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Abstract 

As engineers, we are interested in designing controlled, predictable, and maintainable 

strategies for performing or improving tasks.  Genome engineering aims to use these same 

principles to design or re-design biological systems for targeted purposes.  Strategies for genome 

engineering are no longer primarily limited by the cost of DNA synthesis or sequencing as they 

have been in the past.  Instead, strategies are limited by not having methods to inform efficient 

and directed design.  In these studies, we present an example of overcoming this current 

limitation by using various tools to identify genetic manipulations of interest, and then 

subsequently use these findings to motivate the directed design of cells for novel phenotypes.  

Initial studies are focused on elucidating genetic manipulations that confer furfural tolerance.  

Furfural is a key microbial inhibitor found in lignocellulosic hydrolysate, which is the proposed 

renewable sugar source for fermentation of sustainable biofuels that do not rely on food-based 

feedstocks.  We transition towards engineering biofuel tolerance based upon identifications made 

in the furfural studies. 
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Using libraries of 10
3
 to 10

5
 unique members with defined and trackable mutations, we 

tested, in parallel, their effect on growth in the presence of furfural.  We used two different 

search strategies (multiSCale Analysis of Library Enrichments and TRackable Multiplex 

Recombineering) to map genotype-to-phenotype relationships for furfural tolerance.  Improved 

growth was confirmed for six novel furfural tolerance alleles: lpcA (lipopolysaccharide 

biosynthesis), groESL (chaperonin), dicA (regulator of cell division proteins), rna (ribonuclease), 

ahpC (alkylhydroperoxide reductase subunit), and yhjH (involved in flagellar motility 

regulation).  The diversity of beneficial mutations found here highlights the breadth of changes 

that can be made to confer the same phenotype. 

Building upon one of the most tolerant genes elucidated for furfural tolerance (lpcA), we 

informed the directed design of mutants with altered lipopolysaccharide biosynthesis to confer 

tolerance to hydrophobic biofuels, like n-butanol.  Using a recursive recombineering approach to 

create libraries of increasingly mutated strains, we isolated clones capable of up to 50% growth 

improvements in n-butanol.  We also initiated use of a new method for tracking multiple 

mutations across the genome, which has the potential to further reduce DNA sequencing costs by 

an order of magnitude. 

Together, these studies identify novel mutations which confer industrially relevant 

phenotypes that can be used in future cellulosic biofuel production efforts.  We show mutations 

identified for furfural tolerance can be redirected to improve biofuel tolerant phenotypes, 

suggesting a unified approach towards engineering both feedstock and product tolerance.  Our 

findings also discuss broader applications to genome engineering, both in the importance of 

library and selection design, and the propagation of random mutations during commonly used 

engineering strategies that convolute the mapping of genotype-to-phenotype relationships.   
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Chapter 1 

Introduction 

 The projects contained herein are motivated by recent advances allowing for significant 

cost reduction for DNA synthesis and sequencing.  As we enter an age where bacterial genomes 

can be chemically synthesized with a user-chosen code and then be “booted up” into recipient 

cells, a question exists—what should we write?  The choice of deciding what to encode is the 

underlying principle of these studies. 

Given the genetic code of adenine (A), thymine (T), cytosine (C), and guanine (G), the 

breadth of the mutational space is vast.  For humans, with 3.2 billion bases of DNA, sequence 

variants of the same genome length number 4
3,200,000,000

.  Considering instead a simpler organism, 

like the bacterium Escherichia coli (4.6 million bases), a large mutational space still exists even 

when only considering altering the expression levels of its 4,600 genes by one additional level 

(wild-type vs. mutant).  This space outnumbers the estimated atoms in the known universe, 

10
1365

 vs. 10
80

, respectively.  Presented with such a vast combinatorial space, we must develop 

tools to help us intelligently sift through the possibilities to find “winners”—sequences that are 

desirable to write. 

Here, we approach engineering E. coli through a Design-Build-Test cycle in order to 

determine “winning” sequences (Fig. 1.1) for engineering cellulosic biofuel feedstock and 

product tolerance.  In the initial Design phase, we target the way in which diversity is generated, 

for which many Design techniques exist.  For a single gene, promoters, ribosomal binding sites 

(RBS), 5’ untranslated regions, and increased dose via plasmid expression are some of the 

parameters we can vary without affecting the protein-coding open reading frame.  Build, the   
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Figure 1.1 – Design-Build-Test cycle for genome engineering.  Design entails choosing 

methods in which to augment wild-type populations.  In one method of designing diversity, gene 

dosage can be increased through cloning onto multi-copy plasmids.  Alternatively, synthetic 

DNA oligomers or constructed double-stranded cassettes can be used directly via 

recombineering to edit the genome for insertions, mutations, or deletions.  The approach used 

during Build is prescribed by the design metrics of the library creation, but normally results in a 

mutant pool of >10
3
 genotypically diverse clones.  Mutants with altered phenotypes of interest 

(e.g., tolerance) can be enriched within the population through use of competitive growth-based 

selections, where fit mutants with improved growth characteristics increase in population 

frequency while less fit mutants are diluted within the population.  High-throughput screens can 

also be performed on the diverse population, where the desired phenotype is not necessarily 

linked to improved growth (e.g., production of compound or increased enzymatic activity).  

Isolates from the screen or selection can then be confirmed for their improvements.  Some 

reasons for mutants not being enriched during selection could be that the mutation provides no 

effect on growth (blue strain) or are deleterious (orange strain).  By assessing trends of improved 

strains, an additional iteration of the cycle can be informed where new Design is informed by the 

success of previous round(s). 
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second phase, propagates a diverse library of mutants which vary based on the metrics outlined 

during Design.  The final phase, Test, enriches strains with beneficial mutations through the use 

of growth-based selections.  During the Test phase, we map genotype-to-phenotype relationships 

based on the trackability of the mutations we originally designed.  Many tools have been created 

to allow targeted and rapid workflow through the Design-Build-Test phases, some of which are 

used in the following chapters.  Ultimately though, implementing the Design-Build-Test 

approach is linear, unless we use the knowledge gained from a previous Test phase to inform 

future designs.  By introducing a Learn phase, we enable iterative cycling through Design-Build-

Test phases for engineering improved or new traits.  Our objective here is that the progression 

through these studies achieves a complete Design-Build-Test cycling, where knowledge learned 

from initial studies directs a future design. 

In Chapter 2, we motivate the phenotypes we are aiming to engineer, namely traits 

associated with overcoming some of the limitations in implementing cellulosic biofuel 

production.  Lignocellulosic biomass is a renewable, sustainable, and importantly, non-food 

feedstock that contains large amounts of sugars in the form of cellulose and hemicellulose.  

Conversion of this saccharified, or “hydrolyzed,” biomass is limited in part by microbial 

inhibition from chemical toxins within the hydrolysate.  We focus initially on one such inhibitory 

compound, furfural, a degradation product of pentose sugars during feedstock pretreatment prior 

to fermentation.  Additionally, as microbes ferment sugars within the hydrolysate to a biofuel 

product, they produce large quantities of a fuel that is, in turn, also toxic to the cells, reducing 

yields.  We additionally discuss traditional and new approaches for genome engineering studies.    
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In Chapter 3, we perform our first studies towards applying the Design-Build-Test cycle 

by using the multiSCale Analysis of Library Enrichments (SCALEs) method for generating and 

tracking diversity.  SCALEs employs multiple defined-size genomic libraries that test, in 

parallel, the effect of increased dosage for >10
5
 clones under selective pressure.  The frequency 

of each clone (library insert) is measured with microarrays.  Using the SCALEs processing 

algorithms, a fitness score (i.e., frequency of a clone after selection compared to the frequency 

without selection) can be assigned to each gene, compiled from the contribution of each sized 

library insert containing a given gene.  We hypothesized that use of the SCALEs method would 

identify novel genes that, when overexpressed, would confer tolerance to furfural.  High-fitness 

genes were identified and verified for their beneficial effect on furfural tolerance.  Two of these 

alleles are novel furfural tolerance targets: lpcA, which is involved in lipopolysaccharide (LPS) 

biosynthesis, and groESL, a protein folding chaperone.  Assessment of the increased-fitness 

dataset suggests that cell membrane and wall formation is important under furfural challenge. 

In Chapter 4, we apply the TRackable Multiplex Recombineering (TRMR) approach 

towards identifying additional furfural tolerance genes.  The TRMR method uses two libraries of 

‘Up’ and ‘Down’ mutants, engineered for increased or decreased expression, respectively, of 

virtually every gene in E. coli (~4,000 genes x 2 libraries = 8,000 distinct clones).  ‘Up’ mutants 

contain a strong promoter and RBS, while ‘Down’ mutants disrupt the native promoter and RBS 

sequence.  Each mutation is barcoded with a unique 20 bp sequence, which we used to track 

clone enrichments to calculate fitness scores.  We performed various selection regimens with 

these libraries to gauge if application of selective pressure varied the enriched genes.  Another 

comparison was also performed by overlapping enriched genes from the SCALEs selection to 

the ‘Up’ TRMR library enrichments to identify genes that potentially would confer tolerance 
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over a range of increased expression.  Through this analysis, we identified four additional novel 

furfural tolerance genes: ahpC, dicA, rna, and yhjH.  Growth improvements from these clones 

were only observed for one of either the SCALEs or TRMR constructs, but not both.  

Assessment of expression from these strains highlights that differences library design and build 

strategies can impact the results found during testing. 

During Chapters 3 and 4, we used a linear approach through Design-Build-Test phases.  

While the previous chapters focused on furfural tolerance, we transitioned towards engineering 

biofuel tolerance (e.g., n-butanol and isobutanol) in Chapter 5.  Furfural is a hydrophobic 

compound, as are many biofuel candidates.  Through observations from the previous studies 

identifying genes important for hydrophobic tolerance (lpcA in Chapter 3 and enriched ‘Up’ 

mutants for LPS biosynthesis in Chapter 4), we hypothesized that we could target LPS 

biosynthesis to improve tolerance to hydrophobic biofuels.  In this way, we introduced a learning 

step, completing the Design-Build-Test cycle (Fig. 1.1). 

In this effort, we targeted increased expression of all LPS biosynthesis genes by inserting 

a promoter upstream of these targets.  We used the Multiplex Automated Genome Engineering 

Approach (MAGE) approach to create these directed mutants.  The MAGE method employs a 

lambda phage protein to insert user-defined mutations, encoded as single-stranded DNA 

oligomers, into the chromosome via homologous recombination (often referred to as 

recombineering).  The resulting combinatorial library contained mutants of varying degrees of 

promoter insertion (i.e., a promoter inserted in front of one gene vs. promoter insertions at a 

number of sites).  We confirmed up to 50% growth improvement in n-butanol of library isolates 

screened for the increased LPS phenotype.  In addition, we pioneered use of a recently developed 

approach in the Gill Lab by Ramsey Zeitoun and Andrew Garst for multiplex mutation tracking, 
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with the aim of reducing sequencing costs from $110/clone by an order of magnitude.  A 

selection was performed with these libraries in various alcohols (ethanol, n-butanol, isobutanol, 

and isopentenol), and characterization of clones from the enriched population was performed.  

Surprisingly, the greatest gains in tolerance were attributed to spontaneous (non-directed) 

mutations.  Our findings highlight the spontaneous divergence from wild-type of recombineered 

libraries, an important metric needing to be accounted for during genotype-to-phenotype 

mapping efforts.  Despite the propagation of random mutations within the population, our 

genotyping efforts of tolerant clones identified a specific locus with promoter insertion in front 

of LPS genes, supporting our hypothesis that targeting increased LPS biosynthesis gene 

expression can confer tolerance to hydrophobic biofuel compounds. 
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Chapter 2 

Feedstock and Product Toxicity and Tolerance Mechanisms in Escherichia coli 

Parts of this chapter have been reported in “Cellulosic hydrolysate toxicity and tolerance 

mechanisms in Escherichia coli.” Biotechnology for Biofuels 2:26 (2009) 

 

Authorship: Mills, T.Y.* 

  Sandoval, N. R.* 

  Gill, R.T. 

  *equal contribution for the manuscript as published 

   

2.1 – Introduction 

Governments worldwide have been issuing mandates for increased biofuel production 

over the past decade in order to meet growing energy demands.  Focus has shifted from using 

food crops (e.g., corn) or land allocated for food production, which can lead to an increase in 

greenhouse gas emissions [1] to using lignocellulosic biomass.  Advanced biofuels, like those 

derived from lignocellulosic biomass can offer greenhouse gas savings, particularly when drawn 

from feedstocks not requiring land use change [2].  The United States has set legislation to 

require cellulosic advanced biofuel production at 16 billion gallons in 2022 (44% of total 

biofuels mandated) [3], a far difference from the 20,000 gallons produced in 2010 [4]. 

 Despite the large efficiency gains required to meet current and future mandates, advances 

in molecular, metabolic, synthetic, and genome engineering are enabling smart construction of 

cellular biocatalysts to meet the improvements made on the processing side ([5] and for a recent 

review see [6]).  Conversion of sugars to fuels by microbes is a process exploited and refined by 

humans over millennia, but has primarily focused on idealized feedstocks and production of 

ethanol.  Liquid transportation fuels are currently substituted with varying percentages of 
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ethanol, but the transition to advanced biofuels provides benefits like higher energy density and 

pipeline fungibility.  Potential advanced biofuels include alcohols of varying chain length [7-9], 

diesel [10], and alkanes [11], and can be produced from feedstocks like agricultural biomass 

[10,12] and seaweed [13].  Desirable traits for engineered strains include high yield and titers 

while utilizing a range of substrates within the feedstocks (e.g., pentoses and hexoses), 

robustness to process conditions (e.g., pH, temperature, and salinity), as well as feedstock and 

product tolerance. 

Escherichia coli, Saccharomyces cerevisiae, Clostridium acetobutylicum, and 

Zymomonas mobilis are some of the most promising industrial biocatalysts for cellulosic biofuel 

production [14].  However, each microbe has varying degrees of limitations, like non-ideal 

native substrate utilization (e.g., co-consumption of pentose, hexose, and cellobiose), lack of 

known metabolic pathways to produce the fuel compound, and low tolerance to both feedstocks 

and products.  Unlike S. cerevisiae or Z. mobilis, E. coli natively ferments both hexose and 

pentose sugars.  And although C. acetobutylicum has been in use for a century for its ability to 

produce acetone, ethanol, and n-butanol, it has been side-lined due to the prevalence of 

petroleum sources from which to derive acetone instead [15].  C. acetobutylicum is also an 

obligate anaerobe, a requirement that complicates process design, its metabolism of xylose and 

arabinose was only just characterized last year [16,17], and the toolbox for genetic manipulation 

is not as advanced as other biofuel-producing microbes—resulting in reduced momentum to 

engineer it for cellulosic biofuel production.  Alternatively, ethanologenic E. coli has been shown 

to be similar or superior in performance to other fermentative microbes when comparing 

production levels and tolerance to hydrolysate inhibitors [18-21].  In addition, production of 

some of the most promising biofuel candidates has been originally engineered into E. coli [8-11].  
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These benefits, taken together with the vast knowledge of its genome and methods to alter it, 

make E. coli an attractive host for cellulosic biofuel production engineering.   Here, we are 

especially concerned with engineering tolerance to furfural and biofuel products, which has 

shown promise for improved production of cellulosic biofuels [12]. 

 

2.2 – Furfural Toxicity and Tolerance 

Furan derivatives, like furfural and 5-hydroxymethylfurfural (HMF), result from sugar 

dehydration during pretreatment of lignocellulosic biomass.  Furfural and HMF are the primary 

furan derivatives appearing in lignocellulosic hydrolysate, with concentrations typically ranging 

between 0 to 5 g/l for each compound [22-25].  While dilute acid hydrolysis is a common 

method for pretreatment, acidic conditions are known to cause dehydration of a small fraction of 

the sugar monomers.  While new methods are being developed to reduce the amount of furfural 

and HMF formed during pretreatment [26-28], industrial-scale technology and knowledge about 

process kinetics currently favors more traditional processes like dilute sulfuric acid treatment 

[29-31].  Therefore, it is important to improve understanding of the genetic and metabolic 

mechanisms underlying tolerance to furan derivatives.  This section will focus primarily on 

furfural toxicity and tolerance, due to its higher abundance than HMF in a variety of hydrolysate 

preparations [32], but overlap between strategies benefitting furfural tolerance to HMF tolerance 

have been observed [33]. 

Aldehydes are, in general, known to have detrimental effects in microorganisms.  

Formaldehyde has been shown to denature and interact with polynucleotides [34] and can cause 

protein-protein cross-linking [35].  In vitro experiments with crude cell extracts identified a 
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glutathione-dependent formaldehyde dehydrogenase that is responsible for conferring aldehyde 

tolerance [36].  Two previously uncharacterized proteins, FrmB and YeiG, have also been 

identified for their role in conferring formaldehyde tolerance via a glutathione-dependent 

formaldehyde hydrolysis pathway [37].  Besides enzymatic detoxification, altered outer 

membrane protein composition has also been indicated as conferring increased tolerance to 

formaldehyde, acetylaldehyde, and glutaraldehyde [38].  Furthermore, methylglyoxal, a 

dicarbonyl compound, inhibits E. coli growth and protein synthesis at concentrations of 0.07 g/l 

[39,40]. 

 Furfural has been identified as a key inhibitor in lignocellulosic hydrolysate because it is 

toxic by itself and also acts synergistically with other inhibitors [19].  It is a hydrophobic 

compound, which is a commonly regarded metric of an organic compound’s toxicity 

[18,19,41,42].  Highly hydrophobic compounds have been shown to compromise membrane 

integrity [43].  Interestingly, perceptible membrane damage in E. coli resulting from furfural 

exposure has not been observed, suggesting that intracellular sites are more likely to be the 

primary inhibition targets of furfural and HMF [19].  In contrast, other furan derivatives like 2-

furoic acid and furfuryl alcohol have been shown to cause significant membrane leakage [18,20].  

Furfuryl alcohol also exhibits synergism when in binary combinations with other inhibitors, 

while 2-furoic acid results in additive toxicity [18,19]. 

Ethanol production is inhibited by furfural, suggesting a direct effect on glycotic and/or 

fermentative enzymes [19].  Glycotic dehydrogenases, like alcohol dehydrogenase (ADH), have 

been implicated as a potential site of inhibition via NAD(P)H-dependent aldehyde reduction into 

furfuryl alcohol [44].   A study performed in vitro has confirmed that acetaldehyde to ethanol 

conversion was inhibited by both furfural and HMF [45].  Subsequent in vitro enzymatic assays 
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demonstrated that furfural was a substrate for ADH (EC 1.1.1.1), albeit at a five-fold increase in 

Km and five-fold decrease in Vmax.  In the same study, furfural inhibition on aldehyde 

dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were 

investigated and determined to be more significant than ADH, as evidenced by more than 80% 

activity reduction in the presence of 0.12 g/l furfural, whereas ADH activity was only inhibited 

by 60%.  These findings suggest that furfural may detrimentally affect multiple glycotic enzymes 

essential to central metabolism. 

E. coli metabolizes furfural to furfuryl alcohol under aerobic conditions [46].  The 

bioconversion occurs via a NADPH-dependent furfural reductase (FFR), which was the first of 

its kind to be reported in the class of alcohol-aldehyde oxidoreductases [47].  In the same study, 

the FFR showed an increased rate of NADPH oxidation when acting on benzaldehyde compared 

to furfural, showing that the FFR can utilize a variety of aldehydes as substrates. 

A recent long-course adaptation experiment found that furfural tolerance is conferred by 

silencing certain NADPH-dependent oxidoreductases [48].  Genes of special interest in this work 

were yqhD and dkgA, both of which encode enzymes with low Km’s for NADPH.  Miller et al. 

proposed that the primary furfural toxicity mechanism derives from a competition for NADPH 

between furfural reduction and biosynthesis.  The authors proposed that the lag phase cells 

initially undergo during furfural treatment was a result of decreased biosynthesis due to the 

NADPH pool being used for furfural reduction.   The mutant with silenced yqhD and dkgA genes 

was able to concurrently reduce furfural and grow, providing further support for the proposed 

inhibition pathway.  YqhD is also reported to play an important role in protecting E. coli from 

aldehydes derived from lipid-peroxidation via a glutathione-independent, NADPH-dependent 

reduction mechanism [49].  An example of furfural-induced lag phase in E. coli is provided in 
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Fig. 2.1.  Here, cells were grown with either furfural or molar equivalents of furfuryl alcohol.  A 

significant lag phase is observed with increasing furfural concentration, while additional furfuryl 

alcohol loading did not affect growth compared to a lower concentration.  It has been shown that 

the minimum inhibitory concentration of furfural is much lower (< 4 g/l) than furfuryl alcohol 

(20 g/l), indicating that at the concentrations relevant to hydrolysate preparations (5 g/l or less of 

furfural), are within the range of complete furfural toxicity, but not for total inhibition by furfuryl 

alcohol [19,42]. 

Interesting to note is that the mutant obtained from the long-course adaptation study also 

overexpressed eight oxidoreductases that can use NADPH as an electron donor, but have 

substrate specificities.  For example, one such enzyme, YajO, is highly specific for utilizing 2- 

carboxybenzaldehyde as a substrate in comparison to a variety of other aldehydes [50].  NADH- 

and NADPH-dependent reduction of furan derivatives has also proved paramount for 

hydrolysate inhibitor tolerance in S. cerevisiae and P. stipitis [51-55].  Recent studies in E. coli 

have found that NADPH-dependent furfural reduction inhibits sulfur assimilation [56].  

Overexpression and increased activity of an NADH oxidoreductase [57,58], or of a predicted 

oxidoreductase [59], overexpression of the NADPH-restoring transhydrogenase PntAB [56], and 

combinations of some of these mutations have all been shown to confer furfural tolerance [12]. 

Furfural and HMF have shown cytotoxic characteristics towards both bacteria and yeast 

[19,60-62].  Furfural is a known dietary mutagen and has been under investigation for direct 

effects on DNA.  A series of studies confirmed that furfural-DNA interactions occur [63], and 

that furfural-treated DNA leads to single-strand breaks after undergoing in vitro incubation with 

furfural, primarily at sequence sites with three or more adenine or thymine bases [63,64].   
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Figure 2.1 – Effect of increasing furfural and furfuryl alcohol concentrations.  E. coli was 

inoculated at the same initial optical density from cultures grown to mid-exponential phase in 

MOPS minimal medium with varying concentrations of furfural or the molar equivalent (F.M.E. 

stands for furfural molar equivalent) of furfuryl alcohol.  Cells were grown in a microtiter plate 

and optical density was monitored at 600 nm every 5 minutes for 15 hours.  Materials and 

methods for this procedure are similar to those used in Chapter 3, with the exception of the use 

of a microtiter plate as a vessel. 
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Later, plasmids treated with furfural were observed to cause either an increase (in high 

furfural concentrations) or decrease (in low furfural concentrations) in plasmid size via 

insertions, duplications, or deletions [65].  Recently, overexpression of thymidylate synthase, 

encoded by thyA, has been shown to confer tolerance to furfural, presumably due to its role in 

pyrimidine biosynthesis, which might be required during furfural treatment [66].  In vivo 

experimentation suggests the importance of the polA-mediated DNA repair pathway for 

tolerating scissions caused by furfural [67].  E. coli has been observed to repair damaged DNA, 

reducing the frequency of furfural-induced mutagenic events to that of random mutation found in 

untreated cultures [68]. 

Additionally, furfural treatment increases reactive oxygen species (ROS) formation in 

yeast and E. coli [69,70] and global regulator engineering of an exogenous regulator provides 

increased tolerance to furfural [70].  Previous studies on hydrolysate have also identified genes 

involved with ROS detoxification [32,71]. 

 

2.3 – Toxicity and Tolerance of Other Inhibitors and Products 

 Although fermentation of glucose to ethanol is the current standard for biofuel 

production, higher chain alcohols present a variety of benefits over ethanol, namely higher 

energy density and lower hydroscopicity.  Recent advances in production of higher chain 

alcohols has been exhibited in E. coli for n-butanol, isopropanol, isobutanol, and other branched 

chain alcohols [8,72-74].  Current titers of isobutanol production are ~20 g/l [8], but can produce 

up to ~50 g/l with in situ removal of isobutanol during production [75].  Since the production 

routes to these desirable fuels have only recently been metabolically engineered, the known 
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toxicity and tolerance mechanisms of these higher-chain alcohol fuels are still being elucidated.  

Targets currently known to play a role in hydrolysate and product tolerance are shown in Fig 2.2. 

 Solvent treatment elicits changes in membrane fatty acid composition, and the 

concentration at which these changes has been related to the alcohol’s hydrophobicity [41].  

Treatment with various alcohol and acid compounds that are also hydrolysate inhibitors (e.g., 

acetate and coniferyl alcohol) leads to leakage of intracellular contents [18,42].  Transcriptomic 

analyses of E. coli under ethanol, n-butanol, and isobutanol stress have identified unique 

differences based on the inhibitor used; distinction between ethanol and the C4 alcohols is 

specifically highlighted [76-79], suggesting that while membrane maintenance is important, it is 

not the sole contributor towards tolerance. 

The use of efflux pumps to confer tolerance to hydrophobic biofuel candidates has also 

received attention [32,80].  In a bioprospecting search, 43 efflux pumps from various microbes 

were expressed in E. coli, and pumps conferring tolerance to geranyl acetate, geraniol, α-pinene, 

limonene, and farnesyl hexanoate were discovered [81].  Meanwhile, no pumps were found to 

restore growth under n-butanol or isopentanol treatment, again highlighting the differences 

required while engineering tolerance to biofuel candidates. 

Metabolic pathways are also inhibited under conditions relevant for hydrolysate 

tolerance.  Studies on hydrolysate, acetate, and various other individual inhibitors have identified 

amino acid supplementation or pathway augmentation as methods for conferring tolerance 

[32,56,82-84].  Identifying bottlenecks in amino acid biosynthesis is especially important, not 

only for cell growth, but also for non-fermentative biofuel production pathways that utilize 

amino acids as substrates [8]. 
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Figure 2.2 – Targets for engineering tolerance to inhibitory compounds that reduce 

production efficiency during cellulosic biofuel production.  A cellulosic biorefinery uses 

feedstocks from non-food sources (e.g., switchgrass or corn stover) that are primarily made of 

cellulose, hemicellulose, and lignin.  These feedstocks are pretreated to break apart the fibers and 

hydrolyze hemicellulose into C5 and C6 sugars.  Pretreatment is typically performed under harsh 

conditions with high temperatures and low pH, resulting in the formation or release of inhibitory 

compounds, like furfural and acetate.  Saccharification of cellulose is performed with a cocktail 

of enzymes to release glucose.  The hydrolyzed mixture is then fed into fermentation, where 

production of biofuels like ethanol and butanol occurs.  Microbial conversion of the sugars to the 

biofuels is inhibited by toxicity of compounds like furfural, as well as the formation of the 

products themselves.  Mechanisms of toxicity and methods for engineering tolerance have been 

identified and fall into eight general categories: two directed at the cell’s periphery and the 

remaining six involved with primarily cytosolic-based reactions.  
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The overexpression of heat shock proteins has also been implicated in solvent tolerance 

[85,86] and low pH conditions [87], which is integrated into the stress response of E. coli.  The 

global transcription factor cAMP receptor protein (CRP), involved in conferring isobutanol 

tolerance [76], has recently been engineered to improve increased isobutanol tolerance while 

concurrently reducing ROS levels during isobutanol treatment [88].  Engineering transcription 

factors for global response improvements has been a fruitful undertaking with improvements 

made in solvent, hydrolysate inhibitor, and oxidative stress tolerance [7,70,89-92]. 

 

2.4 – Methods for Engineering Tolerance 

 Traditional engineering approaches tend to employ long-course adaptation studies.  In 

this approach, a culture is inoculated into media with a chemical inhibitor and allowed to grow 

for many doublings until spontaneous mutants propagate.  This approach, in essence, skips the 

Design phase while relying on random mutations to build diversity.  While simple to perform, 

the process is typically time-consuming.  Moreover, the process evolves strains with unknown 

mutations, which requires whole-genome sequencing to identify the mutations and lengthy 

subsequent analysis to determine which mutation(s) is beneficial.  Despite these setbacks, strains 

adapted for ethanol (over 3 months) [9] and isobutanol (over 6 months or with 45 serial transfers 

in a different study) [77,93] tolerance have been isolated successfully and have contributed 

towards significant advances in engineering biofuel production.  Use of chemical mutagens can 

increase the speed by which mutations are propagated and accumulated and have been used to 

engineer isobutanol [94], 3-methyl-1-butanol [95], and vanillin tolerance [96].  But chemical 

mutagenesis has also been reported to be one of the weakest approaches for creating beneficial 

mutations under acid stress [97,98]. 
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2.4.1 – Genome-wide search tools 

 Because long-course adaptation and random mutagenesis studies can propagate both 

beneficial mutations as well as mutations not contributing towards the desired phenotype, 

attempting to map the relationship between a given genotype responsible for the desired 

phenotype can be hindered.  To address this issue, a variety of tools have been developed to 

streamline the Design-Build-Test phases and allow for genotype-to-phenotype mapping of 

clones.  Emphasis is focused here towards tools which provide whole-genome coverage since the 

mechanisms of toxicity, and thereby location of the genetic controls for conferring tolerance, 

might not be known. 

 The first application of such genome-wide genotype-to-phenotype mapping, enabled by 

the use of quantifying population frequencies with microarrays, was performed for transposon 

insertion libraries [99] and later, plasmid-based genomic libraries [100].  A further advance in 

genomic library genotype-to-phenotype mapping was performed with the multiSCale Analysis of 

Library Enrichments (SCALEs), where multiple defined-size libraries were developed to 

identify, at roughly 125 nucleotide resolution, allele frequency, and therefore enrichment, at over 

ten times 99.9% complete genome coverage.  The SCALEs approach has been used for a variety 

of applications, including the identification of ethanol and acetate tolerance genes [78,83,101].  

 Integration of mutations onto the chromosome is both more industrially relevant and 

enables continued searching and strain construction without having to use many plasmids.  

Although designed for single mutation genotype-to-phenotype mapping efforts, TRackable 

Multiplex Recombineering (TRMR) integrates mutations directed at increasing or decreasing 

expression of virtually every gene in E. coli [71].  The TRMR approach has been used to identify 

mutations conferring tolerance to acetate, hydrolysate, and low pH [71,82].  The TRMR 
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approach expands the search to assess decreased gene expression, compared to SCALEs, which 

only assesses the effect of overexpression. 

2.4.2 – Combinatorial approaches 

 Typically, improvements in tolerance rely on the effect of multiple mutations working 

together in concert.  This has been true for both engineering furfural and isobutanol tolerance 

[12,77].  For this reason, the Coexisiting/Coexpressing Genomic Libraries (CoGeL) method has 

been developed to assess genome-wide epistatic interactions between genes through the use of 

plasmid and fosmid libraries [102], but is limited to assessing the epistasis of only two genomic 

library inserts. 

 The advent of Multiplex Automated Genome Engineering (MAGE) in 2009 has opened a 

door for a variety of engineering applications and can be used to target multiple mutations [103].   

In this approach, lambda-mediated recombination integrates designer mutations, synthesized as 

single-stranded DNA oligomers, onto the chromosome.  The recombineering typically occurs 

over recursive rounds, due to inherently low efficiency of recombination (typically ~5 %, but 

varies with the strain and type of oligomer and mutation [82,103-107]). 

 Although powerful in approach, MAGE is limited since it requires the user to define the 

location for mutation, by way of including homology arms on the oligomer to direct 

recombination.  Last year, our lab introduced a strategy to combine genome-wide searches and 

multiplex engineering [82].  In this strategy, we used TRMR to guide a genome-wide search for 

alleles conferring tolerance to hydrolysate, acetate, and low pH.  High-fitness genes identified 

with TRMR were then targeted with MAGE to alter expression over a wide range based upon the 

direction indicated by TRMR.  Combinatorial mutants were created through recursive rounds of 
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recombineering, and then were run through a selection to enrich for tolerant mutants.  This 

strategy was novel in the combination of genome-wide searching and multiplex genome 

engineering, but highlighted the importance of epistasis, when it was discovered that the fittest 

mutants after selection had only one mutation at a TRMR-directed allele, instead of at multiple 

sites.  It was concluded that using TRMR-identified alleles that would have positive epistasis 

would increase the ability to select for multiplexed mutants, and that choosing just the top high-

fitness genes would not ensure this outcome.  Through our use of the Design-Build-Test cycle 

here, we use information gathered from our genome-wide searches to direct the targets chosen 

for multiplex engineering in order to support positive epistasis. 
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Chapter 3 

Genome-wide mapping of furfural tolerance genes in Escherichia coli 

In press at PLOS ONE. 
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3.1 – Introduction 

 Genome engineering strategies are limited by the massive combinatorial search space 

created when multiple genetic units must be optimized in tandem [82,108].  While early efforts 

focusing on engineering a small number of genetic parts have resulted in several impressive 

results [109-111], efforts focused on the engineering of complex phenotypes have remained a 

key challenge for the field.  This challenge is especially true when the genetic bases of the 

targeted phenotypes are poorly understood, as is the case for many tolerance phenotypes 

[9,77,78,82,83,101]. 

 Advances in methods for mapping genotype-to-phenotype relationships have helped 

address this issue ([32,71,100,102,112-114] for a detailed review see [115]).  Mapping 

approaches enable rapid identification of novel gene targets for strain design.  These strategies 

generally employ well-defined libraries that allow for tracking of all members in parallel during 

a high-throughput screen or selection.  Importantly, multiplex genome-modification strategies 

can be used to then develop combinatorial mutants of multiple alleles identified during genome 
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mapping [89,103,116,117].  Together, these strategies represent an approach for rationally 

searching genetic space during genome engineering efforts [82]. 

Here, we have applied one of these new methods for genome mapping, multiSCale 

Analysis of Library Enrichments (SCALEs) [113], to engineer furfural tolerance, an important 

phenotype for improving microbial biofuel production from lignocellulosic hydrolysate.  

Lignocellulosic biomass (e.g., switchgrass and corn stover) is a proposed feedstock for next-

generation biofuel production [118], since it is a renewable and sustainable source of sugars 

(from hemicellulose and cellulose).  Biomass pretreatment and saccharification release sugars 

into the liquid hydrolysate, which can be fermented into biofuels, but also release a variety of 

inhibitory compounds.  Furfural, is a heterocyclic aldehyde formed from pentose degradation 

during pretreatment, and is one of the key inhibitory compounds in hydrolysate ([19] for a 

review on hydrolysate toxicity see [119]). 

  Furfural is a known DNA mutagen in Escherichia coli [63,64,120].   In addition, growth 

inhibition induced by furfural has been linked to the reduction of furfural to furfuryl alcohol by 

NADPH-dependent oxidoreducatses [47].  This reduction elicits a variety of negative responses 

in the cell, causing starvation of available NADPH necessary for biosynthetic processes such as 

sulfur assimilation [56] and pyrimidine synthesis necessary for DNA repair [66].  Alleviation of 

NADPH-starvation can be obtained by silencing NADPH-dependent oxidoreductases [121], 

increasing NADH-dependent reductase expression [57] and activity [58], increasing expression 

of a predicted oxidoreductase [59], and overexpressing the NADPH-restoring transhydrogenase 

PntAB [56].  A recent study combined many of these mutations together to improve production 

of ethanol and succinate from hydrolysate [12].  Similar toxicity mechanisms and genetic 

manipulations have been beneficial for engineering E. coli for tolerance to 5-
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hydroxymethylfurfural [33], a hexose degradation product in hydrolysate.  In addition to directly 

redox related mechanisms, reactive oxygen species (ROS) accumulation has been observed in 

yeast cells [69] and E. coli [70] when treated with furfural, which is a common phenotype 

associated with DNA damage [122], as well as more generally with chemotoxicity [123]. 

We hypothesized that use of the SCALEs method would identify additional novel targets 

for engineering furfural tolerance.  SCALEs employs four genomic libraries, each with distinct 

insert sizes (1, 2, 4 or 8 kb) to test, in parallel, the effect increased dosage of insert sequence 

(containing gene(s) and/or operon(s)) has under a selective pressure.  Individual clone 

frequencies are calculated using microarray technology and the SCALEs signal processing 

algorithms, as described by Lynch et al. [113].  The multiscale analysis algorithm assigns the 

microarray signals according to the contribution from each library size.  This method produces 

genome-wide fitness data at approximately 125 nucleotide resolution, thus allowing for precise 

mapping of the genetic basis of high fitness clones.  The SCALEs method has previously been 

used to map genotype-to-phenotype relationships in a variety of applications, including: 

engineering tolerance to anti-metabolites [124], solvents [78,101,125], organic acids 

[83,126,127], antibiotics [128,129], as well as identifying genes restoring redox balance [130].  

Here, we applied the SCALEs method to simultaneously map furfural related fitness effects 

resulting from overexpression of all E. coli genes (a total of >10
5
 individual clones were 

evaluated).  Follow-up studies confirmed novel furfural tolerance genes. 

 

3.2 – Materials and Methods 

3.2.1 – Bacteria, plasmids, and media 
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E. coli BW25113 ΔrecA::Kan was obtained from the Keio Collection [131], and the 

kanamycin resistance cassette was removed according to the previously designed protocol [132] 

to yield BW25113 ΔrecA::FRT, which was used as the host for all studies here, as similarly 

reported [78,83].   The pSMART-LCK (Lucigen) vector was used for library and clone 

construction.  Ligated vector with no insert was used as the control.  All cultures were grown at 

37°C.  Kanamycin was used where appropriate (30 µg/ml).  Selections and growth tests were 

performed in MOPS minimal medium [133] with 0.2 w/v% glucose.  Luria-Bertani (LB) 

medium was used for routine applications. 

3.2.2 – Genomic libraries, selection, and microarray analysis 

Genomic libraries were prepared previously by Warnecke et al. [127], by extracting 

genomic DNA from E. coli K-12 (ATCC #29425) to construct 1, 2, 4, and 8 kb SCALEs 

libraries in pSMART-LCK.  Plasmid libraries were extracted from originally prepared cells with 

a Plasmid Midi Kit (Qiagen) and freshly transformed into the BW25113 ΔrecA::FRT host.  

Samples of the transformants were diluted to confirm a minimum of 10x 99% library coverage 

(>10
5
 cells) [113].  After a one hour recovery following transformation, the libraries were diluted 

into a single MOPS minimal medium culture and grown to early exponential phase.  Aliquots of 

50 µl were spread onto 20 MOPS minimal medium plates (control) or MOPS minimal medium 

plates with 0.75 g/l furfural (>10
5 

cells total plated for each condition).  Plates were incubated 

until growth appeared (one day for control plates and three days for furfural plates).  Cells were 

harvested from the plates and plasmids were extracted with a Plasmid Midi Kit (Qiagen).  

Samples were digested and prepared for microarray analysis according to the method of Lynch et 

al. [113].  Analysis of the resulting data file was performed with the SCALEs software [113] as 

previously described [83], with plasmids from minimal medium plates without furfural serving 
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as the control sample.  Fitness, W, is calculated for an individual clone, i, by W = 

frequencyi,furfural/frequencyi,control.  Because overlapping clones may contain part of all of a 

particular gene, individual gene fitness scores were calculated as a summation of clones 

containing a given gene, weighted by the fraction of the gene contained in the clone.  Analysis of 

Gene Ontology term enrichment was performed with the Batch Genes tool available on the 

GOEAST website [134] using default settings. 

3.2.3 – Clone construction 

 Primers for gene amplification were designed to amplify the native promoter and open 

reading frame for each target and are listed in Table 3.1.  Phosphorylated cassettes were ligated 

into pSMART-LCK according to manufacturer directions and then transformed into 

electrocompetent cells.  Plasmid constructs were confirmed by gel electrophoresis and 

sequencing. 

Table 3.1 - Primers used in creating plasmids for high-fitness SCALEs genes. 

Clone_Direction Sequence (5’-3’) 

thyA_for CGTTGCAAAATTTCGGGAAGGCGT 

thyA_rev GCTGCTGCTGGAAGGTGTGGT 

ybiY_rev ATGCGGTCGCTGAGCGTGTC 

ybiY_rev CCTGGGCAAACAGACGCCCC 

groESL_for
a 

GAGACCGGAATTCCGGTGACGGCGATGAAGAAATTGCGA 

groESL_rev
a
 GAGACCGGAATTCCGGACATTTCTGCCCGGGGGTTTGT 

lpcA
b
_for AAGCCCCTTACTTGTAGGAGGTCTGA 

lpcA
b
_rev TCGCATCAGGCATCAGCGCACAAAT 

ybaK_for GCCGCTGGATGTGAGTGTTT 

ybaK_rev AAGCGACGGTGTAACTCGAT 
a
 Due to the large size of this insert, it was constructed using cohesive-end cloning and contains 

the EcorI site. 
b
lpcA plasmid was constructed by Woodruff et al [78]. 
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3.2.4 – Growth curves and plating assays 

Cultures inoculated from freezer stocks were grown overnight in LB medium.  Seed 

cultures were inoculated with 2 v/v% overnight cultures into MOPS minimal medium, grown 

into exponential phase, and diluted to OD600 0.195-0.200 to be used as innocula for test cultures 

at 10 v/v%.  Growth curve studies were performed in 15 ml conical tubes with 5 ml liquid 

volume.  Furfural was added to a concentration of 0.75 g/l.   Growth was monitored at 600 nm 

for 24 hours (n = 3). 

 For plating assays, normalized seed cultures were diluted by half, from which 1 µl (~10
4
 

cells) was streaked onto MOPS minimal medium plates with furfural (0-1.5 g/l).  Plates were 

incubated at 37°C for up 72 hours. 

3.2.5 – Furfural reduction measurements 

Furfural was measured with a spectrophotometer at 284 nm [135].  A standard curve was 

prepared in MOPS minimal medium and fit by linear regression.  Standards and samples were 

diluted 1:1000 in water.  Samples were collected from growth curve cultures during cell density 

measurements and stored at 4°C for a maximum of 12 hours prior to analysis.  Furfural 

measurements were normalized to cell density, and reduction rate was calculated from the 

regression line during the transition from lag phase to exponential phase, where reduction trends 

were linear.  Samples were collected over 24 hours, at which point furfural was no longer 

observed in the cultures. 
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3.2.6 – Mutation frequency analysis 

Mutation frequency was measured by proxy with frequency of rifampin resistance 

[136,137].  Cell cultures were grown overnight, harvested by centrifugation, diluted 10-fold into 

25 ml of MOPS minimal medium, and incubated for 30 minutes to allow for growth to begin.  

Furfural was added to 0.75 g/l and cultures were incubated for 3 hours.  Cells were then 

harvested and diluted accordingly for measuring total CFU count (LB agar) and spontaneous 

mutants (LB agar with 100 µg/ml rifampin).  Mutation frequency was calculated by dividing the 

number of rifampin resistant mutants by total CFU (n = 4). 

3.2.7 – qPCR expression analysis 

 Strains were prepared and grown according to the same procedure used for growth curve 

analysis with the following exception: strains were inoculated into MOPS minimal medium 

without furfural and grown for 6.5 hours (into exponential phase).  Aliquots of 1 ml were 

harvested by centrifugation, decanted, and immediately frozen in a dry ice-ethanol bath, and 

stored at -80°C until further use.  For RNA extraction, 400 µl of RNAProtect Cell Reagent 

(Qiagen) was added to pellets, mixed by pipetting, and then processed with an RNAEasy Mini 

Kit (Qiagen).  RNA samples were analyzed with an iTaq Universal SYBR Green One-Step Kit 

(Bio-Rad).  Expression of cysG was used as a housekeeping reference gene [138] for calculating 

relative fold-change (n = 2-3).  

3.2.8 – Site-directed mutagenesis clone construction and testing 

Mutants were constructed using a QuikChange Lightning Kit (Agilent Technologies) 

according to manufacturer’s instructions with either the lpcA or groESL pSMART-LCK 

construct (Lucigen) as the template.  Primers were designed to introduce point mutations as 
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follows: lpcA(E65Q) using TGCACTTTGCCGAACAGTTGACCGGTCGCTACCG and its 

complement sequence; groES(M1R) using 

CTCAAAGGAGAGTTATCACGGAATATTCGTCCATTGCATGATCG and its complement 

sequence; and groEL(M1R) with AAGGAATAAAGATACGGGCAGCTAAAGACG and its 

complement sequence.  Growth studies were prepared as done for growth curve analysis, with 

the OD600 readings measured at 20 hours.  Percentage improvement, compared to blank vector 

control, was used for comparison of the clones (n = 3). 

3.2.9 – Statistical analyses 

Sample averages were calculated for all phenotypic analyses and are plotted and reported 

with ± one standard error.  Student’s t-test was used to calculate one-tailed p-values.  Values are 

reported within the text with ± one standard error. 

 

3.3 – Results and Discussion 

3.3.1 – Application of SCALEs method to identify furfural tolerance genes 

 SCALEs libraries containing >10
5
 clones were selected on solid minimal medium with 

0.75g/l furfural (Fig. 3.1A).  Libraries cultured on minimal medium plates with no furfural 

served as the control in order to account for growth on minimal medium alone.  The selection 

was performed on plates to provide a microenvironment where clones were spatially isolated, in 

an effort to remove population effects (e.g., decreased local furfural concentration due to 

increased reduction by certain clones) that might interfere with assessing individual clone fitness 

[66].  Colonies were harvested from plates after growth appeared (one day for control and three 



29 
 

 

Figure 3.1 - Overview of furfural selection and SCALEs analysis.  A) 1, 2, 4, and 8 kb 

fragments were prepared from E. coli genomic DNA and ligated into pSMART-LCK vector. 

Each sized genomic library was transformed into BW25113 ΔrecA::FRT host cells, recovered, 

mixed together, and then grown on minimal medium plates (control) or solid minimal medium 

with 0.75 g/l furfural.  Cells were harvested from the plates and microarrays (square boxes) were 

run with plasmid extracts from both the furfural and control plates in order to determine 

individual gene fitness scores (W).  The fitness vs. position plot illustrates how different clones 

(stacked rectangles) can contribute to an individual gene’s fitness.  The red “triangle” has 

contribution from various sized clones, but is centered around a specific locus, whereas the blue 

“rectangle” represents a high fitness score from the presence of one single sized clone (e.g., 

requiring a large operon where smaller library sizes would not be found).  B) Genome plot 

depicting clone fitnesses for the different library sizes.  Loci corresponding to the top  gene 

fitness scores are labeled.  C) Histogram of log-transformed gene fitness scores, where increased 

fitness corresponds to ln(W) > 0. 
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days for furfural treatment) and plasmids were extracted and analyzed with microarrays to 

determine clone concentration at approximately 125 bp resolution (Fig. 3.1B).   A fitness score 

was calculated for each gene to determine those that were differentially enriched with furfural 

selection.  High-fitness genes were identified across the entire genome and more than one size of 

library insert contributed to loci with the highest fitness scores (see Fig. 3.2 and Appendices 8.1-

5). 

A total of 268 genes, or ~6% of all E. coli genes, were enriched through selection (Fig. 

3.1C), indicating that a strong selective pressure was applied (all genes with increased fitness 

during furfural selection are provided in Table S2).  Using the Batch Genes program [134], we 

analyzed the increased fitness genes by Gene Ontology (GO) terms and found that significantly 

enriched terms were primarily associated with cell membrane (e.g., enterobacterial common 

antigen) and wall (e.g., peptidoglycan) biosynthetic processes, suggesting that membrane and 

wall formation are important for furfural tolerance (Fig. 3.3).  No cellular component or 

molecular function GO terms were significantly enriched. 

3.3.2 – Confirmation of furfural tolerance 

Based on the gene-specific fitness scores (Appendix 8.6), we determined that the top 19 

genes mapped to only five distinct loci (labeled A-E, Fig. 3.1B).  Visual inspection of the clone 

fitness patterns associated with each loci suggested specific genes that were the primary (or sole) 

contributor towards fitness (Fig. 3.2 and Appendices 8.1-5).  We then constructed individual 

clones for each of the hypothesized fitness-contributing gene(s) from the top five loci (Table 

3.2):  locus A (thyA), locus B (ybiY), locus C (groESL), locus D (lpcA), and locus E (ybaK). 
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Figure 3.2 - Genomic position alignments for gene fitness assignments.  SCALEs clone 

fitness scores from the 2, 4, and 8 kb libraries are based on clone frequency with and without 

selective pressure.  The lpcA gene is shown in green, with neighboring genes shown in gray. 

 

 

Figure 3.3 - Enriched biological processes GO terms in SCALEs selection.  Yellow boxes 

represent significantly enriched GO terms and non-significant terms are condensed to nodes.  

Red arrows connect two significantly enriched GO terms, whereas black arrows connect a non-

significantly enriched term (node) to a significantly enriched term (yellow box).  Analysis was 

performed with the Batch Genes GOEAST online tool as described in the text. 
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Table 3.2 - Gene(s) cloned for confirmation studies. 

Rank Gene Fitness Locus Function 

2 ybiY 20.2 B Predicted pyruvate formate lyase activating enzyme 

6 thyA 14.8 A Thymidylate synthase 

8 groEL 13.5 C* GroEL chaperone 

12 lpcA 10.5 D D-sedoheptulose 7-phosphate isomerase 

17 groES 7.5 C* GroES chaperone 

19 ybaK 7.1 E Cyc-tRNA
Pro

 and Cyc-tRNA
Cys

 deacylase 

*groESL operon was cloned into a single plasmid 

 

We first attempted to confirm tolerance of the hypothesized fitness-contributing gene(s) 

under the same conditions used in our growth selections (i.e., improved growth on solid minimal 

medium with furfural).  Cultures of each of the five clones were streaked onto solid medium 

supplemented with furfural at 0, 0.75 g/l, or 1.5 g/l (corresponding to 0, 1 and 2x selection 

concentrations).  Growth was monitored for three days, consistent with the time of furfural 

selection.  At both furfural treatment levels, growth appeared first from thyA, followed by lpcA 

and groESL clones (Fig. 3.4).  Clones overexpressing ybiY or ybaK were not observed to confer 

improved tolerance compared to vector control and were thus removed from further study.  

Based on our previous experience with SCALEs [78,83,101,113,124-130], we expect that the 

lack of observed tolerance phenotypes from ybiY and ybaK is likely due to these genes requiring 

other genes in the enriched loci, although we cannot eliminate the possibility that they were false 

positives [127].  
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Figure 3.4 - Plating assay of hypothesized tolerance-conferring clones identified in SCALEs 

selection.  Cells (10
4
) were streaked onto solid minimal medium with 0, 0.75, or 1.5 g/l furfural 

(0, 1, or 2x selection pressure) and growth was observed for 72 hours. 
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We next tested each confirmed tolerance clone for improved growth in planktonic 

cultures.  Growth curves of thyA, lpcA, and groESL overexpression clones were performed and 

we observed improved growth from all three strains tested (Fig. 3.5).  Interestingly though, thyA, 

which was the first strain with visible growth on the solid medium with furfural (Fig. 3.4), had a 

longer lag phase than the lpcA clone, which was the first clone to leave lag phase in planktonic 

cultures.  Additionally, both the groESL and lpcA clones had higher density at 24 hours than the 

thyA clone or the empty vector control, at which point we stopped sampling due to the complete 

disappearance of furfural. 

ThyA, LpcA, and GroEL-ES are involved in relatively distinct cellular processes.  

Thymidylate synthase, encoded by thyA, catalyzes the conversion of dUMP to dTMP during de 

novo pyrimidine biosynthesis.  ThyA overexpression has previously been observed to confer 

furfural tolerance [66], presumably by increasing dTMP availability for increased DNA repair 

suspected to occur during furfural treatment. 

The isomerase encoded by lpcA catalyzes the first committed step in lipopolysaccharide 

(LPS) core biosynthesis by routing a pentose phosphate pathway (PPP) metabolite, D-

sedoheptulose 7-phosphate, towards heptose formation and subsequent incorporation into the 

inner core region of LPS.  Functional LPS formation is widely documented as important for 

tolerance to hydrophobic compounds [139-141].  Also, the PPP is a major source of NADPH in 

E. coli, and increased upper pathway flux through this pathway (to make up for losses due to 

increased LPS synthesis) could lead to increased NADPH formation, limitations of which are 

thought to play an important role in furfural toxicity [12,47,56-59,121].  Previous studies for 

furfural tolerance targets have not previously identified lpcA or LPS formation, but previous 

SCALEs studies from our laboratory have identified lpcA as a highly enriched locus in acetate   
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Figure 3.5 - Growth curve analysis of tolerant clones in 0.75 g/l furfural.  Seed cultures were 

inoculated into furfural at the same initial density and grown for 24 hours.  Optical density was 

recorded every 3-6 hours.  Error bars represent one standard error (n=3).  Double asterisks 

denote p < 0.05. 
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and ethanol selections, where lpcA overexpression was confirmed to improve ethanol tolerance 

several fold. [78,83]. 

The GroEL-ES chaperonin complex, encoded by groESL, is essential for cell growth 

under a range of temperatures [142], is required for proper folding of some essential proteins 

[143], and is a well-known stress associated protein [86,144,145].  Moreover, overexpression of 

groESL has been found to confer ethanol and butanol tolerance [85,86].   

Given the varied functions encoded by these furfural tolerance genes, and the common 

reduced lag phase observation, we sought to better understand if these genes were conferring 

tolerance through previously implicated physiological mechanisms.  Specifically, we assessed 

the effect of overexpression of each of these genes on furfural reduction and DNA mutation 

rates. 

3.3.3 – Increased furfural reduction from lpcA overexpression 

 Furfural is known to be reduced to the less toxic furfuryl alcohol in E. coli [46,47].  This 

reduction has been primarily linked to the action of a low KM NADPH-dependent oxidoreductase 

encoded by yqhD [121].  It is thought that the increased oxidation of NADPH required for 

furfural reduction limits the availability of NADPH reducing equivalents that are required for 

key biosynthetic reactions like sulfur assimilation [56] and nucleotide synthesis [66].  Indeed, for 

our fastest growing strain in liquid culture, lpcA, we measured 32 ± 10% increase in furfural 

reduction rate compared to control (Fig. 3.6A). This observation is consistent with our 

speculation that increased flux through the PPP could lead to elevated NADPH flux and thus 

increased reduction rates. Neither the thyA or groESL clones were observed to alter furfural 

reduction rates. 
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Furfural was found to induce a significant lag phase longer than cells grown without 

furfural treatment, which is traditionally linked to the aforementioned NADPH starvation 

concomitant with furfural treatment [46].  Despite a substantial lag phase, growth during furfural 

reduction was observed in our growth curve assessments (Fig. 3.5).  Approximately 60-70% of 

the furfural still remained after 12 hours, roughly coinciding with the onset of exponential phase.  

All strains had reduced virtually all of the furfural within 20-24 hours (data not shown). 

Assessing the redox state and furfural tolerance of cells overexpressing lpcA, and other 

enzymes related to PPP flux, could be a potential path for future research to complement the 

transhydrogenase overexpression approach recently used [12,56].  This approach could serve as 

an alternative to strategies directed at replacing NADPH-dependent oxidoreductase reduction 

with NADH-dependent oxidoreductases [12,57,58]. 

3.3.4 – Tolerance genes do not alter DNA mutation frequency 

 Since furfural is a known DNA mutagen [63,64,120], we hypothesized that our furfural 

tolerance genes might affect DNA mutation frequencies and thereby lead to tolerance.  The 

mutation frequency was measured by treating cell cultures with furfural and then plating with 

rifampin to measure the number of spontaneous mutants, compared to total viable cells (Fig. 

3.6B) [136,137].  Surprisingly, no clones exhibited significantly altered DNA mutation 

frequency from control (p > 0.05 for all).  Although the groESL clone did appear to increase 

mutation frequency ~3-fold, statistical analysis indicated that this increase was not significant (p 

> 0.08). 

We had hypothesized that we would observe altered DNA mutation frequency for the 

thyA clone based on its presumed role of increasing dTMP availability required for DNA repair  
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Figure 3.6 - Phenotypic analysis of tolerant clones for furfural reduction and DNA 

mutation frequency.  A)  Samples were collected for measuring furfural in growth curve 

cultures with 0.75 g/l furfural initial concentration.  Furfural concentrations were normalized to 

cell number (optical density) for each value and disappearance rate was calculated during the 

transition from lag to exponential phase (n=3).  B)  Frequency of rifampin resistance of cells 

treated with furfural (n=4).  Error bars represent one standard error.  Double asterisks denote p < 

0.05. 
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under furfural treatment [66] and for the groESL clone due to the chaperone’s role in stress 

response and its ability to stabilize mutated proteins [146].  It is possible that the level of furfural 

treatment here did not deplete DNA repair pathways enough in order to elicit an observable 

difference, although previous studies have also indicated that furfural treatment does not always 

elevate mutation frequencies beyond what native repair mechanism can handle [68].  It is also 

worthwhile to note that ThyA is involved in formyl-tetrahydrofolate biosynthesis (converting 

THF to 5,10-methylene-THF during the dUMP to dTMP reaction), which is a pathway 

previously associated with tolerance to acetate [83] and 3-hydroxypropionic acid [126], and thus 

might suggest a more general role for ThyA in chemical tolerance beyond pyrimidine 

biosynthesis and DNA repair.  In the case of the groESL clone, our data suggest that any role 

GroESL has in stabilizing mutations that might arise from furfural treatment is not significant, 

which suggests that GroESL may rather be acting to stabilize wild-type proteins whose function 

or formation is altered in the presence of furfural. 

3.3.5 – Validation that lpcA and groESL overexpression confer tolerance 

Because lpcA and groESL have not been previously identified to confer furfural 

tolerance, we aimed to verify that our plasmid constructs resulted in increased transcription for 

the targeted genes.  Transcript levels were observed for lpcA to be 98 ± 24 fold-increase over the 

control strain.  The groESL construct had increased expression of its groES and groEL genes of 

150 ± 86 and 126 ± 48 fold, respectively. 

 

  



40 
 

While this data confirmed increased expression from the plasmid based constructs, we 

further wanted to verify that tolerance was conferred by functional expression of LpcA or 

GroESL.  To do so, we introduced a missense mutation into the coding sequences of each of 

these genes.  For lpcA, we targeted a residue in the active site with the E65Q mutation, which has 

previously been reported to confer undetectable enzymatic activity [147].  For groESL, we 

replaced the start codon (ATG with CGG for an M1R mutation) of groES or groEL.  When 

tested for growth in 0.75 g/l furfural, the lpcA plasmid conferred 429 ± 7% improvement in 

growth over blank vector control, whereas groESL conferred 111 ± 4% improvement (Fig. 3.7).  

The missense mutation clone lpcA(E65Q) conferred a slight improvement in tolerance (68 ± 

12%; p < 0.05), which could be a result of low enzymatic activity levels below the threshold of 

activity of the previous assay [147], but is markedly below the improvement conferred by the 

wild-type sequence.  Additionally, the M1R missense mutation in groES conferred no difference 

in growth compared to blank vector (p > 0.1), and the M1R missense mutation in groEL 

conferred a decrease in growth (reduction of 30 ± 2%).  Taken together, our data suggests that at 

the expression levels conferred by expression on the pSMART-LCK vector rely on functional 

expression of the enzyme LpcA enzyme or GroESL complex in order to confer tolerance to 

furfural.  

 

3.4 – Conclusions 

Much research has been performed over the past decade to uncover mechanisms of 

furfural toxicity and to engineer furfural tolerance in E. coli [12,33,46,47,56-59,66,70,121].   
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Figure 3.7 - Mutational studies on lpcA and groESL clones.  Mutations were introduced onto 

the plasmids within the coding sequence targeted for (A) lpcA or (B) groESL.  Cultures were 

grown in 0.75 g/l furfural for 20 hr. (n = 3; error bars represent standard error).  Percentage 

improvement was calculated as the difference of the test strain subtracted from the control, 

divided by the control.  
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Here, we used the SCALEs method [113] to not only map fitness effects across the entire 

E. coli genome, but also to identify and confirm both novel (lpcA and groESL) and previously 

identified (thyA [66]) furfural tolerance genes.  We determined that overexpression of lpcA 

increased observed furfural reduction.  LPS core formation, for which LpcA plays a part, is vital 

for tolerance to chemical inhibitors [78,83,139-141].  To this end, analysis of GO term 

enrichment from our high-fitness genes suggests that membrane and wall biosynthesis is 

important for furfural tolerance.  Alternatively, lpcA overexpression may increase flux through 

the PPP and thereby increase NADPH availability for furfural reduction.  Overexpression of 

groESL also conferred increased growth, but did not alter the rate of furfural reduction or 

mutation frequency.  It is possible that furfural elicits responses similar to those from solvent 

stress, where groESL overexpression has been shown to confer tolerance [86].  ThyA 

overexpression did not alter DNA mutation frequency even though it has previously been 

implicated in increasing DNA repair under furfural stress [66]. 

Robust microbes for lignocellulosic biofuel production must be engineered for multiple 

functions—production of a desired product, tolerance to feedstock and product, co-utilization of 

feedstock carbon sources—that all work in concert together.  Our study here expands the 

understanding of furfural tolerance genes and thus provides additional targets for engineering 

furfural tolerance.  Ultimately, finding genetic manipulations that are beneficial to multiple 

biocatalyst functions will enable rapid, reliable, and improved biofuel production in the future. 
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Chapter 4 

Use of TRackable Multiplex Recombineering for Identification of Furfural Tolerance 

Genes  

In preparation for submission to Biotechnology and Bioengineering 

 

Authorship: Mills, T.Y. 

  Gillis, J.H. 

  Sandoval, N.R. 

  Gill, R.T. 

4.1 – Introduction 

Enabled by the decreasing price of DNA synthesis and sequencing, library generation is 

now reaching up to 4 billion designed mutants/day [103].  “Omics”-driven tool development and 

use is an important approach to select or screen for the best performing strains within these large 

populations.  A variety of tools have been developed, including an E. coli knockout collection 

[131], genomic library strategies [102,113], global transcription machinery engineering [7,89], 

recombineering-enabled technologies multiplex automated genome engineering [103], as well as 

CRISPR-based strategies [148].  With the ever-increasing knowledge of contextual-dependence 

on expression, as is the case for plasmids by varying copy number or selection marker [149] or 

multiple-cloning site usage [150], efforts have been made to standardize expression through 

controlled, or context-free expression design [151,152]. 

In Chapter 3, we applied the SCALEs method to map genotype-to-phenotype 

relationships of increased gene dosage towards conferring furfural tolerance.  Here, we apply 

another tool developed in the Gill Laboratory, TRackable Multiple Recombineering (TRMR) 
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[71].  The TRMR approach uses chromosomal mutations to confer increased (‘Up’) or decreased 

(‘Down’) expression by way of an integrated cassette containing the PLtetO-1 promoter and RBS 

(‘Up’) or displacing these native sequences (‘Down’) in front of virtually every gene in E. coli.  

The mutations are barcoded, allowing for clone concentration to be tracked throughout selection 

with either microarray or next-generation sequencing technology.  Allele fitness scores are 

calculated based upon clone frequency before and after selection; genes have two fitness scores 

from TRMR, one value for the ‘Up’ mutant and another score for the ‘Down.’ 

Here, we highlight the differences in enrichment patterns from three furfural selection  

using TRMR, as well as compare increased fitness genes from a TRMR ‘Up’ selection to those 

identified during the SCALEs selection in Chapter 3.  We identified a subset of genes that had 

increased fitness in both the SCALEs and TRMR plate-based selections, cloned each identified 

gene, and tested for improved furfural tolerance.  We identified two novel clones with increased 

growth in furfural.  Surprisingly though, when we compared plasmid-based clones to their 

TRMR ‘Up’ counterparts, we found that tolerance was not conserved (i.e., a TRMR clone was 

tolerant for two additional genes, but the plasmid overexpression strains for those genes were 

not).  We measured expression from these clones and discuss the impact of expression on 

identifying furfural-tolerance genes, as well as the broader impact that differences in genome 

search strategies do not necessarily identify the same alleles. 

 

4.2 – Materials and Methods 

4.2.1 – Bacterial strains, plasmids, and media 
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E. coli MG1655 and derivatives thereof were used as hosts for studies.  Primers were 

designed for cloning to include the native promoter and open reading frame.  Genes were 

amplified from MG1655 genomic DNA extracted with a Genomic DNA Extraction Kit (Qiagen).  

Primers were designed to amplify the promoter and ORF of the gene because pSMART-LCKan 

is a promoterless vector.  In the cases of ninE, rimM, ybgF, and yfiB, the genes fall within an 

operon, so the entire operon and native promoter sequence was cloned.  Cleaned amplified PCR 

product was ligated into pSMART-LCKan using the CloneSmart LCKan Blunt Cloning Kit 

(Lucigen).  Ligation products were transformed into NEB Turbo Competent E. coli (New 

England BioLabs).  Plasmids were then harvested and transformed into MG1655 cells that were 

made electrocompetent by serial washing with ice-cold water.  Confirmation of plasmids from 

individual colonies was performed by agarose gel electrophoresis and sequencing.  TRMR ‘Up’ 

mutants are derivatives of E. coli MG1655 with a synthetic cassette containing a blasticidin 

resistance gene, the PLtetO-1 promoter, and RBS sequence [71].  The ahpC_Up strain was created 

and confirmed previously by Warner et al [71].  The yhjH_Up strain was created in the Gill 

laboratory by R.I. Zeitoun and S.A. Lynch according to the methods prescribed by Warner et al. 

Luria-Bertani (LB) broth was used for routine applications.  All growth assessments were 

performed in MOPS minimal medium [133].  Kanamycin was used where appropriate (30 

µg/ml).  Cultures were grown at 37°C.  Furfural was added to media at the concentrations 

indicated within the text. 

4.2.2 – Furfural TRMR selection 

TRMR overexpression (‘Up’) and decreased expression (‘Down’) libraries were prepared 

by Warner et al. [71].  Libraries were combined and spiked with JWKan, a neutral-mutation 
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barcoded mutant [71] at 1:400 ratio of a single barcode, and an initial sample (10
9
 cells) was 

harvested by centrifugation and stored at -80°C.  The mixed culture was applied at 10
4
 cells per 

plate to 20 MOPS minimal medium plates with 0.75 g/l furfural.  Cells were harvested after 

growth appeared, pelleted, and frozen until further processing.  TRMR barcodes were amplified 

from genomic DNA, cleaned, prepared for microarray analysis with control barcode loading, and 

analyzed with microarrays as previously described [71].  Analysis of the resulting data files to 

calculate allele fitness was performed as previously described [71,82].  A standard curve was 

created, relating microarray signal to DNA concentration, as determined through the use of the 

control barcodes.  From this curve, allele fitness (W) was calculated as the frequency of a given 

allele, i, after selection divided by the frequency of a given allele before selection, W = 

frequencyi,selection/frequencyi,initial.  Gene ontology analysis was performed with the Batch Genes 

online program [134]. 

4.2.3 – Growth analyses 

 Overnight cultures were inoculated from freezerstocks and grown overnight in LB 

medium.  Seed cultures in MOPS minimal medium [133] were inoculated with 2 v/v% overnight 

culture and grown approximately 2 hours.  Seed cultures were normalized to OD600 = 0.195 - 

0.200, and used to inoculate test cultures at 10 v/v %.  Test cultures were grown in MOPS 

minimal medium and 1.5 g/l furfural.  Optical density readings were monitored at 600 nm at the 

timepoints indicated.   

4.2.4 – Gene expression analysis 

 Cultures were prepared similarly to growth analyses, with the exception of being 

inoculated into MOPS minimal medium without furfural.  Mid-exponential cells were harvested 
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by centrifugation, flash frozen, and used for RNA extraction with an RNAeasy Plus Mini Kit 

Qiagen) after being treated with RNAprotect Cell Reagent (Qiagen).  Expression analysis was 

performed using the iTaq Universal SYBR Green One-Step Kit (Bio-rad).  The gene cysG was 

used as a housekeeping reference gene to account for differences in sample loading. 

 To calculate translation initiation rate of the different transcript sequences, we used V 1.1 

of the RBS Calculator in reverse engineering mode.  Reported translation initiation rates are 

reported for the gene’s annotated start codon. 

 

4.3 – Results and Discussion 

4.3.1 – Identification of TRMR gene fitnesses 

For our TRMR selection, we continued to use a plate-based selection with furfural added 

to solid medium to control an individual clone’s microenvironment based upon the previous 

success we had in Chapter 3 for identifying furfural-tolerant alleles.  In addition, we aimed to 

compare furfural enrichment patterns for TRMR clones with furfural treatment dosed according 

to regimens used by selections in hydrolysate [71] and acetate [82].  The hydrolysate and acetate 

selections employed two different regimens for liquid serial batch selections.  The hydrolysate 

selection was performed by serial transfer into decreasing concentrations of hydrolysate (i.e., 

batch 1 at 20% hydrolysate, batch 2 at 19% hydrolysate, batch 3 at 18% hydrolysate) in order to 

increase selection specificity and sensitivity [127].  The acetate selection was performed in serial 

batches of constant concentration (all prepared at 16 g/l acetate).  We performed three furfural 

selections in parallel to mimic these previous schemes: plate-based, decreasing furfural 

concentrations in each batch, and constant initial furfural concentration in each batch (Fig 4.1 A). 
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Figure 4.1 - TRMR furfural selection under various exposure regimens and resulting gene 

fitnesses.  A) Three different schemes were performed for furfural selections: plate-based, 

constant initial concentration (1.0 g/l furfural) in liquid serial batches, and decreasing furfural 

concentration at each batch transfer (1.5 g/l to 1.0 g/l to 0.5 g/l).  B-D) Log-transformed gene 

fitness scores for the three selections are plotted with reference to their position on the genome 

presented in a clockwise fashion.  Red lines indicate ‘Up’ fitness values and blue indicate 

‘Down’ fitnesses for B) plate-based, C) decreasing concentration, and D) constant concentration 

furfural selections.  For reference, the maximum ln(fitness) score in (C) for the ‘Up’ library is 

11.9 (more details on summary statistics are provided in Table 4.1). 
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Gene fitnesses were calculated according to clone frequency change through selection 

(Fig. 4.1 B-D; lists of the top 100 gene fitnesses for each selections are provided in Appendix 

8.7-12).  Based on the data visualized on the circle plots, we noticed that the plate-based and 

decreasing concentration selection fitness scores had larger amplitudes than the constant 

concentration selection.  Summary statistics of the three selections are listed in Table 4.1.  The 

maximum fitness values for the constant concentration were roughly half those of the other 

selections, yet the total number of genes with increased fitness was highest from this selection.  

Using the fitness calculated from the control barcode in JWKan, a TRMR clone with the cassette 

inserted in a neutral site that does not affect E. coli phenotypes, we found that the decreasing 

furfural selection was the strongest (i.e., lowest ln(fitness) value for JWKan), followed by the 

plate-based selection, and finally the constant concentration selection being the weakest (i.e., 

highest ln(fitness) value of the control tag).  The fitness patterns between the plate-based and 

decreasing concentration selections were more comparable to each other than the plate-based 

selection and the constant concentration, as visualized by the trends of the ln(fitness) values 

plotted together (Fig. 4.2).  Together, these findings together suggest that the decreasing 

concentration selection and plate-based selection are alternative but complementary methods to 

creating strong selective pressures. 

Table 4.1 – Summary statistics of furfural TRMR selections. 

 Plate-based Decreasing Conc. Constant Conc. 

 Up Down Up Down Up Down 

# Increased Fitness 

Genes 

745 684 666 671 1059 873 

Maximum Increased 

ln(Fitness) 

6.7 

 

8.4 

 

11.9 

 

10.9 

 

5.9 

 

5.2 

 

JWKan ln(Fitness) -3.3 -5.7 -1.1 
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Figure 4.2 – Comparison of gene fitnesses from batch transfer furfural TRMR selections to 

the plate-based selection. A-B) ‘Up’ ln(fitness) values and C-D) ‘Down’ gene ln(fitnesses).  

The dotted line is y = x as a linearity reference.  R
2
 values for plots are A) 0.60, B) 0.51, C) 0.64, 

and D) 0.60.  Quadrant 1 genes represent increased fitness genes (enriched) under both 

selections. 
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 Interesting to note is that some common genes were identified through all three selections 

(Table 4.2, Appendices 8.7-12).  Specifically, csiD, was the only ‘Up’ gene identified as a top 10 

enrichment in all three furfural TRMR selections.  CsiD is a predicted protein that is induced 

under carbon starvation [153], but is otherwise of unknown function.  Genes appearing within 

the two strongest selections include ‘Up’ mutations for ydaL, yeeN, talB, smg, totaling 5 of the 

top 10 enrichments from these two selections.  All of these genes, with the exception of talB, 

which is involved in the pentose phosphate pathway (PPP), are conserved or predicted proteins, 

limiting the hypotheses to be developed towards testing their role in furfural tolerance.  TalB, 

with its function in the PPP, could potentially play a role in maintaining flux through the PPP in 

order to restore NADPH during constitutive furfural reduction, similar to a potential tolerance 

mechanism for lpcA overexpression we presented in Chapter 3 (LpcA coverts one of the same 

metabolites as TalB).  Mutually shared ‘Down’ mutations are nagA and ydiA.  NagA is an N-

acetylglucosamine-6-phosphate deactylase, which produces glucosamine-6-phosphate [154], a 

key metabolite in the production of lipopolysaccharide.  YdiA, also known as PpsR, is a 

phosphoenolpyruvate synthetase regulatory protein [155], which regulates genes involved in 

growth on three carbon substrates.  None of these genes have previously been implicated in 

furfural tolerance, so our data here present potential new targets for engineering furfural 

tolerance. 

We also performed gene ontology analysis [134] to look for significantly enriched terms 

as we had done in Chapter 3.  The only significant terms found in all three domains (cellular 

component, biological process, and molecular function) from the plate-based selection were 

related to flagella/motility (Fig. 4.3-5).  No GO terms were found to be significantly enriched for 

the ‘Down’ fitness scores. 
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Table 4.2 – Top 10 genes enriched in TRMR furfural selections. 

 Plate-based Decreasing Conc. Constant Conc. 

Rank Up Down Up Down Up Down 

1 csiD ddpF yqcC fruK ydaL aspS 

2 talB nagA smg yaaX dhaK ydiA 

3 ydaL ydiA yihY ddpF ycjU sdaA 

4 yeeN ycjN yqhD nagA tonB ycjN 

5 smg rseB yhdE nagC ddpA ygcP 

6 yneG yohN zipA ybjL yneG yecT 

7 yjaH sdaA alaS pldB rplI frmR 

8 acpT yecT talB ydiA csiD sra 

9 rplI yahF yeeN ilvM ydiJ paaI 

10 yccF potE csiD pdhR yohK fliO 

 

 

Figure 4.3 – Enriched gene ontology terms in the biological processes domain in ‘Up’ 

increased fitness genes in the plate-based TRMR selection.  Yellow boxes represent 

significantly enriched terms as analyzed by the GOEAST online program [134].  Dotted black 

lines represent skipping of non-significant terms from the parent ontology.  Red lines represent 

connections between nested significant ontologies. 

 



53 
 

 

Figure 4.4 – Enriched gene ontology terms in the cellular component domain in ‘Up’ 

increased fitness genes in the plate-based TRMR selection.  Yellow boxes represent 

significantly enriched terms as analyzed by the GOEAST online program [134].  Dotted black 

lines represent skipping of non-significant terms from the parent ontology.  Red lines represent 

connections between nested significant ontologies. 
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Figure 4.5 – Enriched gene ontology term in the molecular function domain in ‘Up’ 

increased fitness genes in the plate-based TRMR selection.  Yellow box represents the 

significantly enriched term as analyzed by the GOEAST online program [134].  Dotted black 

line represents skipping of non-significant terms from the parent ontology. 
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4.3.2 – Comparison of TRMR and SCALEs furfural selections 

We compared the SCALEs gene fitness scores to TRMR ‘Up’ gene fitness scores in order 

to search for enriched genes under both overexpression scenarios (Fig. 4.6).  Surprisingly, only 

35 genes had increased fitness (ln(fitness > 0)) in both the SCALEs and TRMR selections, 

representing less than 1% of all E. coli genes assessed.  The functions of these mutually enriched 

genes were varied (Table 4.3), but had overlap to existing knowledge of furfural tolerance genes 

in three specific cases.  Thymidylate synthase, encoded by thyA, has been previously confirmed 

to confer furfural tolerance through plasmid-based overexpression [156], purportedly due to its 

role in de novo pyrimidine biosynthesis which could repair furfural-related DNA damage [68].  

Additionally, we had identified this gene and confirmed its growth improvements in furfural in 

Chapter 3.  An alternative mechanism known for conferring tolerance is mediation of reactive 

species formation (ROS) induced by furfural treatment [69].  Genes related to ROS mediation 

have been implicated as providing resistance to hydrolysate [32], including the TRMR mutant 

ahpC_Up for hydrolysate tolerance [71].  Finally, yhjH, is involved in flagellar motility 

regulation [157], which aligns to the enriched GO terms for the TRMR ‘Up’ results (Fig. 4.3-5).  

The identification of chemotaxis/flagellar terms as being significantly enriched in our TRMR 

selection corroborates with the recent report that chemotaxis genes undergo repression during 

furfural treatment in Clostridium beijerinckii [156], but is a new link to furfural tolerance in E. 

coli. 

We hypothesized that the subset of high fitness genes (ln(fitness) > 1 in either SCALEs 

or TRMR selection; genes labeled in Figure 4.6) would confer increased furfural tolerance.  In 

order to test this hypothesis, we first cloned the 13 hypothesized tolerance genes into pSMART-

LCKan.  The functions of these genes are provided in Table 4.3 and primers used for clone 
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Figure 4.6 – Comparison of increased-fitness genes in TRMR and SCALEs furfural 

selections.  Selections were performed by plating TRMR or SCALEs libraries on MOPS 

minimal medium plates with 0.75 g/l furfural.  Fitness scores for genes were calculated based on 

the gene frequency change in selection.   Genes with ln(fitness) > 1 in either selection are 

labeled. 
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construction are listed in Table 4.4.  Nomenclature in this chapter follows the following method 

to provide clarity when referring to different mutations: plasmid constructs are labeled gene-pSM 

while chromosomally mutated strains are labeled as the targeted TRMR mutation and then the 

pSMART-LCKan vector they contain (i.e., gene_Up pSM). 

These clones where then tested for improved growth in 1.5 g/l furfural (Fig.  4.7). Two of 

these clones, rna-pSM and dicA-pSM, showed improved growth.  The gene rna codes for 

ribonuclease I, which has not previously been associated with furfural tolerance, but is important 

for degradation of RNA, especially during recovery from starvation [158].  Carbon-induced 

starvation was also associated with expression of the csiD_Up high fitness we saw enriched in all 

three TRMR selections.  DicA inhibits DicB expression [159], which is part of the DicB-MinC 

complex that inhibits FtsZ at the septal ring  [160].  With increased DicA expression in dicA-

pSM, FtsZ inhibition might be reduced, resulting in differences in cell division.  Identification of 

both rna and dicA as furfural tolerance genes highlights the ability of genome-wide searches like 

TRMR to identify non-obvious tolerance alleles. 

Surprisingly though, four clones, yhdE-pSM, ahpC-pSM, sdaA-pSM, and ybgF-pSM, 

showed significant susceptibility under furfural treatment.  In the case ofybgF-pSM, the 

measured optical density was less than the initial loading density, implicating increased cell 

susceptibility in this clone.  These genes were identified with higher TRMR fitness than in 

SCALEs, suggesting that the level of expression might dictate the ability of the gene to confer 

tolerance under the conditions tested.  We note here that these strains were tested in liquid 

culture (Fig. 4.7), but they had been identified from plate-based selections at half the 

concentration; they might confer tolerance under selection conditions, but not those tested here.  

Originally, we had hypothesized that ahpC-pSM would confer tolerance due to its previous  
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Table 4.3 – Genes with high fitness in either SCALEs or TRMR furfural selections. 

Gene SCALEs 

ln(fitness) 

TRMR ‘Up’ 

ln(fitness) 

Protein/Function 

thyA 2.69 0.59 Thymidylate synthase 

rna 1.77 1.07 RNase I 

ybdR 1.63 0.56 Predicted oxidoreductase 

dicA 

1.30 0.89 

DNA-binding transcriptional dual regulator for cell 

division process genes 

uppP 1.02 0.68 Undecaprenyl pyrophosphate phosphatase 

yhjH 0.71 1.62 c-di-GMP phosphodiesterase 

yhdE 0.60 2.33 Conserved protein 

ninE 0.46 1.95 DLP12 prophage 

ahpC 0.42 2.74 Alkylhydroperoxide reductase 

sdaA 0.34 2.35 L-serine deaminase I 

rimM 0.17 2.63 Ribosome maturation protein 

ybgF 0.15 2.68 Predicted periplasmic protein 

yfiB 0.12 2.35 Predicted outer membrane protein 

yebQ 0.01 0.41 Conserved protein 

 

Table 4.4 – Primers used to amplify genomic regions plasmid clones. 

Gene 

target 

Forward Primer (5’  3’) Reverse Primer (5’  3’) 

rna GGGAATTCCTCAATGCAGCG ATAAATCATCACGCCCGCCA 

ybdR ACATCAACTGGCATAATGATTGTCT CGGCGATTATCGTCATGGCT 

dicA CCTGCTGCTTGTGCAAGTTT TCGGTCAAGTGATTTTGTATGCT 

uppP GTCGCATCAGGCGTTGATTG GGCGTAATCATTGAGCGTGG 

yhjH ATTCTTCCTGTGCCAGTCCT TCCGTTGTGGAGTGAGGAAA 

yhdE CGCGCCTCACGTTCAATATG GTGATTAACGTCTCTTTCAGACCG 

ninE AGCTTCCAGAGAGTAAAAGTGTT AAAATCAGACCAGAACGCCA 

ahpC TGCAAAAGTCGAGTAAAAGGCA GAATCCCCGGGAGCTTACAC 

sdaA GCGCTGCAAATTGGTGTGA CCTGACGCAACAGTGGAAGT 

rimM CGCAGTGGTGATTACTACCC CCGACGGCCTTTTACAGCA 

ybgF CTGGCACCCGATGGTATGTT TCGATGTAGATCACTCAACTGCT 

yfiB TGGCAAAAAGGGGCTGATGA GAGCGTCTTAACTAAGATTTCGCT 

yebQ TCCAGATCTGCGTTAGCCAT GCTCTGCGTACGGGTGAATA 

ahpCF TGCAAAAGTCGAGTAAAAGGCA CCGGCGGGGCTTTTTAATG 
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Figure 4.7 - Growth of increased fitness genes on plasmids in 1.5 g/l furfural.  Genes listed 

were cloned to include their native promoter and ligated into the promoterless pSMART-LCK 

vector.  Cultures were inoculated at normalized initial cell density (OD600 = 0.02) and grown at 

37°C in MOPS minimal medium with furfural.  Cell density was measured after blank vector 

control entered exponential phase (OD600 > 0.1, 26 hours).  Average values (n = 3) are plotted; 

bars represent standard error. 
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identification as a hydrolysate tolerant allele [71], but found the opposite in this case for the gene 

cloned onto a plasmid in our tests.  This surprising result motivated us to further test the effect of 

SCALEs or TRMR-based expression of this gene. 

4.3.3. – Assessing tolerance differences 

The ahpC gene is the leading gene in the ahpCF operon, meaning that these genes can be 

transcribed onto a single RNA molecule (there are three proposed promoters transcribing this 

region: two for ahpCF and one for ahpF).  These two peptides work together as the AhpCF 

complex, an alkylhydroperoxide reductase, responsible for reducing peroxides to alcohols as a 

means of ROS detoxification [161].  Because ahpC expression is induced under sulfate-

starvation, which maps to known inhibition caused by furfural treatment [56], we hypothesized 

that overexpression of ahpC without concurrent overexpression of ahpF (which would be the 

case in our ahpC-pSM clone) would not provide tolerance.  In comparison, the ahpC_Up TRMR 

construct might confer tolerance since it could potentially also result in increased ahpF 

expression since the transcriptional terminator lies downstream from ahpF.  This hypothesis was 

also supported that ahpF has also been increased during the SCALEs selection (Appendix 8.6).  

We constructed the ahpCF-pSM plasmid to test overexpression of the operon compared to the 

ahpC-pSM and ahpC_Up pSM clones in order to verify this hypothesis. 

When grown in 1.5 g/l furfural, we did not find growth improvements in ahpCF-pSM as 

hypothesized (Fig. 4.8).  The TRMR mutant ahpC_Up pSM conferred 82 ± 14% increased 

growth relative to control, which corroborates with the original TRMR study that identified 

ahpC_Up as a hydrolysate, and presumably furfural tolerant, mutant [71].  Both plasmid-based 

constructs, ahpC-pSM and ahpCF-pSM conferred decreased cell growth relative to control, -54 ±  
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Figure 4.8 – Growth of ahpC constructs in 1.5 g/l furfural.  Cultures were inoculated at 

normalized initial cell density (OD600 = 0.02) and grown at 37°C in MOPS minimal medium 

with furfural.  Cell density was measured after 34 hr.  Average values (n = 3) are plotted; bars 

represent standard error. 
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3% and -65 ± 1%, respectively.   Additionally, the ahpCF-pSM construct was more inhibited in 

the furfural than the ahpC-pSM construct, indicating that the reduced growth of ahpC-pSM was 

not due to the lack of increased dosage of ahpF.  Instead, we turned to look at the level of ahpC 

overexpression in the ahpC-pSM and ahpC_Up pSM strains. 

We tested the expression levels of ahpC and one additional gene from the overlapping 

SCALEs and TRMR data, yhjH.  We chose to look at yhjH due to its role in regulation of 

flagellar motility, which was related to the only enriched GO terms from the TRMR selection 

(Fig. 4.3-5).  The yhjH-pSM construct also did not confer increased growth (Fig. 4.7), but as 

anticipated by the enriched flagella and motility related terms from the TRMR selection, 

yhjH_Up pSM did confer increased growth in 1.5 g/l furfural (290 ± 24 % increase over control; 

Fig. 4.9).  The difference in growth improvements between the TRMR and plasmid constructs 

additionally motivated us to assess the significance of expression from the TRMR and plasmid 

constructs for both of these genes. 

When we tested the expression of ahpC and yhjH from these clone constructs we 

observed that the plasmid constructs ahpC-pSM and yhjH-pSM resulted in increased expression 

(approximately 1-1.5 log10 increase compared to control; Fig 4.10).  Conversely, the 

chromosomally integrated mutations in ahpC_Up pSM and yhjH_Up pSM did not alter 

expression.  This result was in direct contrast to the intention of the ‘Up’ mutation cassette in the 

TRMR design, where the PLtetO-1 promoter is reported to be strong (i.e., increase expression) 

[162].  Our study here is the first transcriptional analysis of TRMR constructs, and suggests that, 

at least for some TRMR clones, increased transcription might not occur as anticipated from a 

TRMR ‘Up’ mutation. 
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Figure 4.9 – Growth of yhjH constructs in 1.5 g/l furfural.  Cultures were inoculated at 

normalized initial cell density (OD600 = 0.02) and grown at 37°C in MOPS minimal medium 

with furfural.  Cell density was measured after 26 hr.  Average values (n = 3); plotted and bars 

represent standard error. 

 

 

Figure 4.10 – Expression comparison from chromosomally integrated and plasmid-based 

constructs.  Samples were harvested for RNA extraction from cultures growing in MOPS 

minimal medium. Transcript levels were measured with qPCR, normalizing expression to cysG 

expression.  Fold-improvements were calculated for A) ahpC and B) yhjH with the –ΔΔCT 

method compared to control. Average values (n = 3) are plotted; bars represent standard error. 
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We recognized though that although we did not observe a difference in expression from 

the ‘Up’ mutations, protein expression could still be altered as a result of translational changes 

from the TRMR designed RBS compared to the native RBS strength and/or mRNA stability.   

To test differences in translation, we used the RBS calculator reverse engineering 

function [163,164].  The RBS calculator is modeled to predict the translation initiation rate (a.u.) 

based upon the thermodynamic properties of mRNA transcripts and has been used to accurately 

predict expression levels of fluorescent proteins from various RBS sequences [164].  When we 

performed analyses on the transcript sequences, the translation initiation rates for the ahpC-pSM 

(native RBS and mRNA sequence), translation initiation rate was 5.1 x 10
4
 (a.u.) and 3.1 x 10

4
 

(a.u.) (recalling that there are two annotated promoters for ahpC).  Comparatively, the translation 

initiation rate was 9.5 x 10
4
 (a.u.) for ahpC_Up pSM.  These values would suggest that the 

translation initiation, and thereby protein expression, is increased for ahpC_Up pSM, by up to 

half or two-thirds, depending on which transcript is made and read.  Translation initiation rate 

from yhjH transcripts exhibited the same trend, with yhjH_Up pSM mRNA sequence returning 

2.0 x 10
5
 (a.u.) compared to yhjH-pSM, which was calculated at 2.2 x 10

3 
(a.u.), showing an 

approximately two orders of magnitude increase for the TRMR clone.  These calculations 

suggest that although we did not observe increased expression on a transcriptional level, 

translation is likely increased in the TRMR mutants, which would lead to increased expression of 

these genes. 
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4.4 – Conclusions 

 We used the TRMR method to track enrichments of ‘Up’ and ‘Down’ mutations in front 

of virtually every gene in E. coli during furfural selection.  We performed three different 

selection schemes: plate-based growth with furfural added to the solid medium, a serial batch 

transfer with decreasing concentrations of furfural at each transfer, and a serial batch transfer 

with constant concentrations of furfural.  Gene fitnesses from the selections suggested that the 

plate-based and decreasing concentration serial batch transfer schemes most closely map to each 

other and provided stronger selective pressure than the constant concentration selection.  By 

analyzing the plate-based selection for enriched gene ontologies, we identified terms for motor 

activity, bacterial-flagellum part, and ciliary or flagellar motility as significantly enriched.  

Supporting the role that flagella function might play in furfural tolerance, we confirmed 

improved growth for a TRMR ‘Up’ mutation in front of yhjH, a gene involved in flagellar 

motility regulation.  Through our assessments, we also observed growth improvements for rna, 

dicA, and ahpC overexpression.  By comparing some plasmid-based constructs to their 

chromosomally mutated counterparts, we observed that expression levels at the transcriptional 

and translational level significantly impact the benefit of gene overexpression. 

 Our data here relate to three key findings.  The first follows the adage “you get what you 

select for.”  We saw marked differences in fitness scores (total number of genes enriched, 

maximum enrichment values, and loss of the control tag in the population) based upon the type 

of selection we used.  By these metrics, we determined that the constant concentration selection, 

which is a method often employed when performing directed evolution studies, was the 

“weakest.”  The “strongest” selection, and perhaps most effective at identifying furfural 

tolerance genes, was a serial batch transfer with decreasing inhibitor loadings at each transfer.  
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This method was originally described as a favored selection scheme that increased both selection 

specificity and sensitivity [127], traits that are desirable for genotype-to-phenotype mapping 

studies.  Our data here parallel those findings and support this non-traditional approach for future 

selection designs. 

 Secondly, by using the TRMR method, we were able to rapidly identify non-obvious 

furfural tolerance genes.  These genes and their functions can be added to the ever-growing 

collection of genetic manipulations for conferring furfural tolerance, with potential applications 

to hydrolysate and its inhibitors, other hydrophobic compounds, or ROS generators. 

 Lastly, we have shown that the capability of a gene to confer tolerance is highly 

dependent on its expression, both at the transcriptional and translational levels.  In fact, plasmid-

based overexpression of ahpC proved to decrease growth, whereas use of a synthetic promoter 

and RBS sequence integrated on the chromosome conferred improved growth.  These findings 

strongly support the development of genome searching tools that are designed to provide 

controlled and context-free expression.  Gains are being made in this area by designing synthetic 

sequences to control expression independent of surrounding sequence, quantifying the effect of 

trackable marker (e.g., antibiotics) and multiple-cloning site usage, as well as the rapidly 

occurring reports discussing the effect of codon bias in E. coli [149,150,152,165].  Moving 

forward, tools will need to designed to account for contextual dependence, or to control 

expression, in order to achieve efficient genotype-to-phenotype relationships.  
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Chapter 5 

Targeted Multiplex Genome Engineering for Improved Biofuel Tolerance  

In preparation for submission. 

Authorship: Mills, T.Y. 
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5.1 – Introduction 

 In Chapters 3 and 4, we have performed Design-Build-Test steps for identifying furfural 

tolerance genes with the SCALEs and TRMR methods.  We have confirmed tolerance conferred 

by a number of genes involved in various cellular functions.  Moving forward, we aimed to use 

these identifications to motivate a Learn phase, to re-enter the Design-Build-Test cycle, while 

targeting a phenotype hypothesized to be related to furfural tolerance.  Our objective was to 

transition towards engineering tolerance to hydrophobic compounds, specifically those that are 

potential biofuel products, like isobutanol.  Many long-course adaptation studies identify 

multiple mutations which support a specific phenotype or pathway [9,77,93,121].  Recognizing 

that in order to achieve large improvements in tolerance, we would likely need to target multiple 

mutations within a single strain, we assessed our data from the previous chapters for genes that 

might share common tolerance mechanisms between furfural (a hydrophobic compound) and 

hydrophobic alcohols.  This analysis led us to consider one of our most tolerant genes, lpcA, 

which was identified in Chapter 3, and the potential benefit overexpression of genes involved in 

the same biosynthetic pathway might have towards engineering hydrophobic molecule tolerance. 
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 We focused on targeting a specific pathway instead of the top-fitness mutants from our 

furfural selections for two reasons.  The first, we recognized that not all furfural tolerance genes 

would also confer tolerance to hydrophobic compounds.  We needed to direct the choice towards 

pathways that supported a hypothesis in which its function could dually confer tolerance to other 

hydrophobic compounds.  Secondly, previous work in our lab has emphasized the importance of 

epistatic interactions towards engineering mutations in multiplex (i.e., multiple mutations within 

a single cell) [82].  In this previous study, the top-fitness genes from hydrolysate, acetate, and pH 

TRMR selections were targeted for altered expression by way of ribosome binding site (RBS) 

mutations according to the Multiplex Automated Genome Engineering (MAGE) method [103].  

MAGE utilizes a lambda phage recombineering protein to insert synthetically designed 

mutations into specific regions of the chromosome in a recursive fashion to build up a population 

of multiplexed mutants.   Surprisingly though, in our study with TRMR-directed targets, the 

most tolerant mutants contained only single mutations, rather than multiple mutations, 

suggesting that the mutations targeted were not positively synergistic with each other.  A recent 

study combining singly identified furfural tolerance genes into one strain also highlighted the 

unpredictable epistasis of these interactions towards conferring tolerance [12].  In order to avoid 

potentially antagonistic epistasis between ‘competing’ mutations, we chose to focus on one 

specific pathway.  

 LpcA, or sedoheptulose-7-phosphate isomerase, catalyzes the first committed step 

towards heptose formation for lipopolysaccharide (LPS) biosynthesis [166].  LPS, a vital 

component of the E. coli outer membrane, is well known to act as a barrier towards hydrophobic 

compounds in microbes.  Strains which lack inner core heptose, have been shown to be more 

susceptible to hydrophobic compounds in E. coli and Salmonella typhimurium [140,141,167], 
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and the weakened immunity of these mutants is attributed to a lack of structural integrity 

maintenance normally obtained through cross-linkage of neighboring phosphorylated heptose 

units with divalent cations [139,168]. 

 There are 29 genes involved in the LPS superpathway.  Each of these genes catalyzes 

steps for the formation of either lipid A, keto-deoxyoctulosonate (KDO), or heptose, or the 

assembly thereof (Fig. 5.1).  Lipid A is the amphipathic component, serving as the anchor for 

LPS in the outer leaflet of the outer membrane.  KDO is integral for E. coli viability, and 

connects lipid A to the core region, and two of its biosynthesis genes, kdsA and kdsB, are 

essential [131].  In non-pathogenic E. coli, the core is first composed of heptose molecules and 

then a small number of other sugar molecules like galactose and glucose [169].  We searched for 

enrichments of each of these genes in our own furfural SCALEs and TRMR ‘Up’ (Appendices 

8.6-7, 8.9, and 8.11), and discovered that many of the genes had increased fitness in one of more 

of our selections (Fig. 5.1 A). 

 Two recent reports also supported our hypothesis that overexpressing LPS biosynthesis 

genes might confer tolerance to candidate biofuel compounds.  First, during a long-course 

adaptation to evolve isobutanol tolerance, glucosamine-6-phosphate, the substrate for which 

GlmM catalyzes in lipid A biosynthesis, was identified as an important metabolite [77].  Also in 

this study, deletion of yhbJ, which results in increased glmS expression (the upstream step from 

GlmM, Fig. 5.1A) [170], was also important for conferring isobutanol tolerance.  The second 

report, from our own lab, identified lpcA overexpression through a SCALEs ethanol selection 

[78].  Although transcriptional analysis of ethanol and isobutanol-treated cells differs [76,79],  
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Figure 5.1 – LPS biosynthetic pathway, structure, and biosynthesis gene locations on the 

chromosome.  A) Superpathway of LPS biosynthesis containing lipid A, KDO, and heptose 

formation and assembly.  Numbers next to enzymes denote the operon (1-17) in which the gene 

is found.  Gene names in green text were identified with increased fitness through SCALEs and 

TRMR furfural selections in chapters 3 and 4.  Gene names in red text were not designed in the 

original TRMR library due, in part, to their overlapping architecture on the chromosome, and 

were thus not candidates to be identified in TRMR gene fitness searches.  B) Schematic of LPS 

structure.  LPS sits in the outer leaflet of the outer membrane, with lipid A facing phospholipids 

of the inner leaflet.  KDO attaches the sugar chain to lipid A, and together, represent the LPS 

inner core.  C) Genomic position of the 17 operons that contain the 29 enzymes involved in LPS 

biosynthesis. 
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alcohols or varying length are known to associate and disrupt E. coli membranes [41].  These 

reports, supported our hypothesis that overexpression of LPS biosynthesis genes might confer 

tolerance to biofuel alcohol candidates like isobutanol, and potentially ethanol, n-butanol, and 

isopentenol. 

 In order to target these 29 genes, which are organized into 17 distinct operons across the 

genome (Fig. 5.1C and Fig. 5.2), we decided to use a MAGE-like approach, relying on lambda-

mediated single stranded DNA (ssDNA) oligomer recombineering [105].  In this system, ssDNA 

oligomers are transformed into cells, where the lambda protein beta serves as an ssDNA-binding 

protein, protecting the oligomer from exonuclease activity.  It is proposed that these oligomers 

can then replace Okasaki fragments during DNA replication on the lagging strand, introducing 

the mutation onto the chromosome [171].  Deleting mutS, which is part of the methyl-directed 

mismatch repair system [172], has been shown to increase recombineering efficiency for point 

mutations and small insertions [104].  Recombineering efficiencies are typically low enough that 

only a small portion of the population incorporates the mutation.  For this reason, we mimic the 

recursive recombineering approach presented in MAGE to insert an orthogonal RNA polymerase 

(RNAP) derived from the T7 RNAP [173].  This approach and design is similar to a recent study 

directed towards altering amino acid biosynthesis with multiple T7 promoter insertions [107].  In 

this scheme, recombineered populations are recovered, again and then subjected to subsequent 

rounds of recombineering to create increasingly multiplexed members of the population.  The 

population created after ten recursive rounds of recombineering, which contained members of 

increasing diversity, was then subjected to selections under ethanol, n-butanol, isobutanol, and 

isopentenol (3-methyl-3-buten-1-ol). 
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Figure 5.2 – Architecture of LPS biosynthesis operons.  The position for PK1F insertion is 

designated in front the gene in the operon.  Black arrows indicate genes that are not involved in 

LPS biosynthesis, but have the potential to be transcribed from the promoter insertion mutation.  

Direction of the operon as it is orientated in the genome is indicated by the genes facing 

clockwise or counterclockwise.  Orientation and replichore (Fig. 5.1C) were accounted for in 

designing oligomers to target the lagging strand. 
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5.2 – Materials and Methods 

5.2.1 – Bacteria, plasmids, and media 

 E. coli EcNR2 (MG1655 bioA/bioB::λ-bet  mutS::cm
R
), HEM6 (W3110 galKtyr145UAG 

ΔlacU169 [λ cI857 Δ(cro-bioA)]), and HEM63 (HEM6 mutS::amp
R
) were used for 

recombineering studies.  The K1F T7 variant plasmid (pK1F) was provided from the Voigt Lab 

at MIT and contains spectinomycin resistance and the K1F RNA polymerase (RNAP) under an 

IPTG-inducible promoter [173].  Low-salt Luria Bertani broth (LS LB) was prepared to contain 

10 g tryptone, 5 g yeast extract, and 5 g sodium chloride per liter.  All cultures were grown at 

30°C.  The following concentrations were used as appropriate: IPTG, 250 µM; spectinomycin 

dihydrochloride pentahydrate, 100 µg/ml; X-gal, 40 µg/ml.  MOPS minimal medium [133] was 

used for selections and growth analyses.  MacConkey agar plates were used for galK screening 

with 1 v/v% galactose [104].  E. coli SimD70, a recombineering strain previously used in our lab 

[82], was transformed with pK1F and used for MacConkey agar assays.  

5.2.2 – Promoter oligomer design 

 Oligomers were design according to the method of Wang et al. [107].  Briefly, the 

insertion site was designed for insertion 35 bases upstream of the gene start codon, with 35 bases 

of MG1655 chromosome homology flanking the insertion site on either side.  The 20 bp K1F 

promoter sequence, TAATAACTATAACTATAGGG, was designed between the two homology 

arms.  Sequences were designed to target the lagging strand during recombination.  Sequences 

are given in Table 5.1, where asterisks designate phosphorothioated linkages.  Oligomers were 

used for measuring recombination efficiency at a 1:20 ratio with the promoter oligomers, and 

targeted lacZ (EcNR2) or galK (HEM6 and HEM63)   The sequences for the lacZ inactivation 
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oligomer (lacZ_mut_1) and the galK restoration oligomer (galK_144) were designed as 

previously reported [103,106], with the four 5’ bases phosphorothioated. 

Table 5.1 – Oligomer sequences synthesized for K1F promoter insertions. 

K1F_1 

C*G*T*A*TTATCTCGCCAAATTACCTATCCAACCGAAGCCCTATAGTTATA

GTTATTATGTACTATACATTCGGCGGGCCAGTTTAGCACAAA 

K1F_2 

A*A*T*A*AACTCCTTACCATCCCATTTGCACCGGAGGGCCCTATAGTTAT

AGTTATTATGCAGTTCTTTGCGTGGCCCGGCGATCTTATATTG 

K1F_3 

C*T*T*T*TATAGCTCCTTAATAAGGCATGTGACGCTAGCCCTATAGTTATA

GTTATTATATCGCATGTTTCGACCTGCAAGAAAGTGCTCTTC 

K1F_4 

G*A*G*G*ATATCCTTCAGCATAAATGTAATAGACAAAACCCTATAGTTAT

AGTTATTATGCAGTGTACCGGATACCGCCAAAAGCGAGAAGTA 

K1F_5 

T*G*C*T*ATAACACCACCCTATATATGACCCGAACTGGTAATAACTATAA

CTATAGGGGTTGAAGCACCAATCAAACGGAACAGGATGCAAAA 

K1F_6 

T*C*A*A*AAAACCAGCATTTGTTGAAATAGCCGCATATCCCTATAGTTAT

AGTTATTATCTACCCGTTATCCACTGGCACGCCAAACCACTGA 

K1F_7 

A*G*T*T*CCTCCAGATGGATCGGGTTATGAATGCATAACCCTATAGTTAT

AGTTATTAATCTTATCATAATCATTTATGCGACGGGGTCTATT 

K1F_8 

A*T*T*T*TGGTTGCGGGCGAAAAAATGCGACAATACATTAATAACTATAA

CTATAGGGACAATTGCCCGAATAGGTTGAAAAACAGGATTGAT 

K1F_9 

A*G*G*A*TCGCCTTAATCTTGAGTAAAATGTCGATTAACCCTATAGTTAT

AGTTATTATTAATGCAGCACAATATGTTTATGCGCGATGTTAT 

K1F_10 

G*C*T*T*TTCCAGTTTCGGATAAGGCAAAAATCAATCTCCCTATAGTTATA

GTTATTAGGTGATAGTGTAGCGGCGCAACTTGCCCCGCACCA 

K1F_11 

T*C*C*T*GTCTCCTGAGAGATTCAAAATTTGCGCGCGACCCTATAGTTATA

GTTATTATAATACCATACTTCATTCTTCCACCAGCCACTTCT 

K1F_12 

G*A*T*G*TTATCCCTGGTATGAATTGATAAGAAAAAACCCCTATAGTTAT

AGTTATTACCCGGAGCACGCCCCGGGGTTTTCGGTACAAATAC 

K1F_13 

T*T*A*A*GCATCCGTTACGGCTTTCTGAAAATCTTCAGTAATAACTATAAC

TATAGGGCGGACCGGCGAGTATACCTGAAGAAAGGACGTTAG 

K1F_14 

A*T*G*T*GATGGTATGATTACAGACATTCGTGTCTGAGTAATAACTATAA

CTATAGGGATTGTCTCTGACTCCATAATTCGAAGGTTACAGTT 

K1F_15 

C*T*T*T*ATGACCAGGATTTTTCGAAATGGCTTTTCCACCCTATAGTTATA

GTTATTACTAGCGACTCTTTTGTGTGATTGTCTGGTTAAGTT 

K1F_16 

G*G*A*A*AAGTAATGGTAAAGCCACAGCTAAATACATATAATAACTATA

ACTATAGGGGAATCCCCAGCACATCCATAAGTCAGCTATTTACT 

K1F_17 

A*C*G*C*GTCCTGACTGTAATTTGAGAACGAATTTAAACCCTATAGTTAT

AGTTATTACCGCTTCACCTTGAAAAAACTACATTTTTTTCATC 
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5.2.3 – Recursive recombineering for library creation 

 Recombineering strains EcNR2, HEM6, and or HEM63 with the pK1F plasmid were 

grown in LS LB with IPTG and spectinomycin overnight.  A 2 v/v% inoculation was made into 

25 ml fresh LS LB medium and grown until mid-late exponential phase (0.6< OD 600 <1.0).  

Cultures were then induced at 42°C for 15 minutes to induce recombineering protein expression.  

Cells were then chilled on ice, and 1 ml aliquots (~10
7-8

 cells) were serially washed twice with 

ice-cold ultra-purified water.  Pellets were resuspended in 50 µl ice-cold ultra-pure water, and 

electroporated at 1800 kV with 1 µl oligomer mix (equimolar amounts of all 17 targeting oligos 

and a 1:20 dilution of either the lacZ or galK oligos).  Cells were recovered in 3 ml LS LB, 

IPTG, and spectinomycin until entering exponential phase again.  This process was repeated for 

a total of 10 rounds, with cultures being stored at 4°C or -80°C, as needed.  Dilutions of cultures 

were plated on LS LB agar with IPTG and X-gal or MacConkey agar plates with galactose and 

IPTG for estimation of recombination efficiency.  Population dynamics (percentage of 

population with varying number of mutations) were calculated using equations previously 

derived [174].  After the fifth and tenth round of recombineering, cultures were plated in 

dilutions to isolate individual colonies while the remaining population was stored at -80°C until 

further use.  Control recombineering reactions (1 µl of water transformed instead of oligomer 

mix) were performed in parallel for all strains.  Cultures grown from this water-transformed 

population is referred to as ‘Adapted’ within the text. 

5.2.4 – Linking PCR 

 Primers were designed with the Linking PCR algorithms developed by Zeitoun et al. in 

the Gill laboratory.  In short, 60 bp sequences of the chromosome upstream and downstream of 
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the targeted insertion site are input into the MATLAB code which designs compatible ‘linking’ 

sequences (i.e., optimized GC content, limited secondary structure, and minimization of 

homology to chromosome sequences) for each internal primer.  Two sets of linking PCR primers 

were designed to yield PCR products of approximately 1000 bp and 800 bp constructs (Tables 

5.2-3). 

 Two reactions were performed with Phusion polymerase (New England Biolabs).  The 

first was an assembly PCR where 1 µl 10
-3

 dilution of an equimolar primer solution of all 

primers in the set was initially loaded into the reaction mixture and cycled for 12 rounds of PCR.  

Then an additional 1 µl of 10
-1

 dilution of primers was introduced to the reaction mixture and 

cycled for another 40 rounds of PCR.  The PCR products were either used directly or cleaned to 

remove remaining primers with a Qiaquick PCR Purification Kit (Qiagen).  This eluted mixture 

was then used as the template for an amplification reaction, which only used the external 

flanking primers of each set to amplify the entire linked together construct.  The products were 

then separated with gel electrophoresis, extracted from the gels by excision, and purified from 

the agarose with a Qiaquick Gel Extraction Kit (Qiagen).  Cleaned products of the expected size 

were sequenced to determine sites with promoter insertion. 

5.2.5 – Growth analyses 

 Overnight cultures were inoculated from freezerstocks into LS LB with IPTG and 

spectinomycin.  Overnight cultures grown to stationary phase were then diluted to OD600 = 1.0, 

and 1 ml aliquots were centrifuged at 14,000 rpm for 2 minutes.  The supernatant was decanted 

and the pellet was resuspended in 500 µl LS LB to concentrate the cells by a factor of two.  An 

aliquot of 100 µl was then inoculated into MOPS minimal medium with IPTG and  
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Table 5.2 – Linking PCR primers used to amplify Set 1 single sequencing construct. 

Gene 

Target 

 

Forward (5’ 3’) 

 

Reverse (5’ 3’) 

lpxC 

TAAACTGGCCCGCCGAATGTAT

AG 

TGGGTGAGTCCTGAGCTGCCGACC

GTTATTCCTTTGTTTGATcatCGTAT

TATCTCGC 

hlpA 

ATAACGGTCGGCAGCTCAGGAC

TCACCCAGTGTAGCGATGACTT

TAGGCGATCA 

ACCTTGAGACCATTGCCATCCTCC

GCCAGCGAGACCTGCAGCTAATA

ACCACTT 

gmhB 

CTGGCGGAGGATGGCAATGGTC

TCAAGGTATCAGGTTTATGCGA

AGAGCACTTTCT 

AGTCGTTGCGGGTTGGGTTATGTC

ACGGCCTCTTCGCCACCTTTTATA

GCTCCT 

lpcA 

GCCGTGACATAACCCAACCCGC

AACGACTACCTGCCCGTACTTC

TCGCTT 

TCGGCTAAGAACACTGGTGACGC

ATCGGGTCGTTACGAATAAGATCC

TGGTACATGAG 

msbA 

CCCGATGCGTCACCAGTGTTCT

TAGCCGATTGGCGTGCCAGTGG

ATAACG 

TGCTCGGTCGCTGGTATGTAGCCC

GTTGACGTAGAGAGATCTTTGTCG

TTATGCATTC 

ycaR 

TCAACGGGCTACATACCAGCGA

CCGAGCATCTTTACTGATTGCC

GCACCGG 

TCCACAGTCCAGCACAGTTCTTCC

CGCCTACGATGATCCATAGTTCCT

CCAGATG 

kdsA 

AGGCGGGAAGAACTGTGCTGG

ACTGTGGACGCGCATAAACATA

TTGTGCTGCA 

TTGTGCCATGCTTCGGGATCGGAG

AGCTGTTGATGTCGCCAATGCTAA

CCACTT 

yrbG 

CAGCTCTCCGATCCCGAAGCAT

GGCACAACCGCATAAAGTCAA

AATTAAGCATCCG 

ACCATCCGCCCATCAACTTCAACC

GCACGGCATCTAACGTCCTTTCTT

CAGGTATACT 

rfaD 

CGTGCGGTTGAAGTTGATGGGC

GGATGGTGATTCGGATGTGATG

GTATGATTACAGAC 

GGTAACGATGATCATAACTGTAA

CCTTCG 
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Table 5.3 – Linking PCR primers used to amplify Set 2 single sequencing construct. 

Gene 

Target 

 

Forward (5’ 3’) 

 

Reverse (5’ 3’) 

waaA 

CGGGAAAAGTAATGGTAAAGC

CACAG 

AGCCACAGTTTCCCTCAGCACAGG

CAGGAGCGGTGTAAAGCAATTCG

AGCATAG 

ppiB 

TCCTGCCTGTGCTGAGGGAAAC

TGTGGCTCGCCGTGATTGGTGT

GGAAAGT 

TAGACGGGCTACCACCCTTTGCCA

GCGAAGATCCGATCGTGCGGTTAT

GCT 

lpxL 

TTCGCTGGCAAAGGGTGGTAGC

CCGTCTAAAGCAGTGCGGTGGA

GAACTTG 

AGCACCAAACGCAGCATCCTCAC

ATCGCCCGCCCAGTCTTCAGCCAC

AAA 

lpxM 

GGCGATGTGAGGATGCTGCGTT

TGGTGCTATGCTTTTCCAGTTTC

GGATAAGGCA 

AACGCCACACAGAGGGAGCAAGT

GCCTTGATTAACATCCATTCGCAG

CCGGTAC 

rfaE 

CAAGGCACTTGCTCCCTCTGTG

TGGCGTTCGTTACTTTCATTCCT

GTCTCCTGAGA 

ATAACGCTTGTGTGGTCACGGCAG

GGCGAGGCTGGTGGAAGAATGAA

GTATGGT 

folP 

TCGCCCTGCCGTGACCACACAA

GCGTTATGCAAAGAGTTTCATG

ATGTTATCCCTGG 

GAGCTGGATTCGGAAGGAGGCGA

GTTCGACGCATCAGATGACTGTAT

TTGTACCG 

waaQ 

TCGAACTCGCCTCCTTCCGAAT

CCAGCTCCCATGATATCGCATC

TTTATGACCAGG 

GCGAAGCGAATGAAAGCTGCCTT

GGGCTCCTTAACCAGACAATCAC

ACAAAAGAGTCG 

glmU 

GAGCCCAAGGCAGCTTTCATTC

GCTTCGCTTCAACATACGCGTC

CTGACTGTAATT 

CAATTTATCCTCTGTCCATTTCAC

GATGA 
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spectinomycin and 0.5 v/v % n-butanol (initial OD600 ~ 0.04).  Cultures were grown and 

measured for optical density readings after 6 hours. 

5.2.6 – Alcohol selections 

 Freezerstock aliquots of the libraries after 10 rounds of recombineering (HEM6 and 

HEM63 PK1F libraries and their respective water-transformed ‘adapted’ populations) were 

thawed on ice.  A 500 µl aliquot was inoculated into 20 ml of LS LB with IPTG and 

spectinomycin and grown until mid-exponential phase (~8 hours).  Cells were harvested by 

centrifugation and then resuspended in LS LB and inoculated 2 v/v% into 15 ml of MOPS 

minimal medium (OD600 ~0.04) with IPTG, spectinomycin, and an alcohol (ethanol: 3 v/v %; n-

butanol: 0.5 v/v %; isobutanol: 0.5 v/v %; and isopentenol: 0.5 v/v %).  Cultures were grown 

until they reached early or mid-exponential phase and then inoculated into a second round at the 

same inhibitor concentrations at OD600 ~0.04.  The ethanol, n-butanol, isobutanol selections were 

inoculated into a third and final round.  Cultures were dilution plated to isolate colonies for 

individual clone genotyping and phenotyping.  

 

5.3 – Results and Discussion 

  We used recursive rounds of lambda-mediated recombineering to create libraries of 

mutants with an orthogonal RNAP promoter sequence in front of the 17 LPS biosynthesis 

operons. We hypothesized that altering LPS biosynthesis gene expression would allow us to 

increase tolerance to hydrophobic biofuel candidates.  Secondary to this goal, we also wanted to 

test the effect that mutS deletion mutants would have on propagating unintentional mutations 
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over the course of recursive recombineering rounds, since the deletion of mutS, and thus the 

methyl-directed mismatch repair system, has recently been suggested to contribute significantly 

to increased mutation frequency [175]. 

 We also aimed to apply a recently developed method in the Gill Lab by Zeitoun et al. for 

tracking targeted mutations across the genome.  In this ‘Linking PCR’ method, primers are 

designed to amplify sequences flanking the intended mutation site, and have linking sequences 

so that the first amplification product shares a complimentary linker sequence to another 

mutational target site.  This process is reminiscent of overlap-extension PCR [176], but is being 

optimized for mutation tracking by development of a computation program to design ideal linker 

sequences to minimize unintended PCR products.  Our application of this method is the first use 

of this method for tracking the diversity of a designed mutational library.  Linked PCR constructs 

can be sequenced in a single Sanger sequencing reaction.  By linking together sequences from 

various sites, the cost of genotyping of our mutations can be reduced by approximately an order 

of magnitude. 

 The current standard for assessing presence of a mutation in recombineered populations 

is using Multiplex Allele-SpecifiC (MASC) PCR [174].   This method, in comparison, relies on 

two forward primers, one with homology to the wild-type sequence and one with homology on 

the 3’ end to the intended mutation, and one reverse primer with homology to the un-mutated 

template.  PCR products are only amplified from the allele-specific primer if the 3’ end has 

homology (i.e., anneals to the mutated sequence).  An amplified product from this reaction is 

inferred as a mutated sequence while lack of product is inferred as a wild-type sequence.  

Problems arise with MASC PCR due to the lack of positive controls (mutated templates to 

ensure the allele-specific forward primer works), or control for non-specific binding yielding a 
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product of the expected length but wrong sequence.  The issue of multiple chromosomes within a 

single cell [32,104,106,177], where one chromosome is mutated and another is not, can also 

introduce a number of false-positives in MASC PCR.  In addition, the method requires individual 

PCR reactions for each target.  Primer sets can be designed de novo so that they will amplify 

different sized products to be screened in a single lane by gel electrophoresis, but this requires 

considerable time in designing them and quality assurance testing that they work as intended.  

Additionally, sequences must ultimately be verified, and MASC PCR only designs constructs for 

single sites, resulting in high costs for sequencing individual constructs.  For these reasons our 

linking PCR method provides advantages to us in this study. 

5.3.1 – Creation of LPS biosynthesis libraries with EcNR2 

 We performed 10 rounds of recursive recombineering with oligomers designed to insert 

an orthogonal RNAP promoter sequence in front of all genes/operons of the lipopolysaccharide 

biosynthesis pathway.  Initially, we used an E. coli MG1655 derivative (EcNR2) designed for 

high efficiency ssDNA recombineering with a mutS knockout and chromosomal integration of 

lambda beta [103].  In this case, we also spiked in an oligomer that introduces a premature stop 

codon in lacZ, thereby inactivating its function and enabling mutants to be screened with 

blue/white screening (mutants that were recombineered and incorporated the oligomer would be 

white when grown in the presence of IPTG and X-gal compared to wild-type strain that would be 

blue from wild-type metabolism of X-gal).  We performed 10 rounds of recombineering in 

parallel, using both our LPS/lacZ-targeting oligomers and a water control transformation (to 

create a control ‘adapted’ population).  We plated the ‘adapted’ population after the first and 

tenth round and observed the propagation of a white colony sub-population (Fig. 5.3).  All of the 

colonies from this ‘adapted’ population should have been blue, since they were not exposed to  
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Figure 5.3 – Blue/white screening of EcNR2 ‘adapted’ populations. Cultures are plated on LS 

LB, IPTG, X-gal plates.  Colonies with functional lacZ (wild-type) can metabolize X-gal, 

producing a blue appearing colony.  White colonies are unable to metabolize X-gal, and indicate 

a mutation deactivating lacZ function or one resulting in a lacZ
-
 phenotype. A) EcNR2 pK1F 

‘adapted’ population plated after the first round of recombineering.  B) EcNR2 pK1F ‘adapted’ 

population plated after ten rounds of recombineering. 
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the lacZ-inactivating oligomer.  This finding suggested to us that deletion of mutS might be 

responsible for allowing random mutations to propagate within our recombineered population 

that might result in a lacZ mutant phenotype, as has been implied by recent reports of increased 

mutation frequency in mutS
-
 strains[116,174]. 

5.3.2 – Creation of LPS biosynthesis libraries with HEM6 and HEM63 

 Due to the propagation of white colonies during the course ten recombineering rounds in 

the EcNR2 host, we decided to re-create the libraries in a new host system, one that would allow 

us to monitor the effect mutS deletion had on the population in comparison to a mutS
+
 strain.  For 

this purpose, we used HEM6 (mutS
+
) and HEM63 (mutS

-
) developed by the Court Lab [105].  

These strains have mutations deleting the lac operon and cannot be screened with blue/white 

screening, but have the galKtyr145UAG mutation, which allows for pink/white screening based upon 

the metabolism, and resulting acidification (creating a pink color based upon a pH shift of the 

dye) of colonies with restored galK function. 

 We performed ten rounds of recombineering with both the HEM6 pK1F and HEM63 

pK1F populations, yielding four populations total: HEM6 pK1F transformed with LPS-targeting 

oligomers, HEM6 pK1F ‘adapted,’ HEM63 pK1F transformed with LPS-targeting oligomers, 

and HEM63 pK1F ‘adapted.’  We plated dilution cultures after recombineering onto MacConkey 

agar plates with galactose, IPTG, and spectinomycin to estimate recombineering efficiency (the 

number of pink colonies/total colonies).  We noticed though, that colonies were unable to grow 

on MacConkey agar supplemented with the normal working concentration of spectinomycin, 

leading to no growth on pink/white screening plates.  The lack of growth is potentially due to a 

slightly more acidic environment than LS LB, as this has been shown to significantly alter the  
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toxicity of spectinomycin [178].  An example of reduced E. coli growth with the pK1F plasmid 

on MacConkey agar with spectinomycin compared to growth on LS LB agar with spectinomycin 

can be found in Appendix 8.13.  Blue/white and/or pink/white screening are used to estimate 

recombineering efficiency by measuring the frequency of loss or gain of a particular phenotype 

conferred by the replacement of a single point mutation.  The efficiencies related to point 

mutation incorporation and insertion are known to be different, with the point mutation 

incorporation being favored [174], which is a limitation (i.e., would provide an over-estimation) 

of using this type of screening for our library design.  The unforeseen ability to measure a 

potentially inaccurate estimation of recombineering efficiency led us to identify another way to 

estimate efficiency by phenotypic analysis. 

 After five rounds of recombineering, we had plated diluted cultures to isolate colonies for 

sequencing to confirm promoter insertion in the targeted populations (Fig. 5.4).  We observed a 

“large” colony phenotype that, when sequenced, confirmed insertion of the pK1F promoter 

sequence upstream of lpcA.  This observation was consistent with large colonies we had 

observed when creating the lpcA plasmid in Chapter 3, and enabled us to estimate 

recombineering efficiency based upon the large colony phenotype as an estimator of promoter 

insertion in front of LPS targets in the population.  This phenotype was observed in ~20 % of the 

LPS-targeting oligomer library, while no difference in colony size was observed in the ‘adapted’ 

population (Fig. 5.4).  A similar percentage was observed in the HEM63 pK1F population. 

 Using the 20% recombineering efficiency estimation from Fig. 5.4, we calculated the 

predicted degree of mutations in the population.  Fitting this information to equations previously 

derived for population diversity analysis [174], we were able to estimate a recombineering  
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Figure 5.4 – Dilution plates of HEM6 pK1F populations after five rounds of 

recombineering.  A) ‘Adapted’ culture transformed with only water, and B) Population 

transformed with LPS-targeting oligos.  “Large” colony confirmed for PK1F promoter insertion in 

front of lpcA indicated with arrow. 
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efficiency of ~5% per round.  Our estimates are in good agreement with the predicted 

recombineering efficiency of a 20 bp insertion based on the same equation derivations (predicted 

at ~4%).  We recognize that this is an estimate that could potentially be conservative, based on 

the reports that oligomers targeting chromosomal regions within 500,000 bp of each other are 

more likely to go in during the same recombination event.  As seen in Fig. 5.1C, a number of 

these mutations are targeted in close proximity to each other, and thus might help increase the 

actual number of recombinants.  Based upon 5% recombineering efficiency, Fig. 5.5 shows the 

estimated population diversity over the course of 10 rounds of recombineering.  At this 

efficiency, it is estimated that 1% of the population has three promoter insertions, 0.1 % of the 

population has four promoter insertions, while 0.01 % has five mutations. 

 Although we were unable to perform a pink/white screening on this population, similar to 

how we had performed blue/white screening with EcNR2, dilution plates from the end of 

recombineering showed homogeneity of size within the ‘adapted’ water-control population 

(similar in appearance to colonies in Fig. 5.4A)  in both the HEM6 pK1F and HEM63 pK1F 

populations, a trait that was not observed in the previous library with the EcNR2 host (Fig. 5.3), 

suggesting that we maintained a lower level of random mutations with them HEM6 derivatives 

than with EcNR2, even though HEM63 also is a mutS knockout. 

5.3.3 – Confirming hydrophobic tolerance of LPS library isolates 

 Before performing selection on the LPS-targeted populations, we wanted to confirm 

improved growth characteristics from library isolates.  We picked five colonies from each of the   
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Figure 5.5 – Estimated population diversity of LPS-targeted strains through recursive 

rounds of recombineering.  Recombineering efficiency was estimated at 5% based on 

phenotypic and sequencing results from isolates after five rounds.  The number of mutations 

within a single cell is indicated by the color of the bar and can range from 0 (wild-type) to 17. 
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targeted populations and measured their growth with 0.5 v/v % n-butanol (Fig. 5.6-7).  These 

isolates were tested against both the parent strain (HEM6 pK1F or HEM63 pK1F) and the 

‘adapted’ population from ten rounds of recombineering with water.  This double comparison 

was performed to assess if mutations propagated within the population (‘adapted’) during library 

creation that might contribute to growth in n-butanol.  All of the five colonies isolated showed 

improved growth for the HEM6 pK1F LPS-targeted variants (6-10A-E).  Isolate 6-10D was 50 ± 

7% improved from parent, while the adapted strain also showed improvements of 20 ± 5% 

improvement, suggesting that spontaneous growth-promoting mutations were introduced into 

this population. 

 In comparison, the HEM63 pKIF ‘adapted’ population was not significantly improved 

compared to parent (p > 0.05), while two of the isolated clones, 10-63B and 10-63C were 

improved, 24 ± 6% and 33 ± 3 %, respectively (Fig. 5.7).  Three of the isolated clones exhibited 

reduced growth in n-butanol, suggesting that not all of the mutation combinations we targeted 

confer improved growth.  Linking PCR has been performed for these strains, and constructs of 

the expected size have been sent for sequencing to determine the location of the beneficial and 

detrimental mutations.  Figure 5.8 shows an example of the PCR products obtained from the 

linking PCR reactions for these clones.  Individual site Sanger sequencing reactions were also 

performed, and HEM6-10B and HEM6-10D were found to have K1F promoter insertions 

upstream of the waaQ gene (which is the leading gene in the largest LPS biosynthesis operon, 

Fig. 5.1-2). 
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Figure 5.6 – Growth of HEM6 pK1F library isolates in 0.5 v/v % n-butanol.  HEM6 pK1F 

and derivatives were inoculated at OD600 = 0.04 and grown for six hours at which point optical 

density was recorded (Parent OD600 ~ 0.20 at this time).  ‘Adapted’ refers HEM6 pK1F 

population that underwent ten rounds of recombineering but was transformed with water as a 

control for spontaneous mutations.  6-10A-E are isolates from the LPS-targeted library after ten 

rounds of recombineering.   Average improvements (n = 3) are plotted with one standard error. 

 

Figure 5.7 – Growth of HEM63 pK1F library isolates in 0.5 v/v % n-butanol.  HEM63 pK1F 

and derivatives were inoculated at OD600 = 0.04 and grown for six hours at which point optical 

density was recorded (Parent OD600 ~ 0.20 at this time).  ‘Adapted’ refers HEM63 pK1F 

population that underwent ten rounds of recombineering but was transformed with water as a 

control for spontaneous mutations.  63-10A-E are isolates from the LPS-targeted library after ten 

rounds of recombineering.   Average improvements (n = 3) are plotted with one standard error. 
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Figure 5.8 – Linking PCR products from 63-10 A-E isolates.  Lane 1) ladder with 1 kb 

marker indicated, 2-6) set 1 targets for 63-10 A-E, respectively.  Lane 7 is blank.  Lanes 8-12) set 

2 targets for 63-10 A-E.  Set 1 targets amplify to ~1 kb construct while set 2 targets amplify to 

~800 bp.  Gel extractions were performed prior to sending samples for sequencing, or in the case 

of lowly amplified sets (e.g., lane 8), a new amplification reaction was performed.  
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5.3.4 – Alcohol selections on LPS libraries 

 Motivated by the promising results for LPS-targeted mutants conferring increased growth 

under n-butanol treatment, we performed multiple selections in parallel on our four populations 

(both the LPS-targeted populations and the ‘adapted’ populations for both host strains).  Cultures 

were inoculated into ethanol (3 v/v %), n-butanol (0.5 v/v %), isobutanol (0.5 v/v %), or 

isopentenol (0.5 v/v %).  As growth occurred within these cultures, we serially transferred them 

into subsequent rounds of selection.  Figures 5.9-10 shows the optical density measurements of 

these cultures over time for the selections.  The initial round of the selection saw the fastest 

growth, most likely due to the transfer of some LS LB medium into the MOPS minimal medium 

used during the selection. 

 Through the selections, we saw the LPS-targeted populations of HEM6 pK1F and 

HEM63 pKIF grow ~50 % and ~20% compared to the ‘adapted’ population in the isobutanol 

selection after the third round (Fig. 5.9C).  We know from the testing performed on the post-

recombineering isolates (Fig. 5.7) that not all cells within the LPS-targeted population confer 

beneficial phenotypes, which might partially explain our findings of slower growth from the 

LPS-targeted library under the other conditions tested.  The isopentenol ‘adapted’ populations in 

both cases appear to have greatly improved growth characteristics compared to our targeted 

library, potentially due to our directed mutations not conferring a tolerant phenotype to this 

compound, or the success of a spontaneous mutant within the ‘adapted’ populations.  The 

behavior of the ‘adapted’ cultures did not distinguish a growth vs. no growth distinction between 

the HEM6 pK1F and HEM63 pK1F alcohol selections, suggesting that the deletion of mutS in 

the HEM63 host does not confer tolerance to alcohols across the board, but might allow for 

increased spontaneous mutant propagation. 
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Figure 5.9 – Selection dynamics of HEM6 pK1F libraries in various alcohols.  A) Selections 

in 3 v/v % ethanol, B) 0.5 v/v % n-butanol, C) 0.5 v/v % isobutanol, and D) 0.5 v/v % 

isopentenol.  Cultures were grown until entering exponential phase (OD600 > 0.1) and then 

transferred into a subsequent batch of inhibitor. 
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Figure 5.10 – Selection dynamics of HEM63 pK1F libraries in various alcohols.  A) 

Selections in 3 v/v % ethanol, B) 0.5 v/v % n-butanol, C) 0.5 v/v % isobutanol, D) 0.5 v/v % 

isopentenol.  Cultures were grown until entering exponential phase (OD600 > 0.1) and then 

transferred into a subsequent batch of inhibitor. 
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 LPS-directed mutant isolates were collected from the isobutanol selection.  Their 

performance in MOPS minimal medium (i.e., uninhibited condition) and various alcohols was 

tested (Fig. 5.11).  It was observed that the largest differences in tolerance were between the 

parent and the ‘Adapt/Sel’ cultures (‘adapted’ population after isobutanol selection), rather than 

from LPS-directed isolates.  Similar to our findings before selection (Fig. 5.6-7), it appears that 

growth-benefitting spontaneous mutations exist within both the control recombineering 

(‘adapted’) and selected populations (‘Adapt/Sel’), as evidenced by the improvement of growth 

in MOPS minimal medium.  The ‘Adapt/Sel’ population grew faster than the HEM6 pK1F 

parent strain under all conditions tested.  Slight improvements are observed for some LPS-

directed library isolates under some alcohols, but do not surpass the improvements gained by the 

‘Adapt/Sel’ population. 

 In the future, these libraries will be used to source individual LPS-directed mutants for 

biofuel tolerance screening.  One of the limitations in using recombineering to create multiplexed 

libraries is the large percentage of the population that remains non-recombineered (i.e., wild-

type; as seen after 10 rounds of recombineering in Fig. 5.5).  We hypothesized that using a 

selection would enrich for tolerance-conferring mutations, but enriching for LPS-directed 

mutations was confounded here by spontaneous mutations obtained through recombineering 

steps, as well as during selection.  Moving forward, we will instead screen the library population 

for clones exhibiting the “large” colony phenotype (Fig. 5.4) indicative of LPS-directed 

mutations.  This subset of library clones will then be screened for tolerance improvements, and 

ultimately genotyped to determine locations of the beneficial promoter insertions. 
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Fig. 5.11 – Growth of HEM6 pK1F selection isolates under various conditions.  Cultures 

were inoculated at normalized cell density (OD600 ~0.04) and grown under the listed conditions 

for 6 hours.  Growth was monitored by measuring absorbance at 600 nm (n =3; error bars 

represent standard error). 
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5.4 – Conclusions 

 Engineering tolerance to both hydrolysate inhibitory compounds and proposed biofuel 

products is important for increasing the viability of cellulosic biofuel production.  Here, we 

analyzed data from the previous chapters to search for enrichments that were applicable to 

furfural tolerance but might also be beneficial for product tolerance.  Previously, in Chapter 3, 

we had observed that overexpression of lpcA conferred improved growth in the presence of 

furfural, leading us to hypothesize that targeting LPS biosynthesis for altered expression would 

confer increased tolerance to a wide range of hydrophobic compounds.  We created a library of 

clones with varying degrees of mutations through recursive rounds of recombineering.  From this 

population, we isolated strains that show up to 50% growth improvements in n-butanol. 

 A surprising result was the propagation of spontaneous mutants when we used one of the 

most common recombineering strains, EcNR2.  In order to assess if the deletion of mutS would 

impede our ability to map a genotype-to-phenotype relationship (i.e., promoter insertions at 

specific LPS biosynthesis operons and their ability to confer tolerance), we employed two 

recombineering strains that differed only by a deletion of mutS.  When we analyzed library 

isolates against internal control ‘adapted’ populations, we observed that in the case of the mutS
+
 

strain, a beneficial phenotypic divergence had occurred, suggesting that multiple generations 

and/or stress incurred by growth, induction, chilling, and electroporation is capable of 

propagating random mutations.  Some of these mutations are considered to confer growth 

improvements, which confounds our genotype-to-phenotype mapping efforts.  It is important to 

note that improvements attributed to spontaneous mutations occurred even in a mutS
+
 strain. 
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 To limit the potential for additional mutations to be introduced within the genomes of 

these strains while performing selections to enrich for the most tolerant clones, we could look 

towards employing selection strategies similar to the plate-based selection used in Chapters 3 

and 4, thereby reducing the number of generations populations are grown while still identifying 

beneficial mutations.  Alternatively, we are pursuing an approach for screening the LPS-directed 

library for “large” colony phenotype clones and individually testing them for biofuel tolerance.  

Ultimately, beneficial mutations identified from our LPS-directed library isolates should be 

reconstructed (ideally through reduced recombineering steps) or otherwise confirmed to ensure 

that the benefit is conferred by the LPS-directed mutation and not an uncharacterized 

spontaneous mutation within the clone’s genome. 

 This study is pioneering the use of a new method developed in the Gill Lab that is 

designed to track library creation and selection of non-barcoded, chromosomal mutations.  

Current technologies for genotyping our population, or isolates thereof, fall short in both cost and 

time compared to this linking PCR approach.  Compared to traditional amplification of the 

region around the mutation for each of our 17 targeted sites, subsequent sample preparation, and 

individual sequencing reactions, we can reduce the cost by an order of magnitude or more by 

condensing 17 sites into four PCR reactions (two sets of targets, each with an assembly and an 

amplification reaction) and a traditional 17 sequencing reactions into four (bidirectional 

sequencing of each set).  Our lab has had success linking larger constructs together, but we are 

not pursuing that method here since it does not provide increased cost reduction (the normal read 

length of Sanger sequencing is ~500-700 bases, where a 17-target linked construct would be 

roughly 2000 bp, thus requiring the same number of sequencing reactions as is in our current 

design). 
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 Ultimately, our goal in this chapter was to use knowledge gained from the initial Design-

Build-Test steps in Chapters 3 and 4 to inform a future design.  From our growth assessments in 

this chapter, we have successfully isolated tolerant clones that were targeted for increased LPS 

biosynthesis, providing initial confirmation that our efforts to learn from genome-wide searches 

can direct the engineering of new, but related, phenotypes.  Testing for improved cellulosic 

biofuel production from strains engineered for increased LPS biosynthesis will ultimately discern 

if this is a viable approach for strain design.  We are encouraged by recent reports for ethanol 

and isobutanol production that strains containing mutations likely to increase LPS production 

within the cell did not hinder production, and in the case of isobutanol, helped cell viability in 

stationary phase, where the majority of product is produced [77,179].  
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Chapter 6 

Concluding Remarks  

The field of genome engineering is undergoing a renaissance.  Enabled by reduced costs 

in DNA synthesis and sequencing technologies, we are able to ask increasingly complex 

questions that were unimaginable in previous years.  As of 2000, a ground-breaking method for 

the creation of in-frame individual knockout mutants via homologous recombination in E. coli 

was developed [131].  In just over a decade, the de novo synthetic construction of a genome and 

subsequent cell control by the synthesized genome has occurred [180,181].  These examples 

highlight the advances of the field obtained in just a few years.  Where we used to consider 

individual mutations by knockouts or overexpression on plasmids, we are now on the road to 

constructing designer genomes from scratch.  We have already reached the capability of making 

billions of designer mutants in a matter of days [103].  Thus, we are entering a stage where the 

limitations are no longer the ability to read or write the genome, but instead limited by the 

capability to test all of this easily created diversity to identify winning strategies.  Without 

effective means for making these determinations, we lose potential winners within the vast mix 

of diversity we are able to create. 

Here, we have applied various tools to search the genome for genotypes of relevance to 

cellulosic biofuel production.  Although many such approaches have been developed, we aimed 

to use genome-wide searches that would not bias our results towards known mechanisms.  

Through the first application, using the SCALEs method, we confirmed benefit from genes 

previously not associated with furfural tolerance.  Both of these clones, lpcA and groESL, 
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perform different tasks within the cell and reinforce the strength of using genome-wide searches 

to return non-obvious results. 

In our second application, we used the TRMR method to continue searching for alleles 

that with altered expression might confer tolerance to furfural.  By performing analysis between 

different selection schemes, resulting gene ontology enrichments, and comparing these data with 

our SCALEs study, we were able to confirm increased furfural tolerance for an additional four 

genes. 

We used information from these two initial studies to direct the design of multiplexed 

mutants for altered lipopolysaccharide biosynthesis, which we hypothesized would confer 

improved growth to strains in the presence of hydrophobic biofuel compounds.  We isolated 

LPS-directed mutants with up to 50% growth improvements in n-butanol, suggesting a new 

approach for engineering tolerance to both feedstock inhibitors and biofuel products. 

At the outset of this project, the goal was to assess large numbers of possible mutations to 

find winners for a given phenotype and then use what we learned about the winners to inform 

future designs, in the hopes that it would allow us to more rapidly engineer a trait that we had 

previously not analyzed.  In order to do this, we used a Design-Build-Test cycle, where initial 

studies provided a number of results that could be fed into a subsequent Design phase.  Our 

results appear promising, but ultimately relied on years of work here understanding the 

importance of lipopolysaccharide for tolerance to a variety of compounds.  We therefore 

consider the term ‘rapid’ in a relative sense. 

Moving forward, it would be beneficial to create real-time algorithms that could process 

results from different Test phases (e.g., promoter libraries, open reading frame libraries, and 
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combinations thereof selected for under a variety of conditions) to perform the learning required 

to iterate through the Design-Build-Test cycle on a truly rapid scale.  If the field is entering an 

era where we are not limited in the Design and Build, then great efforts should be directed 

towards learning how to Learn. 

Let us not skip the importance of the Test phase though.  Without effective, rapid, and 

trackable testing procedures, we stand to lose all the potential benefits gained by technologies 

advancing the Design and Build phases (i.e., reduced DNA synthesis and methods for assembly).  

In the studies here, we observed how the selection scheme affected enrichment patterns.  Some 

selections are more effective than others, and this knowledge can be applied in the future to aid 

in more rapid and effective Tests. 

While the approach used here for our genome engineering applications might be 

perceived to focus on directing the evolution of our populations, it is also a case study on the 

evolution of genome engineering strategies.   In our initial study, we used the SCALEs approach, 

which, while providing fairly high mapping resolution and being relatively easy to use, only 

allowed us to assess the benefit of increased dosage of a particular allele on our desired 

phenotype.  As an alternative, but partially complementary approach, we employed the TRMR 

method to assess both over and under expression of a gene’s effect on the same phenotype.  We 

found overlapping data between the SCALEs and TRMR studies, but when tested head to head, 

found results highlighting differences between the approaches, and the effect expression level 

has on a gene’s degree of conferred tolerance.  Overexpressed or increased expression are terms 

commonly used in this field, without regard to the actual level—on a case by case basis (since 

the sequence context matters according to a growing number of reports)—of expression being 

changed.  Our studies reinforce this point and serve as a warning (or perhaps, a partial 
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explanation) that even though a mutation was identified in one study, it might not perform the 

expected way in another study when slightly adapted (e.g., chromosomal mutation vs. plasmid-

based expression). 

Efforts are being made to address this sort of issue with the development of defined 

biological parts through the use Biobricks, a nationally funded and public-benefit facility 

(BIOFAB), and a recent call by our own lab for creating a metabolic strains commons of 

workhouse production strains [179].  The field’s willingness to standardize the language in 

which we perform and share genome engineering efforts stands to have a large impact on its 

ability to keep pace with the technologies being developed to support it. 

It is with profound awe that I close these studies.  E. coli, and its 4.6 million DNA bases, 

has provided a fascinating study over the past years spent on this project.  Despite the breadth of 

knowledge we supposedly have about this model organism, it still holds surprises, and finds 

ways to grow in the wide array of toxic chemicals we throw it in.  It is my hope that this writing 

has presented an overview of factors both limiting and enabling current engineering efforts; with 

the ultimate hope, that through future studies performed by dedicated members of the field, these 

limitations will soon be memories, observed only in hindsight. 
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Appendix 8.1 – Blowup region of Locus A from SCALEs furfural selection.  Clones fitness 

scores are shown according to assigned library size (1, 2, 4, or 8 kb).  Fitness alignments to the 

genome are used in the SCALEs processing algorithms to turn clone fitness into gene fitness, 

based on the amount of gene coverage in a given clone.  Genomic position graphic was obtained 

from ecocyc.org. 
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Appendix 8.2 – Blowup region of Locus B from SCALEs furfural selection.  Clones fitness 

scores are shown according to assigned library size (1, 2, 4, or 8 kb).  Fitness alignments to the 

genome are used in the SCALEs processing algorithms to turn clone fitness into gene fitness, 

based on the amount of gene coverage in a given clone.  Genomic position graphic was obtained 

from ecocyc.org. 
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Appendix 8.3 – Blowup region of Locus C from SCALEs furfural selection.  Clones fitness 

scores are shown according to assigned library size (1, 2, 4, or 8 kb).  Fitness alignments to the 

genome are used in the SCALEs processing algorithms to turn clone fitness into gene fitness, 

based on the amount of gene coverage in a given clone.  Genomic position graphic was obtained 

from ecocyc.org. 
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Appendix 8.4 – Blowup region of Locus D from SCALEs furfural selection.  Clones fitness 

scores are shown according to assigned library size (1, 2, 4, or 8 kb).  Fitness alignments to the 

genome are used in the SCALEs processing algorithms to turn clone fitness into gene fitness, 

based on the amount of gene coverage in a given clone.  Genomic position graphic was obtained 

from ecocyc.org. 
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Appendix 8.5 – Blowup region of Locus E from SCALEs furfural selection.  Clones fitness 

scores are shown according to assigned library size (1, 2, 4, or 8 kb).  Fitness alignments to the 

genome are used in the SCALEs processing algorithms to turn clone fitness into gene fitness, 

based on the amount of gene coverage in a given clone.  Genomic position graphic was obtained 

from ecocyc.org. 
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Appendix 8.6 – Increased fitness genes from furfural SCALEs selection.  

Rank Gene ln(Fitness) Rank Gene ln(Fitness) Rank Gene ln(Fitness) 

1 lgt 3.586 45 ahpF 1.099 89 mreD 0.591 

2 ybiY 3.006 46 ytfF 1.086 90 katE 0.586 

3 recC 2.900 47 ybbD 1.079 91 htrG 0.580 

4 ppdA 2.704 48 yjeJ 1.070 92 pspA 0.564 

5 ppdB 2.694 49 yhdW 1.032 93 yeaB 0.555 

6 thyA 2.694 50 insH-9 1.025 94 ftsW 0.547 

7 ygdB 2.632 51 uppP 1.020 95 yaiA 0.546 

8 groEL 2.600 52 yhdP 1.011 96 ydeP 0.537 

9 ppdC 2.521 53 ylbH 0.987 97 yacA 0.534 

10 yjeI 2.455 54 ycbR 0.971 98 secB 0.514 

11 yjeH 2.352 55 kdgK 0.961 99 fimF 0.510 

12 lpcA 2.349 56 ynbC 0.941 100 ygeR 0.509 

13 fadE 2.213 57 dmsD 0.939 101 gshB 0.508 

14 fsaA 2.211 58 yddW 0.937 102 srmB 0.508 

15 yafJ 2.141 59 mutS 0.931 103 fdnH 0.507 

16 ptsP 2.140 60 citT 0.924 104 yjgD 0.505 

17 groES 2.012 61 pspB 0.899 105 frvX 0.503 

18 yafK 2.007 62 ilvB 0.880 106 rffG 0.501 

19 ybaK 1.963 63 yjcP 0.867 107 frwD 0.500 

20 ygiP 1.782 64 ushA 0.859 108 ade 0.487 

21 rna 1.767 65 yqfA 0.835 109 murD 0.487 

22 ybaP 1.756 66 ygbI 0.831 110 yncB 0.486 

23 rnk 1.754 67 yoaD 0.822 111 ydiO 0.481 

24 ygiH 1.656 68 mukF 0.815 112 citG 0.481 

25 ybdR 1.632 69 yaeB 0.799 113 yijP 0.473 

26 yqhA 1.610 70 uxuR 0.797 114 rffD 0.473 

27 yciK 1.599 71 ydgJ 0.786 115 yccW 0.470 

28 ybiW 1.556 72 uspG 0.784 116 tolB 0.466 

29 yghA 1.475 73 yddV 0.776 117 tpx 0.464 

30 yddM 1.326 74 yhjJ 0.747 118 ylbA 0.461 

31 dicA 1.299 75 ddl 0.744 119 ygeQ 0.461 

32 yicO 1.290 76 pphB 0.743 120 ninE 0.461 

33 folB 1.289 77 yhjH 0.712 121 ybcO 0.461 

34 adhP 1.283 78 feoA 0.709 122 rffH 0.459 

35 yhgF 1.279 79 yghO 0.686 123 ycbQ 0.457 

36 fdnI 1.258 80 ydfA 0.669 124 ynbD 0.446 

37 murC 1.242 81 ycdS 0.668 125 yedK 0.443 

38 yedL 1.215 82 yedP 0.667 126 yiaW 0.440 

39 ycdR 1.197 83 ynfH 0.633 127 ylcG 0.432 

40 dsrB 1.160 84 yjeO 0.623 128 grxC 0.432 

41 proS 1.152 85 ydcW 0.623 129 ahpC 0.420 

42 murG 1.139 86 rng 0.608 130 yhjR 0.408 

43 dicC 1.124 87 maf 0.604 131 ybiR 0.401 

44 nfrA 1.099 88 aroM 0.593 132 ybcQ 0.401 
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Appendix 8.6, continued. 

Rank Gene ln(Fitness) Rank Gene ln(Fitness) Rank Gene ln(Fitness) 

133 rusA 0.400 177 gpsA 0.251 221 mraY 0.123 

134 sixA 0.393 178 gltS 0.240 222 yafY 0.121 

135 trkD 0.390 179 cca 0.233 223 alr 0.121 

136 yiaV 0.388 180 yijO 0.223 224 eno 0.120 

137 yoaE 0.387 181 nei 0.222 225 proW 0.120 

138 rffA 0.378 182 murF 0.219 226 yfiB 0.119 

139 yfcV 0.375 183 ykfG 0.216 227 ydfX 0.113 

140 pal 0.367 184 argH 0.215 228 yafZ 0.110 

141 yieN 0.366 185 ptr 0.214 229 ykgF 0.096 

142 rffE 0.357 186 ykfH 0.209 230 yibN 0.093 

143 ydgD 0.356 187 ynfL 0.209 231 yicE 0.092 

144 yncA 0.353 188 yfcU 0.208 232 recG 0.090 

145 dacC 0.347 189 dgsA 0.206 233 ydfC 0.090 

146 sdaA 0.339 190 hcaF 0.204 234 cbpA 0.088 

147 dusB 0.339 191 ygfI 0.201 235 ymfB 0.087 

148 ymgF 0.336 192 pbpG 0.198 236 artJ 0.085 

149 yjhX 0.332 193 trmD 0.195 237 ytjA 0.080 

150 yjiC 0.332 194 lpdA 0.194 238 ilvN 0.076 

151 ybgL 0.331 195 ykfF 0.194 239 ycjG 0.076 

152 rffC 0.330 196 yedE 0.193 240 yaiE 0.075 

153 rcsC 0.319 197 folP 0.192 241 hcaC 0.071 

154 ydcY 0.311 198 ynfK 0.186 242 yncC 0.066 

155 yafX 0.311 199 ybfH 0.182 243 moaE 0.066 

156 yfiD 0.305 200 artP 0.182 244 flhC 0.065 

157 yfiK 0.305 201 ygbJ 0.175 245 greB 0.062 

158 yggE 0.303 202 rimM 0.174 246 thiD 0.058 

159 ydcZ 0.303 203 rpsP 0.170 247 yiiM 0.057 

160 ymfC 0.296 204 yhjQ 0.169 248 potH 0.051 

161 focB 0.289 205 ycbB 0.168 249 ygbM 0.048 

162 ribA 0.286 206 uhpB 0.166 250 ybjF 0.041 

163 mviN 0.285 207 wcaC 0.162 251 yafQ 0.037 

164 hcaB 0.285 208 ftsQ 0.161 252 btuR 0.037 

165 yedF 0.278 209 uhpA 0.158 253 ybiS 0.035 

166 yihG 0.276 210 ygfO 0.154 254 yohC 0.033 

167 frvR 0.272 211 ybgF 0.153 255 pppA 0.032 

168 ttdA 0.270 212 acpD 0.146 256 ychP 0.031 

169 potI 0.270 213 yjgJ 0.135 257 yiiL 0.026 

170 ydfB 0.263 214 yggA 0.133 258 wzxE 0.026 

171 fxsA 0.262 215 mdoH 0.131 259 yieM 0.024 

172 kdpB 0.260 216 slt 0.131 260 rhaB 0.022 

173 murE 0.260 217 yliD 0.129 261 speD 0.020 

174 ydcX 0.255 218 pflC 0.129 262 fimH 0.015 

175 yjjU 0.253 219 dos 0.129 263 ymjA 0.013 

176 flhE 0.253 220 yccV 0.129 264 allC 0.012 
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Appendix 8.6, continued.  

Rank Gene ln(Fitness) 

265 yfiC 0.009 

266 yghG 0.008 

267 yebQ 0.008 

268 yliC 0.002 
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Appendix 8.7 – Top 100 increased fitness ‘Up’ genes from plate-based TRMR selection.  

Rank Gene ln(Fitness) Rank Gene ln(Fitness) Rank Gene ln(Fitness) 

1 csiD 6.748 45 ychE 3.089 89 yebQ 1.993 

2 talB 6.649 46 sulA 2.963 90 ydeM 1.984 

3 ydaL 6.276 47 cyoC 2.799 91 ymiA 1.968 

4 yeeN 6.153 48 ydiJ 2.748 92 tufA 1.963 

5 smg 6.023 49 yedX 2.740 93 amyA 1.958 

6 yneG 5.755 50 ahpC 2.739 94 ninE 1.954 

7 yjaH 5.567 51 ybgF 2.676 95 flgC 1.932 

8 acpT 5.439 52 metG 2.668 96 ydeQ 1.930 

9 rplI 5.367 53 yihY 2.658 97 rpmI 1.927 

10 yccF 5.198 54 ybiA 2.651 98 umuC 1.920 

11 yohK 5.008 55 rimM 2.633 99 mioC 1.897 

12 atpF 4.992 56 zntA 2.583 100 secG 1.846 

13 pdhR 4.969 57 glpC 2.552    

14 ycjU 4.896 58 rstB 2.546    

15 yhfS 4.657 59 trxC 2.540    

16 ybgA 4.370 60 paaE 2.512    

17 fhuC 4.301 61 ybgQ 2.499    

18 yadG 4.143 62 shiA 2.437    

19 yciZ 4.023 63 ynjF 2.435    

20 yfdV 4.014 64 yihR 2.407    

21 amiB 4.001 65 sdaA 2.352    

22 tonB 3.969 66 yfiB 2.348    

23 xisE 3.891 67 adiC 2.343    

24 dnaG 3.792 68 yhdE 2.332    

25 aceF 3.745 69 nfsB 2.259    

26 talA 3.725 70 ybcV 2.252    

27 ynfO 3.698 71 ydiH 2.239    

28 lpxB 3.641 72 rimN 2.229    

29 envR 3.637 73 glpK 2.172    

30 dctA 3.620 74 rep 2.160    

31 ycdU 3.447 75 pepB 2.160    

32 ybdL 3.417 76 rsuA 2.150    

33 lolB 3.409 77 thiL 2.130    

34 ydeK 3.407 78 zipA 2.117    

35 creD 3.393 79 gfcA 2.104    

36 sodA 3.374 80 ymcE 2.099    

37 appA 3.281 81 yejG 2.096    

38 yajQ 3.279 82 ilvC 2.086    

39 ydcN 3.157 83 yjaA 2.083    

40 dsbA 3.152 84 yceO 2.074    

41 ybhL 3.150 85 rhlB 2.064    

42 yadL 3.145 86 tdk 2.064    

43 gatC 3.133 87 ompF 2.061    

44 ybiU 3.123 88 yhbY 2.013    
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Appendix 8.8 – Top 100 increased fitness ‘Down’ genes from plate-based TRMR selection.  

Rank Gene ln(Fitness) Rank Gene ln(Fitness) Rank Gene ln(Fitness) 

1 ddpF 8.356 45 ychQ 3.889 89 hcaT 2.452 

2 nagA 7.210 46 gabT 3.860 90 ycgN 2.427 

3 ydiA 7.049 47 ydfK 3.838 91 sad 2.386 

4 ycjN 6.613 48 yicR 3.766 92 yhhS 2.383 

5 rseB 6.361 49 dmsD 3.651 93 yaiY 2.371 

6 yohN 6.075 50 ycbS 3.565 94 ddpC 2.362 

7 sdaA 5.898 51 bioC 3.551 95 yihO 2.352 

8 yecT 5.699 52 frmR 3.501 96 phnD 2.350 

9 yahF 5.687 53 yqcE 3.501 97 ilvB 2.349 

10 potE 5.176 54 yebO 3.497 98 yejL 2.312 

11 yfbU 5.109 55 ybjX 3.489 99 yqaA 2.289 

12 gfcB 5.011 56 ghrA 3.437 100 htpX 2.283 

13 paaI 4.999 57 yqcC 3.412    

14 hisB 4.868 58 yfgD 3.358    

15 ybhR 4.838 59 yjbE 3.217    

16 nagC 4.822 60 hslJ 3.203    

17 fliO 4.815 61 idi 3.142    

18 gadB 4.782 62 garL 3.136    

19 moaA 4.777 63 pflA 3.089    

20 ydcQ 4.715 64 yoaI 3.079    

21 yceF 4.579 65 lsrD 3.068    

22 ydaV 4.514 66 yidK 3.032    

23 eutJ 4.502 67 recC 3.022    

24 deoA 4.444 68 ycjF 3.012    

25 pldB 4.442 69 sra 2.973    

26 ybeT 4.435 70 pspD 2.932    

27 lpxM 4.414 71 ulaE 2.920    

28 ldcA 4.319 72 flgM 2.825    

29 feaR 4.315 73 sgcA 2.784    

30 dinJ 4.287 74 rplI 2.782    

31 ydeA 4.287 75 hdhA 2.769    

32 ymgF 4.269 76 ybfQ 2.757    

33 dinB 4.182 77 mdlB 2.731    

34 yedP 4.176 78 yaeP 2.669    

35 ydjA 4.157 79 yiaV 2.665    

36 ydeO 4.155 80 gcvA 2.658    

37 yraQ 4.093 81 argE 2.574    

38 fliE 4.029 82 yhjV 2.551    

39 ahpC 4.014 83 yijO 2.534    

40 fabH 3.971 84 pspB 2.500    

41 yjgM 3.925 85 yqiJ 2.493    

42 cmoA 3.907 86 rlmL 2.481    

43 ilvM 3.899 87 fliA 2.467    

44 dacB 3.895 88 ydaU 2.456    
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Appendix 8.9– Top 100 increased fitness ‘Up’ genes from decreasing TRMR selection.  

Rank Gene ln(Fitness) Rank Gene ln(Fitness) Rank Gene ln(Fitness) 

1 yqcC 11.901 45 lpxB 3.174 89 plsB 2.178 

2 smg 11.842 46 ydfH 3.094 90 umuC 2.168 

3 yihY 10.949 47 yohK 3.063 91 tufB 2.165 

4 yqhD 9.910 48 nfsB 3.049 92 uidA 2.154 

5 yhdE 8.743 49 rdoA 3.037 93 mreC 2.145 

6 zipA 8.203 50 ybiU 2.998 94 rstB 2.136 

7 alaS 7.848 51 metR 2.992 95 ydiJ 2.133 

8 talB 7.004 52 ilvE 2.983 96 fecC 2.114 

9 yeeN 6.858 53 yjjX 2.887 97 zntA 2.092 

10 csiD 6.531 54 ynbE 2.845 98 yciE 2.084 

11 yfeW 6.112 55 yhhM 2.827 99 yceO 2.058 

12 aceE 6.076 56 lolB 2.756 100 pgi 2.050 

13 tufA 5.578 57 dctA 2.742    

14 talA 5.545 58 atpF 2.731    

15 yneG 5.371 59 ydcN 2.716    

16 xseA 5.320 60 soxS 2.670    

17 mdtM 4.988 61 fliN 2.665    

18 xisE 4.649 62 ynfO 2.652    

19 tonB 4.640 63 ygaZ 2.634    

20 metG 4.542 64 ilvM 2.612    

21 yccF 4.340 65 yfiB 2.598    

22 yciZ 4.338 66 ynjF 2.585    

23 yihX 4.240 67 nagC 2.563    

24 yfbV 4.074 68 yraI 2.562    

25 surA 3.971 69 rplM 2.535    

26 ddpA 3.958 70 shiA 2.456    

27 guaB 3.832 71 mdaB 2.446    

28 ycjU 3.689 72 gfcA 2.440    

29 uof 3.605 73 yceD 2.412    

30 nhaA 3.567 74 ydiH 2.388    

31 yjaH 3.542 75 sspA 2.342    

32 ydaL 3.523 76 glpC 2.334    

33 fhuC 3.517 77 hns 2.327    

34 tesA 3.495 78 dsbA 2.323    

35 yedX 3.489 79 yfaL 2.306    

36 yafC 3.447 80 appA 2.304    

37 sulA 3.394 81 rof 2.298    

38 gatC 3.382 82 amyA 2.286    

39 secG 3.348 83 araG 2.283    

40 trpD 3.253 84 yegS 2.277    

41 rep 3.239 85 fdhE 2.274    

42 yhfS 3.233 86 ycfJ 2.239    

43 ybgA 3.232 87 yceJ 2.200    

44 yajQ 3.231 88 mltC 2.179    
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Appendix 8.10 – Top 100 increased fitness ‘Down’ genes from decreasing TRMR selection.  

Rank Gene ln(Fitness) Rank Gene ln(Fitness) Rank Gene ln(Fitness) 

1 fruK 10.885 45 yfeZ 4.116 89 cspA 3.034 

2 yaaX 10.031 46 ulaE 4.053 90 yidK 3.030 

3 ddpF 9.833 47 ychQ 4.053 91 ddpC 3.009 

4 nagA 9.522 48 trpL 4.050 92 yaiE 2.997 

5 nagC 9.034 49 dacB 4.047 93 narV 2.968 

6 ybjL 7.737 50 ybhR 4.005 94 rimL 2.965 

7 pldB 7.464 51 sra 3.909 95 yehE 2.960 

8 ydiA 7.449 52 feaR 3.907 96 murB 2.948 

9 ilvM 6.412 53 ymgF 3.901 97 rsmE 2.920 

10 pdhR 6.311 54 dinJ 3.851 98 prpE 2.896 

11 yohN 5.856 55 gcvA 3.768 99 ygbJ 2.871 

12 potE 5.758 56 yqiJ 3.716 100 cspG 2.852 

13 fabH 5.754 57 hisB 3.682    

14 yhdE 5.711 58 puuE 3.673    

15 gfcB 5.475 59 frmR 3.670    

16 ycjF 5.426 60 yfbU 3.661    

17 yecT 5.300 61 yciH 3.654    

18 rseB 5.227 62 cpxR 3.639    

19 mscS 5.075 63 hslJ 3.627    

20 sdaA 5.061 64 recC 3.562    

21 paaI 4.971 65 yjbE 3.558    

22 tufB 4.902 66 yciV 3.541    

23 plsX 4.888 67 serS 3.472    

24 ycjN 4.841 68 gabT 3.467    

25 ydbL 4.821 69 yqiA 3.461    

26 yjdM 4.816 70 tufA 3.410    

27 thrB 4.732 71 ydaV 3.382    

28 pyrL 4.704 72 ybjX 3.365    

29 moaA 4.700 73 ydfK 3.347    

30 cmoA 4.637 74 yqjB 3.269    

31 yedP 4.614 75 yqcE 3.245    

32 yihO 4.553 76 yhjV 3.244    

33 yoaI 4.528 77 ybfQ 3.231    

34 ydcQ 4.526 78 dusB 3.149    

35 yfgD 4.488 79 pspB 3.146    

36 yjgM 4.443 80 yqcC 3.136    

37 ycbS 4.437 81 pspD 3.127    

38 ybeT 4.334 82 lsrD 3.123    

39 bioC 4.280 83 ydeO 3.113    

40 gadB 4.257 84 idi 3.112    

41 yicR 4.190 85 ydcP 3.097    

42 eutJ 4.189 86 yhhS 3.089    

43 yebO 4.187 87 yeaX 3.077    

44 dinB 4.145 88 fliE 3.049    
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Appendix 8.11 – Top 100 increased fitness ‘Up’ genes from constant TRMR selection.  

Rank Gene ln(Fitness) Rank Gene ln(Fitness) Rank Gene ln(Fitness) 

1 ydaL 5.870 45 amiA 2.397 89 lpxB 1.868 

2 dhaK 5.005 46 yceJ 2.387 90 ycgZ 1.845 

3 ycjU 4.168 47 ybdL 2.361 91 ynfG 1.843 

4 tonB 4.131 48 fhuC 2.357 92 ychJ 1.834 

5 ddpA 3.950 49 ybgA 2.334 93 ypfJ 1.800 

6 yneG 3.514 50 umuC 2.329 94 smg 1.777 

7 rplI 3.489 51 nhoA 2.324 95 pphA 1.776 

8 csiD 3.389 52 frsA 2.301 96 pdhR 1.774 

9 ydiJ 3.227 53 yadL 2.301 97 atpF 1.773 

10 yohK 3.218 54 amyA 2.300 98 lpp 1.772 

11 ybiU 3.206 55 ydeQ 2.285 99 secG 1.770 

12 ydeK 3.072 56 appA 2.281 100 acpP 1.768 

13 nfsB 3.049 57 yhdE 2.279    

14 yedX 3.038 58 ybcV 2.259    

15 yeeN 3.026 59 yhfS 2.249    

16 yajQ 2.964 60 mdtN 2.159    

17 ynfO 2.958 61 yjbF 2.147    

18 ydcN 2.929 62 yejG 2.120    

19 fliC 2.928 63 eutL 2.114    

20 ychE 2.920 64 talA 2.114    

21 yebQ 2.919 65 yihY 2.109    

22 rstB 2.900 66 sapF 2.096    

23 cpxP 2.847 67 cyoC 2.080    

24 aceF 2.756 68 ompF 2.068    

25 yccF 2.747 69 malY 2.062    

26 gatC 2.730 70 ybhL 2.045    

27 amiB 2.719 71 araG 2.028    

28 sieB 2.671 72 gfcA 2.020    

29 sdaA 2.663 73 yhbY 2.020    

30 sulA 2.661 74 znuC 2.019    

31 rimM 2.654 75 glpC 2.012    

32 priC 2.628 76 ydcX 2.005    

33 envR 2.624 77 yiiR 2.004    

34 ydiH 2.623 78 thiL 1.984    

35 ynbE 2.532 79 lolC 1.982    

36 yfiB 2.511 80 xisE 1.970    

37 shiA 2.501 81 soxS 1.970    

38 ycdU 2.457 82 rpmI 1.955    

39 ymcE 2.453 83 dnaG 1.948    

40 lolB 2.444 84 flgC 1.942    

41 trxC 2.422 85 yadG 1.934    

42 ybgF 2.417 86 ykfM 1.925    

43 ymiA 2.409 87 yceO 1.921    

44 fliN 2.401 88 clpB 1.899    
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Appendix 8.12 – Top 100 increased fitness ‘Down’ genes from constant TRMR selection.  

Rank Gene ln(Fitness) Rank Gene ln(Fitness) Rank Gene ln(Fitness) 

1 aspS 5.218 45 dacB 2.631 89 yciZ 1.959 

2 ydiA 4.808 46 yceF 2.629 90 queA 1.954 

3 sdaA 4.765 47 ydfK 2.619 91 yjbE 1.950 

4 ycjN 4.385 48 trpL 2.585 92 ydfZ 1.943 

5 ygcP 4.352 49 nuoC 2.553 93 lsrF 1.939 

6 yecT 4.245 50 rrmA 2.498 94 sgcA 1.935 

7 frmR 4.130 51 ydaV 2.487 95 yqaA 1.935 

8 sra 4.086 52 ydgU 2.480 96 yjgM 1.924 

9 paaI 3.978 53 ppx 2.407 97 idi 1.915 

10 fliO 3.954 54 ymgF 2.398 98 yqiJ 1.911 

11 moaA 3.936 55 ybfQ 2.389 99 ybfM 1.911 

12 yedP 3.824 56 dmsD 2.370 100 sbcB 1.903 

13 gfcB 3.775 57 ydeO 2.353    

14 yohN 3.679 58 yqcE 2.346    

15 rseB 3.650 59 entD 2.346    

16 ddpF 3.617 60 fliF 2.344    

17 yncE 3.544 61 dinB 2.321    

18 ycjF 3.539 62 narV 2.300    

19 yoaI 3.506 63 puuE 2.300    

20 potE 3.493 64 bioC 2.300    

21 ychQ 3.491 65 mgrB 2.268    

22 feaR 3.410 66 recC 2.246    

23 lpxM 3.356 67 ybjX 2.229    

24 pldB 3.337 68 yeaX 2.223    

25 ybhR 3.213 69 pspD 2.151    

26 ydbL 3.211 70 ycjG 2.146    

27 yfbU 3.163 71 lacZ 2.118    

28 hslJ 3.093 72 sppA 2.105    

29 ahpC 3.030 73 yihO 2.103    

30 ybeT 3.021 74 tufB 2.099    

31 ydcQ 3.005 75 gabT 2.087    

32 potI 2.975 76 uidA 2.076    

33 eutJ 2.966 77 ymgD 2.076    

34 lsrD 2.947 78 yaiY 2.074    

35 ycbS 2.933 79 yqcC 2.062    

36 yfgD 2.896 80 hyfF 2.039    

37 cmoA 2.872 81 rzoR 2.019    

38 gadB 2.847 82 flgD 2.013    

39 fliE 2.842 83 ydjA 2.011    

40 ldcA 2.839 84 yebO 2.004    

41 fabH 2.759 85 yicR 1.994    

42 yaeP 2.715 86 htpX 1.993    

43 dinJ 2.639 87 pspB 1.978    

44 ydeA 2.635 88 yraQ 1.976    
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Appendix 8.13 – Effect on growth of increasing spectinomycin concentrations with 

different culture medium.  Top row of plates are filled with MacConkey agar, used for 

pink/white screening of galactose metabolism.  Bottom row are plates filled with LS LB agar.  

Cultures of E. coli SIMD70 pT7 (left side of all plates) or SIMD70 pK1F (right side of all plates) 

were streaked onto solid medium with varying levels of spectinomycin concentrations: plates on 

the left have 0 µg/ml, the second column has 20 µg/ml, the third column has 40 µg/ml, and the 

right column has 60 µg/ml.  Normal working concentration of spectinomycin is 100 µg/ml. 


