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Abstract

This angAIXQatLon concerns a TEM wave incident obliquely onto
the opening of a parallel plate wavegulde with a truncated upper plate.
The Low plate as well as the dielectric slab, between the two plates,
are assumed Lo be extended out indefinitely in ondern to support ithe
propagation of at Least one swiface wave mode, Reflection from Zhe
waveguwide opening Ls determined as a function of incident angle via a
dual Wienen-Hopf formulation. 1t 45 found that a total reflection, L.e.,
the magnitude of the reflection coefficient equals fto unity, L8 possible
gor incident angles greaten than the critical angle associated with the
Lowest-onder surface-wave mode of the grounded dielectric slab. The
field external to the parallel plate waveguide in this case becomes com-
pletely evanescent in the cross-sectional plane perpendicular to the plane
of 4ncidence, which is determined by the propagation direction of the
incident wave and the edge of the upper plate. 1t is shown that the
phase of the reflection coefficient thus obtained can be used to construct

the modeak equation for the fundamental mode(s) of a wide microstrnip.



TOTAL AND PARTIAL REFLECTION FROM THE END OF A PARALLEL-PLATE
WAVEGUIDE WITH AN EXTENDED DIELECTRIC SLAB

1. Introduction

The problem of a truncated parallel-plate waveguide with an opening
onto a grounded dielectric slab extended from the waveguide region has been
widely investigated, mainly because it provides an understanding on the
launching of surface-wave modes on the slab structures [Anguio and Chang,
Bates and Mittra 1968, Fong, 1972, Zhurov 1975]. Since efficient excitation
of the surface waves is the central issue, most of the effort has been
expended in investigating the case of normal incidence of individual modes
in the parallel-plate region. More retently, question of the reflection of
a TEM-wave from a dielectric slab which is not thick enough to support any
well-confined surface-wave mode has received particular attention because
the structure is closely related to that of a microstrip. It is recognized
by Fong and Lee [1971], and recently by Fialkoskii and his colleagures [1977]
that a truncated parallel-plate in the presence of a grounded dielectric
slab forms a canonical problem for studying the quasi-TEM as well as other
higher order modes guided by the structure. Mathematically, the problem
becomes much more complicated than the normal incidence case however, due
to the fact that both LSE-wave and LSM-wave, characterized respectively by
the electric and the magnetic field component normal to the slab surface,
can be excited by the TEM-wave with a general incidence angle. Also because
the interest now is to study guided modes, solutions that exhibit an exponentially-
decaying behavior in a cross-sectional plane are those warranting particular
attention. Only lately with the development of microstrip antennas, does
the problem of understanding the governing relationship for waveguiding and

wave radiation become more important.



In this paper, the canonical problem of a grounded slab with a truncated
upper plate is treated analytically in detail. Expressions for the reflection
coefficient and end admittance are derived. Numerical examples pertaining to
both waveguiding characteristics and radiation characteristics of the struc-

ture are also given.
2. Scattered and Reflected Fields for a TEM Incidence

Consider the problem of a semi-infinite, perfectly conducting half-plane
placed in the interface between air and a grounded slab of thickness d, as
depicted in Figure 1. The slab is assumed to be lossless, having a relative
permittivity € and permeability M A TEM-wave of unit amplitude is
incident obliquely in the parallel plate region between the conducting strip
and the ground at an angle ¢ with respect to the y-axis. Defining o = n sin¢
where n = (”rer) is the refractive index of the slab, the field components

associated with this incident field can be written as

E; = exp{-ik [ax - (n®-a?)*y1} (1)
. } ;- . 2
;H;‘; - "(UY‘no) ][ax(.nz‘o"z) * ayu]eXp{-1kO[aX—(n2—a2) y]}

N

with a suppressed time-factor of exp(i®wt); ko =w(u0eo) is the free-space
wave number, Ny = (uo/so)1§ = 120w ohms; éx and Ey are the unit vectors

in the x- and y- direction . To find the reflection as well as radiation of
this wave, we shall derive later in this section, a spectrum-domain formulation
which allows us to find the solution via the classical Wiener-Hopf technique.
Before we can do that however, some comments must be made regarding the

physical nature of the problem.
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Asit {s well-known in the theory of surface waves, a grounded dielectric
slab in the absence of the conducting strip can support a finite number of
surface-waves --the exact number of which depends upon the so-called "numerical

i 1

aperture" defined as V = (ur€r-])§ kod of the structure. Among these, the

LSE.-mode with the electric field polarized in the z-direction actually has

1
no cut-off. Thus, one would at least expect the excitation of this wave as a
direct result of the TEM-wave incidence. However, unlike a two-dimensional
problem where one assumes no variation in the x-direction, both the surface-
wave and the radiation field in the open region can propagate in one direction,
while exponentially decay in another direction. For instance, since the total
solution has to have the same variation of exp(—ikoax) along the x-direction

as the incident wave, the far-field observed at a fixed elevation angle 6 in
any cross-section has to behave Tike f(e)exp(iko[l—uz]%r) in air where r

is the radial-distance from the parallel-strip waveguide opening. Depending
upon the incident wave, the quality o = n sin ¢ can vary from O to n.
Therefore, for o < 1, the "scattered" field indeed propagates radially away
from the waveguide opening, but for 1 <a <n, the scattered field decays
exponentially instead. In a very similar fashion, the field components
associated with a surface-wave of wave number ap must behave Tike
exp[—ko(ag—])z] exp{—iko[ux —(ag-az)%y]} in air. Thus, for o <o < n, an
exponential decay of field in both y and z direction, is again observed.

We note that the value of ap is determined from
e (21 = (nP-q 2)% tan[(nz—az)%k d] (2)
r'p P p’ "o :

for a LSE surface-wave, and from

b2 = (n2a)F cotl(n®-a P)F k] (3)



for LSM surface-waves (if they exist).

The above discussion points to a very jmportant feature, unique to the
study of oblique incidence. That is, whether the opening at the end, i.e. y = 0,
will actually aliow the TEM-wave in the parallel plate region to radiate into
the open-space or not depends upon the angle of the incident wave. A complete
reflection of the wave is therefore entirely possible, if the angle of inci-
dence ¢ = sin—1(a/n) is greater than some critical angle ¢, = sin'](ap,max/n)
where agnwx " is obtained from the surface-wave mode having the largest value
of ap. ’Such a phenomenon is certain]y not unlike a plane-wave incident
obliquely from a lossless medium having a large refractive index to a medium
with a smaller refractive index. Reflection coefficient of the TEM-wave in
this case can be expressed in the form [Iypy = exp[+iX{a)] so that the mag-
nitude is of unity. It is of interest to note that, for a conducting strip
of finite width 2, the total phase change for a TEM-wave bouncing back and

1
2 -az)iz, provided

forth once between the two ends of the strip is 2X -ZkO(n
the field diffracted from one end will not .be significantly coupled into the
other end. Thus a transverse resonance can be achieved if and when the total

phase change equals integer multiples of 2m:

2 2%
2x(0) -2k (n"-0%) & = 2mr; @ =0,1,2 -+ (4)

The particular values of o , m =0,1,2 === that produce this resonance then
correspond to the propagating modes of a microstrip structure. Of course,
because o has to be less than n for a TEM-wave under the strip one expects
only a finite number of acceptable o most 1ikely one, that will produce this
resonance. In a companion paper, we shall expand this viewpoint and show that
equation (4) provides the correct dispersion relationship for the quasi-TEM

mode and higher-order modes of a wide microstrip problem.



We now proceed to formulate the spectral-domain representation of the

scattered field. Defining a Fourier transform pair;

- k o © ik Ay ~ -
) =2 ([ + [fe ey = FL0) + 5,00

“ N‘m —ikOXy (5)
f(y) = f(A)e © dn

CO

~ ~

where f, , f_ are defined, respectively, as the integration from 0 to «
and from -« to 0. Provided that f(y) corresponds to a physically realizable
function, one can define an arbitrarily small positive number, T and

show that ?+(A) is analytic in the upper half of the A-plane, i.e.

Im A 2 =T, and ?:(x) is analytic in the Towerhalf , d.e. Im X < To(Fig.Z).
Now since the scattered field has to vary along x like exp(ikoux) as the

incidence field does, its spectral representation in the air region, z > d,

can be shown to be

-u k (z-d) -u_k (z-d)
=S _ 00 Y- 00
EZ = Eoe ; HZ Hoe
~s . -u_k (z-d) -u_k (z-d)
_ - - 00 o - = 00
Et ;§IX§-[(aax +.Aay)u0EOe 1no(aay KaX)HOe ]
~ . -u_k (z-d) ' -u_k (z-d)
s _ i = .= 00 Y PR 00
Ht = a2+x2 [(aax+kay)uoHoe +ing (uay-AaX)Eoe

(6)
where u, = (k2+u2—1)% ; Re Uy > 0, and (EO,HO) are two yet undermined functions
of A. In what follows, the explicit dependence on x, i.e. exp(ik0 x) will be

suppressed. Similarly, in the slab region, z < d,
ES . ch unkoz ' ﬁs . sh unkoz
z n ch unkod >z n sh unEOd >
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e 1 u shu kz shu kz
By = 77 [-(aa, +a) (ch u k.d > By - Inghploay-Ad, )\ g u X d>H ]
(7)

unch unkoz> = _ _ /¢h dnkoz)
? [ (aa 22 )(sh unkod Hn +1n0 Er(aay—xaxxich unkod E ]

i

oc+>\

1
where u, = (kz + az—nz)z. Again, (En’Hn) are two yet undetermined functions

of A. Since the incident electric field has no tangential component, the

continuity condition, Ei(d+0) = Ei(d—O) yields immediately,

H =uH , uOE = —(unth unkod)En (8)

We note that the scattered field is given in (6) and (7) in terms of a
representation in LSE and LSM modes.

Before we proceed to determine the remaining two constants, we first
define F_(A) and éu(k) as the Fourier transforms of the qualities
Vt-Ei/ko and 5Z'Vt Xéi/ko’ in the interface, z = d. Here, V. is the
“del" operator in the plane transverse to z, and 52 is the unit vector

_S
in the direction of 2z. Because both V_°E

- S .
£ Et and a, Vt XEt vanish on the
conducting strip, it is clear that

~ o - ik Ay
F_(A) = §l~] Vo Er(ysd)e O dy s

“eo o (9)
~ __l— O__. =s . 1Oy
G_(A) = 5 j a, v, xEy(y,d)e dy

are "negative" functions, analytic only in the Tower half of the complex A—p]ane:

Applying the definitions in (9), one sees immediately from (6) that both E,

~

and H  are expressible in terms of F and G_ :

- F M - 1 -TN
o F_(x)/uo, H = ing G_(A)



or

= ~(ugth uk )™ F() 5 M= Gng) T 6 () (10)

En n

As shown in Appendix A, a Wiener Hopf formulation for F_(A) can be derived by
imposing the boundary condition that the total normal electric flux is con-

tinuous at the air-slab interface, i.e.

Stye d- oy = ESqu.
e E5(y;s d-0) + € E_(y3d-0) = E>(y;d+0), for y <0

and that the scattered component is discontinuous by the amount equal to the
induced charge density on the metallic strip, i.e. Ei(y;d+0) - erEi(y;d-O)
= DS(Y), for y > 0. Defining Si as the Fourier transform of pS, we

obtain from (A.2) the following Wiener Hopf equation

FLO) = 0,500 - 31007/e, (1)
where
uounth unkod
Qe(x) = Eruo + unth unkod (12)
and

i -k € © ik Ay
51(0) = 20 { e El(yid-0)e O dy

1e A l
13
) [A+ n2 2)2 j} (13)

is the Fourier transform of the charge density of the incident TEM-wave on

the strip. Since Bi and Bj is obtained by integrating, respectively, p

from 0 to « and pi from -» to 0, the (&) signs account for the different
regions of analyticity associated with them. Likewise, a Wiener-Hopf equation
for G_ can be obtained by imposing the suitable boundary condition for the
normal magnetic field at the interface. As shown in eq. (A.5) in Appendix A,

one obtains the following:
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iwe G_(2) = Q,(A) 7,(2) (14)
where .
Q (A) = L . (15)
m LU + u, cth unkod
and }+(x) is defined as the Fourier transform of 5Z°Vt xai . Because
the surface current density -ﬁi = 5XJi + 5yJ; is zero outside the strip, one

can again show that }+(A) is analytic only in the upper half of the complex
A-plane.

In the next section, solution to the two Wiener Hopf equations will be
discussed. We note that once F_(A) is known, the reflection coefficient of
the TEM in the waveguide can be obtained from the Fourier inverse transform
of the scattered field component, Ei(y;z). As evident from (7) and (10),

the integral

[ee]

s -1 - “ikMY
E5(y.2) = j (u shu k) lchuk zF (e ©

-0

can be enclosed in the lower half of the A-plane for the parallel plate
region, y > 0. Since E_(A) is analytic in the Tower half-plane, the
reflection coefficient of the TEM wave is known from the residue contribution
at A = (nz—az)% as

] -k (n%-a?)y
EZ(.Y9Z) = FTEM e 5 (]6)

LI 72
Prgy = milkd(n?-0) 1 F_(1 =/h-a) (17)
Together with the implicit dependence of exp(ikoux) in the x-direction,
eq. (16) then corresponds to a reflected TEM wave propagating away from the
edge at an angle equal to negative of the incidence angle ¢ . It is of

interest to know that only ?_, but not E_, is involved in the expression of FTEM
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3. Spectral Solution F_(x) and G_(1)

Formal expressions for E_ and G; can be derived by employing the
typical Wiener-Hopf procedure. First, we factorize the kernel functions
Qe and Qm into positive and negative functions according to Q = Q,Q_ and

Q.(x) = Q_(-1), where Q, is formally known as [Mittra and Lee, 1971]

Q,(A) = %(O)exp % 2;1 J QQ%%% Qn(wiﬁ-)dw} (18)

and C, is the integration path from ~w¥10 to -»«¢10 as shown in Fig. 2.
After the splitting of plQef into the sum of a positive and a negative

function, i.e.,

i Te, \> v/ [j j2 2 }
= }\ - -
let * 7 (A Ry il o )\+/n2 o Ter (1) G (- A -o0) J,
(19)
One immediately obtains from (11), the following formal solution
F.O) = 2,”'")[6 Qs (- h2-of f,...]Q () (20)

A +vhe-ol

. 1€.€ 1 (2.2
5 () = —Eﬁfg»{c] " s [0, () -0, (o )1} Qi) (1)

where C] is a yet-undermined constant. We note that, in deriving (20) and
(21) use has been made of the edge condition for pi(y) as 'y » 0. Following
essentially the same procedure, we can also obtain from (14) the formal

solution of é_ and }; as
6.0 = (R0 _(A) (22)

7+ (A) = i(—‘z’i—‘;) 20m+(>\) (23)
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the case of normal incident where a = 0, can one then excite the LSE-wave
with a vertical electric field component, without the LSM-waves. It is of
interest to note that since the incident wave has no x-dependence in this
case, the problem actually reduces to the two dimensional case previously
investigated by Bates and Mittra, [1968]. The approach we used to obtain
the solution also appears to be similar to theworkof Fialkovskii [1976] and
Nefedov and Fialkovskii [1977], although no description than how they

obtained their result is documented.

4. Reflection Coefficient and End Admittance

For our later discussion, it is somewhat more convenient to define two

new kernel functions

~ 5 uoth unkod

Qe(x) - (E;') un(gru0+unth unkod) (28)
A _ 1

Q1) = e G U Fu CEhu K d) (29)

so that
(kod 2 A
0, (1) = =) (05 9,00 = (u k8 () (30)
r

At the low frequency Timit, i.e. kod + 0, one can readily show by a small
argument expansion of the hyperbolic functions that both ﬁe and ﬁm become
unity, so that the leading terms in the original kernels now appear explicity.
Factorization of ae and am can be carried out in the usual manner as indicated
in (18):
0,(1) = exp(-if/2); f(A) = i n Q(0) + %—J %%é%l-ln M2 yaw (31
C

+
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for both subscript e and m. Now since the terms (kot ui/er) and urkot can
be factorized by inspection, we obtain from (29) and (30), an alternative

expression for the positive functions Qe+ and Qm as follows:

k d 2 : )
0, (\) = 1(2) (hf-a? - We e M/2 0 ) = (k) e RENMONYZ.

(32)
Using these expressions, we have derived in Appendix C the explicit form

of F_(A) as

- 2 A+ dathA
F(A) = 1 k d né-a (
- MZ-of ~iathA

) -i[f (-2) ] fe(-/n -a?)1/2
e

(33)

which, when substituted into (17) yields

I S IR I R CY
TEM T © w(e) = 2 tan (g thit ) - Fe(-m-e) - (34)

which agrees in form to the result obtained by Fialkovskii [1976].0One can
also show that in the low frequency 1limit as kod + 0, x(a) ~0 and Irey > 1,
is also consistent with the result by Weinstein [[1970].Expressions are derived

in Appendix C. - :
o J 2n{?o€r Un +Uruoth unkod iJ dA

A= ( , (35)
un eruo +unth unkod k2+a2

™

—— 2
2 22 " (14e Ju~th u k d
2 2 2 g2 2 r'"o no di
f (—/ﬁ -a”) = tan ( - £ /- J Qn[ -] < —
e ] T un(eruo+u th u k d) Ag_(ng_az)

(36)

0

where the integral in (36) is defined as a principal-value integral at

. 1 1
A= nz-az. Recalling Uy = (xz + ocz-l)f (xzhxz-n ), and Re U >0, after

an integration-by-part, that the two integrands possess a pair of branch cuts

at A =iri(oc2-1)JZ and a set of simple poles located at A = ixe where

1 1
sr(A2+u2—1)2 + (Ai + az—nz) th (x2+a2 n2)2 =0 LSE mode (37a)
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and an additional set of poles at A = ixm where

2,2 2)%

1
+ az-])% + (Am +a, " -n

cth(xé +a2n?)? =0,

LSM-mode (37b)

2
ur(xm

in the case of the first integral. By setting kg + az = mg in (37a)
and xi + az = ug in (37b), one immediately sees that these are the same

characteristic equations for the LSE and LSM surface modes as we discussed

at the beginning of this paper. Now since the value of o =n sin ¢varies

from 0 to n, depending upon the incident angle ¢ of the TEM-wave, location

of these singularities and hence, the value of the two integrals can change
accordingly. Assuming the thickness of the slab is such that only the LSE]-
mode can propagate, the path of integration relative to the location of these
singularities, is depicted in Fig. 3 for three possible ranges of incident
angle: (i) 1 <0< o <N, (ii) T<a < o< (ii1) o<1 <ap< n. In the first
case, u is real and the integrand is not only real, but smoothly varying
(except near A =Jé§i;§3 along the path of integration. Hence, the value of

A, fe(-/fgj;g) and consequently, X (o) are all real. The magnitude of TTep
is therefore unity, and the incident power is completely reflected back.

As we mentioned before, this situation is very similar to a plane-wave incident
onto a dielectric interface beyond the critical angle. As in the case of a
dielectric waveguide, the phenomenon certainly can be utilized to gufde an
electromagnetic wave along x-direction when the conducting strip is truncated
and a transverse resonance is imposed. In a companion paper, we shall discuss
the guided wave on a wide microstrip based on this concept. On

the other hand, for the case (ii) when 1 < a < 0> 8 simple pole will appear
on the positive real axis and the path of integration will have to be

deformed upward as shown in Fig.3. Although the remaining integration still



(ii)

Figure 3
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has a real value, it can be shown that the deformation around the pole
yields an imaginary part equal to half the residue at A = Ae‘ As it will
be demonstrated later in the numerical examples, the magnitude of TTEM is
now less unity, as part of the power is now used to excite the surface wave.

Finally, in case (iii) where o < 1 < ap, the integrands1in (35) and
(36) are now complex for the integration range 0 < A <(1-a2)§. The mag-
nitude of FTEM can be shown to be even smaller, since power can now radiate
into the open region in the form of "sky-waves."

From the form of PTEM in (34), one can also define the apparent end-
admittance of such a structure as

1-T
Y_(a) = ¥ Tl = -4Y_ tan[x(a)/2] (38)

¢ gy
where Y, = (n1d)”] ohm/m is the characteristic admittance of the TEM-wave
in a parallel-plate waveguide. While numerical examples will be given
later, it suffices to note that this admittance is a function of both

frequency and angle of incidence.

5. Far Field and Surface-wave Radiation

Since the coefficients E and H_ are related directly to E and‘b’,
in (10), all the field components in the air region can be obtained by
inverting the spectral solution given in (6). In particular, the far
field can be shown asymptotically to be proportional to its spectral
solutions with the substitutioh A= (]-aZ% cos 6(or -1(u2-1)%cos p for
o >1). This is true, provided, of course, the observation point is not
near the slab surface, or, in other words, the surface-wave pole, if it

exists, is not close to the saddle-point. [Felsen and Marcuvitz, 1973].
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For a fixed cross-section, we can show from (6) that the far-field variation

is characterized by

X i4ﬁ10 1

) 2.2 2
nH, (2.1 [osin® +:cos 0

asin® cos 8/ F (\)

-cos 8 o sing —iVa2—1 sin6G_(2)

x=-i%§2-1 cosH

1
where 6 = tan'](z/y); ro= (y2+22)2 and I =[-1/4 Héz)(ko/i -azr)], as

ko(l—a)i > 1, is the far field of a line source. We note that since the

radial component of both electric and magnetic fields have to vanish

asymptotically in the far-field, it is more convenient to characterize the

solution in the far-field region in terms of Ex and Hx‘

incident angle ¢ greater than some critical angle oc =

1

Furthermore, for

sin—l(lln), the term

(1-&2)E is purely imaginary so that the far-fie]d actually decays exponen-

tially, rather than propagating away from the structure.

If we now utilize

the expression (C.4) and (C.5) derived in Appendix C for F () and G_(1),

we obtain the following expression

E sin
X Ao

cos 6\ (%, (630) \

(39)

2.2 2
_ a-sin"6 + cos @ . E .
nH, - cos6 asine/\7 (650) /
Fo(830) = (/-1 cha cose - asha)exp[-if,(iv4°-1 cos6)]
and

—

where A0 =-T4kod/éz-1 Io(chA -io shA//%z-aZ)

7%%(6;&)= -isin e"a/az—l exp[—ifm(+iv62-1 cos 8)]

/ -1

is the amplitude of the two

field strengths. Expression for fe and o is again given in (C.6) and (C.7)

in Appendix C. Obviously, as the operating frequency goes down, AO decreases

continuously to zero as one would expect in the static Timit.



where 3%! and 51 can be obtained directly from (1) as

(B.5)

s B I S S,
t- Zﬂnour X Yy L)\ +(n2_ 2)'2 i

As it appears, the right-hand side of (B.4) has poles located at )\ = —Jﬁz-uz

and ia in the upper half of the complex a-plane. The pole at X = -/ﬁz-az
is only a pseudo one since the contributionsfrom Sj and 51 mutually
cancel out. However, the pole at A = ia can be eliminated only by
enforcing a condition on Bi and Ei so that

fiwa(py - p1) + A3} = 0 and (fwA(p5 -51)-07 ) = 0
A=ia

or alternatively, w(Si —SI) + .fi =0 at A = ia. Substitutions of the
expression in (21) and (23) now yields the additional condition on C1

and CZ:

€10 (1) + €0, (i) = (/n°=? + ia) "M, (-viP-a?)q_, (fa)
(8.6)



c-1

APPENDIX C

To obtain a suitable expression for F_()) and G_()), we first define
= -ilf (ia) - f (ia)1/2 (c.1)

where fe and fm are given in (31), so that from (27) and (32),

JRU— /‘““""_
(/42—u2—1a)2 —nzefZA _ 1 —exp{+i2(tan—] a/%ﬁz-az +iA)}

(/n2-a2 -ia)2 +r12e_2A 1 +exp{i2(tam'1 a//nz-az + iA)}

§iy

- ’cam(\tam'1 &+ 1A> (C.2)

Sn2-g2

_ o +ivh=e th A
M?-o? “io th A

Expression for 2, can then be obtained from (C.2) and (27) as

s 2\F . -1 o
Q, = -1(1-91) = -i sec(tan

+ iA)
n -o
. (C.3)
=1n

¢h2—u2 ch A-ig sh A

Substitution of (C.2) and (C.3) into (26) and (20) yields immediately the

expression for F_(}) as

ie e .. f2 2 Y —
F_()\) - ZT_Y; {‘JZ’( n2_a2 +Ol, +iovn“-a~ th A)_ 1 } Qe()\)Qe_I_(_ n2—0(.2)
n Vnz-az -ia th A x+/n2-a2
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™
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and from (26) and (22), the expression for G_(\) as

_( o S22
5.0 =( 1) e 0, (-/h2-a2)0__(1)

-1 kg i} e-i[fe<¢451a2>+fm<-x)1/z
/2—0(, chA -1ia shA (C 5)
We derive representations of A and fe(—¢ﬁ2_u2) convenient for

computation. First, the form of ﬁe and ﬁm are rewritten as

2
e (1+e_Ju~th u k d
Qe(x) = (]+£ Tk du ()5 Ay = g (eru gu thnuok d)
r’to 0 ntro n no

9,0 L) Ruasks
m (T+u )k duy m m o pu U, cthukod

so that the terms 9 and 4y approach unity as || + <. Splitting of these
terms can then be done formally without introducing the value of the
functions at A =0 as indicated in (18). Defining fe and fm in the same

way as in (31), we have

o«

e
. : 2n o
f(n) =i tn|—oTF + 2] g 00 =
¢ (1+er)kdd[/a2-1 -in] S U (c.6)
. . da
£ (n) =1 tn ! P2 a5y )
(T4 r)kod[/ocz-l —in] 0 -n

which can be used to give the following expression for A:



e (144.) u_ e\ Ut U th u k d
A o= dogpro vt %_ f Qnt 0 ( r ) r o “no i] gk >
r

2 1 +¢ . 1+ Hye us +unth unkod N
™ ( unth unkod) u2+k2 »

Expression for fe(f/hz*az) is somewhat more complicated because A = /éz-az

is located slightly below the real axis. To ease any possible computational
difficulty, we define the integral as a principal-value integral at i = /hz 2

by substrating the half residue at A = vn ~a2. Consequently, we obtain

‘/’Tﬂm —oc 2¢ -oc { n 9, ‘A) dx
'/n R 2. (n2-g2)

(c.9)
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