in

Eq. 1.7 and is initialized using the identity matrix.

Φ̇(t, tk) = A(t)Φ(t, tk) → Φ(t, tk) = I (3.11)

Due to the consider parameters, there is an additional STM, initialized with a zero matrix.

θ̇(t, tk) = A(t)θ(t, tk) + B(t) → θ(t, tk) = 0 (3.12)

We can combine the estimated states and consider parameters into one deviation vector z such that

z = [x c]> so that the time evolution can be expressed as,
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z(t) = ψ(t, tk)z(tk) (3.13)

where,

ψ(t, tk) =

Φ(t, tk) θ(t, tk)

0 I

 . (3.14)

Next, we compute H̃xk with respect to the estimated states shown in Eq. 3.15,

H̃xk =

[
∂G(Xk, tk)

∂X

] ∣∣∣∣∣
Xref

. (3.15)

The measurement mapping matrix H̃ck , are the partials with respect to the consider parameters,

H̃ck =

[
∂G(Xk, tk)

∂C

] ∣∣∣∣∣
Cref

. (3.16)

Given the STMs we can compute the measurement mapping matrix mapped back to epoch, where

Hxk = H̃xkΦ(t, tk) and Hck = H̃xkθ(t, tk)+H̃ck . These mapping matrices are then used to compute

the three different information matrices,

Λxx =
l∑

k=1

H>xkWkHxk + Λ̄xx, (3.17)

Λxc =
l∑

k=1

H>xkWkHck + Λ̄xc, (3.18)

Λcc =

l∑
k=1

H>ckWkHck + Λ̄cc. (3.19)

After all observations are processed, the covariance, not including the consider uncertainty can be

found as Px = Λ−1xx . However, we are interested in including the consider uncertainty, therefore we

compute the sensitivity matrix Sxc = −PxΛxc which after substituting in Eq. 3.18 becomes,

Sxc = −PxH
>
x WHc. (3.20)
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Using the sensitivity matrix we can map the a-priori consider covariance P̄cc, into the estimation

space and add it to the original covariance Px to yield the new covariance Pxx,

Pxx = Px + SxcP̄ccS
>
xc. (3.21)

3.2 Kalman Filter

The Kalman filter is a sequential filter, which unlike the batch processor computes the best

state deviation estimate x̂ after each observation rather than all at once after all the observations

have been processed. The batch processor and the Kalman filter are mathematically equivalent

however and should produce the same solution. The inversion required for the Kalman filter is of a

much smaller matrix compared to that of the batch processor, which could be beneficial if there are

some numerical issues but could result in some minor solution differences between the two filters

when put in practice. A sequential filter is ideal for real-time estimation since the new observations

are immediately processed to obtain a new estimate.

Most of the equations originally introduced in chapter 1.2 are still relevant to the Kalman

filter, but with a sequential filter the x̂ update is found in a different manner and the state deviations

are also not mapped back to a specific epoch. The Kalman filter has two updates, first, a time

update and second, a measurement update. The time update takes the last best state deviation

estimate and maps it to the time of the subsequent measurement using the STM,

x̄k = Φ(tk, tk−1)x̂k−1. (3.22)

The same process is used to update the covariance,

P̄k = Φ(tk, tk−1)Pk−1Φ
>(tk, tk−1). (3.23)

Then similarly to the batch processor yk and H̃k are computed, but unlike the batch processor, the

computation of H is unnecessary because the measurement is immediately processed rather than



53

accumulated. To fuse in the new information of a measurement the Kalman gain is required which

is computed as follows,

Kk = P̄kH̃
>
k

(
H̃kP̄kH̃

>
k + Rk

)−1
(3.24)

To compute the best state deviation estimate we use the Kalman gain from Eq. 3.24 and the time

updated previous best state deviation estimate from Eq. 3.22,

x̂k = x̄k + Kk

(
y − H̃kx̄k

)
. (3.25)

Finally the covariance matrix is also updated,

Pk =
(
I −KkH̃k

)
P̄k. (3.26)

Occasionally there are problems with the covariance update, where it may become unsymmetric

and/or lose its positive definiteness. The Joseph formulation may be implemented to maintain the

symmetry of the covariance, but it will not mitigate a loss in positive definiteness. The Kalman

filter is summarized in Figure 3.2.

3.2.1 Process Noise

Process noise is introduced in the KF to prevent saturation which could lead to filter di-

vergence. The process noise used for the work in this dissertation is in the form of state noise

compensation (SNC). The state dynamics of a linear system with process noise can be written as,

ẋ(t) = A(t)x(t) + B(t)u(t) (3.27)

Where u(t) is the state or process noise and is assumed to be a white noise process with,

E[u(t)] = 0 (3.28)

E[u(t)u>(τ)] = Q(t)δ(t− τ). (3.29)
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4.7. The Sequential Estimation Algorithm 203

Initialize at t0
Set i = 1. Set values of ti−1 = t0 and X∗(ti−1) = X∗

0.
x̂i−1 = x̄0

Pi−1 = P 0

❄
(A) Read the next observation: ti, Yi, Ri.

❄
Integrate reference trajectory and state transition matrix from ti−1 to ti.
Ẋ∗ = F (X∗(t), t) with initial conditions X∗(ti−1)
A(t) = [∂F (X, t)/∂X]∗, where ∗ means evaluated on the nominal
trajectory.
Φ̇(t, ti−1) = A(t)Φ(t, ti−1) with initial conditions Φ(ti−1, ti−1) = I .
This gives X∗(ti),Φ(ti, ti−1).

❄
Time Update

x̄i =Φ(ti, ti−1)x̂i−1
P i =Φ(ti, ti−1)Pi−1ΦT (ti, ti−1)

❄

204 Chapter 4. Fundamentals of Orbit Determination

❄
Compute: observation deviation, observation-state matrix, gain matrix

yi = Yi −G(X∗
i , ti)

H̃i = [∂G(X, ti)/∂X]∗
Ki = P iH̃T

i (H̃iP iH̃T
i + Ri)−1

❄
Measurement Update

x̂i = x̄i + Ki[yi − H̃ix̄i]
Pi = (I −KiH̃i)P i

i = i + 1.
Thus: ti becomes ti−1, X∗(ti) becomes X∗(ti−1)

❄✑✑✑✑✑

◗◗◗◗◗

✑✑✑✑✑

◗◗◗◗◗
Have all

observations
been read?

✛ No ✲Yes ✓
✒

✏
✑STOP

✓
✒

✏
✑to (A)

Figure 4.7.1: Sequential processing algorithm flo w chart.

Figure 3.2: Sequential processor computational algorithm (adapted from [83])

Where Q(t) is the process noise covariance matrix and δ(t− τ) is the dirac delta which ensures no

correlation in time. We also assume u(t) is a zero-mean gaussian:

u(t) ∼ N(0,Q(t)). (3.30)

The zero-mean noise process does not change the mapping of the mean state and the equation

remains the same as Eq. 3.22. The process noise is added to the covariance during the time update

as follows,

P̄k = Φ(tk, tk−1)Pk−1Φ
>(tk, tk−1) + Γ(tk, tk−1)QkΓ

>(tk, tk−1) (3.31)

Where, Γ(tk, tk−1) is,

Γ(tk, tk−1) =

∫ tk+1

tk

Φ(tk+1, τ)B(τ)dτ. (3.32)
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The process noise covariance matrix is defined in the satellite body frame so that the accelerations

act in the radial, in-track and cross-track directions. Of course SNC is only one type of process

noise, but there is also dynamic model compensation (DMC) which is a Gauss-Markov process

(GMP). A Gauss-Markov process is one that obeys a Gaussian probability law and displays the

Markov property. The Markov property describes a random (stochastic) process where knowledge

of the future is only dependent on the present. In other words the probability density function

(PDF) at tn given its past history at tn−1, tn−2, . . . is equal to the PDF at tn given its value at

tn−1. A Gauss-Markov process obeys a differential equation of the form,

η̇(t) = −βη(t) + u(t) (3.33)

where u(t) is white Gaussian noise and previously defined in Eqs. 3.28 and 3.29 and the inverse of

the time constant or correlation time is,

β =
1

τ
. (3.34)

DMC is effectively added to the filter as follows, such that the estimated state vector is defined as,

X =

[
r> ṙ> η>

]>
. (3.35)

Where, r is the position vector, ṙ is the velocity vector and η is a stochastic acceleration term. The

dynamic model is then described as follows,

Ẋ = F (X, t) =


ṙ

a + η

η̇

 =


ṙ

− µ
r3

r + ap + η

−βη

+


0

0

u(t)

 . (3.36)

Where, ṙ is the velocity, a is the acceleration, η is the stochastic acceleration which is being

estimated as the data is being processed. Then η̇ is the dynamics of the stochastics acceleration

which is defined by the original ODE in equation 3.33. Then filling out the equation with a two-

body force model we have the gravity acceleration and the perturbing accelerations ap. Note that
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−βη is the deterministic portion of the ODE, and u(t) is the stochastic portion. Because there is

still a random portion being added u(t) we still have the process noise covariance matrix Q, being

added to the time update equation. The Q developed through DMC is also more mathematically

rigorous compared to the Q developed from SNC.

3.2.2 Smoothing

Smoothing algorithms, when no process noise is used, in a sequential filter produces the same

results as a batch processor, using all available information to estimate the solution at one epoch.

In a batch processor adding process noise is challenging and not usually done, but by smoothing a

Kalman filter with process noise, the solution is the same as if it had been filtered using a batch

processor with process noise. When using a sequential filter, the measurements are processed in a

forward manner while the smoother goes backward from the most recent measurement back to the

first measurement. We use the following notation, where x̂lk is the best estimate at time tk using

observations up to time tl. The state update using the smoothing algorithm then yields,

x̂lk = x̂kk + Sk

(
x̂lk+1 − Φ(tk+1, tk)x̂

k
k

)
(3.37)

where,

Sk = Pk
kΦ
>(tk+1, tk)

[
Φ(tk+1, tk)P

k
kΦ
>(tk+1, tk) + Γ(tk+1, tk)QkΓ

>(tk+1, tk)
]−1

= Pk
kΦ
>(tk+1, tk)

(
Pk
k+1

)−1 . (3.38)

The covariance is smoothed using,

Pl
k = Pk

k + Sk

(
Pl
k+1 −Pl

k+1

)
S>k . (3.39)

When no process noise is present the smoother simply maps the solution back from time tk to the

epoch using the STM.
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3.2.3 Extended Kalman Filter (EKF)

The conventional KF is a linearized filter about an arbitrary reference trajectory for the

complete duration of the filter span. When significant non-linearities are present however, as may

occur around a small body due to the large gravitational asymmetries, a linearized filter may

fail. Consequently, the extended version of the Kalman filter known as the EKF can be used which

handles these non-linearities more effectively because it is a non-linear filter. After each observation

the reference trajectory is updated to reflect the new best estimate of the state. Therefore the a-

priori state deviation x̄ will always be zero, and the state deviation update simplifies to,

x̂k = Kkyk. (3.40)

Note that updating the reference trajectory from the start when the filter covariance has not yet

had the chance to collapse could result in erroneous filter solutions. Therefore a conventional KF

is usually implemented first, then after the solution has more or less stabilized the EKF can take

over.

3.3 Square-Root Information Filter (SRIF)

Similar to the Cholesky decomposition of chapter 3.1.1 we define the the information matrix

in terms of its square root, such that Λ = R>R. The least-squares estimate is computed recursively

where first the observations are pre-whitened and a time update is incurred. Then the measurement

update is computed at each time k using an orthogonal transformation T to merge in new data,

T

R̄k b̄k

H̃k yk

 =

Rk bk

0 e

 . (3.41)

The transformation used here are Householder’s reflections for their efficiency. Then we solve for

the best estimate, x̂ in Eq. 3.42.

Rx̂ = b (3.42)
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Since R is upper triangular, x̂ can be found using backward substitution rather than inversion

which may otherwise cause numerical issues. The covariance at any step is then computed as

Pk = R−1k R−>k . After performing a time update on Rk and bk, they become R̄ and b̄ for the

following measurement update at k + 1. These steps are repeated from k = 1 to the number of

measurements l. Finally the state and covariance are smoothed back to the epoch. For an in-depth

look at the SRIF and its computational algorithm consult Ref. [83].

3.3.1 Process Noise

The basic SRIF algorithm as shown in chapter 3.3 does not include process noise which means

that the filter can saturate when too many high precision measurements are processed. To mitigate

this issue we need to modify the time update to include SNC,

T

 Ru 0 b̄uk−1

−R̃kΓ(tk, tk−1) R̃k b̂k−1

 =

R̄uk R̄uxk b̃uk

0 R̄k b̄k

 . (3.43)

Where Ru is the the upper triangular Cholesky decomposition of the the process noise covariance

matrix Q; and b̄uk−1
= Ruūk−1; and R̃k = R̂k−1Φ−1(tk, tk−1); and b̂k−1 = R̂k−1x̂k−1. Once again

the transformation T in the time update also uses a Householder transformation just like the mea-

surement update. The resulting R̄k and b̄k terms are then used in the same measurement update

equation shown in Eq. 3.41. The computational algorithm for the Householder transformation can

be found on pp. 316-318 of Ref. [83].

3.4 Unscented Kalman Filter (UKF)

In the field of non-linear state estimation the extended Kalman filter (EKF) has an extensive

and proven history. However, while the EKF is a non-linear filter due to its continually updated

reference trajectory, the standard Kalman filter linearization is still employed for the dynamics

and measurement models. As a result, the EKF is not always reliable for systems which are not

very linear on the time scale of the update intervals as large errors in the true posterior mean
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and covariance could arise, potentially leading to divergence [43, 88]. To mitigate the linearization

assumption and improve reliability for non-linear state estimation a sigma-point filter was proposed

by Julier et al. [43] in 1997, the most common of which is the unscented Kalman filter (UKF).

The UKF uses the full non-linear dynamics as well as measurement equations, eliminating the need

for a state transition matrix or analytical Jacobians. This is achieved by using a deterministic

sampling approach of a minimal number of sigma points which are propagated through the non-

linear system, after which a weighted mean and covariance are computed. Further development of

the UKF came in 2001 when the square-root unscented Kalman filter (SR-UKF) was developed by

Van der Merwe et al. [87]. The advantages of the square-root form include numerical stability, and

positive definiteness of the covariance over the non square-root implementation, for that reason we

only outline the square-root form of the UKF instead of the non square-root form.

3.4.1 Square-Root Unscented Kalman Filter (SR-UKF)

A summary of the SR-UKF is shown in Algorithm 1 and is reproduced from Ref. [87]. We

only show a brief overview because the subsequent section covers the SR-USKF in much greater

detail.
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Algorithm 1 Square-Root Unscented Kalman Filter

Initialize:
x̂k−1 = x̄

Sxx,k−1 = Cholesky(P̄xx)

for k ∈ {1 . . . n}:

Xk−1 =
[
x̂k−1 x̂k−1 + γSxx,k−1 x̂k−1 − γSxx,k−1

]
Time Update

Xk ← Ẋk = F(Xk−1, t)

x̂−k =
2n∑
i=0

W
(m)
i Xi,k

S−xx,k = qr

{[√
W

(c)
1:2n

(
X1:2n,k − x̂−k

) √
Qk

]>}
S−xx,k = cholupdate

{
S−xx,k,

√
|W (c)

0 |
(
X0,k − x̂−k

)
, sgn

(
W

(c)
0

)}
Measurement Update (subscript k not included since all at time tk)

Y = G(X, t)

ŷ =
2n∑
i=0

W
(m)
i Yi

Syy = qr

{[√
W

(c)
1:2n (Y1:2n − ŷ)

√
R

]>}
Syy = cholupdate

{
Syy,

√
|W (c)

0 | (Y0 − ŷ) , sgn
(
W

(c)
0

)}
Pxy =

2n∑
i=0

W
(c)
i

(
Xi − x̂−

)
(Yi − ŷ)>

K = Pxy

(
SyyS

>
yy

)−1
x̂ = x̂− + K (y − ŷ)

U = KSyy

Sxx = cholupdate
{
S−xx, U, −

}
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3.4.2 Square-Root Unscented Schmidt-Kalman Filter (SR-USKF)

Often times there are additional parameters or states in the problem which are not estimated

in the filter either due to computational restrictions or observability limitations. If there is a-

priori uncertainty knowledge on these parameters, they can be included in the filter as consider

parameters in what is known as a Schmidt-Kalman (or consider) filter. The inclusion of consider

parameters in the estimation error covariance matrix maintains covariance realism, by preventing

an overly optimistic covariance from developing. It is important to note, however, that considering

rather than estimating these additional parameters makes the Schmidt-Kalman filter suboptimal,

but considering the states is significantly better than neglecting them all together. Considering the

states may be the only viable and realistic alternative to estimating them as that is not always

possible.

We follow the development of Ref. [77] by setting up the consider parameters c in augmented

form to the estimated parameters x. The number of estimated states is nx and the number of

considered parameters is nc for a total of nz states in z.

z =

x

c

 (3.44)

Likewise for the covariance, the consider covariance matrix is augmented with the state covariance

with cross correlation covariances on the upper right and lower left of Pzz. In many scenarios Pxc

and Pcx are zeros when the filter is initialized. These cross-correlations later get populated and

inflates Pxx according to the amount of uncertainty on the consider parameters defined through

Pcc.

Pzz =

Pxx Pxc

Pcx Pcc

 (3.45)

We take the Cholesky factorization of Pzz to obtain the square root of Pzz in lower triangular

matrix form such that Pzz = SzzS
>
zz. Then as per the standard UKF we define a number of
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variables pertaining to the weights of each of the sigma points. Several approaches exist, one of

the simplest is weighting each of the sigma points for both the mean and covariance equally with

a sum of unity as was adopted by Ref. [77]. Another approach is to use a scaling method that

minimizes higher order effects such as skew and kurtosis, in this case the mean still sums up to

unity, but the covariance does not necessarily [42]. The latter approach with scaled weightings is

used in the development of the SRUSKF and are shown below, similar to the weights used in Refs.

[87] and [42],

W
(m)
0 =

λ

nz + λ
, (3.46)

W
(c)
0 =

λ

nz + λ
+ (1− α2 + β), (3.47)

W
(m)
i = W

(c)
i =

1

2(nz + λ)
. (3.48)

Where superscripts m and c stand for the mean and covariance of the ith sigma point. The zeroth

sigma point, corresponding to the apriori mean and covariance or central point has different weights

from the others as indicated by Eqs. 3.46 and 3.47. It is also possible for W
(c)
0 to be negative

depending on the number of states and values of the tuning parameters which are discussed next.

We define λ = α2(nz + κ) − nz, where α is a tuning parameter for the amount of spread of the

sigma points from the mean, generally bounded between 10−4 on the low end, and 1 on the high

end. Then κ = 3 − nz and β is used to incorporate prior information on the probability density

function (PDF) of the states, if Gaussian distributions are assumed then β = 2 [87]. Finally we

have γ =
√
nz + λ. We compute the 2nz + 1 sets of sigma points where each set of nz sigma points

is contained in a column vector, Zi,k−1 of Eq. 3.49.

Zk−1 =

[
ẑk−1 ẑk−1 + γSzz,k−1 ẑk−1 − γSzz,k−1

]
(3.49)
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In the time update each set of sigma points is numerically integrated from tk−1 to tk using

the full non-linear dynamics F.

Zk ← Żk = F(Zk−1, t) (3.50)

We then compute the mean and covariance of the 2nz + 1 sets of sigma points produced from Eq.

3.50. The mean computation in square-root form is the same as for the USKF,

ẑ−k =

2nz∑
i=0

W
(m)
i Zi,k. (3.51)

The covariance calculation is not the same however, and is computed using a QR decomposition

shown in Eq. 3.52 and a Cholesky factor update (downdate) of rank 1 shown in Eq. 3.54 .

S−zz,k = qr

{[√
W

(c)
1:2nz

(
Z1:2nz ,k − ẑ−k

) √
Qk

]>}
(3.52)

The QR decomposition is performed on the concatenated matrix of

√
W

(c)
1:2nz

(
Z1:2nz ,k − ẑ−k

)
and

the square root of the process noise Qk. The term,

√
W

(c)
1:2nz

(
Z1:2nz ,k − ẑ−k

)
is in itself also a

concatenated matrix, therefore the qr{·} operation is performed on a nz×3nz matrix as illustrated

in Eq. 3.53,

nz

{[√
W

(c)
1

(
Z1,k − ẑ−k

)]
︸ ︷︷ ︸

1

[√
W

(c)
2

(
Z2,k − ẑ−k

)]
︸ ︷︷ ︸

1

· · ·
[√

W
(c)
2nz

(
Z2nz ,k − ẑ−k

)]
︸ ︷︷ ︸

1

[
√

Qk

]
︸ ︷︷ ︸

nz

. (3.53)

Note that the zeroth sigma point is not included in the QR decomposition since uniquely among

the weights it may be negative. To add the zeroth sigma point we must perform a Cholesky update

(downdate). In order for the SRUSKF to remain consistent with the USKF we deviate slightly from

the implementation of the Cholesky update (downdate) used by Ref. [87] in the SRUKF algorithm.

While Van Der Merwe et al. take the square root of the 1st to the nthz weight in the qr{·} operation,

they do not take the square root of the zeroth weight as it may be negative. Consequently in Van

Der Merwe et al.’s formulation, it is as if the W c
0 weight would be squared in the USKF, while
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keeping all other weights the same. While this is simply a different approach, we aim to keep

consistent with the USKF so as to make a comparison of the two filter solutions more congruent.

Therefore the square-root of the absolute value of the zeroth weight is used as the multiplicative

factor so that the expression to be added or subtracted to S−zz,k in the Cholesky update (downdate)

is

√
|W (c)

0 |
(
Z0,k − ẑ−k

)
. Then the sign of the zeroth weight dictates whether a Cholesky update

(W
(c)
0 > 0) or a Cholesky downdate (W

(c)
0 < 0) is performed, similar to Van Der Merwe et al.’s

original approach.

S−zz,k = cholupdate

{
S−zz,k,

√
|W (c)

0 |
(
Z0,k − ẑ−k

)
, sgn

(
W

(c)
0

)}
(3.54)

The SRUSKF, like the SRUKF, with a QR decomposition and a Cholesky factor update (downdate)

also implements a two-step approach to compute the covariance unlike the USKF. A brief aside

on the workings of the cholupdate algorithm for completeness. Suppose that P has a Cholesky

factorization of SS>, then cholupdate{S, √νx, ±} is equivalent to finding the square root of

P± νxx>. For additional details on the Cholesky update (downdate) of rank one consult Ref. [29]

and chapter 4, section 3 of Ref. [81]. This completes the time update portion of the SRUSKF and

we now move on to the measurement update.

In the measurement update all equations refer to time tk and hence the subscript k is dropped

for conciseness. Each of the sigma points in Zk, computed in the time update, are run through the

non-linear measurement model G to obtain the computed measurements Y,

Y = G(Z, t). (3.55)

Next we compute the mean of the measurements associated with each sigma point set. This is also

the same as the USKF.

ŷ =

2nz∑
i=0

W
(m)
i Yi (3.56)

The innovation covariance, however, requires the two-step process again with the square-root of
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Algorithm 2 Square-Root Unscented Schmidt-Kalman Filter

Initialize:
ẑk−1 = z̄

Szz,k−1 = Cholesky(P̄zz)

for k ∈ {1 . . . n}:

Zk−1 =
[
ẑk−1 ẑk−1 + γSzz,k−1 ẑk−1 − γSzz,k−1

]
Time Update

Zk ← Żk = F(Zk−1, t)

ẑ−k =

2nz∑
i=0

W
(m)
i Zi,k

S−zz,k = qr

{[√
W

(c)
1:2nz

(
Z1:2nz ,k − ẑ−k

) √
Qk

]>}
S−zz,k = cholupdate

{
S−zz,k,

√
|W (c)

0 |
(
Z0,k − ẑ−k

)
, sgn

(
W

(c)
0

)}
Measurement Update (subscript k not included since all at time tk)

Y = G(Z, t)

ŷ =

2nz∑
i=0

W
(m)
i Yi

Syy = qr

{[√
W

(c)
1:2nz

(Y1:2nz − ŷ)
√

R

]>}
Syy = cholupdate

{
Syy,

√
|W (c)

0 | (Y0 − ŷ) , sgn
(
W

(c)
0

)}
Pzy =

2nz∑
i=0

W
(c)
i

(
Zi − ẑ−

)
(Yi − ŷ)>

Kz = Pzy

(
SyyS

>
yy

)−1
=

[
Kx

Kc

]
ẑ = ẑ− +

[
Kx

0

]
(y − ŷ)

U1 = KzSyy

Szz = cholupdate
{
S−zz, U1, −

}
U2 =

[
0

Kc

]
Syy

Szz = cholupdate {Szz, U2, +}
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the measurement covariance matrix, R appended at the end. The notation used in Eq. 3.57 and

3.58 is respectively identical to that of Eq. 3.52 and 3.54.

Syy = qr

{[√
W

(c)
1:2nz

(Y1:2nz − ŷ)
√

R

]>}
(3.57)

Syy = cholupdate

{
Syy,

√
|W (c)

0 | (Y0 − ŷ) , sgn
(
W

(c)
0

)}
(3.58)

The computation of the cross correlation covariance Pzy is also the same as with the USKF.

Pzy =

2nz∑
i=0

W
(c)
i

(
Zi − ẑ−

)
(Yi − ŷ)> (3.59)

Using Eqs. 3.57, 3.58 and 3.59 we can compute the augmented Kalman gain Kz as follows,

Kz = Pzy

(
SyyS

>
yy

)−1
=

Kx

Kc

 . (3.60)

Note that we solve for Kz in two steps. First we solve for
[
S>yyK

>
z

]
in Syy

[
S>yyK

>
z

]
= P>zy. Since

Syy is lower triangular, forward substitutions can be used rather than an inverse since it follows the

Lx = N format, where L is a lower triangular matrix. Second we solve for K>z in S>yyK
>
z = S−1yy P>zy

using backward substitutions since S>yy is an upper triangular matrix and follows the Ux = N

format, where U is an upper triangular matrix. Finally the augmented gain matrix Kz can be

broken up in its respective state and consider gain matrices Kx and Kc.

If the consider parameters were estimated rather than considered (as it would be using a

non-consider filter such as the SRUKF), the full augmented gain matrix would be used to update

the complete augmented state z,

ẑ = ẑ− + Kz (y − ŷ) . (3.61)

However in the consider filter we do not update the consider parameters as that would be similar

to estimating them, therefore we set Kc = 0 such that,
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ẑ = ẑ− +

Kx

0

 (y − ŷ) . (3.62)

Likewise for the covariance (shown here in full rather than in square-root form for clarity) if the

consider parameters were estimated we would have,

Pzz = P−zz −KzPyyK
>
z (3.63)

=

P−xx P−xc

P−cx P−cc

−
KxPyyK

>
x KxPyyK

>
c

KcPyyK
>
x KcPccK

>
c

 . (3.64)

In this Schmidt-Kalman filter however we do not want to update the consider covariance terms. In

essence we need,

Pzz =

P−xx P−xc

P−cx P−cc

−
KxPyyK

>
x KxPyyK

>
c

KcPyyK
>
x 0

 . (3.65)

It is important to note that the actual non-zero Kc matrix from Eq. 3.60 is used in the covariance

update unlike Eq. 3.62 for the state update. In square root form, updating the covariance without

affecting Pcc is achieved by first performing a Cholesky factor downdate and then an update as

shown in Eq. 3.66.

KxPyyK
>
x KxPyyK

>
c

KcPyyK
>
x 0

 =

Kx

Kc

SyyS
>
yy

Kx

Kc


>

−

 0

Kc

SyyS
>
yy

 0

Kc


>

(3.66)

= U1U
>
1 −U2U

>
2 (3.67)

Therefore,

U1 = KzSyy (3.68)
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and,

U2 =

 0

Kc

Syy (3.69)

Then the Cholesky downdate is,

Szz = cholupdate
{
S−zz, U1, −

}
, (3.70)

and the Cholesky update to add back in KcPccK
>
c which was originally also downdated in Eq.

3.70 is,

Szz = cholupdate {Szz, U2, +} . (3.71)

If Uj is a matrix rather than a vector, consecutive Cholesky updates or downdates are required,

one for each of the columns of Uj .



Chapter 4

Absolute Dual-Satellite Orbit Determination

In this chapter we discuss the viability and results of doing dual-satellite OD using TDOA

and FDOA and also compare these OD results to the more conventional range and range-rate

measurements. To determine the viability, the observability of the system is analyzed using a

number of different but extensive techniques. Then OD results are shown for various satellite

pairings.

4.1 Observability

4.1.1 Definition of Observability

Rudolf Kalman developed the idea of observability in his 1959 paper “On the General Theory

of Control Systems” with his original definition paraphrased below [46]:

A costate of a plant is said to be ‘observable’ if its exact value at any state at time 0
can be determined from measurements of the output signal over the finite interval
0 ≥ t ≥ t2. If every costate is observable we say that the plant is “completely
observable.”

This concept as Kalman puts forth has corresponding mathematical tests for the observability of

a system. First the observability matrix can be constructed for a discrete linear (recall that the

problem is linearized) time-variant (LTV) system following Silverman et al’s convention [73]:
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O ≡ H =



H̃(t0)

H̃(t1)Φ(t1, t0)

...

H̃(tk)Φ(tk, t0)


. (4.1)

Since the observability matrix in Eq. 4.1 is not square, we can transform O from H to H>H which

ensures its squareness. This transformation is valid since the null space of H is the same as the

null space of H>H; N (H) = N (H>H) [9]. Eq. 4.2 shows the final observability matrix used for

an LTV system such as the orbit determination problem [9, 10, 80]:

Λ(tk, t0) = H>H =
l∑

k=0

Φ>(tk, t0)H̃
>(tk)H̃(tk)Φ(tk, t0). (4.2)

References [28] and [83] then declare that the following statements must be true in order for the

system to be observable:

• The Rank of H must be n.

• H must have n nonzero eigenvalues.

• The eigenvalues of Λ must be greater than zero.

• The determinant of Λ must be greater than zero.

• Λ must be positive definite; x>Λx > 0, ∀x ∈ R+.

While these tests are theoretically relatively easy to check, bear in mind that numerical errors

can cause any one of the above listed tests to fail even if the system is theoretically observable.

Likewise, numerical errors can cause the listed tests to pass even if the system is theoretically

unobservable. Therefore there is a distinction between theoretical and numerical observability of

a system. The following sections discuss the derivation of the observability matrix from which a

theoretical observability analysis is setup (but not carried out) and a numerical analysis is performed

using the observability matrix.
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4.1.2 Observability Matrix Formulation

In this section the equations are derived to perform an observability analysis by developing

the observability matrix. The approach used here is an extension of Refs. [68] and [56] which only

uses 2-body dynamics. Therefore we also use a 2-body dynamics setup, but we also include SRP. If

it can be shown that the problem is observable using 2-body dynamics then it will also be observable

using the full ephemeris because all the additional perturbations increase the observability of the

system. The time derivatives of the gravity gradient have also been broadened to now include up

to order five from the previous order two, used in Ref. [68]. The newly added SRP component

also has up to fifth order derivatives of the SRP gradient. Finally the measurement mapping

matrix, C, is significantly more involved due to the use of TDOA and FDOA instead of range

measurements between the two satellites. In this section, the observability matrix is developed

using the dynamics and measurements models, which are subsequently evaluated to determine the

numerical observability.

We start by defining our estimated state vector in this orbit determination scenario:

X =

[
r>1 v>1 Cr1 r>2 v>2 Cr2

]>
∈ R14×1. (4.3)

Where r and v are the satellite position and velocity vectors with respect to the Earth and Cr is the

coefficient of reflectivity. The Cr term is in fact representative of the whole Area-[times]-Gamma-

over-Mass (AGOM) term found in the SRP acceleration equation shown previously. The Gamma

term in AGOM is another name for Cr, as this was the original designation for the coefficient of

reflectivity [51]. The subscripts indicate the state associated with satellite 1 or 2. With the state

characterized, the dynamics and measurement model are illustrated in the following subsections.
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4.1.2.1 Linearized Dynamics Model

The dual-satellite dynamics can be expressed in first order form as follows:

Ẋ(t) = F (X, t) =



ṙ1

v̇1

Ċr1

ṙ2

v̇2

Ċr2


=



v1

a12B + a1SRP

0

v2

a22B + a2SRP

0


∈ R14×1, (4.4)

where, ai2B and aiSRP for i = 1, 2 are the accelerations due to 2-body and SRP forces for both

satellites 1 and 2 and are previously defined in Eqs. 2.6 and 2.15.

The orbit determination problem is non-linear in both the dynamics as well as the mea-

surement model. To simplify the calculations significantly, the system is linearized about some

reference. Notation-wise, a capitol letter signifies the actual state values, e.g., X, while a lower case

version of the same letter represents a deviation or perturbation from the reference, e.g., x. The

first order perturbations about the reference are as follows:

x =

[
δr>1 δv>1 δCr1 δr>2 δv>2 δCr2

]>
∈ R14×1. (4.5)

Then the first equation in the state-variable formulation for a linearized dynamic system is,

ẋ(t) = A(t)x(t). (4.6)

The A-matrix are the partials of the dynamics from Eq. 4.4 with respect to the states from Eq.

4.3 at the reference. Eq. 4.7 shows the A-matrix and also its sparsity, as there are only four
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submatrices G1, G2, S1 and S2 that are not either zero or one:

A(t) =
∂F (X, t)

∂X
=



03×3 I3×3 03×1 03×3 03×3 03×1

G1(t) 03×3 S1(t) 03×3 03×3 03×1

0 0 0 0 0 0

03×3 03×3 03×1 03×3 I3×3 03×1

03×3 03×3 03×1 G2(t) 03×3 S2(t)

0 0 0 0 0 0


∈ R14×14. (4.7)

The Gi matrix is the gravity and SRP gradients, specifically,

Gi(t) =
∂(ai2B + aiSRP )

∂ri
∈ R3×3. (4.8)

Upon differentiating Eq. 4.8 the gravity gradient is,

∂ai2B
∂ri

=
µL
r3i

[
3r̂ir̂

>
i − I3×3

]
, (4.9)

and the SRP gradient becomes,

∂aiSRP

∂ri
= −pSRCr

As
m

1

ri,s

[
r̂i,sr̂>i,s − I3×3

]
. (4.10)

Si is the SRP partial with respect to Cri ,

Si(t) =
∂aiSRP

∂Cri
∈ R3×1. (4.11)

Of course taking the partial of Eq. 4.11, results in
∂aiSRP
∂Cri

= −pSRAsm
ri,s
ri,s

. Now that an expression

has been developed for the linearized dynamics, a linearized expression for the measurement model

is next.

4.1.2.2 Linearized Measurement Model

The observation equation in the state-variable formulation for a linearized dynamic system

is,

y(t) = Cx(t). (4.12)
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In this way the state deviations x are mapped to the measurement deviations y using the measure-

ment mapping matrix C. Rows one and two of C correspond to the partials of TDOA and FDOA

with respect to the state vector.

C =

T1 01×3 0 T2 01×3 0

F1 J1 0 F2 J2 0

 ∈ R2×14 (4.13)

The coefficient of reflectivity is not a parameter within the measurement model, consequently

columns 3 and 6 are both zero. In addition, TDOA is not a function of the velocity, therefore

those partials are also zero. While these partials are not particularly difficult they are somewhat

tedious to derive. In addition, the cartesian position and velocity values need to be associated

with the correct times, calculated through the light-time correction explained in chapter 2.2.2. The

partials T, F, and J have been previously defined in chapter 2.2.1.1. Armed with the linearized

dynamics and measurement models, the observability matrix can be constructed and is discussed

in the following section.

4.1.2.3 Observability Matrix

Continuing the approach used in Refs. [68] and [56], we can derive an equation that maps a

perturbation in the state to a perturbation in the measurement and its time derivatives as shown in

Eq. 4.14. Naturally if a small perturbation in the state causes a perturbation in the measurement

or one of its time derivatives then that perturbation is observable. On the other hand if for all k, the

measurement or its time derivatives remain zero for a perturbation in the state (i.e. a non-trivial

null-space exists), then that perturbation is unobservable.

y

ẏ

ÿ

...

dk−1y/dtk−1


= Okx (4.14)
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Another way of stating this is: a perturbation in the state is unobservable if and only if Okx = 0,

∀k. Consequently if for some k, Okx 6= 0 then it is observable. It is mathematically equivalent to

show that there exists some integer k, where k ≥ 7, for which the 2k × 14 observability matrix

O>k =

[
C> (A> + d/dt)C> (A> + d/dt)2C> · · · (A> + d/dt)k−1C>

]
, (4.15)

is of rank 14 to show that the system is observable [56, 73]. The first condition can be used

to analytically show that the orbit determination problem with TDOA and FDOA is observable.

The second condition is the one used to demonstrate observability in a numerical sense. The

2k×14 specification is for the one-baseline case as one baseline provides one TDOA and one FDOA

measurement for a total of two measurements. If two baselines were used then two TDOA and

FDOA measurements would be used which means C ∈ R4×14 and the observability matrix would

be a 4k×14 and so forth. If the one-baseline case is observable then the two or more baseline cases

are also observable.

In the analytical observability setup, we develop necessary conditions for unobservability. If

these necessary conditions cannot be met then the problem is observable. Therefore if we can show

that Okx 6= 0 for some k, it is sufficient to prove the theoretical observability. However, while some

time was dedicated to solving the observability analytically, it appears not to be tractable. As a

result we prove the observability numerically instead by showing that the observability matrix is

full rank. Using one baseline, the minimum k required is 7 to meet the rank criterium.

The observability matrix is derived using Eqs. 4.7, 4.13 and 4.15. Equation 4.16 shows O7x,

O7x =



N11 Ξ11 O11 N12 Ξ12 O12

N21 Ξ21 O21 N22 Ξ22 O22

...
...

N71 Ξ71 O71 N72 Ξ72 O72





δr1

δv1

δCr1

δr2

δv2

δCr2


∈ R14×1. (4.16)

The submatrices N , Ξ, and O are listed below using Eqs. 4.17 to 4.37. The first subscript
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corresponds to k, while the subscript of the subscript refers to either satellite 1 or 2.

N1i =

Ti

Fi

 (4.17)

N2i =

01×3

JiGi

 (4.18)

N3i =

 TiGi

JiĠi + FiGi

 (4.19)

N4i =

 TiĠi

Ji

(
G̈i + G2

i

)
+ FiĠi

 (4.20)

N5i =

 Ti

(
G̈i + G2

i

)
Ji

(
2GiĠi +

...
Gi

)
+ Fi

(
G̈i + G2

i

)
 (4.21)

N6i =

 Ti

(
2GiĠi +

...
Gi

)
Ji

(
G3
i + 2GiG̈i + Ġ2

i +
....
G i

)
+ Fi

(
2GiĠi +

...
Gi

)
 (4.22)

N7i =

 Ti

(
G3
i + 2GiG̈i + Ġ2

i +
....
G i

)
Ji

(
3G2

i Ġi + 2Gi
...
Gi + 2ĠiG̈i +

5

Ġi

)
+ Fi

(
G3
i + 2GiG̈i + Ġ2

i +
....
G i

)
 (4.23)

Ξ1i =

01×3

Ji

 (4.24)

Ξ2i =

Ti

Fi

 (4.25)

Ξ3i =

01×3

JiGi

 (4.26)
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Ξ4i =

 TiGi

JiĠi + FiGi

 (4.27)

Ξ5i =

 TiĠi

Ji

(
G̈i + G2

i

)
+ FiĠi

 (4.28)

Ξ6i =

 Ti

(
G̈i + G2

i

)
Ji

(
2GiĠi +

...
Gi

)
+ Fi

(
G2
i + G̈i

)
 (4.29)

Ξ7i =

 Ti

(
2GiĠi +

...
Gi

)
Ji

(
G3
i + 2GiG̈i + Ġ2

i +
....
G i

)
+ Fi

(
2GiĠi +

...
Gi

)
 (4.30)

O1i =

0

0

 (4.31)

O2i =

 0

JiSi

 (4.32)

O3i =

 TiSi

JiṠi + FiSi

 (4.33)

O4i =

 TiṠi

FiṠi + Ji

(
S̈i + GiSi

)
 (4.34)

O5i =

 Ti

(
S̈i + GiSi

)
Ji

(
GiṠi + ĠiSi +

...
S i

)
+ Fi

(
S̈i + GiSi

)
 (4.35)

O6i =

 Ti

(
GiṠi + ĠiSi +

...
S i

)
Ji

(....
S i + GiS̈i + G̈iSi + ĠiṠi + G2

iSi

)
+ Fi

(
GiṠi + ĠiSi +

...
S i

)
 (4.36)
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O7i =


Ti

(....
S i + GiS̈i + G̈iSi + ĠiṠi + G2

iSi

)
Ji

(
ĠiS̈i + G̈iṠi + G2

i Ṡi + Gi
...
S i +

...
GiSi + 2GiĠiSi +

5

Ṡi

)
+

Fi

(....
S i + GiS̈i + G̈iSi + ĠiṠi + G2

iSi

)


(4.37)

The time derivatives of both G and S are listed in Appendix A due to their extensive size.

This completes the formulation of the observability matrix which will be evaluated numerically in

the subsequent section.

4.1.3 Numerical Evaluation of the Observability Matrix

The rank of the observability matrix shown in Eq. 4.16, can be scrutinized to determine

the observability of the orbit determination problem. We increase the precision from double to

50-digits of precision using Python’s mpmath package to mitigate numerical issues since double

precision produces an incorrect rank evaluation as a result of a condition number higher than

machine precision. To calculate the rank a singular value decomposition is used to obtain the

singular values of the observability matrix. The threshold for rank deficiency is by identifying

those singular values less than some defined tolerance. The tolerance implemented is,

tol = max(s) ∗max(size(Ok)) ∗ ε, (4.38)

where, s are the singular values of Ok and ε is machine precision [67]. The input values can be

defined with 50 digits of precision, this means that a double value is padded with 0’s up to the

50th digit. However, if a double value is introduced incorrectly then it is possible that rather than

being padded with 0’s after the double, the digits are random. The following test was performed

to test whether this could have an effect on rank. A linearly dependent matrix as the one shown

in Eq. 4.39 was incorrectly defined using 50 digits with correct values up to double-precision. This

means that the four floats have 0’s after the first decimal value up to double precision (15 digits),
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but from then on have random digits up to 50.1.1 2.2

2.2 4.4

 (4.39)

One might conclude that the difference in random digits would result in a rank 2 matrix. However,

that is not the case; using the tolerance specified in Eq. 4.38 the rank is still only 1 as it should

be. This test is important to validate the rank of the Ok matrix. It confirms that the rank is

real rather than a numerical artifact from using 50 digits of precision. Therefore the observability

question can be answered from this numerical method.

Using one baseline, we have 2k × 14 for the size of the observability matrix, accordingly the

minimum k for which Ok can be full rank is 7. Calculating O7 as shown in Eq. 4.16 requires fifth

order time derivatives of both G and S, these were derived and computationally verified and are

laid out in Appendix A. The rank of O7 can be computed in less than one second for a single

scenario, this quick computation time makes it conducive for a Monte Carlo simulation. A scenario

refers to a set of orbits and satellite positions with specified station geometries.

Two Monte Carlo simulations, each with 10,000 cases were executed. The first Monte Carlo

simulation is a general analysis where the input parameters can vary extensively. The 26 input

parameters are shown with their low and high values in the first three columns of Table 4.1.

The first two parameters relate to the time of year as well as the time of day, the ephemerii are

calculated for 2015. The next four rows place the two transmitters (TX) as well as two receivers

(RX) anywhere on the Earth, the difficulty of placing them in inaccessible places is not taken into

account. Furthermore, it is possible that the signal is blocked by the Earth and therefore not

visible to the satellite or satellites. Once again this physical restriction is ignored. Finally the last

seven rows define the orbit as well as the coefficient of reflectivity for both satellites. Where a is

the semi-major axis, e is the eccentricity, i is the inclination, Ω is the longitude of the ascending

node, ω is the argument of periapsis and ν is the true anomaly. Notice that the two satellites

can be in practically any orientation with a semi-major axis ranging from low earth orbit (LEO)

to geosynchronous (GEO) and above. The purpose is to show that widely varying geometries
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uniformly sampled produce an observable system if physical constraints are not an issue. In fact

all 10,000 cases produced a rank 14 observability matrix with one baseline.

A second Monte Carlo was run with some limitations. The new inputs are shown as the

GEO Monte Carlo in Table 4.1 which are the last three columns. In this case we have 27 input

parameters, instead of specifying the true anomaly for both satellites we specify the longitude

of satellite 1 and then have a longitudinal separation defined between the two satellites to place

satellite 2. With the specified input bounds, the two satellites are longitudinally located over the

United States with a satellite separation between 1 and 20 degrees to ensure that the signal can

be acquired by both satellites. Furthermore the location of the stations are limited to roughly the

contiguous United States as well. The other orbital parameters are confined for the satellites to be

in the geosynchronous belt. In this second case all 10,000 cases were rank 14, and therefore full

rank and observable. Thus it has been shown that the problem should always be observable with

enough numerical precision. We show in section 4.1.7.1 that when using double precision however,

the GEO-GEO case with one baseline is not observable.

Table 4.1: Monte Carlo simulation inputs

General Monte Carlo GEO Monte Carlo
Parameter Low Value High Value Parameter Low Value High Value
Day of Year [DOY] 1 364 Day of Year [DOY] 1 364
Hour 0 23 Hour 0 23
Ref/Cal TX Lat [deg] -90 90 Ref/Cal TX Lat [deg] 25 49
Ref/Cal TX Lon [deg] 0 359 Ref/Cal TX Lon [deg] 235 293
Ref/Cal RX Lat [deg] -90 90 Ref/Cal RX Lat [deg] 25 49
Ref/Cal RX Lon [deg] 0 359 Ref/Cal RX Lon [deg] 235 293
Ref/Cal Freq [MHz] 14380 14390 Ref/Cal Freq [MHz] 14380 14390
ai [km] 6578 42264 ai [km] 41964 42364
ei 0 0.1 ei 0 0.1
ii [deg] -90 90 ii [deg] -5 5
Ωi [deg] 0 359 Ωi [deg] 0 359
ωi [deg] 0 359 ωi [deg] 0 359
Cri 0.001 0.1 Cri 0.001 0.1
νi [deg] 0 359 Sat1 Lon [deg] 225 283

Sat Lon Sep [deg] 1 20
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4.1.4 Condition Number

The condition number is another example to determine numerical observability of a problem

[28]. The condition number is a matrix property that describes the sensitivity of x in the normal

equation:

Λx = N. (4.40)

Solutions that are very sensitive are considered ill-conditioned and are characterized by a high

condition number. From Ref. [16] it can be shown how a small change in N and Λ yields a small or

large change in x, we show this next. First the Schwarz inequality is applied to Eq. 4.40 to yield,

1

||x|| ≤
||Λ||
||N|| . (4.41)

This form of the normal equation will be used shortly. Next, the left column below shows the

sensitivity to δN while the right column shows the sensitivity to δΛ.

δx = Λ−1δN (4.42)

Applying the Schwarz inequality,

||δx|| ≤ ||Λ−1||||δN|| (4.43)

Merging Eq. 4.41 and Eq. 4.43,

||δx||
||x|| ≤ ||Λ||||Λ

−1|| ||δN||||N|| (4.44)

δx = −Λ−1δΛx (4.45)

Applying the Schwarz inequality,

||δx|| ≤ ||Λ−1||||δΛ||||x|| (4.46)

Merging Eq. 4.41 and Eq. 4.46,

||δx||
||x|| ≤ ||Λ||||Λ

−1|| ||δΛ||||Λ|| (4.47)

Notice that both Eqs. 4.44 and 4.47 have ||Λ||p||Λ−1||p which bounds the relative error and

defines the condition number C of Λ. However, since a matrix inverse is not always numerically

stable, the condition number can also be computed by calculating the minimum and maximum
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eigenvalues of Λ and hence,

C(Λ) = ||Λ||p||Λ−1||p =
γmax
γmin

. (4.48)

Where, γ are the eigenvalues. Equation 4.48 holds when Λ is square. A condition number cannot

be taken at face-value however, since the eigenvalues are properties of H and consequently Λ.

This means that the eigenvalues do not take into account the relative magnitudes of the states,

measurements and measurement noise [28]. Therefore the measurement model, y = Hx+ε, should

be normalized as follows:

(
R−1/2y

)
=
(
R−1/2HD−1

)
(Dx) +

(
R−1/2ε

)
. (4.49)

This is called correlation or scaled form for the minimum variance estimation methods [28, 62].

Here R1/2 is a cholesky decomposition of the measurement noise matrix R, and D is a diagonal

matrix with each element equal to the l2-norm of the corresponding column of H. This form of the

measurement equation is used in the batch processor implementation which reduces the condition

number approximately by a factor of two.

4.1.5 Degree of Observability

In Section 4.1.1 a set of tests were listed that yield a yes-no answer as to whether a system

is numerically observable or not. The condition number C was also introduced and is a good

metric for the degree of observability in the system. The lower the condition number the higher

the observability, in fact if C(Λ) = 1, then that implies the system is as observable as can be [3].

Another way to look at the observability of the dual-satellite OD problem is from an opti-

mization perspective. A filter, in essence, is an optimization algorithm that reduces a cost function,

in the case of the dual-satellite system the TDOA and FDOA RMS. The problem is 14-dimensional

and impossible to visualize, as a result we can extract two estimated parameters at a time, plot

those on the abscissa and ordinate with the RMS on the z axis. Intuitively we can expect at a
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minimum, that the parameters from the primary satellite will be correlated with the same parame-

ters of the secondary satellite. This is also backed up through the correlations explained in chapter

4.1.6.

In Figures 4.1 to 4.14 only two states are perturbed from a simulated truth trajectory. For

example in Figures 4.13 and 4.14 only the AGOM values of satellite 1 and 2 are perturbed from

the nominal 0.0625/0.0425 AGOM value cases. For each perturbed AGOM value the TDOA and

FDOA RMS (the cost function of the optimizer) are displayed in a contour plot. Notice how both

TDOA and FDOA display a valley rather than an obvious single minimum point. Furthermore, the

noise floor for both TDOA and FDOA are 0.035 µs and 0.2 mHz. In the TDOA case, the difference

in RMS value over a wide variety of AGOMs is extremely low, in fact the plot shows nearly a flat

surface, making it very difficult for the filter to locate the minimum. With all estimated parameters

we show that there is an extreme correlation between the corresponding estimated parameters of

the two satellites, seen by the dark blue diagonal lines.

The smaller plots in the lower-right corners are identical to the main figure, with the exception

of the z-axis scale. The z-axis scale is chosen to be identical to that of the AGOM plots 4.13 and

4.14, so that a relative comparison between plots can be made. Notice that in Figures 4.1 and 4.2

for example, there is indeed a minimum present made clear by the new smaller z-axis scale. Since

the scale is identical in the subfigures, it is also easy to compare the relative ‘flatness’. Clearly the

AGOM parameters have the least amount of change in the cost function making it more difficult

to estimate properly.
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Figure 4.1: TDOA RMS for sat1/sat2
X0 perturbation from truth in km
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Figure 4.2: FDOA RMS for sat1/sat2
X0 perturbation from truth in km
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Figure 4.3: TDOA RMS for sat1/sat2
Y0 perturbation from truth in km
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Figure 4.4: FDOA RMS for sat1/sat2
Y0 perturbation from truth in km
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Figure 4.5: TDOA RMS for sat1/sat2
Z0 perturbation from truth in km
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Figure 4.6: FDOA RMS for sat1/sat2
Z0 perturbation from truth in km
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Figure 4.7: TDOA RMS for sat1/sat2
Ẋ0 perturbation from truth in km/s
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Figure 4.8: FDOA RMS for sat1/sat2
Ẋ0 perturbation from truth in km/s
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Figure 4.9: TDOA RMS for sat1/sat2
Ẏ0 perturbation from truth in km/s
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Figure 4.10: FDOA RMS for sat1/sat2
Ẏ0 perturbation from truth in km/s
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Figure 4.11: TDOA RMS for sat1/sat2
Ż0 perturbation from truth in km/s
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Figure 4.12: FDOA RMS for sat1/sat2
Ż0 perturbation from truth in km/s
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Figure 4.13: TDOA RMS for sat1/sat2
AGOM perturbation from truth of
0.0625/0.0425
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4.1.6 Correlations

The correlation coefficient measures the degree of linear correlation between the estimated

state variables and can be written as,

ρij =
Pij
σiσj

, i 6= j. (4.50)

Where Pij is the ijth element of the covariance matrix P and σi/j is the standard deviation of the

corresponding ith or jth element in P. In this definition of correlation coefficient, the lower the value

the better, as that signifies orthogonality between the estimated parameters. A high correlation

coefficient signifies a statistical dependence making it more difficult to separate the behavior of the

estimated parameters given a set of measurements.
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coordinates (numbers correspond to states
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Figure 4.15: Correlations

Figure 4.15(a) illustrates the high correlations between the various estimated parameters.

Not only between the parameters of both satellites but also with position and velocity of the same

satellite. By transforming the cartesian states into equinoctial state space using an unscented

transform we can significantly reduce self-correlation, meaning the states from the same satellite,
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but correlation with the identical state from the other satellite is still significantly present, indicated

by the 6-block diagonal red line.

4.1.7 Cramér-Rao Lower Bound (CRLB)

Another way to assess the observability of the system is by analyzing the CRLB, which

establishes the optimal filter performance through enumeration of the lowest possible covariance

or expected state errors. This means there exists a covariance, defined by the inverse of the Fisher

information matrix J−1k , for which all other realizations of the covariance Pk are equal to or greater

than the Fisher information matrix. The relationship is defined as the Cramér-Rao inequality,

Pk ≥ J−1k . (4.51)

Using the recursive form developed in Ref. [84], the Fisher information matrix can be written as,

Jk =
(
Φ−>(tk, tk−1)Jk−1Φ

−1(tk, tk−1)
)

+ H̃>k WkH̃k. (4.52)

Where, Φ is the state transition matrix (STM) and W is the observation weighting matrix. Equa-

tion 4.52 is initialized with J0 = P−10 . The CRLB simulations have initial 1σ state and measurement

uncertainties as defined in Table 4.2.

Table 4.2: CRLB 1σ a-priori uncertainty for dual-estimated states and measurements

Satellite state uncertainty
Position 100 km
Velocity 10 m/s
Cr (AGOM) 0.01

Measurement uncertainty
TDOA 0.035 µs
FDOA 0.2 mHz
Range 1 m
Range-rate 1 mm/s
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Table 4.3 lists the orbit parameters of the satellites considered in the CRLB analyses. Where a

is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the right ascension of the

ascending node, ω is the argument of periapsis, and ν is the true anomaly. The first GEO satellite

listed is paired with four different LEO satellites, one MEO and another GEO satellite. For each

of these cases beamwidths of 45, 60, and 75 degrees are considered with specific cases investigated

in further detail.

Table 4.3: Orbit parameters of satellites in CRLB analysis

a [km] e i [deg] Ω [deg] ω [deg] ν [deg] Cr
GEO - 42166.4 0 0.08 105.1 101.4 286.7 0.04

LEO 0◦ 8377.7 0.01 0 0 265.1 263.4 0.06
LEO 30◦ 8377.7 0.01 30 270.2 354.9 263.4 0.06
LEO 60◦ 8377.7 0.01 60 270.0 265.1 263.4 0.06
LEO 90◦ 8377.7 0.01 90 260.0 265.1 263.4 0.06
MEO 24926.5 0 35 110.0 289.6 122.6 0.06
GEO 42166.5 0 0.08 81.0 139.7 266.4 0.06

Table 4.4, lists the latitute, longitude and altitude of the simulated TXs and RXs. The reference

TX in Boulder is paired with anyone or all of the i TXs to create a baseline.

Table 4.4: Latitude, longitude and altitude of transmitters and receivers

Transmitters (TXs)
Reference

Boulder 40.015◦ N 105.270◦ W 1623.72 m
ith

Boston 42.36◦ N 71.06◦ W 11.49 m
Miami 25.76◦ N 80.19◦ W 0.89 m
Houston 29.76◦ N 95.37◦ W 14.54 m
San Diego 32.72◦ N 117.16◦ W 27.91 m
Seattle 47.60◦ N 122.33◦ W 9.44 m

Receivers (RXs)
Boulder 1 40.014◦ N 105.271◦ W 1625.57 m
Boulder 2 40.014◦ N 105.270◦ W 1621.13 m
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4.1.7.1 Discrete Orbit Pairs with Varying Number of Baselines

The first CRLB analysis examines the observability of changing the number of baselines

utilized for OD of a GEO satellite paired with six other satellites. Table 4.3 lists the orbit parameters

of these satellites. The first GEO satellite listed is paired with four different LEO satellites, one

MEO satellite, and another GEO satellite. For each of these cases beamwidths of 45, 60, and 75

degrees are considered with specific cases investigated in further detail.

Figure 4.16 shows the CRLBs for the GEO-LEO 30◦ case with a 75 degree beamwidth con-

straint over a 9 hour period of which 108 minutes had the correct geometry to take TDOA and

FDOA measurements. The GEO satellite is shown in 4.16(a) and the LEO satellite shown in

4.16(b). The greyed out time periods are data gaps because the LEO satellite was not within the

75 degree beamwidth during those times, note that the last data gap up to the 9 hour mark was

not included in the plot. The CRLBs are shown for all possible combinations of the i TXs listed

in Table 4.4 with the legend colors specifying the number of baselines used to obtain that CRLB.

When measurements are available there is a steady decrease in the trace of the diagonal of the

covariances, except for the GEO satellite when only one baseline is used. Note that Jk is only

computed for regions of data, consequently the covariance over a data gap is not representative

of the actual covariance, this is apparent by the occasional decreasing covariances over the data

gaps in Figures 4.16 and 4.17. In the one baseline case the slow reduction in covariance indicates

little information is accumulated suggesting a low degree of observability. Therefore it is recom-

mended that a minimum of two baselines are used to maintain a higher degree of observability. In

general, the more baselines that are implemented the lower the CRLB, this is predictable as there

are more measurements available with an increase in TXs. When reducing the beamwidth to 60

degrees, the total span over which measurements can be taken in the 9 hour time frame is reduced

to 57 minutes, the trends remain the same however, with steady reductions in the trace of the

covariance except in GEO with one baseline. Due to the reduction in measurements compared to
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the 75 degree beamwidth case the uncertainty does not shrink down nearly as far. Finally, using

a 45 degree beamwidth, a total of 27 minutes is available for measurements, but the trends are

still the same as with the other beamwidth cases. Three other inclinations for the LEO satellites

were considered and their available measurement times over a 9 hour span are listed in Table 4.5.

As the inclination of the LEO satellite increases, the window of available time for data acquisition

reduces significantly. This reduction is due to the west-ward drift of the node which impacts a

higher inclination orbit’s measurement window more than a lower inclination orbit. There is one

exception and that is the 30 degree LEO inclination with a 45 degree beamwidth case which has a

higher available time for which the geometry is favorable to take measurements. This is simply an

artifact of the geometry from the locations of the TXs listed in Table 4.4 and the orbits listed in

Table 4.3.

Table 4.5: Time available to take measurements with a GEO-LEO setup in a 9 hour period [min]

LEO Inclination
Beamwidth 0◦ 30◦ 60◦ 90◦

45◦ 18 27 12 12
60◦ 72 57 33 30
75◦ 120 108 57 51

Next we examine the CRLB for the GEO-MEO case with a 75 degree beamwidth constraint,

shown in Figure 4.17. A 24 hour time span was chosen over the 9 hour span with the LEO case

to ensure that two data arcs were available. Once again the one baseline case remains at a low

degree of observability for the GEO satellite and the two baseline case now has a noticeable gap in

performance compared to the three or more baseline cases with the MEO satellite. The reduced

relative dynamics of the GEO-MEO case compared to the GEO-LEO case reduces the amount of

available information. This is confirmed by the GEO-LEO OD setup having a lower magnitude of

the trace of the diagonal of the covariance even while utilizing far fewer measurements. Over the 24
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hour span 648 minutes can be utilized for taking measurements using a 75 degree beamwidth, this

cuts down to 516 minutes with 60 degrees and finally to 381 minutes with a 45 degree beamwidth.
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Figure 4.16: GEO-LEO CRLB: trace of covariance for TDOA/FDOA with varying number of
baselines
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Figure 4.17: GEO-MEO CRLB: trace of covariance for TDOA/FDOA with varying number of
baselines

Finally in Figure 4.18, we show the CRLBs using two GEO satellites. Naturally, both satel-

lites are visible at all times resulting in a continuous arc of measurements. Due to the low relative

dynamics, the GEO-GEO scenario performs the worst out the three orbit regimes. The one base-

line case is completely unobservable with the two and three baseline cases showing low degrees of

observability compared to using four or more baselines. The uncertainties on the GEO satellites

while significantly reduced from the a-priori values are still high compared to the GEO uncertainties

when coupled with either a LEO or MEO satellite. While OD is possible with a GEO-GEO satellite
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Figure 4.18: GEO-GEO CRLB: Trace of Covariance for TDOA/FDOA with varying number of
baselines

setup, it is recommended that four or more baselines are utilized to obtain a good OD solution.

Furthermore due the low relative dynamics of the two GEO satellites, the various beamwidth sizes

do not have an affect other than constricting the maximum longitudinal separation between the

satellites.

4.1.7.2 GEO Primary + LEO-to-GEO Secondary with Fixed Number of Baselines

The second component is examining the CRLB for various satellite pairs while keeping the

number of baselines fixed. All i TXs listed in Table 4.4 are used in conjunction with the reference

TX to create five baselines. In Figure 4.19 we show how the CRLB changes as a GEO satellite

is paired with secondary satellites ranging from LEO to GEO. For conciseness we show the Root-

Sum-Square (RSS) of the position and velocity components for each of the satellite CRLBs. The

left column of figures are the results pertaining to the GEO primary satellite while the right column

of figures are the results for the secondary satellite ranging from LEO to GEO. Of course while

the primary satellite remains the same, the secondary satellite pairing affects the CRLB of the

primary. The abscissa indicates the observation time span. The ordinate shows the semi-major

axis of the secondary satellite as a fraction of a circular GEO orbit. The applicate indicates the

RSS covariance values of position, velocity and coefficient of reflectivity. Table 4.6 lists the orbital

parameters for both satellites at epoch. Recall that the dynamical models implemented are not
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just that of 2-body consequently the resulting orbits will not remain circular but will be slightly

perturbed.

Table 4.6: Satellite orbital elements for dual-satellite CRLB analysis

a [km] e i [deg] Ω [deg] ω [deg] ν [deg] Cr
GEO 42164.14 0 0 0 0 255 0.04
LEO-GEO 6746.26 - 48910.40 0 0 0 0 260 0.06

From Figure 4.19 there are several important things that should be pointed out. First,

notice that when the secondary satellite is also in a GEO orbit, denoted by the 1 on the ordinate,

the covariance does not collapse significantly. This is a region of lower observability due to the

low relative velocity of the satellites with respect to the stations. This affects every estimated

component of both satellites. Second, we find that pairing the primary GEO satellite with a lower

orbiting secondary satellite such as a LEO, the covariance drops down to very low levels for the

secondary. This is shown by the light blue areas of Figures 4.19(b) and 4.19(d). The measurement

equations do not directly include the coefficient of reflectivity, therefore Cr can only be measured

over time as a result of the changing dynamics. We find evidence of this in Figures 4.19(e) and

4.19(f) because a significant amount of time has passed before the covariance finally starts dropping.

Finally, the GEO primary satellite does not obtain covariance levels as low as the secondary in the

majority of cases. Once again this is due to the low relative velocity with respect to the stations.

Other cases, in which both primary and secondary satellites varied from LEO to GEO orbits, not

included in this dissertation, showed significant reductions in covariance for both satellites. It

is clear from this CRLB covariance analysis however, that using five baselines with any satellite

pairing configuration results in an observable setup, even the GEO-GEO case, despite being less

observable than the other pairings.
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Figure 4.19: Dual-satellite CRLB of a GEO satellite (left column) paired with LEO-to-GEO sec-
ondary satellite (right column). Secondary satellite semi-major axis shown on ordinate. Showing
CRLB covariance bounds using TDOA/FDOA measurements over various observation time spans
shown on abscissa. Five baselines used.
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4.2 Dual-Satellite Orbit Determination

In this section we show a comparison of the state uncertainty obtained with the TDOA and

FDOA measurements and the state uncertainty obtained with range and range-rate measurements.

This comparison covers a GEO primary paired with a secondary ranging from LEO to GEO,

similar in setup to Figure 4.19 with orbits defined in Table 4.6. Then we show the state errors

and covariances between TDOA/FDOA, range/range-rate, and range/range-rate with biases for

three different scenarios: GEO-LEO, GEO-MEO, and GEO-GEO pairings. The biases imposed

are only in range and not range-rate with a maximum bias of four meters. In reality range biases

can be significantly larger but we show that even with small biases the state errors quickly exceed

the covariance bounds and the TDOA/FDOA measurements become favorable even if its RSS

covariance bounds are slightly larger.

The estimated states for the dual-satellite orbit determination case are,

X =

[
r>1 v>1 Cr1 r>2 v>2 Cr2

]>
. (4.53)

Equation 4.53 includes the position r, and velocity v, as well as the coefficient of reflectivity Cr,

of both spacecraft. The time evolution of the states are given by the following dynamics shown in

first-order form:

Ẋ(t) = F (X, t) =



ṙ1

v̇1

Ċr1

ṙ2

v̇2

Ċr2


=



v1

a12B + a1NS + a13B + a1SRP

0

v2

a22B + a2NS + a23B + a2SRP

0


(4.54)

where the accelerations are due to 2-body (a2B) and non-spherical (aNS) effects from the Earth,

the Sun and Moon as 3rd bodies (a3B), and Solar Radiation Pressure (SRP) (aSRP ), all previously
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defined in chapter 2. The subscripts 1 and 2 refer to either the primary or secondary satellite.

4.2.1 TDOA/FDOA and Range/Range-Rate CRLB Comparison with Varying

Measurement Uncertainties

In this section we examine the effect of varying the TDOA/FDOA measurement uncertainty

while holding the range and range-rate 1σ uncertainties fixed at 1 m and 1 mm/s. The default values

used throughout this dissertation are listed as ‘default’ in Table 4.7 and are values obtained from

real-data and an existing TDOA/FDOA hardware architecture. Two deviations from the nominal

values are considered, case 1 explores measurement uncertainties 10x larger, while case 2 uses TDOA

and FDOA uncertainties 10x smaller. Keep in mind that for every TDOA/FDOA measurement pair,

four range and four range-rate measurements are used, this means four times as many measurements

are implemented with range/range-rate. Furthermore, in some state components the uncertainties

are lower with range and range-rate over all the observation time spans and semi-major axes,

indicated by a solid blue panel. However, that does not mean the state uncertainties using TDOA

and FDOA are not significantly reduced, which was previously demonstrated by the 3D CRLB plots.

Finally, biases do not effect the uncertainties, so while some of the state uncertainty components

may be lower using range and range-rate, the actual state errors due non-solved for biases could be

higher than with TDOA and FDOA.

Table 4.7: Measurement Uncertainty Ranges

TDOA [µs] FDOA [mHz]

default 0.035 0.2
case 1 0.35 2.0
case 2 0.0035 0.02

Figure 4.20 uses the nominal measurement uncertainties and is broken down into 14 subfig-

ures, each one corresponding to one of the estimated states from the two satellites. The left column
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corresponds to the GEO primary satellite and the right column refers to the LEO to GEO secondary

satellite states. The states are presented in the RIC body frame. The z-axis or the color axis of the

plots is the percent difference in the covariance between TDOA/FDOA and range/range-rate with

yellow indicating a smaller uncertainty using TDOA/FDOA while blue indicates the covariance

is smaller using range/range-rate. The a-priori uncertainties are the same as before and listed in

Table 4.2. In a number of the states, the secondary satellite has more favorable TDOA/FDOA

coverage compared to the primary satellite. A prime example of this is in the radial, in-track,

and radial velocity directions in addition to the coefficient of reflectivity. This can be attributed

to the primary being a GEO satellite with a very low relative velocity compared to the stations

which significantly reduces the amount of information available. In general however, the secondary

satellite, when not in GEO, has significantly lower uncertainties when using TDOA and FDOA

compared to the range and range-rate measurements. When the secondary is in GEO, range and

range-rate provide lower covariances as seen by the dark blue horizontal band, this is because it is

a region of lower observability previously discussed in Figure 4.19.
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Figure 4.20: Dual-satellite estimation of a GEO satellite (left column) paired with LEO-to-GEO
secondary satellite (right column). Secondary satellite semi-major axis shown on ordinate. Showing
% difference of CRLB covariance bounds between TDOA/FDOA and range/range-rate measure-
ments over various observation time spans shown on abscissa. Color values above 0 indicate a
region where TDOA/FDOA has lower covariance bounds compared to range/range-rate and vice
versa. Five baselines used.
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In the following 14 plots, again we have the GEO satellite in the left column and the sec-

ondary satellite in the right column using TDOA and FDOA measurement uncertainties from case

1 in Table 4.7. As expected, the orbital regions where TDOA and FDOA has lower 3σ uncertain-

ties are reduced. With the GEO primary satellite, only the cross-track direction in both position

and velocity still provide lower uncertainties when MEO satellites or below are used for the sec-

ondary. When the secondary satellite is a MEO or below in semi-major axis the uncertainties of

the secondary are still lower than with range and range-rate.
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en 

·x 1.1
<( 

o 1 -�
m 

E 
I 0.9 

E 
J5 0.8

0 
w 0.7 
CD 

co 0.6 
::::, 
(.) 
-� 0.5
0
'+-

0 0.4 
C 

0 
:..::; 0.3 
(.) 
m 

L.t 0.2 

0 5 10 15 20 

Observation Time S an Hr 

1 

0.8 

0.6 
(1) 
C) 
C 

(1) 

0.4 
(1) 

0 

0.2 
(1) 
C) 
C 

cu 

0 -�
> 

0 
() 

-0.2
� 
.. 

-0 4 �
. 0 

0 
,-

-0.6 X 

-0.8

-1

(m) Cr1

en 

·x 1.1
<( 

o 1 -�
m 

E 
I 0.9 

E 
J5 0.8

0 
w 0.7 
CD 

co 0.6 
::::, 
(.) 
-� 0.5
0
'+-

0 0.4 
C 

0 
:..::; 0.3 
(.) 
m 

L.t 0.2 

0 5 10 15 20 

Observation Time S an Hr 

1 

0.8 

0.6 
(1) 
C) 
C 

(1) 

0.4 
(1) 

0 

0.2 
(1) 
C) 
C 

cu 

0 -�
> 

0 
() 

-0.2
� 
.. 

-0 4 �
. 0 

0 

-0.6 X 

-0.8

-1

(n) Cr2

Figure 4.21: Case 1: Dual-satellite estimation of a GEO satellite (left column) paired with LEO-
to-GEO secondary satellite (right column). Secondary satellite semi-major axis shown on ordinate.
Showing % difference of CRLB covariance bounds between TDOA/FDOA and range/range-rate
measurements over various observation time spans shown on abscissa. Color values above 0 indicate
a region where TDOA/FDOA has lower covariance bounds compared to range/range-rate and vice
versa. Five baselines used.

In this last scenario we use the measurement uncertainties from case 2 in Table 4.7. From

Figure 4.22 we see that even the GEO primary satellite now has large regions in the components

where the TDOA and FDOA uncertainties are lower than with range and range-rate. The exception

includes in-track position, radial velocity, and when the secondary is also in a GEO orbit, for all state

components. For the secondary satellite, only when it is in GEO, are the uncertainties larger than
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those obtained using range and range-rate. Of course, the large regions with lower uncertainties

using TDOA and FDOA are expected because the uncertainty for FDOA is much lower than that

of range-rate while TDOA and range are similar, even with range and range-rate having four times

as many measurements.
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In the following three sections we look at the state error performance in addition to the

covariances of three different satellite pairings.
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Figure 4.22: Case 2: Dual-satellite estimation of a GEO satellite (left column) paired with LEO-
to-GEO secondary satellite (right column). Secondary satellite semi-major axis shown on ordinate.
Showing % difference of CRLB covariance bounds between TDOA/FDOA and range/range-rate
measurements over various observation time spans shown on abscissa. Color values above 0 indicate
a region where TDOA/FDOA has lower covariance bounds compared to range/range-rate and vice
versa. Five baselines used.

4.2.2 GEO-LEO Orbit Determination

In this section we show the state errors and covariances of doing OD on a GEO-LEO pair of

satellites. The orbits are defined by the ‘GEO-’ and ‘LEO 30◦’ orbital elements in Table 4.3 and

reproduced in Table 4.8. Furthermore, only three baselines are used, the reference TX is linked

with the Boston, Miami and San Diego secondary TXs for an observation span of 9 hours. The
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last data gap, in this scenario, is not shown in Figures 4.23 - 4.25. For conciseness the RSS of

the position and velocity is shown rather than each component, this can be somewhat misleading

however because if one component has a large covariance or error it will dominate. Therefore we

also include Table 4.9 which shows the covariance and state error at the end of the observation span

for all components for TDOA/FDOA, range/range-rate, and range/range-rate with a bias. The

legend for the figures is defined as: TF for TDOA/FDOA, RR for range/range-rate, and RR + b

for range/range-rate with a bias. In Figure 4.23(a) the state errors between TDOA/FDOA and

range/range-rate are comparable after the second LEO pass but range/range-rate with a bias is

outside of its covariance bounds and has significantly larger errors than TDOA and FDOA. We

see that the covariance bounds for TDOA/FDOA in position, velocity, and AGOM for the GEO

satellite are slightly larger than those for range and range-rate but from Table 4.9 we see that only

two components of the covariance are larger using TDOA and FDOA than range and range-rate,

namely the in-track position direction and the radial velocity direction. The LEO satellite, after the

second pass, collapses its covariance very quickly and all components have a much lower uncertainty

and state error using TDOA and FDOA.

Table 4.8: Orbit parameters of GEO-LEO satellites

a [km] e i [deg] Ω [deg] ω [deg] ν [deg] Cr
GEO 42166.4 0 0.08 105.1 101.4 286.7 0.04
LEO 30◦ 8377.7 0.01 30 270.2 354.9 263.4 0.06

In Table 4.9 we see that 12 out of the 14 satellite state components have a lower covariance

and state error using the TDOA and FDOA measurements. Furthermore the LEO satellite is

down to millimeter level uncertainty in position and 10s of micrometers/second in velocity. The

TDOA and FDOA measurements provide especially good information in the cross-track direction

compared to the range and range-rate observables.
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Figure 4.23: GEO-LEO: RSS position state errors and 3σ covariance for TDOA/FDOA,
range/range-rate with and without bias
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Figure 4.24: GEO-LEO: RSS velocity state errors and 3σ covariance for TDOA/FDOA,
range/range-rate with and without bias
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Figure 4.25: GEO-LEO: AGOM state errors and 3σ covariance for TDOA/FDOA, range/range-rate
with and without bias

Table 4.9: GEO-LEO: ± 3σ covariance and state errors at the end of 9 hour observation span

TDOA/FDOA Range/Range-Rate Range/Range-Rate + bias
±3σ Err. ±3σ Err. ±3σ Err.

RGEO [m] 0.5 -0.1 2.5 0.4 2.5 -6.4
RLEO [m] 0.006 -0.002 0.5 0.08 0.5 -0.6
IGEO [m] 50.4† -14.6 6.7 -2.6 6.7 4.0
ILEO [m] 0.005 -0.002 0.6 0.2 0.6 -0.08
CGEO [m] 1.3 -0.2 24.0 3.1 24.0 -53.2
CLEO [m] 0.01 -0.002 0.8 -0.5 0.8 -2.5

ṘGEO [mm/s] 3.7† 1.1 0.5 0.1 0.5 -0.7

ṘLEO [mm/s] 0.009 0.003 0.8 -0.3 0.8 0.3

İGEO [mm/s] 0.03 0.02 0.2 -0.02 0.2 0.4

İLEO [mm/s] 0.004 0.002 0.4 -0.04 0.4 0.5

ĊGEO [mm/s] 0.1 0.02 1.4 -0.2 1.4 -4.1

ĊLEO [mm/s] 0.001 0.001 0.5 0.07 0.5 1.8
AGOMGEO [] 0.003 -0.001 0.003 0.0004 0.003 -0.0008
AGOMLEO [] 0.0001 0.0 0.006 0.001 0.006 0.002
† TDOA/FDOA 3σ covariance component worse than Range/Range-Rate
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4.2.3 GEO-MEO Orbit Determination

The previous section’s analysis is repeated with a GEO-MEO pair of satellites, where the

orbits are defined by the ‘GEO-’ and ’MEO’ orbital elements in Table 4.3 and show again for

convenience in Table 4.10. The same three baselines are used from the GEO-LEO case. A 24 hour

observation span is used to ensure that the MEO satellite has two arcs of data. From Figures 4.26(a)

and 4.27(a) we see that the RSS covariance with TDOA and FDOA is larger than with range and

range-rate but from Table 4.11 only the GEO in-track position and radial velocity uncertainties

are larger than those from range and range-rate. The state errors between TDOA/FDOA and

range/range-rate are comparable once more, except when a bias is introduced then the state errors

are off by nearly 100 m in position and 6 mm/s in velocity at their maximum during the second

pass. The covariance for the MEO satellite is lower using TDOA and FDOA but the margin is not

as large as with the GEO-LEO pair due to the slower relative velocity of the MEO compared to

the stations.

Table 4.10: Orbit parameters of GEO-MEO satellites

a [km] e i [deg] Ω [deg] ω [deg] ν [deg] Cr
GEO 42166.4 0 0.08 105.1 101.4 286.7 0.04
MEO 24926.5 0 35 110.0 289.6 122.6 0.06

Table 4.11 presents the covariances as well as the state errors for each estimated component.

Twelve of the 14 states have a lower covariance and state error using the TDOA and FDOA

measurements. In reality the range and range-rate measurements will likely have some biases

present, in that case, the TDOA and FDOA state errors are lower in all components compared to

the range and range-rate measurements with a small bias.
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Figure 4.26: GEO-MEO: RSS position state errors and 3σ covariance for TDOA/FDOA,
range/range-rate with and without bias
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Figure 4.27: GEO-MEO: RSS velocity state errors and 3σ covariance for TDOA/FDOA,
range/range-rate with and without bias
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Figure 4.28: GEO-MEO: AGOM state errors and 3σ covariance for TDOA/FDOA, range/range-
rate with and without bias

Table 4.11: GEO-MEO: ± 3σ covariance and state errors at the end of 24 hour observation span

TDOA/FDOA Range/Range-Rate Range/Range-Rate + bias
±3σ Err. ±3σ Err. ±3σ Err.

RGEO [m] 0.5 -0.3 0.8 0.4 0.8 -9.4
RMEO [m] 0.1 0.03 0.6 -0.5 0.6 0.8
IGEO [m] 21.3† -11.9 2.6 0.9 2.6 13.1
IMEO [m] 0.5 0.2 2.3 -1.8 2.3 6.7
CGEO [m] 0.8 -0.1 7.8 2.8 7.8 -83.5
CMEO [m] 0.2 -0.03 2.2 -2.0 2.2 -16.1

ṘGEO [mm/s] 1.6† 0.9 0.2 -0.1 0.2 -1.0

ṘMEO [mm/s] 0.08 -0.04 0.4 0.3 0.4 -1.1

İGEO [mm/s] 0.04 0.03 0.06 -0.02 0.06 0.6

İMEO [mm/s] 0.02 -0.004 0.09 0.07 0.09 -0.2

ĊGEO [mm/s] 0.06 -0.02 0.7 -0.3 0.7 -0.9

ĊMEO [mm/s] 0.02 -0.01 0.4 -0.06 0.4 -0.2
AGOMGEO [] 0.0001 0.0001 0.0 -0.0 0.0 0.0
AGOMMEO [] 0.0001 0.0 0.0002 0.0001 0.0002 -0.0008
† TDOA/FDOA 3σ covariance component worse than Range/Range-Rate
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4.2.4 GEO-GEO Orbit Determination

The last case we show for completion is a GEO-GEO scenario where the orbits are defined

by ‘GEO-’ and ‘GEO’ in Table 4.3 and reproduced once more in Table 4.12. All five baselines are

used to ensure good observability as previously discussed for Figure 4.18. As predicted from Figure

4.20 with two satellites in GEO, the range and range-rate observables provide smaller covariances

and state errors in all components compared to TDOA and FDOA. The CRLB from Figure 4.19

also showed that for GEO satellites the covariance would take a long time to drop down which

is corroborated by Figures 4.29 to 4.31. Yet the a-priori 3σ uncertainty started from 300 km in

position and 30 m/s in velocity in each direction as shown in Table 4.2, the covariance has dropped

by a factor of a 1000 in both position and velocity over the 24 hour observation span.

Table 4.12: Orbit parameters of GEO-GEO satellites

a [km] e i [deg] Ω [deg] ω [deg] ν [deg] Cr
GEO1 42166.4 0 0.08 105.1 101.4 286.7 0.04
GEO2 42166.5 0 0.08 81.0 139.7 266.4 0.06
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Figure 4.29: GEO-GEO: RSS position state errors and 3σ covariance for TDOA/FDOA,
range/range-rate with and without bias
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Figure 4.30: GEO-GEO: RSS velocity state errors and 3σ covariance for TDOA/FDOA,
range/range-rate with and without bias
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Figure 4.31: GEO-GEO: AGOM state errors and 3σ covariance for TDOA/FDOA, range/range-
rate with and without bias

Table 4.13 shows the comparison of the TDOA/FDOA observables to range/range-rate with

and without biases present. While the results are not as good as using range and range-rate in this

case, TDOA and FDOA can still be used to reduce the state uncertainty from TLE level a-priori

information. This is particularly interesting for geolocation as often times GEO communication

satellites are used for dual-satellite geolocation of an unknown transmitter. The uncertainty of

the satellites increases the uncertainty on the location of the transmitter so any means of reducing
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the satellite uncertainty reduces the transmitter positioning covariance. Geolocation already uses

TDOA and FDOA so no additional infrastructure is needed to put this to use.

Table 4.13: GEO-GEO: ± 3σ covariance and state errors at the end of 24 hour observation span

TDOA/FDOA Range/Range-Rate Range/Range-Rate + bias
±3σ Err. ±3σ Err. ±3σ Err.

RGEO1 [m] 2.6† -1.4 0.4 0.1 0.4 -1.3
RGEO2 [m] 2.7† -1.3 0.4 0.3 0.4 -1.2
IGEO1 [m] 297.0† 34.2 1.6 -0.04 1.6 12.7
IGEO2 [m] 297.9† 39.6 1.6 0.9 1.6 24.0
CGEO1 [m] 62.7† -11.0 4.0 1.0 4.0 -3.2
CGEO2 [m] 62.9† -11.2 4.0 1.9 4.0 -4.9

ṘGEO1 [mm/s] 21.7† -2.5 0.1 0.01 0.1 -1.0

ṘGEO2 [mm/s] 21.7† -3.0 0.1 -0.06 0.1 -1.8

İGEO1 [mm/s] 0.2† 0.1 0.03 -0.009 0.03 0.05

İGEO2 [mm/s] 0.2† 0.09 0.03 -0.02 0.03 0.06

ĊGEO1 [mm/s] 4.6† -1.5 0.3 0.1 0.3 -0.2

ĊGEO2 [mm/s] 4.6† -1.5 0.3 0.04 0.3 -0.3
AGOMGEO1 [] 0.0003† 0.0 0.0 0.0 0.0 0.0
AGOMGEO2 [] 0.0003† 0.0 0.0 0.0 0.0 0.0
† TDOA/FDOA 3σ covariance component worse than Range/Range-Rate



Chapter 5

Relative Orbit Determination

5.1 Satellite State Dynamics

In this chapter on relative navigation we consider the simplest case of 2-body motion without

any perturbing forces acting upon the two satellites. A chief and a deputy satellite are defined such

that the deputy is estimated relative to the chief satellite.

Deputy !
Satellite!

ôr

ô✓
ôh

rc
x y

z

Chief Inertial Orbit!

Rela
tiv

e O
rbi

t!

⇢

Figure 5.1: Spacecraft formation flying: chief with deputy (adapted from [71])

The relative orbit of the deputy about the chief is expressed in the Hill frame, also known as

the local vertical local horizontal (LVLH) frame, defined by the vector triad {ôr, ôθ, ôh} using the

following expressions,

ôr =
rc
rc
, (5.1)

ôθ = ôh × ôr, (5.2)
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ôh =
h

h
. (5.3)

Where, rc is the vector from the center of the Earth to the chief satellite and h is the angular

momentum vector of the chief inertial orbit, see Figure 5.1 for the diagram. The deputy inertial

position vector rd is defined relative to the chief as,

rd = rc + [NO]ρ. (5.4)

Where ρ is comprised of x, y and z components in the ôr, ôθ and ôh directions respectively and

[NO] is the rotation matrix from the the Hill frame O to the inertial frame N . The [NO] rotation

matrix is defined as,

[NO] =

[
ôr ôθ ôh

]>
. (5.5)

The deputy inertial velocity vector ṙd is,

ṙd = ṙc + [NO]

(Odρ
dt

+ ḟ ôh × ρ
)
. (5.6)

Where ḟ is the angular velocity of the Hill frame relative to the inertial frame. Because we are

assuming 2-body Keplerian motion, the angular momentum of the orbit is constant and the angular

velocity can be defined as,

ḟ =
h

r2c
. (5.7)

The estimated state vector, in the Hill frame is then,

X =

[
ρ ρ̇

]
=

[
x y z ẋ ẏ ż

]>
. (5.8)

The time evolution of the states are given by the following dynamics shown in first-order form:
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Ẋ(t) = F (X, t) =



ẋ

ẏ

ż

ẍ

ÿ

z̈


=



ẋ

ẏ

ż

2ḟ
(
ẏ − y ṙcrc

)
+ xḟ2 + µ

r2c
− µ

r3d
(rc + x)

−2ḟ
(
ẋ− x ṙcrc

)
+ yḟ2 − µ

r3d
y

− µ
r3d
z


(5.9)

The dynamics equations shown in Eq. 5.9 are in exact non-linear form, that allows the deputy

satellite to be an arbitrarily large distance away from the chief and the orbits can be eccentric as

well while still describing the satellite motion accurately.

The deputy spacecraft is estimated in the Hill frame of the chief, which was up until now

simply defined as the O frame. But often times rotating the state and uncertainty from the chief

LVLH frame to the deputy LVLH frame is more appropriate. In this way the state and uncertainty

basis vectors correspond directly with the radial, velocity (for circular orbits only), and angular

momentum directions of the deputy spacecraft. To perform this rotation we now discern the Hill

or LVLH frame for both the chief and the deputy by using subscripts c for chief and d for deputy

so that we have the Oc and Od frames. The state of the deputy is initially estimated in the chief

frame which is represented by OcXd, instead we rotate the state into the deputy frame represented

by OdXd using the LVLH to inertial rotations [NO] from both the chief and the deputy resulting

in the following equation,

OdXd = [NO]>d [NO]Oc
c Xd. (5.10)

Similarly, the covariance of the deputy is initially estimated in the chief frame represented by OcPd,

and is rotated into the deputy frame represented by OdPd resulting in the following equation,

OdPd = [NO]>d [NO]Oc
c Pd[NO]>c [NO]d. (5.11)
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All plots in this chapter show the state and uncertainty in the OdXd and OdPd frame respectively

unless specified otherwise.

In the following sections we examine the effectiveness of using TDOA and FDOA by analyzing

the CRLB in a number of different scenarios. The first is where a GEO chief satellite is paired with

deputy satellites between LEO and GEO. Next we examine a pair of satellites in a leader-follower

scenario with various semi-major axes, ranging from LEO to GEO. Finally, the last section looks

at a chief and deputy satellite in bounded relative motion and also in very close proximity to each

other. Once again we look at semi-major axes of the chief ranging from LEO to GEO. For the

majority of these scenarios three stations are used in addition to the reference station. Table 5.1

lists the exact locations used in these simulations. Notice that the locations of the RXs are also

listed but do not actually influence the solution in anyway because the frequencies used by the TXs

are all the same (14.3 GHz), consequently, the downlink legs cancel in all cases.

Table 5.1: Latitude, longitude and altitude of transmitters and receivers used in relative OD cases

Transmitters (TXs)
Reference Station

Boulder 40.015◦ N 105.270◦ W 1623.72 m
Stations

San Diego 32.72◦ N 117.16◦ W 27.91 m
Seattle 47.60◦ N 122.33◦ W 9.44 m
Houston 29.76◦ N 95.37◦ W 14.54 m

Receivers (RXs)
Boulder 1 40.014◦ N 105.271◦ W 1625.57 m
Boulder 2 40.014◦ N 105.270◦ W 1621.13 m

The apriori uncertainties needed for calculating the CRLB are listed in Table 5.2. Both the

TDOA/FDOA and range/range-rate uncertainties are included, the latter of which is used later on

for CRLB comparison with the TDOA/FDOA results.
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Table 5.2: CRLB 1σ a-priori uncertainty for relative estimated states and measurements

Satellite state uncertainty
Position 10 km
Velocity 10 m/s

Measurement uncertainty
TDOA 0.035 µs
FDOA 0.2 mHz
Range 1 m
Range-Rate 1 mm/s

5.2 GEO Chief + LEO-to-GEO Deputy Satellite Pairing

The GEO chief and LEO-to-GEO Deputy pairing is specifically analyzed for the geolocation

application. By pairing the GEO satellite with a deputy that has faster dynamics we find that

the OD on both the chief and the deputy improves. As a result of the improved satellite states

the uncertainty of the geolocation solution can be significantly reduced. Two different cases are

examined, the first assumes that the chief state is known perfectly. In reality this is not possible so

in the second case we consider a small but reasonable amount of uncertainty on the chief satellite

state.

Table 5.3 lists the satellite orbital elements, with the satellites 5 degrees apart in longitude

and starting out in longitudinal slots corresponding to those over the contiguous United States.

Table 5.3: Orbital elements for GEO chief + LEO-to-GEO deputy

a [km] e i [deg] Ω [deg] ω [deg] ν [deg]

Chief 42164.14 0 0 0 0 255
Deputy 6746.26 - 48910.40 0 0 0 0 260

5.2.1 Estimating the Deputy with Perfect Chief Knowledge

First the CRLB is computed using three stations and the reference station as specified in

Table 5.1. The CRLB analysis spans up to a 24 hour time period with the deputy varying in
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semi-major axis from LEO up to GEO. Figure 5.2 illustrates the results of the analysis by the

state component of the deputy satellite. A general trend present in all states is that the covariance

collapses faster with a lower semi-major axis paired deputy. The faster reduction in covariance is

due the increased dynamics of the deputy at lower altitude which results in a faster accumulation

of information. In all of the components we see either a faint or distinct line when the deputy is

in a GEO orbit (1 on the ordinate). Because the chief is also in a GEO orbit this corresponds to

the relative GEO-GEO OD case. In this case all the components except for y we see that the line

is a lighter blue compared to the surrounding color, this indicates increased observability because

the covariance has collapsed faster than it would have otherwise. In the case of y however, we find

the opposite, and this component is barely observable with only a slight reduction in uncertainty

over the 24 hour time span. When putting the deputy in a slightly lower or higher orbit than GEO

however, this region of lower observability goes away. The position 1σ uncertainty can reach as low

as 1 cm for the deputy while the velocity 1σ uncertainty can easily achieve a fraction of 1 mm/s.

Throughout this chapter the CRLB is plotted where striations are visible. The increase and

decrease of the covariance over time is due to the changing geometry of the satellites with respect

to the stations. Because a LEO deputy satellite orbits much faster than a MEO or GEO deputy

satellite, the period of these striations increases. Indeed when plotting the CRLB versus orbit rather

than observation time span these striations becomes almost vertical and correspond proportionally

to the orbital period.

The CRLB shown in Figure 5.2 shows the absolute covariance values obtained using the

TDOA and FDOA measurements. However without a baseline for comparison it can be difficult

to gage how these results might stack up to other, more conventional observables. Therefore, we

compare them to range and range-rate. While range and range-rate are subject to potential biases

unlike TDOA and FDOA, we assume that no biases are present and show the best case scenario

for range and range-rate. In Figure 5.3 we have the chief in GEO and the deputy in MEO at

0.5×aGEO. In all deputy state components, the 3σ covariance bounds of TDOA and FDOA (shown

in the legend as ±3σTF ) collapse much quicker than those using range and range-rate (shown in
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the legend as ±3σRR). The initial error in the state from the truth was 10 km in each direction

in position and 10 m/s in each direction in velocity. The state errors are reduced very rapidly and

stay consistently within their covariance bounds. In this particular case the TDOA and FDOA OD

results outperform range and range-rate by a significant margin, especially at lower observation

times, but as the observation span increases, the performance gap decreases.

In Figure 5.3 we show a single comparison between TDOA/FDOA and range/range-rate of

their covariances as well as state errors. Figure 5.4 on the other hand compares the TDOA/FDOA

OD results with range/range-rate over a swath of orbital regimes for the deputy. The percent

difference is plotted in the 3rd axis using a color gradient. Yellow indicates a lower covariance

using TDOA/FDOA while blue indicates a lower covariance using range/range-rate. The black line

is where the OD performance between the two measurement types are equal. In the majority of

cases the TDOA/FDOA observables outperform those of range and range-rate. Notice that the

y direction, equivalent to the in-track direction of the deputy, above approximately 0.9×aGEO is

better using range and range-rate. This is due to the lower observability issue shown previously in

Figure 5.2(c). The z direction, or equivalently the cross-track direction of the deputy, is particularly

good with the TDOA and FDOA measurements.

The OD of the velocity components is favorable in most cases using TDOA and FDOA which

is important for the geolocation problem. This scenario suggests that if a GEO satellite is known

precisely then it is best to use the geolocation observables to obtain an OD estimate for use with

the geolocation problem. Even with a GEO deputy satellite, at observation spans of about 10

hours or more, the TDOA/FDOA observables provide a better OD solutions in all three velocity

components compared to range and range-rate.

While this section showed some insight into using a GEO chief paired with a deputy ranging

from LEO to GEO, the assumed perfect knowledge of the chief is unrealistic. In the following

section, the same analyses are conducted with a small, but realistic amount of uncertainty on the

chief satellite state.
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Figure 5.2: Circular GEO chief + circular deputy at various semi-major axes, shown on ordinate.
Showing CRLB covariance over various observation time spans shown on abscissa. Coordinates are
in the LVLH frame of the deputy. Three baselines used.
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Figure 5.3: State error and 3σ covariances for circular GEO chief + circular MEO deputy
(0.5×aGEO) in the deputy LVLH frame. Comparison between TDOA/FDOA (TF) and
range/range-rate (RR) observables. Three baselines used.
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Figure 5.4: Circular GEO chief + circular deputy at various semi-major axes, shown on ordinate.
Showing % difference of CRLB covariance bounds between TDOA/FDOA and range/range-rate
measurements over various observation time spans shown on abscissa. Color values above 0 indicate
a region where TDOA/FDOA has lower covariance bounds compared to range/range-rate and vice
versa. Coordinates are in the LVLH frame of the deputy. Three baselines used.
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5.2.2 Estimating the Deputy with Considered Chief Uncertainty

As a natural follow-up, we increase the realism by introducing a small amount of uncertainty

on the chief satellite in GEO. A 10 m 1σ position uncertainty as well as a 1 mm/s 1σ velocity

uncertainty in each basis vector direction is assumed. Once again, the CRLB is computed for a

range of deputy satellite semi-major axes and is shown in Figure 5.5. It is immediately apparent

that the covariance has not collapsed as quickly or as much in this case compared to the original

CRLB analysis shown in Figure 5.2. As would be expected, the degree of unobservability of the

in-track position y, direction of the deputy satellite at GEO is as high or higher than without

any chief considered state uncertainty. Interestingly however, the in-track velocity ẏ, of a deputy

satellite at GEO has a fast-collapsing covariance that remains low throughout the observation time

span, this was also present in Figure 5.2(d). The striations are also more pronounced with large

increases and decreases in covariance over time for a specified deputy orbit.

Once more, a comparison can be made between using TDOA/FDOA and range-range-rate

observables. The same satellites are used as were used for Figure 5.3, a GEO chief and a MEO

deputy at 0.5×aGEO is shown in Figure 5.6. The considered uncertainty on the chief however has

significantly reduced the advantage of using TDOA and FDOA over range and range-rate. In part

this is because the TDOA/FDOA measurements are directly dependent on the two satellites while

range/range-rate measure each satellite independently. Recall however, that non-biased range and

range-rate are used which in reality would be unlikely and corrupt the range/range-rate solution

to some extent, once again increasing the favor for TDOA/FDOA measurements.

Notice that the 3σ covariance bounds of TDOA/FDOA and range/range-rate are much

closer together with regular switches, in the radial and in-track directions. In cross-track, the

TDOA/FDOA covariances are significantly lower. The state-errors with both sets of observables

are effectively the same however.

Finally, we show the comparison of the TDOA/FDOA with the range/range-rate CRLBs of

the LEO-GEO range of the deputy satellite in Figure 5.7. The result is a significantly more chaotic
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pattern with the striations coming through. Shorter observation spans of up to 5 hours with a

deputy satellite between LEO and 0.8×aGEO tends to favor the TDOA/FDOA measurements in

all components of the estimated state of the deputy. For geolocation, the velocity OD results with

a GEO deputy favor the TDOA/FDOA measurements, particularly as the observation time span

increases. The cross-track direction is especially good with TDOA/FDOA measurements.



128
Cl) 

·x 1.1
<(
� 
o 1
·-

co 

E 
I 0.9 

E 
J5 0.8

0 
w 0.7 
C} 

co 0.6 
::, 
(.) 
-� 0.5
0 
'+-

0 0.4 
C 

0 
:..::; 0.3 
(.) 

LL 0.2 

0 5 10 15 

Observation Time S an Hr 

100 

1 

0.01 ........ 
N 

E 
� ........ 
Q) 

0.0001 
(.) 
C 

co 
·c

co
>
0

1e-06 
()

1e-08 

1e-10 

20 

(a) xôdr
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Figure 5.5: Circular GEO chief with considered 1σ position uncertainty of 10 m and 1σ velocity
uncertainty of 1 mm/s in each direction + circular deputy at various semi-major axes, shown
on ordinate. Showing CRLB covariance over various observation time spans shown on abscissa.
Coordinates are in the LVLH frame of the deputy. Three baselines used.
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0 5 10 15 20 25

Time [Hr]

-4

-3

-2

-1

0

1

2

3

4

y
d
o
t 
[k

m
/s

]

10
-5

TF

3
TF

RR

3
RR

(d) ẏôdθ
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Figure 5.6: State error and 3σ covariances for circular GEO chief with considered 1σ uncertainty
of 10 m and 1 mm/s in each direction + circular MEO deputy (0.5×aGEO) in the deputy LVLH
frame. Comparison between TDOA/FDOA (TF) and range/range-rate (RR) observables. Three
baselines used.
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Figure 5.7: Circular GEO chief with considered 1σ position uncertainty of 10 m and 1σ velocity
uncertainty of 1 mm/s in each direction + circular deputy at various semi-major axes, shown on or-
dinate. Showing % difference of CRLB covariance bounds between TDOA/FDOA and range/range-
rate measurements over various observation time spans shown on abscissa. Color values above 0
indicate a region where TDOA/FDOA has lower covariance bounds compared to range/range-rate
and vice versa. Coordinates are in the LVLH frame of the deputy. Three baselines used.
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5.3 LEO-to-GEO Chief and Deputy in Leader-Follower Formation Flight

In this section we consider a leader-follower scenario of the chief and deputy, over a wide

span of semi-major axes. Table 5.4 lists the satellite orbital elements, with the satellites 5 degrees

apart in longitude and starting out in longitudinal slots corresponding to those over the contiguous

United States.

Table 5.4: Orbital elements for LEO-to-GEO chief and deputy

a [km] e i [deg] Ω [deg] ω [deg] ν [deg]

Chief 6746.26 - 48910.40 0 0 0 0 255
Deputy 6746.26 - 48910.40 0 0 0 0 260

The same stations are used as those from Section 5.2 and are listed in Table 5.1. Two cases using

perfect chief knowledge and a considered chief are discussed as in the previous section.

5.3.1 Estimating the Deputy with Perfect Chief Knowledge

The CRLBs in Figure 5.8 look practically identical to those from Figure 5.2 despite the

difference in satellite geometries. In general the lower orbiting satellite cases tend to have lower

covariances because of the faster dynamics with respect to the stations. The higher orbiting satel-

lites, closer to GEO, tend take longer to collapse their covariances as well, for the same reason. The

in-track y, direction in this scenario also has the observability problem at GEO with the covariance

barely going down over time. With velocity, however, there is a faint blue line in the in-track ẏ,

and cross-track ż, velocity directions at GEO suggesting that TDOA and FDOA are particularly

suitable for accurate OD in these directions. The fact that there is a point of low observability in y

at GEO, while also present in the previous case with a GEO chief and LEO-to-GEO deputy suggests

that this is a consequence of the TDOA/FDOA measurement type rather than the measurement

geometries between the stations and the satellites.
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Figure 5.9 compares the state errors and 3σ covariance bounds of TDOA/FDOA and range/range-

rate. The initial error from the truth was 10 km in position in each direction and 10 m/s in velocity

in each direction. Whether TDOA/FDOA or range/range-rate are used the state errors are all

driven to zero. When examining the 3σ covariance bounds however, TDOA/FDOA collapses faster

and also maintains a lower level of uncertainty on the states.

Extending the results from Figure 5.9 to orbits spanning from LEO to GEO we obtain Fig-

ure 5.10. In the large majority of cases the TDOA/FDOA set of observables provide smaller

uncertainties on the states than compared to range and range-rate. A leader-follower setup sur-

rounding the GEO orbit however will produce worse results in the in-track y direction compared

to range/range-rate regardless of the observation time span. This is a consequence of the low ob-

servability demonstrated with the CRLB in Figure 5.8(c). The position and velocity covariances in

the cross-track direction are almost universally better using TDOA and FDOA measurements.
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Figure 5.8: Circular chief and deputy at various semi-major axes, shown on ordinate. Showing
CRLB covariance over various observation time spans shown on abscissa. Coordinates are in the
LVLH frame of the deputy. Three baselines used.
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Figure 5.9: State error and 3σ covariances for circular MEO chief and deputy (0.5×aGEO) in
the deputy LVLH frame. Comparison between TDOA/FDOA (TF) and range/range-rate (RR)
observables. Three baselines used.
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Figure 5.10: Circular chief and deputy at various semi-major axes, shown on ordinate. Showing %
difference of CRLB covariance bounds between TDOA/FDOA and range/range-rate measurements
over various observation time spans shown on abscissa. Color values above 0 indicate a region
where TDOA/FDOA has lower covariance bounds compared to range/range-rate and vice versa.
Coordinates are in the LVLH frame of the deputy. Three baselines used.
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5.3.2 Estimating the Deputy with Considered Chief Uncertainty

Once more we examine the same case as presented above but with some chief uncertainty

considered. The 1σ position uncertainty is 10 m in each direction and the 1σ velocity uncertainty

is 1 mm/s in each direction. While the covariance in the CRLB does not quite reach the levels of

perfect state knowledge on the chief, the drop in performance is less drastic than the GEO chief +

LEO-to-GEO deputy case of perfect to considered chief knowledge described in chapter 5.2.

Figure 5.12 demonstrates that in the leader-follower setup with chief uncertainty considered

the covariance bounds using TDOA/FDOA remain lower at all times in the case of a MEO chief

and deputy. The state errors at epoch were 10 km in position in each direction and 10 m/s in

velocity in each direction, only a few hours of observations are required with either TDOA/FDOA

or range-rate in order to drive these errors down to zero and hone in on the truth trajectory.

The state error and covariance analysis is extended further to incorporate the whole range

of Earth-orbiting satellite semi-major axes and is shown in Figure 5.13. Using this leader-follower

satellite setup with chief uncertainty considered we see that TDOA/FDOA provides better OD

results in the majority of cases as demonstrated by the large amount of yellow present in the plots.

We find that also in this case the TDOA and FDOA measurements provide exceptionally good

cross-track information in both position and velocity.
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Figure 5.11: Circular chief with considered 1σ position uncertainty of 10 m and 1σ velocity un-
certainty of 1 mm/s in each direction and deputy at various semi-major axes, shown on ordinate.
Showing CRLB covariance over various observation time spans shown on abscissa. Coordinates are
in the LVLH frame of the deputy. Three baselines used.
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Figure 5.12: State error and 3σ covariances for circular MEO chief with considered 1σ position
uncertainty of 10 m and 1σ velocity uncertainty of 1 mm/s in each direction and deputy (0.5×aGEO)
in the deputy LVLH frame. Comparison between TDOA/FDOA (TF) and range/range-rate (RR)
observables. Three baselines used.
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Figure 5.13: Circular chief with considered 1σ position uncertainty of 10 m and 1σ velocity un-
certainty of 1 mm/s in each direction and deputy at various semi-major axes, shown on ordinate.
Showing % difference of CRLB covariance bounds between TDOA/FDOA and range/range-rate
measurements over various observation time spans shown on abscissa. Color values above 0 indicate
a region where TDOA/FDOA has lower covariance bounds compared to range/range-rate and vice
versa. Coordinates are in the LVLH frame of the deputy. Three baselines used.
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5.4 Bounded Relative Motion

In the final case we examine a formation flying setup in very close proximity to each other.

We show that regardless of the very small separation between the two spacecraft, the TDOA and

FDOA measurements are well-suited for OD in this situation. The chief satellite orbit is the same

as in the previous section and is listed in Table 5.4. The Deputy satellite orbit is described next.

5.4.1 Deputy Equations of Motion for Bounded Relative Motion

To compute a bounded relative motion trajectory of the deputy about the chief we use the

following set of equations:

Ocxd = A0 cos(Oc ḟ t+ α)

Ocyd = −2A0 sin(Oc ḟ t+ α) + yoffset

Oczd = B0 cos(Oc ḟ t+ β)

Oc ẋd = −A0(
Oc ḟ) sin(Oc ḟ t+ α)

Oc ẏd = −2A0(
Oc ḟ) cos(Oc ḟ t+ α)

Oc żd = −B0(
Oc ḟ) sin(Oc ḟ t+ β)

(5.12)

Where A0 and B0 are the cyclic amplitudes of the relative orbit in-plane and out-of-plane compo-

nents respectively. The phase angles of the cyclic motion are defined by α and β for the in-plane

and out-of-plane components correspondingly, and the along-track offset is defined by yoffset. The

true anomaly rate of the chief is represented by ḟ and is previously defined by Eq. 5.7.

Table 5.5 lists two cases with a π/2 in-plane phase difference. As a consequence we obtain

the two relative orbit plots shown in Figure 5.14.

Both cases were examined, but whether the relative orbit was face-on or edge-on had no impact on

the OD accuracy. Therefore we only show the OD results using the face-on (case 1) relative orbit.
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Table 5.5: Relative orbit parameters for face-on and edge-on relative orbits

Case A0 [km] B0 [km] t [s] α [rad] β [rad] yoffset [km]

1 1 2 0 0 0 0
2 1 2 0 π/2 0 0
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(b) Case 2: Edge on towards Earth

Figure 5.14: Relative orbits of cases in Table 5.5. Green central circle is the chief, red line is relative
deputy orbit. Plotted in the chief Hill frame.

5.4.2 Estimating the Deputy with Perfect Chief Knowledge

We first show the CRLBs of varying chief orbits with a tightly orbiting deputy spacecraft,

assuming perfect state knowledge on the chief. The results shown in Figure 5.15 are nearly the

same as those shown previously in Figures 5.2 and 5.8. In all three scenarios the static variable is

the approximate location of the deputy satellite while the chief tends to be different in each case.

Therefore we can conclude that the state uncertainty of the deputy is primarily dominated by the

inertial geometry of the deputy with respect to the stations rather than with respect to the chief

satellite as long as the state knowledge of the chief is known perfectly. Once more, as the chief and

deputy satellite formation increases in semi-major axis, thereby reducing the relative velocity with

respect to the stations, the amount of information content present is lower, therefore the covariance

does not drop as much as with a smaller semi-major axis. The lower observability in the y direction
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at GEO remains as well as the striations.

In Figure 5.16 we compare the OD results using both TDOA/FDOA and range/range-rate

with the formation flight in a MEO orbit with a semi-major axis of 0.5×aGEO. The state errors

are comparable and driven to zero from the initial state perturbation from the truth of 10 km in

each direction for position and 10 m/s in each direction for velocity. The 3σ covariance bounds are

significantly smaller and also driven to zero much faster using the TDOA and FDOA observables.

Expanding the comparison beyond the MEO case shown in Figure 5.16 to include semi-major

axes of the formation flight pair from LEO to GEO we obtain the results shown in Figure 5.17.

We find Figure 5.17 to have the same general features as those found in Figure 5.10 with the only

large region of range and range-rate having an advantage occurring above a semi-major axis of

0.8×aGEO in the in-track y, position direction.
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(a) xôdr (b) ẋôdr

(c) yôdθ (d) ẏôdθ

(e) zôdh (f) żôdh

Figure 5.15: Close proximity bounded relative motion at various semi-major axes, shown on ordi-
nate. Showing CRLB covariance over various observation time spans shown on abscissa. Coordi-
nates are in the LVLH frame of the deputy. Three baselines used.
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Figure 5.16: State error and 3σ covariances for close proximity bounded relative motion with chief
at MEO (0.5×aGEO) in the deputy LVLH frame. Comparison between TDOA/FDOA (TF) and
range/range-rate (RR) observables. Three baselines used.
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(a) xôdr (b) ẋôdr

(c) yôdθ (d) ẏôdθ

(e) zôdh (f) żôdh

Figure 5.17: Close proximity bounded relative motion at various semi-major axes, shown on ordi-
nate. Showing % difference of CRLB covariance bounds between TDOA/FDOA and range/range-
rate measurements over various observation time spans shown on abscissa. Color values above 0
indicate a region where TDOA/FDOA has lower covariance bounds compared to range/range-rate
and vice versa. Coordinates are in the LVLH frame of the deputy. Three baselines used.
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5.4.3 Estimating the Deputy with Considered Chief Uncertainty

To increase the realism of the relative OD case of a close proximity satellite formation we

now look at the instance where a chief position uncertainty of 10 m in each direction and velocity

uncertainty of 1 mm/s in each direction is considered. The chief uncertainty effect upon the CRLBs

does not change the results significantly from those found without the included uncertainty in Figure

5.17. The same features are encountered, with the low observability of the in-track position at GEO

occurring once more.

We scrutinize the GEO case more closely and run a simulation case to see how the low

observability in y affects the filter solution. The SR-USKF is initiated with an a-priori state off

from the truth by 10 km in position in each direction and 10 m/s in velocity in each direction as well.

Figure 5.19(a) shows the chief satellite in green at the origin with the deputy truth orbit shown in

red. The estimated deputy orbit is shown in blue which started from the a-priori state and moved

its way over to the truth trajectory in all components except for y as predicted by the CRLB. The

residuals are shown in Figure 5.19(b). The TDOA residuals clearly indicate that the estimated

solution is not perfect, while the FDOA residuals are fitted to the noise. A sequential filter like the

SR-USKF is not generally iterated but by iterating it anyway the solution can slowly be walked

over closer to the truth trajectory as indicated by the estimated trajectory and residuals shown in

Figures 5.19(c) and (d) respectively. The ability to obtain a better solution after many iterations

suggests that the issue is numerical and a better method to obtain the best estimate likely exists.

One such a method may be to compute multiple a-priori states after the first iteration, which vary

in the in-track direction, in effect using a line-search rather than waiting for the filter to slowly

converge upon a solution with residuals in the noise.

The low observability in y only occurs at GEO illustrated by a satellite formation pair po-

sitioned at 0.95×aGEO and not showing any symptoms of numerical problems, instead quickly

snapping to the correct solution. Figure 5.20 shows this case where the estimated solution is

coincident to the truth trajectory and the residuals are fitted to the noise.
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Also in the bounded formation flying case with the satellite at MEO (0.5×aGEO) in Figure

5.21 the TDOA/FDOA 3σ covariance bounds are much smaller than those of range and range-rate

while the state errors tend to be comparable.

Finally Figure 5.7 demonstrates that also the bounded relative motion case is in most cases

better with TDOA and FDOA measurements.
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(a) xôdr (b) ẋôdr

(c) yôdθ (d) ẏôdθ

(e) zôdh (f) żôdh

Figure 5.18: Close proximity bounded relative motion with considered 1σ position uncertainty of
10 m and 1σ velocity uncertainty of 1 mm/s in each direction of the chief at various semi-major
axes, shown on ordinate. Showing CRLB covariance over various observation time spans shown on
abscissa. Coordinates are in the LVLH frame of the deputy. Three baselines used.
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Figure 5.19: Close proximity bounded relative motion with considered 1σ position uncertainty of 10
m and 1σ velocity uncertainty of 1 mm/s in each direction of the chief. Satellite formation pair in
GEO orbit resulting in low observability in the in-track y position direction of deputy. Comparing
1st to 92nd iteration.
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Figure 5.20: Close proximity bounded relative motion with considered 1σ position uncertainty of
10 m and 1σ velocity uncertainty of 1 mm/s in each direction of the chief. Chief in 0.95×aGEO
orbit demonstrating the low observability in the in-track y position direction is limited to GEO
only and not its neighboring orbits.



151

0 5 10 15 20 25

Time [Hr]

-0.1

-0.05

0

0.05

0.1

x
 [
k
m

]

TF

3
TF

RR

3
RR

(a) xôdr
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Figure 5.21: State error and 3σ covariances for close proximity bounded relative motion with consid-
ered 1σ position uncertainty of 10 m and 1σ velocity uncertainty of 1 mm/s in each direction of chief
with chief at MEO (0.5×aGEO) in the deputy LVLH frame. Comparison between TDOA/FDOA
(TF) and range/range-rate (RR) observables. Three baselines used.
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(a) xôdr (b) ẋôdr

(c) yôdθ (d) ẏôdθ

(e) zôdh (f) żôdh

Figure 5.22: Close proximity bounded relative motion with considered 1σ position uncertainty of
10 m and 1σ velocity uncertainty of 1 mm/s in each direction of the chief at various semi-major
axes, shown on ordinate. Showing % difference of CRLB covariance bounds between TDOA/FDOA
and range/range-rate measurements over various observation time spans shown on abscissa. Color
values above 0 indicate a region where TDOA/FDOA has lower covariance bounds compared to
range/range-rate and vice versa. Coordinates are in the LVLH frame of the deputy. Three baselines
used.
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5.4.3.1 Estimating the Deputy with Considered Chief Uncertainty and One Station

+ Reference

In all previous cases in this chapter we have shown the results using three stations plus the

reference to generate three baselines using the stations listed in Table 4.4. In this final scenario we

take the previous bounded relative motion case and only use one station, to create one baseline, the

Boulder-San Diego baseline. In this scenario there are distinct orbital regimes that would benefit

from the TDOA/FDOA and the range/range-rate measurement set. More specifically, when faster

dynamics, as is the case with lower orbiting satellites, are present along with longer observation

times TDOA and FDOA are preferred. In the higher orbits with shorter observation spans range

and range-rate has a lower CRLB.

In this chapter, three different relative navigation scenarios were investigated. They include

a GEO paired with GEO-to-LEO case, a leader-follower setup with the chief and deputy ranging in

semi-major axis from GEO-to-LEO, and finally a closely orbiting bounded relative motion scenario

where both satellites also varied from GEO-to-LEO. In all these cases three baselines were utilized

in the OD analysis. In the final relative motion case, a one-baseline setup was also examined. In all

situations as the motion of the satellites increased with respect to the stations the more favorable

the TDOA and FDOA measurements were compared to range and range-rate. The use of TDOA

and FDOA for relative navigation is particularly good and has various applications. The first is

for use in the SSA community, in order to allow close navigation of active satellites of a primary

with respect to a secondary to avoid a collision. A second application could include precise orbit

determination of a neighboring satellite if another satellite already has very good state information.

In this last setup, doing relative OD could provide a better OD solution than simply estimating

the satellite state using conventional range and range-rate measurements.
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(a) xôdr (b) ẋôdr

(c) yôdθ (d) ẏôdθ

(e) zôdh (f) żôdh

Figure 5.23: Close proximity bounded relative motion with considered 1σ position uncertainty of
10 m and 1σ velocity uncertainty of 1 mm/s in each direction of the chief at various semi-major
axes, shown on ordinate. Showing % difference of CRLB covariance bounds between TDOA/FDOA
and range/range-rate measurements over various observation time spans shown on abscissa. Color
values above 0 indicate a region where TDOA/FDOA has lower covariance bounds compared to
range/range-rate and vice versa. Coordinates are in the LVLH frame of the deputy. One baseline
used.



Chapter 6

Radio Frequency Localization

In this chapter two types of localization are discussed. The first is geolocation, or the lo-

calization of a passive RF signal on the surface of the Earth. The second is the localization of a

passive satellite signal in space, similar to how the tracking and data relay satellite system (TDRSS)

can track satellites, but now with TDOA and FDOA. Two techniques are discussed for geoloca-

tion and one for satellite localization. The first is a two-step process which initially estimates the

dual-satellite ephemeris with covariance which is then used in the second step of estimating the

Earth or space-based transmitter while taking into account the uncertainty on the dual-satellite

ephemeris. The second technique is simultaneous estimation of the dual-satellite ephemeris and

the RF transmitter. Each of these methods have their advantages and disadvantages.

6.1 Geolocation

The accuracy of the geolocation solution is highly dependent on the knowledge and uncer-

tainty of the satellites’ orbits. A number of articles have already emphasized this importance. In

Ref. [34], a prominent paper on geolocation, it was shown that the dominant cause of geolocation

error was the satellite ephemeris accuracy in predicting velocity. Furthermore, Pattinson et al.

[65], Sun et al. [82] and Yan et al. [89], directly or indirectly illustrate the effects of geolocation

inaccuracies due to errors in the satellites’ states. We demonstrate these inaccuracies next.

Often times the most recent information on geosynchronous satellite orbits are through NO-

RAD’s Two Line Element (TLE) sets. TLEs rely on the SGP4 orbit model which is based on
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the analytical theory of Brouwer developed in the 1970s. Only the zonal terms J2, J3 and J4 are

accounted for in the gravity field, consequently due to the low fidelity dynamics, the propagated

trajectory gives rise to widely varying position errors which are commonly on the order of 2 km

[60, 45]. Due to the high inaccuracies in the resulting ephemeris, extremely large errors in the

geolocation solution, on the order of 100s to 1000s of km, are introduced. A 1000 point Monte

Carlo simulation in Figure 6.1 illustrates a scenario where TLE-level accuracy ephemerides are

used, which results in the possible geolocation solution to spread across 5 states and nearly 1000

km. It is important to note, the 3D aspect of the Monte Carlo simulation indicated by the blue

and red colors. The elongated cloud of Monte Carlo points is in fact piercing the Earth at a signif-

icant angle such that the points north of Chicago can be hundreds of kilometers below the WGS84

ellipsoid, and the points south of Chicago can be up to hundreds of kilometers above this datum.

At this time we simply illustrate that the geolocation solution can vary significantly in 3D space

when large ephemeris uncertainties are encountered. Later in this chapter we take advantage of

the knowledge that the transmitter is located on the Earth’s surface, which may reduce the Monte

Carlo point distribution significantly. Despite the knowledge introduced by the altitude constraint,

it is still imperative that the ephemeris uncertainty be included in developing a geolocation solution

as will demonstrated throughout this chapter.

A significant amount of literature exists on the geolocation process with key contributors

including Smith [74, 75, 76], Ho [37, 38, 40, 39] and Chan [13, 12]. However, there is a significant

gap in the literature on geolocation in the presence of ephemeris uncertainty. While Ref. [65]

discusses the sensitivity to ephemeris errors on geolocation, the process by which these errors are

propagated to the geolocation covariance is lacking.

In chapter 4 we show how the dual-satellite ephemeris estimate can be improved over com-

monly used TLEs. This was accomplished by performing OD with the TDOA and FDOA mea-

surements that are already being gathered for geolocation. The improvements over the a-priori

knowledge on the satellites were illustrated through a CRLB analysis and various other approaches.

In this chapter, using either the newly corrected ephemeris or a pre-existing ephemeris with known
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Figure 6.1: 1000 point Monte Carlo of Chicago transmitter (TX) geolocation with TLE-level
ephemeris uncertainty

covariance, we derive a consider batch filter (CBF) to perform source localization of the unknown

transmitter while also accounting for the ephemeris uncertainty. Including this new source of uncer-

tainty inflates the projected covariance ellipse of the estimated transmitter position, and a Monte

Carlo simulation shows the necessity of including this source of uncertainty. Then we demonstrate

the addition of a probabilistic altitude constraint on the CBF computed covariance. Finally, rather

than first estimating an ephemeris correction and then geolocating the unknown signal (two-steps),

we show that these steps can be performed simultaneously where we estimate both the ephemeris

and the unknown transmitter position together. In the following sections we demonstrate these

findings.

The locations of the transmitters (TXs) and receivers (RXs) used are outlined in Table 6.1.

The targets are the transmitters for which we have no prior knowledge and are geolocated in later
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sections. The locations of the targets listed in the table are the truth values to compare against

with the estimated values from the filter.

Table 6.1: Latitude, longitude and altitude of transmitters and receivers used in geolocation exam-
ples

Transmitters (TXs)
Reference station

Boulder 40.015◦ N 105.270◦ W 1623.72 m
Stations

San Diego 32.72◦ N 117.16◦ W 27.91 m
Seattle 47.60◦ N 122.33◦ W 9.44 m
Houston 29.76◦ N 95.37◦ W 14.54 m
Miami 25.76◦ N 80.19◦ W 0.89 m
Boston 42.36◦ N 71.06◦ W 11.49 m

Targets
Chicago 41.88◦ N 87.63◦ W 181.72 m
Prescott 34.54◦ N 112.47◦ W 1633.17 m
Atlanta 33.75◦ N 84.39◦ W 310.38 m

Receivers (RXs)
Boulder 1 40.014◦ N 105.271◦ W 1625.57 m
Boulder 2 40.014◦ N 105.270◦ W 1621.13 m

6.1.1 Ephemeris Uncertainty Mapped into Geolocation Covariance

Not accounting for ephemeris uncertainty may in many cases yield a 3σ geolocation covariance

that is far too optimistic. The need to include the ephemeris uncertainty for RF localization is

shown in the following example. Figure 6.2 shows the location of a Chicago transmitter at the center

marked ‘Actual’. Assume that the transmitter was estimated perfectly and therefore the center of

the covariance ellipse is coincident with the actual transmitter location. If the ephemeris used is

assumed to be without error then the only source of inaccuracy is derived from the measurement

noise on TDOA and FDOA. Given that assumption, the solid ellipse provides the 3σ bound on the

location of the interfering transmitter.

Notice however, when a 1000 point Monte Carlo simulation is executed including ephemeris

uncertainty a non-negligible amount (if not the majority) of cases fall well outside of the original
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Figure 6.2: 1000 point Monte Carlo of geolocation with ephemeris uncertainty of Chicago TX

3σ ellipse. The uncertainty on the ephemeris is obtained after 9 hours of OD using four baselines.

The Boston transmitter is not included in order to emphasize the ephemeris uncertainty in the

geolocation solutions. Considering Figure 6.2 shows results using a corrected ephemeris, if a TLE

were to be used instead, the Monte Carlo would cover a much larger area, similar to what is shown

in Figure 6.1. The consequence of not including ephemeris error means the operator could be

eliminating areas of potential transmitter locations due to the too optimistic covariance ellipse. We

show that including the ephemeris uncertainty in the covariance calculation provides a much better

representation of the actual errors. In Figure 6.2 the dashed line includes the consider parameters

and captures the same results as demonstrated with the monte carlo simulation. The growth of the

covariance is significant in the major axis, increasing from 470 m to 4059 m with a smaller increase

in the minor axis from 43 m to 165 m. The following section derives the Consider Batch Filter
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(CBF) used.

6.1.1.1 Consider Batch Filter for Ephemeris Uncertainty Inclusion in Geolocation

Covariance

A CBF algorithm was previously described in chapter 3.1.3 but we modify its derivation to be

used with the geolocation problem. The CBF is implemented to solve the location of the unknown

transmitter while also accounting for the uncertainty in the ephemeris. The estimated states in

ECEF are,

XTX =

[
xtTX ytTX ztTX

]>
. (6.1)

The subscript TX stands for transmitter and the superscript t is for target since this transmitter

is being targeted for localization. In the CBF additional parameters are included but not esti-

mated to more accurately represent the uncertainty of the localization problem as a whole. The

consider parameters are the satellite components in position and velocity as well as the coefficients

of reflectivity. Therefore there are 14 additional states,

C =

[
C>1 C>2

]>
(6.2)

where,

Ci =

[
xi yi zi ẋi ẏi żi Cri

]>
. (6.3)

The unknown transmitter is assumed to be stationary throughout the broadcast duration. Con-

sequently the dynamics of the transmitter are zero and the problem simplifies significantly. This

is illustrated by taking the partial derivatives of the force model with respect to the estimated

transmitter location,

ATX(t) =

[
∂F (t)

∂XTX(t)

] ∣∣∣∣∣
Xref

= 0. (6.4)
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On the other hand the partial derivatives of the force model, described in Eq. 4.54, with respect

to the consider parameters are identical to those found in chapter 4 where it was defined as the

time-varying matrix A(t). To represent the same partials in the CBF we use the time-varying

matrix B(t),

B(t) =

[
∂F (t)

∂C

] ∣∣∣∣∣
Cref

= A(t). (6.5)

Furthermore the STM of the estimated states remains identity since the time evolution is also zero.

Φ̇(t, tk) = ATX(t)Φ(t, tk) = 0 → Φ(t, tk) = I (6.6)

Due to the consider parameters, there is an additional STM defined as,

θ̇(t, tk) = B(t)θ(t, tk). (6.7)

We can combine the estimated states and consider parameters into one deviation vector z such that

z = [x c]> so that the time evolution is,

z(t) = ψ(t, tk)z(tk) (6.8)

where,

ψ(t, tk) =

Φ(t, tk) 0

0 θ(t, tk)

 =

I 0

0 θ(t, tk)

 . (6.9)

Next, we compute H̃xk with respect to the estimated states shown in Eq. 6.10 and find a similar

result to Eq. 2.43 except with reversed signs,

H̃xk =

[
∂G(Xk, tk)

∂XTXk

] ∣∣∣∣∣
Xref

. (6.10)

The measurement mapping matrix H̃ck , are the partials with respect to the consider parameters

and are identically the same to Eq. 2.43,
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H̃ck =

[
∂G(Xk, tk)

∂C

] ∣∣∣∣∣
Cref

. (6.11)

Given the STMs we can compute the measurement mapping matrix mapped back to epoch, where

Hxk = H̃xk because Φ(t, tk) is identity and Hck = H̃ckθ(t, tk). These mapping matrices are then

used to compute the three different information matrices,

Λxx =

l∑
k=1

H>xkWkHxk + Λ̄xx, (6.12)

Λxc =
l∑

k=1

H>xkWkHck + Λ̄xc, (6.13)

Λcc =
l∑

k=1

H>ckWkHck + Λ̄cc. (6.14)

After all observations are processed, the covariance, not including the ephemeris uncertainty can be

found as Px = Λ−1xx . However, we are interested in including the ephemeris uncertainty, therefore

we compute the sensitivity matrix Sxc = −PxΛxc which after substituting in Eq. 6.13 becomes,

Sxc = −PxH
>
x WHc. (6.15)

Using the sensitivity matrix we can map the a-priori consider covariance P̄cc, into the estimation

space and add it to the original covariance Px to yield the new covariance Pxx,

Pxx = Px + SxcP̄ccS
>
xc. (6.16)

Both covariances Px and Pxx are trivariate Gaussian which are projected onto the Earth’s

surface at the estimated position. The trivariate covariance is defined as E[xx>], but we require

only the component projected onto Earth’s surface which is E[ss>], see Figure 6.3.

The projection can be performed as follows,
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Figure 6.3: Geometry for projected covariance

E[ss>] = (I − n̂n̂>)E[xx>](I − n̂n̂>)> (6.17)

Where n̂ is the normal vector connecting Earth’s CoM to XTX , resulting in an approximately

orthogonal unit vector to the local Earth surface. Then the solid black ellipse in Figure 6.2 is the

projection of Px onto Earth’s surface and the dashed ellipse is the projection of Pxx. In the next

subsection we delve deeper into the sensitivity matrix.

6.1.1.2 Sensitivity Matrix

The sensitivity matrix is Sxc = ∂x̂TX
∂c , describing how x̂TX varies with the consider parameters

c. The sensitivity matrix as described in Eq. 6.15 expresses the sensitivity to the consider parame-

ters in ECI to the estimated parameters in ECEF. Therefore by defining a rotation matrix [TSEZECEF ]

which rotates a vector from the ECEF coordinate frame to the topocentric SEZ (south, east, zenith)

and a rotation matrix [TRICECI ] which rotates a vector from the ECI coordinate frame to the satellite

body frame (radial, in-track, cross-track) we can rotate Sxc so that it describes the sensitivity to

the consider parameters in RIC to the estimated parameters in SEZ as [TSEZECEF ]Sxc[T
RIC
ECI ]>. Figure

6.4 visualizes the magnitude of the sensitivity matrix for the Chicago geolocation example. Blue

signifies a relatively low sensitivity to the consider parameter while red is the opposite.

It is immediately apparent that the velocity components of both satellites have the highest

impact on the geolocation solution. This is consistent with the claim from Ref. [34] that the

primary cause of geolocation error is predominantly the satellite ephemeris accuracy in predicting

velocity. For geostationary satellites the radial and in-track velocity directions are more important

than the cross-track direction. Looking back to the velocity CRLBs of GEO satellites from chapter
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Figure 6.4: Sensitivity matrix, Sxc

4 we see that while the in-track velocity direction has the most information, the radial velocity

direction has poor information content. Therefore it is expected that improving the radial velocity

direction information would significantly improve geolocation accuracy.

6.1.1.3 Addition of a Probabilistic Altitude Constraint

For dual-satellite geolocation with two Geostationary satellites the primary axis of the covari-

ance ellipsoid was found to point toward the direction of the two satellites. Therefore the ellipsoid

pierces the Earth’s surface at a steeper and steeper angle when approaching the Equator. Con-

sequently portions of the ellipsoid that are significantly above or below the WGS84 ellipsoid are

unlikely to contain the actual transmitter location. In this subsection we leverage the fact that the

transmitter is more likely to be within a certain vertical distance from the local terrain’s surface.

We add in a probabilistic altitude constraint thereby further reducing the size of the covariance

ellipse. This new information is written in terms of a non-full rank information matrix, Λalt,

Λalt = n̂

[
1

σ2alt

]
n̂>. (6.18)

Where n̂ is the local vertical unit vector as shown in Figure 6.3, and σalt is the standard deviation

in the local vertical direction for the likelihood of the transmitter being at that height (depth)

above (below) the local terrain’s surface. In this research we assume σalt = 75 m, which asserts

that 99.7% of all transmitters will be within ± 225 m of the local terrain which means that in

almost all cases the transmitter will not be higher than a 68-story building (or in an equivalently
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deep man-made depression).

Adding in this additional altitude information is done after the CBF has completed locating

the RF signal. We use the output of the CBF, which is the best estimate of the position of

the transmitter, X̂CBF with an associated covariance, PCBF . Since we have two independent

Probability Density Functions (PDFs) we can mix the information into a single covariance matrix,

Ptot as shown in Eq. 6.19 [83],

Ptot =
(
P−1CBF + Λalt

)−1
. (6.19)

Then a new optimal estimate can be obtained by weighting the best estimate from the CBF and

also the point about which the altitude constraint is applied, X̂alt, by their respective information

matrices as displayed in Eq. 6.20,

X̂tot = Ptot

(
P−1CBF X̂CBF + ΛaltX̂alt

)
. (6.20)

The only unknown is X̂alt. We designate X̂alt as the center of the ellipse defined by the intersection

of the covariance ellipsoid, PCBF , and the plane representing the local Earth’s surface, using the

approach from Ref. [50]. This is the point about which the Gaussian distribution in altitude is

centered, since we assume that the transmitter can be located on top of a building equally as likely

as in a man-made depression. Computing this point requires an iterative approach and is somewhat

involved, see Figure 6.5 for reference.

First, the plane is defined to be orthogonal to n̂, but one additional point is required to fix

the plane in 3D space as per definition of a plane. We need to sample points along n̂ that are

also contained within the projection of the ellipsoid onto n̂. Therefore we project the ellipsoid onto

n̂ and sample the resulting line segment for points. This line segment is represented by E[hh>],

where h is the projection of the random variable x onto the normal, similar to the approach used

to obtain Eq. 6.17,
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Figure 6.5: 2D side view of iterative computation of X̂alt

E[hh>] = n̂n̂>E[xx>]n̂n̂>. (6.21)

Iteratively sampling points along the n̂ line segment allows the plane to be defined and the center

of the ellipse of intersection between the ellipsoid and plane to be computed. This center point

is computed in ECEF which is then converted to latitude, longitude and altitude. The altitude

is called the computed altitude. For the given latitude and longitude the actual terrain elevation

is queried from a database (in this research we use the Google elevation api1 ) which is called

the observed altitude. We continue sampling points along n̂, there by moving the plane, until the

computed altitude and the observed altitude are within some tolerance, in our case we use 10 m.

When the tolerance is met, we have effectively found X̂alt, or the point about which to apply the

probabilistic altitude constraint, shown with a red dot in Figure 6.5.

While 75 m for the σalt is chosen, another value could be used instead if it is deemed more

appropriate. A larger value of σalt provides a weaker constraint and vice versa. From Eq. 6.20 we

also see that a different σalt will change the solution. With a larger σalt the solution will tend to

be closer to X̂CBF while a smaller σalt will result in a solution approaching X̂alt.

1 https://developers.google.com/maps/documentation/elevation/start
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6.1.1.4 Geolocation Simulations

Provided with an ephemeris and associated covariance either through the approach from

chapter 4 or a pre-existing one, in addition to the CBF and the altitude constraint, we demonstrate

several geolocation examples using simulated data.

In Figure 6.6, first notice the solid black ellipse, this is the projected 3σ covariance without the

inclusion of ephemeris uncertainty or an altitude constraint and spans 470 m by 43 m. The actual

location of the Chicago transmitter shown with the black square is well outside of this covariance

and is 376 m from its center, re-iterating the importance of including ephemeris uncertainty. By

including the ephemeris uncertainty we obtain the large black dashed ellipse which spans 4059 m by

165 m and is consistent as it includes the actual location. Recall however, that this is a projection

of a 3D covariance ellipsoid which may pierce the Earth’s surface at a rather steep angle. This

means that part of the consider projection is very unlikely to contain the actual location of the

transmitter. Therefore we apply the probabilistic altitude constraint to both the 3σ covariance

as well as the 3σ consider covariance. With the applied altitude constraint the new best estimate

of the transmitter location is shown with the ‘Estimated’ point at the center of both the blue

solid and dashed ellipses. This solution is off from the actual transmitter by 100 m, a significant

reduction from the previous 376 m error. Notice however, that ephemeris uncertainty inclusion is

still required in order to maintain consistency as the actual transmitter location is still outside of

the solid blue 3σ covariance but well within the new dashed blue 3σ consider covariance.

We show two more geolocation examples, they include a transmitter in Prescott AZ and a

transmitter in Atlanta GA. In Figure 6.7 the 3σ ellipse is 382 m by 39 m which blows up to 620 m

by 49 m with ephemeris uncertainty. Then applying the altitude constraint we obtain a 3σ ellipse

of 248 m by 39 m and 299 m by 48 m with ephemeris uncertainty. The altitude constraint improves

the geolocation error from 104 m to 31 m.

Finally in Figure 6.8 the 3σ ellipse is 400 m by 46 m which with ephemeris uncertainty

increases to 2076 m by 154 m. Applying the altitude constraint results in a 3σ ellipse of 268 m by
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Figure 6.6: Geolocation of a Chicago, IL based TX

46 m and a 500 m by 112 m ellipse with ephemeris uncertainty. The altitude constraint improves

the geolocation error from 115 m to 29 m. We summarize the results in Table 6.2 for convenience.

It is interesting to note that if the major axes of the projected 3σ geolocation covariances

(without altitude constraint) were extended they would approximately intersect the projection of

the simulated satellites’ longitudinal slots of 99◦ W and 105◦ W longitude. Furthermore, TDOA

and FDOA provide lines of positioning (LOPs) with TDOA constraining the E-W direction and

FDOA constraining the N-S direction [34]. One might expect that decreasing the uncertainty on
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Figure 6.7: Geolocation of a Prescott, AZ based TX

the FDOA measurement would decrease the major axis of the geolocation covariance ellipse making

the ellipse more circular. While it does indeed decrease the major axis, the effect is coupled and

also reduces the minor axis thereby maintaining its elliptical shape.

6.1.2 Simultaneous Ephemeris Correction and Geolocation

Previous sections illustrated the process for estimating an improved ephemeris followed by

localizing the interference source with accurate covariance information, this is referred to as the
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Figure 6.8: Geolocation of a Atlanta, GA based TX

Table 6.2: Summary of covariance ellipses (major axis × minor axis) and errors [m]

Chicago Prescott Atlanta

3σ Cov 470 × 43† 382 × 39 400 × 46†

3σ Consider Cov 4059 × 165 620 × 49 2076 × 154
3σ Cov + Alt Con 325 × 43† 248 × 39 268 × 46†

3σ Consider Cov + Alt Con 837 × 97 299 × 48 500 × 112
Error 376 104 115
Error with Alt Con 100 31 29
† Truth/actual TX location is outside of covariance ellipse.
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two-step process. Separating the ephemeris estimation side from the geolocation side has its advan-

tages and disadvantages. The most important advantage is the flexibility provided to transmitter

time scheduling for OD of the satellites. In other words the transmitters (other than the reference)

do not necessarily need to be available for OD while geolocating the interfering RF source. OD can

be performed at anytime, the solution can then be propagated to the time span of the measurements

obtained from the interfering transmitter. Of course the closer the OD is performed to the time

span of the geolocating process the smaller the associated ephemeris covariance and the smaller the

chance that a maneuver occurred during that period. The disadvantage is the increased ephemeris

covariance if propagated over longer time periods and the fact that two steps are required. Fur-

thermore, considering the dual-satellite ephemeris while estimating the target transmitter is not

optimal as some of the correlations are lost. It is possible however, if the circumstances permit, to

merge this two-step process into one step by simultaneously estimating the interfering transmitter

along with the dual-satellite ephemeris. Not only does this reduce the OD and geolocating steps

into one estimation step, the correlations are also maintained between the targeted transmitter and

the dual-satellite ephemeris. In that case, the newly estimated state vector is equivalent to that

shown in Eq. 4.53 with the exception of the added position term of the estimated transmitter, rtTX ,

X =

[
r>1 v>1 Cr1 r>2 v>2 Cr2 rt>TX

]>
. (6.22)

While the satellite states are estimated in the cartesian Earth Centered Inertial (ECI) frame, the

transmitter position is estimated in the Earth Centered Earth Fixed (ECEF) frame. The ECEF

position is then easily converted to latitude, longitude and altitude based on the WGS84 datum.

Despite the preserved correlations, the solution as well as the covariance for the target trans-

mitter were effectively the same compared to the two-step process, with differences below the mil-

limeter level for the cases examined. The reason for the nearly identical solution is that the target

transmitter did not decidedly improve or degrade the estimated ephemeris. The added transmitter

moved the dual-satellite ephemeris solution on the centimeter and meter level in position and on
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the order of one tenth of a millimeter per second in velocity, too small to affect the geolocation

solution and covariance. While in these cases the results are effectively the same between the 2-step

and 1-step methods, it is possible for an estimated transmitter to considerably improve the OD

solution of the satellites depending on the location of the transmitter. While not discussed in this

chapter, it was observed that the location of certain transmitters have a higher impact on the OD

solution than others depending on the geometry created. If the interfering transmitter improves

the dual-satellite ephemeris, then naturally, the geolocation accuracy would also improve compared

to the two-step process which keeps both the OD and geolocation steps independent.

6.2 Satellite Localization

The passive localization of a transmitter need not be limited to a stationary source on the

surface of the Earth. In this section, the feasibility of localizing a satellite using two Geostationary

satellites is examined. The setup of this scenario has similarities to TDRSS. Furthermore this

technique can be particularly useful for locating a satellite in a GPS denied environment, or in a

situation where the satellite is not operated by the analysts trying to obtain its orbit information.

A requirement however, is that the satellite must be emitting an RF signal that can be picked up

by two neighboring satellites. The geometry of this setup is illustrated in Figure 6.9.
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Figure 6.9: Satellite localization geometry
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Similar to the two-step process used in geolocation, when applied to satellite localization the

process estimates the dual-satellite ephemeris with covariance which is then used with a CBF to

estimate the state of the RF source satellite. While the CBF is similar to the one shown in chapter

6.1.1.1, the dynamics are no longer zero due to the orbital motion of the satellite, this new CBF

derivation is not shown.

6.2.1 Ephemeris Uncertainty Mapped into Satellite Localization Covariance

The orbital elements of the three satellites used in the satellite localization case are outlined

in Table 6.3, these satellites have previously been used in a number of other simulations as well.

Table 6.3: Orbit parameters of satellites used in satellite localization

a [km] e i [deg] Ω [deg] ω [deg] ν [deg] Cr
GEO1 42166.4 0 0.08 105.1 101.4 286.7 0.04
GEO2 42166.5 0 0.08 81.0 139.7 266.4 0.06
LEO 8377.7 0.01 30 270.2 354.9 263.4 0.03

We first demonstrate a case without measurement noise, but with an initial a-priori deviation

from the truth. In this way, we show the sensitivity to small deviations in the dual-satellite

ephemeris from the truth on the localized satellite estimate. Even very small deviations result in a

signature of the localized satellite FDOA residuals.

6.2.1.1 No-Noise on Measurements

Figures 6.10 to 6.12 shows the state error in position, velocity and, AGOM as well as the 3σ

covariance bounds respectively for the first step (figure a) and second step (figure b) of the two-step

process. As expected the state error is nearly zero as demonstrated by the flat lines in the figures.

In step 1, the covariance bounds decrease over time because a sequential SRIF was used for the

estimation, while in step 2 a CBF was used instead resulting in the final covariance bounds being
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mapped back to the epoch. The covariance bounds of step 2 are quite large, this is a consequence

of the step 1 (dual-satellite covariance) being considered. Recall that GEO-GEO pairings have

reduced observability with TDOA and FDOA observables thereby also having larger uncertainties

which get mapped into the covariance of the localized RF satellite. If another satellite pair with

faster dynamics were used, its covariance would be lower, thereby also reducing the localized RF

satellite covariance. The advantage of using a GEO-GEO pair however is the constant visibility

from the stations, but also higher visibility of the RF satellite from the GEO satellites.
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(b) Satellite localization (step 2)

Figure 6.10: Position state error and 3σ covariance bounds. Step 1 uses SRIF, while step 2 uses
CBF, no noise

Note that the satellite localization plots have brief interruptions where no data is available.

This is due to the occultation of the satellite by the Earth from the vantage point of the GEO

satellites. Once every period, the LEO satellite disappears behind the Earth and when it reappears

measurements can be taken once more. The dual-satellite first iteration prefit and last iteration

postfit residuals are shown in Figure 6.13. Of course the lines are nearly flat due to the lack

of noise on the measurements. Figure 6.14 also shows the first iteration prefit and last iteration

postfit residuals for the localized satellite. Notice however that the FDOA postfit residuals show

some small deviations, this is due the sensitivity to the (very small) state error in the estimated

dual-satellite ephemeris. This would potentially lead one to conclude that simultaneous estimation
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(a) Dual-satellite ephemeris estimation (step 1)
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(b) Satellite localization (step 2)

Figure 6.11: Velocity state error and 3σ covariance bounds. Step 1 uses SRIF, while step 2 uses
CBF, no noise
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(a) Dual-satellite ephemeris estimation (step 1)
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Figure 6.12: AGOM state error and 3σ covariance bounds. Step 1 uses SRIF, while step 2 uses
CBF, no noise

would be better so as to leverage this additional information present in the localized satellite when

estimating the dual-satellite ephemeris.
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Figure 6.13: Dual-satellite TDOA/FDOA prefit residuals of first iteration and postfit residuals of
last iteration, no noise
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Figure 6.14: Localized satellite TDOA/FDOA prefit residuals of first iteration and postfit residuals
of last iteration, no noise
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6.2.1.2 Noise on Measurements

The exact same setup as the previous section is used, but now noise on the measurements is

included. Due to the noise, the solution of the dual-satellite ephemeris is off by several hundred

meters from the truth. The state errors are still within their covariance bounds however, conse-

quently due to the use of the CBF the state errors from satellite localization are also consistent and

within their covariance bounds. If a regular batch filter was implemented the state errors would

have exceeded the covariance bounds. While the uncertainties on the localized LEO satellite are

on the order of 10s of meters, this may in certain situations be sufficient. Notice that the errors

in the dual-satellite ephemeris are reflected in the errors found with the satellite localization. For

example, the dual-satellite ephemeris is biased in the in-track position, looking at the satellite lo-

calization position, we see that it is also biased in the in-track direction. The same is true for the

radial velocity errors.
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(a) Dual-satellite ephemeris estimation (step 1)
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(b) Satellite localization (step 2)

Figure 6.15: Position state error and 3σ covariance bounds. Step 1 uses SRIF, while step 2 uses
CBF

From Figure 6.18 we see that the trajectory is fitted to the noise of the measurements. Despite

this however, we still have dual-satellite state errors which are apparent when looking at the FDOA

post-fit residuals of the satellite localization. The TDOA residuals are significantly less affected
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(a) Dual-satellite ephemeris estimation (step 1)
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(b) Satellite localization (step 2)

Figure 6.16: Velocity state error and 3σ covariance bounds. Step 1 uses SRIF, while step 2 uses
CBF
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(a) Dual-satellite ephemeris estimation (step 1)
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Figure 6.17: AGOM state error and 3σ covariance bounds. Step 1 uses SRIF, while step 2 uses
CBF

because the radial position component of the dual-satellite estimation shown in Figure 6.15(a) is

known accurately.
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Figure 6.18: Dual-satellite TDOA/FDOA prefit residuals of first iteration and postfit residuals of
last iteration
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Figure 6.19: Localized satellite TDOA/FDOA prefit residuals of first iteration and postfit residuals
of last iteration



Chapter 7

GEO-GEO Orbit Determination and Geolocation with Real Data

This chapter is in part a verification of the previous topics introduced in this dissertation.

In previous chapters, simulated data was primarily used to demonstrate the proof of concept, here

we use a 45 hour arc of real data to show the efficacy of OD with TDOA and FDOA. The data arc

is for a GEO-GEO case involving the Galaxy-16 and SES-1 satellites, as demonstrated throughout

this thesis, the GEO-GEO case for OD has the lowest observability compared to other scenarios.

As a consequence by showing that we can indeed get an OD solution using TDOA and FDOA in

this worst case scenario, the real-data results in other dual-satellite setups looks to be promising.

After an OD scenario we also look at several geolocation examples using the same data set.

The measurement uncertainty for a real data set is computed from Eqs. 15 and 16 in Ref.

[78]. However, in the data used here the measurement uncertainty appears to be too optimistic

because the weighted RMS value is quite large while maintaining close to Gaussian residuals when

doing a preliminary fit. Therefore the TDOA measurement uncertainty has been increased by a

factor of 1.8 while the FDOA uncertainty was increased by a factor of 10. In general, it is possible

that the FDOA measurement uncertainty is so low due to the high transmitted power of the signal

while having systematic errors significantly larger than this.

7.1 GEO-GEO Orbit Determination

The developed OD framework is meant to handle real data, all that is required is an input

file that includes, among other inputs, all the measurements, times, frequencies, and transmitters
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used. The a-priori information is automatically obtained through a query service that pulls the

TLEs closest in time to the first measurement. Naturally real data has outliers therefore a data

editor is included to remove data points that exceed a certain predefined threshold. The threshold

is kept quite large, to remove only the largest outliers, it could be reduced further to remove other

points which could also be considered outliers particularly in the FDOA residuals. Figure 7.1

illustrates the first iteration TDOA and FDOA prefit residuals on the left with the last iteration

postfit residuals on the right.
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Figure 7.1: Complete arc: prefit and postfit residuals

Five baselines were used with the secondary transmitter city listed in the legend by color.

The reference transmitter is located in Colorado Springs. The black dashed lines indicate the

measurement uncertainty, in the TDOA postfit residuals we find that the uncertainty varies over

time demonstrated by the occasional spikes. The largest source of error is most likely attributed

to having used a cannonball model rather than the Fourier model, because we in effect estimated

an averaged AGOM value over the 45 hour time span for both satellites of 0.049 and 0.026 for

Galaxy-16 and SES-1 respectively. Because no truth state is available for comparison we look at a
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prediction as well as two different overlap studies in the subsequent sections.

7.1.1 Prediction Analysis

In the prediction analysis we filter the first half of the long-arc data set, then use the second

half of the data to do a pass-through. In this method we can determine whether we have simply

fitted to the data and have poor orbit predictability or if we have fitted to the data but are also

able to accurately predict a future satellite state. Of course the second case is desired and is proof

that the models accurately represent reality. Figure 7.2 shows the first iteration prefit residuals on

the left and the last iteration postfit residuals on the right. The postfit RMS values for TDOA and

FDOA using half of the data is approximately the same as the RMS values obtained using the full

long-arc data set shown in Figure 7.1.
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Figure 7.2: First half of data processed in filter

Figure 7.3 shows the pass-through residuals using the remainder of the data. We find that

the residuals fit quite well with the original estimated trajectory with RMS values only slightly
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larger than the full arc. Because the pass-through performs nearly as well as using the data to fit

the trajectory we have good predictability of future satellite states.
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Figure 7.3: Passthrough of second half of data

7.1.2 Long-Arc Overlap Analysis

The long-arc overlap analysis consists of two data arcs each 30 hours long. The left data arc

covers data from 0 to 30 hours, while the right data arc covers data from 15 hours to 45 hours.

As a result, there is a period of 15 hours that overlaps between the two data arcs. The estimated

ephemeris over this overlapped period is differenced between the two arcs to obtain a sense of the

magnitude of the errors. The smaller the errors the better, but as long as the errors are within

their expected covariance bounds the errors are acceptable.

The 15 hour overlapped ephemeris segments are rotated into the RIC frame and then differ-

enced. The mean of the errors per satellite component are shown in row 1 of Table 7.1 in meters

for position and millimeters per second for velocity. The standard deviation of the errors are shown
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Figure 7.4: Long arc overlap: 15 hrs

in the second row. The third and fourth row are the mean 3σ values obtained from the filter co-

variance, where ‘L’ and ‘R’ refer to the left and right arc respectively. We can take the mean of the

filter covariance when it is presented in the RIC frame due to the nearly unchanging uncertainty

levels for each component (after smoothing). The error in Ri and Ci for both satellites exceeds

the covariance bounds, while the other components remain consistent and below the expected error

levels. One likely reason for the higher error levels is due to the use of the cannonball model over a

long data arc span. The SRP effect changes depending on satellite orientation with respect to the

Sun, but using a single AGOM value to capture this effect merely provides an average rather than

an accurate representation. Therefore it is expected that using a shorter data span (but not too

short where AGOM cannot be estimated) would provide a more accurate AGOM value because it

covers a shorter time span where AGOM would have less chance to change significantly.

Table 7.1: 15 hr overlap analysis: errors and covariance [m & mm/s]

R1 I1 C1 Ṙ1 İ1 Ċ1 R2 I2 C2 Ṙ2 İ2 Ċ2

x̄ Err. -28.7 661.8 470.6 -48.2 1.6 -11.7 -28.1 663.7 470.5 -48.3 1.6 -11.7
Err. σ 18.5 77.3 555.9 3.6 1.6 61.4 17.8 76.2 555.4 3.5 1.5 61.4
L x̄ 3σ 25.9 1482.0 376.1 108.0 1.7 27.5 26.0 1480.6 376.4 107.9 1.7 27.5
R x̄ 3σ 26.1 1494.4 378.0 108.9 1.7 27.6 26.3 1489.0 378.2 108.5 1.7 27.6

7.1.3 Short-Arc Overlap Analysis

The short-arc overlap is conceptually the same as the long-arc overlap but rather than using

two 30 hour arcs we use two 9 hour arcs with a 4.5 hour overlap as shown by Figure 7.5.
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Figure 7.5: Short arc overlap: 4.5 hrs

The two 4.5 hour overlapped ephemerii are differenced in the RIC frame with the errors of

position in meters and the errors of velocity in millimeters per second listed in the first row of Table

7.2. The second row is the standard deviation of those errors. Once more, the third and fourth

rows provide the expected 3σ uncertainties, which is averaged over the 9 hour time span of the

left and right arc respectively. The errors in this short-arc overlap are larger than those from the

long-arc overlap, this is expected because fewer measurements are incorporated into the solution.

However the errors in the short-arc overlap analysis are entirely consistent with their 3σ covariance

values. This is likely due to the estimated AGOM value being more appropriate for a shorter span

of data rather than a span of more than a day.

Table 7.2: 4.5 hr overlap analysis: errors and covariance [m & mm/s]

R1 I1 C1 Ṙ1 İ1 Ċ1 R2 I2 C2 Ṙ2 İ2 Ċ2

x̄ Err. 10.1 1919.9 1001.4 -139.2 1.1 -59.5 9.7 1929.2 999.9 -139.9 0.8 -59.5
Err. σ 4.0 2.7 289.3 0.9 0.3 25.7 4.1 1.6 289.2 0.8 0.3 25.7
L x̄ 3σ 53.2 2704.7 1241.3 197.4 3.9 83.8 53.5 2701.5 1241.9 197.1 3.9 83.4
R x̄ 3σ 54.9 2721.7 1317.4 198.2 4.1 89.8 55.4 2718.3 1317.9 197.9 4.1 89.9

To verify the changing AGOM over a long arc of 45 hours we break up the 45 hour arc into

five 9-hour segments. With each arc estimated independently we obtain the AGOM values listed

in Table 7.3.



186

Table 7.3: Evolving AGOM over 45 hour long-arc data span

Arc 1 Arc 2 Arc 3 Arc 4 Arc 5

AGOM1 0.051 0.057 0.039 0.052 0.060
AGOM2 0.031 0.022 0.023 0.025 0.033

7.2 Geolocation

Using the first 9-hour arc of the 45 hour long-arc data set we geolocate each of the five

transmitters separately. In this way we use the four remaining transmitters (baselines) to estimate

the dual-satellite ephemeris and finally geolocate the omitted transmitter. The technique used here

is identical to the one described in chapter 6. Using four baselines for GEO-GEO estimation is

acceptable as previously shown in Figure 4.18, but the ephemeris is not as good as using all five

baselines. Because the locations of all five transmitters are known precisely we can compare our

geolocated solution using real-data with the known location. The errors, in kilometers, are shown

for each of the stations in Table 7.4.

Table 7.4: Real-data geolocation error [km]

Miami San Diego San Antonio Buhl Chantilly
0.180 2.090 0.275 0.232 1.172

In the following two subsections we go through a more detailed process of the Miami and Chan-

tilly geolocation steps. The two-step process of first estimating the ephemeris (step 1) and then

geolocating the unknown RF source (step 2) is implemented. The a-priori ephemeris information is

obtained from two TLEs, one for each satellite, which as shown in chapter 6.1, results in extremely

large geolocation errors if the ephemeris uncertainties are not reduced further.
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7.2.1 Geolocate Miami Transmitter

The prefit and postfit residuals of estimating the dual-satellite ephemeris are shown in Figure

7.6, where the measurements are fitted to the noise. The estimated ephemeris and uncertainty is

then used for the geolocation step.
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Figure 7.6: Dual-satellite ephemeris estimation without Miami baseline: first iteration prefit and
last iteration postfit residuals (step 1)

Using the CBF, the Miami transmitter is estimated with the prefit and postfit residuals shown

in Figure 7.7. We see that the TDOA RMS value is slightly lower than the ephemeris estimation

side, while the FDOA RMS is larger. The FDOA residuals on the geolocation side absorb the

ephemeris errors because the CBF is a sub-optimal filter since the ephemeris is only considered

rather than estimated simultaneously.

The projected geolocation ellipses are shown in Figure 7.8. From Figure 7.8 (a) it is difficult

to distinguish all the various ellipses and even the actual location of the Miami transmitter, that is

why Figure 7.8 (b) shows a zoomed in area. For reference the transmitter true location is 38.816656◦
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Figure 7.7: Geolocation of Miami transmitter: first iteration prefit and last iteration postfit resid-
uals (step 2)

in latitude, -104.760277◦ in longitude and 1850.3 m in altitude. The largest ellipse which is the 3σ

consider covariance spans 31.638 km in the long axis and 227 m in the short axis, the long axis

points to the direction of the two satellites. When applying the probabilistic altitude constraint the

3σ consider covariance shrinks to 386 m by 130 m, with a final geolocation error of 180 m. Notice

that the considered covariance ellipse is significantly larger than what was previously demonstrated

using simulated data, but recall that the measurement uncertainty in this chapter was inflated to

better represent the actual errors. This increase in measurement uncertainty accounts for the larger

covariances.
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Figure 7.8: Geolocation of a Miami, FL based TX

7.2.2 Geolocate Chantilly Transmitter

The previous geolocation process is repeated with the Chantilly transmitter. The ephemeris

is estimated using all baselines with the exception of the Chantilly baseline, where the prefit and

postfit residuals are illustrated in Figure 7.9. Once more we are able to estimate the ephemeris

down to the measurement noise with no structure present in the residuals.

The residuals for estimating the Chantilly transmitter location are shown in Figure 7.10

where we find that the TDOA postfits have a downward trend over the observation time span.

This downward trend is indicative of an ephemeris position error from step 1, while the FDOA

residuals appear normally distributed about zero in a Gaussian fashion.

Figure 7.11 demonstrates how good the geolocation solution is compared to the actual trans-

mitter location. Once again in 7.11(a) we find that the 3σ consider covariance ellipse is extremely

elongated towards the direction of the satellites with a 158.2 km long axis and 270 m short axis.
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Figure 7.9: Dual-satellite ephemeris estimation without Chantilly baseline: first iteration prefit and
last iteration postfit residuals (step 1)
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Figure 7.10: Geolocation of Chantilly transmitter: first iteration prefit and last iteration postfit
residuals (step 2)
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The magnitude of the long axis is simply due to the uncertainty of the considered ephemeris because

the long axis of the 3σ covariance is only 9.5 km. The true location of the transmitter is 38.816656◦

in latitude, -104.760277◦ in longitude, and 1850.3 m in altitude for reference as it is difficult to

see in 7.11(a). Figure 7.11(b) shows a closeup, where the 3σ consider covariance with probabilistic

altitude constraint is shown with a dashed blue line and is 937.5 m by 104.7 m. Notice that the

actual station location is outside of this covariance however, this is most likely due to two factors.

The first is the ephemeris error as previously evidenced by the down-trending TDOA residuals.

The second is likely due to the resolution of the elevation profile used to generate the ‘computed

altitude’ (see chapter 6.1.1.3), if a finer mesh is used the solution could move South closer to the

true transmitter location.
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Figure 7.11: Geolocation of a Chantilly, VA based TX



Chapter 8

Small Body Navigation and Gravity Estimation

The following decade of NASA missions include a strong emphasis on asteroids, with the

recently launched OSIRIS-REx spacecraft attempting a sample return by 2023 in addition to two

other recently announced proposals. The first of the new missions is Lucy, a reconnaissance mission

to the Jupiter Trojan asteroids which is expected to launch in 2021 [53, 63]. The second is Psyche,

a mission to the 16 Psyche asteroid, of great scientific interest due to its metal composition which

is expected to launch in 2023 [4, 63]. The continued interest in asteroids means new research

opportunities for better and cheaper methods to navigate about these small bodies. The accuracy

to which the gravity field of the asteroid is known directly impacts navigation and science goals as

well. Of course many of the parameters such as the asteroid shape, spin rate and gravity field are

not known to a high degree of confidence upon arrival at the asteroid. Consequently these must be

determined through estimation techniques in-situ.

In this chapter we present a proof of concept for gravity recovery requiring two beacons in close

proximity to the asteroid and one main spacecraft predominantly outside the asteroid’s gravitational

influence. The proposed measurement types are angles as well as FDOA. The motivation for using

FDOA as a small-body navigation observable is for the cancellation of common error as discussed

throughout this dissertation. For example if the beacons have an oscillator error or bias, the FDOA

measurement would be unaffected because the errors are differenced. Furthermore main satellite

receiver errors would cancel as well [34]. Consequently the beacons would not require expensive

hardware, and could be made cheaper since the tolerances do not need to be as high as with other
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observables such as range or range-rate. While biases can of course be estimated, FDOA eliminates

the need for that entirely.

In this study we use asteroid 433 Eros for simulation purposes because its parameters are

well known due to the NEAR-Shoemaker mission. NEAR orbit operations commenced in February

of 2000 with an insertion orbit about Eros of 320 × 360 km. Over the course of a year NEAR

subsequently went into lower and lower orbits eventually allowing a 15 × 15 gravity field to be

determined [59]. This gravity field of Eros is used as truth in the analyses and simulations to

follow. The studies presented here are an extension of previous work done by Refs. [35] and [52]

which also used Eros’ data and gravity field from the NEAR mission.

The chapter is laid out in the following manner. We first present the high level dynamics

and setup used to generate the truth trajectories. These truth trajectories are used for comparison

to the estimated states of the filter as a performance metric. These truth trajectories are also

used to generate the truth measurements, uncorrupted by noise or bias. Second, we introduce the

dynamical model used in the filter and third the measurement model in the filter. Then we present

a number of covariance analyses using the CRLB to compare the performance of using FDOA

versus range-rate in addition to the angle observables. We then show the viability of using angles

and FDOA to perform small body navigation and gravity recovery in a navigation simulation and

repeat this simulation with range-rate as a comparison benchmark. Finally we introduce a bias in

the beacon translation oscillator and show the affect on the angles and range-rate simulation since

the angles and FDOA simulation remains unaffected.

8.1 Navigation Truth Models

In this section, the parameters and setup to create the simulations are discussed. There are

three satellites involved in this study. The primary is the main satellite which contains all the

instruments and computing power necessary for the mission. The main satellite is in a heliocentric

orbit, trailing Eros’ orbit at a distance of approximately 1500 km. While the gravitational effect

of Eros on the main satellite is not negligible it is minimal and time scales of several months are
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required before the main satellite would move significantly from its original relative position to

Eros. It is assumed that no corrective maneuvers are performed by the main satellite in order to

maintain its original position, as a result it moves only under the influence of gravity and SRP. In

this study, the state of the main satellite is assumed to be known precisely as is the ephemeris of

Eros. Furthermore the main satellite attitude is also assumed to be known exactly and error free.

The two additional satellites are in fact simple beacons orbiting at close range to Eros. Beacon 1

has a semi-major axis of 35.75 km and an inclination of 105◦, Beacon 2 has a semi-major axis of

31.56 km and an inclination of 134◦. Each satellite has an initial position r, and velocity v, in the

Asteroid Centered Inertial (ACI) frame as well as coefficient of reflectivity Cr. We assume that the

gravity coefficients C do not change over the time scale of the simulation. Equation 8.1 shows the

first order differential equations that describe the truth dynamics in the simulations.

Ẋtruth(t) = F (X, t) =



ṙ1

v̇1

Ċr1

ṙ2

v̇2
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ṙm

v̇m

Ċrm

Ċ



=



v1

a12B + a1NS + a1NB + a1SRP

0

v2

a22B + a2NS + a2NB + a2SRP

0

vm

am2B + amNS + amNB + amSRP

0

0



(8.1)

The subscripts 1, 2 and m refer to the two beacons and the main satellite correspondingly. The

four accelerations included in the dynamics are from 2-body (a2B) and non-spherical (aNS) ac-

celerations from Eros, the Sun as a 3rd body (aNB), and SRP (aSRP ). The equations describing

these accelerations are shown in the “Filter Dynamical Model” section as the dynamics used are

the same. The time histories of these states are integrated using a DOPRI(8)7 integrator scheme
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from the TurboProp orbit integration package developed at CU Boulder, for an 8 day time frame

[36]. The spherical harmonics of Eros are given by the NEAR15A model from which the 15 × 15

gravity field was used. Two views of the integrated truth trajectories of the beacons about Eros

are shown in Figure 8.1. The trajectory of the main spacecraft is not shown due to scale and lack

of movement over the 8 day period.
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Figure 8.1: Truth beacon orbits over 8 day span with EROS reference sphere: beacon 1 in blue,
beacon 2 in red

The axes shown in Figure 8.1 are in ACI, it is assumed that Eros’ spin is about the z-axis at

a rate of 0.00033116596755685 rad/s and is known precisely. The blue opaque sphere marks the 16

km radius reference sphere of Eros. The reference sphere is simply a sphere that marks the farthest

point of Eros from its CoM, which is not representative of Eros’ shape. Note that from view 1

shown in Figure 8.1(a) the beacon orbits are not occulted by Eros, this is a similar view that the

main satellite has of both beacons and consequently measurements are recorded for 8 days without

interruption.
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Using the truth trajectories of the main spacecraft and the two beacons the truth measure-

ments are generated, uncorrupted by noise. The measurements are generated at a frequency of once

every 2 minutes. In this chapter there are two different simulation types each one using a distinct

measurement set. The first uses angles in addition to FDOA and the second uses angles with two

range-rate measurements. This means that every 2 minutes there is a set of truth measurements

which includes angles, FDOA and range-rate. The appropriate measurements are chosen depend-

ing on which simulation is executed. Table 8.1 summarizes the parameters used in this study and

is based upon the parameters used in Ref. [35]. Note that there are several FDOA parameters

listed in Table 8.1. The first is Transmitter (TX) separation, this is because two TXs are used and

the separation matters, the reference and secondary TXs each with their own frequency as well.

Under the beacon parameters the FDOA translation frequency is the change in signal frequency by

the beacon before being downlinked back to the main satellite. While the translation frequency is

shown, it has no effect on the filter performance since it cancels in the FDOA measurement type.

In the following two sections the filter dynamics and measurement models are presented.

While the models themselves are equivalent to those used to generate the truth trajectories, the

values in some cases are different. Hence why a filter is implemented to try to recover the truth

trajectory as best as possible. An Extended Kalman Filter (EKF) is used which is initialized with

a Conventional Kalman Filter (CKF). Due to the high non-linearities present at Eros a non-linear

filter was chosen over others such as the CKF or Batch.
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Table 8.1: Truth model parameters

Ephemerides
Ephemeris DE421
Epoch 01/01/2020 00:00:00 TDB

Reference Frame
Main Satellite EROS Centered Inertial
Beacons EROS Centered Inertial
Coordinate Center EROS Center of Mass
Eros Spin Rate 0.00033116596755685 rad/s

Force Model
Central Body 433 Eros
Non-Spherical Gravity Field 15×15 from NEAR15A
3rd Body Sun
Solar Radiation Pressure 101,304,639.46 kg-km3/m2s2 at 1 AU

Main Satellite Parameters
Reflective Area to Mass Ratio, As/m 0.025 m2/kg
Coefficient of Reflectivity, Cr 2.0
FDOA Baseline 10 m
FDOA Reference TX Frequency 14,385,775,000 Hz
FDOA Secondary TX Frequency 14,387,375,000 Hz

Beacon Parameters
Reflective Area to Mass Ratio, As/m 0.025 m2/kg
Coefficient of Reflectivity, Cr 1.5
FDOA Translation Frequency 2,300,000,000 Hz

8.2 Filter Dynamical Model

In this navigation scenario there are 14 estimated states; seven for each beacon plus the gravity

coefficients, recall that the main satellite state is known exactly and therefore not estimated. They

include position r, velocity v in the ACI frame and the coefficient of reflectivity Cr. If a 15×15

gravity field is estimated an additional 252 gravity coefficients are added alongside the original 14

for a total of 266. The estimated state vector X can be represented as

X =

[
r>1 v>1 Cr1 r>2 v>2 Cr2 C>

]>
, (8.2)

where,
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C =

[
C2,0 C2,1 S2,1 C2,2 S2,2 · · · Cl,m Sl,m

]>
. (8.3)

In Eq. 8.3 the subscripts l and m refer to the degree and order of the spherical harmonics respec-

tively. The states evolve due to 2-body, non-spherical, 3rd body and SRP accelerations. These

dynamics can be written as first order differential equations, and are the same as Eq. 8.1 except

that the main satellite state is not re-integrated since the truth states are used for that instead.

Ẋ(t) = F (X, t) =



ṙ1

v̇1

Ċr1

ṙ2

v̇2

Ċr2

Ċ



=



v1

a12B + a1NS + a1NB + a1SRP

0

v2

a22B + a2NS + a2NB + a2SRP

0

0



. (8.4)

These dynamics are linearized about a reference trajectory for use in the EKF described in

chapter 3.2.3. The Jacobian is given by the sparse matrix shown in Eq. 8.5 where n is the length

of the spherical harmonics vector C given in Eq. 8.3,

A(t) =
∂F (X, t)

∂X
=



03×3 I3×3 03×1 03×3 03×3 03×1 03×n

G1(t) 03×3 S1(t) 03×3 03×3 03×1 B1

0 0 0 0 0 0 01×n

03×3 03×3 03×1 03×3 I3×3 03×1 03×n

03×3 03×3 03×1 G2(t) 03×3 S2(t) B2

0 0 0 0 0 0 01×n

0n×3 0n×3 0n×1 0n×3 0n×3 0n×1 0n×n



. (8.5)

The G, S and B submatrices are shown below. Specifically,
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Gi(t) =
∂(ai2B + aiNS + aiNB + aiSRP )

∂ri
∈ R3×3 (8.6)

and,

Si(t) =
∂aiSRP

∂Cri
∈ R3×1 (8.7)

and,

Bi =
∂(ai2B + aiNS + aiNB + aiSRP )

∂C
∈ R3×n. (8.8)

Next we examine the measurement models used in this study.

8.3 Filter Measurement Model

In this proof of concept study three different measurement types are implemented, either

angles with FDOA or angles with range-rate. Angles provide plane-of-sky information in terms of

azimuth and elevation angles from the camera line-of-sight (LOS) which is along the main satellite

- Eros CoM vector. The final non-linear measurement equations G(X(t), t), for both setups are

shown here,

G(X(t), t) =

[
Az1 El1 Az2 El2 FDOA

]>
, (8.9)

or

G(X(t), t) =

[
Az1 El1 Az2 El2 ρ̇1 ρ̇2

]>
. (8.10)

The actual measurement equations of angles, FDOA and range-rate are described in chapter 2.2.

Figure 8.2 illustrates how the FDOA measurement is used in the context for asteroid navigation,

because in this dissertation it has only been described for use with stations on the Earth.
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Beacon 1!
Beacon 2!

433 Eros!

Main Satellite!

(a) FDOA Geometry: blue lines are emitted signals
and magenta lines are received at the main satellite

RX!TX1! TX0!

Beacon !i

ρt
i

ρi

ρr
i

Main Satellite!
(b) Differential Doppler geometry: half of an FDOA
measurement

Figure 8.2: Differential Doppler and FDOA geometries: two differenced differential Doppler mea-
surements generates the FDOA measurement

8.4 Simulation Results

The results are broken down into two sections, first the Cramér-Rao analyses and second two

filter runs comparing the use of FDOA with two range-rate observables and finally a simulation

which includes a range-rate bias representative of beacon oscillator errors.

8.4.1 Cramér-Rao Lower Bound (CRLB) Analyses

The CRLB is used extensively in the following analysis in order to assess the viability of using

angles with an FDOA measurement for gravity estimation. Furthermore, angles with range-rate

are also analyzed to set a benchmark for comparison with the FDOA results. Table 8.2 summarizes

the a-priori uncertainties on the state as well as the measurement uncertainties used in the CRLB

covariance analyses.
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Table 8.2: CRLB 1σ a-priori uncertainty for estimated states and measurements

Beacons
Position 200 m
Velocity 2 cm/s
Coefficient of Reflectivity 0.01

433 Eros
Gravity Coefficients (normalized) 0.01

Measurements
Angles 2e-5 rad ≈ 30 m at 1500 km
Range-rate 1 cm/s and 1 mm/s
FDOA 0.1, 0.2 and 0.01 mHz

The purpose of this proof of concept is to determine how well FDOA can recover the gravity

field and how this compares to better known measurements such as range-rate since FDOA has

some advantages. The uncertainty on the measurements has a large effect on the final results,

consequently we examine a number of different uncertainties. In Figure 8.3 the abscissa shows the

degree of the gravity coefficients. On the ordinate in a log scale is the RMS value of the harmonics

[59]. The black dashed line with ‘x’s indicate the RMS of the truth values of the spherical harmonics.

For example for degree 2, the RMS value is computed as
√

1
5(C2

2,0 + C2
2,1 + S2

2,1 + C2
2,2 + S2

2,2).

Then we can plot the uncertainty for each of these harmonics determined from the CRLB. If the

uncertainty is lower than the actual value then those gravity coefficients can be accurately estimated.

On the other hand if the uncertainty is much larger than the value of the gravity coefficients itself,

there is not much information to be gained on those coefficients. We first examine the case of

angles only, meaning no range-rate or FDOA measurements are included to establish a baseline.

Using an angle uncertainty of 2e-5 rad we obtain the purple line in Figure 8.3. The uncertainty of

the first three gravity coefficients are well below their values, therefore a 4 × 4 gravity field could

be estimated in this configuration. Then we add FDOA with a σ = 0.2 mHz shown in blue with

diamond markers. This sigma value was chosen because it is realistic and already used in certain

other applications such as geolocation. Given the added measurement type we can now estimate

up to a 5 × 5 gravity field since the uncertainty at the 5 degree harmonics mark is a magnitude

smaller than its gravity coefficient value.
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Next we examine two other scenarios, the first of which is FDOA with a σ = 0.1 mHz and

the second is range-rate with a σ = 1 cm/s. The CRLB for those two simulations are shown

in yellow with triangle markers and red with ‘+’ markers respectively. Note that they overlap

almost identically, in fact the gravity coefficient uncertainties using range-rate and FDOA with the

specified measurement uncertainties are within only a few percent difference. The angles and FDOA

measurement setup is marginally better than the angles and range-rate setup with these specified

σs, as the red line is somewhat lower than the yellow line. The second scenario are the CRLB

analyses with FDOA σ = 0.01 mHz and range-rate σ = 1 mm/s. These are shown in cyan with

circle markers and green with square markers, also in Figure 8.3. Once again these two simulations

are within a few percent difference and the uncertainty is low enough to estimate a 6 × 6 gravity

field while not quite sufficient to estimate the 7× 7 field as the uncertainty is on the same level as

the degree 7 coefficients values. Therefore including FDOA can increase the gravity field estimate

by at least 2 degrees and orders over angles alone.

8.4.2 Navigation Results

In this section the simulations are not just covariance analyses but rather examinations of

filter performance under realistic conditions with simulated measurements. This means the EKF

started off with an initial reference trajectory deviated from the truth. Furthermore, the 15 × 15

gravity field has also been corrupted to determine how well the truth gravity field can be recovered.

We show the results from the angles and FDOA measurements first, where sigmas of 2e-5 rad

and 0.1 mHz are used respectively. Then we analyze the same scenario but replace the FDOA

measurement with two range-rate measurements, one for each beacon, with a sigma of 1 cm/s.

These two cases correspond to the red and yellow lines in Figure 8.3. The last simulation we

present is the case of a bias caused by, for example, an oscillator error in the beacons. Only the

angles and range-rate with a bias are shown as angles with FDOA are unaffected by those types of

errors, a potentially useful result of using differenced measurements.
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CRLB FDOA σ = 0.1 mHz

CRLB FDOA σ = 0.2 mHz

CRLB FDOA σ = 0.01 mHz

Figure 8.3: Cramér-Rao Lower Bounds for angles (σ = 2e-5 rad) with either range-rate or FDOA
for various σs

8.4.2.1 Angles and FDOA

Figures 8.4 and 8.5 illustrate the time evolution of the state errors, specifically position and

velocity. The ACI x, y and z positions and velocities are shown for both beacons with the subscript

indicating beacon 1 or 2. The figures are cropped in the y-axis to better show detail of how the

errors are reduced over time, after about 15 hours of measurement processing the state errors have

diminished to less than ± 40 m and ± 30 mm/s. The 3σ covariance bounds for the 6 states are

shown with the dashed lines progressively decreasing over time. Note that the covariance for beacon

1 is lower than beacon 2 despite starting with the same a-priori covariance and deviation from the

truth.
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Figure 8.4: Angles and FDOA: position state errors with 3σ bounds
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ż1
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Figure 8.5: Angles and FDOA: velocity state errors with 3σ bounds

In Figure 8.5 the velocity state errors as well the covariance bounds for beacon 2 have a very

noticeable and repeatable pattern of increasing and decreasing at a rate of approximately twice per

day. This pattern is due to the orbital orientation with respect to the main satellite. After 8 days

of measurement processing the 1σ 3D RMS uncertainty for position and velocity of beacon 1 is 1.89

m and 0.26 mm/s respectively and 3.17 m and 0.74 mm/s for beacon 2. With these measurement

sigmas for the angles and FDOA the gravity field can be estimated up to degree and order 5 as
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indicated by the corresponding CRLB. Figure 8.10 shows the gravity coefficient errors over time as

well as the 3σ covariance bounds from degree 2 to 5. There is a rapid drop in the uncertainty over

the first 24 hours and then the filter gradually continues to improve its estimate over the following

week.

8.4.2.2 Angles and Range-Rate

Angles and FDOA observables have not been previously used for gravity estimation about

asteroids, as a result we show a comparison with angle and two range-rate measurements. The

covariance bound evolution in both the beacon states as well as the gravity coefficients match

closely to that of FDOA. Again we find that the covariance for beacon 1 is lower than that of

beacon 2. The pattern in the velocity of beacon 2 is still present with the same magnitude as well.

After 8 days of measurement processing the 1σ 3D RMS uncertainty for position and velocity of

beacon 1 is 1.91 m and 0.27 mm/s respectively and 3.21 m and 0.77 mm/s for beacon 2. These

uncertainties are marginally larger than those found with the FDOA observable.
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Figure 8.6: Angles and range-rate: position state errors with 3σ bounds

The gravity coefficients are also able to be estimated up to degree and order 5. The results of

which are illustrated in Figure 8.11. The S5,3 coefficient has significantly worse error over the 8 day
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ż2

Figure 8.7: Angles and range-rate: velocity state errors with 3σ bounds

observation period despite being initiated with the same error as with FDOA but also converges

by the end of the 8 days. In general, however, the FDOA results with 0.1 mHz σ show a barely

perceptible improvement over range-rate with 1 cm/s σs. This of course assumes no errors or biases

are present in the system. In the next section we introduce a bias which emphasizes the potential

strength of FDOA.

8.4.2.3 Angles and Range-Rate with Bias

In the following scenario we introduce a range-rate bias of +1 cm/s in beacon 1 and -1 cm/s

in beacon 2. A bias like this could occur if the translation oscillator frequency of the beacons were

in error. As shown by the position and velocity plots of the beacons in Figures 8.8 and 8.9 there is

a significant bias present. Furthermore, this error propagates to the estimation of the gravity field

as shown by Figure 8.12. While not immediately obvious in the degree 2 coefficients, degrees 3, 4

and 5 show large biases and often exceed their 3σ covariance bounds. The advantage of using the

FDOA observable instead is that these common errors cancel and despite a large bias like this, the

results are identical to those shown previously.

In these three cases of angles with FDOA and angles with range-rate the state errors of the
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Figure 8.8: Angles and range-rate with bias: position state errors with 3σ bounds
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ż1
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Figure 8.9: Angles and range-rate with bias: velocity state errors with 3σ bounds

coefficient of reflection were not shown. The plots simply showed a reduction in the covariance

bounds but since the initial bounds were quite large with an a-priori σ = 0.01, 8 days was not

sufficient to lock down on the truth value. In the simulation with the bias the coefficient of

reflection estimate also diverged and slightly exceed the covariance bounds.

In this chapter we have shown the viability of using angles in conjunction with the FDOA

measurement type to perform state estimation on two beacons in close proximity to a small body.
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Figure 8.10: Angles and FDOA: gravity coefficient errors and 3σ bounds shown for coefficients
where coefficient value RMS is less than its coefficient RMS uncertainty

More importantly we have shown that gravity field recovery is possible within just a few days.

For comparison with the FDOA observable we have also conducted simulations using two range-

rate measurements, one for each of the beacons. An FDOA measurement uncertainty of 0.1 mHz

equates approximately to a range-rate sigma of 1 cm/s and 0.01 mHz to 1 mm/s. The motivation for

exploring the use of FDOA as a navigation data type is for its resilience against certain common

errors. Due to the double differenced nature of FDOA, any translation oscillation errors in the

beacons and receiver errors in the main satellite cancel. As a result, cheaper hardware may be

viable since the high standards required by other data types such as range and range-rate or
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Figure 8.11: Angles and range-rate: gravity coefficient errors and 3σ bounds shown for coefficients
where coefficient value RMS is less than its coefficient RMS uncertainty

Doppler are not necessary to produce the same results. While these errors could in some cases

be estimated, FDOA removes the need for that entirely. The feasibility has been demonstrated in

this chapter but a number of assumptions need to be addressed in the future to make this study

more realistic. The first of which is the absolute knowledge of the state of the main spacecraft. In

reality this spacecraft too will need to be estimated as there will be some uncertainty in its state.

With limited Deep Space Network (DSN) measurements as well as optical navigation of landmark

tracking as was previously shown in Ref. [35] could be a possibility. Another approach is to perform

a consider covariance analysis that takes into account some uncertainty of the main spacecraft state
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Figure 8.12: Angles and range-rate with bias: gravity coefficient errors and 3σ bounds shown for
coefficients where coefficient value RMS is less than its coefficient RMS uncertainty

to see how that affects the beacon state and gravity estimation. The second assumption that needs

to be addressed is the absolute knowledge of the main spacecraft attitude with the LOS vector

pointing exactly at Eros’ CoM, some bias or offset within the pointing would affect primarily the

angles measurements. Once more a consider covariance analysis could be performed on this as well

to determine the sensitivity of these errors on the final results.



Chapter 9

Conclusion and Future Work

This dissertation presents a novel technique for multi-satellite OD of active Earth-orbiting

satellites. The approach is a combination of two existing, but not previously combined fields.

On the one hand we have the well developed field of very long baseline interferometry (VLBI)

for interplanetary navigation, specifically the technique of same beam interferometry (SBI) which

estimates a set of relative satellite states. On the other hand we have the field of dual-satellite

geolocation which focuses on the localization of a radio frequency (RF) source somewhere on the

Earth visible to both satellites. By using the geolocation observables of time difference of arrival

(TDOA) and frequency difference of arrival (FDOA) in an SBI setup, the dual satellite state vector

can be estimated in an absolute sense while simultaneously canceling many common errors.

This is the first published instance of this technique, consequently we first explored the

observability to determine when it is appropriate to use TDOA and FDOA. Two key factors were

analyzed: the number of baselines, and the orbit regimes of the two satellites. As expected,

increasing the number of baselines improves the solution quality due to the increased number of

measurements but also due the additional geometrical diversity. Three different orbit regimes were

explored, a GEO-GEO, GEO-MEO, and GEO-LEO setup. The use of TDOA and FDOA becomes

more favorable as faster dynamics, i.e. lower orbiting satellites such as the GEO-LEO configuration

are used. It should be noted that the one particular case of two geostationary satellites, meaning

slow dynamics, with one baseline has a low degree of observability to the point of not being practical

for real-world implementation. Indeed when the number of baselines are increased from one to two



212

or more, the problem does become increasingly more tractable. We also illustrate under what

circumstances TDOA and FDOA observables perform better than the classical use of range and

range-rate. In a strong majority of cases TDOA and FDOA have a more favorable OD result

with lower uncertainties and smaller state errors. The benefit of TDOA and FDOA, over range

and range-rate, is further exacerbated if biases are present which often times leaves the former

unaffected yet negatively affects the latter.

In addition to dual-satellite OD, we also investigated relative satellite OD of a chief and

deputy satellite with the TDOA and FDOA observables. The full non-linear equations are imple-

mented therefore no restrictions on the satellite separation are in place other than still being within

the same beamwidth of the transmitting antenna. Because only one satellite is estimated, rather

than both, the estimated satellite uncertainty can attain exceptionally low levels. Three different

scenarios were investigated, a GEO chief satellite paired with a deputy ranging from LEO-to-GEO,

a leader-follower scenario with a chief and deputy in the same orbits ranging from LEO-to-GEO,

and finally a tightly orbiting relative bounded motion case with the orbit regimes ranging from

LEO-to-GEO as well. Once more the OD results were compared to the classical range and range-

rate measurements where in all three scenarios TDOA and FDOA were more favorable with the

exception when both satellites were in GEO. Two types of analyses were conducted, one where the

chief knowledge was assumed perfect, and second where some small amount of chief uncertainty

was considered when estimating the deputy in order to maintain better covariance realism. The re-

sults demonstrate that using TDOA and FDOA in a relative navigation sense could provide better

uncertainty quantification than traditional methods if the state knowledge of one satellite is already

very accurate. This is particularly useful for a space situational awareness (SSA) application.

This dissertation did not only focus on OD however, but also on the estimation of RF sources

both ground and space-based. Research was conducted on mapping the ephemeris uncertainty to

the geolocation covariance to provide a more realistic covariance. Furthermore, the geolocation

solution was improved by appending a probabilistic altitude constraint to the posterior covariance,

significantly reducing the projected geolocation uncertainty ellipse. The localization of a sub-GEO
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satellite, in this work a LEO satellite, by two GEO satellites was also examined. This setup

resembles the tracking and data relay satellite system (TDRSS) to track lower Earth orbiting

satellites, with the benefit that any higher-orbiting satellite capable of repeating a signal can be

used rather than a limited number of TDR satellites. By tracking a high LEO satellite from GEO,

approximately 75% of the orbit is visible allowing long arcs of tracking.

The results in this dissertation were verified by a long-arc of real data. The measurements

are from the Galaxy-16 and SES-1 communication satellites in geostationary orbit. Both the OD

and geolocation aspects were evaluated. Note that dual-satellite geolocation often takes place using

geostationary satellites which is the worst spot for the satellites due to the low relative motion with

respect to the ground stations. If a transmitter interferes with a communication satellite in GEO

then it should ideally be paired with a LEO rather than another GEO. In this way, the OD on

both satellites would be better than in the GEO-GEO setup, which reduces the mapped ephemeris

uncertainty into the projected geolocation covariance.

Finally, the use of double differenced measurements has additional benefits that are not

restricted to Earth orbiting satellites. FDOA was shown to be a suitable measurement in addition

to optical measurements for small-body navigation of multiple beacons or cubesats and gravity

recovery.

Future work includes additional dual-satellite configurations. In the current body of research

on dual-satellite estimation the case of a GEO satellite paired with a secondary ranging in orbit

from LEO-to-GEO was considered. However it is likely, because of the results shown with relative

navigation, that lower-orbit configurations would yield favorable OD results compared to range and

range-rate as well. Further research needs to be conducted on the inclusion of additional satellites,

so as to determine the advantage of using TDOA and FDOA for formations and constellations.

Continued development of the Fourier SRP model is required when longer data arcs are processed

and should be incorporated in the Python framework developed for this dissertation. While pre-

liminary research was conducted on the location and orientation of the baselines, no conclusive

arguments could be established other than the number of baselines should be maximized.
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Currently the relative OD research was conducted in a two-body environment, not the full

ephemeris as was used for the dual-satellite OD problem. The full dynamics and measurement

models need to be extended to the relative case as well. The increased dynamics are expected

to improve the results rather than degrade them however, because the additional perturbations

increase the observability which would be beneficial for relative OD in the GEO belt. On the

geolocation research side, the benefits of doing geolocation with sub-GEO satellites needs to be

investigated to quantify the geolocation solution improvement due to the faster dynamics.



Bibliography

[1] Navigation Data - Definitions and Conventions. (May), 2010.

[2] COSPAS-SARSAT 406 MHz MEOSAR Implementation Plan. Technical Report 1, 2013.

[3] Henry Louis Ablin. Criteria for degree of observability in a control system. PhD thesis, 1967.

[4] ASU. Psyche: Journey to a Metal World, January 2017. Available at
https://sese.asu.edu/research/psyche.

[5] Riccardo Bardelli, David Haworth, and Nigel Smith. Interference Localisation for the Eutelsat
Satellite System. IEEE, pages 1641–1651, 1995.

[6] Roger R. Bate, Donald D. Mueller, and Jerry E. White. Fundamentals of Astrodynamics.
Dover Publications, Inc., New York, 1971.

[7] J S Border and E R Kursinski. Deep space tracking and frequency standards. Frequency
Control, 1991., Proceedings of the 45th Annual Symposium on, pages 594–607, 1991.

[8] James S. Border, William M. Folkner, Robert D. Kahn, and Karen S. Zukor. Precise tracking
of the Magellan and pioneer venus orbiters by same-beam interferometry Part I: Data Accuracy
Analysis. TDA Progress Report 42-110, Apr-Jun:1–20, 1992.

[9] William L. Brogan. Modern Control Theory. Prentice Hall, 3rd edition, 1991.

[10] Arthur E. Jr. Bryson and Yu-Chi Ho. Applied Optimal Control. Taylor & Francis, revised pr
edition, 1975.

[11] Yalu Cao, Li Peng, Jinzhou Li, Le Yang, and Fucheng Guo. A new iterative algorithm for
geolocating a known altitude target using TDOA and FDOA measurements in the presence of
satellite location uncertainty. Chinese Journal of Aeronautics, 28(5):1510–1518, 2015.

[12] M H Chan. Application of a Dual Satellite Geolocation System on Locating Sweeping Inter-
ference. In World Academy of Science, Engineering and Technology, volume 6, pages 939–944,
2012.

[13] Y. T. Chan and K. C. Ho. A Simple and Efficient Estimator for Hyperbolic Location. IEEE
Transactions on Signal Processing, 42(8):1905–1915, 1994.

[14] Paul Chestnut. Emitter Location Accuracy Using TDOA and Differential Doppler. IEEE
Transactions on Aerospace and Electronic Systems, AES-18(2):214–218, 1982.



216

[15] C. C. Counselman III, H. F. Hinteregger, and I. I. Shapiro. Astronomical Applications of Dif-
ferential Interferometry A Scanning X-Ray Microscope Using Synchrotron Radiation. Science,
178(November):607–608, 1972.

[16] J. E. Dennis and R. B. Schnabel. Numerical Linear Algebra Background. In Numerical
Methods for Unconstrained Optimization and Nonlinear Equations, pages 40–68. 1996.

[17] Leonhard Euler and Anders Johan Lexell. Recherches et calculs sur la vraie orbite elliptique
de la comete de l’an 1769 et son tems périodique. 1770.

[18] W. M. Folkner, J. S. Border, and Sumita Nandi. Orbit determination for Magellan and Pioneer
12 using same-beam interferometry. Advances in the Astronautical Sciences, 76(pt 2):909–918,
1992.

[19] W. M. Folkner and J.S. Border. TDA Progress Report 42-109. Orbiter-Orbiter and Orbiter-
Lander Tracking Using Same-Beam Interferometry. Technical report, NASA, 1992.

[20] William M. Folkner, James S. Border, Sumita Nandi, and Karen S. Zukor. Precise track-
ing of the Magellan and pioneer venus orbiters by same-beam interferometry Part II: Orbit
Determination Analysis. TDA Progress Report 42-113, Jan-Mar:22–36, 1993.

[21] Jeroen L. Geeraert, Brandon A. Jones, and Jay W. Mcmahon. Improving Geolocation Accu-
racy Through Refined Satellite Ephemeris Estimation in an Ill-Conditioned. In AIAA/AAS
Astrodynamics Specialist Conference, pages 1–20, 2015.

[22] Jeroen L Geeraert and Jay W Mcmahon. Dual-Satellite Geolocation with Ephemeris Correction
and Uncertainty Mapping. IEEE Transactions on Aerospace and Electronic Systems, pages
1–13.

[23] Jeroen L Geeraert and Jay W Mcmahon. Dual-Satellite Orbit Determination with Time and
Frequency Difference of Arrival. Journal of Guidance, Control, and Dynamics, 2017.

[24] Jeroen L Geeraert and Jay W Mcmahon. Relative Orbit Determination of Multiple Satellites
Using Double Differenced Measurements. In Advanced Maui Optical and Space Surveillance
Technologies Conference, 2017.

[25] Jeroen L. Geeraert and Jay W. Mcmahon. Square-Root Unscented Schmidt-Kalman Filter.
Journal of Guidance, Control, and Dynamics, 2017.

[26] Jeroen L Geeraert, Jay W Mcmahon, and Siamak G Hesar. Small Body Navigation and
Gravity Estimation Using Angle and FDOA Observables. In AIAA/AAS Spaceflight Mechanics
Meeting, pages 1–18, 2017.

[27] Jeroen L. Geeraert, Jay W Mcmahon, and Brandon A Jones. Orbit Determination Ob-
servability of the Dual-Satellite Geolocation System with TDOA and FDOA. AIAA/AAS
Astrodynamics Specialist Conference, pages 1–21, 2016.

[28] Bruce P. Gibbs. Advanced Kalman Filtering, Least-Squares and Modeling. John Wiley &
Sons, 2011.

[29] P. E. Gill, G. H. Golub, W. Murray, and M. a. Saunders. Methods for modifying matrix
factorizations. Mathematics of Computation, 28(126):505–535, 1974.



217

[30] Jon Giorgini, Eric Graat, Tung-Han You, Mark Ryne, S.K. Wong, and John McNamee. Magel-
lan navigation using X-band differenced Doppler during Venus mapping phase. AIAA-92-4521
Astrodynamics Conference, 1992.

[31] Robert G. Gottlieb. Fast gravity, gravity partials, normalized gravity, gravity gradient torque
and magnetic field: derivation, code and data. Technical report, 1993.

[32] Fucheng Guo, Yun Fan, Yiyu Zhou, Caigen Zhou, and Qiang Li.
Space Electronic Reconaissance, Localization Theories and Methods. John Wiley & Sons, 1
edition, 2014.

[33] Jianying Han, Ying Liu, and Daochao Huang. Research on Satellite Interference Geolocation
based on Satellite Systems. In IEEE, 2009.

[34] D. P. Haworth, N. G. Smith, R. Bardelli, and T. Clement. Interference localization for EU-
TELSAT satellites-the first European transmitter location system. International Journal of
Satellite Communications, 15(4):155–183, 1997.

[35] Siamak G Hesar, Jeffrey S Parker, Jay Mcmahon, and George H Born. Small Body Gravity
Field Estimation Using Liaison Supplemented Optical Navigation. AAS, pages 41–54, 2015.

[36] K Hill and Brandon A. Jones. TurboProp Version 4.0.

[37] K. C. Ho and Y. T. Chan. Solution and Performance Analysis of Geolocation by TDOA. IEEE
Transactions on Aerospace and Electronic Systems, 29(4):1311–1322, 1993.

[38] K. C. Ho and Y. T. Chan. Geolocation of a known altitude object from TDOA and FDOA
measurements. IEEE Transactions on Aerospace and Electronic Systems, 33(3):770–783, 1997.

[39] K. C. Ho, Xiaoning Lu, and L. Kovavisaruch. Source localization using TDOA and FDOA mea-
surements in the presence of receiver location errors: Analysis and solution. IEEE Transactions
on Signal Processing, 55(2):684–696, 2007.

[40] K. C. Ho and Wenwei Xu. An accurate algebraic solution for moving source location using
TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 52(9):2453–2463,
2004.

[41] Brandon A Jones. Development of Signal and Spacecraft Ephemeris Propagation Tools for
Geolocation : RF Propagator Overview Nomenclature / Definitions. Technical report, 2014.

[42] Simon J. Julier. The scaled unscented transformation. Proceedings of the 2002 American
Control Conference (IEEE Cat. No.CH37301), (2):4555–4559 vol.6, 2002.

[43] Simon J Julier and Jeffrey K Uhlmann. New extension of the Kalman filter to nonlinear
systems. The 11th International Symposium on Aerospace/Defence, Sensing, Simulation and
Controls, 3:182, 1997.

[44] R. D. Kahn, W. M. Folkner, and C. D. Edwards. Position Determination of a Lander and
Rover at Mars With Earth-Based Differential Tracking. TDA Progress Report 42-108, Oct–
Dec:279–293, 1992.

[45] Erin Kahr, Oliver Montenbruck, and Kyle P G O’Keefe. Estimation and Analysis of Two-Line
Elements for Small Satellites. Journal of Spacecraft and Rockets, 50(2):433–439, 2013.



218

[46] R Kalman. On the general theory of control systems. IEEE Transactions on Automatic
Control, 4(3):110–110, 1959.

[47] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic
Engineering, 82(1):35, 1960.

[48] Johannes Kepler. Astronomia Nova. 1609.

[49] Johannes Kepler. Harmonices Mundi. 1619.

[50] P. P. Klein. On the Ellipsoid and Plane Intersection Equation. Applied Mathematics,
3(November):1634–1640, 2012.

[51] P. Koskela. Orbital Effects of Solar radiation Pressure on an Earth Satellite. The Journal of
the Astronautical Sciences, IX(3), 1962.

[52] Jason Leonard, Brandon Jones, Eduardo Villalba, and George H Born. Absolute Orbit De-
termination and Gravity Field Recovery for 433 Eros Using Satellite-to-Satellite Tracking.
AIAA/AAS Astrodynamics Specialist Conference, (August):1–17, 2012.

[53] H. F. Levison. Lucy: Surveying the Diversity of the Trojan
Asteroids: The Fossils of Planet Formation. SwRI, 2016. Available at
http://www.hou.usra.edu/meetings/lpsc2016/pdf/2061.pdf.

[54] Anders Johan Lexell. Reflexions sur le temps periodique des cometes EN general. Impr. de
l’Academie imperiale des sciences, 1778.

[55] M.J. Marcus. Satellite security: legacy of Captain Midnight. Telecommunications, 21:61–62,
1987.

[56] F Markley. Autonomous navigation using landmark and intersatellite data. In AIAA-84-1987
Astrodynamics Conference, 1984.

[57] Robert A. McDonald and Sharon K. Moreno. Grab and Poppy: America’s Early ELINT
Satellites. Technical report, National Reconnaissance Office, 2005.

[58] J. W. McMahon. An Analytical Theory for the Perturbative Effect of Solar Radiation Pressure
on Natural and Artificial Satellites. PhD thesis, 2011.

[59] D. J. Miller, J. K., Konopliv, A. S., Antreasin, P. G., Bordi, J. J., Chesley, S., Helfrich, C.
E., Owen, W. M., Wang, T. C., Williams, B. G., Yeomans, D. K., Scheeres. Determination of
Shape, Gravity, and Rotational State of Asteroid 433 Eros. Icarus, 155:3–17, 2002.

[60] Oliver Montenbruck. An epoch state filter for use with analytical orbit models of low earth
satellites. Aerospace Science and Technology, 4:277–287, 2000.

[61] Oliver MontenBruck and Eberhard Gill. Satellite Orbits: Models, Methods and Applications.
Springer-Verlag Berlin Heidelberg, 2012.

[62] Kevin M Moran and David A Cicci. Sensitivity of ridge-type estimation methods to condition
number. Applied Mathematics and Computation, 112:143–159, 2000.



219

[63] NASA JPL. NASA Selects Two Missions to Explore the Early Solar System, January 2017.
Available at http://www.jpl.nasa.gov/news/news.php?feature=6713.

[64] Isaac Newton. Philosophiæ Naturalis Principia Mathematica. 1687.

[65] Tim Pattison and S. I. Chou. Sensitivity analysis of dual-satellite geolocation. IEEE
Transactions on Aerospace and Electronic Systems, 36(1):56–71, 2000.

[66] Gerard Petit and Brian Luzum. IERS Conventions ( 2010 ). Technical report, 2010.

[67] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes: The Art of Scientific Computing. Number 1. Cambridge Univesrity Press,
third edition, 2007.

[68] Mark L. Psiaki. Absolute Orbit and Gravity Determination Using Relative Position Measure-
ments Between Two Satellites. Journal of Guidance, Control, and Dynamics, 34(5):1285–1297,
2011.

[69] RZ Sagdeyev. Differential VLBI measurements of the Venus atmosphere dynamics by balloons-
VEGA Project. Astronomy and Astrophysics, 254:387, 1992.

[70] Walter C Scales and Richard Swanson. Air and sea rescue via satellite systems. IEEE Spectrum,
Mar:48–52, 1984.

[71] Hanspeter Schaub and John L. Junkins. Analytical Mechanics of Space Systems. American
Institute of Aeronautics and Astronautics, second edition, 2009.

[72] D. J. Scheeres. The dynamical evolution of uniformly rotating asteroids subject to YORP.
Icarus, 188(2):430–450, 2007.

[73] L. M. Silverman and H. E. Meadows. Controllability and Observability in Time-Variable Linear
Systems. Control, 5(1):64–73, 1967.

[74] Julius O. Smith and Jonathan S. Abel. Closed-Form Least-Squares Source Location Estimation
from Range-Difference Measurements. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 35(12):1661–1669, 1987.

[75] William W. Smith and Paul G. Steffes. Time Delay Techniques for Satellite Interference
Location System. IEEE Transactions on Aerospace and Electronic Systems, 25(2):224–231,
1989.

[76] William Whitfield Smith and Paul G Steffes. Differential Time and Phase Measurement Tech-
niques. IEEE AES Systems Magazine, (March):3–7, 1991.

[77] Jason Stauch and Moriba Jah. Unscented SchmidtKalman Filter Algorithm. Journal of
Guidance, Control, and Dynamics, 38(1):117–123, 2015.

[78] Seymour Stein. Algorithms for Ambiguity Function Processing. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 29(3):588–599, 1981.

[79] Johan Carl-Erik Stén and Per Pippin Aspaas. Anders Johan Lexell ’ s Role in the Determina-
tion of the Solar Parallax. The Journal of Astronomical Data, pages 71–82, 2013.



220

[80] Robert F. Stengel. Optimal Control and Estimation. Dover, 1994.

[81] G. W. Stewart. Matrix Algorithms: Volume 1: Basic Decompositions. 1998.

[82] Zheng-bo Sun and Shang-fu Ye. Analysis on Parameter Error of Satellite Interference Location.
In Asia-Pacific Radio Science Conference, pages 265–268, 2004.

[83] Byron D Tapley, Bob E Schutz, and George H Born. Statistical Orbit Determination. Elsevier
Academic Press, 2004.

[84] James H Taylor. The Cramer Rao Estimation Error Lower Bound Computation for Deter-
ministic Nonlinear Systems. IEEE Transactions on Automatic Control, AC-24(2):343–344,
1979.

[85] Catherine L Thornton and James S Border. Radiometric Tracking Techniques for Deep - Space
Navigation. Technical report, Jet Propulsion Laboratory, California Institute of Technology,
2000.

[86] David A Vallado. Fundamentals of Astrodynamics and Applications. Space Technology Li-
brary, 4th edition, 2013.

[87] Ronell Van Der Merwe and Eric a. Wan. The square-root unscented Kalman filter for state and
parameter-estimation. Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP
-01). 2001 IEEE International Conference on, 6:3461–3464, 2001.

[88] E.A. Wan and R Van Der Merwe. The unscented Kalman filter for nonlinear estimation.
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and
Control Symposium (Cat. No.00EX373), pages 153–158, 2002.

[89] Hang Yan, Jin Cao, and Lei Chen. Study on Location Accuracy of Dual-Satellite Geolocation
System. In 10th International Conference on Signal Processing, pages 107–110, 2010.



Appendix A

Observability Matrix Time Derivatives

A.1 Gravity Gradient Time Derivatives

The equations below are part of the observability matrix shown in Eq. 4.16. These equations

were evaluated during the numerical analysis to show full system observability. Equations A.1 to

A.6 lists the gravity gradient and its five time derivatives. Vectors r and v refer to the position

and velocity of the satellite with respect to the Earth.

G2B =
µ

r3

[
3r̂r̂> − I

]
(A.1)

Ġ2B =
3µ

r4

[
vr̂> + r̂v> − (r̂>v)(5r̂r̂> − I)

)
(A.2)

G̈2B =
3µ

r5

[
5(r̂>v)2(7r̂r̂> − I)− 10(r̂>v)(vr̂> + r̂v>) + 2vv> − (v>v)(5r̂r̂> − I) +

µ

r
(3r̂r̂> − I)

]
(A.3)

...
G2B =

3µ

r6

[
−35(r̂>v)3(9r̂r̂>−I)+105(r̂>v)2(vr̂>+r̂v>)−30(r̂>v)(vv>)+15(r̂>v)(v>v)(7r̂r̂>−I)

− 15(v>v)(vr̂> + r̂v>) +
11µ

r
(vr̂> + r̂v>)− 2µ

r
(r̂>v)(32r̂r̂> − 7I)

]
(A.4)
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....
G2B =

3µ

r7

[
315(r̂>v)4(11r̂r̂> − I)− 210(r̂>v)2(v>v)(9r̂r̂> − I) +

µ

r
(r̂>v)2(1165r̂r̂> − 187I)

− 1260(r̂>v)3(vr̂> + r̂v>)− 302µ

r
(r̂>v)(vr̂> + r̂v>) + 420(r̂>v)2(vv>)

− 60(v>v)(vv>) +
52µ

r
(vv>) + 420(r̂>v)(v>v)(vr̂> + r̂v>) + 15(v>v)2(7r̂r̂> − I)

− µ

r
(v>v)(139r̂r̂> − 29I) +

14µ2

r2
(3r̂r̂> − I)

]
(A.5)

5

Ġ2B =
3µ

r8

[
−3465(r̂>v)5(13r̂r̂>−I)+3150(r̂>v)3(v>v)(11r̂r̂>−I)−10µ

r
(r̂>v)3(2154r̂r̂>−271I)

+ 17325(r̂>v)4(vr̂> + r̂v>) +
6705µ

r
(r̂>v)2(vr̂> + r̂v>)− 6300(r̂>v)3(vv>)

+ 2100(r̂>v)(v>v)(vv>)− 1740µ

r
(r̂>v)(vv>)− 9450(r̂>v)2(v>v)(vr̂> + r̂v>)

− 525(r̂>v)(v>v)2(9r̂r̂> − I) +
6µ

r
(r̂>v)(v>v)(1040r̂r̂> − 161I)− 2µ2

r2
(r̂>v)(955r̂r̂> − 221I)

− 801µ

r
(v>v)(vr̂> + r̂v>) +

292µ2

r2
(vr̂> + r̂v>) + 525(v>v)2(vr̂> + r̂v>)

]
(A.6)

A.2 SRP Gradient Time Derivatives

Equations A.8 to A.13 lists the SRP gradient and its five time derivatives. Vectors r and v

refer to the position and velocity of the Sun with respect to the satellite.

ψ = −PSRCr
As
m

(A.7)

GSRP =
ψ

r

(
r̂r̂> − I

)
(A.8)

ĠSRP =
ψ

r2

[
(vr̂> + r̂v>)− (r̂>v)(3r̂r̂> − I)

]
(A.9)
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G̈SRP =
ψ

r2

[
−6

r
(r̂>v)(vr̂> + r̂v>) + 2ψ(r̂r̂>) +

2

r
(vv>) +

3

r
(r̂>v)2(5r̂r̂> − I)

−1

r
(v>v)(3r̂r̂> − I)− ψ(r̂>r̂)(3r̂r̂> − I)

]
(A.10)

...
GSRP =

ψ

r3

[
45

r
(r̂>v)2(vr̂> + r̂v>)− 9

r
(v>v)(vr̂> + r̂v>)− 9ψ(r̂>r̂)(vr̂> + r̂v>)

− 18

r
(r̂>v)(vv>)− 20ψ(r̂>v)(r̂r>) + 4ψ(vr̂> + r̂v>)− 15

r
(r̂>v)3(7r̂r̂> − I)

+
9

r
(r̂>v)(v>v)(5r̂r̂> − I) + 2ψ(r̂>v)(r̂>r̂)(24r̂r̂> − 5I)− 4ψ(r̂>v)(3r̂r̂> − I)

]
(A.11)

....
GSRP =

ψ

r3

[
−420

r2
(r̂>v)3(vr̂> + r̂v>) +

180

r2
(r̂>v)(v>v)(vr̂> + r̂v>)

+
192ψ

r
(r̂>v)(r̂>r̂)(vr̂> + r̂v>) +

180

r2
(r̂>v)2(vv>) +

18ψ

r
(r̂>v)2(26r̂r̂> − 3I)

− 102ψ

r
(r̂>v)(vr̂> + r̂v>)− 36

r2
(v>v)(vv>)− ψ

r
(v>v)(5r̂r̂> − 4I)− 18ψ

r
(r̂>r̂)(vv>)

− 2ψ2(r̂>r̂)(15r̂r̂> − 2I)− 10ψ

r
(vv>)− 12ψ2(r̂r̂>) +

105

r2
(r̂>v)4(9r̂r̂> − I)

− 90

r2
(r̂>v)2(v>v)(7r̂r̂> − I)− 3ψ

r
(r̂>v)2(r̂>r̂)(233r̂r̂> − 35I +

9

r2
(v>v)2(5r̂r̂> − I)

+
ψ

r
(v>v)(r̂>r̂)(48r̂r̂> − 19I) + 2ψ2(r̂>r̂)2(24r̂r̂> − 5I)

]
(A.12)
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5

ĠSRP =
ψ

r4

[
4725

r2
(r̂>v)4(vr̂> + r̂v>)− 3150

r2
(r̂>v)2(v>v)(vr̂> + r̂v>)

− 3495ψ

r
(r̂>v)2(r̂>r̂)(vr̂> + r̂v>)− 2100

r2
(r̂>v)3(vv>)− 102ψ

r
(r̂>v)3(71r̂r̂> − 7I)

+
225

r2
(v>v)2(vr̂> + r̂v>) +

420ψ

r
(r̂>r̂)(v>v)(vr̂> + r̂v>) +

2004ψ

r
(r̂>v)2(vr̂> + r̂v>)

+
900

r2
(r̂>v)(v>v)(vv>) +

18ψ

r
(r̂>v)(v>v)(89r̂r̂> − 11I) + 240ψ2(r̂>r̂)2(vr̂> + r̂v>)

+
852ψ

r
(r̂>v)(r̂>r̂)(vv>) + 2ψ2(r̂>v)(r̂>r̂)(909r̂r̂> − 103I)− 143ψ

r
(v>v)(vr̂> + r̂v>)

− 150ψ2(r̂>r̂)(vr̂> + r̂v>)− 272ψ

r
(r̂>v)(vv>)− 2ψ2(r̂>v)(107r̂r̂> − 8I)

− 22ψ2(vr̂> + r̂v>)− 945

r2
(r̂>v)5(11r̂r̂> − I) +

1050

r2
(r̂>v)3(v>v)(9r̂r̂> − I)

+
30ψ

r
(r̂>v)3(r̂>r̂)(359r̂r̂> − 42I)− 225

r2
(r̂>v)(v>v)2(7r̂r̂> − I)

−18ψ

r
(v>v)(r̂>v)(169r̂r̂> − 28I)− 10ψ2(r̂>v)(r̂>r̂)2(183r̂r̂> − 28I)

]
(A.13)

A.3 SRP Partial with Respect to Coefficient of Reflectivity Time Derivatives

Equations A.14 to A.19 lists the SRP partial with respect to Cr and its five time derivatives.

Vectors r and v refer to the position and velocity of the Sun with respect to the satellite.

S = γr̂ where, γ = −PSR
As
m

and, ψ = −PSRCr
As
m

(A.14)

Ṡ =
γ

r

[
v − (r̂>v)r̂

]
(A.15)

S̈ = −2γ

r2
(r̂>v)

(
v − (r̂>v)r̂

)
+
γψ

r
r̂− γ

r2

(
v>v − (r̂>v)2

)
r̂− γψ

r
(r̂>r̂)r̂ (A.16)

...
S =

9γ

r3
(r̂>v)2v − 3γ

r3
(v>v)v − 3γψ

r2
(r̂>r̂)v − 8γψ

r2
(r̂>v)r̂ +

γψ

r2
v − 15γ

r3
(r̂>v)3r̂

+
9γ

r3
(r̂>v)(v>v)r̂ +

10γψ

r2
(r̂>v)(r̂>r̂)r̂ (A.17)
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....
S = −60γ

r4
(r̂>v)3v +

36γ

r4
(r̂>v)(v>v)v +

40γψ

r3
(r̂>v)(r̂>r̂)v +

79γψ

r3
(r̂>v)2r̂− 22γψ

r3
(r̂>v)v

− 11γψ

r3
(v>v)r− 11γψ2

r2
(r̂>r̂)r̂ +

γψ2

r2
r̂ +

105γ

r4
(r̂>v)4r̂− 90γ

r4
(r̂>v)2(v>v)r̂

− 105γψ

r3
(r̂>v)2(r̂>r̂)r̂ +

9γ

r4
(v>v)2r̂ +

19γψ

r3
(r̂>r̂)(v>v)r̂ +

10γψ2

r2
(r̂>r̂)2r̂ (A.18)

5

Ṡ =
525γ

r5
(r̂>v)4v− 450γ

r5
(r̂>v)2(v>v)v− 525γψ

r4
(r̂>v)2(r̂>r̂)v− 924γψ

r4
(r̂>v)3r̂ +

45γ

r5
(v>v)2v

+
95γψ

r4
(r̂>r̂)(v>v)v +

319γψ

r4
(r̂>v)2v +

312γψ

r4
(r̂>v)(v>v)r̂ +

50γψ2

r3
(r̂>r̂)2v

+
331γψ2

r3
(r̂>r̂)(r̂>v)r̂− 33γψ

r4
(v>v)v − 33γψ2

r3
(r̂>r̂)v − 69γψ2

r3
(r̂>v)r +

γψ2

r3
v − 945γ

r5
(r̂>v)5r̂

+
1050γ

r5
(r̂>v)3(v>v)r̂ +

1260γψ

r4
(r̂>v)3(r̂>r̂)r̂− 225γ

r5
(r̂>v)(v>v)2r̂

− 504γψ

r4
(r̂>v)(v>v)(r̂>r̂)r̂− 280γψ2

r3
(r̂>v)(r̂>r̂)2r̂ (A.19)


