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Seminal Evidence of a 2.5-Sol Ultra-Fast Kelvin Wave
in Mars’ Middle and Upper Atmosphere

Federico Gasperini''"', Maura E. Hagan''"', and Jeffrey M. Forbes?

"Department of Physics, Utah State University, Logan, UT, USA, 2Ann and H.J. Smead Department of Aerospace
Engineering Sciences, University of Colorado Boulder, Boulder, CO, USA

Abstract The structure and dynamics of Mars’ middle and upper atmosphere is significantly impacted
by waves propagating from the lower atmosphere. Using concurrent temperature and neutral density
measurements taken by the Mars Reconnaissance Orbiter and Mars Atmosphere and Volatile EvolutioN
satellites, we demonstrate for the first time that a 2.5-sol ultra-fast Kelvin wave is a prominent global-scale
feature of the low-latitude middle (i.e., 30—80 km) and upper (approximately 150 km) atmosphere of
Mars. Further, we present evidence of secondary waves arising from nonlinear interactions between this
ultra-fast Kelvin wave and solar tides, and based on their amplitudes we surmise that they could represent
an important source of tidal and longitudinal variability in the aerobraking region.

Plain Language Summary The upper atmosphere of Mars is driven by a combination of
effects linked to solar radiation and to waves that originate in the lower and middle atmosphere. Upward
propagating waves are responsible for short-term temperature and wind variations in Mars’ middle and
upper atmosphere and couple different layers of Mars’ atmosphere. While in the last couple of decades
our understanding of the processes responsible for this coupling has considerably improved, there are
many unresolved questions regarding the impacts of the entire spectrum of these waves on the upper
atmosphere of Mars. In this work we demonstrate that a strong ultra-fast Kelvin wave with a period of 3
sols and the secondary waves generated by its nonlinear interaction with solar tides can be a large source
of variability in Mars’ middle and upper atmosphere.

1. Introduction

The upper atmosphere of Mars is strongly impacted by solar radiative forcing, the solar wind, dust storms, and
dynamical coupling due to waves propagating from the lower atmosphere, including gravity waves, planetary
waves (PWs), and tides (e.g., Bougher et al., 2008; Forbes, 2002; Jakosky et al., 2017). These atmospheric waves
transport momentum and energy from the lower atmosphere to the middle and upper atmosphere, where
they are a primary driver of sol-to-sol, intraseasonal, and seasonal variability. Evidence for wave coupling into
the upper atmosphere of Mars was previously diagnosed in atmospheric density measurements in the 100-
to 150-km region derived from accelerometer data (e.g., Moudden & Forbes, 2015; Wang et al., 2006; Withers
etal., 2003), numerical modeling studies (e.g., Angelats i Coll et al., 2004; Forbes et al., 2002; Moudden & Forbes,
2008), Mars Global Surveyor radio occultation data (e.g., Cahoy et al., 2006), and Mars Atmosphere and Volatile
EvolutioN (MAVEN) measurements (e.g., England et al.,, 2016; Liu et al., 2017).

To date, most studies have examined the vertical wave coupling at Mars in the context of specific
eastward-propagating diurnal solar tides, commonly referred to as diurnal Kelvin waves (e.g., DKWs; Forbes &
Hagan, 2000; Forbes et al., 2001; Guzewich et al., 2012; Wilson, 2000). In classical atmospheric wave theory (e.g.,
Longuet-Higgins, 1968), Kelvin waves (KWs) are the first symmetric eastward-propagating gravity-type modes
and are equatorially trapped. In Earth’s atmosphere, KWs also play an important role, with the shorter-period
(2-6 days) ultra-fast Kelvin waves (UFKWs) extending into the thermosphere. In this work we present first evi-
dence for UFKWs in Mars’ atmosphere and demonstrate that they effectively couple the middle atmosphere
to the thermosphere.

Our experimental evidence for UFKW vertical coupling is obtained from Mars Climate Sounder (MCS) temper-
ature measurements from the Mars Reconnaissance Orbiter (MRO) between 30-80 km and neutral densities
from the accelerometer on board the MAVEN satellite near 130-170 km during four periods when MAVEN
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sampled the equatorial region. Particular focus is placed on a 18-sol period near autumnal equinox, when the
wave signatures are most prominent. Using the approach of Moudden and Forbes (2010, 2011a, 2011b), we
present evidence of secondary waves arising from nonlinear interactions between this UFKW and solar tides.
The following section describes the MRO/MCS and MAVEN data, section 3 describes the methodology, section
4 presents the results, while section 5 provides a summary and conclusions.

2. Data

The data used in this study consist of temperature profiles (version 4) from the MCS instrument on board
MRO covering altitudes between ~20 and ~80 km and MAVEN accelerometer-derived neutral densities
(level 3) near periapsis (i.e.,, ~130-170 km). The MCS temperature data are from the Derived Data Record
archive available at the Planetary Science Database (http://pds-atmospheres.nmsu.edu/), while the MAVEN
neutral density data are from the Science Data Center at the Laboratory for Atmospheric and Space Physics
(https://lasp.colorado.edu/maven/sdc). This work focuses on the period between 1 November 2014 and 31
April 2017, when concurrent MCS and MAVEN data are available. This period consists of 888 sols starting at
solar longitude L, = 224.8 and ending at L, = 357.1, and covering ~1.33 Martian years.

MCS is a limb-scanning infrared radiometer that launched aboard MRO and became fully operational at the
end of September 2006 (McCleese et al., 2007). MRO’s orbit is nearly polar and Sun-synchronous with an incli-
nation of 92.66° . At any given time the spacecraft’s local time (LT) is near 15 LT or 3 LT during the ascending or
descending parts of the orbit, respectively, except poleward of 75° latitude where the spacecraft shifts from
15 LT or 3 LT and vice versa in the opposite polar hemisphere. The orbital period is 112 min translating to
nearly 13 passages per sol. Each orbit is shifted by about 27° in longitude from the earlier orbit. The vertical
resolution of the MCS data is ~5 km with horizontal resolution of ~150-300 km, depending on altitude. The
uncertainty in MCS temperature measurements is ~0.4 K (i.e., 0.25% of average temperature) between 5 to
300 Pa (i.e., 20-80 km). Closer to the surface the errors are ~0.5 to 3 K (0.5 to 3%), while above 5 Pa the errors
steadily increase to ~10 K near 0.06 Pa, that is, ~80 km (Guzewich et al., 2012).

MAVEN was launched in November 2013 and entered Mars’ orbit on 21 September 2014. After a 2-month tran-
sition phase, MAVEN entered the nominal science orbit, an elliptical orbit around Mars at 75° inclination, with
a 4.5-hr period and periapsis altitude of ~130-170 km (density corridor of 0.05-0.15 kg/km?). Periapsis pre-
cesses over a wide range of latitudes and local times. During each sol MAVEN samples 5 to 6 Mars' longitudes
and precesses through ~3.5 diurnal cycles every Martian year (i.e., 24-hr local time coverage occurs in about
200 sols). An in-depth review of MAVEN and its mission is provided by Jakosky et al. (2015). During the nominal
science orbit, when periapsis altitude is near 160 km, the onboard accelerometer provides a data source for
determining atmospheric density (Zurek et al., 2015). The ability to recover density depends strongly on orbit
and spacecraft conditions. Nonrandom errors can be introduced in the conversion of accelerations to density
by uncertainties in spacecraft attitude and in the associated aerodynamic error coefficients. Zurek et al. (2017)
compared densities from different spacecraft attitudes and for different satellite passes and reported accura-
cies of a few percent, while comparisons also made by Zurek et al. (2017) using tracking data and variations
in spacecraft velocity indicate systematic errors of less than 10%.

3. Methodology

3.1. Normalizing MAVEN Densities to 150 km

Zurek et al. (2017) recently performed analysis of MAVEN accelerometer-derived total mass densities, deriving
a scale height varying linearly with height and referenced to 150 km. To facilitate analysis of wave signatures,
we adopt the Zurek et al. (2017) approach and normalize MAVEN neutral densities between 130 and 170 km
to a reference height of 150 km. Note that noninfinite vertical wavelengths will add some uncertainty (or
inherent averaging) to the normalized data, but analysis of various waves in the Mars Climate Database (Forget
et al,, 1999; Millour et al., 2015) data by us (not shown) suggests that this effect is likely to be small between
130 and 170 km.

Assuming that the scale height (H) varies linearly with height in this range, the density p, at the reference
height z, = 150 km is related to the density at any height z = 130-170 km by the expression:\vspace*{0pt}

H o
=p—e Jz H, 1
Po pHo (M
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where H, is the scale height at z,. For H we adopt the expression obtained by Zurek et al. (2017) by linearly
fitting MAVEN periapsis densities above 150 km to periapsis altitude (h,) and solar zenith angle (SZA):

H = 10.2 + 2.3cos(SZA) + 0.1h,, %)

and note that the variation with height of H remains linear for altitudes as low as 130 km (see the first panel
of Figure 8 in Zurek et al. (2017)). Using the identity

dz 1
/a+bz_5|n(a+bz) (3)

and expressing h, in equation (2) as h, = z — 150, equation (1) can be written as

po=p <Hﬂo> (&) =, <Hﬂo> G, (%)”’ @

which, using the expression of H in equation (2), is equivalent to

)

0.1(z — 150) "
10.2 + 2.3cos(SZA) ]

P0=P<1+

Equation (5) is used to normalize MAVEN periapsis densities between 130 and 170 km to a constant altitude of
150 km. During the 888-sol period analyzed, MAVEN mean periapsis height is 153.4 km with over 89% of the
data points within the 130- to 170-km altitude range. Densities outside of this interval are treated as missing
data. [Note that some sensitivity to the exponent in equation (5) was found for altitudes greater than ~165 km;
thus, caution is warranted if using equation (5) to normalize densities above ~165 km.]

3.2. Fitting of MAVEN Densities to a Proxy for Solar Irradiance at Mars

In order to estimate the impact of thermospheric in situ solar forcing on observed MAVEN densities, we invoke
a proxy for extreme ultraviolet (EUV) solar irradiance based upon an adjusted 10.7-cm solar radio flux (desig-
nated as adj-F10.7). Because Mars has only a weak remnant magnetic field (e.g., Breus & Krymskii, 2017), we
do not have to account for magnetic variations in this analysis. We estimate solar fluxes received at Mars fol-
lowing the method of Forbes et al. (2006). Briefly, we assume that solar flux varies inversely with distance from
the Sun squared and is shifted in time from what is observed at Earth using the Earth-Sun-Mars angle and a
27-day solar rotation period.

We quantify and remove neutral density variability due to in situ solar forcing using a technique analogous to
that of Gasperini et al. (2015) who analyzed Gravity Field and Steady State Ocean Circulation Explorer satellite
neutral densities and winds in Earth’s thermosphere at ~260 km. We use linear regression to fit MAVEN zonal
mean (ZM) densities to the adj-F10.7 on 90-sol windows, stepping forward 1 sol at the time. A 90-sol window
is chosen in order to capture any significant solar flux variability in the 60- to 90-sol range. Zonal (i.e., longi-
tudinal) means are calculated on 3-sol sliding windows, which provide the longitude coverage necessary to
compute accurate ZMs. We then remove these fits from the raw density data and analyze the resulting resid-
uals (hereafter referred to as density residuals) for wave content. (Note that while MAVEN provides in situ EUV
measurements, our study only implements adj-F10.7 values for the purpose of demonstrating that there is
little solar-related variability at periods <23 sols.)

Figure 1a shows MAVEN ZM densities normalized to 150 km, daily adj-F10.7 values calculated as described
above, and 90-sol running fits of the densities to the adj-F10.7. The fits only capture a fraction of the temporal
variability observed in the ZM densities (up to ~30% or ~0.06 kg/km?3). This is not surprising since we expect
the majority of the sol-to-sol variability in Mars’ thermospheric densities to be generated by upward prop-
agating waves. In order to investigate the temporal variability in the ZM densities and solar flux, Figure 1c
shows the periodogram of adj-F10.7 and MAVEN ZM densities before and after the removal of the fits (here-
after referred to as MAVEN residuals). The ZM densities display significant periodicities around 2 to 30 sols,
while the ZM density residuals lack the dominant ~26-sol solar rotation variation found in the ZM densities.
Figure 1b shows solar longitude L, as function of sol for the period analyzed. Separate analysis of column
dust data retrieved from Thermal Emission Imaging System camera on board the Mars Odyssey orbiter (not
illustrated) shows lack of any significant (>95% confidence level) periodicity between 2 and 23 sols. Thus, the
majority of the temporal variability in MAVEN ZM density shown in Figure 1c is not ascribable to solar or dust
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Figure 1. (a) Time series of Mars Atmosphere and Volatile EvolutioN (MAVEN) zonal mean (ZM) density normalized to
150 km (black curve), adj-F10.7 (red curve), and least squares fits between them (blue curve) during the 888-sol period
between 1 November 2014 and 31 April 2017. (b) Solar longitude (L;) for the 888-sol period shown in panel a.

(c) Periodogram of MAVEN ZM density (black dashed curve), MAVEN density residuals (black solid curve), and
adjusted-F10.7 (red curve). Density residuals clearly lack the solar rotation variation around 26 sols. The black vertical
lines in panels a and b indicate the 18-sol period between sol 597 and sol 615 that is the focus of this study.

forcing and ought to be explained by the effect of upward propagating waves (e.g., zonally symmetric, i.e.,
s = 0, oscillations due to dissipation of tides that are modulated at PW periods, i.e., 3-20 sols. See Forbes
et al., 2018, for more details.)

3.3. Investigating Nonlinear Interactions Using Pseudolongitudes

Tides, Kelvin waves, and PWs can interact nonlinearly creating secondary waves (SWs) that add significant
spatial-temporal variability to the upper atmosphere (Moudden & Forbes, 2010, 2011a, 2011b). The pro-
cess of nonlinear interaction between global-scale waves, including tides, PWs, and UFKWs, occurs through
a nonlinear quadratic interaction that results in the generation of sum and difference SWs (Teitelbaum &
Vial, 1991). Numerical simulations (Palo et al., 1999) and observations (Moudden & Forbes, 2013) focused on
the terrestrial atmosphere suggest that SWs propagate away from their sources as independent oscillations.
Each SW is affected differently by the background wind field and dissipation (e.g., Gasperini, Forbes, &
Hagan, 2017).

In order to investigate the presence of UFKW-tide interactions in Mars atmosphere, we employ the method
developed by Moudden and Forbes (2010, 2011a, 2011b) and successfully applied by Gasperini et al. (2015)
and Gasperini, Forbes, Doornbos, and Bruinsma (2017) to diagnose waves in Earth’s atmosphere. The method-
ology consists of ordering data in pseudolongitudes, the traditional longitude incremented by 360° times the
number of Mars revolutions relative to a given time. This arrangement eliminates the fictitious discontinuity
at 0/360° longitude. Pseudolongitude 4, is defined from the traditional longitude 4 as 4, = 1 + 2zc where ¢
denotes the number of completed cycles (i.e., the number of sols elapsed since the start of the data series).
The equivalency between time and pseudolongitude derives from the fact that the orbit is Sun-synchronous.
As such a configuration: t = t;; + 4, X sol/2x where t and t;; are the UT and local times, respectively. We
refer the reader to Moudden and Forbes (2010) for additional details. Spectral analysis of a given time series of
space-based measurements, as described above, reveals the periodicities of the dominant tides, UFKWSs, PWs,
and any wave-wave modulations. Nonmigrating (i.e., non—Sun-synchronous) tides appear as integers, while
sidebands peaks arising from nonlinear interactions are located at decimal values.
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Figure 2. (a and b) Mars Atmosphere and Volatile EvolutioN (MAVEN) zonal mean (ZM) density residuals at 150 km

and Mars Reconnaissance Orbiter (MRO)/Mars Climate Sounder (MCS) ZM temperatures at 80 km (plus symbols in
black), and Ls (diamond symbols in magenta) during sol 597-615. (a’ and b’) MAVEN and MRO local time (plus symbols
in blue) and latitude (diamond symbols in magenta), and MAVEN perithe wave-3 structure,apsis altitude (triangle
symbols in green). (@” and b”) MAVEN and MRO longitude (plus symbols in blue) and MAVEN solar zenith angle
(diamond symbols in magenta).

4, Results

MAVEN's latitudinal precession is such that periapsis is within +15° latitude during four ~40-sol intervals
between November 2014 and April 2017, including sols 141-180, 371-411, 597-634, and 833-872 refer-
enced from 1 November 2014. Hereafter, we focus on the 18-sol period between sol 597 (L, = 181.3°) and sol
615 (L, = 192.0°) near autumnal equinox. Figure 2 shows MAVEN ZM density residuals normalized to 150 km
and MRO/MCS ZM temperatures and their orbital parameters for this period, when the local time associated
with the MAVEN orbit varies between ~1 and 2 LT, its periapsis altitude varied between 137.4 and 148.0 km
(mean of 142.6 km), and latitude between 15.0° N and 0.1° S. The corresponding MRO orbit local time varies
between ~2 and 5 LT on one side of the orbit and between ~14 and 17 LT on the other. As shown in pan-
els a” and b”, MAVEN samples 5 to 6 longitudes at a single latitude every sol, while MCS samples a range of
longitudes and latitudes up to ~ +87°. By confining the analysis to such a short interval, we can avoid con-
volving data from multiple seasons and assume that MAVEN measurements are made at a constant local time
(N.B., MAVEN precesses by ~2.0 hrin 18 sols.)

Spectral analyses of MCS temperatures at 80 km and MAVEN densities at 150 km reveal the existence of
a prominent 2.5-sol periodicity in Mars’ middle and upper atmosphere. The periodograms of MAVEN ZM
removed (hereafter ZMR) density residuals at 150 km (Figure 3a) and MCS ZMR temperatures at 80 km
(Figure 3b) show dominant 2.5-sol periodicities. Analysis of Thermal Emission Imaging System column dust
data (not illustrated) shows low dust levels (<0.19 of infrared absorption of column dust optical depth at
9.3 um) and absence of any 2.5-sol periodicity in dust opacity during sols 597 -615. Thus, we conclude that this
2.5-sol wave is likely not associated with dust effects. The period versus zonal wavenumber spectra of MAVEN
ZMR density residuals (Figure 3a’) and MCS ZMR temperatures (Figure 3b’) demonstrate that the 2.5-sol peri-
odicity is eastward propagating and possesses zonal wavenumber -1 and thus is the signature of a UFKW.
Furthermore, the presence of this periodicity at both heights suggests that the UFKW is propagating from 80
to 150 km. The UFKW is found to possess amplitudes up to 6 K at 80 km and 20 g/km3 at 150 km. Other waves
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Figure 3. Periodograms of Mars Atmosphere and Volatile EvolutioN (MAVEN) ZMR density residuals at 150 km (panel a)
and Mars Reconnaissance Orbiter (MRO)/Mars Climate Sounder (MCS) ZMR temperatures at 80 km (panel b) averaged
around the equator (+15° latitude) for sols 597-615. The periodograms reveal a dominant 2.5-sol periodicity at both 80
and 150 km. The corresponding period versus zonal wavenumber plots for MAVEN and MCS are shown in panels a’ and
b/, respectively. The 2.5-sol periodicity is eastward propagating and has s = —1 and thus is the signature of a ultra-fast
Kelvin wave. The ultra-fast Kelvin wave displays amplitudes up to 6 K at 80 km and up to 20 g/km?3 at 150 km.
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Figure 4. Pseudolongitude spectra of Mars Atmosphere and Volatile EvolutioN (MAVEN) ZMR density residuals at

150 km (panel a) and Mars Reconnaissance Orbiter (MRO)/Mars Climate Sounder (MCS) temperatures at 80 km (panel b)
around the equator (+15° latitude) for sols 597-615. The ultra-fast Kelvin wave peak at 1.4 cycles (marked as a solid
black diamond) and the sideband peaks at 0.6 (marked as 27), 1.6 (marked as 37), 2.4 (marked as 17), and 3.4 (marked
as 27) cycles are all evident both at 80 and 150 km.
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Figure 5. Height (30-80 km) versus latitude (+30°) depiction of ultra-fast Kelvin wave (UFKW; panel a), sideband 2~
(panel b), sideband 3~ (panel c), sideband 1% (panel d), and sideband 2% (panel e) temperature amplitudes from Mars
Reconnaissance Orbiter/Mars Climate Sounder for sols 597-615.

with periods of 3.5-5 sols and s = 0, 2 that are found in the spectra at 80 km are not observed at 150 km.
These waves likely dissipate between 80 and 150 km. The spectrum in Figure 3a’ also shows s = —1 period-
icities around 3 sols and 4.5 sols that, although less prominent, are also present in Figure 3b’. These longer
period UFKWs possess comparatively small amplitudes and are not addressed further.

The pseudolongitude spectra of MAVEN ZMR density residuals at 150 km (Figure 4a) and MCS ZMR temper-
atures at 80 km (Figure 4b) show the 1.4-cycle signature due to the 2.5-sol UFKW (note that a UFKW with

zonal wavenumber m = —1 and frequency 6Q = 0.4 sol™" yields a peak in a pseudolongitude spectrum at
| m=6 |=| =1-2.5"" |= 1.4.). At 80 km there are strong peaks around 1 cycle (i.e., longitudinal wave-1 as seen
GASPERINI ET AL. UFKW IN MARS’ MIDDLE AND UPPER ATMOSPHERE 6330
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from Sun-synchronous orbit), 2 cycles (i.e., wave-2), and 3 cycles (i.e., wave-3), while at 150 km there are only
peaks around 1 cycle and 2 cycles associated with wave-1 and wave-2, respectively. The diurnal eastward tide
with s = —1 (i.e, DE1 or DK1) is likely the main contributor to the observed wave-2 structure (e.g., Angelats i
Coll et al., 2004; Bougher et al., 2004; Wilson, 2002; Withers et al., 2003, 2011); the wave-3 structure, which is
typically weaker than the wave-2 component, can be attributed to the diurnal eastward tide with s = -2 (i.e,,
DE2 or DK2; Guzewich et al.,, 2012; Wolkenberg & Wilson, 2014); while the wave-1 component, which is typ-
ically weaker than both wave-2 and wave-3, is likely associated with the diurnal stationary tide (D0) and the
semidiurnal westward s = 1 tide (SW1; Moudden & Forbes, 2008). Lack of wave-3 at 150 km suggests dissipa-
tion of DE2 between 80 and 150 km. This is in contrast with results from the Mars Climate Database analyzed
by us (not shown), and Moudden and Forbes (2015), that indicate large DE2 amplitudes around 150 km and
thus warrants further investigation.

Also clearly identifiable and labeled in Figure 4 are the sideband peaks at 0.6 cycles (27), 1.6 cycles (37), 2.4
cycles (1%), and 3.4 cycles (2*) arising from the interaction between the UFKW and the solar tides. (In the
notation A, A denotes the interacting wave [i.e., wave-1, wave-2, or wave-3)], while b specifies whether it is
the sum [i.e, b = }+'] or the difference (b = }-’) sideband). The SW peaks at 0.6 and 3.4 cycles are likely
a result of the interaction between the UFKW and DE1, the peak at 1.6 cycles is likely the signature of the
interaction of the UFKW with DE2, while the peak at 2.4 cycles is likely arising from the interaction of the
UFKW with DO and/or SW1. As demonstrated by Figure 4, the large majority of the longitudinal variability at
both heights is associated with solar tides, the UFKW, and their nonlinear interactions. Other notable peaks
in the spectra around 0.11 and 0.20 cycles of the tidal peaks are indicative of 5-sol and 9-sol modulations.
Identification of the specific tidal components involved in the interaction is beyond the scope of the current
investigation. A follow-on study will encompass these attributions along with correlative analyses of longer
period PWs.

The height-latitude structure of the UFKW and sidebands 27,37, 11, 2* between +30° latitude and extending
from 30 to 80 km retrieved using the pseudolongitude spectral peaks in MCS ZMR temperatures is presented
in Figure 5. The UFKW is found to maximize around 78 km and possess amplitudes up to 6 K, while the side-
bands are found to maximize around 70-75 km (27, 37), 60-70 km (1%), and 68 km (2*) with amplitudes up
to 4 K. The UFKW and the 2~ sideband are mostly equatorially symmetric, while the sidebands 37, 1*, and 2+
display significant latitudinal asymmetry possibly due to tidal structures that are not purely symmetric (e.g.,
Moudden & Forbes, 2015) and/or to the effect of mean winds and dissipation (e.g., Gasperini, Forbes, & Hagan,
2017). Figure 5 also shows that the UFKW is mainly confined to a narrow latitude band of +15° around of the
equator, while the sidebands can extend up to ~ +30° latitude.

5. Summary and Conclusions

In this work we examined concurrent temperature measurements from MRO/MCS around 80 km and neutral
density measurements from MAVEN's accelerometer near periapsis (i.e., ~130-170 km) between 1 November
2014 and 31 April 2017 to reveal evidence of a strong 2.5-sol UFKW in the middle and upper atmosphere of
Mars near autumnal equinox. We further demonstrated the existence of SWs generated by nonlinear inter-
actions between the UFKW and the solar tides and show that these SWs represent a significant source of
variability in Mars’ middle and upper atmosphere. Analyzing MCS temperatures around 30-80 km we demon-
strated that the UFKW maximizes around 78 km and possesses amplitudes of up to 6 K, while the sidebands
peak near 60-75 km with amplitudes of up to 4 K. Examining the height-latitude structure of the UFKW and
the SWs we find that the UFKW is quasi-symmetric about the equator and confined to a narrow latitude band
of +£15° around the equator, while the SWs can extend up to ~ +30° latitude and possess significant latitudinal
asymmetry likely due to tidal modes that are not purely symmetric and/or to the effects of wave dissipation
and background winds.

Our study suggests that the 2.5-sol UFKW and SWs generated by its interaction with solar tides may contribute
to the longitudinal variability in Mars’ aerobraking region. In a follow-on study we plan to extend the analysis
of nonlinear interactions to longer period PWs, for example, 5-sol and 9-sol waves, and study seasonal effects
and variability at UFKW periods (2-6 days) using MCS data. We will further investigate solar irradiance effects
in Mars’ upper atmosphere using in situ measurements made by the MAVEN EUV monitor. This correlative
analysis will enable us to estimate the relative contribution of upward propagating waves and solar forcing in
generating sol-to-sol variability in Mars aerobraking region.
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