
Stochastic Weather Generation with Approximate Bayesian

Computation

by

Branden Olson

B.S., University of Colorado Boulder, 2016

M.S., University of Colorado Boulder, 2016

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Applied Mathematics

2016

This thesis entitled:
Stochastic Weather Generation with Approximate Bayesian Computation

written by Branden Olson
has been approved for the Department of Applied Mathematics

Prof. William Kleiber

Prof. Jem Corcoran

Prof. Vanja Dukic

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Olson, Branden (M.S., Applied Mathematics)

Stochastic Weather Generation with Approximate Bayesian Computation

Thesis directed by Prof. William Kleiber

Stochastic weather generators (SWGs) are designed to create simulations of synthetic weather

data and are frequently used as input into physical models throughout many scientific disciplines.

While the field of SWGs is vast, the search for better methods of spatiotemporal simulation of me-

teorological variables persists. We propose techniques to estimate SWG parameters based on an

emerging set of methods called Approximate Bayesian Computation (ABC), which bypass the

evaluation of a likelihood function. In this thesis, we begin with a review of the current state of

ABC methods, including their advantages, drawbacks, and variations, and then apply ABC to the

simulation of daily local maximum temperature, daily local precipitation occurrence, and daily

precipitation occurrence over a spatial domain.

For temperature, we model the mean and variance as following a sinusoidal pattern which

depends on the previous day. A similar approach is used for precipitation, but instead use a

probit regression to model the probability that it rains on a given day of the year, based on an

oscillatory mean function. For spatiotemporal precipitation occurrence, we employ a thresholded

Gaussian process which reduces to our methods for local occurrence. In each scenario, we iden-

tify appropriate ABC penalization criteria to produce simulations whose statistical characteristics

closely resemble those of the data. For our numerical case studies, we use daily temperature and

precipitation records Colorado and Iowa, collected over the course of hundreds of years.

Dedication

To my family, for their endless love, understanding, and support.

v

Acknowledgements

No man is an island, and the challenges and triumphs of writing a thesis have been possible

only through the abundance of excellent people who have offered me their support over the course

of my degree. To start, I want to thank my family for their endless confidence in my academic

pursuits, and their patience with my demanding and erratic schedule. I am indebted to National

Science Foundation for awarding me an EXTREEMS grant which generously funded this research

in its entirety. Thank you to Dr. Anne Dougherty, who has been a supreme advisor, professor, and

mentor, and a critical contributor to my undergraduate and graduate academic careers. I extend

my gratitude to Dr. Juan Restrepo, who introduced me to academic research and exposed me

to the delights of an inquisitive frame of mind. I owe much of my interest in statistical theory

to Dr. Jem Corcoran due to her captivating style of teaching and enthusiasm of the subject. Dr.

Vanja Dukic followed suit with her instruction, catalyzing and refining my statistical modeling

abilities and providing sound academic and professional counseling. Finally, I owe the greatest

appreciation to my advisor, Dr. Will Kleiber. Through his example, he has given me the willpower

to aim for the stars, as well as the resilience to keep my head up when things go awry. This thesis

would not have been possible without his supervision and I am fortunate to have worked with a

professor of his stature and geniality. His perpetual optimism and support have been an absolute

inspiration to me, and I hope to continue to work together as colleagues and friends for years to

come.

Contents

Chapter

1 Introduction 1

2 Approximate Bayesian Computation 5

2.1 History of ABC . 5

2.2 Bayes’s Theorem . 6

2.3 Bayesian Inference . 7

2.4 Approximate Bayesian Computation . 8

2.5 ABC Using Markov Chain Monte Carlo Techniques 10

2.6 Further Extensions of ABC . 16

3 Simulation of Local Daily Maximum Temperature with ABC 17

3.1 Introduction . 17

3.2 Statistical Model . 19

3.3 Metrics for Estimating Temperature . 23

3.4 Numerical Results for Glenwood Springs, Colorado 24

3.5 Discussion . 28

4 Simulation of Local Daily Precipitation Occurrence with ABC 40

4.1 Introduction . 40

4.2 Statistical Model . 40

vii

4.3 Metrics for Estimating Precipitation Occurrence . 42

4.4 An Analytic Solution of the True Posterior . 44

4.5 Numerical Results for Bonny Dam, Colorado . 47

5 Simulation of Daily Precipitation Occurrence across a Spatial Domain with ABC 56

5.1 Introduction . 56

5.2 Statistical Model . 57

5.3 Spatial Estimation with Variograms . 59

5.4 Gaussian Process Simulation . 61

5.5 Metrics for Estimating Spatiotemporal Precipitation Occurrence 63

5.6 Numerical Results for the State of Iowa . 66

5.7 Discussion . 69

Bibliography 76

Figures

Figure

3.1 Daily maximum temperature in Glenwood, Colorado over the span of 3 years. . . . 18

3.2 Daily empirical mean of maximum temperature in Glenwood, Colorado. 20

3.3 Daily empirical standard deviation of maximum temperature in Glenwood, Colorado. 20

3.4 Daily empirical standard deviation data for the Campo 7, Colorado site along with

its MLE sinusoidal fit. 22

3.5 Prior and approximate posterior distributions for β 27

3.6 Prior and approximate posterior distributions for α 27

3.7 Monthly mean maximum temperature in degrees Celsius for observed data as well

as for 3 simulations parametrized by the empirical posterior means 29

3.8 Monthly standard deviation of maximum temperature in degrees Celsius for ob-

served data as well as for 3 simulations parametrized by the empirical posterior

means . 29

3.9 Boxplot of simulated average monthly maximum temperature values in degrees

Celsius for β as well as those for observed values . 30

3.10 Boxplot of simulated average monthly maximum temperature standard deviations

in degrees Celsius for α as well as observed values . 31

3.11 Counts of hot spells over 30 degrees Celsius for observations and simulated data

for Glenwood Springs, CO. 32

ix

3.12 Counts of hot spells over 35 degrees Celsius for observations and simulated data

for Glenwood Springs, CO. 33

3.13 Counts of hot spells over 40 degrees Celsius for observations and simulated data

for Glenwood Springs, CO. 34

3.14 Counts of cold spells below 5 degrees Celsius for observations and simulated data

for Glenwood Springs, CO. 35

3.15 Counts of cold spells below 0 degrees Celsius for observations and simulated data

for Glenwood Springs, CO. 36

3.16 Counts of cold spells below -5 degrees Celsius for observations and simulated data

for Glenwood Springs, CO. 37

3.17 Realization of our SWG for daily maximum temperature for Glenwood Springs

from January 10, 1988 to January 10, 1991. Note the masking of missing data into

our simulations. 38

4.1 The prior, true posterior (via MCMC sampling), and approximate posterior densi-

ties for each mean parameter βi . 49

4.2 The mean function of precipitation occurrence for the ABC and true posterior esti-

mates as well as the observed empirical probability of precipitation for Bonny Dam,

Colorado. 50

4.3 The empirical probability of precipitation for the observations and ABC simulation

for Bonny Dam, Colorado. 51

4.4 The empirical standard deviation of precipitation (in mm) for the ABC simulation,

true posterior simulation, and observations for Bonny Dam, Colorado. 52

4.5 Wet spell counts and the logarithm of wet spell counts by spell length for the obser-

vations and ABC simulation. 54

4.6 Dry spell counts and the logarithm of dry spell counts by spell length for the obser-

vations and ABC simulation. 55

x

5.1 The prior and ABC posterior densities for each parameter βi via (5.3). 70

5.2 The empirical probability of precipitation by day averaged over each month and

over all of the 22 locations in Iowa (represented by the box plots), as well as the

mean daily probability of precipitation given by our βABC-MCMC estimate (repre-

sented by the solid blue line). 71

5.3 The prior and ABC posterior densities for parameters αi from (5.4), as well as the

nugget effect τ2. Note that the density represents the square root of the nugget

effect, τ =
√

τ2, an artifact of our method of implementation. 72

5.4 The aggregate variogram Γ̂(m) of our simulated thresholded Gaussian process for

each month for the state of Iowa (represented by the box plots), as well as the ob-

served aggregate variogram for the state of Iowa (represented by the solid blue lines). 73

5.5 Sample daily precipitation occurrence simulation over Iowa from January 20 through

January 31. 74

Chapter 1

Introduction

Our obsession with the weather is not a new development in human history. From our stone

age ancestors to the modern dwellers of the city, human beings remain at the mercy of the weather.

Perhaps we want to know the forecast for our upcoming holiday picnic, or which districts should

take shelter from an oncoming tornado. Indeed, it’s a fact of life, accepted at an early age, that

the weather dictates our agendas. Consequently, it’s no surprise that many academic and pro-

fessional disciplines require models of the weather that incorporate various geospatial quantities

over spatiotemporal domains. What’s more, there are different models of weather depending on

the intentions of the modeler. A temperature forecast aims to predict, while analyses of previous

temperature recordings may aim to estimate the temperature at a time in the past.

A multitude of scientific models require sequences of weather data, arbitrary in length and

sometimes in breadth, as input. These fields include, but are not limited to, hydrology [41, 59],

ecology [21, 71], meteorology [46], agriculture [80], and climate impact assessment [67]. It turns

out that the deficiencies inherent in ground-based meteorological data observations motivate the

need for synthetic weather data for these models. The observational data are limited in their

length and spatial coverage, and are often polluted with missing or incomplete values. Stochastic

weather generators (SWGs) are infinite time series of synthetic weather data that are built to ex-

hibit statistical similarity to the observed data. SWGs can model a single site or incorporate a more

general spatial domain. SWGs for daily weather sequences (as opposed to hourly, monthly, etc.)

are the most common due to their relative simplicity and feasibility, as well as the availability of

2

records collected on a day-to-day basis [82]. SWGs are usually categorized into two approaches:

model-based and empirical. Model-based SWGs attempt use a statistical model of the meteoro-

logical quantity to produce values which behave like the weather data [57, 59]. Empirical SWGs

use techniques that sample data that has already been observed and constructs them according

to particular guidelines [42, 58]. SWGs traditionally produce simulations at spatial locations from

which the observed data were taken, but there have been recent developments in producing grid-

ded simulations that are spatially consistent across a domain [39,81]. A significant feature of using

SWGs is their capacity for uncertainty quantification over the domain under consideration [36,47].

Consistent spatiotemporal simulation constitutes a vast and prolific area of research, with

the focus usually on nonstationarity and complex terrain. Perhaps the most prominent question

in constructing a geostatistical model is whether the underlying field is univariate or multivari-

ate. There are numerous statistical models for nonstationary univariate fields, with approaches

involving periodograms and spectral methods [23], lognormal and moving-window kriging [27],

process-convolution approaches [29], piecewise Gaussian processes [37], nonstationary covariance

functions [51, 54], nonparametric estimation techniques [65], and weighted mixture state space

frameworks [72]. Despite the wealth of tools for univariate modeling, many SWGs require mul-

tivariate spatiotemporal simulations. There are fewer statistical models in this regard, but some

approaches include linears model of coregionalization [26, 34], cross-covariance functions [38],

and dynamic linear models [68]. Precipitation simulation and stochastic interpolation is at the

forefront of the literature due to its many challenges, including the discrete-continuous nature of

precipitation occurrence and intensity [1,2,7,20,31,66]. Still, modeling temperature has setbacks of

its own, especially when considering a complex terrain [51]. The difficulties of incorporating both

temperature and precipitation into a unified model makes these kinds of models less common,

although it has been done by a few authors, such as Gelfand et. al. [25]. There is also signifi-

cant interest in the deterministic rather than stochastic interpolation of meteorological variables.

Some key contributions include Daly et. al. [10], Hijmans et. al. [30], Hutchinson [32], Legates

and Willmott [43], Price et. al. [55], Running et. al. [62], Thornton et. al. [76], and Willmott and

3

Matsuura [83].

As previously mentioned, SWGs for precipitation, known as stochastic precipitation gen-

erators (SPGs), comprise a substantial chunk of the field of SWGs. The stochastic model is often

split into a component for binary precipitation occurrence (i.e. there was or was not precipita-

tion on a given day) and a component for precipitation intensity (i.e., it rained this much on a

given day). For occurrence, SPGs usually employ a Markov chain to capture the temporal depen-

dence [35]. For intensities, modelers customarily turn to an exponential or gamma distribution,

or some amalgamation thereof [59, 70, 84]. More recently, SPGs have played a key role in statis-

tical downscaling [45, 79]. Interest has shifted from local precipitation, that is, precipitation at a

single location, to spatiotemporally correlated precipitation across a spatial domain. The trouble-

some nature of local precipitation, including its variability and intermittency, propagates to the

spatial case, making spatiotemporal precipitation simulation a daunting task. Regardless, there

is a profusion of approaches to spatiotemporal precipitation modeling and simulation. Hidden

Markov models have been used to model occurrence [31] as well as intensity [1, 14]. Other meth-

ods include nearest-neighbors resampling [3,8,58], generalized chain-dependent processes [86,87],

power transformation to normality [66, 85], artificial neural network methods [11], and copula-

based approaches [9]. Current approaches to this problem typically seek the assistance of latent

multivariate normals, sometimes including a transformation, to generate the occurrence/intensity

values over a spatial domain. This approach was catalyzed by Wilks [78], and evolved in terms

of efficiency and sophistication by Brissette et. al. [6] and Thompson et. al. [75]. The modern

popularity of Wilks’ approach can be attributed by a comparative study of his approach with the

resampling and hidden Markov model approaches, which found the one of Wilks to best capture

spatial dependence as well as local temporal dependence of precipitation [47]. As with temper-

ature, the simulation of precipitation over the entirety of the domain beyond just the sites which

supply observational data is of crucial importance and yet absent in most SPGs.

While the literature for SWGs is extensive, the search for new means of their estimation

persists due to the many inherent challenges they induce. Approximate Bayesian Computation

4

(ABC) is a set of general techniques that approximate the posterior densities of model parameters

of interest to an arbitrary level of tolerance. These algorithms yield accurately approximated pos-

teriors while sidestepping the often problematic evaluation of analytic likelihood functions [73].

In this thesis, we argue for the utilization of ABC as a serious toolset in the estimation of SWGs. We

first provide a brief exposition of ABC and its most common implementations, and then demon-

strate its potential through several case studies. Specifically, we will present models for daily local

maximum temperature, daily local precipitation occurrence, and daily precipitation occurrence

over a spatial domain, and propose ABC procedures to estimate the parameters of these models.

When implementing ABC, one needs to specify a metric in which to compare the observed data

with the simulations from the model. These metrics are often nontrivial, and depend very much

on the problem in consideration. Our focus will be on identifying appropriate metrics for each

of the three aforementioned weather scenarios. We assess the validity of our techniques through

numerical case studies of available data from the states of Colorado and Iowa.

Presently, we are unaware of any techniques concerning the application of ABC to SWGs.

There has been recent interest in using ABC for hydrological purposes, starting with Nott et. al.,

who compare generalized likelihood uncertainty estimation (GLUE) with ABC in a case study of

rainfail-runoff modeling [50]. Sadegh and Vrugt follow suit with some further exploration of ABC,

again with rainfall-runoff applications in mind [63,64]. Otherwise, the utilization of ABC remains

chiefly in the field of biology due to its origins in population genetics research. Nonetheless, we

contend that ABC constitutes an excellent toolset not only for the creation of reliable SWGs, but as

a promising tool that should be exploited across the many branches of statistics.

Chapter 2

Approximate Bayesian Computation

The methods derived in this thesis belong to a category of techniques collectively known as

Approximate Bayesian Computation, or simply ABC. Consequently, a thorough examination of

the background, derivation, and implementation of ABC will serve as a necessary prelude to our

methods. While the ideas behind ABC are intuitive, and mathematically well-founded, we will

analyze them with caution to address their inherent subtleties and pitfalls. We begin our discus-

sion with Bayes’s Theorem, a simple but powerful result derived from the concept of conditional

probability. We review how this theorem forms the basis of the field of Bayesian inference as an

alternative to the classical frequentist approach. From here we will be in position to motivate ABC

and discuss some of its variations.

2.1 History of ABC

The central ideas behind ABC were first introduced in a 1984 essay by Donald Rubin, in

which he puts forth a thought experiment to illustrate how Bayesian ideas should be interpreted

and put into effect [61, 73]. He argued for the emphasis on approximate posterior distributions

so that more complex models could be considered. The first algorithm to incorporate ideas that

comprise contemporary ABC was proposed by Tavare et. al., independent of the work of Rubin,

concerning the chronology of common ancestors of humans based on homologous DNA sequence

samples [74]. They describe a rejection algorithm to approximate the likelihood of coalescence

times from available sequence data approximately distributed as Gamma random variables. This

6

rejection scheme quickly infiltrated the field of population genetics as other researchers found

modifications and extensions of these ideas, forming the basis of the techniques which are in use

today [22, 56, 77]. Beaumont et. al. were the ones to officially dub these techniques "Approximate

Bayesian Computation", and from there the name stuck [5].

2.2 Bayes’s Theorem

Recall the definition of conditional probability of an event A given some other event B has

been observed, denoted P [A|B]:

P [A|B] =def
P [A ∩ B]

P [B]
.

In general, conditional probability is not commutative, so that P [A|B] does not necessarily equal

P [B|A]. However, this can be done by including the proper scaling factors to keep P [·|·] a valid

probability. This is where Bayes’s Theorem comes to the rescue, which states in that

P [A|B] = P [B|A]P [A]

P [B]
. (2.1)

This provides us with a valid means of reversing the arguments in the conditional probability op-

erator, which is useful if you have an expression for one, but not the other. We can also formulate

this in terms of probability density functions:

fX|Y(x|y) =
fY|X(y|x) fX(x)

fY(y)
. (2.2)

In fact, it is easily verified that

fX|Y(x|y) =
fY|X(y|x) fX(x)

fY(y)
, (2.3)

which is the extension of (2.1) for joint probability density functions of arbitrary random vectors

X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym). The multivariate case given by (2.3) will be the one in

which we are interested for this section, and for the remainder of this thesis. We will see that this

simple theorem yields profound implications, paving the way for the Bayesian interpretation of

statistics as an alternative to the traditional frequentist approach.

7

2.3 Bayesian Inference

Let p be a probability of some event of interest. The frequentist defines p as the limit of its

frequency in an arbitrarily large number of trials. This approach is the traditional one, and stood

alone before the Bayesian paradigm gained traction with statisticians. Bayesian inference diverges

from the traditional frequentist approach in that, instead of assuming that p is a true limiting

value, it is assumed to contain uncertainty and is assigned a probability distribution representing

a degree of belief by the statistician. This is not the only interpretation of Bayesian inference, but

will be the one assumed for the rest of this thesis.

With Bayesian inference, one is often interested in the probability distribution of certain

parameters θ given some data X. Let us denote this probability as the posterior distribution,

written fΘ|X (θ|x), or simply f (θ|x) for convenience. By (2.2), we see that

f (θ|x) =
fX|Θ (x|θ) fΘ(θ)

fX(x)

∝ fX|Θ (x|θ) fΘ(θ),

where we stow away the normalizing constant fX(x) since it is not a function of the parameters

θ. The right hand factor f (x|θ) turns out to be the familiar likelihood function L of parameters θ

given x, as L(θ|x) = fX|Θ(x|θ) = f (x|θ). Moreover, following the convention of the literature, we

rewrite fΘ(θ) as π(θ), called the prior density of θ. We are left with

f (θ|x) ∝ L (θ|x)π(θ). (2.4)

In English, (2.4) states that the posterior distribution is proportional to the likelihood function

times the prior density. This gives us an intuitive interpretation of the posterior distribution as the

product of our initial beliefs about the parameters, represented by π(θ), and information about

the parameters obtained from empirical evidence, represented by L(θ|x). For our purposes, we

will assume independence of the parameters θ = (θ1, . . . , θk), so that the joint prior density π is

the product of the independent marginal densities πi :

π(θ) =
k

∏
i=1

πi(θi).

8

2.4 Approximate Bayesian Computation

Perhaps the most important problem in Bayesian statistics is determining the posterior dis-

tribution of the parameters θ given some context-dependent prior distribution. If the likelihood

is known, then one can simply refer to (2.4) to get a closed-form analytical formula directly. Un-

fortunately, it is rarely the case that a closed-form likelihood solution exists. Moreover, in the case

that the closed-form posterior is available, it can be intractable to evaluate as it depends on the

entire dataset x, which is frequently large in practice.

To address this problem, Marjoram et. al. [44] developed a set of methods to sample a

posterior distribution without the need to evaluate a likelihood function. Suppose that we gen-

erate some data D from a model M which relies on some parameters θ = (θ1, . . . , θn), so that

M =M(θ). Let us start with the simplest case and assume that the data are discrete. If the likeli-

hood L(θ|x) is known, we can use algorithm 1, which simply accepts candidate parameters with

probability exactly equal to its likelihood.

Algorithm 1: Generating samples from L(θ|D) for discrete D and L(D|θ) known

Output: A vector V of N samples from the posterior L(θ|D).
V ← {}
while |V| < N do

generate θ ∼ π(·)
append θ to V with probability p = L(D|θ).

end
return V

This algorithm is a basic implementation of the acceptance-rejection (A-R) scheme. It is

straightforward to show that if ∃K > 0 : f (θ|D) ≤ Kg(θ|D) for some function g(θ|D), then

each θ ∈ V is a sample from the posterior f (θ|D) [60]. However, as we mentioned, the likelihood

function is often unavailable or computationally troublesome, yet algorithm 1 relies on knowledge

of the likelihood in order to generate the acceptance probability. In the case of an unavailable

likelihood, we can sidestep its necessity by simply checking if the simulated data D′ matches

the generated D from M; If these data match exactly, then they are certainly a sample from the

9

posterior, and so we accept them. This gives rise to the following modification of algorithm 1.

While attractive for easily simulable modelsM and applicable to a number statistical problems,

Algorithm 2: Generating samples from L(θ|D) for discrete D and L(D|θ) unavailable
Input : ModelM, data D
Output: A vector V of N samples from the posterior L(θ|D)
V ← {}
while |V| < N do

generate θ ∼ π(·)
simulate D′ fromM parametrized by θ
if D′ = D then

append θ to V
end

end
return V

algorithm 2 is often an unrealistic approach to the problem of sampling from the posterior, as the

chance of simulating data that exactly match the observations can be extremely low. In fact, if

the data are continuous rather than discrete, P [D′ = D] = 0, deeming this algorithm practically

ineffective. This issue motivates a modification to the algorithm that can produce samples from a

continuous, or otherwise problematic, dataset, while retaining an acceptable level of accuracy.

So, we want an algorithm that accepts simulated D′ that are close enough to the observa-

tions D, based on some notion of closeness. Translating this to mathematics, we can employ the

following method: accept D′ if $ (D,D′) < ε, for some proposed dissimilarity metric $(·, ·) and

some user-defined tolerance ε > 0. This is laid out in more detail in algorithm 3. The obvious

drawback of this method is that the samples are no longer strictly from the posterior f (θ|D), but

instead from f
(
θ
∣∣$ (D,D′) < ε

)
. Furthermore, it is up to the statistician to determine appropriate

$(·, ·) and ε, which will be highly dependent on the context, and a major component of our im-

pending analyses. An important thing to note is that ε = 0 yields samples from the true posterior,

whereas sending ε→ ∞ yields samples from the prior. In a computational perspective, a higher ε

will yield more samples, but lose accuracy, while a low ε will increase accuracy, but become more

intractable. Hence, the choice of ε represents a tradeoff between accuracy and feasibility, and can

be tweaked to yield a reasonable acceptance rate of parameters.

10
Algorithm 3: Generating samples distributed from f

(
θ
∣∣$ (D,D′) < ε

)
Input : ModelM, data D, metric $(·, ·), tolerance ε > 0
Output: A vector V of samples approximately distributed from f (θ|D)
V ← {}
while |V| < N do

generate θ ∼ π(·)
simulate D′ fromM parametrized by θ
if $ (D,D′) < ε then

append θ to V
end

end
return V

We can attempt to gain more efficiency via yet another modification. As the size of D gets

large, the comparison $ (D,D′) can become inefficient. If we instead consider summary statistics

S = s (D) and S′ = s (D′), we can cut back a significant amount of computation while retaining a

reasonable level of accuracy. If S is sufficient forD, then we have f (θ|D) = f (θ|S) ∀θ ∈ Θ. In light

of algorithm 3, we would have f (θ|$ (D,D′) < ε) = f (θ|$ (S, S′) < ε). Even if the statistics are not

sufficient, if they describe a quality of the data that is important in the context of the problem, then

these statistics should still act as acceptable summaries of the data. This gives rise to algorithm 4.

2.5 ABC Using Markov Chain Monte Carlo Techniques

So far, we have pruned our way towards a reasonably efficient ABC algorithm to obtain

approximate samples from the posterior distribution. However, algorithm 4 has its shortcomings.

For example, if the prior distribution contains large intervals of values from which to sample

parameters, the chances of accepting can be extremely low. This effect is compounded heavily as

the number of parameters increases. Additionally, the acceptance-rejection algorithm generates

independent samples with each step, so each iteration relies on identifying a desirable θ from π(·)

without any other information. In other words, when parameters satisfy the $(·, ·) criterion, their

discovery does not inform future samples from the prior.

11

Algorithm 4: Generating samples distributed from f (θ|$ (s(D), s(D′)) < ε)

Input : ModelM, summary function s(·), metric $(·, ·), tolerance ε > 0
Output: A vector V of samples approximately distributed from f (θ|D)
S← s (D)
V ← {}
while |V| < N do

generate θ ∼ π(·)
simulate D′ fromM parametrized by θ
S′ ← s (D′)
if $ (S, S′) < ε then

append θ to V
end

end
return V

12

Thankfully, this issue has been rectified by introduction of the Metropolis-Hastings (M-H)

algorithm. M-H is a Markov chain Monte Carlo method used to sample from a probability distri-

bution which can be fine-tuned to yield a high acceptance rate of proposed values [28, 48]. Given

target density ϕ(θ), M-H uses the most recent accepted value θ to generate a candidate value θ′

using some candidate-generating density q(θ, θ′). Thus, candidate values will be close to the most

recent acceptance, and will likely have a higher chance of being accepted themselves than if they

were sampled without the influence of the recently accepted θ. The details of the M-H algorithm

are laid out in algorithm 5. One essential feature of 5 is the flexibility in choosing q(·, ·). In partic-

Algorithm 5: The Metropolis-Hastings algorithm

Input : Arbitrary initial value θ0, candidate-generating density q(·, ·)
Output: A vector V of samples approximately distributed from ϕ(·)
V ← {}
θ← θ0
while |V| < N do

θ′ ∼ q(θ, ·)
u ∼ U(0, 1)

if u < min
{

ϕ(θ′)q(θ′,θ)
ϕ(θ)q(θ,θ′) , 1

}
then

θ← θ′

end
append θ to V

end

ular, Chib and Greenberg discuss several strategies for choosing q which have been put forth over

the last several decades [15]. Notice that if q is symmetric, q(θ, θ′) = q(θ′, θ), then our acceptance

criterion reduces to checking if u < min
{

ϕ(θ′)
/

ϕ(θ), 1
}

. If in addition we sample from a uniform

density for each paramter, so that ∀i : θi ∼ U (ai, bi), then the condition u < min
{

ϕ(θ′)
/

ϕ(θ), 1
}

reduces to simply checking that each parameter lies in the prior. That is, accept θ′ = (θ′1, . . . , θ′n)

with probability
n

∏
i=1

1[ai≤θ′i≤bi] ∈ {0, 1} . (2.5)

It should be noted that the advantages of algorithm 5 are curbed by some possible draw-

backs. If the variance of q is too low, then if the algorithm is currently at an accepted value θ,

13

there is a high probability that it will jump to a value extremely close to θ. Thus, a low variance

will cause a very timid chain which will take unreasonably long to span all of the prior, instead

fixating on regions of high acceptance. While the region will be eventually well-explored as the

chain’s length approaches infinity, this will be a computational nightmare in practice. On the other

hand, if the variance is too high, then the generated candidates will in general be far from the most

recent accepted value, inducing a low acceptance rate and negating the benefits of using M-H in

the first place. Therefore, the choice of q requires a good degree of creativity from the modeler,

and will surely depend on some trial-and-error before a useful density is identified. It is common

to adjust q, along with our tolerance ε, so that we get a desirable acceptance rate (e.g. accepting

30% of proposed parameters).

Due to the above observations, it is often useful to use a normal density for q(·, ·). That is,

for θ, θ′ ∈ Rn,

q(θ, θ′) =
1

(2π)n/2
√

det Σ
exp

{
−1

2
(
θ′ − θ

)>
Σ−1 (θ′ − θ

)}
, (2.6)

where the mean of the new candidate θ′ is the most recently accepted value θ. The parameters θ

are often assumed to be pairwise independent, so that the variance matrix becomes Σ = σIk×k for

some vector of variances σ2 =
(
σ2

1 , . . . , σ2
k

)
. This choice of q is desirable due to its symmetry and

the relative ease of adjusting its variance [49]. Using a normal candidate-generating density also

exploits the advantage of using MCMC over the rejection method, since proposed θ′ will most

likely be fairly close to the most recently accepted θ. For the MCMC techniques used later in this

thesis, we will utilize the candidate-generating density given by equation 2.6 unless otherwise

noted. However, we will maintain an arbitrary q(·, ·) in this chapter’s algorithms for complete-

ness.

We are now in position to revise algorithm 4 using the Metropolis Hasting algorithm de-

scribed in algorithm 5. We henceforth refer to it as ABC-MCMC, and have laid out in algorithm

6. This will be our default variant of ABC (excepting the case of determining an initial guess), and

consequently, we give a proof of its correctness before we proceed.

14

Algorithm 6: Generating samples distributed from f (θ|$ (D,D′) < ε) via ABC-MCMC

Input : Observed data D, arbitrary initial value θ0, candidate-generating density q(·, ·),
modelM, , metric $(·, ·), tolerance ε > 0, desired number of samples N

Output: A vector V of samples approximately distributed from f (θ|$(D,D′) < ε)
V ← {}
θ← θ0
while |V| < N do

generate θ′ ∼ q(θ, ·)
simulate D′ fromM parametrized by θ′

if $ (D,D′) < ε then
u ∼ U(0, 1)

if u < min
{

π(θ′)q(θ′,θ)
π(θ)q(θ,θ′) , 1

}
then

θ← θ′

end
end
append θ to V

end
return V

15

Theorem 1. Algorithm 5 produces samples from f (θ|D) as |V| → ∞ and ε→ 0.

Proof. Let us denote the probability transition of the chain as r(θ, θ′). Without loss of generality,

assume that θ, θ′ satisfy

π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)
≤ 1.

The probability that the chain jumps from θ to θ′ is represented by

q(θ, θ′)×P [D|θ]×min
{

π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)
, 1
}

.

So, we see that if ε = 0,

f (θ|D)r(θ, θ′) = f (θ|D)q(θ, θ′)P
[
D|θ′

]
min

{
π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)
, 1
}

=
P [D|θ]π(θ)

P [D]
q(θ, θ′)P

[
D|θ′

] (π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)

)
=

P [D|θ]
P [D]

P
[
D|θ′

]
π(θ′)q(θ′, θ)

=
P [D|θ′]π(θ′)

P [D]
q(θ′, θ)P [D|θ] · 1

= f (θ′|D)q(θ′, θ)P [D|θ]min
{

π(θ)q(θ, θ′)

π(θ′)q(θ′, θ)
, 1
}

= f (θ′|D)r(θ′, θ)

Here we have utilized the fact that

π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)
≤ 1 =⇒ π(θ)q(θ, θ′)

π(θ′)q(θ′, θ)
=

1
π(θ′)q(θ′,θ)
π(θ)q(θ,θ′)

≥ 1.

So, the above relationship shows that f (θ|D) satisfies the detailed-balance equations for r(θ, θ′).

The argument for when

π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)
> 1

proceeds in a symmetric manner. Therefore, f (θ|D) is a stationary measure for r(θ, θ′), and by

scaling accordingly, it is the stationary distribution.

In the case of uniform priors, algorithm 6 will accept a candidate θ′ with probability

1[
$(D,D′(θ′))<ε

] n

∏
i=1

1[ai≤θ′i≤bi]. (2.7)

16

This will be the case for most of our analyses in this thesis, and we mention it to reconcile any con-

fusion concerning our implementations included in the appendices. One last remark we should

make is that algorithm 6 is extremely sensitive to the initial guess θ0 due to the relatively small

jumping window in comparison to the prior. There are a couple of ways to sidestep this is-

sue. For example, one can perform a grid search over θ to approximate a minimizing value

θ0 ≈ arg minθ $(D,D′(θ)) for our initial guess. Caution must be taken, however, since $ is a

stochastic function, and therefore a deterministic minimizing value may be difficult to ascertain.

Another remedy is to start with algorithm 4 until an accepted parameter has been found, and then

proceed with algorithm 6.

2.6 Further Extensions of ABC

Although ABC remains an inchoate collection of techniques, there are numerous versions

and enhancements to the implementations discussed above. Much of the validity of ABC relies

on the fact that the approximate posterior converges to the true distribution as the number of

samples approaches infinity. However, Sisson et. al. point out that even samples as large as

10,000 can produce grossly inaccurate approximations to the posterior, and suggest an alteration

based on importance sampling to assuage this inefficiency [69]. Beaumont addresses an inherent

bias in Sisson et. al.’s modification, and attenuates this bias by introducing a scheme that iterates

through a decreasing sequence of tolerances {ε1, . . . , εn} [4]. Sadegh et. al. explore yet another

modification that can increase the sampling efficiency and allow for concurrent processing [64].

These variants of ABC among others should always be kept in mind when suspicious of biased

posterior samples for the application under consideration. ABC techniques are straightforward,

but their attractiveness must be counterbalanced with care and skepticism.

Chapter 3

Simulation of Local Daily Maximum Temperature with ABC

3.1 Introduction

Our goal in this chapter is to construct a SWG of daily local temperature using ABC. How-

ever, since temperature is a continuous quantity whose value changes throughout the day, we will

need to hone in on a particular, precise definition of daily temperature. The minimum and maxi-

mum daily temperature at a given location are excellent candidates for several reasons. First, they

are both well-defined since they necessarily take on exactly one value for a given day. Moreover,

measurements of both minimum and maximum temperatures are readily available for many sites

with the help of modern meteorological instruments. In addition, many physical models across

multiple disciplines require daily minimum and maximum temperature as an input, such as mod-

els of snowmelt runoff [41] and the assessment of climate change [67]. It is natural to suggest that

these two measurements of daily temperature should behave similarly, and in fact they have been

modeled as a symmetric bivariate process by Kleiber et. al. [40]. So, without loss of generality,

we select daily local maximum temperature as the desired quantity to model and simulate in this

chapter.

Before we choose our statistical model, we should get some intuition about how daily max-

imum temperature behaves. To do this, let’s first examine a plot of the maximum temperature by

day over the course of three years from data collected from Glenwood Springs, Colorado, seen in

figure 3.1. This snapshot of temperature data gives the impression that the mean function adheres

to a sinusoidal pattern. If we partition our data into the integers 1 through 365, where 1 corre-

18

Figure 3.1: Daily maximum temperature in Glenwood, Colorado over the span of 3 years.

-10

0

10

20

30

0 300 600 900
Day of the year

M
ax

im
um

 te
m

pe
ra

tu
re

 (i
n

de
gr

ee
s

C
el

si
us

)

Maximum temperature in Glenwood, CO from 12/6/1946 to 12/6/1949

19

sponds to January 1 and 365 corresponds to December 31, and take the empirical mean of each

day, we can observe the trend, shown in figure 3.2. In fact, looking at the three-year snapshot, we

can also convince ourselves that the variance of the temperature also depends on the time of year.

If we also look at the empirical standard deviation of each day via figure 3.3, we see that it too

follows an oscillatory mean function. These observed characteristics of our data will govern the

formulation of our model in the next section.

3.2 Statistical Model

We are interested in modeling the maximum temperature T of a location s ∈ D ⊂ R2. Our

model takes the form

T(s, d) = X(s, d)β(s) + W (s, d; α) (3.1)

It is helpful to think of the mean term X(s, d)β(s) as the local climate, and the stochastic term

W(s, t; α) as the local weather. For our most general model, the regressors which comprise our

design matrix X will include a constant term, an autoregressive term for the previous day’s max-

imum temperature, a pair of sinusoidal terms to encapsulate the sinusoidal mean, and a pair of

higher-order sinusoidal terms. Thus, for a given day d and location s, we have

X (s, d) =
(

1, T (s, d− 1) , cos
(

2πd
365

)
, sin

(
2πd
365

)
, cos

(
4πd
365

)
, sin

(
4πd
365

))T

. (3.2)

which implies a corresponding vector of parameters β = (β0, . . . , β5)
T. Note that β2 cos(2πd/365)+

β3 sin(2πd/365) = A cos(2π(d + δ)/365) for some amplitude A and shift δ, so these covariates

represent a first-order sine wave whose period is 365 days. The inclusion of β4 cos(4πd/365) +

β5 sin(4πd/365) yields a second first-order sine wave of twice the frequency, and hence their com-

bination is a second-order sine wave with a 365-day period.

Moreover, we model the W term as a normally distributed random variable with a sinu-

soidal variance. More technically, we assume

W (s, d; α) ∼ N
(
0, σ2(s, d)

)

20

Figure 3.2: Daily empirical mean of maximum temperature in Glenwood, Colorado.

0

10

20

30

0 100 200 300
Day of the year

M
ea

n
(in

 d
eg

re
es

 C
el

si
us

)

Empirical mean of max temperature in Glenwood, CO by day

Figure 3.3: Daily empirical standard deviation of maximum temperature in Glenwood, Colorado.

3

4

5

6

0 100 200 300
Day of the year

S
ta

nd
ar

d
de

vi
at

io
n

(in
 d

eg
re

es
 C

el
si

us
)

Empirical standard deviation of max temperature in Glenwood, CO by day

21

where α = (α0, · · · , α4), and

σ2 (s, d) = exp

{
α0(s) + α1(s) cos

(
2πd
365

)
+ α2(s) sin

(
2πd
365

)
+ α3(s) cos

(
4πd
365

)

+ α4(s) sin
(

4πd
365

)}
.

Note that σ2 takes the form of an exponential to ensure positivity. This detail can be altered as

necessary if the exponential does not provide a good enough fit for the data, as long as the trans-

formation preserves the sinusoidal behavior and will guarantee that σ2(s, d) ≥ 0.

One immediate concern of this model is that it burdens us with 11 separate parameters of

interest, since length(β) = 6 and length(α) = 5. To address this, there are a couple of remedies

we can employ that depend on the problem domain. First, not every location s will require the

higher-order harmonic terms present in X or σ2, and for those that can get away with it, we can just

set α3 = α4 = 0 and/or β4 = β5 = 0, and use a standard sinusoidal approximation to the mean

and/or variance. This is in practice a reasonable assumption for many locations. For example, we

can plot the data from the Campo 7, Colorado site along with the Maximum Likelihood sinusoidal

fit, which is shown in Figure 3.4. A quick visual sanity check should assure the modeler whether

or not making this simplification would be sensible.

For the case of Glenwood Springs above, the oscillation is clearly of a higher order than a

simple sine wave, so we need to handle the general case of length(α) = 5. One common solution,

which is the one we will employ repeatedly in this thesis, is to first estimate the mean parameters β

using a fixed, small variance, and then use these estimated parameters β̂ to estimate the stochastic

parameters α. This is justified by the segregation of β and α, attached to separate terms X and W,

respectively. For the case of estimating temperature, we can first set α0 to be an arbitrarily small

number and then set the rest of the paramters αi to be zero. This will minimize the influence of

the variance on the mean estimators.

22

Figure 3.4: Daily empirical standard deviation data for the Campo 7, Colorado site along with its
MLE sinusoidal fit.

4

6

8

10

0 100 200 300
Day of the year

S
ta

nd
ar

d
de

vi
at

io
n

(in
 d

eg
re

es
 C

el
si

us
)

Empirical standard deviation of max temperature in CAMPO 7 by day

23

3.3 Metrics for Estimating Temperature

Since our model was constructed to capture the oscillatory nature of both the mean and

variance of the temperature, these are the two criteria which motivate the metrics required for our

ABC procedure. In what follows, let s = sγ be the simulated time series from our model (3.1)

parametrized by parameters γ, where γ =
(
αT, βT)T. To assess how similar sγ is to observed data

o, we can look at the standardized error of the mean concurrently with the standardized error of

the standard deviation. Moreover, we will allow the modeler to penalize these errors separately

using weights cm > 0 for the mean error and cv > 0 for the variance error. We can formalize these

ideas mathematically with the following equation:

γ̂ABC = arg min
γ

{
∑
t∈T

(
cm
|µ̂ (o[t])− µ̂ (sγ[t])|

|µ̂ (o[t])| + cv
|σ̂ (o[t])− σ̂ (sγ[t])|

|σ̂ (o[t])|

)}
(3.3)

where T is a partition of the months of the year, µ̂(·) returns the empirical mean, σ̂(·) returns the

empirical standard deviation, and the notation x[t] represents the time series x subsetted by the

set of time points t. For the remainder of this chapter, we assign equal weight to the mean and

variance errors, so that cm = cv = 1. This indicates that we should define our penalization metric

$ as

$(D,D′) :=
1
|T | ∑

t∈T

(
|µ̂(D[t])− µ̂(D′[t])|

|µ̂(D[t])| +
|σ̂(D[t])− σ̂(D′[t])|

|σ̂(D[t])|

)
(3.4)

where we are scaling by 1/|T | to standardize our values of $ making for a more interpretable

comparison to ε. Some standard choices for T are be the usual set of the four common seasons,

e.g.

T = {summer, autumn, winter, spring} = {{6, 7, 8} , {9, 10, 11} , {12, 1, 2} , {3, 4, 5}}

where 1 = January, 2 = February, . . . , 12 = December, or simply the set of each month individu-

ally, e.g. T = {1, 2, . . . , 12}. The choice of T amounts to a tradeoff between accuracy via more sets

of months in T , and efficiency via less sets in T . In what follows, we elect T = {1, . . . , 12}.

We can now construct our algorithm to get samples from our posterior, shown in Algorithm

7. While this algorithm maintains the form of traditional ABC methods, we note that since $ is

24

a metric involving two statistics, the mean and the standard deviation, one may be tempted to

estimate these metrics separately. Indeed, the modeler can let

$µ(D,D′) := ∑
t∈T

|µ̂ (o[t])− µ̂ (sγ[t])|
|µ̂ (o[t])| ,

$σ(D,D′) := ∑
t∈T

|σ̂ (o[t])− σ̂ (sγ[t])|
|σ̂ (o[t])| ,

and then simultaneously check if both $µ < εµ and $σ < εσ for some user-defined εµ, εσ > 0.

Thinking of ε = εµ + εσ, it is easy to see that these methods are equivalent; we opt to use the latter

due to its modularity and ease of implementation.

3.4 Numerical Results for Glenwood Springs, Colorado

We are ready to apply our model and procedure to real data and demonstrate its efficacy. We

will work with data provided by the Global Historical Climatology Network Database (GHCND),

which contains daily maximum temperature data for 145 different stations in Colorado, among

thousands of other locations across the world [53]. In particular, we choose data from Glenwood

Springs, Colorado, which, as seen previously, exhibits high-order oscillatory standard deviation

behavior. The GHCND provides a quality flag for each observation; to avoid poor quality obser-

vations, we removed any which contained a flag which indicated a corruption. As a result, there

is a total of 36,721 days worth of available maximum temperature data. For the sake of simplicity,

we remove all leap days from the dataset, so that every available year has exactly 365 days worth

of values (including NA, i.e., missing data values). These data preparation steps will be enacted in

each of the three analyses in Chapters 3 through 5, so we will only mention them here for brevity.

Since we have omitted linear drift as a covariate to our model, our assumption is that the

mean and standard deviation should behave similarly for each year of data. Thus, since it is

computationally inefficient to use all 36,721 days of data, we isolate a sequence of 20 years of

consecutive records, yielding 365*20 = 7,300 days for our observation vector o. While most of this

subsequence of data is available and unsullied, there are still days with incomplete data which we

25

Algorithm 7: ABC-MCMC for daily local maximum temperature parameter estimation

Input : Observed data D, arbitrary initial value x0, candidate-generating density q(·, ·),
tolerance ε > 0, desired number of samples N

Output: A vector V of samples approximately distributed from target distribution f (θ|D)
DefineM using (3.1)
Define $ as follows:

$(D,D′) :=
1
|T | ∑

t∈T

(
|µ̂(D[t])− µ̂(D′[t])|

|µ̂(D[t])| +
|σ̂(D[t])− σ̂(D′[t])|

|σ̂(D[t])|

)
V ← {}
x← x0
while |V| < N do

generate θcandidate ∼ q(θ, ·)
simulate D′ fromM parametrized by θcandidate
if $ (D,D′) < ε then

u ∼ U(0, 1)

if u < min
{

π(θcandidate)q(θcandidate,θ)
π(θ)q(θ,θcandidate)

, 1
}

then
θ← θcandidate

end
end
append θ to V

end

26

regard as missing. To compensate, we mask each simulated vector s with the missing values in o,

so that they possess missing data on the same days. We will perform this data masking throughout

the rest of the analyses in this thesis. In further pursuit of tractability, we set β4 = β5 = 0, yielding

a standard sinusoidal wave for our mean function.

We show the results after 500 jumps of the chain, implying about 1,500 samples of (αT, βT)T.

Figure 3.5 shows the approximate posterior densities of β along with the priors, and figure 3.6

shows the densities of α. Our priors are uniform whose mean was chosen via a grid search through

the parameters, with the exception of the U(0, 1) prior for the autoregressive parameter β1 which

necessarily lies in (0, 1). It is quickly evident that the posterior certainty varies for each param-

eter; the auto-regressive parameter β1 has a much narrower density than the sine coefficient β3.

Nonetheless, each parameter seems to be captured within a well-defined posterior density as we

hoped. Another interesting feature is that each of the αi coefficients possesses a similar size and

shape of posterior density.

Let us examine some more summaries of the data to get a better assessment of our param-

eters. First, we compute the empirical mean of each posterior for the mean parameters and call it

our ABC estimator for βi, i.e. β̂iABC-MCMC =def µ̂βi , and do the same for the posterior of the stan-

dard deviation parameters, α̂iABC-MCMC =def µ̂αi . Next, we create 3 independent simulations of the

maximum temperature parametrized by our estimators. We can plot the mean for each month for

the observed data and these three simulations, which is shown in Figure 3.7. The analogous plot

for the monthly standard deviation is shown in Figure 3.8. The simulated means are a reasonable

representation of the observed mean, although they do systematically underestimate the curve

during the summer and fall months. This is almost certainly due to the absence of the higher-

order sine terms in our model since the observed empirical means do not exactly fit a regular sine

wave. The modeler can seek the power of computing resources such as a supercomputer if a more

accurate estimation of the mean were essential. The simulated standard deviations also follow

the trend of the observed standard deviations quite closely. To get an even more comprehensive

picture of the accuracy of our posteriors, we can create a boxplot of the values from each density

27

Figure 3.5: Prior and approximate posterior distributions for β

0.0

0.5

1.0

1.5

2.0

4.0 4.5 5.0 5.5
values

de
ns
ity

β0

0

5

10

15

0.00 0.25 0.50 0.75 1.00
values

de
ns
ity

β1

0.0

0.5

1.0

1.5

2.0

-4.5 -4.0 -3.5 -3.0
values

de
ns
ity

β2

0.00

0.25

0.50

0.75

1.00

-2.0 -1.5 -1.0 -0.5 0.0
values

de
ns
ity

β3

Figure 3.6: Prior and approximate posterior distributions for α

0

1

2

0.5 1.0 1.5 2.0 2.5 3.0
values

de
ns
ity

α0

0.0

0.5

1.0

1.5

2.0

-1.0 -0.5 0.0 0.5 1.0 1.5
values

de
ns
ity

α1

0.0

0.5

1.0

1.5

2.0

-1.0 -0.5 0.0 0.5 1.0
values

de
ns
ity

α2

0

1

2

-1.0 -0.5 0.0 0.5 1.0
values

de
ns
ity

α3

0.0

0.5

1.0

1.5

2.0

-1.0 -0.5 0.0 0.5 1.0
values

de
ns
ity

α4

28

and plot them over the values for the observations, which is shown for β in Figure 3.9 and for α in

Figure 3.10. It turns out that there is strong and consistent agreement of the boxplot means with

the observed means for almost every month.

Nevertheless, our model has limitations, some of which can be seen when comparing the

hot and cold spell counts of the observations and simulations. Hot/cold spells are a difficult phe-

nomenon to capture, partly because there are many different ways to define a hot/cold spell. One

natural definition of a hot spell, for instance, is a series of consecutive days di where Tmax(di) >

µ(di) for each i, where µ(di) is the mean function of temperature for day di. Note that µ(di) is

a value that must somehow be estimated, and this introduces some uncertainty in our hot spell

definition. Another natural spell definition is a set of days di that are greater than some specified

threshold value τ regardless of the day of the year. This can be considered a form of absolute hot

spell as opposed to the previous one, which is a more relative assessment. We investigate some

hot and cold spell figures based on the latter definition, seen in Figures 3.11 through 3.16. It ap-

pears that this particular realization matches the cold spell statistics very well, whereas it fails to

match the hot spell statistics as closely, probably due to the discrepancies in the mean function for

the autumn months.

To conclude our examination of our model’s efficacy, we can display a sample SWG realiza-

tion from the posterior parameters along with the corresponding temperature data. This is shown

in figure 3.17. The masking of missing data into the simulation is evident in this plot, seen by

the long sequences of days without recorded maximum temperature values. By visual inspection,

these time series are very similar and exhibit similar mean and standard deviation patterns, a final

sanity check that our model is producing sound simulations in comparison to the observed data.

3.5 Discussion

Our numerical results for daily maximum temperature simulation reassure us that ABC can

provide a dependable methodology in constructing SWGs. Still, there is certainly room for future

work. We made the decision to set β4 = β5 = 0, but the inclusion of higher-order sinusoidal

29

Figure 3.7: Monthly mean maximum temperature in degrees Celsius for observed data as well as
for 3 simulations parametrized by the empirical posterior means

10

20

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

V
al
ue
s

tag

Observations

Simulation 1

Simulation 2

Simulation 3

Figure 3.8: Monthly standard deviation of maximum temperature in degrees Celsius for observed
data as well as for 3 simulations parametrized by the empirical posterior means

0

2

4

6

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

V
al
ue
s

tag

Observations

Simulation 1

Simulation 2

Simulation 3

30

Figure 3.9: Boxplot of simulated average monthly maximum temperature values in degrees Cel-
sius for β as well as those for observed values

0

10

20

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

M
ea

n
m

ax
im

um
 te

m
pe

ra
tu

re

31

Figure 3.10: Boxplot of simulated average monthly maximum temperature standard deviations in
degrees Celsius for α as well as observed values

0

2

4

6

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

S
ta

nd
ar

d
de

vi
at

io
n

of
 m

ax
im

um
 te

m
pe

ra
tu

re

32

Figure 3.11: Counts of hot spells over 30 degrees Celsius for observations and simulated data for
Glenwood Springs, CO.

0

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 28 29 30 32 33 34 35 39 42 50
Spell length

S
pe

ll
co

un
t

label
Obs

Sim

Hot spells

33

Figure 3.12: Counts of hot spells over 35 degrees Celsius for observations and simulated data for
Glenwood Springs, CO.

0

20

40

60

1 2 3 4 5 6 7 8 9 10 13 14 17
Spell length

S
pe

ll
co

un
t

label
Obs

Sim

Hot spells

34

Figure 3.13: Counts of hot spells over 40 degrees Celsius for observations and simulated data for
Glenwood Springs, CO.

0

5

10

15

20

1 2 3 4 5
Spell length

S
pe

ll
co

un
t

label
Obs

Sim

Hot spells

35

Figure 3.14: Counts of cold spells below 5 degrees Celsius for observations and simulated data for
Glenwood Springs, CO.

0

25

50

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 27 28 31 36 42 46 59
Spell length

S
pe

ll
co

un
t

label
Obs

Sim

Cold spells

36

Figure 3.15: Counts of cold spells below 0 degrees Celsius for observations and simulated data for
Glenwood Springs, CO.

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13
Spell length

S
pe

ll
co

un
t

label
Obs

Sim

Cold spells

37

Figure 3.16: Counts of cold spells below -5 degrees Celsius for observations and simulated data
for Glenwood Springs, CO.

0

5

10

15

20

1 2 3 4 8
Spell length

S
pe

ll
co

un
t

label
Obs

Sim

Cold spells

38

Figure 3.17: Realization of our SWG for daily maximum temperature for Glenwood Springs from
January 10, 1988 to January 10, 1991. Note the masking of missing data into our simulations.

−20

0

20

40

0 300 600 900
Day

Te
m

pe
ra

tu
re

 (
in

 d
eg

. C
el

si
us

) Observed max temperature in Glenwood from 1/10/1988 to 1/10/1991

0

10

20

30

40

0 300 600 900
Day

Te
m

pe
ra

tu
re

 (
in

 d
eg

. C
el

si
us

) Simulated max temperature in Glenwood from 1/10/1988 to 1/10/1991

39

covariates would increase the accuracy. In this case, the burden of 11 parameters would coerce the

need for an efficient means of performing algorithm 7, such as using a supercomputer, if available,

and gathering a very large number of samples (say > 100, 000). This would likely amend the

inconsistencies in some of the spell counts seen in figures 3.11 - 3.16. If these spells are of utmost

importance to the model, another option is to modify $ to penalize against them in a way that fits

the model’s needs.

An attractive feature of 7 is its flexibility, and by redefining our model M, penalization

criterion $, prior π, and candidate-generating density q, we can create many variations of our im-

plementation to suit the needs of different scenarios. Other possible extensions of these results

include modeling daily minimum temperature, simultaneously modeling maximum and mini-

mum temperature as a bivariate process, and generalizing our model over a spatial domain.

At this point, we shift our focus from temperature to precipitation, as SPGs comprise the

more sizable portion of the world of SWGs. We will see that the case of precipitation is more

sophisticated in comparison, but by applying the same principles of this chapter we can march

onward with confidence. The ultimate goal of this thesis is to construct an ABC method for spa-

tiotemporal precipitation occurrence due to its prominence in the literature, but before we arrive

there, we will need to investigate the case of single-site precipitation occurrence.

Chapter 4

Simulation of Local Daily Precipitation Occurrence with ABC

4.1 Introduction

In the previous chapter, we demonstrated the effectiveness of ABC as a means of creating

a SWG for daily maximum temperature values at a given geographic location. This gives us

confidence that we can utilize the same methodology to investigate SWGs for other geospatial

quantities, and from this point forward, precipitation will be our main focus. As discussed in the

introductory chapter, the need for reliable precipitation models remains a significant one and an

extraordinary task. This is mainly because of the discrete-continuous nature of occurrence and

intensities, and the difficulties are magnified when incorporating a spatial dependence across a

domain. Consequently, this thesis will resist venturing into the realm of modeling intensities, and

instead concentrate solely on modeling precipitation occurrence. We will still attempt to create

spatiotemporal SPGs across a domain in Chapter 5. For now, we begin our journey with the

application of ABC to an SPG for daily local precipitation occurrence.

4.2 Statistical Model

The goal of our model is to capture annual sinusoidal behavior in observed daily precipi-

tation occurrence and produce realistic simulations with matching characteristics. Given location

s ∈ D and day d, either it will have rained at s on d, or it will not have rained. Thus, if Y(s, d) is

the occurrence of rain at s on d, then Y(s, d) ∼ Bernoulli (p) for some 0 < p < 1. To keep things

41

general, we assume that p depends on the location s, and by assumption, p also depends on d.

Thus, we have Y(s, d) ∼ Bernoulli (p(s, d)).

The nature of precipitation occurrence as a Bernoulli random variable suggests the use of a

generalized linear model in our analysis. We adopt the following approach specified by Chandler

et. al. [13] and demonstrated by Kleiber et. al [39]. Generalized linear models are of the form

g (E [Y]) = Xβ (4.1)

for some monotonic link function g(·). Because precipitation occurrence is binary, we will employ

logistic regression which is tailored to model random quantities whose outcomes are boolean-

valued, i.e., live in the set {0, 1} = {False, True}. There are several popular choices of the link

function in a logistic regression, including logit, probit, and the complimentary log log function

[19]. We elect probit regression for our model, so that the link function g(·) = Φ−1(·), the inverse

of the cdf of the standard normal distribution. Our preference of the probit over the others results

from our extension into a spatial domain, which will be explained in the next chapter.

Gabriel and Newmann showed that precipitation occurrence can be successfully modelled

using a first-order Markov chain [24], which has been a feature of precipitation occurrence models

ever since. Thus, we will follow suit and include the previous day’s occurrence as a regressor to

our generalized linear model. For other covariates, we elect the two pairs of sinusoidal regressors

present in our temperature design matrix described by 3.2. Hence, our model becomes

E [Y(s, d)] = Φ
(

β0 + β1Y(s, d− 1) + β2 cos
(

2πd
365

)
+ β3 sin

(
2πd
365

)
+ β4 cos

(
4πd
365

)
+ β5 sin

(
4πd
365

)) (4.2)

where Φ(·) is the cumulative distribution function of the standard Normal random variable. For

convenience, if Y = (Y(s, 1), . . . , Y(s, T)) represents the random vector of precipitation occurrence

for days 1 through T, then we may also write this as

E [Y(s, d)] = Φ (X (s, d) β (s)) (4.3)

42

where

β(s) =



β0(s)

β1(s)

β2(s)

β3(s)

β4(s)

β5(s)


and X =



1 Y0 cos
(2π

365

)
sin
(2π

365

)
cos

(4π
365

)
sin
(4π

365

)
1 Y(s, 1) cos

(2π·2
365

)
sin
(2π·2

365

)
cos

(4π·2
365

)
sin
(4π·2

365

)
...

...
...

...
...

...

1 Y(s, T − 1) cos
(2π·T

365

)
sin
(2π·T

365

)
cos

(4π·T
365

)
sin
(4π·T

365

)


.

Furthermore, the probability mass function of a Bernoulli(Φ (Xβ)) random variable is

p(y) = P [Y(s, d) = y] = [Φ (Xβ)]y [1−Φ (Xβ)]1−y 1[y∈{0,1}]. (4.4)

Note the inclusion of Y0 as the (1, 2) entry of our design matrix. This corresponds to an arbitrary

initial value of the sequence of occurrences Y, which we usually take to be zero. It is important

to note that, as presented, the choice of using a probit regression to model local precipitation

occurrence can be seamlessly replaced by a regression based on an alternative logistic link function

if the modeler so desired. It is seen that (4.2) includes a pair of higher-order sinusoidal covariates,

but analogous to (3.1), one can set β4 = β5 = 0 if the need for fewer parameters is present.

However, for many locations, the higher-order terms are necessary, and sometimes still do not

adequately represent the empirical probability curve of precipitation occurrence throughout the

year. An initial scan of the empirical probability of rain for the observed data should suffice in

deciding which sinusoidal covariates are appropriate.

4.3 Metrics for Estimating Precipitation Occurrence

Precipitation occurrence values for a number of consecutive days will be a binary sequence

of 0’s and 1’s, and consequently, it can be difficult to construct a statistic that can accurately com-

pare two different sequences of this sort of data. One approach stems from the observation that

the nature of precipitation, which our model (4.2) captures, is that rainy days and dry days tend to

43

be grouped in sequences of values of the same outcome. For example, here is a randomly chosen

vector of 40 days of precipitation occurrence data for Iowa Falls, Iowa:

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0

It is evident that dry days in general lead to the next day being dry, and wet days will often

spawn a successive wet day. There are not many instances of 0’s and 1’s alternating in concession.

Moreover, wet spells and dry spells, loosely defined as extended sequences of either precipitation

or no precipitation, have strong implications and consequences in many of the fields which require

SPGs for their models. An unusually long dry spell will lead to droughts, whereas an unusually

long wet spell will lead to floods, among other issues. Because of these factors, we choose to

construct our metric to penalize against these criteria, namely, that the number of wet and dry

spells of various lengths in the observations and simulations should match closely. Let ζ be a set

of numbers that correspond to spell count lengths. Define ϕ(x; ζ) to be the function that computes

the number of wet spells of length in ζ present in the time series x = (x1, . . . , xT), and define

ψ(x; ζ) to be the function that computes the number of dry spells of length in ζ present in x:

ϕ(x; ζ) = #
{(

xj, xj+1, . . . , xj+z, xj+z+1
)

: xj = xj+z+1 = 0 & xj+1 = . . . = xj+z = 1 & z ∈ ζ
}

(4.5)

ψ(x; ζ) = #
{(

xj, xj+1, . . . , xj+z, xj+z+1
)

: xj = xj+z+1 = 1 & xj+1 = . . . = xj+z = 0 & z ∈ ζ
}

(4.6)

where #{S} represents the cardinality of set S. Our estimator β̂ should adhere to the following

criterion:

β̂ = arg min
β

{
1
|T | ∑

t∈T

(
cw

|Z1| ∑
ζ1∈Z1

∣∣ϕ(sβ[t]; ζ1)− ϕ(o[t]; ζ1)
∣∣

max {ϕ(o[t]; ζ1), 1}

+
ch

|Z2| ∑
ζ2∈Z2

∣∣ψ(sβ[t]; ζ2)− ψ(o[t]; ζ2)
∣∣

max {ψ(o[t]; ζ2), 1}

)} (4.7)

Here, T is a partition of the months of the year, Z1 is a set of sets of wet spell lengths (e.g.

{{1, 2, 3} , {4, 5, 6} , {7, 8, 9}}), Z2 is a set of sets of dry spell lengths, and the notation x[t] repre-

sents the time series x subsetted by the set of time points t. We would like to scale by the number

of dry/wet spells in the observations, but it is possible that the particular isolated sequence o[t]

44

does not have any of the given amount ζi, so we divide by max {ϕ(o[t]; ζi), 1} to ensure there is

no division by zero. Furthermore, we allow Z1 and Z2 to be sets of sets to retain generality as well

as allow for a faster algorithmic runtime in practice.

With this formulation of our estimator β̂, we are in position to formalize our metric to esti-

mate local precipitation occurrence for a site s:

$(D,D′) :=
1
|T | ∑

t∈T

(
1
|Z1| ∑

ζ1∈Z1

|ϕ(D[t]; ζ1)− ϕ(D′[t]; ζ1)|
max {ϕ(D[t]; ζ1), 1}

+
1
|Z2| ∑

ζ2∈Z2

|ψ(D[t]; ζ2)− ψ(D′[t]; ζ2)|
max {ψ(D[t]; ζ2), 1}

) (4.8)

One immediate quality of our precipitation metric is its similarity to the metric used in algorithm 8.

Indeed, this penalization based on relative error of a certain function of the data will also be used

in the next chapter concerning precipitation occurrence over a correlated spatial domain. While

our methods are defined using specific, contrived functions, it should be noted that this procedure

can be abstracted as needed, and provides an intuitive and effective method of comparing two

datasets. For example, if the modeler were more interested in the total number of rainy days per

month, one could replace our functions ϕ and ψ with a function that counts the number of days

where precipitation occurred, and then use the relative error per month as the metric for the ABC

criterion.

4.4 An Analytic Solution of the True Posterior

While ABC bypasses the need to evaluate a likelihood function, we can actually deduce a

closed-form expression of the likelihood for our model. This will in turn provide an expression of

the true posterior given our prior distribution. We will use this to check our approximations from

the ABC algorithm and show that ABC actually does surprisingly well in representing the true

posterior. In what follows, let o = (o1, · · · , oT) be a vector of observed precipitation data. Also,

for the sake of simplicity, we write P [o1|θ] = p0, the constant that corresponds to the probability

of rain on the very first day. This constant must be assigned an arbitrary value since our model

needs the previous day’s occurrence to compute this probability; we usually choose p0 = 0.5.

45

Algorithm 8: ABC-MCMC for daily local precipitation occurrence parameter estimation

Input : Observed data D, arbitrary initial value β0, candidate-generating density q(·, ·),
tolerance ε > 0, desired number of samples N

Output: A vector V of samples approximately distributed from target distribution f (β|D)
DefineM using (4.2)
Define $ as follows:

$(D,D′) :=
1
|T | ∑

t∈T

(
1
|Z1| ∑

ζ1∈Z1

|ϕ(D[t]; ζ1)− ϕ(D′[t]; ζ1)|
max {ϕ(D[t]; ζ1), 1}

+
1
|Z2| ∑

ζ2∈Z2

|ψ(D[t]; ζ2)− ψ(D′[t]; ζ2)|
max {ψ(D[t]; ζ2), 1}

)

V ← {}
β← β0
while |V| < N do

generate βcandidate ∼ q(β, ·)
simulate D′ fromM parametrized by βcandidate
if $ (D,D′) < ε then

u ∼ U(0, 1)

if u < min
{

π(βcandidate)q(βcandidate,β)
π(β)q(β,βcandidate)

, 1
}

then
β← βcandidate

end
end
append β to V

end

46

First, we seek the aid of the multiplicative rule of probability, which states that, for some

events {A1, · · · , An},

P

[
n⋂

i=1

Ai

]
= P [A1]P [A2|A1]P [A3|A1 ∩ A2]× · · · ×P

[
An

∣∣∣∣∣ n−1⋂
i=1

Ai

]

= P [A1]
n

∏
i=2

P

Ai

∣∣∣∣∣ i−1⋂
j=1

Aj, θ

 .

In terms of our likelihood function P [o|θ] = L (θ|o), we see that

P [o|θ] = P [o1|θ]
T

∏
d=2

P

oi

∣∣∣∣∣ d−1⋂
j=1

oj, θ

 (4.9)

However, by the Markov property of our precipitation chain, each occurrence of precipitaiton only

depends on the precipitation of the previous day. Thus, this leaves

P [o|θ] = P [o1|θ]
T

∏
d=2

P [od|od−1, θ]

Next we note that by 2.4,

log f (θ|o) ∝ log (L(θ|o)π(θ)) =⇒ log f (θ|o) = log L(θ|o) + log π(θ) + C1 (4.10)

for some constant C1 ∈ R. Isolating the term with the log of the likelihood, we find that

log L(θ|o) = log (P [o|θ])

= log

(
P [o1|θ]

T

∏
d=2

P [od|od−1, θ]

)

= log (P [o1|θ]) +
T

∑
d=2

log (P [od|od−1, θ])

= log p0 +
T

∑
d=2

log
(

Φ
(

θ>X
)od
[
1−Φ

(
θ>X

)]1−od
)

=
T

∑
d=2

{
od log

(
Φ
(

θ>X
))

+ (1− od) log
(

1−Φ
(

θ>X
))}

+ log p0

=
T

∑
d=2

{
1[od=1] log

(
Φ
(

θ>X
))

+ 1[od=0] log
(

1−Φ
(

θ>X
))}

+ log p0

Plugging this into (4.10) yields

log f (θ|o) ∝
T

∑
d=2

{
1[od=1] log

(
Φ
(

θ>X
))

+ 1[od=0] log
(

1−Φ
(

θ>X
))}

+ log π(θ) + C (4.11)

47

where C = C1 + log p0. Moreover, since we are using uniform, independent priors, we can sim-

plify the expression for log π(θ):

log π(θ) = log
k

∏
i=1

πi(θi)

=
k

∑
i=1

log
(

1
bi − ai

)
= −

k

∑
i=1

log(bi − ai)

Therefore, in our case, we arrive at the following relationship:

log f (θ|o) =
T

∑
d=2

{
1[od=1] log

(
Φ
(

θ>X
))

+ 1[od=0] log
(

1−Φ
(

θ>X
))}

−
k

∑
i=1

log(bi − ai) + C.

Keeping in mind that C is simply a normalizing constant that causes f (θ|o) to integrate to unity,

we have identified a closed-form expression for our likelihood function in the case of local precipi-

tation occurrence. Furthermore, its tractability will allow us assess the validity of the approximate

densities given by our ABC algorithm.

4.5 Numerical Results for Bonny Dam, Colorado

We shift our attention to Bonny Dam, Colorado, for which there is plenty of precipitation

data supplied by the GHCND. Moreover, we will see that the data is adequately modeled only

with the inclusion of higher-order sinusoidal covariates. We set our priors to be uniform, where

the intercept prior ranges between -1.5 and 1.5, the second (autoregressive) prior ranges from 0 to

1, and the remaining priors range from -0.5 to 0.5. Moreover, we must define our sets of wet and

dry spell counts for our $ function. We opt for

Z1 = {{1} , {2, 3} , {4, 5} , {6, 7} , {8, 9} , {10, 11} , {12, 13, . . . }}

for our wet spells and

Z2 =
{
{1, 2, 3, 4} , {5, 6, 7, 8} , {9, 10, 11, 12} , {13, 14, 15, 16} , {17, 18, 19, 20} , {21, 22, 23, 24} ,

{25, 26, 27, 28, 29} , {30, 31, . . . }
}

48

to strike a balance of feasibility and comprehensiveness. To start, we gather about 2,300 samples

(after omitting the burn-in) from the posterior distribution using the Metropolis-Hastings algo-

rithm. For our ABC algorithm, we set ε = 1.09, and obtain β0 from a grid-search based on our $

criterion.

After collecting 10,000 ABC samples (after omitting the burn-in), we can examine the over-

lap of the priors, true posteriors, and ABC-approximated posteriors, shown in figure 4.1. It ap-

pears that the ABC posteriors replicate the true posteriors adequately and exhibit high certainty

within the uniform priors. To further assess their accuracy, we can compute the mean functions

parametrized by our parameter estimates, using the empirical mean of each posterior density, and

compare them to the empirical probability of rain based on the observed data, as seen in figure

4.2. Indeed, both the true posterior and ABC mean functions present a credible description of the

data’s trend. As for a more explicit look at the behavior of our SPG, we can also inspect a plot of

the empirical probabilities of precipitation for the observations and simulated values, shown in

figure 4.3. The probabilities in fact line nicely although the ABC probabilities exhibit slightly less

variability overall. It should be noted that the empirical probability of rain was not a feature of

our metric $, but we still get matching empirical probabilities in the observations and simulations.

In other words, we got the probability trends to match "for free", which is one of the strongest

arguments in favor of using ABC for our estimation. Another statistic to peruse is the monthly

empirical standard deviation of the observations, ABC posterior, and true posterior, shown in fig-

ure 4.4. These statistics again match well despite the absence of standard deviation comparisons

in the penalization criterion within $.

Finally, we take a look at the wet and dry spell counts for the observations and ABC sim-

ulation, displayed in figures 4.5 and 4.6 respectively. Because we are particularly interested in

high wet and dry spells, we also inspect the log of these counts so we can get a clear visualization

of their behavior in the tail. As desired, these spell counts match to a very high degree across

the entire range of count lengths, almost to an uncanny extent. The observed and simulated wet

spell counts coincidentally end at the length of eight, a feature we did not include in our metric.

49

0

10

20

30

40

−1 0 1

ABC posterior

Prior

True posterior

β0

0

5

10

15

20

0.0 0.4 0.8 1.2

ABC posterior

Prior

True posterior

β1

0

10

20

30

−0.4 0.0 0.4

ABC posterior

Prior

True posterior

β2

0

10

20

30

−0.4 0.0 0.4

ABC posterior

Prior

True posterior

β3

0

10

20

30

−0.4 0.0 0.4

ABC posterior

Prior

True posterior

β4

0

10

20

30

−0.4 0.0 0.4

ABC posterior

Prior

True posterior

β5

Figure 4.1: The prior, true posterior (via MCMC sampling), and approximate posterior densities
for each mean parameter βi

50

Figure 4.2: The mean function of precipitation occurrence for the ABC and true posterior estimates
as well as the observed empirical probability of precipitation for Bonny Dam, Colorado.

0.0

0.1

0.2

0.3

0.4

0 100 200 300
Day of year

P
ro

ba
bi

lit
y

of
 ra

in

ABC mean function

Observed empirical means

True posterior mean function

51

Figure 4.3: The empirical probability of precipitation for the observations and ABC simulation for
Bonny Dam, Colorado.

0.0

0.1

0.2

0.3

0.4

0 100 200 300
Day of year

P
ro

ba
bi

lit
y

of
 ra

in

ABC empirical means

ABC mean function

Observed empirical means

52

Figure 4.4: The empirical standard deviation of precipitation (in mm) for the ABC simulation, true
posterior simulation, and observations for Bonny Dam, Colorado.

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12
Month

E
m

pi
ric

al
 s

ta
nd

ar
d

de
vi

at
io

n
of

 p
re

ci
pi

ta
tio

n

ABC

True posterior

Observations

53

Overall, the consistency of our model with the true precipitation occurrence process seems to be

well-testified by these summaries.

Discussion

It turns out that algorithm 8 successfully characterizes the precipitation of many different

locations across Colorado, given that their empirical probabilities sufficiently adhere to the higher-

order sinusoidal covariates given in (4.2). Indeed, looking at each of our summary plots, it is dif-

ficult to find much to complain about concerning the efficacy of algorithm 8. In fact, the model

succeeds for each location in Colorado that we tried, to the extent that the precipitation data does

not strongly disobey (4.2). Regardless, there are a handful of improvements and extensions to

be investigated. The most prominent deficiency is the absence of precipitation intensities given

precipitation occurrence, which is a key component of many SPGs. Since intensities are usually

modeled with an exponential or gamma distribution, there is high credibly in the hypothesis that

ABC could be used to estimate the parameters present in the corresponding models. Furthermore,

since our model contains just 6 parameters, we can try adding another set of higher-order sinu-

soidal covariates, namely cos(8πd/365) and sin(8πd/365), to attempt an even better fit, especially

for locations whose precipitation behavior is erratic.

With favorable results for the cases of local daily maximum temperature simulation and lo-

cal daily precipitation occurrence simulation, we seek to extend our techniques into a general spa-

tiotemporal domain. Since spatiotemporal temperature simulation has been tackled extensively,

whereas spatiotemporal precipitation simulation tends to be more problematic, we will focus only

on the case of precipitation. However, at this point, the prospect of using ABC to produce local

simulations for most meteorological variables is convincing. We hope that our results will pave

the way for the integration of ABC in the quest for better SWGs as a promising and mighty set of

tools.

54

Figure 4.5: Wet spell counts and the logarithm of wet spell counts by spell length for the observa-
tions and ABC simulation.

0

500

1000

1500

0.0 2.5 5.0 7.5 10.0 12.5
Spell length

S
pe

ll
co

un
t

group
Observations

Simulation

Wet spell counts

0

2

4

6

0.0 2.5 5.0 7.5 10.0 12.5
Spell length

lo
g(

S
pe

ll
co

un
t)

group
Observations

Simulation

log(Wet spell counts)

55

Figure 4.6: Dry spell counts and the logarithm of dry spell counts by spell length for the observa-
tions and ABC simulation.

0

100

200

300

400

0 10 20 30
Spell length

S
pe

ll
co

un
t

group
Observations

Simulation

Dry spell counts

0

2

4

6

0 10 20 30
Spell length

lo
g(

S
pe

ll
co

un
t)

group
Observations

Simulation

log(Dry spell counts)

Chapter 5

Simulation of Daily Precipitation Occurrence across a Spatial Domain with ABC

5.1 Introduction

At this point, we have succeeded in constructing ABC methods for stochastic weather gener-

ation of local daily maximum temperature and precipitation occurrence, two geospatial quantities

with contrasting behavior. Our next objective is to extend our methodology to estimate SPGs

for a correlated spatial domain. The generalization of a stochastic process into a spatiotemporal

one requires care and sophistication, so we retain our focus on precipitation occurrence without

intensity to keep our exploration grounded and viable.

When it comes to describing and modeling spatial phenomena, stochastic processes play a

prominent role. In particular, Gaussian process (GP) theory has proven to be incredibly effective in

spatial modeling, and consequently, we will employ GPs in our aspiration for an effectual SWG for

spatially correlated precipitation occurrence. For a spatial domain S ⊂ Rd, a stochastic process

Z(s) is a Gaussian process if all finite-dimensional distributions are distributed as multivariate

normal random variables: 
Z(s1)

...

Z(sn)

 ∼ N (µ, Σ) ∀ s1, . . . , sn ∈ S. (5.1)

One reason GPs are so attractive is that their entire probability distribution is determined by its

mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n, so that very general spatial behavior can be

described with relatively few parameters. We can reconcile the advantages of GP theory with the

57

binary nature of precipitation occurrence by using a latent GP for our precipitation occurrence

process introduced by Wilks (1998) [78]. Moreover, we will show that our spatially extended

model reduces to a close approximation of (4.2) at a single location, and can be made to reduce

exactly using a straightforward modification. Using similar principles as in the previous two

chapters, we will construct metrics that allow ABC estimation of both the mean and covariance

parameters, and evaluate the results against observed precipitation data across the state of Iowa.

5.2 Statistical Model

While Gaussian process theory is thriving in the field of spatial analysis, there is less to be

said about the simulation of a binary equivalent to a GP. That is, while GPs by definition are real-

valued, it is more difficult to coerce its values to be in the discrete set {0, 1}. However, we can

use the technique of Kleiber et. al. which allows for the simulation spatial binary values using

a Gaussian process [39]. First, simulate W(s, d) ∼ GP(µ, C(·)) = GP(Xβ, C(·)). Then, define

Y(s, d) = 1[W(s,d)≥0], i.e., Y = 1 at a location if W ≥ 0 at that location, and Y = 0 otherwise.

Observe that at a single location s and day d, a Gaussian Process reduces to a normal random

variable of the form W = W(s, d) = µ(s, d) + Z + ε, with stochastic component Z ∼ N (0, 1) and

nugget effect ε ∼ N (0, τ2), a component of small-scale variability. We then see that

P [Y(s, d) = 1] = P [W(s, d) ≥ 0]

= P [µ(s, d) + Z(s, d) + ε ≥ 0] ,

= P [Z(s, d) + ε ≥ −µ(s, d)]

= 1−P [Z(s, d) + ε ≤ −µ(s, d)]

= P [Z(s, d) + ε ≤ µ(s, d)]

= P [Z(s, d) + ε ≤ X(s, d)β(s)]

= P
[
N (0, 1) ≤ X(s, d)β(s)√

1 + τ2

]
= Φ

(
X(s, d)β(s)√

1 + τ2

)
.

58

Note that we used the definition of a Gaussian process Z, namely, that Z(s) ∼ N (0, 1) at any given

location s ∈ S. Since it is common in practice that τ2 � 1, we have
√

1 + τ2 ≈ 1, and so

P [Y(s, d) = 1] ≈ Φ (X(s, d)β(s))

which is approximately our generalized linear model for a single location given in (4.3). That is,

our thresholded Gaussian process produces essentially the same precipitation occurrence behavior

for individual locations that our methods in the previous chapter produced. For models which

must exactly recover the reduction to single locations, one can instead threshold based on

Y(s, d) = 1 if
√

1 + τ2 (Z + ε) + µ(s, d) ≥ 0

which yields P [Y(s, d) = 1] = Φ(X(s, d)β(s)) as desired. It should be noted that the true value

of τ2 cannot be known, but must be estimated, and so this equality in practice will always be

approximate. Nonetheless, this procedure allows us to use the features of a Gaussian process for

the simulation of correlated precipitation occurrence over a spatial domain.

With this analysis, we are ready to formalize our extension of model (4.2) to a general spatial

domain. Given a spatial domian S ⊂ R2 we wish to simulate a stochastic process Y of daily

precipitation occurrence over S. Following our discussion above, for each s ∈ S and d ∈ Z+,

define

W(s, d) ∼ GP
(

µ (s, d; β) , C (h, d; α) + τ21[h=0](h)
)

Y(s, d) = 1[W(s,d)≥0]

(5.2)

where C(h, d) = Cov [s, s + h] for any location s ∈ S, day d, and shift vector h, and 1[A] is the

indicator function which is 1 if A is a true proposition and 0 otherwise. In our newfound jargon,

W ∈ R is a latent Gaussian Process with mean µ and covariance function C, equipped with an

assumed nugget effect τ2. Y ∈ {0, 1} is our thresholded process induced by the latent process W.

As in the case for local precipitation occurrence, we assume a mean with sinusoidal and autore-

59

gressive covariates, namely

µ (s, d; β) = β0 + β1Y(s, d− 1) + β2 cos
(

2πd
365

)
+ β3 sin

(
2πd
365

)
+ β4 cos

(
4πd
365

)
+ β5 sin

(
4πd
365

)
,

(5.3)

Furthermore, following Kleiber et. al. [40], we will assume an isotropic exponential covariance

with a time-dependent range, causing C to take the form

C(h, d; α) = exp
(
− ‖h‖

A(t)

)
.

Because we surmise that the spatial correlation of precipitation occurrence oscillates throughout

the year, we can include sinusoidal terms within A(t), and because A(t) is required to be positive,

we will exponentiate our sine terms, so that

A(t) = exp
{

α0 + α1 cos
(

2πd
365

)
+ α2 sin

(
2πd
365

)
+ α3 cos

(
4πd
365

)
+ α4 sin

(
4πd
365

)}
.

However, between µ, A(t) and τ, our model currently boasts 12 parameters, which turns out to

be too computationally expensive for our simulations. Hence, we set α3 = α4 = 0 so that

C(h, d; α) = exp

− ‖h‖
exp

(
α0 + α1 cos

(
2πd
365

)
+ α2 sin

(
2πd
365

))
 (5.4)

which we will hope to be tractable and still yield adequate approximations to the observed data.

Before we propose our ABC metrics for the case of spatial precipitation occurrence, we will

need to discuss some prerequisite information concerning our data analysis and simulation meth-

ods. In particular, we explore the estimation of spatial dependence with variograms, and discuss

the elements of using Cholesky decompositions for streamlined Gaussian process simulation.

5.3 Spatial Estimation with Variograms

In upgrading to a spatial domain for precipitation occurrence, our main goal is to under-

stand the spatial dependence of precipitation occurrence over S if we wish to produce realistic

simulations across its entirety. This presents a great challenge due to intrinsic uncertainties in and

60

obstreperous qualities of spatial covariance and dependence. One function that assesses the de-

gree of spatial dependence of a stochastic process is known as the theoretical variogram, defined

as

γ(u) =
Var [Y(x + u)−Y(x)]

2

[16]. This function is particularly popular in the estimation of paramters for geostatistical mod-

els [18]. The variogram can be seen as a measure of the variance of a stochastic process Y as

a function of the location and magnitude of the shift vector u. Intuitively, γ should be small for

small distances and large for large distances, since spatial dependence should be strong for nearby

locations and week for distant ones. At the moment, we do not have a closed-form solution for

Var [Y(s1 + u)−Y(s)] for our model, so we turn to estimation. For the case of a constant mean

function µ(x) = µ, a nonparametric estimator is the empirical variogram is given by

γ̂(u) =
1

2 |N(u)|

n

∑
i=1

∑
j 6=i

[
y(xi)− y(xj)

]2 , (5.5)

where N(u) is a user-defined neighborhood about u, and |N(u)| denotes the number of distinct

elements uj ∈ N(u). This "binning" of variogram values aims to smooth out the curve to prevent

noisy point clouds whose structure is difficult to analyze. The choice of the bins is arbitrary,

but the rule of thumb is to include at least 30 pairs of observations per bin (i.e. |N(u)| > 30).

Moreover, for |u| � 0, so few pairs are used in estimating γ̂(u) that it is unreliable, so the modeler

will often restrict distances so that u ≤ 1
2 max

∥∥si − sj
∥∥. Despite being an ad-hoc statistic, the

empirical variogram has been employed successfully for many statistical analyses. One fallback of

the binned variogram is its sensitivity to outliers; to address this, Cressie and Hawkins identified

the following more robust version,

γ̂Robust(u) =
1

0.914 + 0.988
|N(u)|

 1
|N(u)| ∑

‖si−sj‖∈N(u)

(
y(si)− y(sj)

)4

which is widely used as a safer alternative [17]. Both empirical variograms can be found in most

spatial statistical software packages, including our choice of the fields package for R. Because

61

our model (5.2) assumes a time-dependent spatial correlation, our empirical variogram will de-

pend on the location s as well as the day of the year d, so that γ̂(u) = γ̂(u, d).

Because our empirical variograms are assumed to have intra-annual variability, we will need

to estimate its behavior at different instances of time throughout the year. This will require several

trade offs. We want to choose enough days in the year to get an accurate account of its behavior,

while still maintaining tractability for ABC. This inspires us to construct an monthly aggregate

variogram Γ̂ as a function of month m as well as u, defined as

Γ̂(m, u) =
1
|Y | ∑

y∈Y

1
2ω

δm,y+ω

∑
d=δm,y−ω

γ̂(u, d) (5.6)

where Y is the set of sample years, δm,y is the sample center day of the month m in year y, and ω is

the forwards and backwards offset for binning. So, for each month m, we loop through all of our

sample years and select a sample center day for that month, δm,·, which is arbitrarily chosen, but

should be consistent. Next, we compute a sort of "clustered variogram" for δm, meaning that we

look at a few days before and after this day to smooth the variogram data from an otherwise noisy

set of points. This is represented by δm ± ω; we set ω = 5 which yields a group of 10 consecutive

days for each month. Finally, we divide by the total number of aggregated variograms, i.e., 2ω|Y |,

to ensure that the values of Γ̂ are on the same scale as γ̂.

5.4 Gaussian Process Simulation

Our model (5.2) relies on a latent Gaussian process, and while there is an air of pleasant

simplicity about the definition of a GP, the act of its simulation will require more care than its

straightforward definition may suggest. The simplest way to simulate a GP is to explicitly decom-

pose it as a weighted sum of random variables which adheres to the definition of a GP. Alterna-

tively, if Z(s) is assumed to be a GP with mean zero and exponential covariance function, there

are various techniques which can produce the desired result, including Cholesky decomposition,

random coins, turning bands, and circulant embedding. Since C is time-dependent, we will need

to generate a new covariance matrix for each day of the year, and so our implementation must be

62

sufficiently clever to avoid unnecessarily lengthy computations.

Perhaps the most straightforward means of GP simulation involves the famous Cholesky

factorization (or decomposition) of a matrix, widely used across many disciplines of mathematics.

If Σ is a positive definite matrix, then its Cholesky decomposition is defined to be

Σ = LL∗ (5.7)

where L is a lower triangular matrix, and L∗ denotes the adjoint, or conjugate transpose, of L. If

A is real-valued, then L is also real-valued, so that L∗ = LT. A property of covariance matrices is

that they are necessarily nonnegative definite, so the Cholesky decomposition will not work for

every choice of covariance function, but in the case of an exponential covariance, this hypothesis

is satisfied. Hence, the method proceeds as follows. If Z(s) is a GP with covariance C(·, ·) which

induces a real covariance matrix Σ, to simulate Z at locations s1, . . . , sn ∈ S, take

Lε = L


ε1

...

εn

 , ε1, . . . , εn ∼ N (0, 1).

Thus, this demonstrates an exact simulation, since Lε is a multivariate normal with

E [Lε] = LE [ε] = L0 = 0

and

Var [Lε] = Cov [Lε, Lε]

= L Cov [ε, ε]L∗

= LILT

= Σ

For our purposes, given a vector of candidate parameters α, we can construct our covariance

matrix Σ(α) and then compute 365 Cholesky decompositions, that is, one for each day of the year.

With this list of Cholesky factors, we can reuse them throughout the duration of our simulations,

which will save a lot of computation since the day count will be on the order of thousands, or even

tens of thousands, of days, as well as thousands of iterations to produce candidate parameters α.

63

Once the covariance matrices are accounted for, the simulation of a GP more or less follows

the machinery laid out by equations (5.2), (5.3), and (5.4). Algorithm 9 makes our approach more

explicit while still trying to maintain generality for the sake of extensibility or modification. For

example, one might insist on using circulant embedding which outperforms Cholesky decom-

position significantly at the cost of a more complicated GP simulation algorithm. Nonetheless,

algorithm 9 suffices for our purposes, and we will assume its implementation when identifying

our ABC procedures in the following section.

5.5 Metrics for Estimating Spatiotemporal Precipitation Occurrence

We seek to apply the ABC methodology of our previous chapters, which examined the

simulation of daily local maximum temperature and precipitation occurrence, to a generalized

spatiotemporal framework which incorporates multiple locations over the span of an arbitrary

number of years. Unsurprisingly, our new setup has accumulated new difficulties, so we need

to address our intentions and assumptions with care and precision. First and foremost, we must

discuss our strategy in the estimation of our collection of parameters θ =
(

βT, αT, τ2)T, which

amounts to a formidable 11 parameters of interest.

In general, it is sensible to assume that each βi can also vary across locations, so that β =

β(s). This becomes crucial when S has highly variable orography and general circuluation pat-

terns [12, 33, 39, 52]. While highly accurate, this has quickly become infeasible, since there will be

6n+ 4 parameters to estimate, where n is the number of locations in question, often leading to well

over 100 parameters. One possible remedy is to regress each βi across the domain based on avail-

able geographical quantities like longitude, latitude, and elevation, as well as their interactions.

However, even this will lead to an unruly amount of paramters, since for example, the model

E [βi] = γ0 + γ1Longitude + γ2Latitude + γ3Elevation + γ4Longitude Latitude

+ γ5Longitude Elevation + γ6Latitude Elevation + γ7Longitude Latitude Elevation,

i = 0, . . . , 5

(5.8)

64

Algorithm 9: Simulating an exponential Gaussian process using Cholesky decomposition
Input : Mean function µ parametrized by β, covariance function C parametrized by α
Output: Matrix W ∈ Rn×T, where wi,j represents the realization of a thresholded GP at

location si on day j.
choleskies← {} # List of cholesky factors
A(t) = exp

(
a0 + a1 cos

(2πt
365

)
+ a2 sin

(2πt
365

))
for i = 1, . . . , 365 do

Σ←
(

exp
{
−‖si−sj‖

A(t)

})n

i,j=1

Decompose Σ = LL∗

choleskies[i]← L
end
W[1]← 0n×1 # Arbitraty set all initial values to 0 for day 1
for d = 2, . . . , T do

for si ∈ S do
µi ← X(si, d)β(si)

end
ε ∼ N (0n×1, In×n)
d′ ← d mod 365
Z← choleskies[d′] ε
Ω← Z + µ +N

(
0n×1, τ2In×n

)
for si ∈ S do

wi,d ← 1[ωi,d≥0]

end
end

65

already encumbers us with 6× 8 = 48 mean parameters and 52 total. Of course, one can conduct

a model fitting evaluation to identify the most significant covariances, but yet again we are almost

certainly left with more parameters than can be handled by ABC.

Instead, we restrict our focus on the special case of a spatially constant mean function, a

simplification that describes a rather limited subset of spatial domains. For example, examinations

of empirical probabilities of precipitation occurrence over the course of a year for various locations

in Colorado dissuades us from even considering this simplification over its domain. Nonetheless,

some geographical areas do adhere to this assumption, such as the state of Iowa, using the same

examination of empirical precipitation probabilities across the state. We will resort to one more

mitigator, which is to first estimate β using some form of ABC, and then use these estimated β

parameters to estimate α and τ using a different embodiment of ABC. While perhaps not ideal,

it can be justified by the modularity of β and α in our model. Furthermore, we will illustrate

that this approach can yield appealing results and should be viewed as a solid foundation to the

application of ABC to the spatiotemporal simulation of precipitation occurrence.

To estimate β, we will need to come up with a statistic that measures the accuracy of the

mean function over the entire domain. Under the assumption that the terrain does not vary greatly

and that the precipitation behaves similarly at each location si ∈ S, then we can consider a sort of

aggregation of our metric (4.8) from the previous chapter. That is we can compute a standardized

sum of the wet and dry spell errors over all of our locations in S , so that

β̂ = arg min
β

{
1
n

n

∑
i=1

1
|T | ∑

t∈T

(
1
|Z1| ∑

ζ1∈Z1

|ϕ(si[t]; ζ1)− ϕ(oi[t]; ζ1)|
max {ϕ(oi[t]; ζ1), 1}

+
1
|Z2| ∑

ζ2∈Z2

|ψ(si[t]; ζ2)− ψ(oi[t]; ζ2)|
max {ψ(oi[t]; ζ2), 1}

)}
.

(5.9)

where, as before, ϕ counts wet spells as defined in (4.5), ψ counts dry spells as defined in (4.6), T

is a partition of the months of the year, Z1 is a set of sets of wet spell lengths, Z2 is a set of sets

of dry spell lengths, and the notation x[t] represents the time series x subsetted by the set of time

points t. We need to tread lightly with this metric since such an aggregation will lose much of the

single-site behavior, but in principle it should favor values of β which represent S well as a whole

66

while distrusting values of β that skew the count at any given site.

After obtaining the estimate β̂ of our mean function, we can use it to estimate the remaining

parameters, γ =
(
αT, τ2)T. These parameters are intrinsic to the spatial covariance of the domain

S, and consequently, they must be estimated via assessing this covariance. Here we can use our

aggregate monthly variogram Γ̂ as defined in (5.6), since it computes a smoothed monthly error of

the binned variograms for the observed and simulated data. Therefore, in the spirit of our metrics

(3.3) and (4.8), we define our ABC estimator γ̂ABC by

γ̂ABC = arg min
γ

1
|M| ∑

m∈M

∣∣∣Γ̂(m|o)− Γ̂(m|sα)
∣∣∣

Γ̂(m|o)
, (5.10)

whereM is the desired set of months to use in the penalization. A straightforward choice is to let

M = {1, . . . , 12}, simply the set of months in the year, which will be our choice. The combination

of these metrics will constitute our ABC algorithm for spatial precipitation occurrence, which is

further elucidated in algorithm 10.

5.6 Numerical Results for the State of Iowa

For the spatiotemporal case of precipitation simulation, we depart from the state of Col-

orado in favor of the state of Iowa due to its homogeneous terrain. Once again, we will use data

provided by the GHCND which contains 42,705 days of data from 22 different spatial locations

across Iowa. For the ABC-estimation of the mean function parameters β, we choose a 20 year

sequence of days for tractability, and reuse our wet and dry spell sets Z1 and Z2 from the local

precipitation case in Chapter 4. For our tolerance ε1, we first consider the error used for a single

location, which was roughly 1.09, increase it slightly due to the variability throughout the domain,

and then multiply it by the number of locations n = 22, so that ε1 = 1.15× 22 = 25.3, Moreover, to

assist our algorithm as much as possible, we conduct a grid search through the prior space to get

a minimizing value of our $ function, which we assign to be our initial guess β0. Using uniform

priors leads to sequences of accepted values that tend to stray, and although they are expected

67
Algorithm 10: ABC-MCMC for daily spatiotemporal precipitation occurrence parameter es-
timation

Input : Observed data D, initial values β0, γ0, candidate-generating densities
q1(·, ·), q2(·, ·), tolerances ε1, ε2 > 0, desired number of samples N1 for β and N2 for
γ

Output: A vector V of samples approximately distributed from target distribution f (θ|D)
DefineM1 using (5.3)
DefineM2 using (5.2) Define $β as follows:

$β

(
D,D′

)
:=

1
|S |

m

∑
i=1

1
|T | ∑

t∈T

(
1
|Z1| ∑

ζ1∈Z1

|ϕ(si[t]; ζ1)− ϕ(oi[t]; ζ1)|
max {ϕ(oi[t]; ζ1), 1}

+
1
|Z2| ∑

ζ2∈Z2

|ψ(si[t]; ζ2)− ψ(oi[t]; ζ2)|
max {ψ(oi[t]; ζ2), 1}

)

Define $γ as follows:

$γ

(
D,D′

)
:=

1
|M| ∑

m∈M

∣∣∣Γ̂(m,D)− Γ̂(m,D′)
∣∣∣∣∣∣Γ̂(m,D)

∣∣∣
Vβ ← {}
β← β0
while |Vβ| < N1 do

generate βcandidate ∼ q1(β, ·)
simulate D′(βcandidate) fromM1
if $β (D,D′(βcandidate)) < ε1 then

u ∼ U(0, 1)

if u < min
{

π(βcandidate)q1(βcandidate,β)
π(β)q1(β,βcandidate)

, 1
}

then
β← βcandidate

end
end
append β to Vβ

end
Vγ ← {}
γ← γ0
while |Vγ| < N2 do

generate β ∼ Vβ

generate γcandidate ∼ q2(γ, ·)
simulate D′(β, γcandidate) fromM2
if $γ(D,D′(β, γcandidate)) < ε2 then

u ∼ U(0, 1)

if u < min
{

π(γcandidate)q2(γcandidate,γ)
π(γ)q2(γ,γcandidate)

, 1
}

then
γ← γcandidate

end
end
append γ to Vγ

end

68

to approximate the posterior asymptotically, do not return in a reasonable about of time for this

situation; this is unsurprising behavior when computing such a high-level aggregation of data

values in our metric (5.9). So, to achieve tractability, we instead elect normally distributed priors,

centered around our initial guess. More explicitly, our ith prior πi is distributed as a N (β0,i, 0.1)

random variable.

Note that our ABC-MCMC algorithm as laid out in Chapter 2 allows for any valid proba-

bility distribution, but the inclusion of our grid search value as the mean of our priors may lead

to questions of circular analysis. A couple of justifying remarks can be made in this regard. First,

the idea of a prior distribution as a representation of belief creates an inherent partiality in the

methodology, and so any error introduced from this double dipping can be incorporated into the

already present influence. In addition, SWGs aim merely to replicate the statistical characteristics

of a dataset, and do not attempt to make claims about the truth of the underlying parameters.

That is, the resulting posteriors are not professing statistical strength, but instead attempt to pro-

vide satisfactory results for the application of the simulated data, which is much more subjective.

Nonetheless, there are a couple of remedies which can be implemented if desired or necessary. The

concerned modeler can instead center their priors based on less biased values, such as centering

around -1 for the intercept β0, about 0.5 for the auto-regressive covariate, and about 0 for the sinu-

soidal regressors, and adjust the variance as necessary to acquire a sufficient amount of samples.

Another remedy is to return to the uniform priors and implement the variant provided by Sisson

et. al. that alleviates the bias in the samples [69]. Nonetheless, skeptical ourselves, we shifted our

priors around to see how they affected the posteriors, and it turns out that the posteriors are quite

robust and did not change much at all.

Figure 5.1 shows the ABC posteriors after about 1,600 samples and discarding the burn-in.

We see that there is a considerable amount of certainty in the posteriors, and this is confirmed by

examining a plot of the expected probability of precipitation against the 22 empirical probabilities,

which is shown in figure 5.2. Since Iowa was chosen due to its mostly unchanging terrain, the

behavior of the domain as a whole is able to be replicated quite well. These results allow us to

69

proceed with our procedure 10 and estimate γ. Again, we use a 20-year subset of the data, and use

a grid search to get our initial guess γ0. We choose ε2 = 1.0, and uniform priors. After the burn-in,

we obtain 800 samples, whose densities are displayed in figure 5.3. We immediately observe the

increase in uncertainty for these parameters. Examining the aggregate variogram Γ̂(m) for each

month shown in figure 5.4 gives some illumination: while Γ̂ is estimated closely for many months,

we see consistent over- and underestimation for several months, including March, September,

and December. One possible source of this error is the exclusion of the higher-order sinusoidal

covariates cos(4πd/365) and sin(4πd/365) (whose exclusion results from their hindrance of ABC

with very few parameter jumps in the acceptances). Perhaps 20 years is insufficient to capture

the covariance, which is plausible given the limitation of binary-valued data. Regardless, the

covariances seem to be replicated for the most part, and if nothing else demonstrates the potential

of algorithm 10 with proper modifications.

As a final glimpse of the tenability of the SPG given by algorithm 10, we can create a simu-

lation at our 22 locations in Iowa using the empirical means of each posterior for 12 days ranging

from mid- to late-January, and plot them in sequence. These plots are shown in figure 5.5. There

are several features which are compatible with the observed data and our general assumptions. It

appears that no precipitation is more common across the domain, which conforms to our obser-

vations of precipitation behavior. There is also evidence of precipitation on a day at a site often

leading to precipitation on the following day at the same site. Moreover, the spatial dependence

is palpable with clusters of precipitation occurrence when it exists, which is compatible with the

real-world clustered behavior of precipitation.

5.7 Discussion

Using a latent Gaussian process allows for correlated binary-valued simulations of precipita-

tion occurrence, and ABC allows us to adequately estimate the inherent statistical parameters. Our

case study of Iowa leads to many avenues of exploration in the application of ABC to spatiotem-

poral SPGs. Future work includes transgressing the assumption of a constant mean function, so

70

Figure 5.1: The prior and ABC posterior densities for each parameter βi via (5.3).

0

5

10

15

−1.0 −0.8 −0.6

ABC Posterior

Prior

β0

0.0

2.5

5.0

7.5

10.0

0.2 0.4 0.6

ABC Posterior

Prior

β1

0

3

6

9

−0.4 −0.2 0.0

ABC Posterior

Prior

β2

0

5

10

15

−0.2 0.0 0.2

ABC Posterior

Prior

β3

0

5

10

15

−0.2 0.0 0.2

ABC Posterior

Prior

β4

0.0

2.5

5.0

7.5

10.0

12.5

−0.2 0.0 0.2

ABC Posterior

Prior

β5

71

Figure 5.2: The empirical probability of precipitation by day averaged over each month and over
all of the 22 locations in Iowa (represented by the box plots), as well as the mean daily probability
of precipitation given by our βABC-MCMC estimate (represented by the solid blue line).

0.0

0.1

0.2

0.3

0.4

0.5

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

E
m

pi
ric

al
 p

ro
ba

bi
lit

y
of

 p
re

ci
pi

ta
tio

n
oc

cu
rr

en
ce

72

Figure 5.3: The prior and ABC posterior densities for parameters αi from (5.4), as well as the
nugget effect τ2. Note that the density represents the square root of the nugget effect, τ =

√
τ2, an

artifact of our method of implementation.

0.00

0.25

0.50

0.75

1.00

1.25

5.5 6.0 6.5 7.0

ABC posterior

Prior

α0

0.0

0.5

1.0

1.5

2.0

−0.6 −0.3 0.0 0.3 0.6

ABC posterior

Prior

α1

0.0

0.5

1.0

1.5

2.0

−0.6 −0.3 0.0 0.3 0.6

ABC posterior

Prior

α2

0.0

2.5

5.0

7.5

0.2 0.3 0.4 0.5 0.6

ABC posterior

Prior

τ

73

Figure 5.4: The aggregate variogram Γ̂(m) of our simulated thresholded Gaussian process for
each month for the state of Iowa (represented by the box plots), as well as the observed aggregate
variogram for the state of Iowa (represented by the solid blue lines).

0.000

0.025

0.050

0.075

0.100

0.125

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

January

0.00

0.05

0.10

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

February

0.00

0.05

0.10

0.15

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

March

0.00

0.05

0.10

0.15

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

April

0.00

0.05

0.10

0.15

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

May

0.00

0.05

0.10

0.15

0.20

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

June

0.00

0.05

0.10

0.15

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

July

0.00

0.05

0.10

0.15

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

August

0.00

0.05

0.10

0.15

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

September

0.00

0.05

0.10

0.15

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance
V

ar
io

gr
am

October

0.00

0.05

0.10

0.15

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

November

0.00

0.05

0.10

0.15

10 30 50 70 90 110
130

150
170

190
210

230
250

270
290

310
330

Distance

V
ar

io
gr

am

December

74

Figure 5.5: Sample daily precipitation occurrence simulation over Iowa from January 20 through
January 31.

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/20

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/21

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/22

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/23

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/24

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/25

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/26

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/27

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/28

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/29

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/30

0
1

−96 −95 −94 −93 −92 −91

41
.0

42
.0

43
.0

1/31

0
1

75

that β = β(s). This will present a challenge in how to estimate the mean parameters, although

there may be a feasible solution in the regression approach given by 5.8. Modelers can experiment

with different covariance functions, such as the celebrated Matern covariance function, and assess

their utility and implications. As in the local precipitation occurrence case, a natural expansion to

our model would be the integration of precipitation intensity, which is a very desirable feature of

an SPG that carries its own set of parameters to be estimated. Algorithm 9 can be optimized by

more clever methods of Gaussian process simulation, which can lead to more acceptances, and in

turn may allow for an increase in model parameters.

The study of spatiotemporal precipitation occurrence simulation concludes our examination

of stochastic weather generation using ABC. The theme of this thesis has been the perpetual battle

of precision and pragmatism, a theme familiar in the practice of statistics and applied mathemat-

ics. Ultimately, ABC methods have proven to be well suited to this kind of trade-off through their

flexibile yet sturdy nature. We persisted with the classical ABC-MCMC given by algorithm 6, but

it should be reiterated that much of the bias and inaccuracy we have witnessed can be reduced

using modified versions of the algorithm. In addition, there is a complementary static-dynamic

balance rooted in the union of ABC and SWGs. For example, one detail that has been glossed

over is the fact that with posterior distributions for our parameters, not only can we generate sta-

tistically consistent simulations, but we can change the way we extract our samples from these

posteriors to alter our data values. This can lead to synthetic weather that is similar to, but sig-

nificantly different from, observed weather patterns, and this can be beneficial in many models

that seek to illustrate the effect of these parameter changes. We hope these musings convince the

reader that the application of ABC to SWGs is something we should continue to explore with

optimism.

Bibliography

[1] P. Ailliot, C. Thompson, and P. Thomson. Space-time modelling of precipitation by using a
hidden markov model and censored gaussian distributions. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 58(3), 2009.

[2] D. J. Allcroft and C. A. Glasbey. A latent gaussian markov random-field model for spa-
tiotemporal rainfall disaggregation. Journal of the Royal Statistical Society: Series C (Applied
Statistics), 52, 2003.

[3] S. Apipattanavis, G. Podestá, B. Rajagopalan, and R. W. Katz. A semiparametric multivariate
and multisite weather generator. Water Resources Research, 43, 2007.

[4] Mark A. Beaumont. Adaptive approximate bayesian computation. Biometrika, 2009.

[5] Mark A. Beaumont, Wenyang Zhang, and David J. Balding. Approximate bayesian compu-
tation in population genetics. Genetics, 2002.

[6] F. P. Brissette, M. Khalili, and R. Leconte. Efficient stochastic generation of multi-site synthetic
precipitation data. Journal of Hydrology, 345, 2007.

[7] P. E. Brown, P. J. Diggle, M. E. Lord, and Young P. C. Space-time calibration of radar rainfall
data. Journal of the Royal Statistical Society: Series C, 50, 2001.

[8] T. A. Buishand and T. Brandsma. Multisite simulation of daily precipitation and temperature
in the rhine basin by nearest-neighbor resampling. Water Resources Research, 37(11), 2001.

[9] A. Bárdossy and G. G. S. Pegram. Copula based multisite model for daily precipitation sim-
ulation. Hydrology and Earth System Sciences, 13, 2009.

[10] Daly C., R. P. Neilson, and D. L. Phillips. A statistical-topographic model for mapping clima-
tological precipitation over mountainous terrain. Journal of Applied Meteorology, 33, 1994.

[11] A. J. Cannon. Probabilistic multisite precipitation downscaling by an expanded bernoulli-
gama density network. Journal of Hydrometeorology, 9, 2008.

[12] R. E. Chandler. On the use of generalized lineaer models for interpreting climate variability.
Environmetrics, 16, 2005.

[13] Richard E. Chandler and Howard S. Wheater. Analysis of rainfall variability using general-
ized linear models: A case study from the west of ireland. Water Resources Research, 38(10),
2002.

77

[14] S. P. Charles, B. C. Bates, and J. P. Hughes. A spatiotemporal model for downscaling precipi-
tation occurrence and amounts. Journal of Geophysical Research, 104, 1999.

[15] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm.
The American Statistican, 49(4), 1995.

[16] Noel Cressie. Statistics for Spatial Data. Wiley Interscience, 1993.

[17] Noel Cressie and Douglas M. Hawkins. Robust estimation of the variogram: I. Mathematical
Geology, 12(2), 1980.

[18] P. J. Diggle and J. A. Tawn. Model-based geostatistics. Applied Statistics, 47(3), 1998.

[19] Annette Dobson and Adrian Barnett. An Introduction to Generalized Linear Models. Taylor
& Francis Group, 2008.

[20] M. Durban and C. A. Glasbey. Weather modelling using a multivariate latent gaussian model.
Agricultural and Forest Meterology, 109, 2001.

[21] A.D. Friend, A.K. Stevens, R.G. Knox, and M.G.R. Cannell. A process-based, terrestrial bio-
sphere model of ecosystem dynamics. Ecological Modeling, 1997.

[22] Y.X. Fu and W.H. Li. Estimating the age of the common ancestor of a sample of dna sequences.
Molecular Biology and Evolution, 14, 1997.

[23] M. Fuentes. Spectral methods for nonstationary spatial processes. Biometrika, 89, 2002.

[24] K.R. Gabriel and J. Neumann. A markov chain model for daily rainfall occurrence at tel aviv.
Quarterly Journal of the Royal Meteorological Society, 88(375), 1962.

[25] A. E. Gelfand, S. Banerjee, and D. Gamerman. Spatial process modelling for univariate and
multivariate dynamic spatial data. Environmetrics, 16, 2005.

[26] A. E. Gelfand, A. M. Schmidt, S. Banerjee, and C. F. Sirmans. Nonstationary multivariate
process modeling through spatially varying coregionalization. Sociedad de Estadística e
Investigación Operativa Test, 13(2), 2004.

[27] T.C. Haas. Lognormal and moving window methods of estimating acid deposition. Journal
of the American Statistical Association, 85, 1990.

[28] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1), 1970.

[29] D. Higdon. A process-convolution approach to modelling temperatures in the north atlantic
ocean. Environmental and Ecological Statistics, 5, 1998.

[30] R. J. Hijmans, S. E. Cameron, J. L Parra, P. G. Jones, and A. Jarvis. Very high resolution
interpolated climate surfaces for global land areas. International Journal of Climatology, 25,
2005.

[31] J. P. Hughes and P. Guttorp. A non-homogeneous hidden markov model for precipitation
occurrence. Applied Statistics, 48, 1999.

78

[32] M. F. Hutchinson. Interpolating mean rainfall using thin plate smoothing splines.
International Journal of Geographical Information Systems, 9, 1995.

[33] G. L. Johnson, C. Daly, G. H. Taylor, and C. L. Hanson. Spatial variability and interpolation of
stochastic weather simulation model parameters. Journal of Applied Meteorology, 39, 2000.

[34] M. Jun. Non-stationary cross-covariance models for multivariate processes on a globe.
Scandinavian Journal of Statistics, 38, 2011.

[35] R. W. Kats. Precipitation as a chain-dependent process. Journal of Applied Meterology, 16,
1977.

[36] C. G. Kilsby, P. D. Jones, A. Burton, A. C. Ford, H. J. Fowler, C. Harpham, P. James, A. Smith,
and R. L. Wilby. A daily weather generator for use in climate change studies. Environmental
Modelling and Software, 22, 2007.

[37] H.-M. Kim, B. K. Mallick, and C. C. Holmes. Analyzing nonstationary spatial data using
piecewise gaussian processes. Journal of the American Statistical Association, 100, 2005.

[38] W. Kleiber and D. Nychka. Nonstationary modeling for multivariate spatial processes.
Journal of Multivariate Analysis, 112, 2012.

[39] William Kleiber, Richard W. Katz, and Balaji Rajagopalan. Daily spatiotemporal precipitation
simulation using latent and transformed gaussian processes. Water Resources Research, 48,
2012.

[40] William Kleiber, Richard W. Katz, and Balaji Rajagopalan. Daily minimum and maximum
temperature simulation over complex terrain. The Annals of Applied Statistics, 7(1), 2013.

[41] W.P. Kustas, A. Rango, and R. Uijlenhoet. A simple energy budget algorithm for the
snowmelt runoff model. Water Resources Research, 30, 1994.

[42] U. Lall and A. Sharma. A nearest neighbor bootstrap for resampling hydrological time series.
Water Resources Research, 32(3), 1996.

[43] D. R. Legates and C. J. Willmott. Mean seasonal and spatial variability in global surface air
temperature. Theoretical and Applied Climatology, 41, 1990.

[44] P. Marjoram, J. Molitor, V. Plagnol, and S. Tavaré. Markov chain monte carlo without like-
lihoods. Proceedings of the National Academy of Sciences of the United States of America,
100(26), 2003.

[45] D. et. al. Mauran. Precipitation downscaling under climate change: Recent developments
to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48,
2010.

[46] Linda O. Mearns, Cynthia Rosenzweig, and Richard Goldberg. Mean and variance change in
climate scenarios: Methods, agricultural applications, and measures of uncertainty. Climatic
Change, 35, 1997.

[47] R. Mehrotra and A. Sharma. Development and application of a multisite rainfall stochastic
downscaling framework for climate change impact assessment. Water Resources Research,
46, 2010.

79

[48] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller.
Equation of state calculations by fast computing machines. The Journal of Chemical Physics,
21(6), 1953.

[49] Peter Müller. A generic approach to posterior integration and gibbs sampling. 1993.

[50] David J. Nott, Lucy Marshall, and Jason Brown. Generalized likelihood uncertainty estima-
tion (glue) and approximate bayesian computation: What’s the connection? Water Resources
Research, 48, 2012.

[51] C. J. Paciorek and M. J. Schervish. Spatial modelling using a new class of nonstationary
covariance functions. Environmetrics, 17, 2006.

[52] N. Pepin and M. Losleben. Climate change in the colorado rocky mountains: Free air versus
surface temperature trends. International Journal of Climatology, 22, 2002.

[53] T. C. Peterson and R. S. Vose. An overview of the global historical climatology network
temperature database. Bulletin of the American Meterological Society, 78, 1997.

[54] A. Pintore and C. Holmes. Spatially adaptive non-stationary covariance functions via spa-
tially adaptive spectra. Unpublished manuscript, 2006.

[55] D. T. Price, D. W. McKenney, I. A. Nalder, M. F. Hutchinson, and J. L. Kesteven. A comparison
of two statistical methods for spatial interpolation of canadian monthly mean climate data.
Agricultural and Forest Meteorology, 101, 2000.

[56] J.K. Pritchard, M.T. Seielstad, A. Perez-Lezaun, and M.W. Feldman. Population growth of
human y chromosomes: a study of y chromosome microsatellites. Molecular Biology and
Evolution, 16, 1999.

[57] P. Racsko, L. Szeidl, and M. Semenov. A serial approach to local stochastic weather models.
Ecological Modeling, 57, 1991.

[58] Balaji Rajagopalan and Upmanu Lall. A k-nearest-neighbor simulator for daily precipitation
and other weather variables. Water Resources Research, 35(10), 1999.

[59] C.W. Richardson. Stochastic simulation of daily precipitation, temperature, and solar radia-
tion. Water Resources Research, 17(1), 1981.

[60] B.D. Ripley. Stochastic Simulation. Wiley, New York, 1982.

[61] Donald Rubin. Bayesianly justifiable and relevant frequency calculations for the applied
statistician. The Annals of Statistics, 12(4), 1984.

[62] S. W. Running, R. R. Nemani, and R. D. Hungerford. Extrapolation of synoptic meteoro-
logical data in mountainous terrain and its use for simulating forest evapotranspiration and
photosynthesis. Canadian Journal of Forest Research, 17, 1987.

[63] M. Sadegh and J. A. Vrugt. Bridging the gap between glue and formal statistical approaches:
Approximate bayesian computation. Hydrology and Earth System Sciences, 17, 2013.

[64] Mojtaba Sadegh and Jasper A. Vrugt. Approximate bayesian computation using markov
chain monte carlo simulation: Dream-abc. Water Resources Research, 50, 2014.

80

[65] P. D. Sampson and P. Guttorp. Nonparametric estimation of nonstationary spatial covariance
structure. Journal of the American Statistical Association, 87, 1992.

[66] B. Sansó and L. Guenni. A nonstationary multisite model for rainfall. Journal of the American
Statistical Association, 95, 2000.

[67] Mikhail A. Semenov and Elaine M. Barrow. Use of a stochastic weather generator in the
development of climate change scenarios. Climatic Change, 35, 1997.

[68] G. Shaddick and J. Wakefield. Modelling daily multivariate pollutant data at multiple sites.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 51(3), 2002.

[69] S.A. Sisson, Y. Fan, and Mark M. Tanaka. Sequential monte carlo without likelihoods.
Proceedings of the National Academy of Sciences of the United States of America, 104(6),
2007.

[70] R. D. Stern and R. Coe. A model fitting analysis of daily rainfall data. Journal of the Royal
Statistical Society: Series A, 147, 1984.

[71] H. Strandman, H. Vaisanen, and S. Kellomaki. A procedure for generating synthetic weather
records in conjunction of climate scenario for modelling of ecological impacts of changing
climate in boreal conditions. Ecological Modeling, 70, 1993.

[72] J. R. Stroud, P. Müller, and B. Sansó. Dynamic models for spatiotemporal data. Journal of the
Royal Statistical Society. Series B (Statistical Methodology), 63(4), 2001.

[73] M. Sunnaker, A. G. Busetto, E. Numminen, J. Corander, M. Foll, and C. Dessimoz. Approxi-
mate bayesian computation. PLoS Computational Biology, 9(1), 2013.

[74] S. Tavaré, D. J. Balding, R. C. Griffiths, and P Donnelly. Inferring coalescence times from dna
sequence data. Genetics Society of America, 145, 1997.

[75] C. S. Thompson, P. J. Thomson, and X. Zheng. Fitting a multisite daily rainfall model to new
zealand data. Journal of Hydrology, 340, 2007.

[76] P. E. Thornton, S. W. Running, and M. A. White. Generating surfaces of daily meteorological
variables over large regions of complex terrain. Journal of Hydrology, 190, 1997.

[77] G. Weiss and A. von Haeseler. Inference of population history using a likelihood approach.
Genetics, 149, 1998.

[78] D. S. Wilks. Multisite generalization of a daily stochastic precipitation generation model.
Journal of Hydrology, 210, 1998.

[79] D. S. Wilks. Use of stochastic weather generators for precipitation downscaling. Wiley
Interdisciplinary Review, 1, 2010.

[80] Daniel S. Wilks. Estimating the consequences of CO2-induced climatic change on north amer-
ican grain agriculture using general circulation model information. Climatic Change, 13(1),
1988.

[81] D.S. Wilks. Simultaneous stochastic simulation of daily precipitation, temperature and solar
radiation at multiple sites in complex terrain. Agricultural and Forest Meteorology, 96, 1999.

81

[82] D.S. Wilks and R.L. Wilby. The weather generation game: a review of stochastic weather
models. Progress in Physical Geography, 23(3), 1999.

[83] C. J. Willmott and K. Matsuura. Smart interpolation of annually averaged air temperature in
the united states. Journal of Applied Meteorology, 34, 1995.

[84] D. A. Woolhiser and G. G. S. Pegram. Maximum likelihood estimation of fourier coefficients
to describe seasonal variations of paramters in stochastic daily precipitation models. Journal
of Applied Meteorology, 18, 1979.

[85] C. Yang, R. E. Chandler, V. S. Isham, and H. S. Wheater. Spatial-temporal rainfall simulation
using generalized linear models. Water Resources Research, 41, 2005.

[86] X. Zheng and R. W. Katz. Simulation of spatial dependence in daily rainfall using multisite
generators. Water Resources Research, 44, 2008.

[87] X. Zheng, J. Renwick, and A. Clark. Simulation of multisite precipitation using an extended
chain-dependent process. Water Resources Research, 46, 2010.

82

Appendix : utils.R

Load libraries
library(fields)
library(ggplot2)
library(MASS)
library(glmulti)
library(grid)

Function definitions
loadParams <- function(filename) {

res <- as.matrix(read.csv(filename, header=FALSE))
res <- t(res)
return(res)

}

saveParams <- function(params, filename) {
write(params, filename, ncolumns=dim(params)[1], sep=’,’)

}

saveRDA <- function(data.object, filename) {
saveRDS(data.object, file=filename)

}

loadRDA <- function(filename) {
return(readRDS(filename))

}

multiplot <- function(plots, plotlist=NULL, file, cols=1, layout=
NULL) {

library(grid)

Make a list from the ... arguments and plotlist
numPlots = length(plots)

If layout is NULL, then use ’cols’ to determine layout
if (is.null(layout)) {

Make the panel
ncol: Number of columns of plots
nrow: Number of rows needed, calculated from # of cols
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),

ncol = cols, nrow = ceiling(numPlots/cols))
}

if (numPlots==1) {
print(plots[[1]])

83

} else {
Set up the page
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol

(layout))))

Make each plot, in the correct location
for (i in 1:numPlots) {

Get the i,j matrix positions of the regions that contain
this subplot

matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE
))

print(plots[[i]], vp = viewport(layout.pos.row = matchidx$
row,

layout.pos.col = matchidx$
col))

}
}

}

gg.barplot <- function(ds) {
n <- dim(ds)[2]
vs <- {}
for(i in 1:n) {

name <- names(ds)[i]
column <- get(name, ds)
vs <- rbind(vs, data.frame(column, name))

}
spell.counts <- rep(seq(1, dim(ds)[1]), n)
names(vs) <- c("type", "group")
data.columns <- cbind.data.frame(vs, spell.counts)
p <- ggplot(data.columns, aes(spell.counts, type, fill=group))

+
geom_bar(stat="identity", position="dodge")

return(p)
}

plot.counts <- function(vs, wet=FALSE, dry=FALSE) {
numWetCounts <- 12
numDryCounts <- 30
n <- dim(vs)[2]
wet.counts <- data.frame(matrix(NA, nrow=numWetCounts, ncol=n))
dry.counts <- data.frame(matrix(NA, nrow=numDryCounts, ncol=n))
names(wet.counts) <- names(vs)
names(dry.counts) <- names(vs)
for(v in 1:n) {

vec <- vs[, v]

84

for(i in 1:numWetCounts) {
wet.counts[i, v] <- getSpellCount(vec, i, i + 1, TRUE)
dry.counts[i, v] <- getSpellCount(vec, i, i + 1, FALSE)

}
for(i in (numWetCounts + 1):numDryCounts) {

dry.counts[i, v] <- getSpellCount(vec, i, i + 1, FALSE)
}

}

log.wet.counts <- log(wet.counts)
log.dry.counts <- log(dry.counts)
log.wet.counts <- replace(log.wet.counts, log.wet.counts==-Inf,

0)
log.dry.counts <- replace(log.dry.counts, log.dry.counts==-Inf,

0)

ps <- {}
index <- 1
if(wet) {
ps[[index]] <- gg.barplot(data.frame(wet.counts)) + ggtitle("

Wet spell counts") +
labs(x="Spell length", y="Spell count")

ps[[index + 1]] <- gg.barplot(data.frame(log.wet.counts)) +
ggtitle("log(Wet spell counts)") +

labs(x="Spell length", y="log(Spell count)")
index <- index + 2

}
if(dry) {

ps[[index]] <- gg.barplot(data.frame(dry.counts)) + ggtitle("
Dry spell counts") +

labs(x="Spell length", y="Spell count")
ps[[index + 1]] <- gg.barplot(data.frame(log.dry.counts)) +

ggtitle("log(Dry spell counts)") +
labs(x="Spell length", y="log(Spell count)")

}
multiplot(ps, col=length(ps)/2)

}

maskWithNA <- function(srcVec, targetVec)
{

stopifnot(length(srcVec) == length(targetVec))
targetVec[is.na(srcVec)] <- NA
return(targetVec)

}

Mask a general time series matrix with the NA values of another
time series matrix. This goes by row.

85

So, for example, we can mask our Gaussian process with the
precipOcc for a given range of days.

maskTimeSeriesWithNA <- function(srcMatrix, targetMatrix, start,
end) {

masked <- {}
for(t in start:end) {

i <- t - start + 1
m <- maskWithNA(srcMatrix[t,], targetMatrix[i,])
masked <- rbind(masked, m)

}
return(masked)

}

priorIndicator <- function(params, lefts, rights) {
for(i in 1:(length(params))) {

if(params[i] < lefts[i] || params[i] > rights[i]) {
return(0)

}
}
return (1)

}

86

Appendix : tempSetup.R

rm(list=ls())

Load data
directory <- getwd()
file = "../Data/SetupCOGHCND2.RData"
load(paste(directory, file, sep = ’/’))
source("utils.R")

Removing bad data, whenever tmin > tmax, also removing any
flags

these <- TN > TX
TN[these] <- NA
TX[these] <- NA
rm(these)
TN[TNQ != " "] <- NA
TX[TXQ != " "] <- NA
PP[PPQ != " "] <- NA

Units are in 10th of degrees C and 10th of mm
TN <- TN/10
TX <- TX/10
PP <- PP/10

Loading coordinates
lat <- as.numeric(sf[,2])
lon <- as.numeric(sf[,3])
lon[lon > 0] <- -lon[lon > 0]
lon.lat <- cbind(lon,lat)
elev <- as.numeric(sf[,4])
rm(lon,lat)
np <- length(uniqueID)
nt <- dim(PP)[1]
one elevation is negative, use nearest elevation from Doug’s

elevation dataset
elev[26] <- 1999.125

Covariates
ct <- rep(cos((2*pi*(1:365))/365),times=length(unique(yr))) #

cosines
st <- rep(sin((2*pi*(1:365))/365),times=length(unique(yr))) #

sines

Now part of setup
txsum <- apply(!is.na(TX),2,sum)
tnsum <- apply(!is.na(TN),2,sum)

87

ppsum <- apply(!is.na(PP),2,sum)

perc <- 0.2 # only look at locations with at least 20% days
having data

thesekeep <- ppsum/nt > perc & txsum/nt > perc & tnsum/nt > perc
sf <- sf[thesekeep,]
PP <- PP[,thesekeep]
PPQ <- PPQ[,thesekeep]
TN <- TN[,thesekeep]
TNQ <- TNQ[,thesekeep]
TX <- TX[,thesekeep]
TXQ <- TXQ[,thesekeep]
elev <- elev[thesekeep]
lon.lat <- lon.lat[thesekeep,]
np <- sum(thesekeep)
uniqueID <- uniqueID[thesekeep]
rm(perc,ppsum,thesekeep,tnsum,txsum);gc()

pv <- c(1,1:(nt-1))
dr <- seq(-1,1,length.out=nt) # linear drift across time
yrda <- rep(1:365,times=length(unique(yr)))

spatialIndex <- 53 # Glenwood’s spatial index
glenwoodData <- TX[, spatialIndex]

dataStart <- 1
dataEnd <- nt
desiredRange <- dataStart:dataEnd
winterMonths <- c(12, 1, 2)
summerMonths <- c(6, 7, 8)
springMonths <- c(3,4,5)
fallMonths <- c(9, 10, 11)

len <- 1
i <- len:nt
cs <- cos(2*pi*i/365)
ss <- sin(2*pi*i/365)
ys <- c(glenwoodData[1], glenwoodData[len:(nt - 1)])

o <- glenwoodData[desiredRange]

88

Appendix : tempFunctions.R

Function definitions
createSimulation <- function(params, data.range) {

beta0 <- params[1]
beta1 <- params[2]
beta2 <- params[3]
beta3 <- params[4]
alpha0 <- params[5]
alpha1 <- params[6]
alpha2 <- params[7]
alpha3 <- params[8]
alpha4 <- params[9]
sim <- rep(NA, length(data.range))
sim[1] <- beta0 + beta2*cos(2*pi*data.range[1]/365) +

beta3*sin(2*pi*data.range[1]/365)
index <- 2
loop.range <- data.range[2:length(data.range)]
for(d in loop.range) {

mu <- beta0 + beta1*sim[index - 1] + beta2*cos(2*pi*d/365) +
beta3*sin(2*pi*d/365)

sigma <- exp(alpha0 + alpha1*cos(2*pi*d/365) + alpha2*sin(2*
pi*d/365) +

alpha3*cos(4*pi*d/365) + alpha4*sin(4*pi*d/365))
sim[index] <- mu + rnorm(n = 1, mean=0, sd=sqrt(sigma))
if(sim[index] == Inf) { sim[index] <- 0 }
index <- index + 1

}
stopifnot(length(sim) == length(mo[data.range]))
return(sim)

}

meanError <- function(observed, simulated) {
value <- abs(mean(observed, na.rm=T) - mean(simulated, na.rm=T

))
return(value)

}

sdError <- function(observed, simulated) {
value <- abs(sd(observed, na.rm=T) - sd(simulated, na.rm=T))
return(value)

}

estimateMeanErrors <- function(params, observed, data.range) {
sample.months <- 1:12
sim <- maskWithNA(observed, createSimulation(params, data.range

))

89

error <- 0
for(month in sample.months) {

month.obs <- observed[mo[data.range] %in% month]
month.sim <- sim[mo[data.range] %in% month]
month.error <- meanError(month.obs, month.sim)/mean(month.obs

, na.rm=T)
error <- error + month.error

}
error <- error/length(sample.months) # Try to scale with the

number of sample months
return(error)

}

estimateSDErrors <- function(params, observed, data.range) {
sample.months <- 1:12
sim <- maskWithNA(observed, createSimulation(params, data.range

))
error <- 0
for(month in sample.months) {

month.obs <- observed[mo[data.range] %in% month]
month.sim <- sim[mo[data.range] %in% month]
month.error <- sdError(month.obs, month.sim)/sd(month.obs, na

.rm=T)
error <- error + month.error

}
error <- error/length(sample.months) # Try to scale with the

number of sample months
return(error)

}

estimateTemp <- function(varParams, meanParams, observed, data.
range) {

params <- c(meanParams, varParams)
winterObs <- observed[mo[data.range] %in% winterMonths]
summerObs <- observed[mo[data.range] %in% summerMonths]
springObs <- observed[mo[data.range] %in% springMonths]
fallObs <- observed[mo[data.range] %in% fallMonths]
sim <- maskWithNA(observed, createSimulation(params, data.range

))
winterSim <- sim[mo[data.range] %in% winterMonths]
summerSim <- sim[mo[data.range] %in% summerMonths]
springSim <- sim[mo[data.range] %in% springMonths]
fallSim <- sim[mo[data.range] %in% fallMonths]
winterSDError <- sdError(winterObs, winterSim)/sd(winterObs, na

.rm=T)
summerSDError <- sdError(summerObs, summerSim)/sd(summerObs, na

.rm=T)

90

springSDError <- sdError(springObs, springSim)/sd(springObs, na
.rm=T)

fallSDError <- sdError(fallObs, fallSim)/sd(fallObs, na.rm=T)
sdErrors <- winterSDError + summerSDError + springSDError +

fallSDError
print(sprintf("sd errors = %f", sdErrors))
error <- sdErrors
return(error)

}

91

Appendix : COTemperature.R

data.start <- 31000
data.end <- data.start + 20*365
data.range <- data.start:data.end
o <- glenwoodData[data.range]
month.names = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",

"Aug", "Sep", "Oct",
"Nov", "Dec")

cs2 <- cos(4*pi*(1:nt)/365)
ss2 <- sin(4*pi*(1:nt)/365)

coses <- cos(2*pi*(1:365)/365)
sines <- sin(2*pi*(1:365)/365)
coses2 <- cos(4*pi*(1:365)/365)
sines2 <- sin(4*pi*(1:365)/365)

range.coses <- cos(2*pi*data.range/365)
range.sines <- sin(2*pi*data.range/365)

if(!exists("day.partition")) {
cat("Getting day partition...", ’\n’)
day.partition <- {}
for(i in 0:364) {

temp.partition <- rep(NA, nt/365)
counter <- 1
for(j in 1:nt) {

if(j %% 365 == i) {
temp.partition[counter] <- j
counter <- counter + 1

}
}
day.partition <- cbind(day.partition, temp.partition)

}
day.partition <- cbind(day.partition[, 2:365], day.partition[,

1])

spatialIndex <- 15
o <- TX[, spatialIndex]
m <- {}
sds <- {}
for(i in 1:365) {

m[i] <- mean(o[day.partition[, i]], na.rm=T)
sds[i] <- sd(o[day.partition[, i]], na.rm=T)

}
}

92

cat(’Forming models for mean and s.d...\n’)

Get linear regression for means and sds of each day of the year
prevs <- c(0, m[2:length(m)])
sd.model <- lm(log(sds) ~ coses + sines + coses2 + sines2)
mean.model <- lm(glenwoodData ~ ys + cs + ss) # + cs2 + ss2)

sd.vals <- fitted.values(sd.model)

get.model.val <- function(d, prev, coefs) {
res <- coefs[1] + coefs[2]*prev + coefs[3]*cos(2*pi*d/365) +

coefs[4]*sin(2*pi*d/365)
return(res)

}

Check that our MLE model gives good estimates of the mean,
which it does

mean.vals <- {}
index <- 1
for(d in data.range) {

mean.vals[index] <- get.model.val(d, glenwoodData[d - 1], mean.
model$coef)

index <- index + 1
}

mean.params <- mean.model$coef
sd.params <- sd.model$coef
mean.param.count <- length(mean.params)
sd.param.count <- length(sd.params)
param.count <- mean.param.count + sd.param.count
mean.indices <- 1:length(mean.params)
sd.indices <- (length(mean.indices) + 1):(length(mean.indices) +

length(sd.params))
cat(mean.indices, sd.indices, ’\n’)

cat(’Starting ABC...\n’)
gammas <- c(mean.params, sd.params)
variances <- rep(0.00001, param.count)
sigma <- diag(variances)
unifLeft <- gammas - 2
unifRight <- gammas + 2
unifLeft[2] <- 0; unifRight[2] <- 1
mean.eps <- 0.07
sd.eps <- 0.2
epsilon <- 1
priors <- NA

93

desiredCount <- 500
currentCount <- 1
iteration <- 0
accepted <- cbind(gammas, {})
uniform <- TRUE
Get initial theta_1 via ABC-REJ
while(currentCount < 1) {

cat("Iterating through ABC-REJ...\n")
if(uniform) {

candidates <- rep(NA, 7)
for(j in 1:param.count) {

candidates[j] <- runif(n=1, min=unifLeft[j], max=unifRight[
j])

}
}
else {

candidates <- mvrnorm(n=1, mu=gammas, Sigma=sigma)
}
cmeans <- candidates[mean.indices]; cvars <- candidates[sd.

indices]
zetaMean <- estimateMeanErrors(c(cmeans, cvars), o, data.range)
zetaSD <- estimateSDErrors(c(cmeans, cvars), o, data.range)
zeta <- abs(zetaMean) + abs(zetaSD)
print(sprintf("zetaMean = %f, zetaSD = %f, zeta = %f",

zetaMean, zetaSD, zeta))
if(priorIndicator(candidates, unifLeft, unifRight)) {

if(!is.na(zeta) && zetaMean < mean.eps && zetaSD < sd.eps) {
accepted <- cbind(accepted, candidates)
currentCount <- currentCount + 1

}
}

}
Continue with ABC-MCMC
while(currentCount < desiredCount) {

print(sprintf("iteration %d", iteration))
print(sprintf("Acceptances = %d", dim(accepted)[2]))
candidates <- mvrnorm(n=1, mu=accepted[, currentCount], Sigma

=0.01*diag(param.count))
print(candidates)
cmeans <- candidates[mean.indices]; cvars <- candidates[sd.

indices]
zetaMean <- estimateMeanErrors(c(cmeans, cvars), o, data.range)
zetaSD <- estimateSDErrors(c(cmeans, cvars), o, data.range)
zeta <- abs(zetaMean) + abs(zetaSD)
print(sprintf("zetaMean = %f, zetaSD = %f, zeta = %f",

zetaMean, zetaSD, zeta))
if(priorIndicator(candidates, unifLeft, unifRight)) {

94

if(!is.na(zeta) && zetaMean < mean.eps && zetaSD < sd.eps) {
accepted <- cbind(accepted, candidates)
currentCount <- currentCount + 1

}
}
iteration <- iteration + 1

}

Generate values for prior plots
rvs <- rep(NA, 7)
for(i in 1:1000) {

if(uniform) {
for(j in 1:7) {

rvs[j] <- runif(n=1, min=unifLeft[j], max=unifRight[j])
}

}
else {

rvs <- mvrnorm(n=1, mu=gammas, Sigma=sigma)
}
priors <- cbind(rvs, priors)

}

Plot priors and posteriors
par(mfrow=c(4,2))
for(i in 1:7) {

ymax <- max(density(accepted[i,], na.rm=T)$y,
density(priors[i,], na.rm=T)$y)

xmin <- min(density(accepted[i,], na.rm=T)$x,
density(priors[i,], na.rm=T)$x)

xmax <- max(density(accepted[i,], na.rm=T)$x,
density(priors[i,], na.rm=T)$x)

yrange <- c(0, ymax); xrange <- c(xmin, xmax)
plot(density(accepted[i,], na.rm=TRUE), col="red", xlim=xrange

, ylim=yrange)
lines(density(priors[i,], na.rm=TRUE), col="darkblue")

}

Use ggplot to plot priors and posteriors for mean params
titles <- c(expression(beta[0]), expression(beta[1]), expression(

beta[2]),
expression(beta[3]), expression(alpha[0]), expression

(alpha[1]),
expression(alpha[2]), expression(alpha[3]),

expression(alpha[4]))
plots <- vector(mode="list", length=mean.param.count)
for(i in 1:mean.param.count) {
values <- accepted[i,]

95

xmin <- unifLeft[i]
xmax <- unifRight[i]
height <- 1/(unifRight[i] - unifLeft[i])
d <- data.frame(values)
plots[[i]] <- ggplot(d, aes(values)) + geom_density(colour="

brown", alpha=0.4,
fill="red") +

scale_x_continuous(limits=c(xmin, xmax)) +
annotate("rect", xmin=xmin, xmax=xmax, ymin=0,

ymax=height,
colour="purple", alpha=0.2, fill="blue")

+
ggtitle(titles[i])

}
multiplot(plots, cols=ceiling(mean.param.count/2))

Use ggplot to plot priors and posteriors for s.d. params
sd.plots <- vector(mode="list", length=sd.param.count)
for(i in (mean.param.count + 1):param.count) {

values <- accepted[i,]
xmin <- unifLeft[i]
xmax <- unifRight[i]
height <- 1/(unifRight[i] - unifLeft[i])
d <- data.frame(values)
sd.plots[[i - mean.param.count]] <-

ggplot(d, aes(values)) + geom_density(colour="brown",
alpha=0.4,

fill="red") +
scale_x_continuous(limits=c(xmin - 0.2, xmax +

0.2)) +
annotate("rect", xmin=xmin, xmax=xmax, ymin=0,

ymax=height,
colour="purple", alpha=0.2, fill="blue")

+
ggtitle(titles[i])

}
multiplot(sd.plots, cols=ceiling(sd.param.count/2))

Create a simulation based on each sample from the posterior
sample.count <- dim(accepted)[2]
sims <- {}
for(j in 1:sample.count) {

params <- {}
for(i in 1:param.count) {

params[i] <- accepted[i, j]
}
sims[[j]] <- maskWithNA(o, createSimulation(params, data.range)

96

)
}

Get mean and sd of each of the sample.count # of samples
sim.means <- {}
sim.sds <- {}
for(j in 1:sample.count) {
mean.vec <- {}
sd.vec <- {}
for(i in 1:12) {

mean.vec[i] <- mean(sims[[j]][mo[data.range] == i], na.rm=T)
sd.vec[i] <- sd(sims[[j]][mo[data.range] == i], na.rm=T)

}
sim.means <- rbind(sim.means, mean.vec)
sim.sds <- rbind(sim.sds, sd.vec)

}

obs.means <- obs.sds <- {}
for(i in 1:12) {

obs.means[i] <- mean(o[mo[data.range] == i], na.rm=T)
obs.sds[i] <- sd(o[mo[data.range] == i], na.rm=T)

}

Spaghetti plot of mean
plot(obs.means, col="blue", type=’l’, lwd=5, ylim=c(0, 36))
for(i in 1:sample.count) {

lines(sim.means[[i]], col=(i %% 16))
}
lines(obs.means, type=’l’, lwd=5, ylim=c(0, 35))

Spaghetti plot of s.d.
plot(obs.sds, col="blue", type=’l’, lwd=5, ylim=c(0, 8))
for(i in 1:sample.count) {

lines(sim.sds[[i]], col=(i %% 16))
}
lines(obs.sds, type=’l’, lwd=5)

Box plot of means for all samples
sim.df <- stack(data.frame(sim.means))
obs.df <- data.frame(obs.means)
ggplot() + geom_boxplot(d=sim.df, aes(x=sort(ind), y=values),

outlier.shape=NA) +
geom_line(d=obs.df, aes(x=seq_along(obs.means), y=obs.

means), colour="blue") +
labs(x=’Month’, y=’Mean maximum temperature’) +
scale_x_discrete(breaks=waiver(), labels=month.names)

97

Box plot of sds for all samples
sim.sd.df <- stack(data.frame(sim.sds))
obs.sd.df <- data.frame(obs.sds)
ggplot() + geom_boxplot(d=sim.sd.df, aes(x=sort(ind), y=values),

outlier.shape=NA) +
geom_line(d=obs.sd.df, aes(x=seq_along(obs.sds), y=obs

.sds), colour="blue") +
labs(x=’Month’, y=’Standard deviation of maximum

temperature’) +
ylim(0, 7.5) + scale_x_discrete(breaks=waiver(),

labels=month.names)

Functional box plots
library(fda)
fbplot(t(sim.means), xlab="Month", ylab="Mean temperature", ylim=

c(min(sim.means), max(sim.means)), xaxt="n")
lines(obs.means, col="green", lwd=3)
axis(side=1, at=1:12, labels=month.names)
legend(’topright’, "Observed", lty=1, lwd=3, col="green")

fbplot(t(sim.sds), xlab="Month", ylab="Standard deviation of
temperature", ylim=c(0, max(sim.sds)), xaxt="n")

lines(obs.sds, col="green", lwd=3)
axis(side=1, at=1:12, labels=month.names)
legend(’topright’, "Observed", lty=1, lwd=3, col="green")

abcp <- {}
for(i in 1:param.count) {

abcp[i] <- mean(accepted[i,])
}

Make 3 simulations
sim1 <- maskWithNA(o, createSimulation(abcp, data.range))
sim2 <- maskWithNA(o, createSimulation(abcp, data.range))
sim3 <- maskWithNA(o, createSimulation(abcp, data.range))

Plot empirical mean for simulations and observation
obs.means <- sim.means <- {}
sim.means2 <- sim.means3 <- {}
for(i in 1:12) {

obs.means[i] <- mean(o[mo[data.range] == i], na.rm=T)
sim.means[i] <- mean(sim1[mo[data.range] == i], na.rm=T)
sim.means2[i] <- mean(sim2[mo[data.range] == i], na.rm=T)
sim.means3[i] <- mean(sim3[mo[data.range] == i], na.rm=T)

}
odf2 <- data.frame(Values=obs.means, Month=1:12, tag="

Observations")

98

sim1df2 <- data.frame(Values=sim.means, Month=1:12, tag="
Simulation 1")

sim2df2 <- data.frame(Values=sim.means2, Month=1:12, tag="
Simulation 2")

sim3df2 <- data.frame(Values=sim.means3, Month=1:12, tag="
Simulation 3")

df <- rbind(odf2, sim1df2, sim2df2, sim3df2)
ggplot(df, aes(x=Month, y=Values, colour=tag)) + geom_line() +

scale_x_discrete(breaks=waiver(), labels=month.names)

Plot empirical standard deviation for simulations and
observation

obs.sds <- sim.sds <- {}
sim.sds2 <- sim.sds3 <- {}
for(i in 1:12) {

obs.sds[i] <- sd(o[mo[data.range] == i], na.rm=T)
sim.sds[i] <- sd(sim1[mo[data.range] == i], na.rm=T)
sim.sds2[i] <- sd(sim2[mo[data.range] == i], na.rm=T)
sim.sds3[i] <- sd(sim3[mo[data.range] == i], na.rm=T)

}
odf <- data.frame(Values=obs.sds, Month=1:12, tag="Observations")
sim1df <- data.frame(Values=sim.sds, Month=1:12, tag="Simulation

1")
sim2df <- data.frame(Values=sim.sds2, Month=1:12, tag="Simulation

2")
sim3df <- data.frame(Values=sim.sds3, Month=1:12, tag="Simulation

3")
df <- rbind(odf, sim1df, sim2df, sim3df)
ggplot(df, aes(x=Month, y=Values, colour=tag)) + geom_line() +

ylim(0, 7.5) + scale_x_discrete(breaks=waiver(),
labels=month.names)

stop()

acceptedCount <- dim(accepted)[2]
i <- 1
while(i <= acceptedCount) {
par(mfrow=c(2, 2));
for(j in 0:3) {

if(i + j <= acceptedCount) {
plot(o[plotRange], type="l")
lines(createSimulation(accepted[, i + j], data.range)[

plotRange], col="red")
}
else { break }

}
i <- i + 4

99

par(ask=TRUE)
}

accepted <- loadRDA("../Data/GlenwoodTempAcceptedDec25")
abc.params <- {}
for(i in 1:param.count) {

abc.params[i] <- accepted[i, 500]
}
sim <- maskWithNA(o, createSimulation(abc.params, data.range))

prevs <- glenwoodData[data.range - 1]
mod <- lm(o ~ prevs + cos(2*pi*data.range/365) + sin(2*pi*data.

range/365))
means <- {}
means[1] <- o[1]
index <- 2
for(i in (data.start+1):data.end) {

means[index] <- mod$coef[1] + mod$coef[2]*means[index - 1] +
mod$coef[3]*cos(2*pi*i/365) + mod$coef[4]*sin(2*

pi*i/365)
index <- index + 1

}

get.count.lengths <- function(v, tau) {
len <- length(v)
count.lengths <- {}
i <- 1
while(i <= len) {

if(v[i] >= tau & !is.na(v[i])) {
count <- 1
i <- i + 1
while(v[i] >= tau & i <= len & !is.na(v[i])) {

i <- i + 1
count <- count + 1

}
count.lengths <- c(count.lengths, count)

} else {
i <- i + 1

}
}
count.lengths

}

get.cold.count.lengths <- function(v, tau) {
len <- length(v)
count.lengths <- {}
i <- 1

100

while(i <= len) {
if(v[i] <= tau & !is.na(v[i])) {

count <- 1
i <- i + 1
while(v[i] <= tau & i <= len & !is.na(v[i])) {

i <- i + 1
count <- count + 1

}
count.lengths <- c(count.lengths, count)

} else {
i <- i + 1

}
}
count.lengths

}

obs.res <- o
sim.res <- sim

ggplot() + geom_line(data=data.frame(Res=obs.res[1:1000], Label=’
Obs’),

aes(seq_along(Res), y=Res, color=Label)) +
geom_line(data=data.frame(Res=sim.res[1:1000], Label=’Sim

’),
aes(seq_along(Res), y=Res, color=Label)) + labs(x=’Day’, y

=’Residual’)

o.counts <- get.count.lengths(obs.res, 30)
sim.counts <- get.count.lengths(sim.res, 30)
ds1 <- data.frame(count=o.counts, label=’Obs’)
ds2 <- data.frame(count=sim.counts, label=’Sim’)
ds <- rbind(ds1, ds2)
ggplot(ds, aes(factor(count), fill=label)) + geom_histogram(

position="dodge") +
labs(title="Hot spells", x=’Spell length’, y=’Spell count’)

o.counts <- get.cold.count.lengths(obs.res, 0)
sim.counts <- get.cold.count.lengths(sim.res, 0)
ds1 <- data.frame(count=o.counts, label=’Obs’)
ds2 <- data.frame(count=sim.counts, label=’Sim’)
ds <- rbind(ds1, ds2)
ggplot(ds, aes(factor(count), fill=label)) + geom_histogram(

position="dodge") +
labs(title="Cold spells", x=’Spell length’, y=’Spell count’)

101

Appendix : precipSetup.R

rm(list=ls())

source("utils.R")

Load data
iowa.file <- "../Data/SetupIA.RData"
colorado.file <- "../Data/SetupCOGHCND2.RData"
file = iowa.file
load(file)

Iowa setup
if(file == iowa.file) {

stationfile has lat/lon
stationfile <- read.csv("../Data/ushcn-stations.csv", header=F)

uniqueID <- uniqueID[-21]
PP <- PP[,-21]
PPQ <- PPQ[,-21]
TN <- TN[,-21]
TNQ <- TNQ[,-21]
TX <- TX[,-21]
TXQ <- TXQ[,-21]

lat <- stationfile[,2][stationfile[,1] %in% uniqueID]
lon <- stationfile[,3][stationfile[,1] %in% uniqueID]
elev <- stationfile[,4][stationfile[,1] %in% uniqueID]
lon.lat <- cbind(lon,lat)
rm(lon,lat)
dist.mat <- rdist.earth(lon.lat,miles=F)
diag(dist.mat) <- 0
PP[PP==-9999]=NA
TX[TX==-9999]=NA
TN[TN==-9999]=NA

np <- length(uniqueID)

Cleanup: kill everything with a flag
PP[PPQ!=" "] <- NA

rm(PPQ,TXQ,TNQ) # save space

OCC <- PP > 0

Get years from 12*31 back to 365, removing all leap days too
toremove <- mo%in%c(2,4,6,9,11) & da==31

102

toremove[mo==2 & da > 28] <- TRUE
toremove <- !toremove
OCC <- OCC[toremove,]
PP <- PP[toremove,]
TN <- TN[toremove,]
TX <- TX[toremove,]
yr <- yr[toremove]
mo <- mo[toremove]
da <- da[toremove]
rm(toremove)

Covariates
ct <- rep(cos((2*pi*(1:365))/365),times=length(unique(yr)))
st <- rep(sin((2*pi*(1:365))/365),times=length(unique(yr)))
POCC <- OCC
POCC[1,] <- NA
POCC[2:dim(POCC)[1],] <- OCC[1:(dim(OCC)[1]-1),]

Precip intensities: set 0 precips to NA
PPI <- PP
PPI[!OCC] <- NA
sf <- stationfile

} else {

Removing bad data, whenever tmin > tmax, also removing any
flags

PP[PPQ != " "] <- NA

Units are in 10th of degrees C and 10th of mm
PP <- PP/10

Loading coordinates
lat <- as.numeric(sf[,2])
lon <- as.numeric(sf[,3])
lon[lon > 0] <- -lon[lon > 0]
lon.lat <- cbind(lon,lat)
elev <- as.numeric(sf[,4])
rm(lon,lat)
np <- length(uniqueID)
nt <- dim(PP)[1]

one elevation is negative, use nearest elevation from Doug’s
elevation dataset

elev[26] <- 1999.125

Now part of setup
ppsum <- apply(!is.na(PP),2,sum)

103

perc <- 0.2 # only look at locations with at least 20% days
having data

thesekeep <- ppsum/nt > perc
sf <- sf[thesekeep,]
PP <- PP[,thesekeep]
PPQ <- PPQ[,thesekeep]
elev <- elev[thesekeep]
lon.lat <- lon.lat[thesekeep,]
np <- sum(thesekeep)
uniqueID <- uniqueID[thesekeep]
rm(perc,ppsum,thesekeep)
gc()
}

Variable definitions

nt <- dim(PP)[1]

pv <- c(1,1:(nt-1))
dr <- seq(-1,1,length.out=nt) # linear drift across time
yrda <- rep(1:365,times=length(unique(yr)))

fall.months <- c(9, 10, 11)
winter.months <- c(12, 1, 2)
spring.months <- c(3, 4, 5)
summer.months <- c(6, 7, 8)
seasons <- c("fall", "winter", "spring", "summer")

means <- {}
for(i in 1:365) {

temp.means <- {}
for(j in 1:nt) {

if(j %% 365 == i) {
temp.means <- append(temp.means, j)

}
}
means <- cbind(means, temp.means)

}

dryTaus <- c(1, 5, 9, 13, 17, 21, 25, 30)
wetTaus <- c(1, 2, 4, 6, 8, 10, 12)
paramCount <- 6

glenwoodIndex <- grep("GLENWOOD", sf[, 6])
limonIndex <- grep("LIMON", sf[, 6])
durangoIndex <- grep("DURANGO", sf[, 6])

104

hartselIndex <- grep("HARTSEL", sf[, 6])

dataStart <- 1
precipOcc <- PP
precipOcc[precipOcc > 0] <- 1
numLocations <- dim(precipOcc)[2]
spatialIndex <- hartselIndex
spatialIndex <- 13
glenwoodPrecip <- precipOcc[dataStart:nt, spatialIndex]
observations <- precipOcc[, spatialIndex]

occs <- append(NA, observations[1:(nt - 1)])

gp.year.count <- 10
precip.occ.start <- 30000
precip.occ.end <- precip.occ.start + 365*gp.year.count
sim.start <- 1
sim.end <- sim.start + 365*gp.year.count
precip.range <- precip.occ.start:precip.occ.end

Get the MLE values for each location
rng <- 1:nt
cosines <- cos(2*pi*rng/365)
sines <- sin(2*pi*rng/365)
cosines.2 <- cos(4*pi*rng/365)
sines.2 <- sin(4*pi*rng/365)
locations <- 1:dim(PP)[2]

if(!exists("beta.mles") || is.null(beta.mles)){
cat("Getting beta MLEs...", ’\n’)

beta.mles <- {}
for(location in locations) {

occurrences <- precipOcc[, location]
previousOcc <- append(NA, occurrences[1:(nt-1)])
d <- data.frame(cbind(occurrences, previousOcc, cosines,

sines, cosines.2, sines.2))
model <- glm(occurrences ~ previousOcc + cosines + sines +

cosines.2 + sines.2,
family=binomial(link = "probit"), data=d)

beta.mles <- cbind(beta.mles, model$coef)
}

}

105

Appendix : precipFunctions.R

Function definitions
cat("Loading function definitions...", ’\n’)

Assumptions: vec is a binary vector
getSpellCount <- function(vec, tau1, tau2, wet) {

spells <- rle(vec)
if (wet == TRUE) {

spells <- spells$lengths[spells$values == 1]
} else {

spells <- spells$lengths[spells$values == 0]
}
spells <- Filter(function(x) {

tau1 <= x
}, spells)

spells <- Filter(function(x) {
x < tau2
}, spells)

count <- length(spells)
return(count)

}

simulatePrecip <- function(dataStart=1, dataEnd=nt, params) {
beta0 <- params[1]
beta1 <- params[2]
beta2 <- params[3]
beta3 <- params[4]
beta4 <- params[5]
beta5 <- params[6]
occLength <- length(dataStart:dataEnd)
occ <- rep(NA, occLength)
occ[1] <- rbinom(1, 1, 0.5) # Arbitrarily assign P[rain on day

1] = 0.5
occ.index <- 1
for(d in (dataStart+1):dataEnd) {

argument <- beta0 + beta1*occ[occ.index] + beta2*cos(2*pi*d/
365) +

beta3*sin(2*pi*d/365) + beta4*cos(4*pi*d/365) +
beta5*sin(4*pi*d/365)

p <- pnorm(argument)
occ[occ.index + 1] <- rbinom(1, 1, prob=p)
occ.index <- occ.index + 1

}
return(occ)

}

106

getCountError <- function(vec1, vec2, is.wet) {
if(is.wet) {

tau.vec <- wetTaus
} else {

tau.vec <- dryTaus
}
err <- 0
actual.counts <- sim.counts <- {}
for(i in 1:(length(tau.vec - 1))) {

actual.counts[i] <- getSpellCount(vec1, tau.vec[i],
tau.vec[i + 1], is.wet

)
if(actual.counts[i] == 0) actual.counts[i] <- 1
sim.counts[i] <- getSpellCount(vec2, tau.vec[i],

tau.vec[i + 1], is.wet)
}
err <- sum(abs(actual.counts - sim.counts)/actual.counts)/

length(tau.vec)
return(err)

}

simulateSinusoidalExponentialGP <- function(params, first.day,
last.day) {

a0 <- params[1]
a1 <- params[2]
a2 <- params[3]
tau <- params[4]
choleskies <- {}
for(i in 1:365) {

denom <- exp(a0 + a1*cos(2*pi*i/365) + a2*sin(2*pi*i/365))
cov.mat <- exp(-rdist.earth(lon.lat)/denom)
choleskies[[i]] <- t(chol(cov.mat))

}

numLocations <- dim(precipOcc)[2]
day.count <- last.day - first.day
W <- rbind(rep(0, numLocations), matrix(NA, day.count ,

numLocations))
occ <- W
mus <- rep(0, numLocations)
samp <- sample.int(dim(mean.accepted)[2], 1)
for(d in 2:(day.count + 1)) {

day.of.year <- d + first.day
for(s in 1:numLocations) {

mus[s] <- probit.mean(mean.params, occ[d - 1, s], day.of.
year)

107

}
eps.normals <- rnorm(length(mus), 0, 1)
day <- day.of.year %% 365
Z <- choleskies[[day + 1]] %*% eps.normals
W[d,] <- Z + mus + rnorm(length(mus), 0, tau)
occ[d,] <- ifelse(W[d,] > 0, 1, 0)

}
return(occ)

}

callVgram <- function(occurrences) {
variogram <- vgram(lon.lat, occurrences, lon.lat=TRUE, N=20)
v1 <- variogram$stats[2,]
v2 <- variogram$centers
return(list(v1, v2))

}

Get the binned variogram for a given day of precipitation data
getDayVariogram <- function(occurrences) {

For the bin number, it seems like N = 20 is drastically
better than N = 15

variogram <- callVgram(occurrences)[[1]]
return(variogram)

}

getClusterVariogram <- function(occurrences, start.day, vgram.
length) {

start.day <- start.day - 5
end.day <- start.day + 10
vs <- rep(0, vgram.length)
for(day in start.day:end.day) {

variogram <- getDayVariogram(occurrences[day,])
if(length(variogram) == length(vs)) {

vs <- vs + variogram
}

}
return(vs/length(start.day:end.day)) # Scale by the number of

trials
}

Get the aggregate variogram for a given day of the year, over
many years

getAggregateVariogram <- function(occurrences, start.day=1) {
temp.variogram <- callVgram(occurrences[start.day,])
vgram.length <- length(temp.variogram[[1]])
vs <- rep(0, vgram.length)
year.count <- gp.year.count

108

for(i in 1:year.count) { # Loop through sample years
variogram <- getClusterVariogram(occurrences, start.day + 365

*i - 5, vgram.length)
-5 since GP does not generate the final 5 days

if(!is.null(variogram) && length(variogram) == length(vs)) {
variogram[is.na(variogram)] <- 0
vs <- vs + variogram

}
}
vs <- vs/year.count # Scale by the number of trials
centers <- temp.variogram[[2]]
return(list(vs, centers))

}

estimateExponential <- function(params, start, end, obs, obs.
variogram=NULL) {

print(params)
error <- 0
sim <- simulateSinusoidalExponentialGP(params, start, end)
gp <- maskWithNA(precipOcc[start:end,], sim)
scale.factor <- 12
for(month in 1:12) {

obs.start <- 30*month
sim.start <- 30*month
obs.variogram <- getAggregateVariogram(precipOcc[start:end,

], obs.start)[[1]]
sim.variogram <- getAggregateVariogram(gp, sim.start)[[1]]
Only look at distances less than half the maximum distance
distance.count <- length(sim.variogram)
mid <- floor(distance.count/2)
if(sum(obs.variogram) != 0) {

month.error <- sum(abs(sim.variogram[1:mid] - obs.variogram
[1:mid])/abs(obs.variogram[1:mid]))

print(month.error)
error <- error + month.error

} else {
scale.factor <- scale.factor - 1

}
}
if(error > 0) {

error <- error/scale.factor # Scale by number of months used
}
return(error)

}

gridSearch <- function(a.range, tau.range, precip.start.day) {
a <- NULL

109

tau <- NULL
err <- Inf
iteration.count <- 20
start.day <- 1
end.day <- start.day + 365*gp.year.count
obs.variogram <- getAggregateVariogram(precipOcc, precip.occ.

start)[[1]]
for(a.candidate in a.range) {

for(tau.candidate in tau.range) {
theta <- c(a.candidate, tau.candidate)
candidate.err <- estimateExponential(theta, start.day, end.

day, obs.variogram)
cat("Error is", candidate.err, ’\n’)
if(!is.nan(candidate.err)) {

if(candidate.err < err) {
err <- candidate.err
a <- a.candidate
tau <- tau.candidate
cat("Reassigning a to ", a, " and tau to ", tau, ’\n’)

}
}

}
}
return(c(a, tau))

}

estimatePrecip <- function(params, observations, first.day=1,
last.day=nt, verbose=TRUE,

sim=NULL) {
sample.months <- 1:12
if(verbose) print(sprintf("params = %f", params))
if(is.null(sim)) {

sim <- maskWithNA(observations, simulatePrecip(first.day,
last.day, params))

}
dry.error <- getCountError(observations, sim, FALSE)
wet.error <- getCountError(observations, sim, TRUE)
for(season in sample.months) {
obs.months <- mo[first.day:last.day]
month.obs <- observations[obs.months %in% season]
if(length(month.obs) > 0) {

month.sim <- sim[mo %in% season]
dry.month.error <- getCountError(month.obs, month.sim,

FALSE)
dry.error <- dry.error + dry.month.error
wet.error <- wet.error + getCountError(month.obs, month.sim

, TRUE)

110

}
}
wet.error <- wet.error/length(sample.months)
dry.error <- dry.error/length(sample.months)
total.error <- dry.error + wet.error
if(verbose) {

cat("Wet error is ", wet.error, ", Dry error is ", dry.error,
", Total is ",
total.error, ’\n’)

print(sprintf("error is %f", total.error))
}
return(total.error)

}

Make a function for just the argument of the probit regression,
used for

the simulation of a thresholded Gaussian Process
probit.mean <- function(params, prev.occ, d) {

theta0 <- params[1]
theta1 <- params[2]
theta2 <- params[3]
theta3 <- params[4]
theta4 <- params[5]
theta5 <- params[6]
res <- theta0 + theta1*prev.occ + theta2*cos(2*pi*d/365) +

theta3*sin(2*pi*d/365) + theta4*cos(4*pi*d/365) +
theta5*sin(4*pi*d/365)

return(res)
}

probit <- function(params, occ, d) {
if(length(occ) == 1) {

return(probit.solo(params, occ, d))
}
if(is.na(occ[d])) return(NA)
if(d < 2 || d > nt) {

stop("d must be in [2, nt]")
}
theta0 <- params[1]
theta1 <- params[2]
theta2 <- params[3]
theta3 <- params[4]
theta4 <- params[5]
theta5 <- params[6]
res <- theta0 + theta1*occ[d-1] + theta2*cos(2*pi*d/365) +

theta3*sin(2*pi*d/365) + theta4*cos(4*pi*d/365) +
theta5*sin(4*pi*d/365)

111

res <- pnorm(res)
return(res)

}

probit.solo <- function(params, prev.occ, d) {
theta0 <- params[1]
theta1 <- params[2]
theta2 <- params[3]
theta3 <- params[4]
theta4 <- params[5]
theta5 <- params[6]
res <- theta0 + theta1*prev.occ + theta2*cos(2*pi*d/365) +

theta3*sin(2*pi*d/365) + theta4*cos(4*pi*d/365) +
theta5*sin(4*pi*d/365)

res <- pnorm(res)
return(res)

}

cat("Functions loaded.")

112

Appendix : precipVault.R

Plot the density of accepted values of a
if(FALSE) {
multiplot(list(
ggplot(data.frame(accepted[1,]) + geom_density(aes(accepted[1,]),

colour="purple", fill="red", alpha=0.4) +
scale_x_continuous(limits=c(unif.left, unif.right)),

ggplot(data.frame(accepted[2,]) + geom_density(accepted[2,]),
colour="purple", fill="red", alpha=0.4) +
scale_x_continuous(limits=c(unif.left, unif.right))

)))

Plot the simulated and observed aggregate variogram
test.sim.range <- 1:((365*10*2)+1)
test.obs.range <- test.sim.range + precip.occ.start
theta <- c(mean(accepted[1,]), mean(accepted[2,]))
gp <- maskWithNA(precipOcc[test.obs.range,],

simulateExponentialGP(theta, 1, 1+365*gp.year.
count))

v1 <- getAggregateVariogram(gp)
v1 <- data.frame(v1)
names(v1) <- c("Values", "Distances")
v2 <- data.frame(getAggregateVariogram(precipOcc, precip.occ.

start))
names(v2) <- c("Values", "Distances")
ggplot(v1, aes(x=Distances, y=Values)) + geom_point(aes(color="

Simulated Gaussian process")) +
geom_point(data=v2, aes(x=Distances, y=Values, color="

Observations")) + scale_y_continuous(limits=c(0, max(v1$
Values, v2$Values)))

}

Linear regression analysis for mean parameters. Not used for
the thesis,

but included here for completeness
if(FALSE) {

Check spatial dependence
lons <- lon.lat[, 1]
lats <- lon.lat[, 2]

plots <- vector(mode="list", length=4)
for(i in 1:6) {

mles.i <- mles[i,]
df <- data.frame(mles.i, lons, lats)
plots[[i]] <- ggplot(df, aes(x=lons, y=lats)) +

geom_point(aes(color=mles.i)) +

113

scale_colour_gradient(low="white", high="purple")
}
multiplot(plots, col=2)

Did some model fitting analysis. These seem to work the best
model1 <- lm(mles[1,] ~ elev*lats*lons)
model2 <- lm(mles[2,] ~ elev*lats*lons)
model3 <- lm(mles[3,] ~ elev*lats*lons)
model4 <- lm(mles[4,] ~ elev*lats*lons)
model5 <- lm(mles[5,] ~ elev*lats*lons)
model6 <- lm(mles[6,] ~ elev*lats*lons)

for(i in 1:6) {
assign(paste("model", i, "reduced", sep=’’), lm(mles[i,] ~

elev*lats*lons))
assign(paste("model", i, "reduced", sep=’.’),

eval(parse(text=paste("lm(", summary(glmulti(mles[i,]
~ lons + lats + elev, crit="BIC"))$bestmodel, ")",
sep=’’))))

}

BIC Model Evaluation
for(i in 1:6) {
model.i <- eval(parse(text=paste("model", i, sep=’’)))
reduced.i <- eval(parse(text=paste("model", i, "reduced", sep

=’.’)))
if(BIC(model.i) < BIC(reduced.i)) {

assign(paste("best.model", i, sep=’’), model.i)
} else {

assign(paste("best.model", i, sep=’’), reduced.i)
}
cat("Full model: ", BIC(model.i), ", Reduced model: ", BIC(

reduced.i), ", Best model: ",
BIC(eval(parse(text=paste("best.model", i, sep=’’)))), ’\

n’, sep=’’)
}

Estimate mles with alphas and simulate to see how good fit is
estimated.mles <- {}
for(i in 1:6) {

model.i <- eval(parse(text=paste("model", i, sep=’’)))
mle <- fitted.values(model.i)
estimated.mles <- rbind(estimated.mles, mle)

}

plots <- vector(mode="list", length=4)
for(i in 1:6) {

114

mles.i <- mles[i,]
df <- data.frame(mles.i, lons, lats)
plots[[2*i - 1]] <- ggplot(df, aes(x=lons, y=lats)) +

geom_point(aes(color=mles.i)) +
scale_colour_gradient(low="white", high="red")

}
for(i in 1:6) {
mles.i <- estimated.mles[i,]
df <- data.frame(mles.i, lons, lats)
plots[[2*i]] <- ggplot(df, aes(x=lons, y=lats)) +

geom_point(aes(color=mles.i)) +
scale_colour_gradient(low="white", high="red")

}
multiplot(plots, col=6)

par(mfrow=c(2, 2))
for(i in 1:4) {
plot(mles[i,] ~ estimated.mles[i,])

}
}

if(FALSE) {
get.reduced.model <- function(index) {

res <- eval(parse(text=paste("model", i, "reduced", sep=’.’))
)

return(res)
}

check.alpha.length <- function(alpha.length, index) {
len <- switch(toString(index),

"1" = 5, "2" = 6, "3" = 5, "4" = 3, "5" = 4, "6" = 5
)
if(alpha.length != len) {

stop(cat("Alpha length mismatch; length(alphas) = ", alpha.
length, ", index = ", index))

}
}

get.beta.model <- function(alphas, beta.index, s) {
check.alpha.length(length(alphas), beta.index)
lon <- lons[s]
lat <- lats[s]
el <- elev[s]
covs <- switch(toString(beta.index),

"1" = {
c(1, lon, el, el*lon, el*lat)

},

115

"2" = {
c(1, lon, lat, el, lat*lon, el*lon)

},
"3" = {

c(1, el, lat*lon, el*lon, el*lat)
},
"4" = {

c(1, el*lon, el*lat)
},
"5" = {
c(1, el, lat*lon, el*lat)

},
"6" = {
c(1, lon, lat, lat*lon, el*lat)

}
)
res <- (alphas %*% covs)[1, 1]
return(res)

}

get.params.from.list.index <- function(target.list, beta.index,
alpha.index) {

v <- {}
len <- length(target.list)
for(i in 1:len) {
v[[i]] <- target.list[[i]][[beta.index]][alpha.index]

}
return(v)

}

get.beta.from.alphas <- function(alphas, s) {
betas <- {}
for(i in 1:length(alphas)) {

betas[i] <- get.beta.model(alphas[[i]], i, s)
}
return(betas)

}

for(i in 1:6) {
len <- length(abc.multisite.accepted[[1]][[i]])
alpha.list <- {}
for(j in 1:len) {

param.vals <- get.params.from.list.index(abc.multisite.
accepted, i, j)

alpha.list[j] <- mean(param.vals)
}
abc.multisite.params[[i]] <- alpha.list

116

}

beta.from.alphas <- get.beta.from.alphas(abc.multisite.params,
spatialIndex)

cat("Running spatial ABC...", ’\n’)

variances <- rep(0.0001, paramCount)
alphas0 <- {}
unifLefts <- unifRights <- {}
variances <- 0.1*c(1, 1, 1, 1, 1, 1)

abc.multisite.accepted <- {}
currentCount <- 0
jumps <- 0
for(i in 1:paramCount) {

alphas0[[i]] <- get.reduced.model(i)$coef
unifLefts[[i]] <- alphas0[[i]] - 1
unifRights[[i]] <- alphas0[[i]] + 1

}
alphas <- alphas0

epsilon <- 130

while(TRUE) {
cat("Acceptances = ", length(abc.multisite.accepted), ’\n’)
cat("Jumps = ", jumps, ’\n’)
betas <- {}
candidates <- {}
for(i in 1:paramCount) {

alpha.i <- alphas[[i]]
candidates[[i]] <- mvrnorm(n=1, mu=alpha.i, Sigma

=0.000000000001*diag(length(alpha.i)))
betas[i] <- get.beta.model(candidates[[i]], i, spatialIndex

)
}
rho <- estimatePrecip(betas, observations)
cat("Rho = ", rho, ’\n’)
if(!is.na(rho) && rho < epsilon) {
alphas <- candidates
jumps <- jumps + 1

}
if(jumps >= 1) {

currentCount <- currentCount + 1
abc.multisite.accepted[[currentCount]] <- alphas

}
}

117

plots <- list(list(rep(NA, 5)), list(rep(NA, 6)), list(rep(NA,
5)), list(rep(NA, 3)), list(rep(NA, 4)), list(rep(NA, 5)))

for(i in 1:6) {
len <- length(abc.multisite.accepted[[1]][[i]])
for(j in 1:len) {

param.vals <- get.params.from.list.index(abc.multisite.
accepted, i, j)

xmin <- unifLefts[[i]][[j]]
xmax <- unifRights[[i]][[j]]
height <- 1/(xmax - xmin)
d <- data.frame(param.vals)
plots[[i]][[j]] <- ggplot(d) + geom_density(aes(x=param.

vals))
}

}

for(i in 1:6) {
multiplot(plots[[i]])
readline(prompt="Press enter to continue")

}

get.estimated.beta <- function(beta.index, spatial.index) {
beta.model <- eval(parse(text=paste("model", beta.index, "

reduced", sep=’.’)))
beta.model <- get.beta.model(beta.index)
res <- fitted.values(beta.model)[spatial.index]
return(res)

}
}

Plot empiricial probabilities throughout the year
plot.empirical.means <- function(ds) {

ggplot(ds, aes(x=seq_along(m))) +
geom_point(aes(y=m, colour="actual means")) +
geom_line(aes(y=model1.vals, colour="sine fit to actual means

")) +
geom_point(aes(y=m.abc, colour="abc means")) +
geom_line(aes(y=model.abc.vals, colour="sine fit to abc means

")) +
geom_point(aes(y=m.post, colour="posterior means")) +
geom_line(aes(y=model.post.vals, colour="sine fit to

posterior means")) +
labs(x="Day of year", y="Empirical mean of precip occurrence"

) +
ggtitle(paste("Precip occurrence for", sf[spatialIndex, 6],

118

sf[spatialIndex, 7], sep=’ ’))
}

plot.empirical.sds <- function(ds2, index) {
ggplot(ds2, aes(x=seq_along(sd1))) +

geom_point(aes(y=sd1, colour="Actual SDs")) +
geom_point(aes(y=sd.abc, colour="ABC SDs")) +
geom_point(aes(y=sd.post, colour="True posterior SDs")) +
ylim(0, max(sd1)) +
labs(x="Day of year", y="Empirical standard deviation of

precip occurrence")
}

uniformIndicator <- function(params) {
for(i in 1:(length(params))) {

if(params[i] < unifLeft[i] || params[i] > unifRight[i]) {
return(0)

}
}
return (1)

}

prob <- function(p, occ) {
res <- p^occ * (1 - p)^(1 - occ)
return(res)

}

log.posterior <- function(params, o) {
psum <- 0
for(d in 2:nt) {

if(!is.na(o[d - 1]) && !is.na(o[d])) {
if(o[d]) {

psum <- psum + log(probit(params, o, d))
} else if (!o[d]) {

psum <- psum + log(1 - probit(params, o, d))
}

}
}
res <- psum - log.prior
return(res)

}

TESTING AGAINST TRUE POSTERIOR

do.posterior <- FALSE
if(do.posterior) {

119

theta0 <- glm(observations ~ occs + coses + sines + coses2 +
sines2,

family=binomial(link="probit"))$coef
variances <- c(1, 1, 1, 1, 1, 1)
sigma <- diag(variances)
unifLeft <- c(-1.5, 0, -0.5, -0.5, -0.5, -0.5)
unifRight <- c(1.5, 1, 0.5, 0.5, 0.5, 0.5)
log.prior <- sum(log(unifRight - unifLeft))
uniform=TRUE

currentCount <- 0
jumps <- 0
desiredCount <- Inf
posterior.accepted <- {}
theta <- theta0

while(currentCount < desiredCount) {
print(sprintf("Acceptances = %d", dim(posterior.accepted)[2])

)
print(sprintf("Jumps = %d", jumps))
candidates <- mvrnorm(n=1, mu=theta,

Sigma=0.0002*diag(length(theta)))
print(candidates)
if(uniformIndicator(candidates)) {

phi1 <- log.posterior(candidates, observations)
phi2 <- log.posterior(theta, observations)
difference <- phi1 - phi2
alpha <- min(difference, 0)
u <- runif(1, min=0, max=1)
cat("log(u) = ", log(u), ", alpha = ", alpha, ’\n’)
if(log(u) <= alpha) {

jumps <- jumps + 1
theta <- candidates

}
}
posterior.accepted <- cbind(posterior.accepted, theta)
currentCount <- currentCount + 1

}

titles <- c("Constant", "A-R", "cos(*)", "sin(*)", "cos(2*)", "
sin(2*)")

paramCount <- length(theta0)

plots <- list()
for(i in 1:6) {

r <- posterior.accepted[i,]
xmin <- unifLeft[i]

120

xmax <- unifRight[i]
height <- 1/(unifRight[i] - unifLeft[i])
d <- data.frame(r)
plots[[i]] <- ggplot(d, aes(r)) + geom_density(colour="brown"

, alpha=0.4, fill="red") +
scale_x_continuous(limits=c(xmin - 0.2, xmax + 0.2)) +
annotate("rect", xmin=xmin, xmax=xmax, ymin=0, ymax=height,

colour="purple", alpha=0.2, fill="blue") +
ggtitle(titles[i])

}
multiplot(plots, col=ceiling(paramCount/2))

}

END TESTING AGAINST TRUE POSTERIOR

stop("End of file")

spatialIndex <- 13
theta0 <- {}
for(i in 1:6) {

theta0[i] <- mean(posterior.accepted[i,])
}
epsilon <- 1.09
currentCount <- 0
desiredCount <- Inf
variances <- c(1, 1, 1, 1, 1, 1)
sigma <- diag(variances)
uniform <- TRUE
abc.accepted <- cbind(theta0)
currentCount <- 1
jumps <- 0
theta <- theta0
ABC-MCMC
while(currentCount < desiredCount) {

print(sprintf("Acceptances = %d", dim(abc.accepted)[2]))
print(sprintf("Jumps = %d", jumps))
in.prior <- FALSE
while(!in.prior) {

candidates <- mvrnorm(n=1, mu=theta,
Sigma=0.00005*diag(dim(abc.accepted)[1]))

if(priorIndicator(candidates, unifLeft, unifRight)) {
in.prior <- TRUE

}
}
zeta <- estimatePrecip(candidates, observations)
cat(paste("\n", "Zeta = ", zeta, "\n\n"))
if(!is.na(zeta) && zeta < epsilon) {

121

theta <- candidates
jumps <- jumps + 1

}
currentCount <- currentCount + 1
abc.accepted <- cbind(abc.accepted, theta)

}

abc.params <- {}
for(i in 1:paramCount) {

abc.params[i] <- mean(abc.accepted[i,])
}

abc.simulation <- maskWithNA(observations, simulatePrecip(1, nt,
abc.params))

ds <- data.frame(observations, abc.simulation)
names(ds) <- c("Observations", "Simulation")
plot.counts(ds)

plots <- list()
for(i in 1:6) {

r <- posterior.accepted[i,]
r2 <- abc.accepted[i,]
xmin <- unifLeft[i]
xmax <- unifRight[i]
height <- 1/(unifRight[i] - unifLeft[i])
rr <- data.frame(X = r)
rr2 <- data.frame(X = r2)
rr$group <- "True posterior"
rr2$group <- "ABC posterior"
rLengths <- rbind(rr, rr2)
plots[[i]] <- ggplot(rLengths, aes(x=X, fill=group, colour=

group)) + geom_density(alpha = 0.4) +
scale_x_continuous(limits=c(xmin - 0.2, xmax + 0.2)) +
annotate("rect", xmin=xmin, xmax=xmax, ymin=0, ymax=height,

colour="purple", alpha=0.2, fill="blue") +
ggtitle(titles[i])

}
multiplot(plots, col=ceiling(paramCount/2))

abc.params <- posterior.params <- {}
for(i in 1:paramCount) {

posterior.params[i] <- mean(posterior.accepted[i,])
abc.params[i] <- mean(abc.accepted[i,])

}

posterior.simulation <- maskWithNA(observations,
simulatePrecip(1, nt, posterior.params))

122

abc.simulation <- maskWithNA(observations, simulatePrecip(1, nt,
abc.params))

ds <- data.frame(observations, abc.simulation, posterior.
simulation)

names(ds) <- c("Observations", "Abc simulation", "True posterior
simulation")

plot.counts(ds)

m <- m.abc <- m.post <- {}
sd1 <- sd.abc <- sd.post <- {}
for(i in 1:364) {

m[i] <- mean(observations[means[, i]], na.rm=TRUE)
m.abc[i] <- mean(abc.simulation[means[, i]], na.rm=TRUE)
m.post[i] <- mean(posterior.simulation[means[, i]], na.rm=TRUE)
sd1[i] <- sd(observations[means[, i]], na.rm=TRUE)
sd.abc[i] <- sd(abc.simulation[means[, i]], na.rm=TRUE)
sd.post[i] <- sd(posterior.simulation[means[, i]], na.rm=TRUE)

}

Check to see what the precip means look like over the year for
8 different locations.

They seem to be very similar, which will motivate a common beta
mean estimate

across all sites
locs <- sample.int(22, 8)
par(mfrow=c(2, 4))
for(j in 1:8) {

o <- precipOcc[, locs[j]]
m <- {}
for(i in 1:364) {

m[i] <- mean(o[means[, i]], na.rm=TRUE)
}
plot(m)

}

cos.year <- cos(2*pi*(1:364)/365)
sin.year <- sin(2*pi*(1:364)/365)
cos.year.2 <- cos(4*pi*(1:364)/365)
sin.year.2 <- sin(4*pi*(1:364)/365)

abc.vals <- m[1]
post.vals <- m[1]
for(i in 1:(2*364)) {

abc.vals[i+1] <- pnorm(abc.params[1] + abc.params[2]*abc.vals[i
] +

abc.params[3]*cos(2*pi*i/365) + abc.params[4]*
sin(2*pi*i/365) +

123

abc.params[5]*cos(4*pi*i/365) + abc.params[6]*
sin(4*pi*i/365))

post.vals[i+1] <- pnorm(posterior.params[1] + posterior.params
[2]*post.vals[i] +

posterior.params[3]*cos(2*pi*i/365) +
posterior.params[4]*sin(2*pi*i/365) +
posterior.params[5]*cos(4*pi*i/365) +
posterior.params[6]*sin(4*pi*i/365))

}

model1 <- lm(m ~ cos.year + sin.year + cos.year.2 + sin.year.2)
model1.vals <- fitted.values(model1)

model.post <- lm(m.post ~ cos.year + sin.year + cos.year.2 + sin.
year.2)

model.post.vals <- fitted.values(model.post)

model.abc <- lm(m.abc ~ cos.year + sin.year + cos.year.2 + sin.
year.2)

model.abc.vals <- fitted.values(model.abc)

ggplot() + geom_point(d=data.frame(Vals=m), aes(x=seq_along(Vals)
, y=Vals,

colour="Observed empirical means")) +
geom_line(d=data.frame(Vals=post.vals[366:(2*365)]), aes(x=

seq_along(Vals), y=Vals,
colour="True posterior mean function")) +

geom_line(d=data.frame(Vals=abc.vals[366:(2*365)]), aes(x=seq
_along(Vals), y=Vals,
colour="ABC mean function")) +

labs(x="Day of year", y="Probability of rain") +
theme(legend.title=element_blank())

ggplot() + geom_point(d=data.frame(Vals=m), aes(x=seq_along(Vals)
, y=Vals,

colour="Observed empirical means")) +
geom_point(d=data.frame(Vals=m.abc), aes(x=seq_along(Vals), y

=Vals,
colour="ABC empirical means")) +

geom_line(d=data.frame(Vals=abc.vals[366:(2*365)]), aes(x=seq
_along(Vals), y=Vals,
colour="ABC mean function")) +

labs(x="Day of year", y="Probability of rain") +
theme(legend.title=element_blank())

ds <- data.frame(m, m.abc, m.post, model1.vals, model.abc.vals,
model.post.vals)

124

plot.empirical.means(ds)

ds2 <- data.frame(sd1, sd.abc, sd.post)
plot.empirical.sds(ds2)

m.avg <- {}
for(i in 1:12) {

m.avg[i] <- sd(observations[mo %in% i], na.rm=T)
}

d1 <- data.frame(Vals=sd.abc, Month=mo[1:364], G="ABC")
d2 <- data.frame(Vals=sd.post, Month=mo[1:364], G="True posterior

")
d3 <- data.frame(Vals=sd1, Month=mo[1:364], G="Observations")
ggplot(rbind.data.frame(d1, d2, d3)) + geom_boxplot(aes(x=factor(

Month), y=Vals,
position="dodge",fill=G), outlier.shape=NA) +
labs(x="Month", y="Empirical standard deviation of

precipitation") +
theme(legend.title=element_blank())

sum(observations[observations == 1], na.rm=T) + sum(!observations
[observations == 0], na.rm=T) + length(observations[is.na(
observations)])

sum(abc.simulation[abc.simulation == 1], na.rm=T) + sum(!abc.
simulation[abc.simulation == 0], na.rm=T) + length(abc.
simulation[is.na(abc.simulation)])

sum(posterior.simulation[posterior.simulation == 1], na.rm=T) +
sum(!posterior.simulation[posterior.simulation == 0], na.rm=T)
+ length(posterior.simulation[is.na(posterior.simulation)])

125

Appendix : precipSpatial.R

gp.year.count <- 20
precip.occ.start <- 1
precip.occ.end <- nt
precip.range <- precip.occ.start:precip.occ.end
sim.start <- 1
sim.end <- sim.start + 365*gp.year.count

location.count <- dim(precipOcc)[2]
data.start <- precip.occ.start
data.end <- precip.occ.end
data.range <- data.start:data.end
observations <- precipOcc[, 1]
coses <- cos(2*pi*(1:nt)/365)
sines <- sin(2*pi*(1:nt)/365)
coses2 <- cos(4*pi*(1:nt)/365)
sines2 <- sin(4*pi*(1:nt)/365)
occs <- append(NA, observations[1:(nt - 1)])

computePriors <- function(xs, means, sds) {
p <- 1
for(i in 1:6) {

p <- p*dnorm(xs[i], means[i], sds[i])
}
return(p)

}

solo.epsilon <- 1.15
epsilon <- solo.epsilon*location.count
if(!exists("theta0")) {

theta0 <- rep(0, 6)
for(i in 1:22) {
observations <- precipOcc[, 13]
occs <- append(NA, observations[1:(nt - 1)])
theta0 <- theta0 + glm(observations ~ occs + coses + sines +

coses2 + sines2,
family=binomial(link="probit"))$coef

}
theta0 <- theta0/22
cat(theta0, ’\n’)

}
currentCount <- 0
desiredCount <- Inf
variances <- c(0.5, 1, 1, 1, 1, 1)
unifLeft <- theta0 - variances; unifRight <- theta0 + variances
uniform <- TRUE

126

abc.accepted <- cbind(theta0)
currentCount <- 1
jumps <- 0
prior.mean <- theta0 + 0.05
theta <- theta0
ABC-MCMC
while(currentCount < desiredCount) {

print(sprintf("Acceptances = %d", dim(abc.accepted)[2]))
print(sprintf("Jumps = %d", jumps))
in.prior <- FALSE
while(!in.prior) {

candidates <- mvrnorm(n=1, mu=theta,
Sigma=0.0001*diag(variances))

if(priorIndicator(candidates, unifLeft, unifRight)) {
in.prior <- TRUE

}
}
cat(candidates, ’\n’)
zeta <- 0
for(loc in 1:location.count) {

observations <- precipOcc[precip.range, loc]
zeta.loc <- estimatePrecip(candidates, observations, precip.

occ.start,
precip.occ.end, FALSE)

cat(zeta.loc, zeta, ’\n’)
zeta <- zeta + zeta.loc

}
cat(paste("\n", "Zeta = ", zeta, "\n\n"))
if(!is.na(zeta) && zeta < epsilon) {

u <- runif(1, 0, 1)
alpha <- min(computePriors(candidates, prior.mean, rep(0.1,

6))/
computePriors(theta, prior.mean, rep(0.1, 6)),

1)
cat(u, alpha, ’\n’)
if(u < alpha) {

theta <- candidates
jumps <- jumps + 1

}
}
currentCount <- currentCount + 1
abc.accepted <- cbind(abc.accepted, theta)

}

s <- sample.int(dim(abc.accepted)[2], 1)
print(s)
abc.params <- {}

127

for(i in 1:paramCount) {
abc.params[i] <- mean(abc.accepted[i, s])

}

titles <- c(expression(beta[0]), expression(beta[1]), expression(
beta[2]),

expression(beta[3]), expression(beta[4]), expression(
beta[5]))

plots <- {}
pdf("meandensities.pdf", width=8, height=10)
for(i in 1:6) {
center <- prior.mean[i]
print(center)
xs <- seq(center - 0.3, center + 0.3, length.out=1000)
prior.vals <- dnorm(xs, center, 0.1)
plots[[i]] <- ggplot() +

geom_area(d=data.frame(pVals=prior.vals, X=xs),
aes(x=X, y=pVals, fill="Prior"), alpha=0.4,

colour="black") +
geom_density(d=data.frame(Vals=abc.accepted[i,])

,
aes(Vals, fill="ABC Posterior"), alpha=0.4) +

scale_x_continuous(name="") + scale_y_continuous(
name="") +

theme(legend.title=element_blank(), legend.
justification=c(1,1),
legend.position=c(1,1), legend.text=element_

text(size=6)) +
ggtitle(titles[i])

}
multiplot(plots, cols=2)
dev.off()

Get abc params and set up for simulations
accepted <- loadRDA("../Data/CovarianceParams") # Covariance

theta
samp <- sample.int(dim(accepted)[2], 1)

abc.theta <- {}
for(i in 1:4) {

abc.theta[i] <- mean(accepted[i,])
}

abc.betas <- {}
for(i in 1:6) {

abc.betas[i] <- mean(abc.accepted[i,])
}

128

abc.params <- theta0
mles <- m[1]
for(i in 1:(2*364)) {

mles[i+1] <- pnorm(abc.params[1] + abc.params[2]*mles[i] +
abc.params[3]*cos(2*pi*i/365) + abc.params[4]*

sin(2*pi*i/365) +
abc.params[5]*cos(4*pi*i/365) + abc.params[6]*

sin(4*pi*i/365))
}
index <- sample.int(22, 1)

ms <- {}
ms[1] <- mles[1]
for(i in 1:(2*365)) {

ms[i + 1] <- pnorm(abc.betas[1] + abc.betas[2]*ms[i] +
abc.betas[3]*cos(2*pi*i/365) + abc.betas[4]*sin(2*pi*i/365) +
abc.betas[5]*cos(4*pi*i/365) + abc.betas[6]*sin(4*pi*i/365)

)
}

colors = rainbow(22, alpha=0.8)
plot(mles[366:(2*365)], ylim=c(0, 0.5), lwd=1, col="grey", xlab="

Day of year",
ylab="Empirical probability of precipitation")

for(loc in 1:22) {
m <- {}
for(i in 1:364) {

m[i] <- mean(precipOcc[means[, i], loc], na.rm=TRUE)
}
lines(m, col=colors[loc])

}
lines(mles[366:(2*365)], ylim=c(0, 1), lwd=5, col="grey")

ms <- {}
for(loc in 1:22) {

m <- {}
for(i in 1:364) {

m[i] <- mean(precipOcc[means[, i], loc], na.rm=TRUE)
}
m <- cbind(m, day=mo[1:364])
ms <- rbind.data.frame(ms, m)

}

short.month.names = c("Jan","Feb", "Mar", "Apr", "May", "Jun", "
Jul", "Aug", "Sep",

"Oct", "Nov", "Dec")

129

pdf("meanboxplot.pdf", width=6, height=6)
ggplot() +

geom_boxplot(d=ms, aes(x=factor(day), y=m), outlier.shape=NA)
+

geom_line(d=data.frame(Vals=mles[366:730]),
aes(x=seq(1, 12, length.out=length(Vals)), y=Vals),

colour="blue", lwd=2) + ylim(0, 0.5) +
scale_x_discrete(labels=short.month.names) +
labs(x="Month", y="Empirical probability of precipitation

occurrence")
dev.off()

locs <- sample.int(22, 8)
par(mfrow=c(2, 4))
for(j in 1:8) {

o <- precipOcc[, locs[j]]
sim <- maskWithNA(o, simulatePrecip(1, nt, abc.params))
m <- {}
m2 <- {}
for(i in 1:364) {

m[i] <- mean(o[means[, i]], na.rm=TRUE)
m2[i] <- mean(sim[means[, i]], na.rm=TRUE)

}
lo <- loess.smooth(1:length(m2), m2, span=1/8)
plot(m, ylim=c(0, max(m))); lines(lox, loy, col="blue")

}

sample.count <- dim(abc.accepted)[2]
sims <- {}
for(j in 1:sample.count) {

params <- {}
for(i in 1:param.count) {

params[i] <- abc.accepted[i, j]
}
sims[[j]] <- maskWithNA(o, createSimulation(params, data.range)

)
}

Get mean and sd of each of the sample.count # of samples
sim.means <- {}
sim.sds <- {}
for(j in 1:sample.count) {
mean.vec <- {}
sd.vec <- {}
for(i in 1:12) {

mean.vec[i] <- mean(sims[[j]][mo[data.range] == i], na.rm=T)
sd.vec[i] <- sd(sims[[j]][mo[data.range] == i], na.rm=T)

130

}
sim.means <- rbind(sim.means, mean.vec)
sim.sds <- rbind(sim.sds, sd.vec)

}

gridSearchExp <- function(a0.range, a1.range, a2.range, tau.range
) {

a0 <- a1 <- a2 <- tau <- NULL
err <- Inf
start.day <- 1
end.day <- start.day + 365*(gp.year.count + 1)
obs <- precipOcc[sim.start:sim.end,]
for(a0.cand in a0.range) {

for(a1.cand in a1.range) {
for(a2.cand in a2.range) {

for(tau.cand in tau.range) {
cand.theta <- c(a0.cand, a1.cand, a2.cand, tau.cand)
print(cand.theta)
gp <- maskWithNA(obs, simulateSinusoidalExponentialGP(

cand.theta,
sim.start, sim.end))

error <- 0
for(month in 1:12) {

gp.start <- 30*month
occ.start <- 30*month # Shift by the given month

v1 <- getAggregateVariogram(gp, gp.start)
v2 <- getAggregateVariogram(obs, occ.start)
month.error <- sum(abs(v1[[1]] - v2[[1]])/v2[[1]])
error <- error + month.error

}
error <- error/12
if(error < err) {

err <- error
a0 <- a0.cand
a1 <- a1.cand
a2 <- a2.cand
tau <- tau.cand
cat(’Error is ’, err, ’, a0 = ’, a0, ’, a1 = ’, a1, ’

, a2 = ’, a2,
’, tau = ’, tau, ’\n’)

}
}

}
}

}
return(c(a0, a1, a2, tau))

131

}

mean.accepted <- abc.accepted # Mean function theta

sim.start <- 30000
sim.end <- sim.start + (gp.year.count+1)*365
unif.left <- c(5.5, -0.5, -0.5, 0.2)
unif.right <- c(7.3, 0.5, 0.5, 0.6)
a0 <- 6.5
a1 <- 0
a2 <- 0
as <- c(a0, a1, a2)
tau <- 0.40076
sigma <- diag(0.5*c(0.1, 0.01, 0.01))
accepted <- {}
theta <- c(as, tau)
currentCount <- 0
desiredCount <- Inf
jumps <- 0
epsilon <- 1

ABC-MCMC for Exponential(-||h||/A(t))
while(currentCount < desiredCount) {

cat("Acceptances = ", dim(accepted)[2], ’\n’)
cat("Jumps = ", jumps, ’\n’)
in.prior <- FALSE
while(!in.prior) {

as <- theta[1:3]
tau <- theta[4]
a.candidate <- mvrnorm(n=1, mu=as, Sigma=sigma)
print(exp(a.candidate[1] + a.candidate[2] + a.candidate[3]))
tau.candidate <- rnorm(n=1, mean=tau, sd=0.01)
candidate <- c(a.candidate, tau.candidate)
if(priorIndicator(candidate, unif.left, unif.right)) {

in.prior <- TRUE
}

}
zeta <- estimateExponential(candidate, sim.start, sim.end,

precipOcc)
cat(paste("\n", "Zeta = ", zeta, "\n\n"))
if(!is.na(zeta) && zeta < epsilon) {

theta <- candidate
jumps <- jumps + 1

}
currentCount <- currentCount + 1
accepted <- cbind(accepted, theta)

}

132

stop("Stopping")

Set up sim range and observation vector
cov.theta <- {}
for(i in 1:4) {

cov.theta[i] <- mean(accepted[i,])
}
test.sim.start <- 29940
test.sim.end <- test.sim.start + 365*(gp.year.count + 2)
test.range <- test.sim.start:test.sim.end
obs <- precipOcc[test.range,]
test.vgram <- getAggregateVariogram(obs, 15)
dists <- test.vgram[[2]]
vgram.len <- length(dists)
Look at box plots for individual month variograms
trial.count <- 20
sim.dfs <- {}
obs.dfs <- {}
gs <- {}
for(month in 0:11) {

index <- month + 1 # Used as index for lists
gp.start <- 1 + month*30 # Add 1 so that we are not accessing

0 for list index
sim.vgrams <- {}
obs.vgram <- getAggregateVariogram(obs, gp.start)[[1]]
for(i in 1:trial.count) {

cat("trial = ", i, ’\n’)
gp <- maskWithNA(obs,

simulateSinusoidalExponentialGP(cov.theta,
test.sim.start,

test.sim.end
))

sim.vgrams[[i]] <- getAggregateVariogram(gp, gp.start)[[1]]
}
vgram.vals <- {}
for(i in 1:vgram.len) {

vgram.vec <- {}
for(j in 1:trial.count) {

vgram.vec[j] <- sim.vgrams[[j]][i]
}
vgram.vals <- c(vgram.vals, vgram.vec)

}
dist.vec <- {}
for(i in 1:vgram.len) {

dist.vec <- c(dist.vec, rep(dists[i], trial.count))
}
Box plot of means for all samples

133

sim.dfs[[index]] <- data.frame(Value=vgram.vals, Dist=dist.vec
)

obs.dfs[[index]] <- data.frame(Value=obs.vgram, Dist=dists)
index <- index + 1

}

month.names <- c("January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November",
"December")

vgram.plots <- {}
pdf("variograms.pdf", height=10, width=8)
for(i in 1:12) {

sim.df <- sim.dfs[[i]]
obs.df <- obs.dfs[[i]]
vgram.plots[[i]] <- ggplot() + geom_boxplot(d=sim.df, aes(x=

factor(Dist), y=Value),
outlier.shape=NA) +

geom_line(d=obs.df,
aes(x=seq_along(Dist), y=Value), colour="

blue") +
labs(x=’Distance’, y=’Variogram’) + ggtitle(month.

names[i]) +
theme(axis.text.x=element_text(angle=-45, hjust

=-0.25, vjust=1.5, size=6)) +
ylim(0, max(c(obs.df$Val, sim.df$Val), na.rm=T))

}
multiplot(vgram.plots, cols=3)
dev.off()

titles <- c(expression(alpha[0]), expression(alpha[1]),
expression(alpha[2]),

expression(tau))
plots <- list()
pdf("alphadensities.pdf", width=8, height=6)
for(i in 1:4) {
values <- accepted[i, 200:1025]
xmin <- unif.left[i]
xmax <- unif.right[i]
width = xmax - xmin
height <- 1/(width)
d <- data.frame(r)
plots[[i]] <- ggplot() +

geom_density(d=data.frame(Vals=values), aes(Vals, fill="ABC
posterior"),

alpha=0.4) +
scale_x_continuous(limits=c(xmin - width/20, xmax + width/20)

, name="") +

134

scale_y_continuous(name="") +
geom_rect(xmin=xmin, xmax=xmax, ymin=0, ymax=height, colour="

black",
aes(fill="Prior"), alpha=0.4) +

ggtitle(titles[i]) + theme(legend.title=element_blank())
}
multiplot(plots, col=2)
dev.off()

gp <- maskWithNA(obs,
simulateSinusoidalExponentialGP(abc.theta, test.

sim.start,
test.sim.end

))

Quilt plot
pdf("precip_plots.pdf", width=8, height=10)
par(mfrow=c(4, 3))
for(i in 10:21) {

day <- 29940 + i
title <- paste(mo[day], da[day], sep=’/’)
quilt.plot(lon.lat, gp[i,], col=c("orange", "blue"), main=

title, add.legend=FALSE)
legend("topright", legend=c("0", "1"), col=c("orange", "blue"),

pch=c(15, 15))
US(add=TRUE)

}
dev.off()

Look at spell counts
taus <- 1:10
sim.counts <- obs.counts <- {}
for(tau in taus) {

s.counts <- o.counts <- 0
for(i in 1:(dim(gp)[2])) {

o.counts <- o.counts + getSpellCount(obs[, i], tau, tau + 1,
TRUE)

s.counts <- s.counts + getSpellCount(gp[, i], tau, tau + 1,
TRUE)

}
sim.counts[tau] <- s.counts
obs.counts[tau] <- o.counts

}

vs <- vs2 <- {}

for(month in 1:12) {

135

print("Yo")
gp.start <- 30*month
occ.start <- 30*month # Shift by the given month

v1 <- getAggregateVariogram(gp, gp.start)
v2 <- getAggregateVariogram(obs, occ.start)
if(sum(v2[[1]]) != 0) {

month.error <- sum(abs(v1[[1]] - v2[[1]])/abs(v2[[1]]))
print(month.error)

}
vs[[month]] <- v2[[1]]
vs2[[month]] <- v1[[1]]

}
cols <- rainbow(12)
par(mfrow=c(1, 2), mar=c(0, 0, 0, 0))
plot(vs[[1]], ylim=c(0, 0.20), main=’Obs’, col=cols[1]);
for(i in 2:12) { lines(vs[[i]], col=cols[i]) }
legend(’bottomright’, legend=c("Jan","Feb", "Mar", "Apr", "May",

"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"),
col=cols, lty=c(1,1))

plot(vs2[[1]], ylim=c(0, 0.20), main=’Sim’, col=cols[1]); for(i
in 2:12) { lines(vs2[[i]], col=cols[i]) }

legend(’bottomright’, legend=c("Jan","Feb", "Mar", "Apr", "May",
"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"),

col=cols, lty=c(1,1))

par(mfrow=c(3, 4))
for(i in 1:12) {

v1.temp <- data.frame(getAggregateVariogram(gp[mo %in% i]))
v2.temp <- data.frame(getAggregateVariogram(precipOcc, precip.

occ.start))
plot(v1.temp[,1]); lines(v2.temp[,1])

}

vs <- {}
for(i in 1:12) {

vs[i] <- data.frame(getAggregateVariogram(precipOcc[mo %in% i],
precip.occ.start))

}

