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Chriestenson, Bryce (Ph.D., Mathematics)

The Real Homotopy Type of Singular Spaces via The Whitney-deRham Complex

Thesis directed by Prof. Markus J. Pflaum

This thesis studies certain invariants associated to a stratified space. These invariants are

the Whitney-de Rham cohomology, it is the cohomology of a chain complex called the Whitney-de

Rham complex of differential forms. At first glance this chain complex, and its cohomology appear

to depend on several choices. The purpose of this thesis is twofold. First, to show that these

invariants only depend on the homotopy type of the stratified space. Second, to show that the

Whitney-de Rham Complex determines the real homotopy type of the space.
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Chapter 1

Preliminaries

1.1 Notation and Prerequisites

This section establishes some standard notation and terminology that will be use through-

out this paper. The natural numbers N consist of all non-negative integers {0, 1, 2, . . .}. The

abbreviation CDGA, DGA, CGA will be used in place of commutative differential graded algebra,

differential graded algebra, commutative graded algebra respectively.

Some basic knowledge is assumed for this paper. It will be assumed that the reader is

familiar with the basics of homological algebra[20],[27], Sheaf Theory[1],[3], smooth manifolds[10],

and Algebraic Topology[7],[2]. Most of the necessary definition will be provided where needed, but

some such as manifold, sheaf, singular homology, etc. will not be.

1.2 Introduction

The goal of this paper to better study certain homological invariants attached to a stratified

space X, as defined by Pflaum[18], called the Whitney-deRham cohomology. This cohomology is

defined as the cohomology of a commutative differential graded algebra, Ω∗
W (X), associated to X

in a non-canonical way. The main result is to show that though the definition of Ω∗
W (X) depends

on several choices, when certain conditions are imposed on X, the Whitney-deRham cohomology

only depends on the homotopy type of X. This is achieved by showing that Ω∗
W (X) is in fact

weakly equivalent to the singular cochain complex C∗ (X,R) on X, as differential graded algebras.

A restatement of the main results is as follows:
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Theorem 1.2.1 Let X be a semi-analytic subset of Rn, or X is a smooth cone space with global

singular chart, then the sheaf of complexes

0 −−−−→ RX −−−−→ E∞
X −−−−→ Ω1

W,X −−−−→ · · ·.

is a fine resolution of the locally constant sheaf RX on X. Thus the Whitney-deRham cohomology

of X is isomorphic to the real singular cohomology of X

H∗
W (X) = H∗

(
Γ
(
X,Ω∗

W,X

))
∼= H∗ (X,R) .

In the case that X is semi-analytic the above result relies on Hironaka’s embedded resolution

of singularities[9]. The smooth cone space however does not rely on this. It should be noted that the

class of spaces encompassed by the above theorem is quite large. It includes all smooth manifolds,

smooth manifolds with boundary, smooth manifolds with corners, smooth manifolds with isolated

singularities, real algebraic sets, real analytic sets, real semi-algebraic sets, complex algebraic sets,

and complex analytic sets, and more.

This result, while being not quite as general as a theorem by Brasselet and Pflaum[17], greatly

simplifies the proof in the case when X is semi-analytic. Their theorem works for sub-analytic sets,

which are slightly more general than semi-analytic sets.

The complex Ω∗
W (X) = Γ

(
X,Ω∗

W,X

)
is called the Whitney-deRham complex. It is called

this because of its similarity to the deRham complex Ω∗
dR (X) on a smooth manifold[25],[24], which

it generalizes. The main thing that is generalized is that Ω∗
W (X) can be defined on spaces with

singularities. However if it is defined on a smooth manifold then it is in general not isomorphic to

the deRham complex as a chain complex, but only quasi-isomorphic, meaning both complexes have

isomorphic cohomology and the isomorphism is induced from a chain homomorphism between the

two complexes.

The complex Ω∗
W (X) is a sort of hybridization between the classical deRham complex of dif-

ferential forms, and the algebraic deRham complex as studied by Grothendieck[4],[5], Hartshorne[6],

and Herrera-Lieberman[11]. In the later approach one embeds a variety in a smooth ambient vari-

ety and algebraicly completes it with respect to its defining ideal. Then one proceeds to define the
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complex of algebraic differential forms on the variety via the sheaf of Kähler differentials. In this

work one proceeds similarly only the starting place is different. Instead one starts with a locally

closed subset X of some Euclidean space Rn and considers the smooth functions on the ambients

space modulo the ideal of functions J that vanish on X. Then one forms a similar completion

procedure with respect to the ideal J . In this case one quotients by the ideal of smooth functions

which vanish to all orders on X. Then one forms the Whitney-deRham complex on X in the same

why that the algebraic deRham complex is formed.

The Whitney-deRham complex is a commutative differential graded algebra, and this extra

algebra structure descents to the Whitney-deRham cohomology making it into a graded ring. It is

shown in this paper that under certain hypothesis on the space X that this ring is isomorphic to the

real singular cohomology ring. Thus proving a stronger result that just that the Whitney-deRham

cohomology is isomorphic to the real singular cohomology.

This slightly stronger result allows for an application in the area of homotopy theory. If one

has a commutative differential graded algebra A that is quasi-isomorphic to a specific commutative

differential graded algebra, APL (X) defined on X, then one can determine the real homotopy type

of X directly from A. This allows for the conclusion that the Whitney-deRham complex determines

the real homotopy type ofX, and in fact the converse is true as well. The Whitney-deRham complex

is determined by the real homotopy type of X, up to quasi-isomorphism of commutative differential

graded algebras. The result is as follows:

Theorem 1.2.2 Let X be a semi-analytic subset of Rn or a smooth cone space with a global

singular chart, such that X is simply connected and of finite type, then the Whitney-deRham

complex Ω∗
W (X) determines the real homotopy type, π∗ (X) ⊗Z R, of X, and vice versa it is

determined by the real homotopy type of X up to quasi-isomorphism.

This should be compared to the work by Hardt, et al.[26], which gives a way of computing

the real homotopy type of semi-algebraic sets using the so call piecewise semi-algebraic cochains.

The Whitney-deRham complex has the advantage that it is much easier to define than their chain
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complex. However it has the disadvantage that the chain complex of piecewise semi-algebraic

cochains has been used in several places in the literature already, for example Kontsevich and

Soibelman use it in their proof of the formality of the little disks operad[19].

1.3 Organization of Paper

This paper is organized into four sections and an appendix. The first introduces the types

of spaces that are of interest. The second introduces the algebras of functions on these spaces

that will be considered. The third defines the particular resolutions of the aforementioned algebras

and contains most of the main results. The fourth section concerns a particular application, and

develops the background necessary to understand it. Finally in the appendix a more classical

approach to some of the definitions is taken.

Chapter 2 introduces the basic definitions of stratified spaces and morphisms between them

along with the terminology to go along with them. Such as depth, dimension, and skeleton. Sin-

gular charts are then defined. Theses are like charts on manifolds except they respects the give

stratifications of a space. Next the spaces that are of particular interest in this paper are defined.

Namely smooth cone spaces and semi-analytic sets are defined. After this a several properties of

such spaces are developed.

Chapter 3 briefly defines the sheaf of smooth functions so that one may next define the sheaf

of Whitney functions. This sheaf is first defined locally. The local definition is needed to give

a proper definition of the sheaf globally. Next it is show that the sheaf of Whitney functions is

independent of the choice of open set used to define it. This is followed by exploring what these

sheaves look like, locally, on smooth cone spaces, and on semi-analytic sets.

Chapter 4 defines the complex of differential forms as well as the Whitney-deRham complex,

and the the relationship between them. In order to provide the necessary background the tangent

bundle is introduced. Then the main results of the paper are shown. These results consist of

proving that the Whitney-deRham cohomology is isomorphic to the real singular cohomology in

the case of smooth cone spaces and semi-analytic sets. This is done simply by proving a Poincaré
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lemma for the complex of sheaves of Whitney-deRham differential forms.

Chapter 5 defines the basics of real homotopy theory. This theory is outlined enough so that

the main points of the theory can be stated. After these results are stated the above work is then

applied to obtained the desire theorem, that the Whitney-deRham complex on X determines the

real homotopy type of the space X.



Chapter 2

Stratified Spaces

This first chapter introduces the types of spaces that are of interest in this paper. It starts

with the basics of stratified spaces, and morphisms of stratified spaces. Then a few special types

of spaces are introduced; namely smooth cone spaces, analytic spaces, and semi-analytic spaces.

Much of this chapter is taken from various parts of the book by Pflaum[18], for more details

the reader should see this book.

2.1 Decomposed Spaces

This section introduces decomposed spaces and some associated terminology including the

notions of depth, dimension, and the k-skeleton of such a space. One needs the concept of a

decomposed spaces in order to define a stratified spaces, which are of much great interest in modern

mathematics.

Let X be a paracompact Hausdorff space with countable topology and Z a locally finite

partition of X into locally closed subspaces S ⊂ X. Each element S ∈ Z is called a piece of the

partition, or just a piece.

Before coming to the definition of a decomposed space the above statement should be ex-

plained. Z is a partition of X means that

X =
⊔

S∈Z

S.

The partition is considered to be locally finite if for each x ∈ X there is an open set U in X

containing x such that the number of pieces S ∈ Z for which U ∩ S 6= ∅ is finite. Finally S ⊂ X is
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relatively closed if there exists and open set V , and a closed set C, in X with S = C ∩ U , i.e. S is

closed in U in the subspace topology. For any piece S ∈ Z the topological closure of S in X will

be denoted S.

Definition 2.1.1 ([18]1.1.1) The pair (X,Z) is called a decomposed space if the following con-

ditions hold:

• Every piece S ∈ Z is a smooth manifold in the subspace topology induced from the topology

on X.

• If R ∩ S 6= ∅ for any pair of pieces R,S ∈ Z then R ⊂ S. In this case one writes R ≤ S,

and says that R is incident to S, or that R is a boundary piece of S.

One calls Z a decomposition of X.

It is clear that the above incidence relation R ≤ S defines a partial ordering on the set Z.

Definition 2.1.2 ([18]1.1.5) The dimension of a decomposed space (X,Z) is defined to be:

dim X = sup {dim S S ∈ Z} ,

Where dim S is the dimension of the piece S as a smooth manifold.

Definition 2.1.3 ([18]1.1.5) For each k ∈ N the k-skeleton of the decomposed space (X,Z) is

defined to be:

Xk =
⋃

S∈Z,dim S≤k

S

with the subspace topology induced from the topology on X.

Definition 2.1.4 ([18]1.1.5) For every point x ∈ X define the depth of x to be:

dpZ (x) = sup {k ∈ N ∃S0, S1, . . . Sk ∈ Z x ∈ S0 < S1 < · · · < Sk} .

It is clear from the definition if x, y ∈ S ∈ Z then dpZ (x) = dpZ (y). Therefore the depth

of a piece is well-defined as dpZ (S) = dpZ (x) for any x ∈ S. This leads to the definition of the

depth of the space X



8

Definition 2.1.5 ([18]1.1.5) The depth of a decomposed space (X,Z) is defined to be

dpZ (X) = sup {dpZ (S) S ∈ Z} .

2.2 Morphisms of Decomposed Spaces

This section introduces morphisms of decomposed spaces, which will be needed to define

morphisms of stratified spaces.

Let (X,Z) and (Y,Y) be decomposed spaces.

Definition 2.2.1 ([18]1.1.6) A continuous map f : X → Y is a morphism of decomposed spaces

if for every piece S ∈ Z there is a piece RS ∈ Y such that the following holds:

• f (S) ⊂ RS ,

• the restriction f |S : S → RS is smooth map of manifolds.

It is clear that the composition of two morphisms of decomposed spaces is again a morphism

of decomposed spaces. If it is necessary to avoid confusion the map f will be denoted

f : (X,Z) → (Y,Y) .

Proposition 2.2.1 Let f : (X,Z) → (Y,Y) be a morphism of decomposed spaces. Let S, S′ ∈ Z

such that S ≤ S′, and let RS , RS′ ∈ Y such that f (S) ⊂ RS , and f (S
′) ⊂ RS′ , then RS ≤ RS′ .

Proof: The map f : X → Y is continuous, so f−1 commutes with set operations such as

intersection and closure. By the fact that f is a morphisms of decomposed spaces, and S ≤ S′ it is

clear that

∅ 6= S ∩ S′ ⊂ f−1 (RS) ∩ f−1 (RS′) = f−1
(
RS ∩RS′

)
.

This implies that RS ∩RS′ 6= ∅. Hence RS ≤ RS′ . �

If the paracompact space X has two decompositions Z and Y it is said that Z is coarser that

Y or that Y is finer that Z if the identity map is a morphisms of stratified spaces from (X,Y) to

(X,Z).
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2.3 Examples

This section introduces some basic examples of which will be used later.

Example 2.3.1 ([18]1.1.8) Every smooth manifold M is a decomposed space with one piece M .

Example 2.3.2 ([18]1.1.10) If M is a smooth manifold with boundary set S1 = ∂M , and S2 =

M \ ∂M . This makes M into a decomposed space with two pieces.

Let X be a topological space, the cone over X is defined to be the quotient space

CX = ([0, 1)×X) / ({0} ×X) .

If X = ∅ then for notational convenience define the cone C∅ = {⋆} to be the space with one point.

Example 2.3.3 ([18]1.1.11) IfM is a smooth manifold the cone CM is a decomposed space with

pieces given by the cusp, o = [{0} ×M ], and the set (0, 1)×M .

Example 2.3.4 ([18]1.1.11) Similar to the previous example if (X,Z) is a decomposed space

then CS is also a decomposed space with pieces given by the cusp o and the sets (0, 1)×S for each

S ∈ Z. For the decomposed space (X,Z) it is easy to see

dim CX = dim X + 1,

dpZ (CX) = dpZ (X) + 1.

Where the decomposition of CX is denoted by Z also.

Example 2.3.5 ([18]1.1.12) Consider the space that is the union of two pieces X = S1∪S2 ⊂ R2.

Where S1 = {0} × (0, 1), and S2 =
{
(x, y) ∈ R2 x ≥ 0, y = sin

(
1
x

)}
. This space has S1 ≤ S2, but

dimS1 = dimS2. This type of space is considered to be pathological and should not be considered.

There are several conditions that one may impose in order to rule out such spaces. The most widely

known are Whitney’s condition (A), and condition (B), but there are several others. See [18]§1.4

for more details.
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2.4 Stratifications

This section begins with the notion of germs of sets, which are used to distinguish stratified

spaces from decomposed spaces. This is followed by the definition of a stratified space. A stratified

space can be thought of as an equivalence class of decomposed spaces. By doing this one is allowed

to pass to a maximal decomposition in a specified equivalence class, and thereby each stratified

space has a canonical decomposition.

Let X be a topological space with x ∈ X. Two subsets A,B ⊂ X are said to be equivalent

at x if there is an open set U ⊂ X such that x ∈ U , and A ∩ U = B ∩ U . This clearly defines an

equivalence relation on the power set of X.

Definition 2.4.1 ([18]1.2.1) The equivalence class of the set A under this equivalence relation is

denoted [A]x and is called the germ of the set A at x. If x ∈ A ⊂ B ⊂ X then [A]x is said to be a

subgerm of [B]x. This is denoted [A]x ⊂ [B]x.

Definition 2.4.2 ([18]1.2.2) A stratification of a topological space is a function S : x 7→ [Sx],

that assigns to each x ∈ X the germ of a closed set Sx, such that the following axiom is satisfied:

• For every x ∈ X there is an open set U ⊂ X with x ∈ U , and there is a decomposition Z

of U such that for every y ∈ U the set germ [Sy] coincides with the set germ of the piece

of Z of which y is a element.

The pair (X,S) is called a stratified space.

What the definition is saying is that, for each x ∈ X, there is a decomposition Z of a

neighborhood, U , of x, such that for y ∈ U with y ∈ T ∈ Z, there is an open set V containing y

such that Sy ∩ V = T ∩ V , i.e [Sy] = [T ].

For every decomposition Z of X there is an induced stratification S of X that sends x to

[C], where x ∈ S = U ∩ C with U open in X, C closed in X, and S ∈ Z. Two decompositions Z1

and Z2 of X are said to be equivalent if the stratification induced by them are the same. That is

to say that the induced maps S1 and S2 are equal.
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One can see that a stratified spaces is induces locally by a decomposition. This will allow

one, locally, to refer to pieces of the space. This will be necessary when defining morphisms of

stratified spaces.

A morphism between stratified spaces should be a continuous map that locally respects the

decomposition that is defining the stratification.

Definition 2.4.3 ([18]1.2.2) A continuous function f : X → Y between stratified spaces (X,S)

and (Y,R) is a morphism of stratified spaces, or for brevity a stratified morphism, if for every x ∈ X

there is an open neighborhood V of f (x) in Y , and an open neighborhood U of x in X, together

with decomposition Z of U , and Y of V inducing S|U respectively R|V such that the following

axioms are satisfied:

• f (U) ⊂ V

• f |U : (U,Z) → (Y,Y) is a morphism of decomposed spaces.

If it is necessary to avoid confusion the map f : X → Y between stratified spaces will be

written f : (X,S) → (Y,R).

Theorem 2.4.1 ([18]1.2.7) Every stratified space (X,S) has a decomposition ZS which satisfies

the following maximality property:

• For every open set U ⊂ X and every decomposition Y of U that induces S|U the decom-

position ZS , when restricted to U , is coarser than Y.

Recall that ZS is coarser that Y if the identity map is a morphisms of decomposed spaces

from (U,Y) to (U,ZS |U ).

In this way one can see that for each stratification S of X there is a canonical decomposition

ZS of X. The pieces of ZS are called the strata of X. To avoid cumbersome notation it will be

said that a stratum S of the decomposition ZS is a stratum of S, and be written S ∈ S rather than

S ∈ ZS .
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Definition 2.4.4 A map f : (X,S) → (Y,R) between stratified spaces is said to be a stratified

diffeomorphism if f is a homeomorphism such that for each stratum S ∈ S, there is a stratum

RS ∈ R with f |S : S → RS a diffeomorphism of smooth manifolds.

2.5 Singular Charts

As with manifolds, it is useful to have a notion of local coordinate charts on a stratified space.

These charts will allow one to define various types of functions on the space by pulling them back

from Rn.

Definition 2.5.1 ([18]1.3.1) Let (X,S) be a stratified space. A smooth singular chart onX, with

chart domain U ⊂ X, is a homeomorphism φ : U → φ (U) ⊂ Rn from an open set U ⊂ X to a locally

closed subset, φ (U), of Rn, such that for every stratum S ∈ S the image φ (U ∩ S) is a smooth

submanifold of Rn, and the restriction φ|U∩S : U ∩ S → φ (U ∩ S) is a smooth diffeomorphism.

For convenience the notation for singular charts φ : U → O ⊂ Rn will be used to express that

O ⊂ Rn is open and φ (U) ⊂ O is a closed subset of U in the subspace topology.

To keep the technicalities to a minimum the only stratified spaces considered in this paper

are those (X,S) that come equipped with a global smooth singular chart φX : X → OX ⊂ RnX .

When the context is clear this will be denoted simply as φ : X → O ⊂ Rn.

The following definition will be used for the remainder of this paper as the working definition

of a stratified space.

Definition 2.5.2 A stratified space (X,S, n) is a closed subset of Rn that is the image of a stratified

space (Y,Y) under a global singular chart φ : Y → O ⊂ Rn, i.e. X = φ (Y ) ⊂ O. The stratification

on X is given by S = φ (Y). This means that the strata S ∈ S are smooth submanifolds of Rn

which form a decomposition of X.

Hence to define a stratified space (X,S, n) one only needs to specify the set X ⊂ Rn, and the strata

S ∈ S, as smooth submanifolds of Rn.
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2.6 Whitney Conditions (A), and (B)

The Whitney conditions are designed to be strong enough to rule out pathological stratified

spaces, but be weak enough that most stratified spaces on interest satisfy them. Each condition

imposes restrictions on how a stratum behaves near its boundary strata. They are phrased in terms

the tangent space to the higher dimensional stratum and how it behaves with respect to the tangent

space of a boundary stratum.

LetM be a smooth manifold, and R,S ⊂M smooth submanifolds. Let s = dimS, r = dimR,

and n = dimM . For any y ∈ M let TyR, TyS, and TyM denote the tangent space of R, S, and

M respectively, where TyR and TyS are considered to be the zero vector space if y /∈ R, y /∈ S

respectively. Note that TyR, TyS ⊂ TyM are linear subspaces. For each y ∈ M identify TyM with

a fixed n-dimensional vector space TM , and identify TyS, TyR with subsets of TM . Then as y

varies in M , the spaces TyS and TyR can be though of as points in the Grassmanian manifold of

r, or s-dimensional subspaces of TM respectively.

Definition 2.6.1 ([18]1.4.3) The pair (R,S) is said to satisfy the Whitney condition (A) at a

point y ∈ R if the following axiom is satisfied

• Let (yk)k∈N be a sequence of points in S converging to y ∈ R, such that the sequence of

tangent spaces TykS converges in the Grassmannian of s-dimensional subspaces of TM to

a subspace τ , then TyR ⊂ τ .

Let U ⊂M be an open neighborhood of y ∈ R ⊂M and φ : U → Rn be a smooth coordinate

chart on M centered at y.

Definition 2.6.2 ([18]1.4.3) The pair (R,S) is said to satisfy the Whitney condition (B) at the

point y ∈ R with respect to the chart φ if the following conditions are satisfied

• Let (xk)k∈N and (yk)k∈N be two sequence of points with xk ∈ R ∩ U , and yk ∈ S ∩ U

fulfilling the following three conditions
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(1) xk 6= yk, and limk→∞ xk = limk→∞ yk = y.

(2) The sequence of connecting lines φ (xk)φ (yk) ⊂ Rn converges in projective space to a

line l.

(3) The sequence of tangent spaces TykS converges in the Grasmanian of s-dimensional

subspaces of TM to a subspace τ .

Then (Tyφ)
−1 (l) ⊂ τ .

One can show that this condition does not depend of the choice of φ.

Lemma 2.6.1 ([18]1.4.4) The Whitney condition (B) is independent of the choice of coordinate

chart φ on M near y ∈ R ⊂ M . Thus, it is well defined to say that the pair (R,S) satisfy the

Whitney condition (B) at y ∈ R.

The condition (B) is stronger than the condition (A), as is seen in the following lemma.

Lemma 2.6.2 ([18]1.4.5) If the pair (R,S) satisfies the Whitney condition (B) at y ∈ R , the it

also satisfies the Whitney condition (A) at y ∈ R.

Definition 2.6.3 The stratified space (X,S, n) is said to be a Whitney (A) stratified space if for

every pair of strata R,S ∈ S and every y ∈ R, the pair (R,S) satisfy the Whitney condition (A)

at y ∈ R.

Similarly, the stratified space (X,S, n) is said to be a Whitney (B) stratified space if for

every pair of strata R,S ∈ S and every y ∈ R, the pair (R,S) satisfy the Whitney condition (B)

at y ∈ R.

2.7 Smooth Cone Space

Cone spaces will be one of two types of stratified spaces studied in this paper. The definition

of a cone space requires a few comments.
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A cone space is defined inductively via depth. Hence one defines a cone space of depth zero

simply to be a manifold or a disjoint collection of manifolds. One then proceeds recursively to

define a cone space of depth d to locally look like the cone over a cone space of depth d− 1. A very

easy case to visualize is when d = 1. Then a cone space of depth 1 looks locally like the produce of

a manifold with the cone over one or more disjoint manifolds. A good example of a cone space of

depth 1 to keep in mind is a manifold with isolated singularities.

Definition 2.7.1 ([18]3.10.1) A smooth cone space of depth 0 is a stratified space (C,S,m), such

that C consists of countably many smooth connected disjoint submanifolds of Rm. The strata of

S are given by the union of connected components of C of equal dimension.

Definition 2.7.2 ([18]3.10.1) A smooth cone space of depth d is a stratified space (C,S,m),

such that for all x ∈ C, the following data exists:

• a stratum Sx ∈ S containing x,

• a connected open set Ax ⊂ C containing x,

• a compact smooth cone space (Lx,L) of depth d− 1, with Lx embedded in the unit sphere

Sk, of Rk+1

• a stratified diffeomorphism

kx : Ax → (Sx ∩Ax)× CLx ⊂ Rm × Rk+1.

Here the CLx is the cone over Lx in Rk+1 with vertex at 0. A point in CLx is given by

tx ∈ Rk+1, where 0 ≤ t < 1 and x ∈ Lx ⊂ Sk. Furthermore, the map kx is required to satisfy:

• There exists an open set Bx ⊂ Rm, such that Ax = Bx ∩ C, a smooth diffeomorphism

Kx : Bx → (Sx ∩Ax)×Bk+1 with Kx|Ax = kx. Here B
k+1 ⊂ Rk+1 is the open unit ball.

This last condition is imposed for technical purposes, and it will prove to be exactly the

condition needed to prove the desired result about such spaces.
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One can now say what is meant by a smooth cone space. It is a stratified space that locally

looks like a cone space of depth d for some d ≥ 0.

Definition 2.7.3 ([18]3.10.1) Given a stratified space (X,S, n) a smooth cone chart of depth d

on X is a smooth singular chart φ : U → V ⊂ Rm, with chart domain U , open in X, and image

C = φ (U) ⊂ V , with (C, C,m) a smooth cone space of depth d, and V open in Rm.

One should notice that, in this case, X is a subset of Rn, and C is a subset of Rm for possibly

different m and n.

Definition 2.7.4 ([18]3.10.1) A stratified space (X,S, n) is said to be a smooth cone space, if

for every x ∈ X, there exists an open neighborhood U ⊂ X of x, and an integer d, such that U is

the domain of a smooth cone chart

ψ : U → V ⊂ Rm

of depth d, as defined in the previous definition. The map ψ is required to satisfy the following

condition:

• There exists an open set W ⊂ Rn, with U = W ∩ X, and a smooth diffeomorphism

Ψ :W → V such that Ψ|U = ψ

It should be noted that the above definition contains the adjective ’smooth.’ This is so

because of the condition that the map kx and ψx are required to be the restriction of a smooth map

on an open neighborhood of their respective domains. This condition can be weekend to require

only that they be r-times differentiable for any 0 ≤ r ≤ ∞. If this is done then the space is called

a Cr-cone space. Much of the same theory developed in this paper for smooth cone spaces works

for Cr-cone spaces once the definitions have been suitably adjusted. This is left for later work.

2.8 Semi-Analytic Space

The second main type of space that will be studied in this paper is semi-analytic sets. To

define a semi-analytic set it is first necessary to define a real-analytic space, which is simply a space
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which locally looks like the zero set of a finite number of real-analytic functions. These definition

come from [9]§1.

Definition 2.8.1 ([9]§1) An R-ringed spaces X = (|X|,OX) consists of a topological spaces |X|,

and a sheaf of R-algebras OX on |X|.

Definition 2.8.2 ([9]§1) A local model of real analytic space is a R-ringed space (|S|,OS) which

is obtained as follows:

|S| = {x ∈ U f1 (x) = · · · = fm (x)}

and

OS = (AU/ (f1, · · · , fm)AU ) |S

where U is an open subset of some Rn, f1, . . . , fn are real analytic functions on U , and AU is the

sheaf of germs of real-analytic functions on U .

Definition 2.8.3 ([9]§1) A real analytic space X is an R-ringed space X = (|X|,OX) which is

everywhere locally isomorphic to some local model of real-analytic space.

Now that an analytic space has been defined one can move to the definition of a semi-

analytic space. Semi-analytic spaces subsets of real-analytic spaces that are locally defined by

analytic inequalities instead of equality.

Definition 2.8.4 ([9]2.1) A subset A ⊂ X of a real analytic space X is said to be semi-analytic

at a point x ∈ X there exists an open neighborhood V of x in X and a finite number of of real

analytic functions gij , fij on V such that

A ∩ V =
⋃

i

{x ∈ V gij (x) = 0, fij > 0, ∀j} .

The set A ⊂ X is said to be semi-analytic in X if it is semi-analytic at every point x ∈ A.

It is easy to see that semi-analytic sets in X are preserved under: finite union, finite inter-

section, and by taking the set difference of any two.
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The main fact about semi-analytic sets that will be used is Hironaka’s embedded desingular-

ization theorem.[9] Before stating the theorem there is some less familiar terminology that should

be reviewed.

Definition 2.8.5 ([9]Note after 2.4) For a given coordinate system (z1, · · · , zn) a quadrant is a

set defined by a system of some equalities zi = 0 and some inequalities ǫjzj > 0 with ǫ = ±1. Thus

a union of quadrants is a union of such sets.

A union of quadrants is the semi-analytic version of normal crossings. The difference is

that semi-analytic sets are defined via inequalities, and hence one gets quadrants in the place of

hyperplanes.

Definition 2.8.6 ([9]1.14) A real-analytic map π : X̂ → X between real analytic spaces is said

to be almost everywhere an isomorphism if there is a closed real analytic subsapce S of X, such

that S is nowhere dense in X, π−1 (S) is nowhere dense in X̂, and π induces an isomorphism

X̂ \ π−1 (S) −̃→X \ S.

A map that is almost everywhere an isomorphism is quite similar to a bi-meromorphic or

bi-rational equivalence.

Theorem 2.8.1 (Hironaka[9]2.4) Let X be a real analytic space. Let A be a globally defined

semi-analytic set in X. Then there exists a smooth analytic space X̂ and a proper surjective real

analytic map π : X̂ → X, such that for every point y ∈ X̂, there exists a local coordinate system

(z1, · · · , zn) centered at y for which the following is true:

• within some neighborhood of y in X̂, π−1 (A) is a union of quadrants with respect the to

the coordinates (z1, · · · , zn).

Furthermore when X is smooth to begin with then π is almost everywhere an isomorphism.

It is important to note that in above theorem the set S can be chosen to be completely

contained within X. Therefore π induces an isomorphism X̂ \ π−1 (A) −̃→X \ A. Finally notice

that π−1 (A) is semi-analytic since it is locally a union of quadrants.
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A final fact about semi-analytic sets is that they can be given the structure of a stratified

space. This stratification is particularly nice, in that it satisfies Whitney’s condition (B).

The theorem is stated in terms of sub-analytic sets. This is a more general class of sets that

semi-analytic, however every semi-analytic set is also sub-analytic set.

Theorem 2.8.2 (Hironaka[9]4.8) Let A be a sub-analytic subset of a smooth analytic manifold

X = Rn. Then A admits a Whintey (B) stratification. To be precise, there exists a decomposition

A = ∪αAα inducing a stratification A, which satisfies the following property:

• The family Aα form a decomposition of A by real-analytic submainfolds of X, each of which

is sub-analytic in X.

• (A,A, n) is a Whitney (B) stratified space.

This theorem holds for any smooth analytic manifold X, but the condition that X = Rn is

all that will be needed in this paper.

There is one more fact about semi-analytic spaces that will prove to be quite useful.

Theorem 2.8.3 For every Stratified Space (X,S, n) that satisfies Whitney’s condition (B), there

exists an open subset U ⊂ Rn, with X ⊂ U , such that X is a deformation retract of U .

This is a direct result of the work by Mather on the control theory of stratified spaces. The

main reason the above theorem is true is that every Whitney (B) stratified space, that can be

embedded in some euclidean space Rn, possesses smooth normal control data that is compatible

with the embedding[18]:Theorem 3.6.9, [14]:Propostion 7.1. Because the technical details would

only be a distraction and are not needed elsewhere in this paper they will be omitted. One should

consult Pflaum[18] Chapter 3, or Mather[14] for the full technical constructions.

Corollary 2.8.1 For every semi-analytic subset X of Rn there is an open set U in Rn such that

X is a deformation retract of U .
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It should be noted that this open set U can be chosen so that there is a smaller open set

V ⊂ U with X ⊂ V such that the closure V of V in Rn is contained in U , and if X is compact,

then so is V . Therefore since X is locally compact one can always choose this data locally.



Chapter 3

The Algebra of Whitney Functions

This chapter defines the sheaf of smooth functions, and the sheaf of Whitney functions.

After these definitions are given the sheaf of Whitney functions is described locally for certain

examples.

3.1 The Sheaf of Smooth Functions

This section begins by defining the sheaf of smooth functions on an open subset of Rn. After

this the stalks of this sheaf are described in terms of germs of smooth functions at a point.

Let O ⊂ Rn be an open set.

Definition 3.1.1 For each open set U ⊂ O define the R-algebra C∞ (U) of smooth functions on U

to consist of all those continuous functions on U whose partial derivatives exist and are continuous

to all orders.

For open sets V ⊂ U ⊂ O define the restriction map ρV U : C∞ (U) → C∞ (V ) by ρV U (f) = f |V for

each f ∈ C∞ (U). It is clear for open sets W ⊂ V ⊂ U that ρWV ρV U = ρWU . This implies that the

assignment U 7→ C∞ (U) defines a presheaf of R-algebras. It is a standard exercise to prove that

this actually defines a sheaf.

Definition 3.1.2 The sheaf of smooth functions on an open set O in Rn will be denoted C∞
O .

When the context is clear the O will be omitted and the space of sections of this sheaf over an open
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set U ⊂ O will be denoted C∞ (U). The image of the restriction maps ρV U (f) will be denoted f |V

for any f ∈ C∞ (U).

Definition 3.1.3 For any x ∈ O the stalk of the sheaf C∞
O at x is denoted C∞

O,x and is defined to be

equivalence classes of pairs (f, V ) where V ⊂ O is an open set containing x and f ∈ C∞ (V ). The

equivalence relation is defined by (f, V ) ∼ (g,W ), if there exists an open set Z ⊂ V ∩W containing

x, such that f |Z = g|Z . The equivalence class of (f, V ) under this relation is denoted [f ]x ∈ C∞
O,x.

Notice that this is the same as defining C∞
O,x to be the direct limit

C∞
O,x = lim

−→

x∈V ⊂O

V open

C∞ (V ) ,

where the limit is taken over the directed system of open sets V containing x, with the appropriate

restriction maps.

Notice that for each x ∈ O the stalk C∞
O,x is a local R-algebra with multiplication given by

[f ]x [g]x = [fg]x, and maximal ideal, mx, given by those germs [f ]x such that f (x) = 0.

3.2 Local Definition of Whitney Functions

Consider a locally closed subset C in Rn. This means that there is an open set U ⊂ Rn with

C ⊂ U closed. Let C∞ (U) be the R-algebra of smooth functions on U .

Definition 3.2.1 The Ideal, J∞ (C,U) ⊂ C∞ (U), is defined to be the collection of all f ∈ C∞ (U),

such that Df |C = 0, for every differential operator D on C∞ (U). It is called the ideal of smooth

functions on U flat on C.

It should be noted that, since U is an open subset of Rn, such a differential operator D can be

written locally as a polynomial in the variables d
dx1

, · · · , d
dxn

, where the xi’s are the local variables.

Furthermore, it is easy to see that J∞ (C,U) is an ideal by the chain rule.

The Whitney functions on C are defined by taking the quotient of smooth function on U by

this ideal.
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Definition 3.2.2 Define the algebra of Whitney functions on C to be the quotient

E∞ (C) = C∞ (U) /J∞ (C,U) .

Let J : C∞ (U) → C∞ (U) /J∞ (C,U) be the quotient map.

Let f ∈ C∞ (U) when the context is clear the coset J (f) in E∞ (C) will be represented either

as J (f) or f + J∞, rather than f + J∞ (C,U).

The following lemma will prove to be useful in the construction of the Whitney-deRham

complex, and can be found as lemma C.3.3 in [18].

Lemma 3.2.1 The ideal J∞ (C,U) is idempotent in the sense that the following equality holds:

(J∞ (C,U))2 = J∞ (C,U) .

The main way the previous lemma is used is

Corollary 3.2.1

J∞ (C,U) / (J∞ (C,U))2 = 0.

3.3 Whitney Functions: A different perspective

In this section the algebra of Whitney functions is defined in a different way from how it

was defined above. This is the way that this algebra is originally defined in Malgrange[13], and

most other sources. It this section the classical definition is given, and then it is shown how this

definition and the previous one are equivalent.

3.3.1 Compact Subsets of Rn

Fix a positive integer n, and let X ⊂ Rn be a compact subset, with y1, y2, . . . , yn being

coordinates on Rn. For any positive integer m let

N (m,n) = {α ∈ Nn |α| ≤ m} .
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Define the space of m-jets on X to be

Jm (X) =
⊕

α∈N (m,n)

C (X) .

An element (fα)α∈N (m,n) ∈ Jm (X) will be denoted by F = (fα)α∈N (m,n) and for brevity referred

to as F . For 0 ≤ k ≤ m, β ∈ N (k, n), and x ∈ X define the following functions:

T k
x : Jm (X) → C∞ (Rn)

Jk : C∞ (Rn) → Jk (X)

Dβ : Jk (X) → Jk−|β| (X)

T̃ k
x : Jk (X) → Jk (X)

Rk
x : Jk (X) → Jk (X)

as follows:

For y ∈ Rn define

T k
xF =

∑

α∈N (k,n)

fα (x)
(x− y)α

α!
.

For f ∈ C∞ (Rn) define

Jk (f) =

(
dαf

dxα
|X

)

α∈N (k,n)

.

This notation means that each partial derivative of f has been restricted to the subset X.

For F = (fα)α∈N (m,n) ∈ Jm (X) define

Dβ (F ) = (fβ+α)α∈N (m−|β|,n) .

The last two are much easier to define as they are combinations of the above functions. Define

T̃ k
x = JkT k

x

Rkx = 1− T k
x

Here 1 stands for the identity automorphism on Jk (X).

For any β ∈ N (m,n) denote the projection of Jm (X) onto the β-th factor when applied to

an element F simply to be F β = fβ .
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Fix a positive integer m and a jet F ∈ Jm (X). For any β ∈ N (m,n) note that
(
Rk

x (F )
)β

(y)

is a function from X × Rn into R. Let

rF,β : X ×X → R

denote the restriction of this function to X ×X. This function will be called the β-th remainder

term for F .

Definition 3.3.1 A jet F ∈ Jm (F ) is called a Whitney function of class m if

rF,β (x, y) = o
(
|x− y|m−|β|

)

for all β ∈ N (m,n). The collection of all Whitney functions of class m will be denoted by Em (X).

The o notation in the above definition means that the β-th remainder term vanishes to order

m− |β| along the diagonal of X ×X.

Defined | • |m on Jm (X) by

|F |m = sup {|fβ (x) | x ∈ X, β ∈ N (m,n)} ,

and define ‖ • ‖Xm on Em (X) by

‖F‖Xm = |F |m + sup {|rF,β (x, y) | (x, y) ∈ X ×X,x 6= y, β ∈ N (m,n)} .

It can be shown that ‖ • ‖Xm defines a norm, which makes
(
Em (X) , ‖ • ‖Xm

)
a Banach space.

3.3.2 Closed subsets of Rn

Let X1 ⊂ X2 ⊂ Rn be compact sets. Restriction of continuous functions on X2 to X1

induces a restriction of jets on X2 to jets on X1 by F |X1
= (fα|X1

)α∈N (m,n) for all F ∈ Jm (X2).

Furthermore it is clear that rF |X1
,β = rF,β |X1×X1

, and thus the restriction of a Whitney function

of class m is again a Whitney function of class m. Denote the restriction function by

ρ1,2 : E
m (X2) → Em (X1) .
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The fact that the remainder terms of F |X are the restriction of the remainder terms for F means

that this restriction is a continuous map of Banach spaces.

For X ⊂ Rn a closed subset define Xi = X ∩B (0, i), where B (0, i) denotes the ball of radius

i centered at 0 in Rn. Then X = ∪i≥0Xi with each Xi being compact and Xi ⊂ Xi+1. The above

paragraph says that for each pair i and j with i ≤ j there is a restriction map ρi,j : Em (Xj) →

Em (Xi) such that ρk,lρl,j = ρk,j for k ≤ l ≤ j. This data forms an inverse system of Banach spaces.

Definition 3.3.2 The space of Whitney functions of class m on X is defined to be the inverse

limit of the above inverse system of Banach spaces. That is Em (X) = lim Em (Xi). In particular

Em (X) is a Fréchet space.

An element F ∈ Em (X) is of the form F = (Fi)i≥0 where each Fi ∈ Em (Xi) such that

Fi|Xj
= Fj for all j ≤ i. Thus one can write F =

(
(fα,i)i≥0

)
, but since C (X) can be thought

of as the inverse limit of the C (Xi)’s then F can actually be expressed F = (fα) where each

fα ∈ C (X). The condition that F must satisfy now is slightly different. Each F ∈ Em (X) satisfies

rF,β |K×K (x, y) = o
(
|x− y|m−|β|

)
for every compact set K ⊂ X and every β ∈ N (m,n).

3.3.3 Whitney functions of class infinity

Let X ⊂ Rn be a closed set. For each i ≤ j define the projection

ji,j : E
j (X) → Ej (X)

given by

ji,j

(
(fα)α∈N (j,n)

)
= (fα)α∈N (i,n) .

Note that ji,jjj,k = ji,k for all i ≤ j ≤ k, and hence the data of the Em (X)’s along with the

projections ji,j ’s form an inverse system.

Definition 3.3.3 The space of Whitney functions of class infinity E∞ (X) is defined to be the

inverse limit of the above direct system.

E∞ (X) = lim
m

Em (X) .
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Each Em (X) is a Fréchet space so E∞ (X) is what some authors call an (LF)-space.

One can write an element of E∞ (X) as F = (fα)α∈Nn . Such an F must satisfy the condition

that for every m ≥ 0, every β ∈ N (m,n) and every compact set K ⊂ X, it is true that

rjm(F ),β |K×K (x, y) = o
(
|x− y|m−|β|

)
.

Where the map jm : E∞ (X) → Em (X) is the canonical map determined by the fact that E∞ (X)

is the limit of the above inverse system.

3.3.4 Algebra structure

Let X as above consider F,G ∈ Jm (X). Express F = (fα)α∈N (m,n) and G = (gα)α∈N (m,n).

Define the product of F and G to be FG = (hα)α∈N (m,n), where the function

hα =
∑

β+γ=α

fβgγ .

One can see that if F,G ∈ Em (X) then FG ∈ Em (X). Thus it is clear that Em (X) is

a commutative R-algebra. Furthermore it is clear that this product extends to the limit making

E∞ (X) into a commutative R-algebra. In fact this product makes each Em (X) into a Fréchet

algebra, and hence E∞ (X) becomes a (LF)-algebra. That is to say E∞ (X) is the inverse limit of

Fréchet algebras.

3.3.5 Whitney Extension Lemma

This section makes the connection between the approach developed in this appendix and the

approach taken in the main paper. This connection is made through the Whitney extension lemma.

Before stating the lemma some setup is required.

For each m ∈ N consider the map defined above as

Jm : C∞ (Rn) → Jm (X) : f 7→

(
dαf

dxα
|X

)

α∈N (m,n)

.
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By Taylors theorem each jet
(
dαf
dxα |X

)
α∈N (m,n)

satisfies the condition required to be a Whitney

function of order m. Thus this map has image contained in Em (X) so it can be thought of as

Jm : C∞ (Rn) → Em (X) .

By repeatedly applying the product rule, one sees that Jm is in fact an algebra homomorphism.

It is clear that the kernel of Jm is exactly the ideal Jm (X,Rn) of smooth functions on Rn whose

partial derivatives vanish to order m when restricted to X. Now the questions is whether or not

Jm is surjective onto Em (X). This is the content of the Whitney extension lemma.

Lemma 3.3.1 ([13] 3.2) The map Jm is surjective. Thus given a jet (fα)α∈N (m,n) ∈ Em (X),

there is a smooth function g ∈ C∞ (Rn) such that Jm (g) = (fα)α∈N (m,n) ∈ Em (X). This says that

fα = dαg
dxα |X .

Now the connection with the definition in chapter 3 is clear. For each m ∈ N there is a short

exact sequence

0 −−−−→ Jm (X,Rn) −−−−→ C∞ (Rn)
Jm

−−−−→ Em (X) −−−−→ 0.

Furthermore this exact sequence fits into an inverse system of short exact sequences. The maps

in this inverse system are induced from the above defined maps ji,j : Ej (X) → E i (X). The

inverse limit of this short exact sequence is again a short exact sequence, because each Jk is

surjective[6],[12]. This limit is exactly the short exact sequence used above to define E∞ (X)

0 −−−−→ J∞ (X,Rn) −−−−→ C∞ (Rn) −−−−→ E∞ (X) −−−−→ 0.

In this way it is easy to see that the definition in this section and the definition given previously

in the paper coincide. This also justifies the comments in the introductions that suggest that the

Whitney-deRham complex is a completion with respect to the defining ideal of X. Thus making

the connection between this theory and the algebraic deRham theory more clear.
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3.4 Whitney Functions on a Stratified Space With a Global Singular Chart

Let (X,S, n) be a stratified space. There is an open set O in Rn such that X is closed in O.

Every open subset U in X is locally closed in O. Assign to the open set U the R-algebra E∞ (U).

If V ⊂ U ⊂ X are open sets then there is an obvious containment J∞ (U,O) ⊂ J∞ (V,O). Thus

there is a homomorphism of R-algebras rUV : E∞ (U) → E∞ (V ) that clearly satisfied rUV r
V
W = rUW

for all open W ⊂ V ⊂ U ⊂ O. Therefore the assignment:

U 7→ E∞ (U)

Defines a presheaf of R-algebras E∞
X on X.

Lemma 3.4.1 E∞
X is a sheaf.

One can find the proof in section 1.5 of Pflaum[18]. The proof relies on the Whitney extension

lemma, which one can find in the appendix to Plaum[18].

Definition 3.4.1 The sheaf of Whitney functions on the stratified space (X,S, n) is defined to be

the sheaf E∞
X . The algebra of Whitney functions on X is the algebra of global sections of this sheaf

E∞ (X) = Γ (X, E∞
X )

.

For future reference it will be useful to have the following result:

Lemma 3.4.2 The sheaf of Whitney function E∞
X on (X,S, n) is a fine(flasque) sheaf.

Proof: This is proposition 1.5.4 in Pflaum[18]. �

3.5 Invariance of open set

The last section defined the sheaf of Whitney functions on a stratified space (X,S, n) in terms

of smooth functions on an open set O containing X. In this section it is shown that this sheaf does

not depend on the open set O.
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Let O1, O2 ⊂ Rn be open subsets such that X is closed in each O1 and O2. Let P = O1 ∩O2.

Define E∞ (X)O = C∞ (O) /J∞ (X,O), and J∞
O = J∞ (X,O), for any O ⊂ Rn that is open with

X ⊂ O. Consider the restriction map ρi : E
∞ (X)Oi

→ E∞ (X)P induced from the restriction of

smooth functions on Oi to P for i = 1, 2.

Lemma 3.5.1 The map ρi is an isomorphism.

Proof: Since the sheaf of smooth functions is a soft sheaf, the map ρi is surjective. Let f +J∞
Oi

∈

E∞ (Oi) if ρi
(
f + J∞

Oi

)
= 0 + J∞

P then f |P ∈ J∞ (X,P ). This means that f vanishes in a

neighborhood of X, and hence all of its partials vanish on X. Therefore f + J∞
Oi

= 0 + J∞
Oi

, and

ρi is injective. �

Therefore the following statement is justified:

Corollary 3.5.1 The R-algebra of Whitney functions

E∞ (X) = C∞ (O) /J∞ (X,O)

is independent of the choice of open set O containing X.

Because of this it is frequently useful to make a wise choice of O. Usually that will mean

that O is chosen so that X is a homotopy equivalent to O.

3.6 Whitney Functions on a Smooth Cone Space

The purpose of this section is to describe the local behavior of the sheave of Whitney functions

on a smooth cone space. The set up is rather technical, but the result is what should be expected.

Theorem 3.6.1 Let (X,S, n) be a smooth cone space. For every x ∈ X, let S ∈ S be the strata

containg x. Then there is an open set U ⊂ X, a positive integer d, a stratified cone space L of

depth d such that

E∞
X |U ∼= E∞

(S∩U)×CL.



31

Here L and CL can be chosen so that L is a closed subset of the unit sphere Sl of dimension l

in Rl+1 and CL has vertex at (U × S) × 0, with every point in (U ∩ S) × CL described by (s, tx)

where 0 ≤ t < 1, x ∈ L, and s ∈ U ∩ S.

Proof: Let Ux ⊂ X be a connected open set in X containing x, that is the domain of a cone

chart ψx : φ (Ux) → Cd ⊂ Rm of depth d. Since x ∈ S then φ (x) ∈ φ (S). Let Wx ⊂ Rn be

an open set with φ (Ux) = Wx ∩ φ (X) and Vx ⊂ Rm open, with Cd closed in Vx. There is a

smooth diffeomorphism Ψx : Wx → Vx such that Ψx|φ(Ux) = ψx. Now φ (x) is a point of Cd so

there exists a connected open neighborhood Ax of x in Cd, a cone space Lx of depth d− 1, and a

stratified diffeomorphism kφ(x) : Ax → φ (S)∩Ax×CLx. The map kx is the restriction of a smooth

diffeomorphism Kx : Bx → U l+1 from an open set Bx in Rm to an open set Uk+1 in Rm × Rk+1

containing the φ (S) ∩ Ax × CLx. Thus the open set ψ−1
x (Ax) ⊂ φ (X) is stratified diffeomorphic

to a space of the form φ (S)∩Ax ×CLx ⊂ Rm ×Rl+1 via the map kφ(x)ψx, which is the restriction

of a smooth diffeomorphism G = KxΨx whose domain is restricted to ψ−1
x (Ax). The map G

induces a map smooth functions G∗ : C∞
(
U l+1

)
→ C∞ (Vx)which is an isomorphism since G is a

diffeomorphism. By the chain rule, and the fact that G∗ is an isomorphism, G∗ maps the ideal of flat

functions on φ (S)∩Ax ×CLx exactally onto the ideal of flat functions on ψ−1
x (Ax), and similarly

with its inverse. Hence there is an isomorphism G∗ : E∞ (φ (S) ∩Ax × CLx) → E∞
(
ψ−1
x (Ax)

)
. �

3.7 Whitney functions on a Semi-Analytic Set

As in the above section this section examines the sheaf of Whitney functions locally. The

results are not as nice as the previous section, but still quite useful. This is due to Hironaka’s

desingularization theorem. Let X ⊂ Rn be a semi-analytic set, let x ∈ X and U ⊂ Rn open. Call

A = X ∩ U . By Hironaka there exists a open set V ⊂ Rn and a proper, surjective, real-analytic

map π : V → U such that B = π−1 (A) is locally a union on quadrants, and π is an isomorphism

fromV \ B to U \ A, with analytic inverse s : U \ A → V \ B. Choose coordinates on U and V so

that x = 0 in U and 0 ∈ B. The coordinates on U will be represented by xi’s and the coordinates
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on V will be represented by yj ’s.

The goal of this section will be to show that the ideal J∞ (A,U) ⊂ C∞ (U), is isomorphic to

the ideal J∞ (B, V ) ⊂ C∞ (V ). To do this one defines the map S : J∞ (B, V ) → J∞ (A,U), for

each g ∈ J∞ (B, V ), by the formula

Sg (x) =





g (s (z)) z ∈ U \A

0 z ∈ A

The difficulty is to prove that this is a well defined map. What needs to be checked is that g (s (z))

vanishes to all orders as z approaches A. Since s is well defined for all z ∈ U \ A, all partial

derivatives to all orders exist, and they will be a product of partials of g with partials of s. The

partials of g vanish to all orders as z approaches A. Hence one needs to show that the partials of

S do not blow up exponentially as z approaches A. Thus one wants to show that for each α ∈ Nn

there are constants kα, rα > 0 such that

|Dαsi (x) | ≤
kα

d (x,A)rα
,

for 1 ≤ i ≤ n.

Lemma 3.7.1 The map S is well defined.

Proof Because both U and V are smooth analytic manifolds, then the matrix of partial

derivatives Jπ, and Js of each has non-zero determinate(where defined) and compose to be the

identity. That is to say that for any x ∈ U \A,

Jπ (s (x)) Js (x) = In.

By Cramers rule this means that one can write the partial derivative of the i-th coordinate function

si of s with respect to the j-th variable xj of U as

dsi
dxj

=
‖Cij (Jπ (s (x))) ‖

‖Jπ (s (x)) ‖
.

Where the vertical bars ‖ • ‖ stand for the determinate, and Cij (•) means the ij-th cofactor

matrix of the matrix •.
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Let K ⊂ Rn be a compact subset contained in U . Since π is proper L = π−1 (K) is also

compact. Thus on L each partial derivative of π is bounded so the numerator can be bounded

above by some constant M , since it is a sum of products of partial derivatives of π. Furthermore

‖Jπ‖ is an analytic function on V . Thus the Lojasiawicz’s inequality,[13]:Theorem 4.1, says that

there exists C, r > 0 such that for any y ∈ L the following is true:

|‖Jπ (y) ‖| ≥ Cd (y,B)r .

Thus it follows, for any 0 ≤ i, j ≤ n, that there are a constants c, r > 0 such that for any

x ∈ K ,

|
dsi
dxj

(x) | ≤
c

d (s (x) , B)r
.

One now needs to show that there exists constants k and s such that for any x ∈ K

d (s (x) , B) ≥ kd (x,A)s .

This can be done in such a way that s = 1 and

k = n sup
z∈K,1≤i,j≤n

|
dπi
dyj

(z) |.

Let b ∈ B, y ∈ V , and γ a rectifiable curve in V connecting y to b in V , then π (γ) is a curve

in U connecting x = π (y) ∈ U to a = π (b) ∈ A. Lemma 6.11 of Bierstone and Millman[15] says,

not only is π (γ) rectifiable but its length can be bounded as follows

|π (γ) | ≤ n|γ| sup
z∈γ,1≤i,j≤n

|
dπi
dyj

(z) |.

According to Hironaka[9], every sub-analytic set, and hence every semi-analytic set, can be

given the structure of a Whitney (B) stratified space. Hence, by the work of Mather in control

theory[14], it posses a system of control data. This implies that there exists an open set W ,

containing A, that is homotopy equivalent to A. Furthermore this implies that one can choose a
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compact set Z ⊂ U in such a way that A ⊂ Z ⊂ W , and that for every point in z ∈ Z there is a

curve γ that satisfies the condition that |γ| = d (z,A). This comes from the fact that each stratum

in A has a tubular neighborhood, and these neighborhoods are compatible with one another.

In the above situation it is sufficient or one to work with K = Z. This is because one is only

interested in the behavior of the function s near A.

The partials of π are defined and continuous on L, so there is a constantM that only depends

on π and L such that, for any γ in L,

sup
z∈γ,1≤i,j≤n

|
dπi
dyj

(z) | ≤M.

Combining this with the previous statement, and that the length of a curve between two

points is always at least as large as the distance between the two points, one sees that

d (x, a) ≤ |π (γ) | ≤ nd (y, b)M,

Where γ is chosen to be the curve in L connecting y to b with |γ| = d (y, b).

Now note that since a = π (b) ∈ A, then

d (x,A) ≤ d (x, a) .

This yields

d (x,A) ≤ nMd (y, b) .

Furthermore this is true for all points b ∈ B, so if one takes the infemum over all b ∈ B, and

writes, y = s (x), then one achieves the desired result

C ′d (x,A) ≤ d (s (x) , B) ,

Where the constant C ′ only depends on π and K.
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By induction, and basic calculus, one can, for any α ∈ Nn, for any x ∈ U \ A, that the

function Dαsi (x) is a quotient P (x) /Q (x) where P (x) is a finite sum of finite products of partial

derivatives of π, all of order less than α, evaluated at s (x), and Q (x) = ‖Jπ (s (x)) ‖mα for some

integer mα ≥ 1. Thus for the same reasons as above one can write, for each x ∈ K, that

|Dαsi (x) | ≤
cα

d (x,A)mα
,

for 1 ≤ i ≤ n.

This means that the partials of g (s (z)), for z ∈ K \ A vanish to all orders. This is because

the partials of g vanish faster than d (x,A)k for all k ∈ N.

�

Corollary 3.7.1 There is an isomorphism of non-unital R-algebras.

J∞ (A,U) ∼= J∞ (B, V ) .

Proof: One immedeatly see that the following identities are true

Sπ∗ = 1J∞(A,U), and π∗S = 1J∞(B,V ).

Both the map π∗ and the map S are easily seen to be algebra morphisms. �

Thus there is the commutative diagram which shows to what extent one can understand the

Whitney functions local behavior on a semi-algebraic set.

0 −−−−→ J∞ (A,U) −−−−→ C∞ (U) −−−−→ E∞ (A) −−−−→ 0

π∗

y∼= π∗

y π∗

y
0 −−−−→ J∞ (B, V ) −−−−→ C∞ (V ) −−−−→ E∞ (B) −−−−→ 0

This result will be needed when this same idea is extended to differential forms.



Chapter 4

The Whitney-deRham Complex

4.1 The deRham Complex

The deRham complex will be used extensively in what follows. It will only be necessary

to work with the deRham complex on an open set in Rn, hence for completion a quick and easy

definition is given here. For the proper definition on should consult Lee[10], Bott and Tu[25], or

Madsen and Tornehave[24].

Let x1, x2, . . . , xn be coordinates on Rn.

Definition 4.1.1 Define Ω∗ to be the exterior algebra on an n-dimensional R-vector space. To be

more precise Ω∗ is the graded R-algebra generated by the symbols dx1, dx2, . . . , dxn each of which

has degree +1, with the relations (dxi)
2 = 0 and dxidxj = −dxjdxi when i 6= j. As an R-vector

space the k-th piece Ωk of Ω∗ has a basis given by all dxi1dxi2 . . . dxik with i1 < i2 < · · · < ik.

Let O ⊂ Rn be an open set.

Definition 4.1.2 The algebra of smooth differential forms on O is defined to be

Ω∗
dR (O) = C∞ (O)⊗R Ω∗.

Therefore if ω ∈ Ωk
dR (O) then ω can be uniquely written as a sum

∑

i1<i2<...<ik

fi1i2···ikdxi1dxi2 · · · dxik ,

with fi1i2···ik ∈ C∞ (O). When no confusion will occur this sum will frequently be abbreviated

as
∑
fIdxI . The algebra Ω∗

dR (O) is naturally graded with grading induced from Ω∗.
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Definition 4.1.3 Define the differential d : Ωk
dR (O) → Ωk+1

dR (O) recursively by first defining d on

Ω0
dR (O) = C∞ (O). For any f ∈ C∞ (O)

d (f) =
k∑

i=1

df

dxi
dxi.

Now if a fdxi1 · · · dxik is a simple tensor in Ωk
dR (O) define d as

d (fdxi1 · · · dxik) = dfdxi1 · · · dxik

and extend by linearity to all k-forms.

If ω ∈ Ωk
dR (O) and τ ∈ Ωl

dR (O) then their product ω ∧ τ ∈ Ωk+l
dR (O). By virtue of the fact

that d acts by taking partial derivatives d (fg) = d (f) g+ fd (g) for all f, g ∈ C∞ (O). Hence, since

the dxi’s anti-commute

d (ω ∧ τ) = d (ω) ∧ τ + (−1)k ω ∧ d (τ) .

Similarly it is clear that

ω ∧ τ = (−1)kl τ ∧ ω.

Definition 4.1.4 Therefore, (Ω∗
dR (O) , d,∧) forms a CDGA (commutative differential graded al-

gebra). The cohomology H∗
dR (O) of this algebra is called the deRham cohomology of O, and is a

commutative graded algebra with the product induced from ∧.

Definition 4.1.5 For each k ≥ 0, define the presheaf Ωk
O by the assignment

U 7→ C∞ (U)⊗R Ωk,

for each open U ⊂ O, with restriction maps ρV U ⊗ 1Ωk .

Each sheaf Ωk
O is a C∞

O -module. Hence since C∞
O is a fine sheaf, so is Ωk

O. Notice also that

the differential d : Ωk
dR (U) → Ωk+1

dR (U) induces a differential d : Ωk
O → Ωk+1

O . Furthermore there

is an injective map η : RX → C∞
O of sheaves, induced from the map on sections, η′ : R → C∞ (U),

that sends the real number r to the constant function r on U .
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Lemma 4.1.1 (Poincaré’s Lemma) For each point x ∈ U there is a basis of open, contractible

neighborhoods at x such that for any V in this basis the chain complex

0 −−−−→ RV −−−−→ Γ
(
V,Ω0

O

)
−−−−→ Γ

(
V,Ω1

O

)
−−−−→ . . .

is exact.

These facts translate into deRham’s theorem

Theorem 4.1.1 (deRham’s Theorem) The complex Ω∗
O comprises a fine resolution the locally

constant sheaf RO. Hence after applying the global sections functor and taking cohomology one

gets

H∗
dR (O) ∼= H∗ (O,R) .

4.2 The Whitney-deRham Complex

Let X ⊂ O be a relatively closed subset of Rn. Recall from above the ideal of smooth

functions on O that are flat on X is denoted J∞ (X,O) and consists of all smooth functions on O

whose partials to all orders vanish when restricted to X, and the R-algebra of Whitney functions,

E∞ (X), on X is is the quotient C∞ (O) /J∞ (X,O). Let J : C∞ (O) → E∞ (X) be the quotient

map.

Definition 4.2.1 Define the Whitney-deRham complex, to be

Ω∗
W (X) = E∞ (X)⊗R Ω∗,

With the differential dW = d + J∞. This is a CDGA with product is ∧ + J∞. The cohomology,

H∗
W (X), of this complex is called the Whitney-deRHam cohomology. With the wedge product

H∗
W (X) is a commutative graded algebra.

Note that the quotient map J induces a map

J∗ = J ⊗ 1Ω∗ : Ω∗
dR (O) → Ω∗

W (X) .

Since J is a surjective algebra homomorphism so then is J∗. In fact, J∗ is a morphism of CDGA’s.
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Definition 4.2.2 The differential graded ideal

Ω∗
r (X,O) = J∞ (X,O)Ω∗

dR (O) = ker J∗,

Is called the complex if relative Whitney differential forms, and its cohomology, H∗
r (X,O), is called

the relative Whintey-deRham cohomology.

One now has a short exact sequcence of chain complexes,

0 −−−−→ Ω∗
r (X,O) −−−−→ Ω∗

dR (O)
J∗

−−−−→ Ω∗
W (X) −−−−→ 0.

Similar to the previous section one has, for each k ≥ 0, the fine sheaf Ωk
W,X of Whitney

differential forms on X whose sectional space over the open set U ⊂ X is exactly Ωk
W (U). One

also has the map, J∗η′ : R → E∞
X , which remains injective.

One may wonder if the complex Ω∗
W,X also satisfies Poincaré’s Lemma, thereby making Ω∗

W,X

a fine resolution of the locally constant sheaf. Below it will be shown that this is in fact true for

all smooth cone spaces with a global singular chart, and for all semi-analytic subsets of Euclidean

space. In particular it is true for smooth manifolds, manifolds with isolated singularities, real-

(semi)analytic sets, and real-(semi)algebraic sets. Thus it is also true for all complex analytic and

algebraic subsets of some Cn.

4.3 The Tangent Bundle

As above consider a locally closed subset X ⊂ Rn contained in an open set O ⊂ Rn, and let

x1, x2, . . . , xn be coordinates on Rn.

Definition 4.3.1 Define the R-vector space T to be the R-vector space generated by the basis

d
dx1

, d
dx2

, . . . d
dxn

. The space of vector fields on O is defined to be XO = C∞ (O)⊗R T . Likewise one

can define the Whitney vector fields on X to be XWX = E∞ (X)⊗R T . For each k ≥ 0 define the

pairing

〈, 〉 : T ⊗R Ωk → Ωk−1
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by defining

〈
d

dxj
, dxi1 · · · dxik

〉
=





0 ∀l, j 6= il

dxi1 · · · d̂xil · · · dxik ∃l, j = il

Extend this by linearity to the entire space. The hat on a specific term means that term has

been removed from the product and replaced with a 1.

This induces the following contraction operators

〈, 〉 : XO ⊗R Ωk
dR (O) → Ωk−1

dR (O) ,

〈, 〉W : XWO ⊗R Ωk
W (X) → Ωk−1

W (X) .

Both will be written using the 〈, 〉 notation.

4.4 Poincaré’s Lemma for smooth manifolds

Theorem 4.4.1 If X is a locally closed smooth submanifold of Rn for some n, and O is an open

set in Rn with X closed in O, then the homomorphism of commutative differential graded algebras

J∗ : Ω∗
dR (O) → Ω∗

W (X)

is a quasi-isomorphism.

Proof:

By the tubular neighborhood theorem it can be assumed that X is a deformation retract of

O by a smooth homotopy h : O× I → O relative to X. Denote ht (x) = h (x, t) for a fixed t. Then

h0 = 1X , h1 (x) ∈ X for all x ∈ O, and ht (x) = x for all x ∈ X and all t ∈ I.

Define the operator K∗ : Ω∗
dR (O × I) → Ω∗−1

dR (O) by the formula

Kk (ω) =

∫ 1

0

〈
d

dt
, ω

〉
dt

for all ω ∈ Ωk
dR (O × I) and all k ≥ 0. The composition of this operator with h∗, satisfies the

following formula

Kk+1hk+1d (ω) + dKkhk (ω) = hk1 (ω)− hk0 (ω) .
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It is clear that taking partial derivatives in the O directions commutes with integrating in

the t direction. Thus if ω ∈ Ωk
r (X,O) then Kkhkω ∈ Ωk−1

r (X,O). Furthermore, since h1 (x) ∈ X,

for all x ∈ O, then h∗1 (ω) = 0. Thus if dω = 0, the the above formula says that ω is a boundary

in Ωk
r (X,O). Therefore the chain complex Ω∗

r (X,O) is acyclic, in the sense that Hk
r (X,O) = 0 for

all k ≥ 0. This chain complex is exactly the kernel of the map J∗, which is surjective by definition.

Therefore the map J∗ is a quasi-isomorphism.�

4.5 Poincaré’s Lemma for smooth cone spaces

Let (X,S, n) be a smooth cone space. Consider the complex of sheaves Ω∗
W,X on X. To

prove a Whitney-deRham type theorem, as in the previous section, one need to prove the Poincaré

lemma for this sheaf of complexes.

Theorem 4.5.1 For any x ∈ X, there exists a basis of contractible open neighborhoods of x in X

such that for each element U ⊂ X of this basis, the complex Ω∗
W (U) is acyclic.

Proof: Since the sheaf of Whitney functions on X is locally isomorphic to the sheaf of Whitney

functions on (S ∩ U) × CL for some open connected set U in X and cone space L of depth d,

it is sufficient to prove the theorem for X = Y × CL ⊂ Rm × B. Here Y is a locally closed

smooth submanifold of Rm for some m, L is embedded in the unit sphere Sl in the closed unit ball

B = Bl+1, and every point in CL is of the form tx with 0 ≤ t < 1 and x ∈ L.

Let T be a tubular neighborhood of Y in Rm, then X is closed in T × B. One has that

Ω∗
W (X) ∼= Ω∗

dR (T ×B) /Ω∗
r (X,T ×B). Now one has the radial homotopy h : T × B → T × B

given by h (y, tx, s) = (y, stx). This contracts T ×B to T × {0} relative to X.

By applying the operator K∗ as defined in the previous section, one achieves the same results.

That K∗h∗ω ∈ Ω∗−1
r (X,T ×B) whenever ω ∈ Ω∗

r (X,T ×B). This means that the map

h0 : Ω∗
W (X) → Ω∗

W (Y × {0})

is well defined and is a homotopy equivalence.
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This gives the desired result since the complexes Ω∗
W (Y × {0}) and Ω∗

dR (Y ) are homotopy

equivalent, as per the previous section.

�

As stated above the sheaf of Whitney functions E∞ (X) is a fine sheaf on X and thus each

Ωk
W (X) is a fine sheaf of modules over E∞ (X). Thus the sheaf of complexes Ω∗

W,X is a fine resolution

of the locally constant sheaf RX , on X. Therefore the chain complex Ω∗
W (X) is quasi-isomorphic

to the singular cochain complex C∗ (X) as chain complexes.

Furthermore the above proof actually shows that when U is an open sets that deformation

retracts onto X then the map J : Ω∗
U → Ω∗

W,X is locally a quaisi-isomorphism of differential graded

algebras, thus it is globally a quasi-isomorphism of differential graded algebras.

Hence the following result:

Theorem 4.5.2 Let (X,S, n) be a smooth cone space with X a closed subset of an open set O in

Rn such that X is a deformation retract of O. The quotient map

J∗ : Ω∗
dR (O) → Ω∗

W (X)

is a quasi-isomorphism of differential graded algebras.

4.6 Poincaré’s Lemma for Semi-Analytic Sets

4.6.1 Local Union of Quadrants

The study of a local union of quadrants is similar to studying locally complete intersections,

or local normal crossings in algebraic geometry. One first proves theorems about this type of space,

and then extends them to more general types of spaces using some sort of resolution of singularities.

This is exactly what is done here.

Definition 4.6.1 A closed subspace X ⊂ Rn is call a local union of quadrants, if for every point

x ∈ X there is an open neighborhood U of x in Rn, an open neighborhood V of the origin in Rn, and

a smooth diffeomorphism φ : U → V , such that if x1, x2, . . . xn are coordinates on Rn centered at
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the origin then φ (U) is defined by a collection of equations {xi = 0}i∈I and {±xj > 0}j∈J , where

I,J ⊂ {1, 2, · · · , n}. For clarity purposes it should also be specified that φ (x) = 0 where 0 is the

origin in Rn. Is said that φ (U) is the union of quadrants in Rn.

For this type of space it is easy to prove that the Whitney-deRham cohomology of X is

isomorphic to the singular cohomology of X. The only thing that needs to be done is to prove

Poincaré’s lemma.

Lemma 4.6.1 Let X be a local union of quadrants, then the sheaf of chain complexes Ω∗
W,X is

exact.

Proof: This proof is identical to the proof of 4.5.1�

Theorem 4.6.1 Let X be a local union of quadrants, then there is an isomorphism

H∗ (X,R) ∼= H∗
(
Γ
(
X,Ω∗

W,X

))
= H∗

W (X)

Corollary 4.6.1 Let X ⊂ Cn be an algebraic set that is a local normal crossing, then H∗
W (X) ∼=

H∗ (X,R).

If X is a local union of quadrants, then X is semi-analytic, and hence, by 2.8.1 there is an

open set U in Rn such that X is a deformation retract of U . Then there is the following exact

sequence of chain complexes

0 −−−−→ J∞ (X,U) Ω∗
dR (U)

I
−−−−→ Ω∗

dR (U)
J∗

−−−−→ Ω∗
W (X) −−−−→ 0.

The above theorem proves more than just the fact that H∗
W (X) ∼= H∗ (X,R). It actually

shows that locally J∗ is a quasi-isomorphism of CDGA’s. Thus one may conclude that J∗ in the

above diagram is a quasi-isomorphism of CDGA’s. This is restated in the following corollary.

Corollary 4.6.2 When X ⊂ Rn is locally a union of quadrants, and U ⊂ Rn is an open subset

such that X is a deformation retract of U in Rn then the quotient map

J : Ω∗
dR (U) → Ω∗

W (X)
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is a quasi-isomorphism of CDGA’s. In particular the complex

Ω∗
r (X,U) = J∞ (X,U) Ω∗

dR (U)

is acyclic.

4.6.2 Semi-analytic sets

Recall from section 3.7 that the main fact about semi-analytic sets used is the embedded

desingularization theorem by Hironaka. Let X ⊂ Rn is a semi-analytic set, x ∈ X, and U ⊂ Rn

open. Let A = X ∩ U . There exists an open set V ⊂ Rn, and a proper surjective analytic map

π : V → U , such that B = π−1 (A) is a local union of quadrants, and π| : V \ B → U \ A is

an isomorphism, with analytic inverse s : U \ A → V \ B. Note that because both A and B are

semi-analytic sets one can choose, by 2.8.1, both U and V in such a way that A is a deformation

retract of U , and B is a deformation retract of V . Furthermore U can be chosen so that A is

contractible to x, in A.

This data yields the following commutative diagram

0 −−−−→ Ω∗
r (A,U)

I
−−−−→ Ω∗

dR (U)
JAU−−−−→ Ω∗

W (A) −−−−→ 0

π∗

y π∗

y π∗

y

0 −−−−→ Ω∗
r (B, V )

I
−−−−→ Ω∗

dR (V )
JBV−−−−→ Ω∗

W (B) −−−−→ 0.

Because of the fact that B is locally a union of quadrants, the previous section implies that

JBV is a quasi-isomorphism of commutative differential graded algebras.

Lemma 4.6.2

H∗
r (B, V ) = 0.

�

Using the map s : U \A→ V \B, the inverse to π|, define the map

S : Ω∗
r (B, V ) → Ω∗

r (A,U)
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by the following formula

Sω (z) =





ω (s (z)) if z ∈ S \A

0 if z ∈ A

for ω ∈ Ω∗
r (B, V )

This map is well defined since it is just the extension of the map S defined in section 3.7, from

the 0-th graded piece to all of Ω∗
r (B, V ). Furthermore it is a morphism of commutative differential

graded algebras.

It should be noted that this is one place where it is necessary to work with forms that vanish

to all orders on a subset. If ω vanished only to finite orders then Sω would not have smooth

coefficients.

Proposition 4.6.1 The map

S : Ω∗
r (B, V ) → Ω∗

r (A,U)

is an isomorphism of commutative differential graded algebras. Therefore

H∗
r (A,U) = 0.

Proof: This is true because the map S from section 3.7 is an isomorphism, and it extends to

well defined map S as above, because the complexes of relative differential forms are free on the

ideal of flat functions.

Furthermore, it is easy to see that for all ω ∈ Ω∗
r (B, V ) and τ ∈ Ω∗

r (A,U) the following

equalities hold:

π∗Sτ = τ and Sπ∗ω = ω.

Thus the desired result.�

From this proposition it follows that

Theorem 4.6.2 The map

JAU : Ω∗
dR (U) → Ω∗

W (A)

is a quasi-isomorphism of commutative differential graded algebras.
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Proof: This follows since the kernel of JAU is acyclic, and JAU is surjective.�

Theorem 4.6.3 Let X ⊂ Rn be a semi-analytic set. Then the Whitney-deRham cohomology on

X,

H∗
W (X) ∼= H∗ (X,R) ,

a graded algebras.

Proof: By 2.8.1 there exists, W ⊂ Rn, an open set containing the semi-analytic set X such

that X is a deformation retract of W . Then the above work shows that the quotient map

JWX : Ω∗
dR (W ) → Ω∗

W (X)

is locally a quasi-isomorphism. Thus it is globally a quasi-isomorphism. Since it is induced from a

morphism of sheaves. Furthermore since W is a smooth manifold the deRham cohomology of W

is isomorphic to the singular cohomology of W . Since W is homotopy equivalent to X then the

singular cohomology of W is isomorphic to the singular cohomology of X.�

The following statement summarizes the above work.

Corollary 4.6.3 Let X ⊂ Rn be a semi-analytic set, let W ⊂ Rn be an open set containing the

semi-analytic set X such that X is a deformation retract of W . The quotients map

JWX : Ω∗
dR (W ) → Ω∗

W (X)

is a quasi-isomorphism of commutative graded differential algebras.�



Chapter 5

Real Homotopy Theory

This chapter discusses an application of the above work in the area of real homotopy theory.

The first several sections introduce the basic terminology needed to understand the results, and

the last section states the main results. Most of the main results have already been proved in

the above work, and only need to be interpreted correctly. If one is interested in reading more

about real and rational homotopy theory there are several nice resources: Félix, Halperin, and

Thomas’s book[23], Griffiths, and Morgans’ book[16], a very nice paper by Kathyren Hess[8], and

many more. The following introduction will introduce only what is needed for this paper and is in

no way comprehensive.

5.1 Introduction

Rational homotopy theory can be thought of as homotopy theory modulo torsion. One can

pass from the homotopy groups π∗ (X) of a space X, to the rational homotopy groups πQ∗ (X) of

X simply by tensoring

πQ∗ (X) = π∗ (X)⊗Z Q.

Of course the problem with this is that in general π1 (X) is not an abelian group. This can be

resolved in certain cases [22]. In order to avoid complications it will be assumed from now on that

X is simply connected, unless stated otherwise.

Let K be any field containing Q.
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Definition 5.1.1 The K homotopy type of X is the isomorphism class of graded K vector space

represented by

π∗ (X)⊗Z K.

Throughout this paper K will only be either Q or R. The symbol K will be used when the

result holds for any field containing Q.

In order to study the real homotopy type of X one must proceed in a rather round about way,

via commutative differential graded algebras, Sullivan algebras, and minimal Sullivan algebras.

5.2 Minimal Sullivan Algebras and CDGA’s

Definition 5.2.1 A commutative differential graded algebra (CDGA) A over a field K is graded

K-vector space A = {An}n∈Z, along with a graded multiplication

µ : Am ⊗K A
n → Am+n : a⊗ b 7→ ab,

which is commutative in the sense that if a ∈ Am and b ∈ An then

ab = (−1)mn ba.

Furthermore A is endowed with a differential, which is a K-linear map

d : An → An+1 : a 7→ da,

and satisfies the following property: For a ∈ Am and b ∈ A

d (ab) = (da) b+ (−1)m a (db) .

That is to say that d is a degree +1, K-derivation of A into itself.

There are many examples of CDGA’s that arise naturally. The ones that will be of the most

interest in this paper are listed below.

Example 5.2.1 Let X be a topological space, the singular cohomology ring H∗ (X;K) with co-

efficients in K is a CDGA, where the product is given by the cup product, and the differential is

zero.
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Example 5.2.2 LetM be a smooth manifold, the de Rham complex Ω∗
dR (X) on X with the wedge

product and the exterior derivative is a CDGA over R

Example 5.2.3 Given a locally closed subset A of Rn the Whitney-de Rham Ω∗
W (X) complex is

a CDGA over R. This is because it is a quotient of the de Rham complex on an open neighborhood

of X by a differential graded ideal.

A commutative graded algebra (CGA) is a CDGA with zero differential, and a CDGA can

be made into an CGA by forgetting the differential.

Example 5.2.4 Let V = {Vk}k∈N be a graded K-vector space. There is a natural way to build a

CGA out of this data. Let

TV =
⊕

n≥0

V ⊗n

be the tensor algebra, with multiplication defined by concatenation of tensors. Define

SV = TV/J,

Where J is the differential graded ideal of TV generated by all elements of the form

a⊗ b− (−1)mn b⊗ a where a ∈ Vm, b ∈ Vn, ∀m,n.

Then SV forms a CGA with the multiplication induced from TV .

It should be noted that if V is a differential graded Lie algebra over K, then S (V ∗), where

V ∗ is the dual vector space of V , can be endowed with a differential that is induced by the dual of

the Lie bracket in V , thereby making it a CDGA. One should consult [21], or [22] for more details.

The above example is needed to define (minimal) Sullivan algebras, which are fundamental

in the study of rational homotopy theory.

Definition 5.2.2 A Sullivan CDGA, or simply a Sullivan Algebra, is an CDGA of the form SV

for some graded vector space V = {Vk}k∈Z over K with Vk = 0 for all k < 0. Furthermore it is

required that V have a basis {vα}α∈J where J is a partially ordered set such that for any β ∈ J

dvβ ∈ S (V<β) ,
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where V<β is the graded vector space spanned by {vα}α<β .

A Sullivan algebra is called minimal if the following condition is satisfied:

d (V ) ⊂
(
S+V

) (
S+V

)

Where S+V consists of all the elements with nonzero tensor degree in SV .

This minimality condition is simply requiring that the image of d be in the image of the

multiplication map when it is restricted to elements of strictly positive degree.

Definition 5.2.3 A CDGA A = {An}n∈Z is called connected if An = 0 for all n < 0 and A0 = K.

Similarly A is called simply connected, or 1-connected, if A1 = 0.

Definition 5.2.4 Given a CDGA A, a minimal model for A is a minimal Sullivan algebra SV

along with a morphism of CDGAs mA : SV → A that induces an isomorphism on cohomology

groups.

With the above definitions it is now possible to explain why minimal Sullivan algebras are so

important.

Proposition 5.2.1 ([23]§13) To any connected, simply-connected CDGA A there exists a min-

imal model SVA that is unique in the following sense: If B is any connected, simply-connected

CDGA that is homotopy equivalent to A then the minimal model SVB associated to B is isomor-

phic to SVA, by a unique isomorphism

Since homotopy of CDGA’s will not be used often in this paper one should consult section 13 of

[23] for the precise definition of what it means for two CDGA’s to be homotopy equivalent.

The above proposition says that referring to the minimal model of a CDGA is justified without

qualification.

5.3 Piecewise Linear Differential Forms

This section describes a canonical way of associating to a topological space a CDGA, APL (X),

called the CDGA of piecewise linear differential forms on X. A good reference for this is [23]§10.
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Before defining the CDGA APL (X) there are several prerequisites that need to be discussed.

Namely one first needs to define a simplicial CDGA APL which should be thought of as the algebra

of polynomial differential forms on the standard simplices |∆•| as subsets of R•+1. Then the

algebra APL (X) is the collection of simplicial morphisms from the set of singular simplices in X

to APL. This has the effect of assigning to each simplex in X a polynomial differential form that

is compatible with the face and degeneracy maps.

Definition 5.3.1 The category of ordinal numbers ∆ is defined to have objects being ordered sets

∆n = {0 < 1 < 2 < · · · < n} for each n ∈ N. Morphisms in this category are order preserving

functions.

Definition 5.3.2 Let C be any category. A simplicial object in C is a functor

K : ∆o → C

Where ∆o is the opposite category of ∆.

Proposition 5.3.1 (Proposition 8.1.3 [27]) To specify a simplicial object in C it is sufficient to

specify an objects Kn and morphisms ∂i : Kn+1 → Kn for 0 ≤ i ≤ n+ 1, and sj : Kn → Kn+1 for

0 ≤ j ≤ n for each n ∈ N. These maps are required to satisfy the following simplicial relations

∂i∂j = ∂j−1∂i , i < j

sisj = sj+1si , i ≤ j

∂isj = sj−1∂i , j < i

∂isj = id , i = j, j + 1

∂isj = sj∂i−1 , i > j + 1

.

The maps ∂i are called face maps, and the maps sj are called degeneracy maps.

The algebra APL is a simplicial CDGA. This means that one must specify a CDGA for each

n ∈ N along with the above maps.
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Definition 5.3.3 Fix a natural number n. Define the graded R-vector space V = {Vj}j≥0 with V0

having basis {ti}
n
i=0, V1 having basis {dti}

n
i=0, and Vj = 0 for j ≥ 2. Let

APL,n = SV/I,

where I is the differential graded ideal generated by the elements t0 + t1 + · · · + tn − 1 and dt0 +

dt1 + · · ·+ dtn. Define the differential d by requiring that

d (ti) = dti, and d (dti) = 0.

The above construction gives a CDGA for each n ∈ N. The maps ∂i and sj are defined in

terms of the basis ti and dti. This can be done as long as the ideal I is in the kernel of the maps.

Definition 5.3.4 Define the CDGA morphisms ∂i : APL,n+1 → APL,n and sj : APL,n → APL,n+1

for 0 ≤ i ≤ n+ 1, and 0 ≤ j ≤ n, by defining them on generators as follows

∂itk =





tk , k < i

0 , k = i

tk−1 , k > i

, and sjtk =





tk , k < j

tk + tk+1 k = j

tk+1 k > j

.

It is easy to see that the above definition is well defined and that ∂i and sj do in fact CDGA

morphisms. Furthermore one can check that these maps satisfy the simplicial identities. Therefore

the above construction defines a simplicial CDGA APL.

There is a natural simplicial set associated to each topological space. The set of singular

simplicies.

Definition 5.3.5 Let X be a topological space. The set of singular simplicies in X is defined for

each n ∈ N by

Sn (X) = {σ : |∆n| → X, σ is continuous } .

Where |∆n| is the standard simplex in Rn+1. The face and degeneracy maps are defined by including

|∆n| into |∆n+1| as the i-th face, and by collapsing the j-th face of |∆n+1| respectively these

operations induce maps on Sn (X) by precomposing σ with the respective inclusion or quotient,

thus defining a simplicial set.
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The CDGA of polynomial differential forms on X can now be defined.

Definition 5.3.6 Let X be a topological space then the CDGA of polynomial differential forms

on X is defined to be the set of all simplicial homomorphism between S• (X) and APL,•. That is

to say it is the set of morphisms in the category of simplicial sets

APL (X) = hom∆•
(S• (X) , APL,•)

Proposition 5.3.2 ([23]§10− §12) The assignment X 7→ APL (X) defines a functor from the

category T OPCW , of topological spaces that are homotopy equivalent to a CW-complex, to the

category CDGAR of commutative differential graded algebras over R. Furthermore this functor

is invariant on homotopy classes of topological spaces in the following sense: If X is homotopy

equivalent to Y then the CDGAs APL (X) and APL (Y ) are homotopy equivalent, and hence have

isomorphic minimal Sullivan algebras.

Definition 5.3.7 The minimal model for X is a the minimal Sullivan algebra SVX along with the

CDGA morphism φX : SVX → APL (X).

Notice that both SVS and φX are uniquely defined up to isomorphism. The connection between

minimal models and rational homotopy theory shows up via the graded R-vector space VX on which

the minimal model of X is defined.

Proposition 5.3.3 ([23]§15) The real homotopy groups of a simply connected space of finite type

are determined by VX . In fact

VX,∗
∼= homR (π∗ (X) ,R) .

It should be noted that the above proposition holds when R is replaces by Q, but since we

are only interested in the real homotopy type of X this is sufficient.

5.4 Main Results

The reason the above statement is so useful is because one may compute SVX from any

CDGA that is quasi-isomorphic to the CDGA APL (X). This is where the work in this paper
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comes in. In the 4.6.3 it is shown that Ω∗
W (X) calculates the singular cohomology of X when X

is semi-analytic or a smooth cone space with global singular chart. However what has been shown

is that Ω∗
W (X) is in fact quasi-isomorphic as CDGAs to the deRham complex Ω∗

dR (U) on an open

neighborhood U of X in the ambient space Rn, such that X is a deformation retract of U . The

existence of such a U is guaranteed by Corollary 2.8.1.

Theorem 5.4.1 Let X be a semi-analytic set in Rn, or a smooth cone space with a global singular

chart into Rn, then the Whitney-deRham complex determines the real homotopy type of X, and

conversely the real homotopy groups ofX determine the Whitney-deRham complex up to homotopy

equivalence of CDGAs.

Proof: As stated in 4.6.3, there is a quasi-isomorphism of CDGA’s between Ω∗
dR (U) and Ω∗

W (X).

Furthermore [23]§11 shows that the complex Ω∗
dR (U) is quasi-isomorphic as CDGAs to APL (U).

Since U is homotopy equivalent to X then APL (U) is quasi-isomorphic to APL (X). Hence there

is a chain of quasi-isomorphism of CDGAs between Ω∗
W (X) and APL (X). Therefore they have

isomorphic minimal models, and thus the desired result.�
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