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Beyond the Standard Model with Composite Particles:

A Lattice Study Based on SU(4)

Thesis directed by Prof. Ethan Neil

This thesis is about numerical simulations of a strongly coupled quantum field theory. The

quantum field theory is a gauge theory based on the group SU(4) and contains fermionic matter

charged under two different representations of the gauge group. The motivation for studying this

theory is twofold. First, this theory is closely related to a theory of physics beyond the Standard

Model which was recently proposed in the literature. In this model, the Higgs boson is a composite

particle, and the top quark is a partially composite particle. Second, theories of this sort represent

a new direction in the study of gauge dynamics and thus provide many opportunities to test our

qualitative understanding of strongly coupled physics. The main result of this thesis is direct, non-

perturbative (albeit numerical) calculation of the particle spectrum of the theory, including both

mesons and baryons. Briefly stated, the particle spectrum turns out to be quite similar to that of

QCD.

The first three chapters of the thesis serve as a theoretical background. Aside from incidental

remarks, the material in these sections appears in standard references. The final four chapters deal

with the numerical simulations and contain the new scientific contributions of this thesis. The main

results of the thesis are: the low-energy constants associated with the pseudoscalar mesons (found

in Table 5.1); estimates of the width-to-mass ratios of the vector mesons (found in Figure 5.14);

and the full meson and baryon spectrum in physical units (found in Figure 6.10). For the reader

already familiar with lattice techniques, Sections 5.4 and 6.9 provide compact summaries of the

techniques and results for the meson and baryon spectrum.
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Chapter 1

Introduction

1.1 The Standard Model as an Effective Field Theory

The Standard Model (SM) is a quantum field theory (QFT) based on the gauge group SU(3)×

SU(2) × U(1).1 In addition to the gauge boson fields, the SM also contains three generations of

fermionic matter fields (quarks and leptons) and a fundamental scalar (the Higgs field). Although

the principle of gauge invariance elegantly prescribes the form of SM interactions, some basic

theoretical questions lie outside its purview. Why is the Higgs mass 125 GeV? Why is the top

quark more than 10,000 times heavier than the light quarks? Models of physics beyond the Standard

Model (BSM) are necessary to answer such questions. Physics beyond the Standard Model is also

necessary to explain the observed effects of dark matter and dark energy.

In the modern perspective, any QFT is viewed as an effective field theory (EFT), i.e., an

effective description valid up to some high-energy cutoff Λ. The Standard Model is no exception,

and the EFT perspective provides valuable insight into the possible structure of new physics. In

particular, the hierarchy problem and the more general notion of naturalness find their clearest

expression when couched in the language of EFT. My own understanding of the Standard Model

as an EFT has been shaped to a large extent by a series of lectures given by Rattazzi at the 2015

TASI summer school [124].

In an EFT, the physical Lagrangian contains all operators consistent with the field content

1 Many excellent books discuss the Standard Model. The introductory text by Schwartz [129] and the more
specialized treatment by Donoghue, Golowich, and Holstein [72] receive my warm recommendation.
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and symmetries of the theory. Typically an infinite number of operators are possible. However, only

a finite number of relevant or marginal operators (i.e., those with engineering dimension ∆ ≤ 4)

appear in most cases of interest. Therefore, the low-energy dynamics of the theory becomes in-

sensitive to the high energy structure of the irrelevant operators (i.e., operators with engineering

dimension ∆ > 4). An important physical consequence of this fact is the appearance of accidental

symmetries at low energies. For instance, parity is a global symmetry of low-energy electrody-

namics, while the full electroweak theory couples to left-handed fermions only and thereby breaks

parity maximally. Most of the global symmetries in the Standard Model—like lepton or baryon

number—are accidental symmetries.

A EFT is said to be natural if any exponentially small dimensionless quantities are associated

with an approximate symmetry. This notion also extends to quantities like masses after accounting

for dimensionality with power counting. Of course, no a priori physical principle says that the

Standard Model or any other QFT must be natural. However, naturalness is a fruitful guiding

principle, since approximate symmetries often arise as accidental symmetries of a more fundamental

description.

Viewed through the lens of naturalness, the Standard Model contains a fundamental tension

known as the hierarchy problem. The essential difficulty is that some quantities suggest a large

separation of scales between the electroweak scale and the cutoff, while others imply that the cutoff

should be near the electroweak scale. This general discussion is aided by concrete examples.

Consider first the case of neutrino masses, which are generated (at lowest order) by the

dimension-five Weinberg operator [140]:

O5 =
1

Λ

(
`
c
iaL`jbL

)
HkHl

[
fabε

ikεjl + f ′abε
ijεkl

]
, (1.1)

where `L is a left-handed lepton doublet, `
c
L is the charge conjugate, and H is the Higgs doublet.

Spinor indices (suppressed) are contracted into a Lorentz scalar inside the parentheses, while the

SU(2)L gauge indices i, j, k, l are contracted into singlets using the Levi-Civita tensor of SU(2)L.

The dimensionless coupling constants f and f ′ connect generations of leptons (a, b) and are pre-
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sumed, by naturalness, to be of order unity. After the Higgs field develops a vacuum expectation

value v, this operator generates a mass for the neutrinos of order mν ∼ v2/Λ. Given that neutrino

masses are known experimentally to be roughly 0.1 eV, this relationship furnishes an estimate of

the physical cutoff of the Standard Model:

Λ ∼ v2

mν
∼ (246 GeV)2

0.1 eV
∼ 1014 − 1015 GeV. (1.2)

As a second example, consider the mass of the Higgs, mediated by the relevant operator

O2 = m2
H |H|

2 ≡ cΛ2 |H|2 . (1.3)

By naturalness, the dimensionless coupling c should generically be of order unity, or at least only

algebraically small. But since the Higgs mass is known to be 125 GeV, this implies that the

cutoff is also at the electroweak scale Λ ∼ 0.1 − 1 TeV. If one instead takes the previous estimate

Λ ∼ 1014 GeV at face value, the dimensionless coupling must then be exponentially small c ∼ 10−24.

In a natural theory, exponentially small numbers are only permissible when protected by some

symmetry. The Standard Model does not possess any known symmetry principle which protects

the Higgs mass; this fundamental conflict is the hierarchy problem.

In addition to the obvious requirement of continuing to agree with existing experimental data,

a theoretically satisfying BSM model should render the Higgs mass natural without reintroducing

relevant operators and creating a new hierarchy problem. The literature on BSM phenomenology

is vast, and reviewing it exceeds the scope of this thesis. We simply note that many appealing

theoretical ideas exist—ranging from supersymmetry to compact extra dimensions—beyond those

studied here. The particular focus of this thesis is the notion of compositeness. We introduce

compositeness first through the example of quantum chromodynamics in Sec. 1.2 to motivate the

composite BSM models of Sec. 1.3.

1.2 The Archetypal Composite Theory: QCD

Quantum chromodynamics (QCD) is the SU(3) gauge theory within the Standard Model

which describes hadronic interactions. Both experimentally and theoretically, QCD is probably the
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best-known and most-studied strongly interacting QFT. At high energies, the fundamental quark

and gluon fields of QCD interact weakly, and perturbation theory adequately describes their physics.

Due to asymptotic freedom, the interactions become strong at lower energies. Below energies of

about 1 GeV, the interactions becomes strong enough that the chiral condensate 〈ψ̄ψ〉 develops a

vacuum expectation value and spontaneously breaks chiral symmetry. At least schematically, the

phenomenon is similar to spontaneous magnetization in solids. At the same time, the phenomenon

of confinement hides away the quarks and gluons inside composite states, the familiar hadronic

menagerie of mesons and baryons. Because QCD possess such a rich and extensively studied

spectrum, it forms the basis of much of our understanding and speculation about other possible

composite sectors. In this sense, QCD is the archetypal composite theory.

1.2.1 QCD and Its Broken Chiral Symmetry

In addition to its eight gluons, QCD contains six flavors of Dirac fermions. The fermions are

charged under the fundamental representation of SU(3). Two of these flavors (or three, depending

on the physical process of interest) are light, in the sense of having masses much below the QCD

scale (m � ΛQCD ∼ 1 GeV). Recall that four-component Dirac fermions may be decomposed

into a pair of two-component Weyl fermions using charge conjugation. Following Peskin [122],

consider QCD as SU(Nc) gauge theory coupled to 2Nf Weyl fermions, with Nf fermions ψ
(r)ai
α in

a complex representation r and Nf fermions ψ
(r̄)
αai in the conjugate representation r̄. Here α, β are

Lorentz indices, a is a gauge index, and i = 1, 2, . . . , Nf is a flavor index. After accounting for the

Adler-Bethe-Jackiw anomaly (see Appendix A.6 for more information about anomalies), the global

symmetry structure of the theory is SU(Nf )L×SU(Nf )R×U(1)B, which independently rotates the

left- and right-handed components of the fermions. The formation of a chiral condensate

εαβψ(r)ai
α ψ

(r̄)
βai (1.4)

breaks this symmetry down to the diagonal (or “vector”) subgroup SU(Nf )V ×U(1)B, those trans-

formations which preserve the complex “dot product” δij .
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The physical consequences of this broken symmetry are immediately evident in the particle

spectrum of QCD. First, the light pions are the telltale (pseudo) Goldstone bosons accompanying

any spontaneously broken global symmetry. Second, the spectrum does not exhibit parity doubling.

For instance, the mass of the proton is roughly 940 MeV, while its opposite-parity partner is nearly

1500 MeV. If chiral symmetry were unbroken, these states would have the same mass.

In a more general setting, a spontaneously broken flavor symmetry will still be characterized

by a Lorentz-scalar operator developing a vacuum expectation value. However, depending on the

representation of the matter fields (presumed to be fermions), the pattern of chiral symmetry

breaking can be different. To see how this works in another case of interest for this thesis, consider

SU(Nc) gauge theory coupled to 2Nf flavors of two-component fermions in a real representation,

corresponding to a global SU(2Nf ) flavor symmetry group. By definition of a real representation,

their exists a symmetric invariant tensor dab acting on the gauge indices, which allows the formation

of a “chiral condensate”

εαβψ(r)ai
α ψ

(r)bi
β dab, (1.5)

with indices as above and the flavor index now in i = 1, 2, . . . , 2Nf . The unbroken symmetry

comprises those transformations which preserve this real “dot product” in flavor space. In other

words, the pattern of symmetry breaking is SU(2Nf )→ SO(2Nf ). In general, one typically assumes

that dynamical mass generation—as characterized by the formation of a “chiral” condensate—

preserves the largest possible flavor symmetry [122].

1.2.2 The Effective Theory of QCD at Low Energy

In the previous section, we argued that the formation of a chiral condensate in low-energy

QCD breaks the global flavor symmetry GF down to a subgroup HF. The ground state of the

system, which includes the condensate, acquires non-trivial transformation properties under GF.

The fact that the vacuum now transforms implies that it consists of a manifold of states: those

that can be reached by transformations in GF, modulo those in the unbroken subgroup HF. In
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other words, the vacuum is the coset GF/HF. This general observation has important consequences

for the spectrum and low-energy dynamics of the theory.

First, as hinted above, Goldstone’s theorem says that theory contains massless particles

which couple to broken generators, i.e., those in GF/HF. A proof of this statement appears in

Appendix A.3. Second, even when broken spontaneously, symmetry completely determines the

low-energy dynamics of the massless particles. The resulting effective theory is known in QCD as

chiral perturbation theory.

A particularly attractive method for constructing a Lagrangian consistent with broken sym-

metry is due to Callan, Coleman, Wess, and Zumino (CCWZ). The chief virtue of their technique

is that it provides a method for writing down the correct Lagrangian for arbitrary broken sym-

metries. Appendix A.4 reviews the technical aspects of the CCWZ construction. In brief, their

method amounts to cataloguing objects with homogeneous transformation properties under the full

symmetry group, GF. The EFT Lagrangian is then simply the most general GF-invariant function

of these objects. As an instructive example, we shall review quickly how the EFT of two-flavor

QCD arises in their general framework. The setup is slightly different from the usual presentation

of the chiral Lagrangian.

The Goldstone bosons π transform under an induced nonlinear representation of the full

symmetry group GF. We shall denote this representation by rπ. Although nonlinear under GF,

the induced representation is linear when restricted to HF ⊂ GF. The simplest building block in

the CCWZ scheme is the tensor dµ ' ∂µπ + · · · , which acts as a “GF-covariant derivative” of the

Goldstone modes; its precise definition appears is given in Appendix A.4 in Eq. (A.53). Neglecting

temporarily terms involving the fermion mass, the leading-order CCWZ Lagrangian is simply the

square of this covariant derivative:

L =
F 2

4
Tr dµd

µ, (1.6)

where the leading coefficient ensures canonical normalization of the kinetic term. Further progress

requires a particular coset of broken generators. In the case of two-flavor QCD (with GF/HF =
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SU(2)L × SU(2)R → SU(2)V ), it can be shown that the tensor dµ assumes the following form:

dµ =

√
2

F
∂µπâT

â +

√
2

F 3 3
((∂µπ × π)× π)âT

â + · · · . (1.7)

Squaring this quantity and tracing, one recovers the Goldstone kinetic term and leading-order

interactions.

L = L0 + Lint (1.8)

L0 =
1

2
∂µπâ∂

µπâ (1.9)

Lint ∼
[
(πâ∂µπâ)(π

b̂∂µπb̂)− (∂µπâ)(∂
µπâ)(πb̂π

b̂)
]

+ · · · . (1.10)

Although somewhat complicated, interactions of this form are familiar from the study of non-linear

sigma models. We observe that the leading interactions are quartic in the pions and are derivatively

coupled. This derivative coupling respects a shift symmetry (see Eq. (A.52) in Appendix A.4 for

additional context) and protects the vanishing Goldstone mass from radiative corrections.

Standard discussions of chiral perturbation theory do not mention the tensor dµ, instead

focusing on a Lagrangian of the form

LχPT =
F 2

4
Tr
(
∂µU∂

µU †
)
, (1.11)

where U = ei2πâT
â/Fπ is the Goldstone boson matrix. To compare with the interactions of Eq. (1.10),

we expand LχPT. The quadratic portion and leading-order interactions are

L0 =
1

2
(∂µ~π) · (∂µ~π) (1.12)

Lint ∼
[
(~π · ∂µ~π)2 − ~π2(∂µ~π · ∂µ~π)

]
, (1.13)

so the two methods agree. Many equivalent formulations, differing by nonlinear field redefinitions,

exist for formulating low-energy EFTs. Of course, physical predictions (like on-shell scattering

amplitudes) are independent of the field redefinition. Recent lectures by Csáki and Tanedo and

a thesis from Bud̀ınek provide an even more explicit translation guide for moving between the

abstract CCWZ construction and chiral Lagrangians with the form of Eq. (1.11) [46, 34]. The key
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point is that a Lagrangian of the form Eq. (1.11) depends on the GF/HF coset being a symmetric

space, i.e., possessing a particular notion of parity. In QCD, the necessary symmetry arises from

switching “left” and “right” in the definition of the axial rotations.

Lattice discretization of fermions often breaks chiral symmetry. Therefore, from the perspec-

tive of lattice simulations, EFT provides a framework for taking a theoretically controlled chiral

limit. So far the discussion has neglected the effects of terms which explicitly break the global

symmetries. In the UV theory, such terms include an explicit mass for the fermions

mψ̄ψ = m(ψ̄LψR +mψ̄RψL). (1.14)

At low energies, so-called spurions mediate this explicit symmetry breaking.

Let us introduce spurions by way of example. For instance, consider a mass matrix M , which

might have the following form in two-flavor QCD

M =

mu 0

0 md

 = M012 +Mzσz, (1.15)

with M0 = (mu + md)/2 and Mz = (mu − md)/2. Writing the matrix in this form makes it

clear that, in the back of our minds, we have chosen some particular basis for the coset GF/HF

to describe the physical pions. Of course, the physics should be independent of this choice, which

means that the M should have definite transformation properties under GF. Let us suppose that

the mass matrix transforms in the same nonlinear representation as the Goldstone matrix, i.e.,

M 7−→ gMh−1(g;π) (cf. Eq. (A.46) in Appendix A.4). In this case, the following term may be

added to the leading-order EFT:

Lexplicit ∼ Tr[MU−1 +M−1U ] (1.16)

= Tr[M ]~π · ~π + · · · (1.17)

= (mu +md)~π · ~π + · · · (1.18)

∼ (m2
π)~π · ~π + · · · , (1.19)
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where we’ve taken M to be a real, symmetric matrix. The leading contribution occurs sensibly at

quadratic order in the pions. Applications typically work with the rescaled quantity χ = 2BM ,

where B is a new low-energy constant. In this case, the leading-order term with explicit symmetry

breaking is

Lexplicit =
F 2

4
Tr[χU−1 + χ−1U ]. (1.20)

This short discussion also reveals a qualitatively important point: at leading order, the square of

the Goldstone mass is linear in the fermion mass. Coupling to the mass matrix also induces quartic

interactions among the Goldstone bosons which, lacking any derivatives, break the aforementioned

shift symmetry.

Including quantum fluctuations in the EFT proceeds according to the following steps. First,

the leading order Lagrangian defines the interaction vertices for calculating tree-level processes

and their one-loop corrections. Second, the next-to-leading order Lagrangian (which we have not

discussed) furnishes additional interaction vertices, which appear at tree level. Adding together

results from the first two steps yields a superficially divergent result, which must be regulated,

e.g., in the MS scheme. Because the chiral Lagrangian contains many complicated interactions,

calculations such as these are rather involved and exceed the scope of this thesis. Books, notes,

and reviews treat this subject in detail [72, 80, 86]. As an example of the sort of results one can

obtain, it can be shown that the one-loop renormalized (pseudo) Goldstone mass is:

m2
π = (2Bmq)

[
1 + L(2Bmq) +

(2Bmq)

16π2F 2
log

(2mqB)

µ2

]
, (1.21)

where µ2 is an arbitrary reference scale and L is a calculable linear combination of low-energy

constants appearing in the chiral Lagrangian. To a lattice gauge theorist, Eq. (1.21) provides the

means to extract low-energy constants (B, F , and L) from lattice data at finite fermion mass:

simply determine Mπ and mq for a variety of fermion masses and conduct a fit.
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1.2.3 The Quark model

The quark model refers to a broad set of theoretical ideas used to understand the observed

spectrum of hadronic physics [72, 120]. The general philosophy of the quark model is to focus on

the valence-quark content of hadrons. At its simplest level, the quark model provides an organiz-

ing principle for studying the hadron spectrum through the classification of gauge-invariant local

operators. With the addition of some dynamical model assumptions, non-relativistic quark models

provide a simple and semi-quantitative description of hadron masses in terms of constituent quarks.

The primary building blocks for constructing gauge-invariant local operators are meson (ψ̄Γψ)

and diquark (ψTCΓψ) operators, where Γ is some product of gamma matrices. The choice of

appropriate Γ allows for the formation of operators with definite spin, parity, and charge-conjugation

properties. Appendix A.2 classifies common choices for Γ along with their quantum numbers. The

quark model says that simple operators like (ψ̄γ5ψ) and (ψ̄γiψ) should describe the pseudoscalar

and vector mesons, while operators like ψ(ψTCγ5ψ) correspond to baryons.

So far the discussion of the quark model has neglected flavor. In the case of three light quarks

(up, down and strange), QCD possess an approximate SU(3) flavor symmetry. Mesons and baryons

are therefore classified by products of representations of SU(3):

3⊗ 3̄ = 8⊕ 1 (1.22)

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 = 10⊕ 8⊕ 8⊕ 1. (1.23)

Eq. (1.22) says that mesons should appear in a flavor octet alongside a flavor singlet. The octet

corresponds to the observed pions, kaons, and the eta:

(π0, π±,K0, K̄0,K±, η), (1.24)

while the flavor singlet is the η′. Eq. (1.23) says that baryon spectrum should include a spin-3/2

decuplet

(∆0,∆±,∆++,Σ∗0,Σ∗±,Ξ∗0,Ξ∗0,Ω−) (1.25)
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and a spin-1/2 octet

(n, p,Σ0,Σ±,Λ,Ξ0,Ξ−), (1.26)

in agreement with observation. These group theoretical observations form the foundation of lattice

spectroscopy techniques, described in more detail in Chapter 3.

The valence-fermion picture of hadrons also admits semi-quantitative predictions of masses.

The idea is to image that each valence quark is surrounded by a cloud of virtual quarks, antiquarks,

and gluons, which is presumed to form a collective degree of freedom called a constituent quark.

By solving the non-relativistic Schrödinger equation in terms of these constituent quarks (and

their constituent masses) in an external potential, one can determine energy levels and quark

wavefunctions.

No rigorous derivation of the correct external potential exists from QCD. Nevertheless, in the

spirit of phenomenology, a variety of reasonable model assumptions are often made. For instance,

the potential often includes a spin-independent, long-range confining term. Motivated by single-

gluon exchange and in analogy with the hyperfine interaction of atomic physics, the potential often

includes a short-range, spin-dependent term. After accounting for the appropriate group theoretical

differences, modes like these play an important role in understanding the spectrum of other strongly

coupled QFTs. In particular, Chapter 6 uses an quark model to interpret the baryon spectrum in

the lattice simulations of this thesis.

1.2.4 Large-Nc QCD

The essential feature of gauge theories is a paucity of free parameters. In the absence of

fermion masses, a single measurement (of, say, a hadron mass) determines all other physical quan-

tities in the theory. In this sense, gauge theories are maximally predictive theories of nature. The

drawback is that these theories become very hard to solve with pen-and-paper techniques in regimes

where the interactions are intrinsically strong. Without free parameters, it becomes impossible to

construct controlled approximations, e.g., in the coupling strength between the particles and fields,
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Figure 1.1: Some one-loop vacuum polarization diagrams in QCD.

which is absorbed into defining the scale of masses via the renormalization group.

Long ago ’t Hooft realized that gauge theories do, in fact, possess a disguised expansion

parameter [138]. His insight was that QCD—with three colors and gauge group SU(3)—should be

considered alongside a series of sister gauge theories with Nc colors and the gauge group SU(Nc).

The idea was and remains that the theory with large Nc may be easier to solve, while retaining a

close quantitative and qualitative resemblance to QCD with Nc = 3. Although large-Nc QCD has

so far defied exact analytic solution, much of our qualitative understanding of QCD finds its best

theoretical justification in large-Nc arguments. One of the nicest expositions of large-Nc is due to

Witten [145].

Why do gauge theories simplify at large-Nc? In the simplest physical terms, a counting

argument is responsible: the O(N2
c ) gluonic degrees of freedom completely dominate the O(Nc)

fermion degrees of freedom, which can be neglected to leading order.

Let us now consider the large-Nc limit more precisely. A well-defined perturbative expansion

should contain, e.g., a smooth limit for the one-loop gluon vacuum polarization, shown on the left

of Fig. 1.1. But this quantity scales as

g2facdfbcd = δabg
2CA = δabg

2Nc, (1.27)

where the f are the structure constants of SU(Nc), g
2 is the gauge coupling, and CA = Nc is the

adjoint Casimir. A finite limit exists for this quantity if the ’t Hooft coupling λ ≡ g2Nc is held

fixed. The situation is different for the one-loop fermion contribution to the gluon propagator,
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shown on the right of Fig. 1.1. This quantity scales as

g2 Tr[TaTb] = δabg
2T (R) = δab

λ

2Nc
(1.28)

and therefore vanishes in the large-Nc limit. This example illustrates a general feature: fermionic

fluctuations are suppressed as 1/Nc in the large-Nc limit. For the purpose of this thesis, we shall

only need some highlights from large-Nc:

(1) meson masses have a smooth (i.e., finite) large-Nc limit,

(2) meson decay constants grow as
√
Nc in the large-Nc limit, and

(3) baryon masses grow as Nc in the large-N limit.

More careful treatment of theses points exist in the literature; see ’t Hooft or Witten and the

references therein [138, 145]. The literature has focused largely on the case of fermions in the

fundamental representation. A suggestive generalization to fermions charged under higher repre-

sentations replaces factors of Nc by dimf , the dimension of the representation. Our lattice results

support this generalization.

1.3 Composite Models of Physics Beyond the Standard Model

Compositeness is the idea that some particles in the Standard Model are not point-like

but rather bound states of some new strongly interacting sector. The essential physical analogy is

QCD, where the hadrons appear point-like at long distances (L� 1/ΛQCD) despite being composite

objects. At least in principle, the hypothesis of compositeness can solve many problems [74, 102, 83].

First, a composite Higgs boson is naturally light, since its mass is generically that of the

compositeness scale or, in the case of pseudo Goldstone bosons, can be tuned to be parametrically

light. Second, gauge-fermion systems like QCD contain no strongly relevant operators (with engi-

neering dimension ∆ ≤ 4), so no new hierarchy problem arises. A useful modern reference to these

ideas is the monograph by Panico and Wulzer [121].
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The fate of fermions in composite models requires a somewhat longer explanation. Consider

first the Standard Model, where fermions receive masses through Yukawa couplings to the Higgs

field,

Lmass = −Y d
ij

(
Q
i
HdjR

)
− Y u

ij

(
Q
i
H̃ujR

)
+ h.c., (1.29)

where Q = (uL, dL)T is an SU(2) doublet of quarks in generation i. A similar expression exists

for the leptons. The Yukawa couplings of the two 3 × 3 matrices Y d and Y u are (up to some

well-understood redundancy) free parameters of the Standard Model.

The story for fermion masses is different in composite models, since the Higgs is no longer

a fundamental field. The microscopic explanation of fermion masses therefore involves composite

operators, rather than the Higgs field itself. Different scenarios are possible, depending on whether

the Standard Model fermions couple quadratically or linearly to the composite operators. Linear

coupling introduces mass mixing and therefore goes by the name of partial compositeness; larger

mixing means that a given fermion is more composite.

Dimensional analysis shows some of the difficulties associated with compositeness and why

partial compositeness may be a useful mechanism. To see how the argument works, consider a

mixed operator which is the product of Standard Model fields OSM and elementary fields in the

new composite sector OBSM:

O =
λ[ΛUV]

Λ∆BSM+∆SM−4
UV

OBSMOSM. (1.30)

In this expression, ΛUV is the cutoff of the composite theory itself and the scale at which the

product operator is generated. The framework of EFT requires that we consider all such operators

consistent with the symmetries and matter content of the BSM theory.

As with all operators, Eq. (1.30) changes with scale according to dimensional analysis. Ne-

glecting quantum fluctuations (i.e., in the absence of anomalous dimensions), operator evolution is

simply the result of changing normalization. The separation of scales therefore suppresses irrelevant
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couplings according to

λ[ΛIR] ' λ[ΛUV]

(
ΛIR

ΛUV

)∆BSM+∆SM−4

, (1.31)

where ΛIR is some low energy scale, e.g., the composite scale itself. Eq. (1.31) reveals the basic

difficulty that exists in composite models. Generic operators must be small, since they induce

flavor-changing neutral currents (which experiments constrain tightly). At the same time, operators

involving to the top quark must remain large in order generate a large mass.

Suppressing generic operators requires a large separation of scales (ΛIR/ΛUV � 1). To combat

this suppression, operators which couple to the top quark must have nearly vanishing exponents

(∆BSM + ∆SM − 4 ' 0) in Eq. (1.31). When the top quark couples quadratically to new operators

([ψψ] = ∆SM ∼ 3), the dimension of the high-energy operator must be nearly unity (∆BSM ∼ 1).

Unfortunately, this scheme reintroduces issues with naturalness, since rigorous results show that the

free scalar is the only operator with dimension exactly unity [117]. Recent results from conformal

field theory establish new bounds for scalar operators with dimension near unity [125], clarifying

some of the challenges with this setup.

In partial compositeness—where the top quark couples linearly to new physics ([ψ] = ∆SM ∼

3/2)—the high-energy operator must have dimension five-halves (∆BSM ∼ 5/2). If the new op-

erator contains three fermions, the engineering dimension is nine-halves ([ψψψ] = ∆BSM ∼ 9/2).

Reconciling this difference requires large anomalous dimensions, which may be difficult to produce

in explicit models. However, in contrast to the case of quadratic couplings, no a priori obstruc-

tion exists to an operator with such dimensions. Such dimensions seem possible in holographic

theories [45], but it remains unknown if they are also possible in strictly four-dimensional theories.

From the perspective of lattice gauge theory, many avenues exist for studying composite

models. The first approach, adopted in this thesis, is simply to determine the particle spectrum.

Directly computing the anomalous dimensions of composite operators would be an interesting sec-

ond step. Some perturbative work has been done in this direction [64]. However, non-perturbative

determination of the anomalous dimension is a technically challenging problem on the lattice which
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we shall not pursue further in this thesis.

1.3.1 Ferretti’s Model

This thesis explores the possibility that the Higgs arises from the strong dynamics of some

hypercolor theory based on the gauge group GHC as a (pseudo) Goldstone boson associated with

a spontaneously broken global symmetry GF → HF. Consistency with low-energy physics requires

that the unbroken global symmetryHF contain the custodial symmetry group, Gcus, and the familiar

symmetry group of the Standard Model, GSM:

HF ⊃ Gcus ≡ SU(3)c × SU(2)L × SU(2)R ×U(1)X (1.32)

⊃ GSM ≡ SU(3)c × SU(2)L ×U(1)Y . (1.33)

In order to single out concrete realizations of this idea, additional physical assumptions are required.

Ferretti and Karateev recently classified four-dimensional, asymptotically free UV completions of

the Standard Model using five assumptions [77]:

(1) The absence of gauge anomalies in the hypercolor sector GHC, signaling a consistent theory.

(2) The possibility of symmetry breaking according to GF → HF ⊃ Gcus, allowing the Standard

Model to be embedded as an unbroken global symmetry.

(3) The absence of ’t Hooft anomalies for Gcus, allowing consistent inclusion of the dynamics

of the Standard Model via gauging.

(4) The existence of a Higgs field in the coset GF/HF with charges (1,2,2)0 under Gcus.

(5) The presence of fermionic hypercolor-singlet operators with the same Standard Model quan-

tum numbers as the third generation of quarks, (3̄,2)−1/6 and (3,1)2/3 under GSM, allowing

for a partially composite top quark.

One particularly promising model in their classification is a hypercolor theory with gauge group

GHC = SU(4), which was the subject of a more detailed paper by Ferretti [75]. An interesting feature
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of this model is the presence of fermions in two different representations of the gauge group: the

fundamental 4 and the two-index antisymmetric 6, a real representation. More precisely, Ferretti’s

model contains six left-handed Weyl fermions in the 4 and five left-handed Weyl fermions in the 6.

The global symmetry then breaks according to

GF

HF
=

(
SU(3)× SU(3)′

SU(3)c

)
×
(

SU(5)

SO(5)

)
×
(

U(1)X ×U(1)′

U(1)X

)
. (1.34)

The custodial symmetry of the Standard Model remains unbroken because SO(5) contains SO(4),

which is locally isomorphic to SU(2)L × SU(2)R. Lattice simulations of this SU(4) gauge theory

form the heart of this thesis, albeit with slightly modified matter content.

So far we have only discussed the dynamics of the hypercolor theory and the unbroken global

symmetry structure. In addition the strong dynamics of GHC, Ferretti’s model also includes the

gauge dynamics of the Standard Model. From a theoretical perspective, one imagines first solving

the dynamics of GHC (e.g., with a lattice simulation, as in this thesis) and then “switching on” the

GSM dynamics as a small perturbation. Perturbative interactions with the fields of the Standard

Model generate an effective potential for the Higgs (which is an element of Goldstone multiplet

SU(5)/SO(5)). If this potential has the correct properties, the top quark misaligns the vacuum

and triggers the formation of a vacuum expectation value for the Higgs and breaks electroweak

symmetry SU(2)L ×U(1)Y → U(1)EM.

Ferretti computed the effective potential for the Higgs to lowest order and found that it has

the form

V (h) ∝ α cos (2h/f)− β sin2 (2h/f) , (1.35)

where α and β are low-energy constants encoding the contributions of the electroweak gauge bosons

and top quark, respectively [75]. The precise values of these low-energy constants depend on the

dynamics of the hypercolor theory. The minimum of this potential occurs for cos (2h/f) = −α/2β,

i.e., for sin2 (2h/f) = 1− (α/2β)2. As we shall discuss more below, the figure of merit in composite
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Higgs models is the dimensionless ratio

ξ = (v/f)2 = sin2 (〈h〉/f) , (1.36)

which measures the departure of Higgs physics from the Standard Model. With this definition, we

learn that

ξ ' 1

4

(
1− α

2β

)2

. (1.37)

This expression shows the fine-tuning parameter ξ depends not only the scale of new dynamics but

also on consistency conditions of the hypercolor theory itself. Lattice simulations can investigate

self-consistency relations like this by computing low-energy constants.

1.3.2 The Minimal Composite Higgs Model

Low-energy effective theory is the natural starting point for phenomenology of composite

Higgs models. EFT discussions begin with the choice of the coset GF/HF from which the Higgs

boson emerges as a pseudo Goldstone boson. In direct analogy to chiral perturbation theory and

QCD, this approach contains many free parameters (in the form of undetermined low-energy con-

stants) and remains largely agnostic about the underlying high-energy dynamics of the hypercolor

theory. However, the perspective of EFT offers a close connection to collider searches for new

physics and enjoys a degree of model independence.

The coset SO(5)/SO(4) sometimes goes by the name of the minimal composite Higgs model.

Although not directly applicable to the lattice model of this thesis, the minimal composite Higgs

model nevertheless contains some universal features which are expected in more complicated sce-

narios. It is therefore worthwhile to review the important features of this toy model, following the

discussion of Panico and Wulzer [121].

Let us suppose that some strongly interacting hypercolor gauge theory confines and breaks the

global symmetry GF/HF = SO(5)/SO(4). Because SO(4) is locally isomorphic to SU(2)L×SU(2)R,

the unbroken symmetry includes the custodial symmetry of the Standard Model. The Goldstone

bosons πâT
â are elements of the coset SO(5)/SO(4).



19

The general CCWZ construction again provides the correct EFT Lagrangian, with or without

gauge interactions of the unbroken HF = SO(4) generators (Appendix A.4 describes the general

CCWZ construction). To include gauge interactions, one simply promotes the GF-covariant deriva-

tive dµ[π] to a gauge- and GF-covariant derivative dµ[π,A] using

∂µ 7−→ Dµ = ∂µ − iAµ, (1.38)

where Aµ denotes the gauge field(s) of the unbroken generators. As shown in Appendix A.5, the

tensor dµ for the coset SO(5)/SO(4) takes the form:

dµ =

[
√

2

(
1

π
sin

(
π

f

)
− 1

f

)
π · ∂µπ
π2

πâ −
√

2

π
sin

(
π

f

)
(∂µπâ)

]
T â, (1.39)

where π =
√
πâπâ. Squaring this quantity and tracing then yields the most general two-derivative

Lagrangian:

L =
f2

4
Tr dµ,âd

µ,â (1.40)

=
f2

2

[((π
2

)2
− sin2

(
π

f

))(
π · ∂µπ
π2

)2

+ sin2

(
π

f

)
∂µπ · ∂µπ

π2

]
. (1.41)

Although this expression is indeed rather complicated, the remarkable fact that it can be written

exactly reveals generic features expected in any composite model. A slight change of notation aids

the discussion. Consider therefore the Higgs field, defined as a doublet of SU(2)L ⊂ SO(4):

H =

hu
hd

 =
1√
2

π2 + iπ1

π4 + iπ3

 , (1.42)

which evidently satisfies π =
√

2 |H| where |H| =
√
H†H. Coupling to the gauge fields and using

the fact that π ·Dµπ = π · ∂µπ (since the generators of SO(4) are antisymmetric and π is bosonic),

the Lagrangian becomes:

L =
f2

2

sin2

(√
2 |H|
f

)
DµH

†DµH

|H|2
+

(
2 |H|2

f2
− sin2

√
2 |H|
f

)(
∂µ |H|2

2 |H|2

)2
 (1.43)

First, we see that the Higgs field often appears in combination with the decay constant f of the

hypercolor sector: |H| /f . After electroweak symmetry breaking, the figure of merit becomes
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ξ = (v/f)2, where v = 246 GeV is the Higgs vacuum expectation value. The ratio ξ is inversely

related to the generic energy scale of compositeness, as measured by f . Second, in the limit of

a very heavy composite sector (ξ → 0), one recovers the usual Higgs-gauge interactions of the

Standard Model:

L → |DµH|2 . (1.44)

Third, we see a pathway to experimental investigation of composite Higgs models. Even if reso-

nances from the hypercolor sector are too heavy to produce directly in collier experiments, com-

posite Higgs models generically predict small corrections to Standard Model couplings. These

corrections are are proportional to powers of ξ. In this way, high-precision experiments can con-

strain the space of possible composite Higgs models. All three of these lessons are expected to

apply in a generic composite Higgs model GF/HF.

1.3.3 The Nature of Experimental Predictions

The experimental search for physics beyond the Standard Model is a vast subject, ranging

from tabletop atomic experiments in Boulder [37] to enormous collider experiments at the Large

Hadron Collider [1]. The research of this thesis necessarily fits into a large scientific story involving

not only lattice gauge theorists., but also experimentalists and phenomenologists. Combining the-

oretical arguments with state-of-the-art experimental constraints is the fascinating and technical

subject. Some recent work, relevant to the simulations of this thesis, exists in this direction [70, 76].

Unfortunately, it exceeds the scope of this thesis to discuss this story at length. This section at-

tempts to compensate for this deficiency by explaining, in the simplest possible terms, the nature

of the experimental predictions emerging from these simulations.

As we saw in Sec. 1.3.2, a generic composite Higgs model modifies coupling(s) of the Higgs

to the other fields in the Standard Model. The dimensionless parameter ξ = (v/f)2 controls

this shift, where v = 246 GeV is the known Higgs vacuum expectation value and f is the new

compositeness scale. By measuring the Higgs coupling(s)—for instance, through decay rates and
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branching ratios—experiments provide upper bounds on possible values of ξ.

Theoretical predictions from a lattice simulation are always dimensionless ratio of physical

quantities. For example, a lattice prediction of the mass spectrum can be phrased in units of the

compositeness scale as (M/f). Then, given an upper bound for ξ, the lattice result gives a lower

bound on the masses of new particles:

M (GeV) &

(
M

f

)
thy.

×
(
v√
ξ

)
exp.

. (1.45)

Statements like these are the easy to understand. Given a preferred experimental value for ξ, the

theory predicts new particles for discovery in direct detection experiments at high energies.

In Ferretti’s model (but not all composite Higgs models), the top quark is partially composite.

The fact that the top quark has substructure will induce small changes in its decay width and decay

properties, which experiment also constrains. Because the precise nature of such predictions is the

subject of current research, we shall not discuss it further here.

Other predictions are possible with lattice simulations, although they are usually more ab-

stract and more difficult to compute. For instance, in Ferretti’s model, we learned in Eq. (1.37)

that the parameter self-consistency conditions also determine the value of ξ in terms of low-energy

constants of the composite Higgs model. Computing these constants in a lattice simulation would

indicate a preferred value for ξ, which could be compared directly to experimental bounds.



Chapter 2

Lattice Gauge Theory: An Overview

2.1 Motivation

Much of the conceptual and technical difficulty of quantum field theory arises from regulators

to ensure that physical predictions of the theory are finite. In fact, the need for such regulators is

easily understood with a little bit of hindsight. First, consider the fact that many field theories of

interest (like QCD with massless fermions) are classically conformal, possessing no intrinsic length

scale. Nevertheless, general QFTs exhibit both scale dependence (i.e., running couplings) and

massive bound states (i.e., dimensional transmutation). In order to compute either of these effects

starting from a classically scale-invariant Lagrangian, one should expect to introduce some reference

scale or regulator. Second, the quantum mechanical partition function receives contributions from

violent fluctuations across all distance scales. Rendering this quantity finite requires limits on the

lowest-energy and highest-energy fluctuations allowed, that is, the introduction of regulators.

Lattice-regulated QFT, originally due to Wilson [143], approximates spacetime as a finite

four-dimensional lattice, with physical fields taking values on the links and nodes. By virtue its

finite size V and lattice-spacing a, this procedure introduces hard cutoffs in both the IR and UV. As

usual, physical results follow the removal of the regulators in the continuum (a → 0) and infinite-

volume (V → ∞) limits. Most importantly, the lattice preserves gauge invariance even at finite

lattice spacing and finite volume.

Presently, only the lattice gives complete, non-perturbative definition to strongly coupled

QFTs like QCD, and only the lattice yields controlled and systematically improvable computations
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at strong coupling. From both a practical and theoretical perspective, lattice gauge theory sim-

ulations are therefore the most reliable way to answer quantitative questions about the spectrum

of strongly coupled QFTs. However, tools like the quark model, chiral perturbation theory, and

large-Nc provide additional context and intuition for lattice results. This thesis shall freely use

techniques from all three.

Lattice gauge theory is by now a mature field with many textbooks. Learning the subject for

the first time, I found the following books particularly useful: DeGrand and DeTar [59]; Gattringer

and Lang [82]; Knechtli, Günter, and Peardon [105]; and Montvay and Münster [119]. Even when

not explicitly referenced below, their presentations have heavily influenced much of the discussion

in the rest of this chapter.

2.2 Technical Formulation

The usual continuum action of QCD is the sum of a gauge action SG and a fermion action

SF , given by

SG =
1

2g2

∫
d4xTr [Fµν(x)Fµν(x)] , (2.1)

SF =

∫
d4xψ̄ /Dψ, (2.2)

where /D = γµ(∂µ + igAµ) is the familiar gauge-covariant derivative. On the lattice we find it

convenient to work with slightly more complicated actions, which reduce to the previous expression

in the continuum limit. The best motivation for lattice actions comes from effective field theory. In

this spirit, Eqs. (2.1) an (2.2) are simply the most general gauge-invariant actions containing only

marginal and relevant operators.1 Additional irrelevant operators (i.e., those with engineering

1 In fact another marginal term is also possible, the CP-violating “theta term,”

SCP = θ

∫
d4x Tr[εµνρσFµνFρσ]. (2.3)

Experiments, e.g., measuring the electron dipole moment of the neutron constrain this term to satisfy θ . 10−10.
The unexplained smallness of this number goes by the name of the Strong CP Problem.
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dimension ∆ > 4) are also possible. The sole dimension-five operator,

S(5) ∼ 1

Λ

∫
d4xψ̄ /D /Dψ (2.4)

=
1

Λ

∫
d4xψ̄

(
D2 +

1

2
σµνF

µν

)
ψ, (2.5)

will play a key role in the construction of a lattice action below.

In continuum field theory, the spurious transformation properties of ψ̄ /∂ψ under local sym-

metries motivative the introduction of the gauge-covariant derivative. The associated gauge field is

defined in the algebra of the gauge group, which encodes the infinitesimal structure of the symme-

try. Because the derivative compares infinitesimally close points in spacetime, the presence of the

algebra is sensible in this context. The situation differs on the lattice, where adjacent spacetime

points are separated by a finite distance, and matter fields are defined at each point on the lattice.

In this case, a more economical description therefore arises from group elements corresponding to

finite transformations. The continuum provides the necessary motivation, where the Wilson-line

operator

GC = P exp

(
i

∫
C
dx ·A

)
(2.6)

is a group-valued functional of the path C connecting two points in spacetime (P denotes the path-

ordered exponential). The lattice Wilson line operator is defined at site n extending in the direction

µ as

Uµ(n) = exp(iaAµ(n)). (2.7)

Because this quantity is naturally associated with the link between sites n and n+ µ, it is referred

to as a gauge link. Gauge links can be used to define plaquettes, the lattice analogues of Wilson

loops,

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) (2.8)

= Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)†. (2.9)
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Figure 2.1: A diagrammatic representation of a plaquette Uµν(n), the lattice analogue of a Wilson
loop. The dots represent the nodes of the lattice. Each arrowhead represents a gauge link U . The
free lines at site n indicate the un-contracted group indices in Eq. (2.9).

Figure 2.1 shows a diagrammatic representation of a plaquette. The famous Wilson gauge action

is simply a sum over plaquettes:

SG[U ] =
2

g2

∑
n

∑
µ<ν

<Tr [1− Uµν(n)] . (2.10)

By direct computation with the help of the Baker–Campbell–Hausdorff formula (see Eq. (A.15)),

one discovers that

SG[U ] =
a4

2g2

∑
n

∑
µ,ν

Tr [Fµν(n)Fµν(n)] +O(a2). (2.11)

In other words, the Wilson gauge action agrees with the familiar continuum version up to lattice

artifacts of O(a2), which vanish in the continuum (a→ 0) limit.

In the fermion sector, the naive fermion action approximates the gauge-covariant derivative

with a gauge-covariant symmetric finite difference:

SF = a4
∑
n

∑
µ

γµψ̄(n)

(
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a

)
+mψ̄(n)ψ(n). (2.12)

This discretization suffers from two issues. First, this action possesses an accidental surfeit of low-

energy modes known as fermion doublers. Second and more benignly, the naive fermion action only

approaches the continuum limit up to O(a) lattice artifacts. Because physical predictions emerge
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only in the continuum limit, it is desirable to approach this limit as efficiently as possible and at

least as quickly as the Wilson gauge action. Including additional irrelevant operators in the action

solves both issues.

As we saw above, a single dimension-five operator ∝ /D
2

exists. The lattice action containing

this term goes by the name of the Wilson fermion action with clover improvement; its explicit form

is:

SW =
∑
n

ψ̄nψn − κ
∑
n,µ

[
ψ̄n(r − γµ)Uµ(n)ψn+µ̂ + ψ̄n(r + γµ)U †µ(n− µ̂)ψn−µ̂

]
− rκcSW

1

2

∑
n,µ,ν

ψ̄nσµνCµνψn.

(2.13)

The object Cµν is a combination of gauge links defined to reduce to the field strength in the

continuum limit Cµν = a2Fµν + O(a4), a definition containing freedom in the structure of the

higher-order terms. Because of this freedom, the lattice community has in practice used many

different forms for Cµν , with possible forms appearing in the standard texts, e.g., [59, 82]. As one

particular concrete example, consider

Cµν = − i

8a2
(Qµν(n)−Qνµ(n)) (2.14)

Qµν = Uµ,ν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν,µ(n). (2.15)

This combination of plaquettes resembles a four-leaf clover, whence the name “clover term.” Fig-

ure 2.2 shows a diagram of the clover term in a fixed µν-plane. In Eq. (2.13), r is the so-

called Wilson parameter, and cSW is the clover coefficient (after Sheikholeslami and Wohlert [135]).

Throughout this thesis we shall set the clover coefficient and the Wilson parameter to unity, a

choice motivated by tree-level matching to the continuum [141, 142].

The final parameter in Eq. (2.13) is the “hopping parameter” κ, which serves as a proxy for

the bare mass. To see this connection more clearly, let us consider the Wilson action in the limit
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Figure 2.2: A diagrammatic representation of the object Qµν which appears in the clover term, in
a fixed µν-plane. The dots represent the nodes of the lattice. Each arrowhead represents a gauge
link U . Gauge links moving in opposite directions between the same nodes are related by hermitian
conjugation.

of free fermions, i.e., neglecting interactions with the gauge links:

S
(free)
W =

∑
n

ψ̄nψn − κ
∑
n,µ

[
ψ̄n(1− γµ)ψn+µ̂ + ψ̄n(1 + γµ)ψn−µ̂

]
(2.16)

=
∑
n

ψ̄nψn − κ
∑
n,µ

[
2ψ̄nψn − 2ψ̄nγµ∂µψn + · · ·

]
(2.17)

= 2κ
∑
n

[
ψ̄n/∂ψn +

1

2

(
1

κ
− 8

)
ψ̄nψn + · · ·

]
(2.18)

≡ 2κ
∑
n

[
ψ̄n/∂ψn +mψ̄nψn + · · ·

]
. (2.19)

Therefore, up to an immaterial field normalization factor, we see that the fermion mass is related

to the hopping parameter by

am =
1

2

(
1

κ
− 8

)
⇐⇒ κ−1 = 2(am+ 4). (2.20)

A lattice simulation with Wilson fermions begins by specifying the bare inverse gauge coupling (i.e.,

the prefactor of the Wilson action) and the bare hopping parameter κ. For the free fermions we have
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considered, the massless limit corresponds to a critical value of the hopping parameter κc = 1/8.

The value of the critical point shifts in the presence of interactions. In the strong-coupling limit,

κc = 1/4 [144, 93]. In general, the fermion mass and the hopping parameter are inversely related,

with vanishing κ corresponding to arbitrarily heavy, static fermions.

Because simulations occur on finite four-dimensional lattices, boundary conditions deserve

at least a passing remark. In brief, the precise boundary conditions are expected to be irrelevant

in the thermodynamic (V → ∞) limit. Practical simulations often employ periodic boundary

conditions in the spatial directions. According to the thermal partition function, finite temporal

extent corresponds to a finite temperature. Because of the trace in the thermal partition function,

ZT = Tr e−TĤ , (2.21)

bosons should be periodic in time, while fermions should be anti-periodic in time.

2.3 Markov Chain Monte Carlo

A quantum field theory is defined according to the path integral

Z[J ] =

∫
[dφ] exp (−SE [φ, J ]) , (2.22)

where SE denotes a Euclidean action in terms of arbitrary fields φ and sources J . Computing this

integral constitutes a complete solution of the QFT. Because lattice simulations include quantum

fluctuations to all orders, the usual perturbative diagrammatic expansion is not the most useful

way to think about Z[J ]. Instead, one interprets the partition function as a weighted average over

field space. Two basic ideas are necessary to compute the full path integral in practice: importance

sampling and molecular dynamics.

Importance sampling is common to all Monte Carlo approaches to integration. Because the

path integral is a high-dimensional integral, brute-force evaluation of all possible field configurations

is not feasible. As a simple example, consider the Ising model, with spins on each lattice site taking

the values ±1. For a d-dimensional lattice with Nd total sites, the dimension of the field space {φ}
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is exponentially large:

dim{φ} = 2N
d

= exp
(
Nd log 2

)
. (2.23)

Moreover, the Boltzmann factor exp (−SE [φ, J ]) exponentially suppresses most field configurations.

To bypass this problem, instead of sampling configurations randomly and weighting them with a

Boltzmann factor, importance sampling draws configurations from a Boltzmann distribution and

weights them evenly. How can we draw configurations from such a distribution?

Molecular dynamics generates configurations according to the Boltzmann distribution and is

based on the trivial introduction of an additional gaussian field p:∫
[dφ] exp (−SE [φ]) =

∫
[dφ][dp] exp

(
−p

2

2
− SE [φ]

)
(2.24)

≡
∫

[dφ][dp] exp (−H(p, φ)) . (2.25)

The quantum path integral is thus equivalent to a statistical partition function in one additional

(fictitious) dimension. But Boltzmann’s key insight in statistical mechanics allows us to compute

this quantity: ensemble averages equal time averages. Therefore it suffices to solve the classical

Hamiltonian equations

ṗ = −∂H
∂φ

(2.26)

φ̇ =
∂H

∂p
(2.27)

of the “molecular dynamics” of the system. Evidently the complicated dynamical behavior of the

system in the fictitious fifth dimension encodes the full structure of the 4-dimensional quantum

fluctuations. This program requires many technical considerations in order to be a practical simu-

lation method for realistic field theories. Briefly, numerical integration of the Hamilton’s equations

should be symplectic (in the sense of preserving the natural notion of area on the classical phase

space) and time-reversal symmetric. Dynamical fermions present their own technical challenges,

which are beyond the scope of this thesis to describe.

The abstract framework of Markov Chain Monte Carlo unites importance sampling and

molecular dynamics. Consider a Markov process, i.e., a random sequence of configurations U0 →
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U1 → · · ·Un with the transition probability

P (Un = U ′|Un−1 = U) = T (U ′|U) (2.28)

satisfying positivity and normalization requirements

0 ≤ T (U ′|U) ≤ 1 (2.29)∑
U ′

T (U ′|U) = 1. (2.30)

Suppose that, in addition to the transition probability T , this sequence also has a limit distribution

P (U). After “thermalizing” (n → ∞), the sequence must be reversible in the following sense: the

probability to obtain a configuration U ′ (from any initial configuration U) equals the probability to

leave the configuration U ′ (and go to any final configuration U). Mathematically, this reversibility

condition corresponds to the balance equation,

∑
U

T (U ′|U)P (U) =
∑
U

T (U |U ′)P (U ′). (2.31)

A sufficient condition for satisfying the balance equation is “detailed balance,” i.e., term-by-term

equality:

T (U ′|U)P (U) = T (U |U ′)P (U ′). (2.32)

These ideas form the basis of Markov Chain Monte Carlo.

The abstract language of Markov chains provides a practically useful algorithm which unites

importance sampling and molecular dynamics. Importance sampling requires an ensemble of config-

urations sampled from the statistical distribution P (U) ∼ exp (−SE [φ]). In principle, this ensemble

can be realized as a the limit of a Markov process. To define a Markov process which limits to

P (U), it suffices to specify a transition probability T satisfying the detailed balance condition of

Eq. (2.32). It can be shown that symplectic, time-symmetric integration of Hamilton’s equations

satisfies

T (p, φ|p′, φ′) = T (p′, φ′|p, φ). (2.33)
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However, detailed balance also involves the statistical distribution P (U), while molecular dynamics

only converges to P (U) in the limit of vanishing integration step size. Fortunately, an auxil-

iary “Metropolis” acceptance probability restores detailed balance even at finite integration step

size [73]:

TMetroplis(U
′|U) = min

[
1,
T (U |U ′)P (U ′)

T (U ′|U)P (U)

]
(2.34)

= min

[
1,

exp(−SE [φ′])

exp(−SE [φ])

]
(2.35)

= min [1, exp(−∆SE)] . (2.36)

Therefore, TMetropolis defines a Markov process which limits to the desired Boltzmann distribution.

In the lattice literature, the algorithm based on these ideas is called Hybrid Monte Carlo.



Chapter 3

Lattice spectroscopy

Lattice studies extract physical quantities, like masses and decay constants, from the asymp-

totic behavior of n-point correlations functions. Two-point functions—propagators—are particu-

larly important, both because of their central role in perturbation theory and because their poles

reveal the particle content of the theory. As a reminder of the general argument, consider the

spectral representation of the two-point function:

〈0|φ(x, 0)φ(0, 0)|0〉 =

∫ ∞
m2

0

dm2 ρ(m2)D−1(x, 0;m2), (3.1)

where D−1 is the propagator and ρ(m2) is the positive spectral weight function. Stable one-particle

states (of mass m′) contribute to the spectral weight with a delta function:

ρ(m2) ∝ δ(m2 −m′2). (3.2)

Integrating this quantity over the spatial volume projects onto states of zero spatial momentum,

C(t) ≡
∫
d3x〈0|φ(x)φ(0)|0〉 =

∫ ∞
m0

dmρ(m2)e−mt ∝ e−m0t. (3.3)

For large time separations, the lightest state (of mass m0) dominates. This fact guides lattice

computations, where the goal is to measure the asymptotic behavior of C(t) by fitting to sums of

exponentials.

The necessary formulae change slightly at finite temperature, i.e., in the presence of a finite

temporal direction T . Recall that the thermal partition function is ZT = Tr e−TĤ =
∑

n e
−TEn .

Following Gattringer and Lang [82], let us consider the behavior of a two-point function C(t) =
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〈O2(t)O1(0)〉 of bosonic operators after summing over spatial slices. Inserting a complete set of

states, we find that this functions takes the form

C(t) = 〈O2(t)O1(0)〉 =

∑
m,n〈n|O2|m〉〈m|O1|n〉e−t∆Eme−(T−t)∆En

1 + e−T∆E1 + e−T∆E2 + . . .
(3.4)

where ∆En ≡ En − E0 is written in terms of the ordered energy spectrum En+1 > En. Note that

∆E0 vanishes by definition. The normalization by ZT in the denominator depends only on the

total temporal length T of the lattice, not on the difference (T − t). On long lattices where T � 1,

the denominator approximately unity, and so

〈O2(t)O1(0)〉 '
∑
m,n

〈n|O2|m〉〈m|O1|n〉e−t∆Eme−(T−t)∆En . (3.5)

This expression is useful with the following two observations. First, in the region t ≈ 0, the quantity

e−t∆Em is large, while the quantity e−(T−t)∆En is vanishingly small except when m = 0, in which

case it is unity. Second, in the region t ≈ T , the quantity e−(T−t)∆En is large, while e−t∆Em is

vanishingly small, except when n = 0, in which case it is unity. Therefore, we may approximate

the two-point function as

〈O1(t)O2(0)〉 '
∑
n

〈0|O1|n〉〈n|O2|0〉e−t∆En + 〈n|O1|0〉〈0|O2|n〉e−(T−t)∆En . (3.6)

If the two operators are in fact the same (O1 = O2) and Hermitian, the result simplifies even

further, and C(t) reveals itself to be a hyperbolic cosine:

〈O(t)O(0)〉 =
∑
n

|〈0|O|n〉|2
[
e−t∆En + e−(T−t)∆En

]
(3.7)

=
∑
n

|〈0|O|n〉|2 eT/2
[
e(T/2−t)∆En + e−(T/2−t)∆En

]
(3.8)

=
∑
n

|〈0|O|n〉|2 eT/22 cosh [(T/2− t)∆En] . (3.9)

If the operator is not hermitian, a relative minus sign is possible between the two terms, yielding

a hyperbolic sine.

So far the discussion has assumed that the operators are bosonic. Important examples include

mesonic operators of the form (ψ̄Γψ). However, lattice studies also employ fermionic operators to
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study baryons. Following Montvay and Münster [119], suppose that B and B̄ are baryon operators

and consider the correlation function
〈
B(t)B̄(0)

〉
. For in the limit of infinite temporal extent

(T →∞), the asymptotic behavior is

〈
B(t)B̄(0)

〉
= cB+ (1 + γ4) e−tmB+ + cB− (1− γ4) e−tmB− . (3.10)

The parity projection operators (1±γ4) arise from the spin sum at zero spatial momentum, which is

implicit in the sum over states. The fact that the spin sum occurs at zero spatial momentum follows

from summing over spatial slices, as previously. For finite temporal extent T , states propagate in

both directions, giving

〈
B(t)B̄(0)

〉
= (1 + γ4)

[
cB+e−tmB+ − cB−e−(T−t)mB−

]
+ (1− γ4)

[
cB−e

−tmB− − cB+e−(T−t)mB+

]
.

(3.11)

Notice the presence of both states, B+ and B−, in each term. This feature has a reasonable physical

interpretation: a fermion state propagating backward in time reverses its parity. The important

observation is that baryon correlation functions at finite T in general contain states of both parities,

even after acting with a parity projection operator. Thus, baryon correlation functions are typically

asymmetric in the time t. As a physical example from QCD, the nucleon interpolating field

Nα = εabcu
a
α

(
ubTCγ5d

c
)

(3.12)

couples both to the proton (E ∼ 940 MeV) and its negative-parity partner (E ∼ 1500 MeV).

3.1 Fermion propagators

Wick’s theorem provides a convenient dictionary for evaluating fermionic path integrals:

〈
ψi1ψ̄j1 . . . ψinψ̄jn

〉
F

=
1

Z

∫
[dψ][dψ̄]ψi1ψ̄j1 . . . ψinψ̄jne

−SE [ψ̄,ψ] (3.13)

= (−1)n
∑

σ(1,2,...,n)

D−1
i1,jσ(1)

D−1
i2,jσ(2)

. . . D−1
in,jσ(n)

, (3.14)

where the sum runs over all possible permutations σ and the subscripts i and j are shorthand for

the quantum numbers of the fermion fields. (This result appears in all field theory texts; the present
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Figure 3.1: A graphical representation of the propagator tensor of Eq. (3.15) from spacetime site m
to site n. Color indices are associated to solid external lines. Spin (Lorentz) indices are associated
to dotted external lines.

form is from [82]). As usual, D−1 denotes the fermion propagator, i.e., the inverse of the quadratic

portion of the action. This expression reveals that fermion propagators form the computational

backbone of lattice spectroscopy calculations. For a given set of sources, Wick’s theorem says that

fermions propagate to all possible sinks, with minus signs from permuting fermions.

On the lattice, we view D−1 as a matrix connecting two lattice sites n and m:

D−1 ≡ D−1(n|m)a,bα,β , (3.15)

where a and b are color indices associated with the sites n and m, respectively. Similarly, α and β

are the associated Lorentz indices. A priori, one must compute this matrix for all sites m and n.

Fortunately, for most quantities of interest, one can exploit translational invariance and compute

the propagator from a single, fixed source site m = m̄ to all other sink sites n. Let S(m)
(m̄,ᾱ,ā)
α,a

denote a source vector which selects the site m̄ with fixed Lorentz and color structure ᾱ and ā,

respectively. Explicitly for a point source,

S(m)(m̄,ᾱ,ā)
α,a = δm,m̄δα,α0δa,a0 . (3.16)

The propagator from the fixed source (at m̄) to the sink (at any other lattice site n) is therefore

the product:

G(n|m̄) = D−1(n|m)S(m)(m̄). (3.17)

Suppose the fermions are charged in a dimf -dimensional representation of the gauge group in four

spacetime dimensions on a lattice with N3
s × Nt sites. For fixed source location m̄, G is an array
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of N3
s × Nt × dim2

f ×42 complex numbers. For the familiar case of QCD with fermions in the

fundamental representation on a modest 163 × 32 lattice, the computational task requires more

than three million complex numbers. The numerical methods for this expensive computational

task are well-established and are mostly outside the scope the thesis. However, for the sake of

completeness and since these techniques are so important for lattice spectroscopy, Appendix B

reviews the essential ideas in some detail.

3.2 Hadron Correlation Functions

In this thesis, we shall be interested in meson and baryon states. The quark model classifies

the valence fermion structure of these objects and motivates operators of the form (ψ̄Γψ) and

ψ(ψTCΓψ). Appendix A.2 classifies the symmetry properties of common operators of this form.

Wick’s theorem, Eq. (3.13), provides the dictionary for constructing correlation functions from

propagators. This section examines the concrete forms of correlation functions which arise after

the fermion contractions of Wick’s theorem.

Consider first a meson correlation function between two operators of the form O ∼ (ψ̄Γψ).

In the case where the fermion ψ and antifermion ψ̄ have different flavor quantum numbers, fermion

contraction delivers

〈
(ψ̄(t)Γψ(t))(ψ̄(0)Γψ(0))

〉
= −Tr

[
ΓD−1(t|0)ΓD−1(0|t)

]
. (3.18)

An additional contraction exists in the case of flavor-singlet operators: Tr
[
ΓD−1(0|0)

]
Tr
[
ΓD−1(t|t)

]
.

Diagrammatic versions of both contractions appear in Figure 3.2. Fermion-line disconnected con-

tractions involve the creation and subsequent annihilation of a fermion at the same site. Such

contributions are expensive to compute numerically and are the subject of active research in the

lattice QCD community. Because this thesis does not consider flavor-singlet correlation functions,

we will not pursue the subject further. Another potential computational concern arises for mesons,

since Eq. (3.18) requires both D−1(t|0) and D−1(0|t). Fortunately, all “reasonable” lattice Dirac
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Figure 3.2: A graphical representation of the tensor contractions appearing in meson two-point
correlation functions. The lines with arrows and ψ, ψ̄ on the ends are the propagators. The dotted
lines indicate spin contractions against the Dirac structure Γ. The white hollow boxes indicate
color contractions against the Kronecker delta of SU(Nc). The connected diagram on the top is
present for all mesons. The disconnected diagram on the bottom is present, e.g., for flavor singlet
mesons.

operators (and the clover Dirac operator, in particular) satisfy a property known as γ5-hermiticity:

D† = γ5Dγ5 ⇐⇒ (D−1)† = γ5D
−1γ5. (3.19)

Therefore, a single computation of the propagator suffices for a meson two-point correlation func-

tion.

The structure of baryon correlation functions is typically more complicated. Consider the

case of three distinct fermion flavors: up, down, and strange. For simplicity, take the up and

down fermions to be be mass degenerate. Five different contractions patterns are then possible,

depending on the location of the strange fermion in the source and sink operators. These five

different patterns contain two distinct “topologies” of spin contractions. In the first topology,

Wick’s theorem connects both fermions in the diquark at the source and sink, forming a closed

loop of spinor indices among the propagators. In the second topology, Wick’s theorem connects a

fermion in the source diquark with the open fermion at the sink. Enumeration of the contractions
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Example s spin s̄ spin Spin topology〈

s(uTCΓd)(ūCΓd̄T)s̄
〉

Open Open A〈
u(dTCΓs)(d̄CΓs̄T)ū

〉
Diquark Diquark A〈

u(dTCΓs)(ūCΓd̄T)s̄
〉

Open Diquark B〈
s(uTCΓd)(d̄CΓs̄T)ū

〉
Diquark Open B〈

u(dTCΓs)(ūCΓs̄T)d̄
〉

Diquark Diquark B

Table 3.1: Summary of contraction patterns appearing in baryon correlation functions.

is now straightforward and given in Table 3.1. Figure 3.3 shows a diagrammatic representation of

the tensor contractions.

3.3 Extracting Physical Results

So far we have described how to compute fermion propagators D−1(n|m)a,bα,β, contract their

color and Lorentz structures, and sum over the lattice sites on each time slice to obtains the scalar

correlation function C(t). However, we must still extract the physical content of the theory from

this function.

The first step toward this goal is often the construction of so-called effective mass curves.

When the correlation function is well-approximated by a single decaying exponential, C(t) ∝ e−mt,

the logarithm of consecutive points furnishes an estimate of the mass:

m ' log
C(t)

C(t+ 1)
. (3.20)

As we saw above, lattice correlation functions often have the form

C(t) ' Ae−mt ±Be−m(T−t). (3.21)

An alternative estimate of the mass, which correctly handles the sign from both terms in Eq. (3.21),

is based on the observation that C(t±1) = e±mC(t). With this observation, we define the effective

mass meff(t) via

meff = arccosh

(
C(t+ 1) + C(t− 1)

C(t)

)
. (3.22)
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Figure 3.3: A graphical representation of the tensor contractions appearing in baryon two-point
correlation functions. The lines with arrows and labels u, d, or s on the ends are the propagators.
The dotted lines indicate spin contractions against the Dirac structure Γ. The free dotted lines
reflect the fact that the source and sink operators are fermionic. The solid black boxes indicate
color contractions against the Levi-Civita tensor of SU(3). The top two diagrams have a closed
“spin loop” and correspond to “spin topology A.” The bottom three diagrams correspond to “spin
topology B.”

When a single exponential saturates the correlation function C(t), the effective mass will be a nearly

constant curve. In this way, the effective mass can diagnose the presence of lingering contamination

from excited states. It is tempting to imagine averaging over a flat “plateau” region in the effective

mass to estimate the mass of the corresponding state. While this method is a valuable check on

further results, it is inadequate because it fails to include correctly the contribution of correlations.

Instead, the correct solution is to determine the masses and amplitudes from a fit which
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includes the correlations. Correlated curve fitting can be phrased as an optimization problem.

Suppose that some “experimental” data to be fit are described by their means and a covariance

matrix: (y,Σ). Let ymodel(x; a) be a function of the independent variables x and the parameter a,

which we shall use as a model for data y. Define the χ2 function as

χ2 = (ymodel − y)TΣ−1(ymodel − y). (3.23)

The best fit parameters a∗ are chosen to minimize the χ2 function. A good fit has χ2/Ndof of

order unity, meaning that the distance between the model prediction and data is typically order

unity, in units of the standard deviation at each point. Many possible methods exist for the

actual minimization procedure to determine the best-fit parameters a∗. The Levenberg–Marquardt

algorithm is a common choice which works well in practice [110]

Unlike, say, polynomial models, model functions in lattice gauge theory are typically nonlinear

functions of the fit parameters. Nonlinear optimization is a difficult, potentially unstable problem.

For this reason, lattice studies often employ Bayesian priors to help stabilize large fits. These priors

can take many forms. For instance, a lattice determination of the pion decay constant might use

the experimental value as input. A study of excited-state spectroscopy might restrict masses to be

positive. In computations involving effective field theory, power-counting arguments may provide

priors imposing that poorly determined higher-order terms must remain order unity. Regardless of

the precise motivation, fits that include priors augment the χ2 function to

χ2
aug = χ2 + (ymodel − ỹ)TΣ̃−1(ymodel − ỹ), (3.24)

and then the minimization proceeds as before. In this expression, ỹ contains the means of the

priors and Σ̃ the prior covariances.

Other practical considerations arise in the analysis of correlations functions C(t). At early

times, contamination from excited states may spoil the asymptotic form of the model function,

which often includes one or just a few exponentials. At late times, particularly with baryons, the

signal-to-noise ratio of the correlation function deteriorates dramatically. Therefore, one must often
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cut on the data by specifying the initial and finial times [tmin, tmax] to include in the fit. We shall

refer to such fits as range fits, since they involve fitting over a (contiguous) range of values.

Effective mass curves often motivate reasonable choices of [tmin, tmax] for range fits. However,

selecting a particular range fit based solely on visual cues is essentially qualitative. In order to

compare different range fits, we require a goodness-of-fit function which quantifies their differences.

A useful choice will prefer small χ2/dof, large fit ranges, and well-determined fit parameters. One

such criterion is

Q ≡ p-value×Ndof∑
n(σn/a∗n)2

, (3.25)

where p is the unconstrained p-value, Ndof is the number of degrees of freedom in the fit and (σi/a
∗
i )

is the relative error in the nth fit parameter. The form of Q is motivated by old techniques in the

QCD literature [30]. Although this criterion is ultimately arbitrary, it coincides with intuition

about which fits ought to be considered good and removes subjective bias. It is worthwhile to note

that, although this function involves the p-value used in statistical hypothesis testing, we are not

interested in its statistical properties, per se. Instead, Q should simply be seen as number which

has been engineered to be large for “good” fits and small for “bad” fits.

For each fit, the final procedure is as follows. First, we vary the initial and final times

[tmin, tmax] used in the fits, amounting to a grid search over possible range fits. Next, we choose

the best fit to be the one with maximum value of Q. We confirm that masses emerging from this

procedure are consistent with expectations from effective mass plots. Finally, for an estimate of

the systematic uncertainty associated with the fit-choice procedure, we compute the spread in the

model parameters emerging from all nominally good fits, e.g., those with Q ≥ 0.1 or χ2/dof ∼ 1.

We then combine statistical and systematic uncertainties conservatively using

σtot = σstat + σsyst. (3.26)

The systematic error assigned by this procedure can be comparable to the statistical error and is

occasionally significantly larger.



Chapter 4

Simulation Details

After the extended motivation of the preceding chapters, we are now in a position to discuss

the lattice simulations which are the heart of this thesis.

This thesis presents a lattice study of SU(4) gauge theory with two flavors of Dirac fermions

(Nf = 2) in each of two distinct representations, the fundamental 4 and two-index antisymmetric

6 (a real representation). The motivation for this study is a composite Higgs model proposed by

Ferretti and introduced in Sec. 1.3.1 above. We remind the reader that Ferretti’s model contains

five Majorana fermions in the sextet representation and three Dirac fermions in the fundamental.

Simulating this fermion content requires the costly rational hybrid Monte Carlo algorithm. Instead,

we study a deformed theory with four Majorana fermions (equivalent to two Dirac fermions) in the

sextet and two Dirac fermions in the fundamental. As explained below, the model contains the es-

sential qualitative physics of Ferretti’s model while offering a laboratory for developing quantitative

techniques.

The results in this and subsequent chapters are based on two papers from me and my col-

leagues [10, 13]. Although I led the analysis in these papers, the plural “we” reflects the collaborative

nature of the work.
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4.1 The Lattice Action and Parameters

Our lattice action contains gauge-field terms and two fermion actions, one for each represen-

tation:

S = Sgauge + S
(4)
F + S

(6)
F . (4.1)

Each fermion action is a Wilson–clover action built of gauge links constructed by nHYP smearing

[92, 91]. In S
(6)
F the smeared links are promoted to the sextet representation [62]. There are two

hopping parameters, κ4 and κ6. We set both clover coefficients equal to unity, cSW = 1, a choice

known to work well with nHYP smearing in QCD [25] and with fermions in higher representations

[130].

The gauge-field action takes the form

Sgauge = βSplaq + γSNDS. (4.2)

The first term is the usual plaquette action, while the second is an nHYP dislocation-suppression

(NDS) term [65], constructed from the nHYP-smeared links. The NDS term is designed to avoid

singularities in the nHYP smearing. For the present study, we hold the ratio γ/β fixed at 1/125

and use β as a free bare parameter.

Alongside the spectroscopic work described in this thesis, my colleagues and I are also study-

ing the finite-temperature phase structure of the theory, also with the NDS action [12]. Comparing

results of the sextet-only limit of this theory (in which the fundamental fermions are taken to

be very heavy and decouple) to earlier published results [62] shows that the NDS action removes

the previously-observed bulk transition from the interesting region of parameter space (see also

Ref. [94]). In the multirep theory, we see no evidence for a bulk transition anywhere near the range

of bare parameters at which we run, indicating that all of our ensembles correspond to the confined

continuum phase with broken chiral symmetry.



44

4.2 Global Symmetries

In Ferretti’s model, the massless sextet Majorana fermions ψ(6) condense and break their

global flavor symmetry according to SU(5)→ SO(5); the sextet Goldstone coset contains the Higgs

multiplet of the Standard Model. In contrast, the symmetry breaking in the present simulations is

SU(4)→ SO(4). As discussed in Sec. 1.2.1, the pattern SU(N)→ SO(N) arises because the sextet

representation is real. A more detailed explanation is given in [62, 60]. The fundamental fermions

ψ(4) in Ferretti’s model condense in the chiral limit and break their chiral symmetry according to

SU(3)L × SU(3)R → SU(3)V . In the present simulations, the corresponding symmetry-breaking

scheme is SU(2)L × SU(2)R → SU(2)V , the familiar pattern from two-flavor QCD.

As usual, the Wilson term in the lattice action explicitly breaks the chiral symmetry of the

theory. The lattice theory therefore possesses the same flavor symmetry as the (expected) broken

phase of the continuum theory: SU(2)V ×U(1)B for the fundamental representation and SO(4) for

the sextet. In other words, using Wilson fermions assumes that global symmetries break according

to the patterns of Sec. 1.2.1—those induced by fermion bilinear condensates.

Ferretti’s model required fermions in multiple representations in order to build the composite

baryon operators B ∼ ψ(4)ψ(4)ψ(6). These fermionic operators couple to the “chimera” bound

states which serve as partners for the top quark. Such chimera baryons still exist in the present

theory and are discussed in Chapter 6.

A special feature of the two-representation theory is the existence of a conserved U(1) axial

current. While the individual U(1) currents J
(4)
5µ and J

(6)
5µ are anomalous, one can form a linear

combination J5µ of these currents that decouples from εµνρσFµνFρσ. Condensation of either fermion

species then spontaneously breaks the non-anomalous axial symmetry, giving rise to a flavor-singlet

Goldstone boson that we denote ζ. The normalization of the U(1) current is reviewed in Ref. [10].
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4.3 Setting the Scale

We set the scale in our simulations using the flow scale, t0, introduced by Lüscher [115]. The

flow scale is defined by the implicit equation

t2〈E(t)〉|t0 = C, (4.3)

where E(t) = 1
4G

a
µνG

a
µν(t) is constructed from the clover form of the field strength Gaµν at flow

time t. Here C is a dimensionless number, conventionally [115] taken to be 0.3 in QCD. With this

choice,
√
t0 corresponds to a length scale of 0.14 fm (i.e., an energy scale of 1.4 GeV) in QCD

simulations [20, 58].

For an arbitrary gauge theory, any value for C is a priori as good as any other. However,

for comparison to existing studies with different gauge groups, it is useful to let C vary with Nc.

Arguments from large-Nc QCD, supported by lattice data [40, 58], suggest that t0 ∼ Nc at leading

order. For the SU(4) simulations of this work we therefore use

t2〈E(t)〉|t0 = 0.3× 4

3
= 0.4 . (4.4)

Lattice calculations give masses as dimensionless numbers Ma and the gradient-flow scale

as t0/a
2. Dimensionless products like M̂ ≡ M

√
t0 eliminate the lattice spacing a, and our tables

and figures will display such quantities. To aid intuition with respect to QCD, one can mentally

convert M
√
t0 to M/(1.4 GeV).

We return to the subject of scale-setting and its connection to chiral perturbation theory in

Section 5.1 below.

4.4 Computing the Spectrum

We extract masses and decay constants in the usual way from two-point correlation functions

as described in Sec. 3.3 For mesons, we denote pseudoscalar masses and decay constants as MP

and FP , respectively. The corresponding quantities in the vector channel are denoted by MV and
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FV . For baryons, a generic mass will be MB. In all cases, additional subscripts indicate the

representation: 4, 6, or mixed. For instance, MP4 is a fundamental pseudoscalar meson.

We define the fermion masses m4 and m6 by imposing the axial Ward identity (AWI),

∂µ〈0|A(r)
µa (x)Or(0)|0〉 = 2mr〈0|P (r)

a (x)Or(0)|0〉 , (4.5)

where x 6= 0, and a is an isospin index. We use the local unimproved axial current A
(r)
µa and

pseudoscalar density P
(r)
a in each representation r. For the determination of the AWI mass, we

do not renormalize these currents because the mass itself is not a physical observable; based on

the perturbative renormalization of these currents described in Ref. [10], the effect of including the

renormalization would be small anyway, amounting to a few-percent shift of the masses. For Or

we take a pseudoscalar source. When the distinction between representations is irrelevant, we will

refer to the fermion mass defined by Eq. (4.5) as mAWI.

The pseudoscalar decay constants are defined by

〈
0
∣∣A(r)

4a

∣∣P (r)
b

〉
= δabMPrFPr , (4.6)

at zero spatial momentum, which is the convention that gives Fπ ' 130 MeV in QCD. We calculate

FPr with the procedure described in Sec. 3.3. Renormalization is described in Ref. [10].

4.5 Ensembles

The ensembles used in this study are listed in Tables D.1–D.3 in Appendix D. They fall

into three groups. The short runs with the smallest lattices, of size V = N3
s × Nt = 163 × 18,

were used for general orientation in the three-dimensional coupling space (β, κ4, κ6). The most

important observables for this step were the gradient-flow scale
√
t0 (see Tables D.4–D.6), and

the masses MPr of the pseudoscalars constructed respectively from fermions in the r = 4 and 6

representations (see Tables D.7–D.9).

The goal of this orientation was to find couplings that give t0/a
2 = O(1) along with pseu-

doscalar masses that are reasonably light, for subsequent comparison to χPT. It turned out that



47

these short runs yielded results that are in themselves usable in the chiral fits to be presented below,

and hence we include them in our analysis.

As can be seen in the tables, some ensembles differ in small changes to their κr values. Our

orientation runs found that t0/a
2 and aMP are often sensitive to these small changes.

We demanded that our ensembles satisfy the criterion MPrL > 4 for both representations,

where L = Nsa is the spatial size of the lattice. This is the familiar rule of thumb from QCD, based

on the fact that leading-order finite-volume corrections are proportional to e−MπL; a more detailed

study of finite-volume effects in our data is given in Ref. [10]. We considered cutting data above

a maximum value of t0/a
2 beyond which finite-volume effects severely contaminate determination

of the flow scale; such a cut was found to be unnecessary following the cuts on MPL. We did

eliminate ensembles with t0/a
2 < 0.94 because in these cases the flow did not enter a linear regime.

These correspond to a large lattice spacing—in QCD language, 1/a < 1.3 GeV.

Having found interesting regions for study, we continued with high-statistics runs on lattices

with V = 163 × 32. Finally, we have four extended runs on lattices with V = 243 × 48. These runs

were done at large t0/a
2 and small M̂P , so that the constraint MPL > 4 demanded an increase in

L/a.

The pseudoscalar masses for all the ensembles are given in Tables D.7–D.9. To show our

coverage of MP values, we map them in the (MP4,MP6) plane in Figs. 4.1 and 4.2. The first

shows the pseudoscalar masses obtained for 0.94 <
√
t0/a < 1.41, which translates to a cutoff of

1.3 GeV < 1/a < 2 GeV in QCD language (most are in the neighborhood of
√
t0/a = 1.05, or

1/a = 1.45 GeV). The second plot represents ensembles in the range 1.41 <
√
t0/a < 1.64, or

2 GeV < 1/a < 2.3 GeV.
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Figure 4.1: Map of our ensembles in the plane of pseudoscalar masses MPr. These are coarse
lattices, with 0.94 <

√
t0/a < 1.41. We define arbitrarily

√
t0 = (1.4 GeV)−1 for comparison with

QCD. For most of these ensembles 1/a ' 1.45 GeV by this measure.
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Figure 4.2: Same as Fig. 4.1, but here we plot ensembles on fine lattices,
√
t0/a > 1.41. If we fix√

t0 = (1.4 GeV)−1 then this means 1/a > 2 GeV. The blue squares are all at 1/a ' 2.1 GeV.



Chapter 5

The Meson Spectrum

In this chapter we discuss the meson spectrum in our theory. Sec. 5.1 begins with a discussion

of the low-energy EFT and its role in defining a mass-dependent scheme for setting the physical

scale of the simulations. Next, Sec. 5.2 presents results for the pseudoscalar masses and decay

constants and conducts a joint extrapolation to the chiral and continuum limits using the EFT.

Finally, Sec. 5.3 presents results for the vector masses and decay constants, interpreting the findings

in terms of a model using vector meson dominance.

5.1 Chiral Perturbation Theory

The standard framework for analyzing the light pseudoscalar sector is chiral perturbation

theory (χPT). The generalization of χPT to a theory with fermions in two different representations

was developed in Ref. [60], and the next-to-leading-order (NLO) results of this work provide the

basis for our fits for the pseudoscalar masses and decay constants. We will also need Wilson

chiral perturbation theory (WχPT), the extension of chiral perturbation theory to include the

discretization errors of Wilson fermions [133, 17, 128, 5, 132, 86].

5.1.1 Chiral Perturbation Theory and Setting the Scale

In this work we use the gradient-flow scale
√
t0 as the characteristic length scale of every

ensemble. This choice allows us to measure dimensionful quantities as the fermion masses vary. To

measure an observable in units of t0 simply means to multiply it by the power of t0 that renders
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it dimensionless. Since t0 itself admits a chiral expansion [16], the resulting dimensionless quantity

admits a chiral expansion whenever the original dimensionful observable does.

To see how this idea works in practice, consider a gauge theory with mass-degenerate fermions

of mass m in the same representation. In continuum χPT, the leading-order (LO) pseudoscalar

mass is

(M2)LO = 2Bm, (5.1)

where B and F are the familiar parameters of the leading-order chiral Lagrangian. The the next-

to-leading (NLO) expression for the decay constant is

FNLO = F

(
1 + c

2Bm

8π2F 2
log
(
2Bm/µ2

)
+ L

2Bm

F 2

)
. (5.2)

The remaining parameters in Eq. (5.2) are the renormalization scale (µ) and L, which is a dimen-

sionless linear combination of the NLO low-energy constants (LECs). The value of L depends on

the choice of the renormalization scale. The coefficient c of the logarithmic term is a calculable

number that depends only on the fermion representation and on the number of flavors [29].

The NLO result for flow scale t0 is

tNLO
0 = t0,ch

(
1 + k1

2Bm

F 2

)
, (5.3)

where t0,ch is the value of t0 in the chiral limit, and k1 is a new LEC. Notice that this expression

depends analytically on the fermion mass m. As was shown in Ref. [16], logarithmic corrections to

t0 occur for the first time at the next-to-next-to-leading order (N2LO).

Combining Eqs. (5.2) and (5.3) we obtain the NLO result for the dimensionless product

F̂ ≡ F
√
t0,

F̂NLO = F
√
t0,ch

(
1 + c

2Bm

8π2F 2
log (2Bmt0) + (L+ k1/2)

2Bm

F 2

)
. (5.4)

Here we have chosen the renormalization scale to be µ = t
−1/2
0,ch . The low-energy constants are

independent of the fermion mass, and to preserve this feature we rescale them with t0,ch, for
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example defining F̊ = F
√
t0,ch. Equation (5.4) can then be written as

F̂NLO = F̊

(
1 + c

2B̊m̊

8π2F̊ 2
log
(
2B̊m̊

)
+ (L+ k1/2)

2B̊m̊

F̊ 2

)
. (5.5)

The expansion parameter is now m̊, which is the fermion mass m measured in units of t0,ch.

Equation (5.5) is inconvenient because m̊ is not known for a given ensemble until t0,ch is

known. Finding t0,ch (in units of t0 of the given ensemble) requires a complicated fitting procedure

that we wish to avoid. Instead, we opt for rescaling all observables of a given ensemble, including

the fermion mass, with t0 of the same ensemble. Introducing m̂ ≡ m
√
t0 we now use Eq. (5.3) to

relate the rescaled masses,

m̊ = m̂

(
1− k1

Bm

F 2

)
, (5.6)

which allows us rewrite Eq. (5.5) as

F̂NLO = F̊

(
1 + c

2B̊m̂

8π2F̊ 2
log
(
2B̊m̂

)
+ (L+ k1/2)

2B̊m̂

F̊ 2

)
. (5.7)

The transition from m̊ to m̂ left no trace, because the difference is a higher-order correction. More

generally, at NLO the transition from m̊ to m̂ can always be absorbed into a redefinition of the low-

energy constants. This redefinition is non-trivial, for instance, in the case of the NLO pseudoscalar

mass.

An appealing feature of Eq. (5.7) is that it looks the same as Eq. (5.2). In particular, the

coefficient of the logarithmic term is unchanged. The only minor change is that the coefficient of the

NLO analytic term is now L+k1/2 instead of L. It can be checked that this nice feature generalizes

to an arbitrary fermion content. At N2LO things would become technically more complicated,

because N2LO logarithmic corrections for t0 would have to be incorporated as well. In the NLO

fit formulae below, all the logarithmic terms will thus have the same coefficients as in the usual

continuum NLO expressions [29, 60].
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5.1.2 Wilson Chiral Perturbation Theory

The extension of continuum chiral perturbation theory to include the discretization errors of

Wilson fermions goes under the name of Wilson chiral perturbation theory, or WχPT. In the light

pseudoscalar sector, WχPT allows us to extrapolate both to the chiral (m → 0) and continuum

(a→ 0) limits. WχPT comes in two variants, depending on the choice of a power counting scheme.

In this analysis we follow the “generic small mass” power counting, defined by

p2 ∼ m ∼ a , (5.8)

where p is an external momentum, m is the fermion mass, and a is the lattice spacing, all measured

in terms of a typical hadronic scale. The alternative power counting scheme, known as the “large

cutoff effects” power counting, is defined by

p2 ∼ m ∼ a2 . (5.9)

The generic small mass scheme is appropriate when the fermion mass is not too small, and O(a2)

effects may be considered as subleading corrections. Both schemes require that simulations remain

within the chiral regime, where m̂ = m
√
t0 is small.

The fermion mass appearing in the leading-order Lagrangian of WχPT is the so-called shifted

mass, defined by

mshifted = mctm + aW0/B, (5.10)

where mctm is the fermion mass of continuum χPT, and W0 is a new low-energy constant from

WχPT. The difference between the shifted and continuum masses vanishes in the continuum limit.

For the present analysis, we need to know how the shifted mass mshifted compares to the

fermion mass mAWI measured in our simulations via the axial Ward identity Eq. (4.5). As was

shown in Ref. [6], mshifted = mAWI, up to corrections that are higher order in either of the above

power counting schemes. A derivation of of this result is summarized in Ref. [10]. For our chiral

fits we thus define

m̂ = mAWI

√
t0 . (5.11)
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The last ingredient we need for our fits is the lattice spacing. Since we are measuring all

dimensionful quantities in units of t0, it is natural to adopt a mass-dependent prescription, and to

measure also the lattice spacing in units of t0. We thus introduce

â ≡ a/
√
t0 . (5.12)

The Wilson discretization effects of any hatted (dimensionless) observable will be accounted for by

an expansion in â.

In QCD studies, it is common to choose a mass-independent scale-setting prescription in

which the lattice spacing is a function of the bare coupling β but is independent of the bare fermion

masses (see for example Refs. [19, 33]). In brief, for every constant-β plane, this procedure requires

finding the point where certain dimensionless quantities (such as Mπ/Fπ and MK/FK) attain their

real-world values. The value in lattice units of some dimensionful observable at the reference point

is then used to determine the lattice spacing in physical units.

Here we have opted for mass-dependent scale setting because of several important differences.

First, the BSM context does not provide us with any experimental results that could be used to

define a reference point. This problem might be circumvented by invoking the chiral limit as a

reference point on each constant-β plane. Using this limit, however, has the undesirable feature

that the scale setting procedure would necessarily involve an extrapolation.

Second, in our model, as in many other models that have been studied in the BSM context,

we observe a rapid change of t0/a
2 with the fermion mass, especially when the latter becomes light.

Moreover, this phenomenon is quite general and is seen for virtually any quantity that might be

used to set the scale; its proper interpretation is that the lattice spacing itself is changing rapidly.

The underlying reason for this phenomenon is that, in comparison with QCD, BSM theories tend

to have a large number of fermionic degrees of freedom, which have a strong screening effect on the

bare coupling. When we consider the dependence of a hatted quantity, such as M̂P , on the hatted

mass parameter, m̂, we expect to see some deviations from the continuum values, but such scaling

violations should be small when the bare coupling is small enough. By contrast, as explained above,
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the lattice spacing â itself can vary rapidly with the fermion mass(es). By using the mass-dependent

scale-setting prescription of Eq. (5.12) we can incorporate this effect into our analysis. As we will

see, the remaining scaling violations in the hatted quantities are small and amenable to WχPT.

5.1.3 Summary of Formulae from Chiral Perturbation Theory

Our central fits below will include terms through NLO in the generic small mass power count-

ing. These formulae depend exclusively on the dimensionless quantities we have introduced in the

previous subsections. The NLO expressions for the pseudoscalar masses of the two representations

are

(M̂2
P4)NLO = 2m̂4B̊4

(
1 + LM44m̂4 + LM46m̂6 +

1

2
∆4 −

4

5
∆ζ

)
(5.13)

+ W̊M
44 âm̂4 + W̊M

46 âm̂6 + W̊M
4 â2 ,

(M̂2
P6)NLO = 2m̂6B̊6

(
1 + LM66m̂6 + LM64m̂4 −

1

4
∆6 −

1

5
∆ζ

)
(5.14)

+ W̊M
66 âm̂6 + W̊M

64 âm̂4 + W̊M
6 â2 ,

while the expressions for the decay constants are

(F̊P4)NLO = F̊4

(
1 + LF44m̂4 + LF46m̂6 −∆4

)
+ W̊F

4 â , (5.15)

(F̊P6)NLO = F̊6

(
1 + LF66m̂6 + LF64m̂4 − 2∆6

)
+ W̊F

6 â . (5.16)

The one-loop chiral logarithms enter as

∆4 =
2m̂4B̊4

8π2F̊ 2
4

log
(

2m̂4B̊4

)
, (5.17)

∆6 =
2m̂6B̊6

8π2F̊ 2
6

log
(

2m̂6B̊6

)
,

∆ζ =
M̂2
ζ

8π2F̊ 2
ζ

log
(
M̂2
ζ

)
,

where the dimensionless mass-squared of the flavor singlet Goldstone boson is defined by

M̂2
ζ =

8

5

(
2F̊ 2

4 m̂4B̊4 + F̊ 2
6 m̂6B̊6

F̊ 2
ζ

)
. (5.18)



56

This corresponds to the LO result of Ref. [60], rescaled by t0. Further technical details related to

the ζ and conventions for the conserved axial current appear in Ref. [10].

The most important parameters in the expressions above are the LO low-energy constants

of the continuum two-representation theory (rescaled by
√
t0,ch): B̊4, B̊6, F̊4, F̊6, and F̊ζ . The

dimensionless parameters LMrs and LFrs, r = 4, 6, are linear combinations of the continuum NLO

low-energy constants and of similar NLO low-energy constants originating from the chiral expansion

of the flow scale [cf. Eq. (5.3)]. The general form of the analytic NLO continuum terms was discussed

in [60]. Because we do not have enough independent quantities to distinguish the individual NLO

low-energy constants, we instead consider LMrs and LFrs as the parameters for the fit. Finally, the

various W̊ parameters account for the NLO analytic terms of WχPT in the generic small mass

power-counting scheme. Overall, these formulae contain 21 undetermined parameters, which we

will fit below using 172 correlated points of data: four data points for each of our 43 ensembles.

We have not presented NLO fit formulae for the mass and decay constant of the singlet

Goldstone boson ζ. We do not make use of these formulae in this work because we have not

calculated fermion-disconnected diagrams, which is technically challenging, and so we do not have

direct access to the singlet sector. Nevertheless, through the quantity ∆ζ , virtual ζ loops contribute

to the masses and decay constants of the other Goldstone bosons at NLO. In the next section we

will explore what can be learned about the singlet sector from this effect.

Another interesting quantity is the chiral condensate in each representation. At lowest order

in χPT (equivalently, in the corresponding chiral limit, m̂r → 0), the fermion condensate per flavor

is given by

Σ̂r = −B̊rF̊ 2
r . (5.19)

Instead of measuring the condensates directly—a formidable task with Wilson fermions—we will

make use of Eq. (5.19) to extract their values in the joint chiral limit from our analysis of the

pseudoscalar masses and decay constants.
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Figure 5.1: Squared mass of the two pseudoscalar species, each plotted against the AWI mass of
the corresponding fermion species, all in units of the flow scale t0.

5.2 Pseudoscalar mesons

5.2.1 Masses and Decay Constants

We begin with the pseudoscalar mesons, which become Goldstone bosons in the chiral limit.

For a first look, we plot in Fig. 5.1 the squared masses M̂2
Pr. The sextet mass M̂P6 is plotted against

sextet fermion mass m̂6, ignoring the dependence on the fundamental fermion mass m̂4. Likewise for

the fundamentals, M̂P4 is plotted against m̂4. As expected from leading-order chiral perturbation

theory, the overall behavior of each squared mass is approximately linear. One supposes that the

scatter around the straight lines is due to the hidden dependence on the other fermion mass, as

well as corrections from NLO and from lattice artifacts. We will examine this hypothesis shortly.

We plot the (rescaled) decay constants F̂Pr in Fig. 5.2. The data show a steady rise with

m̂r. The same qualitative behavior is seen in QCD, where the pion decay constant is an increasing

function of the quark mass.

Sec. 5.1.3 presents the predictions of χPT in NLO for pseudoscalar observables. We conduct

a joint fit of the four observables M̂2
Pr and F̂Pr to the NLO formulae of Eqs. (5.13)–(5.16). On

each ensemble, we use single-elimination jackknife to construct the 6× 6 correlation matrix among

pseudoscalar masses, decay constants, and AWI masses of the fermions. These correlation matrices
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Figure 5.2: Decay constant of each pseudoscalar species plotted against the mass of the correspond-
ing fermion species, in units of the flow scale t0.

enter into the χ2 function that is minimized for the fit. We do not include correlations with the

flow scale t0, which has negligible error compared to the other quantities we extract.

The full NLO fit to 21 parameters and 172 − 21 = 151 degrees of freedom gives χ2/dof =

0.48. Table 5.1 contains the resulting values for the low-energy constants and demonstrates the

presence of important lattice artifacts in our data. For the masses, the most significant terms are

the O (m̂râ) artifacts, in the same representation. For the decay constants, the O (â) artifacts are

also significant. From an empirical perspective, these four NLO Wilson terms form a necessary

minimal set of artifact terms for modeling the data.

Figures 5.3 and 5.4 illustrate the sizes of the Wilson artifacts (red) emerging from this fit.

In these figures, the “corrected” data (dark blue) result from subtracting the lattice artifacts from

the data (light blue), allowing us to extrapolate to the continuum limit, â → 0. The corrected

data follow fairly well the tree-level formula for the pseudoscalar masses and the continuum NLO

result for the decay constants, respectively, both indicated by green bands. The bands represent

one standard deviation (1σ) in the fit parameters.

In order to display a smooth curve for the continuum NLO result for the decay constants,

we have included only the same-representation terms when drawing the green band (indicated by

“continuum NLO SREP” in the figure). The remaining scatter and deviation in the subtracted
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LO: B̊4 2.4(2)

B̊6 2.7(1)

F̊4 0.114(7)

F̊6 0.17(1)

F̊ζ 0.16(2)

continuum NLO: LF44 3.4(5)
LF46 1.4(6)
LF64 0.3(4)
LF66 3.9(5)
LM44 0.1(7)
LM46 3.(1)
LM64 0.4(7)
LM66 0.5(7)

lattice NLO: W̊F
4 -0.055(6)

W̊F
6 -0.08(1)

W̊M
4 0.01(1)

W̊M
44 -1.9(3)

W̊M
46 -0.6(3)

W̊M
6 0.001(9)

W̊M
64 0.1(2)

W̊M
66 -2.5(4)

Table 5.1: Parameter values from a joint fit to the full NLO χPT formulae.

data (dark blue) is evidence of coupling between the representations.

Table 5.1 demonstrates that all five LO low-energy constants are well-determined by the NLO

fit. We note that the singlet decay constant F̊ζ is larger than F̊4 and similar in size to F̊6. Because

measurement of chiral logarithms is known to be a difficult task in QCD studies, we return to the

question of the stability of this result below.

Turning our attention to the NLO low-energy constants, we examine the communication

between the representations. The ratios LM46/L
M
44 and LF46/L

F
44 quantify the relative influence of

the sextet fermions on M̂2
P4 and F̂P4, respectively, in the continuum theory. Similarly, the ratio

W̊M
46 /W̊

M
44 measures the relative influence of the sextet artifact term compared to the fundamental

artifact term in M̂2
P4. Taking into account correlations, the following ratios are different from zero
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Figure 5.3: Breakdown of the contribution of lattice artifacts in the joint fit to χPT for the funda-
mental masses and decay constants.

at the 2σ level,

LF46/L
F
44 = +0.4(2), (5.20)

W̊M
46 /W̊

M
44 = +0.30(15). (5.21)

The converse influence of the fundamentals upon the sextets follows from exchanging (4� 6). The
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Figure 5.4: Breakdown of the contribution of lattice artifacts in the joint fit to χPT for the sextet
masses and decay constants.

ratios LM64/L
M
66 , LF64/L

F
66, and W̊M

64 /W̊
M
66 are all consistent with zero. Despite the large uncertainties,

these ratios suggest that the sextets influence the fundamentals significantly, while the converse is

not true. The same qualitative conclusion is also evident, for instance, in the NLO continuum

behavior of the decay constants. Figure 5.4 shows that subtracted data (dark blue) are, to good

approximation, a smooth function of m̂6 only. In contrast, the corresponding fundamental result
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in Fig. 5.3 (also in dark blue) exhibits a conspicuous jaggedness, indicating important dependence

on the sextet fermion mass.

5.2.2 Stability of the NLO Fit

In this subsection we explore the stability of the NLO fit. First, since our analysis uses

empirical priors to aid convergence of the non-linear fitting procedure, it is important to verify

that they did not bias our results. To this end, we have redone the fit using the results of the first

fit as initial guess, while multiplying the width of all priors by 10. Figure 5.5 shows the results

of both fits for the 5 LO low-energy constants in the two lines at the bottom. The results are

indistinguishable, indicating that the LO low-energy constants were not influenced by the priors.

The same is also true for the NLO low-energy constants.

The chiral fit provides a posteriori justification for the use of generic small mass power

counting, where O(a2) terms are not part of the LO Lagrangian. Both fermion masses in our

ensembles lie roughly in the range

0.02 . m̂r . 0.10 . (5.22)

The range of lattice spacings we explore is

0.4 . â2 . 1.1 . (5.23)

(Recall that Eq. (5.12) defines â2 = a2/t0 in our scale-setting procedure.) The O(mr) contribution

to the pseudoscalar masses is 2B̊rm̂r, while the O(a2) contribution is W̊M
r â2. For our fermion

masses and lattice spacings, these contributions lie approximately within the following ranges

2B̊rm̂r : 5× [0.02, 0.1] ≈ [0.1, 0.5] , (5.24)

W̊M
r â2 : 0.01× [0.4, 1.1] ≈ [0.004, 0.01] . (5.25)

We see that the O(mr) terms are at least an order of magnitude larger than the O(a2) terms,

showing that the generic small mass power counting is appropriate (as long as this picture is not

upset by large N2LO corrections, see below).
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Figure 5.5: Exploring the stability of leading-order LECs in chiral fits. We take the NLO result to
define our central values, which appear at the bottom of each column. The variations are described
in the text.

Measurement of the LECs also provides information about the convergence of the chiral

expansion. With our convention for the decay constant, the expansion parameters of continuum

χPT are ξr ≡ 2B̊rm̂r/8π
2F̊ 2

r . With the central-fit values for the low-energy constants, these fermion

masses correspond to the following ranges for the expansion parameters,

0.09 . ξ4 . 0.50 , (5.26)

0.04 . ξ6 . 0.20 . (5.27)

We see that the the maximum of the sextet expansion parameter ξ6 is smaller by a factor of 2.5

than the fundamental expansion parameter ξ4. The main reason is that F̊6 is significantly larger

than F̊4, as might be expected based on the relative dimension of the two representations.

It is quite plausible that ξ6 is sufficiently small that the expansion in m6 converges well over
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our entire ensemble set. The same may not be true for ξ4, whose value can be as large as 0.5. In

the next three lines of Fig. 5.5 we study the influence on the LO low-energy constants of dropping

ensembles at the high end of the m̂4 range: m̂4 > 0.09, > 0.07, and finally > 0.05. We see that

truncating our data set has only a modest effect on the F̊r and B̊r parameters. On the other hand,

since we only obtain F̊ζ through NLO logarithms, it is not surprising that the increase in the error

of F̊ζ is much more pronounced. Indeed, when we restrict to m̂4 < 0.05, F̊ζ is only two standard

deviations (2σ) away from zero.

The next two lines in Fig. 5.5 investigate the possible influence of finite-volume effects on our

central analysis; a more thorough technical discussion appears in Ref. [10]. The minimum cutoff

on MPL in data used in the central fit is varied from its initial value of 4.0 in our main analysis to

4.5 and 5.0, excluding more data than would be expected to have the largest finite-volume effect

contamination. Finally, in the top line we repeat our fit with all V = 163 × 18 ensembles excluded

from the analysis, in order to test for systematic effects in our correlator analysis due to the smaller

time extent. No significant change to our results appears in any case.

The main systematic uncertainty about this non-QCD system is the neglect of N2LO cor-

rections. We do not really know how high can we go in ξ4 and ξ6 if we want these corrections to

remain below a certain level. While our stability tests give us some insight, we do not have enough

data for a quantitative study of N2LO. Nevertheless, we take the smallness of ξ6 and our stability

tests on m̂4 as evidence that the data are in the regime where NLO χPT applies, even if we do not

have enough information to quantify the corresponding systematic error.

5.2.3 The Flavor-Singlet Goldstone Boson

As explained in Sec. 5.1.3, the chiral fit in the fundamental and sextet sectors allows us to

probe the flavor-singlet ζ meson as well. We examine its mass in the chiral-sextet limit, m̂6 → 0.

Figure 5.6 shows M̂2
ζ , constructed using Eq. (5.18) and the parameters of the central fit, in the

continuum (â → 0) limit, as a function of the mass m̂4 of the fundamental fermions. The figure

shows that the flavor-singlet boson is consistently lighter than the pseudoscalar of the fundamental
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Figure 5.6: Mass squared M̂2
ζ of the non-anomalous Goldstone boson in the combined continuum

(â → 0) and chiral-sextet (m̂6 → 0) limits, as extracted using Eq. (5.18) and the central fit’s
parameters, plotted against m̂4. The pseudoscalar mass M̂2

4 in the fundamental sector in the same
limit is shown for comparison.

sector in this limit.

We can make a conservative prediction regarding the ζ mass as follows. As we have just

explained, we do not know how large m̂4 can be while keeping the N2LO corrections below, say,

10% or 20%. Lowering the maximal value of m̂4 raises the uncertainty in F̊ζ , as seen in Fig. 5.5.

Still, even if we lower the maximal value of m̂4 so as to, say, double the uncertainty of F̊ζ , we would

still find that M2
ζ < M2

4 at the level of one standard deviation (1σ).

The chiral-sextet limit is interesting for composite-Higgs models. In many models, including

those proposed by Ferretti and Karateev [77], the symmetries of the Standard Model are embedded

into the unbroken global symmetries, so that neither the fundamental nor the sextet fermions are

required to be strictly massless. Nonetheless, successful models are likely to have very light sextet

fermions, because a large sextet mass would prevent the Higgs field from condensing even after the
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Figure 5.7: Vector masses vs fermion masses in units of the flow scale t0.

generation of a potential from the coupling of the Higgs to Standard Model fields.

5.3 Vector Mesons

5.3.1 Masses and Decay Constants

We now turn to our results for vector masses and decay constants. Vector-meson decay

constants appear in the literature with a variety of conventions. We define FV r to have units of

energy,

〈
0
∣∣V (r)
ia

∣∣V (r)
jb

〉
= δabδijFV rMV r , (5.28)

where the vector meson is at rest. The indices are i, j = 1, 2, 3, for the spatial directions, and as

usual, a, b = 1, 2, 3, for isospin. This definition is frequently used in the phenomenology literature

on precision electroweak observables, for example Ref. [123].

Figures 5.7 and 5.8 show results for M̂V r and F̂V r, respectively, each plotted against the

fermion mass m̂r in the same representation. As before, we measure all quantities in units of t0.

The data for these figures are listed in Tables D.10–D.12. Both quantities shows a modest, plausibly

linear rise against the fermion mass, albeit with a large spread.
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Figure 5.8: Vector decay constants vs fermion masses in units of the flow scale t0.
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Figure 5.9: The mass ratio MPr/MV r in a fixed representation.

Figure 5.9 shows the ratio of the pseudoscalar and vector masses, MPr/MV r, again plotted

against the fermion mass m̂r in the same representation. This ratio is greater than or equal to one

half for all but the smallest masses. Because the decay V → PP is p-wave, the vector is stable

if MP /MV > 0.5
√

1− 4k2
min/M

2
V , where kmin = 2π/L is the minimum nonzero momentum. This

condition is satisfied for both representations on all of our ensembles, so the vectors are indeed

stable.
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Figure 5.10: Breakdown of the contribution of lattice artifacts in the empirical models for the vector
masses and decay constants in the fundamental representation.

We model M̂V r and F̂V r as linear functions of the fermion mass in the same representation

and of the lattice spacing, for example,

M̂V 4 = c0 + c1m̂4 + c2â . (5.29)

For this analysis, we restrict ourselves to the 30 ensembles for which we were able to measure the
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Figure 5.11: Breakdown of the contribution of lattice artifacts in the empirical models for the vector
masses and decay constants in the sextet representation.

vector decay constants (see Tables D.10—D.12). The individual correlated fits are successful, with

typical χ2/DOF . 1.0 for 30 − 3 = 27 degrees of freedom. Figures 5.10 and 5.11 illustrate the

contribution of lattice artifacts to these fits in the same manner as for the pseudoscalars above; the

green bands represent the linear continuum terms in each fit.



70

0.00 0.02 0.04 0.06 0.08 0.10 0.12
mr

√
t0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

F
V
r
/F

P
r

Fundamental
Sextet

Figure 5.12: The ratio of the vector and pseudoscalar decay constants in each representation. The
KSRF prediction is a constant value of

√
2.

5.3.2 Vector Meson Dominance and the KSRF Relations

The pseudoscalar and vector decay constants are related through the hypothesis of vector

meson dominance (VMD). Kawarabayashi, Suzuki, Riazuddin, and Fayyazuddin (KSRF) showed

long ago [104, 126, 100] that VMD leads to the prediction

FV =
√

2FP , (5.30)

independent of representation. Figure 5.12 shows the ratio FV r/FPr in each representation, after

subtracting lattice artifacts. The KSRF prediction is qualitatively successful. For comparison, the

experimental value is roughly 1.66 in QCD.

Another result of KSRF is that the on-shell coupling constant gVPP mediating the decay of

a vector into two pseudoscalars is given by

gV PP =
MV

FP
. (5.31)
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Figure 5.13: The ratio of the vector mass and pseudoscalar decay constant in a fixed representation.
KSRF identify this quantity with the coupling gVPP. In QCD, this ratio is roughly 5.9.

We plot this ratio in Fig. 5.13. As already noted, in our ensembles the vector meson is stable.

Nevertheless, we may use the KSRF result as a phenomenological estimate for the behavior close

to the chiral limit. Using the tree-level formula for the V → PP decay width in the limit where

MPr �MV r,

ΓV→PP '
g2
VPPMV

48π
, (5.32)

we can estimate the the mass-to-width ratio for each vector resonance,

ΓV→PP
MV

'
M2
V

48πF 2
P

. (5.33)

From Fig. 5.13 we thus obtain Fig. 5.14. For the physical ρ meson, this ratio has a value of roughly

0.23. (The experimental value is 0.19.)
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Figure 5.14: Tree-level estimates for the width-to-mass ratio of the vector mesons according to
KSRF. The KSRF estimate for this ratio is roughly 0.23 in QCD.

5.4 Summary of Meson Results

Our analysis of the meson spectrum focused on the masses of the pseudoscalar and vector

states and their associated decay constants. Using chiral perturbation theory (and its extension to

include discretization errors from Wilson fermions), we carried a global analysis of the pseudoscalar

masses and decay constants of the two representations. This EFT analysis employed next-to-leading

order formulae in the generic small mass power-counting scheme. We found significant lattice

artifacts, which we were able to subtract, obtaining predictions in the joint chiral-continuum limit.

Our fit provided mild evidence for coupling between the two fermion representations, a novel feature

of multirep theories.

Our lattice formulation in terms of Wilson fermions explicitly breaks the global symmetries

according to the expected patterns: SU(2)L × SU(2)R → SU(2)V in the fundamental sector, and

SU(4)→ SO(4) in the sextet sector. We did not carry out a dedicated study of alternative symmetry

breaking patterns. Nevertheless, the success of the chiral fits provides some confirmation that the

above symmetry breaking patterns are the right ones.
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The main theoretical uncertainty of our chiral fits concerns the size of N2LO effects. Thanks

to a large decay constant, the chiral expansion converges quickly in the sextet sector, supporting

the hypothesis that N2LO effects are small in this sector. In the fundamental sector the chiral

expansion converges more slowly. Hence, keeping N2LO effects below a certain comfortable level

might require the exclusion of ensembles where m̂4 is on the high side. Our data do not allow more

quantitative statements.

We computed correlation functions of the the pseudoscalar states made purely of fundamental

fermions or purely of sextet fermions. The fact that we measure these states directly is reflected in

the stability of the LO parameters F̊r and B̊r under different cuts on the maximal value of m̂4. In

contrast, our measurement of the final LO parameter, the decay constant F̊ζ of the flavor-singlet

Goldstone boson, was indirect because we did not calculate propagators in the ζ channel. However,

the ζ meson does contribute through virtual loops to the correlations functions we did study. More

precisely, the EFT predicts contributions from NLO logarithmic terms in our fit functions. As a

result of this indirect role played by the ζ, both its decay constant and the reconstructed prediction

for its mass were more sensitive to cuts on m̂4. Nevertheless, we argued that the ζ is lighter than the

fundamental-sector Goldstone bosons (Mζ < M4) in the sextet-chiral limit (m̂6 → 0). This limit is

interesting for the phenomenology of Ferretti’s model, where the Higgs boson begins as an exactly

massless sextet Goldstone boson before coupling to the Standard Model. In a full composite-Higgs

model, however, the masses of all pseudoscalar states can receive important corrections from the

couplings to Standard Model fields.

In modeling our results for the vector mesons, we found that the ratio of pseudoscalar to vector

decay constants agrees well with the KSRF result based on vector meson dominance. Comparing

the KSRF prediction for the decay rate of the vector meson in the chiral limit to the QCD case

shows reasonable agreement with large-Nc counting.

Although our estimates for the decay width ΓV /MV depend on the well-motivated but

non-rigorous assumption of vector meson dominance, the resulting narrowness is almost certainly

generic. In large-Nc, the widths of mesons made of fundamental-representation fermions scales
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as 1/
√
Nc and thus become narrower as Nc increases. Insofar as large-Nc provides the cleanest

explanation for the narrowness and existence of mesons in QCD, the vector mesons should become

narrower in theories with more colors. We proposed that in multirep theories, the generalization of

√
Nc is (dim r)1/2, a hypothesis supported by our data. This result is good news for phenomenol-

ogists looking to constrain models like the Ferretti model, since narrower states typically provide

clearer signals in collider data.



Chapter 6

The Baryon Spectrum

6.1 Overview

In the context of the Ferretti composite Higgs model, knowing the spectrum of baryon states

allows for concrete predictions about their future discovery potential in LHC searches. One baryon

state, made up of valence fermions from both the 4 and 6 representations, is of particular interest.

In the model it carries the same Standard Model quantum numbers as the top quark, and in fact

serves as a top partner. As a top partner, it plays a crucial role in the generation of the Higgs

potential and of the top-quark mass itself. We refer to these bound states as “chimera” baryons,

due to their mixed composition.

Aside from phenomenology beyond the Standard Model, this system offers a rich testing

ground for a generalized version of the familiar quark model description of hadronic physics, con-

taining baryons with different expected behavior in the large-Nc limit. Since baryons in QCD

only contain quarks in a single representation, the chimera states are particularly novel from a

quark-model perspective.

Our analysis will spend more time on models than is common in modern QCD simulations.

The present work is an exploratory study of a new system with many baryon states, and it is

useful to have an organizing principle to present them. It is also useful to be able to compare the

spectroscopy of this system to that of real-world QCD. Models are a good way to do that. The

models may also be useful in phenomenology of this and similar theories.

Baryon correlation functions are noisy, so the present study uses only a subset of our full
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min max

t0/a
2 1.06 2.67

MP4/MV 4 0.55 0.79
MP6/MV 6 0.47 0.73
Mp4L 4.23 8.16
Mp6L 4.03 8.91

Table 6.1: Summary of basic physical properties of the ensembles used in this study.

data set, focusing on a dozen ensembles with sufficient statistics to achieve reliable measurements

of the baryon spectrum. In lieu of repeating the technical details, we summarize some features of

these ensembles in Table 6.1.

All the ensembles in the present analysis have volume V = 163 × 32. In the meson study, we

estimated the finite volume effects for mesons and concluded that they were at the level of a few

percent [10]. Baryons, of course, are a different story, because their sizes are expected to be larger

than those of mesons. Still, the pseudoscalar decay constants in the SU(4) gauge theory are larger

than those of SU(3) and, since finite volume corrections from pion loops are proportional to 1/F 2
P ,

we expect that they are smaller than in SU(3) (see Ref. [10] for a discussion). Sec. 6.6 presents a

preliminary estimate of finite-volume effects in our analysis.

Tables containing the various measured quantities have been collected together in Appendix D.

6.2 Baryons in SU(4) with Two Representations

The spectrum of the lightest s-wave baryons in this theory consists of three classes of states

with differing valence fermion content: fundamental-only baryons, sextet-only baryons, and mixed-

representation baryons. Fundamental-only baryons contain four valence fermions and have nonzero

U(1)B. We shall denote these bosonic states as q4 states. Sextet-only baryons contain six valence

fermions and we will denote these bosons as Q6 states. No unique definition of baryon number exists

for these pure-sextet objects, although one can single out one of the unbroken SO(4) generators

and call it a baryon number. In practice we shall only discuss the Q6 states with color indices

contracted against the Levi-Civita symbol of SO(6), as in Ref. [62]. [We remind the reader that
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the defining representation of SO(6) is isomorphic to the 6 of SU(4).] Finally, the color-singlet

combination of two fundamentals with a single sextet fermion gives a mixed-representation baryon

containing three fermions. We shall denote these fermionic states as Qqq states and refer to them

as chimera baryons.

The lightest Qqq chimera baryons are expected to be stable under strong decay, due to

conservation of fundamental baryon number U(1)B. The q4 baryons can decay into a pair of

chimeras, and a q4 baryon will be stable only if it is sufficiently light. Because the 6 of SU(4) is

a real representation, di-fermion QQ states live in the same multiplets with fermion-antifermion

QQ states; the same applies to the four-fermion states QQQQ, QQQQ, etc. The Q6 states are

unstable against decay into three QQ particles, which include in particular some of the states in

the Goldstone multiplet of SU(4)→ SO(4) symmetry breaking [62].

Mixed-representation baryons represent a new sort of baryon, but the relevant interpolating

fields are closely related to those of the QCD hyperons containing a single strange quark (i.e., Σ∗,

Σ, and Λ), with the lone sextet fermion playing the role of the strange quark. From a compu-

tational perspective, the only new feature is the presence of an additional color SU(4) index for

the sextet fermion; details appear in Appendix C. As in QCD, these mixed-representation baryons

are classified according to their total spin J and the isospin I of the qq pair; the three possible

states are identified as Σ?, (J, I) = (3/2, 1); Σ, (J, I) = (1/2, 1); and Λ, (J, I) = (1/2, 0). Total

antisymmetry of the operator under exchange of identical fermions forbids a spin-3/2 isosinglet

state. The chimera analogue of the Λ is of particular phenomenological interest, since it plays the

role of a partner for the top quark in Ferretti’s model. More information relating to its role as the

top partner appears below.

6.3 Continuum Large-Nc Expectations

The properties of both q4 and Q6 baryons have been studied in the continuum (a partial list

of references are Refs. [145, 146, 50, 51, 97, 49, 31]) and on the lattice (in quenched simulations

and in ones with a single representation of dynamical fermion—see Refs. [55, 56, 39, 8, 62]). These
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states form multiplets in which angular momentum and isospin (flavor) are locked together, I =

J = 0, 1, . . . N/2 where N = 4 or 6 for the q4 and Q6 states. For the q4 states, this is an aspect of

the “contracted SU(2Nc)” symmetry of large-Nc baryons [85, 84, 52, 118].

Large-Nc predicts that masses of single-representation baryons, which are classified according

to their total spin J , should follow a rotor formula. Mass formulas through O(1/Nc) for these

baryons are given in Refs. [2, 96, 35]:

MB = dimrM
(0)
r +M (1)

r +Brr
J(J + 1)

dimr
(6.1)

=


4M

(0)
4 +M

(1)
4 +B44

J(J+1)
4 , for q4

6M
(0)
6 +M

(1)
6 +B66

J(J+1)
6 , for Q6,

(6.2)

where the dimensions of the representations are dimr = Nc for the fundamental and dimr =

Nc(Nc− 1)/2 for the two-index antisymmetric representation. In these expressions, the bulk of the

mass of the baryons comes from the leading-order constituent mass term proportional to dimr. Sub-

leading corrections appear in the term M
(1)
r and the rotor splitting Brr. Because the Nc-dependence

has been made explicit, no a priori hierarchy is assumed to exist among the parameters M
(0)
r , M

(1)
r

and Brr.

Large-Nc together with arguments involving spin-flavor symmetry furnish further predictions

for mixed-representation baryons [51]. The key insight is that mixed-representation baryons can be

classified according to the (unbroken) flavor symmetry of the fundamental fermions, SU(2)I×U(1)B.

With this symmetry, it can be shown that

MQqq = 2M̃
(0)
4 + M̃

(0)
6 + M̃

(1)
mix + B̃46

J(J + 1)√
24

+

(
B̃44

4
− B̃46√

24

)
I(I + 1). (6.3)

Several comments are in order. First, writing down Eqs. (6.1) and (6.3) required no model

assumptions beyond large-Nc counting. The factors of 4 and 6 are conventional. Second, the

tildes in Eq. (6.3) remind us that, from the perspective of large-Nc, the expansion parameters of

the single-representation baryons are completely unrelated to those of the mixed-representation

baryons. The raw lattice data will soon demonstrate, however, that there is good reason to believe
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that they are in fact related (e.g., B̃44 ' B44). Third, each of the parameters above is implicitly a

function of the fermion masses m4 and m6.

6.4 Baryon Masses on the Lattice

Motivated by the general arguments above, we now turn to models for describing our lattice

data. As with the meson spectrum, we express all quantities in units of the gradient-flow length

scale
√
t0 [115]. Consistent with previous notation, the use of a hat distinguishes these quantities

from the corresponding values in lattice units, e.g., M̂B ≡ (MB a)(
√
t0/a).

Our simulations are performed across a wide spread of lattice spacings, allowing us to model

and remove lattice artifacts. We expect that the leading-order lattice correction to dimensionless

ratios will be linear in the lattice spacing, for instance,

(Ma)

(√
t0
a

)
= M

√
t0 +O(a) + · · · . (6.4)

For each individual baryon mass, one therefore supposes that

M̂B = M̂0
B +AB â+ · · · , (6.5)

where M̂0
B is the continuum limit value and AB is an artifact coefficient. Eq. (6.5) does not yet

include any explicit dependence on the input fermion masses. One could consider a simple linear

dependence on the valence fermion mass m̂v (for the q4 or Q6 states),

M̂B = M̂0
B + M̂1

Bm̂v +AB â, (6.6)

or perhaps on both valence and sea masses,

M̂B = M̂0
B + M̂1

Bm̂v + M̂2
b m̂s +AB â. (6.7)

In a fit of this form, one would expect M̂1
b > M̂2

b , reflecting the fact that the baryon mass depends

predominantly on the valence fermion mass.

One could also consider a more complex model based on Eq. (6.1), in which all the coefficients

have their own lattice artifacts (B̂rr = B̂0
rr + B̂1

rrâ, for example). In practice, we find that a single
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artifact term reproduces all the spectroscopy in a multiplet. Our model for the lattice baryon

spectrum is hence

M̂Q6 = 6 [C6 + C66m̂6] +
B66

6
J(J + 1) +A6â, (6.8)

M̂q4 = 4 [C4 + C44m̂4] +
B44

4
J(J + 1) +A4â, (6.9)

M̂Qqq = 2 [C4 + C44m̂4] + [C6 + C66m̂6] + Cmix +Amixâ

+B46
J(J + 1)√

24
+

(
B44

4
− B46√

24

)
I(I + 1). (6.10)

The constants proportional to â are the explicit lattice artifact terms.

It is also worth noting that independent of any fitting, the compatibility of the rotor formula

(6.1) with our baryon mass results can be tested across fermion mass values with an analog of the

Landé interval rule: ratios of differences (MB(J1)−MB(J2))/(MB(J3)−MB(J4)) should be pure

numbers, depending only on the J ’s. We will present such a test below as a check on our more

elaborate results based on fitting.

The parameters of the lattice models above are related to those of the original large-Nc

formulas according to the following relations:

M̃
(0)
4 = M

(0)
4 +M

(1)
4 /4 = C4 + C44m̂4, (6.11)

M̃
(0)
6 = M

(0)
6 +M

(1)
6 /6 = C6 + C66m̂6, (6.12)

Cmix = M̃
(1)
mix −M

(1)
4 /4−M (1)

6 /6. (6.13)

This redefinition is desirable from a numerical perspective, since the original large-Nc formulas

contain more independent parameters than can be distinguished by data at a single value of Nc.

Since the three multiplets of states furnish three linear relations among the constituent masses,

a fit can only distinguish between three independent linear combinations of the constituent mass

parameters.
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Figure 6.1: Lattice data for the baryon mass spectrum M̂B. The horizontal positions contain
small offsets to reduce overlap and aid readability.

6.5 Spectrum Results

The tables containing the measured values for the baryons have been collected together in

Appendix D. The figures in this section summarize the content of the tables. Figure 6.1 shows

the measured spectrum of baryon masses. Masses of single-representation baryons M̂r are plotted

as functions of the corresponding AWI fermion mass m̂r. The chimera baryons are plotted as a

function of m̂4, although one expects some dependence on m̂6 as well. The baryon masses all

increase with fermion mass, but no clear functional dependence is conspicuous. As in our meson

study, lattice artifacts—which we shall model and remove—obscure the underlying linear nature

of our data. To motivate the forthcoming analysis in Sec. 6.6, we first consider evidence for the

models which exists before fitting.

According to the large-Nc model of Eq. (6.1), ratios of baryon mass differences for the q4 or

Q6 states are parameter-free functions of the spins. In particular, the parameter Brr only controls
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Figure 6.2: Mass splittings between baryons in the fundamental (left) and sextet (right) represen-
tations. The lines indicate the expected J(J + 1) behavior.

the overall size of the splittings. Figure 6.2 shows mass differences among the single-representation

baryons, with errors on the differences from a jackknife. The dotted lines are the expected values

from J(J + 1) splittings. The rotor behavior is clearly evident in the raw data.

For single-representation baryons, the mass of the J = 0 state furnishes estimates for the

individual constituent masses. The constituent mass of a chimera baryon is therefore nearly

M̂Qqq,constituent '
M̂

(J=0)
q4

2
+
M̂

(J=0)
Q6

6
. (6.14)

On the other hand, one can use Eq. (6.3) to eliminate the splitting terms in favor of the spin inde-

pendent contribution by averaging the chimera baryon masses together with appropriate weights,

M̂Qqq,constituent '
(

2M̂
(J,I)=(3/2,1)
Qqq + M̂

(J,I)=(1/2,1)
Qqq + M̂

(J,I)=(1/2,0)
Qqq

)
/4. (6.15)

Figure 6.3 shows these two raw-data estimates for the total constituent mass of the chimera baryons

plotted against each other, with errors from a jackknife. The line indicates equality, as predicted

by the large-Nc model. The impressive agreement of the two estimates suggests that the chimera

baryons should be modeled together with the single-representation baryons.
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Figure 6.3: Estimates for the total constituent mass of the chimera baryons from the chimeras
themselves (vertical axis) again the estimates from single-representation baryons (horizontal axis).
The line indicates the expectation that the two independent estimates agree.

Finally, we examine the strength of the splitting terms. Equation (6.10) says that

B44 =
2

3

(
2M̂

(J,I)=(3/2,1)
Qqq + M̂

(J,I)=(1/2,1)
Qqq − 3M̂

(J,I)=(1/2,0)
Qqq

)
, (6.16)

B46 =

√
24

3

(
M̂

(J,I)=(3/2,1)
Qqq − M̂ (J,I)=(1/2,1)

Qqq

)
. (6.17)

Likewise, the single representation formulas (6.8) and (6.9) say that

B44 =
2

3

(
M̂

(J=2)
q4

− M̂ (J=0)
Q6

)
, (6.18)

B66 =
1

2

(
M̂

(J=3)
Q6 − M̂ (J=0)

Q6

)
. (6.19)

Figure 6.4 shows these estimates for the rotor splitting coefficients B, displayed as functions of m̂4

(m̂6) in the left (right) pane, with errors from a jackknife.

Physically-motivated models of baryons predict different mass dependence for the splitting

coefficients. For instance, if the J(J + 1) term arises from rigid rotation (e.g., of a skyrmion), the

coefficient should scale inversely with the mass of the baryon [2]. In non-relativistic quark models,

the splittings arise from a color hyperfine interaction and (in analogy with the familiar hyperfine
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Figure 6.4: Estimates of the splitting coefficients B44, B66, and B46 on each ensemble as functions
of m̂4 (left) and m̂6 (right). The horizontal positions contain small offsets to reduce overlap and
aid readability.

interaction of atomic physics) scale inversely with the square of the constituent quark mass [53].

The raw data show considerable spread, and no particular functional dependence is evident for

any of the B coefficients in either pane. The models (6.8), (6.9), and (6.10) therefore treat the

B coefficients as constants. It is worth noting that the two independent estimates of B44 from

the fundamental baryons (squares) and from the chimera baryons (stars) are consistent within the

uncertainty of the data.

Another feature of Fig. 6.4 is the large value ofB46 compared to the other splitting coefficients.

This is easily understood in a model where the spin splittings are due to one-gluon exchange, that is,

Vij ∝ CijSi ·Sj where Cij is a color factor and Si is the spin of constituent i. The appropriate color

factors are Cqq = 5/8 for the q4 baryons (and for the qq diquark in the Qqq baryon), CQQ = 1/2

for the Q6 baryons, and CQq = 5/4 for the mixed interaction chimeras. In other words, one

expects B46/B44 ∼ CQq/Cqq and B46/B66 ∼ CQq/CQQ. This expectation is in agreement with the

qualitative behavior of Fig. 6.4, which suggests that B46 is roughly twice as large as B44 or B66.
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6.6 Fitting Mass and Lattice-Spacing Dependence

We now present fit results modeling the dependence of our baryons on the fermion masses and

lattice spacing. To justify the assumption that lattice artifacts are proportional to â in our general

model, we begin by conducting a simple linear fit following Eq. (6.5) for each state individually

in the fundamental and sextet multiplets. Figure 6.5 shows the result of these fits, which are in

excellent agreement with the data. The parameter corresponding to the artifact is approximately

the same for all the states within a given multiplet, giving support to the models of Eqs. (6.8)–

(6.10). The case for the chimera baryons is similar, using Eq. (6.6) which is linear in both m̂4 and

m̂6.

Based on the success of these simple fits, we proceed to a simultaneous global fit. Using

Eqs. (6.8)–(6.10), we simultaneously model all 10 baryon masses on 12 ensembles. Single-elimination
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Figure 6.6: Results from the joint correlated fit of all baryon data to Eqs. (6.8), (6.9), and (6.10).
The data (solid marker) correspond well to the fit (open marker) at each point. The errors bars
of the open markers are those of the fit. The horizontal positions contain small offsets to reduce
overlap and aid readability.

jackknife furnishes errors and correlations among the masses. The model used contains 11 free

parameters, leaving 120− 11 = 109 degrees of freedom. The resulting fit is good, with χ2/DOF '

93/109 = 0.85. Figure 6.6 shows the data with the fit overlaid.

Figure 6.7 shows the same fit result after subtracting the lattice artifacts (proportional to

â) from each state. In this figure, the sextet baryons are plotted as functions of m̂6, while the

fundamental baryons are plotted as functions of m̂4. Because the masses of the chimera baryons are

joint functions of the fermion mass in both representations, they are plotted against the combination

(2C44m̂4 + C66m̂6)/6. The fit formula is linear in this combination. (The factor of 6 is arbitrary

and chosen to give the independent variable a similar range to m̂4 and m̂6.) The underlying linear

behavior for all the baryons is now clearly visible.

In general, one expects the masses of the single-representation baryons to depend predomi-

nantly on the mass of the valence fermions in the same representation and only weakly on the sea
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Figure 6.7: Results from the joint correlated fit of all baryon data to Eqs. (6.8)–(6.10). The left
pane shows continuum masses obtained by subtracting the lattice artifact from the data. The right
pane shows the corresponding fit, with the lattice artifact term removed. The horizontal positions
contain small offsets to reduce overlap and aid readability.

fermions in the other representation. The analogy in QCD is the mass of the proton, which also

receives virtual contributions from strange quarks. The fact that our models produce a good fit

while neglecting these effects suggests that they are small, although we expect their existence as

a matter of principle. Repeating the fits including sea dependence did not produce any important

changes in the results.

As a preliminary estimate of finite-volume effects, we repeated the above fitting analysis

keeping only ensembles with MPL > (4.25, 4.5, 4.75, 5.0). All qualitative features of the spectrum—

the ordering, the rotor splitting, and general placement of the states—were stable against these

variations. Quantitatively, the fit parameters were unchanged at the level of roughly one standard

deviation. Because the focus of the present analysis of baryons is largely qualitative in nature, we

leave a more systematic study of these effects for future work.

6.7 Physical Limits

The fit results of the previous section are most interesting in two limits: the m̂6 → 0 chiral

limit and the double limit m̂4, m̂6 → 0. The former limit is important in Ferretti’s model, where
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Figure 6.8: The baryon spectrum in the m̂6 → 0 limit.

the Higgs boson arises (before perturbative coupling to the Standard Model) as an exactly massless

sextet Goldstone boson. Figure 6.8 shows the baryon spectrum in the m̂6 → 0 limit, displayed as

a function of the fundamental fermion mass. By construction, the masses of the sextet baryons

are independent of m̂4. Likewise, the masses of fundamental and chimera baryons are linear in

the fundamental fermion mass. The lightest baryons in the spectrum are the nearly-degenerate

J = 1/2 chimera baryons, the analogues of the Σ and Λ in QCD. Regarding these two states, it is

interesting to note that we observe an inverted multiplet MΛ & MΣ with respect to the ordering

in QCD, where MΣ > MΛ. This ordering is present in the raw lattice data on all the ensembles we

considered. Using a non-relativistic quark model as a guide, one would also expect this inversion

to occur in QCD if the strange quark were lighter than the up and down quarks.

The spectrum in the double chiral limit (m̂4, m̂6 → 0) corresponds to the vertical axis in

Fig. 6.8. For convenience, Table 6.2 also records numerical values for the spectrum in the double

chiral limit, both in units of the gradient-flow scale
√
t0 and in units of the sextet pseudoscalar

decay constant, which we determined in our previous study of the meson spectrum.
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MB
√
t0 MB/F6

Fundamental vector meson 0.74(3) 4.2(3)
Sextet vector meson 0.80(3) 4.6(3)

Chimera (J, I) = (1/2, 0) 1.08(4) 6.4(4)
Chimera (J, I) = (1/2, 1) 1.05(4) 6.2(4)
Chimera (J, I) = (3/2, 1) 1.21(4) 7.1(5)
Fundamental (J = 0) 1.60(7) 9.4(7)
Fundamental (J = 1) 1.63(7) 9.6(7)
Fundamental (J = 2) 1.71(7) 10.1(7)
Sextet (J = 0) 3.14(8) 18(1)
Sextet (J = 1) 3.19(8) 19(1)
Sextet (J = 2) 3.29(8) 19(1)
Sextet (J = 3) 3.44(8) 20(1)

Table 6.2: The baryon spectrum in the double chiral limit (m̂4, m̂6 → 0) in units of the flow
scale

√
t0 and of the sextet pseudoscalar decay constant F6. For comparison, the masses of the

fundamental and sextet vector mesons in this limit are also included. Mesonic quantities were
determined in [10].

6.8 Scalar Matrix Elements

We can repurpose our calculations of the mass dependence of the baryons to extract the

scalar matrix element 〈B| ψ̄ψ |B〉 using the Feynman-Hellmann theorem [101]. In the context of

composite dark matter models, this matrix element determines the coupling of the Higgs boson to

the dark matter and is thus required to calculate the cross section for dark matter direct detection.

(For a review of composite dark matter models, see Ref. [108].) Following Ref. [8], we define the

quantity fBr for the lowest-lying baryon in each representation r:

fBr ≡
m̂r

M̂r

∂M̂r

∂m̂r
=
mr

Mr
〈B| ψ̄ψ |B〉 , (6.20)

The dimensionless factor m̂r/M̂r serves to cancel the dependence on the renormalization prescrip-

tion of ψ̄ψ in this expression. We expect fBr to be equal to zero in the chiral limit, and to approach

unity in the heavy fermion (m̂r →∞) limit.

Figure 6.9 shows our results for fBr in the fundamental and sextet representations, displayed

as functions of the pseudoscalar-to-vector mass ratios on each ensemble. Only the values for the

lightest state in each representation are shown; the heavier states are similar. We note that, in the
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Figure 6.9: Baryon matrix elements of the scalar density, defined via Eq. (6.20). Only the lightest
state in each representation is shown; the heavier states are similar. The mesonic quantities were
determined in [10].

Ferretti model, none of these baryon states plays the role of a dark matter candidate because of

the precise Standard Model charge assignments of the model. However, it is interesting that the

values for fBr for the fundamental and sextet baryons resemble results seen previously in a number

of different gauge theories (in particular, see Fig. 4 of Ref. [57]). The values of both rescaled matrix

elements for the chimera baryon come out significantly larger.

6.9 Summary of Baryon Results

This chapter has described the baryon spectrum of SU(4) gauge theory coupled to dynamical

fermions in the 4 and 6 representations. The baryon spectrum of this theory contains three classes

of baryons with differing valence fermion content: fundamental-only baryons, sextet-only baryons,

and mixed-representation baryons. Our analysis began by considering raw lattice results for the

baryon masses to motivate a joint model based on large-Nc counting. The important features

of this model—a J(J + 1) rotor behavior for splittings and shared set of constituent masses for
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fermions—were clearly visible even before fitting. The resulting fit was successful and identified a

significant lattice artifact proportional to the lattice spacing in each baryon multiplet.

After removing the lattice artifact, the baryon mass data show linear dependence on the

fermion mass. Presumably, a more careful analysis in the spirit of heavy baryon chiral perturbation

theory [98, 26] would predict non-analytic behavior similar to that of QCD. The precision of our

data does not allow us to test these predictions. Observing this behavior in QCD is notoriously

difficult, requiring very light fermions.

In Ferretti’s model, the Standard Model top quark mixes linearly with the analogue of the

Λ. This happens because the fundamental fermions carry SU(3)×SU(3)′ ⊃ SU(3)c flavor quantum

numbers and transform as a 3̄, while sextet fermions are uncharged under SU(3)c. The fundamental

fermions within the top partner are contracted anti-symmetrically to form a 3 of SU(3)c. Discarding

one of the three fundamental fermions as we did in this paper, we obtain a qq state, still anti-

symmetrized on its flavor index and hence an isospin singlet. Because the qq state is antisymmetric

on both its SU(4)-color and flavor indices, the spins must couple anti-symmetrically as well into a

Jqq = 0 state. Thus, the top partner is the analogue of the Λ hyperon in QCD.

The phenomenology of composite Higgs completions of the Standard Model is commonly

presented in terms of a ratio ξ = v2/F 2 where v is the Higgs vacuum expectation value (246 GeV),

and F is the relevant pseudoscalar decay constant. In the Ferretti model, F = F6/
√

2 where F6 is

the decay constant of the sextet Goldstone bosons. (The factor of
√

2 is due to our normalization

convention, which corresponds to Fπ ' 130 MeV in QCD.) In the absence of a direct detection of

new resonances, a discovery of new physics can come through a deviation of some observable from

its Standard Model value, which would point to a value of ξ and hence of F6. That would set the

scale for other hadronic observables in the new physics sector.

Table 6.2 gives the spectrum of light hadrons in our system in units of F6, and Fig. 6.10

shows the baryon and meson masses in the m6 → 0 limit as a function of the ratio (MP4/F6)2. The

mass ratio of Qqq baryons to vector mesons is quite similar to what is seen in QCD. The ratios

of all masses to F6 are smaller than in QCD, but that is something we have seen before, and is
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broadly consistent with large-Nc expectations.

Current experimental evidence suggests that ξ . 0.1 [22, 121, 1], which means that the scale of

the new strong sector is roughly F6 &
√

2v/
√

0.1 ' 1.1 TeV in our normalization. Figure 6.10 then

shows that the mass of the Λ analogue—the top partner in Ferretti’s model—must beMΛ & 6.5 TeV.

This estimate for the mass of the top partner will be modified by perturbative corrections from

interactions with the Standard Model. We expect these corrections to be small, just as perturbative

electromagnetic corrections to hadron masses are small in QCD. We note that the present analysis

has not attempted a detailed budgeting of systematic effects from the lattice computation itself.

Such effects include, of course, the slightly different fermion content of the model we studied in

comparison with the Ferretti model.

Although our results for the chimera mass indicate that it is somewhat heavier than assumed

in Ref. [75], it remains to be seen whether this leads to any significant phenomenological tension or

fine-tuning requirement. The most crucial role of the top partner is in the generation of a realistic

potential for the Higgs boson; we plan to investigate the top contribution to the Higgs potential

non-perturbatively in a future work. We are also planning a follow-up study of the decay matrix

elements of the chimera baryon, which will allow the calculation of its decay width; experimental

bounds on the top-partner mass typically assume a narrow width, and could be significantly weaker

for a wide resonance.
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Chapter 7

Conclusions and Outlook

This thesis has described lattice simulations of SU(4) gauge theory coupled to fermions in

multiple representations, the fundamental 4 and two-index antisymmetric 6. These “multirep”

simulations are the first of their kind to include the dynamics of multiple representations of fermions

(in four spacetime dimensions and without any notion of supersymmetry). The motivation for

studying this particular theory is twofold.

The first motivation is a theory of physics beyond the Standard Model which was recently

proposed in the literature. In this model, the Higgs boson is a composite particle, and the top

quark is a partially composite particle. To this end, we calculated the low-lying particle spectrum

of the theory, including both mesons and baryons. The main results are summarized neatly in

Figure 6.10, which displays a partial list of the new particle spectrum predicted in this multirep

model. As explained in Sec. 6.9, current experimental evidence constrains the new compositeness

scale to be roughly 1.1 TeV. Figure 6.10 therefore shows that the mass of the top partner must

be MΛ & 6.5 TeV. In principle, all of these particles are potential targets for existing and future

direct-detection experiments.

Second, theories of this sort represent a new direction in the study of gauge dynamics and

thus provide opportunities to test our understanding of strongly coupled physics. The main result

is that the spectrum of the theory is QCD-like. More precisely, a generalized quark model captures

the qualitative features of the spectrum, e.g., the ordering and placement of states. Quantitatively,

NLO chiral perturbation theory and a large-Nc model reproduce the results for the meson and
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baryon states, respectively. The malice of hindsight makes these results seem inevitable. However,

strongly coupled QFTs remain poorly understood, and these results may hint at an important

lesson for model builders: the spectrum of QCD—in terms of the quark model, large-Nc, and chiral

perturbation theory—is surprisingly generic. Engineering a qualitatively novel spectrum likely

requires new ingredients (e.g., near-conformal dynamics).

Looking ahead, many avenues exist for future work. We shall mention two such possibilities.

First, it remains interesting to determine the low-energy constants associated with the Higgs poten-

tial of Eq. (1.35). These constants determine whether electroweak symmetry breaking occurs. They

also furnish a theoretically preferred value for ξ, according to Eq. (1.37), which must otherwise be

inferred from experiment as an independent parameter. In other words, precise knowledge of these

low-energy constants would greatly improve the predictability of this and similar theories. Mea-

suring their values is the subject of ongoing work (see [67] for some preliminary efforts). Second,

our knowledge of the anomalous dimensions of baryon operators remains incomplete. Perturbative

results suggest that the anomalous dimensions remain small, certainly below the desired neighbor-

hood of γ ∼ 2 [64]. However, surprises could exists beyond perturbation theory. For enthusiasts

of partial compositeness, the lack of rigorous obstructions together with promising results from

holographic models would make it interesting to check.



Bibliography

[1] G. Aad et al. Constraints on new phenomena via Higgs boson couplings and invisible decays
with the ATLAS detector. JHEP, 11:206, 2015.

[2] G.S. Adkins, C.R. Nappi, and E. Witten. Static Properties of Nucleons in the Skyrme Model.
Nucl. Phys., B228:552, 1983.

[3] S.L. Adler. Axial vector vertex in spinor electrodynamics. Phys. Rev., 177:2426–2438, 1969.

[4] T. Alanne, N. Bizot, G. Cacciapaglia, and F. Sannino. Classification of NLO operators for
composite-Higgs models. arXiv:1801.05444.

[5] S. Aoki. Chiral perturbation theory with Wilson type fermions including a2 effects: N(f) =
2 degenerate case. Phys. Rev., D68:054508, 2003.

[6] S. Aoki, O. Bär, and S.R. Sharpe. Vector and Axial Currents in Wilson Chiral Perturbation
Theory. Phys. Rev., D80:014506, 2009.

[7] S. Aoki, H. Fukaya, S. Hashimoto, and T. Onogi. Finite volume QCD at fixed topological
charge. Phys. Rev., D76:054508, 2007.

[8] T. Appelquist et al. Composite bosonic baryon dark matter on the lattice: SU(4) baryon
spectrum and the effective Higgs interaction. Phys. Rev., D89(9):094508, 2014.

[9] R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica, and F. Sannino. SU(2) gauge
theory with two fundamental flavors: A minimal template for model building. Phys. Rev.,
D94(9):094507, 2016.

[10] V. Ayyar, T. DeGrand, M. Golterman, D.C. Hackett, W.I. Jay, E.T. Neil, Y. Shamir, and
B. Svetitsky. Spectroscopy of SU(4) composite Higgs theory with two distinct fermion repre-
sentations. arXiv:1710.00806.

[11] V. Ayyar, T. DeGrand, D.C. Hackett, W.I. Jay, E.T. Neil, Y. Shamir, and B. Svetitsky. Finite-
temperature phase structure of SU(4) gauge theory with multiple fermion representations.
arXiv:1802.09644.

[12] V. Ayyar, T. DeGrand, D.C. Hackett, W.I. Jay, E.T. Neil, Y. Shamir, and B. Svetitsky. Chiral
Transition of SU(4) Gauge Theory with Fermions in Multiple Representations. In Proceedings
of the 35th International Symposium on Lattice Field Theory, arXiv:1709.06190.



97

[13] V. Ayyar, T. DeGrand, D.C. Hackett, W.I. Jay, E.T. Neil, Y. Shamir, and B. Svetitsky.
Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations.
arXiv:1801.05809.

[14] V. Ayyar, D. Hackett, W. Jay, and E. Neil. Confinement study of an SU(4) gauge theory with
fermions in multiple representations. In Proceedings of the 35th International Symposium on
Lattice Field Theory, arXiv:1710.03257.

[15] G.S. Bali, F. Bursa, L. Castagnini, S. Collins, L. Del Debbio, B. Lucini, and M. Panero.
Mesons in large-N QCD. JHEP, 06:071, 2013.

[16] O. Bär and M. Golterman. Chiral perturbation theory for gradient flow observables. Phys.
Rev., D89(3):034505, 2014. [Erratum: Phys. Rev. D89, 099905 (2014)].

[17] O. Bär, G. Rupak, and N. Shoresh. Chiral perturbation theory at O(a2) for lattice QCD.
Phys. Rev., D70:034508, 2004.

[18] J. Barnard, T. Gherghetta, and T.S. Ray. UV descriptions of composite Higgs models without
elementary scalars. JHEP, 02:002, 2014.

[19] A. Bazavov et al. Nonperturbative QCD Simulations with 2+1 Flavors of Improved Staggered
Quarks. Rev. Mod. Phys., 82:1349–1417, 2010.

[20] A. Bazavov et al. Gradient flow and scale setting on MILC HISQ ensembles. Phys. Rev.,
D93(9):094510, 2016.

[21] J. S. Bell and R. Jackiw. A PCAC puzzle: π0 → γγ in the sigma model. Nuovo Cim.,
A60:47–61, 1969.
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Appendix A

Technical Material

A.1 Lie groups

This appendix collects some useful results about Lie groups. Many of the remarks follow

closely a set of (unpublished but widely circulated) notes which I took during a course on group

theory under Professor N. Manton during fall 2012 at the University of Cambridge. Even the

seemingly more technical statements are elementary results in Lie theory and can be found, e.g.,

in the text by Rossman [127].

Lie groups. A Lie group G is a smooth manifold which is also a group with smooth

group operations. The elements depend continuously on a number of (real) parameters, called

the dimension of the group. The group operations—products and inverses—depend continuously

and smoothly on the parameters. The most important Lie groups in physics are those of square

matrices. These are called linear Lie groups, as the matrices act linearly on vectors in a vector

space. The group operation in matrix Lie groups is always multiplication. Although addition is

a sensible matrix operation, it is not the group operation. The identity in a matrix Lie group is

always the unit matrix, and the inverse of an element is the inverse matrix. Matrix multiplication

is automatically associative, provided the matrix elements multiply associatively.

Lie algebras. The Lie algebra g of a Lie group G is the tangent space to G at the identity

I ∈ G. One studies the tangent space by differentiating curves in G. The Lie algebra g is a

vector space of dimension dimG, with an algebraic structure called the Lie bracket. Miraculously,

the algebraic structure of the algebra g (which is linear) almost uniquely determine the group G
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(which is nonlinear). In this way, group geometry mostly reduces to algebraic calculations. For two

matrices X and Y , the Lie bracket is simply the commutator [X,Y ] = XY − Y X.

The Maurer-Cartan form. Let G be a matrix Lie group and g(t) ∈ G a curve. Then

dg/dt ≡ ġ is the tangent matrix at g(t). To leading order, g(t+ ε) = g(t) + εġ(t) +O(ε2). We can

also write g(t + ε) as a product in G: g(t + ε) = g(t)h(ε), where h(ε) = I + εX + O(ε2) for some

X(t) ∈ g. h(ε) is the group element which generates the translation t 7→ t + ε. Let us isolate the

algebra element X(t). To leading order in ε,

I + εX(t) = g(t)−1g(t+ ε) = g(t)−1(g(t) + εġ(t)) = I + εg(t)−1ġ(t). (A.1)

Therefore, X(t) = g(t)−1ġ(t). More generally, we shall be interested in spacetime-dependent curves

g(x). We have established an important result: g(x)−1∂µg(x) ∈ g everywhere in spacetime. This

Lie-algebra valued object is known as the Maurer-Cartan form and plays an essential role the

theoretical background of this thesis, particularly in the CCWZ construction of described in Ap-

pendix A.4.

The group–algebra correspondence. Given a matrix Lie group G with the algebra g,

the matrix exponential function is a map from the algebra to the group, exp : g → G. For this

reason, the elements of the algebra are often referred to as the generators of the group G.

The adjoint representation. LetG be a matrix Lie group with associated algebra g. Take

g ∈ G and X ∈ g. Then the adjoint representation of G, denoted Ad, is the natural representation

of G acting on its algebra:

AdgX ≡ gXg−1. (A.2)

The adjoint representation of the group is simply the linearized version of the action of G on itself

by conjugation.

A closely related notion is that of the adjoint representation of the algebra. Suppose that

g ' I + εX ∈ G for X ∈ g. Take Y ∈ g. Then the adjoint representation of the group induces a
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representation of the algebra:

Adg Y = (I + εX)Y (I − εX) +O(ε2) (A.3)

' Y + ε (XY − Y X) (A.4)

= Y + ε[X,Y ] (A.5)

≡ (I + ε adX)Y. (A.6)

In other words, adX : g → g is map given by adX = [X, · ]. It is sometimes useful to encode

the relation between adjoint representation of the group and the algebra as using the exponential

map: AdexpX = exp(adX), which is valid as matrix equation for all X ∈ g. An example makes the

meaning of this equation clear. Take Y ∈ g. Then

AdexpX Y = exp(adX)Y (A.7)

eXY e−X =

∞∑
n=0

(adX)n

n!
Y = Y + [X,Y ] +

1

2!
[X, [X,Y ]] + · · · . (A.8)

The Killing form. The Killing form is a real, symmetric bilinear form defined on the

adjoint representation. Let X,Y ∈ g.

κ(X,Y ) = Tr(adX , adY ). (A.9)

This expression can be made more concrete. Let {Ti} be a basis for g with associated structure

constants fijk. The (ij)th component of Killing form is

κij = κ(Ti, Tj) = Tr(adTi adTj ) = filkfjkl. (A.10)

When g is semi-simple, the Killing form is non-degenerate. The existence of the Killing form means

that one can always “raise and lower” adjoint indices. As a familiar example, the Killing form for

su(2) in the standard basis is

κab = εadcεbcd = −2δab. (A.11)

Derivative of the exponential. In physical applications, it is essential to be able to take

the derivative of a group element written as the exponential of generators. The most compact
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formula for doing so is written in terms of the adjoint representation. Suppose X = X(x) ∈ g is a

function of the spacetime coordinate x. Then

∂µe
X = eX

(
1− e− adX

adX

)
∂µX (A.12)

= eX
∞∑
n=0

(−1)n

(n+ 1)!
(adX)n∂µX (A.13)

= eX
(
∂µX −

1

2!
[X, ∂µX] +

1

3!
[X, [X, ∂µX]] + · · ·

)
. (A.14)

The Baker–Campbell–Hausdorff formula. Let X,Y ∈ g. Then eXeY = eZ with

Z = X + Y +
1

2
[X,Y ] +

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + · · · . (A.15)

Factors of the complex unit. So far, none of the formulae in this Appendix have involved

the use of the complex unit, i. In physical applications, one customarily removes a factor of i from

the generators and therefore writes g = eiT , where T is a generator. The motivation for this

notation is twofold. First, this convention emphasizes the connection to the Euler formula and

invites the reader to think of T as an “angular variable.” Second, and more importantly, this

convention renders the generators Hermitian. Hermitian matrices, of course, play a privileged role

in quantum mechanics, where they serve as observables.

Graphical identities involving the generators Practical applications present products

of generators in various partially contracted forms. Two important identities often allow these

products to be simplified for the generators of SU(N) and SO(N):

SU(N) : (Ti)
a
b(Ti)

c
d = δadδ

c
b −

1

N
δabδ

c
d (A.16)

SO(N) : (Ti)ab(Ti)cd =
1

2
(δadδcb − δacδbd) . (A.17)

Such expressions, while useful, are impossible to understand. Graphical versions of these identities,

on the other hand, allow one to grasp quickly the meaning of complicated tensor expressions and

are given in Figure A.1. Most group theoretical calculations encountered in physics can be reduced

to an elegant diagrammatic formulation developed by Cvitanović [47, 48].
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Figure A.1: Some useful birdtrack diagrams for reducing contractions of SU(N) and SO(N)
generators.

A.2 Symmetry Properties of Common Lattice Operators

In this appendix we review the symmetry properties of operators which appear commonly

in lattice calculations. Broadly speaking, two sorts of fields appear: mesons (ψ̄Γψ) and baryons

ΓAψ
(
ψTΓBψ

)
. The so-called diquark operators, (ψTΓψ), play a special role in baryons. Although

elementary field theory texts discuss meson operators, diquark operators typically receive less at-

tention.

Proposition 1. The diquark operator (ψTCΓψ) is Lorentz invariant for all products of gamma

matrices Γ.

Proof. The proof proceeds via direct computation and relies on the fact that the matrix C provides

a basis-independent notion of the transpose,

CγµC = γT
µ , (A.18)

and, moreover, squares to minus the identity, C2 = −1. Recall that a Dirac fermion transforms as

ψ 7→ ΛSψ = exp [iθµνSµν ]ψ ' ψ+δψ, where δψ ≡ iθµνSµνψ with Sµν ≡ i
4 [γµ, γν ]. Recall also that

the generators Sµν of fermion transformations commute with the gamma matrices: [Sµν , γρ] = 0.
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Consider the infinitesimal variation of the diquark operator, δ(ψTCΓψ):

δ(ψTCΓψ) = δ(ψT)CΓψ + ψTCΓδψ (A.19)

= iθµν
(
ψTST

µνCΓψ + ψTCΓSµνψ
)

(A.20)

= iθµν
(
ψTCSµνC

2Γψ + ψTCΓSµνψ
)

(A.21)

= iθµν
(
−ψTCSµνΓψ + ψTCΓSµνψ

)
(A.22)

= iθµν
(
ψTC[Γ, Sµν ]ψ

)
= 0, (A.23)

where we have used [Γ, Sµν ] = 0 in the final equality. The diquark operator ψTCΓψ is therefore

Lorentz invariant, as claimed.

Proposition 2. Meson and diquark operators obey the classification of Table A.1 in terms of spin

J and parity P .

Table A.1: The JP classification of meson and diquark operators.

Γ Meson (ψ̄Γψ) Diquark (ψTCΓψ)
JP JP

1 0+ 0−

γ4 0+ 0−

γ5 0− 0+

γ4γ5 0− 0+

γi 1− 1+

γ4γi 1− 1+

γiγ5 1+ 1−

εijkγjγk 1+ 1−

Proof. We begin by recalling the transformation properties of spinors under parity:

P : ψ(~x, t) 7→ γ4ψ(−~x, t) (A.24)

ψ(~x, t)T 7→ ψ(−~x, t)TγT4 (A.25)

ψ̄(~x, t) 7→ ψ̄(−~x, t)γ4. (A.26)

Therefore, in the classification of mesonic operators (ψ̄Γψ), it suffices to determine the transforma-
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tion rules for γ4Γγ4. Because γ2
4 = 1, the scalar operators Γ ∈ {1, γ4} satisfy

γ4Γγ4 = +Γ. (A.27)

Because {γ4, γ5} = 0, the pseudoscalar operators Γ ∈ {γ5, γ4γ5} satisfy,

γ4Γγ4 = −Γ. (A.28)

For the vector operators Γ ∈ {γi, γ4γi}, one uses the fact that {γ4, γi} = 0 for i 6= 4. Then it follows

that

γ4Γγ4 = −Γ. (A.29)

It also follows from the previous arguments that the pseudovector operator Γ = γiγ5 and the tensor

operator Γ = γjγk satisfy

γ4Γγ4 = +Γ, (A.30)

thereby completing our classification of meson operators. In order to classify the diquark operators,

we remind ourselves that the “charge conjugation” matrix satisfies the following useful properties.

First, it provides a basis independent notion of transposition: CγµC = γT
µ . Second, the charge

conjugation matrix squares to minus the identity: C2 = −1. Because the diquark operators have

the form (ψTCΓψ), it suffices to classify the transformation rules of γT
4 CΓγ4. But this combination

satisfies the following relation:

γT
4 CΓγ4 = (γT

4 C)(Γγ4) = Cγ4C
2(Γγ4) = −Cγ4(Γγ4) = −C(γ4Γγ4) = ∓CΓ. (A.31)

In the last equality we used that previous classification of meson operators according to the be-

havior of γ4Γγ4. Therefore, the parity of the diquark operators differ by a minus sign from the

corresponding meson operators.

To complete the classification, we should clarify what is meant by spin J . For the (pseudo)scalars,

this statement is simply the fact that the operators are invariant in the sense of carrying no free

Lorentz indices. The (pseudo)vectors transform under vector representations of SO(3), the little
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group of the massive state excited by the particle. Note that γ4 plays a privileged role in this con-

struction. This role is simply due the fact that, at zero spatial momentum (i.e., in the privileged

frame of massive particle), the “u” and “v” spinors are eigenstates of γ4 with eigenvalues +1 and

−1, respectively. For the tensor operator γiγj , one uses the decomposition

γjγk = γ[jγk] + γ(jγk) (A.32)

= γ[jγk] +
1

2
δjk1. (A.33)

The first term is the 3-dimensional antisymmetric subspace 3 ⊂ 3 ⊗ 3. As with the usual cross

product, one can index this subspace with the Levi-Civita symbol of the Little Group SO(3) serving

as the “Clebsch-Gordan” coefficient, i.e., εijkγjγk.

Proposition 3. A baryon operator of the form ψ(ψTCΓψ) couples to eigenstates of both positive

and negative parity.

Proof. As the classification of Prop. 2 showed, the diquark operators (ψTCΓψ) transform with

definite parity—positive or negative. Therefore it suffices to consider the parity of the field ψ with

free Lorentz indices. But a generic massive Dirac spinor ψ contains both positive and negative

parities, and so the baryon operator couples to both of them.

Projection operators P± = 1
2(1 ± γ4) construct baryon operators of definite parity, as the

following proposition demonstrates.

Proposition 4. Consider baryon operators P±ΓAψ(ψTCγBψ). The choices

(ΓA,ΓB) ∈ {(1, γ5), (γ5,1), (1, γ4γ5)} (A.34)

have definite parity, given by the sign of P±.

Proof. The first case of (1, γ5) is trivial, since the diquark transforms with positive parity, and P±ψ

transforms with definite parity. For the second case of (γ5,1), we observe that (ψTCψ) transforms

with negative parity. Moreover, P±γ5 = γ5P∓. The two minus signs cancel, thereby producing a
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baryon operator with the correct spin. (More precisely, if one considers scalar two-point correlation

functions by tracing over the free spinor index, the free γ5 of the source and sink operator will

annihilate, since γ2
5 = 1. Then the source and sink operators really do couple to states of the

correct definite parity.) The final case of (1, γ4γ5) is also trivial, since the diquark transforms with

positive parity.

A.3 Goldstone’s Theorem

Theorem 1 (Goldstone’s Theorem). Suppose that a field theory has global symmetry GF which is

spontaneously broken to the subgroup HF ⊂ GF. Then the vacuum manifold consists of dimGF/HF

massless modes.

Proof. Let φa generically denote the field content of the theory, with the index a serving as a

collective index. Because GF is a global symmetry of the theory, it is also symmetry of the potential

V (φ). Therefore, the variation of the potential under an infinitesimal GF-variation must vanish:

δV = δφa
∂V

∂φa
= 0, (A.35)

where δφa = iθα(Tα)abφb and the Tα are the generators of GF. This statement is true even at a

generic point in field space. Consider now a minimum in field space, so that ∂V/∂φa vanishes.

The curvature matrix of second derivatives at the minimum of the potential determines the mass

spectrum. To probe this quantity, we take the derivative of the previous equation

0 =
∂

∂φb

(
δφa

∂V

∂φa

)
(A.36)

= δφa
∂2V

∂φb∂φa
(A.37)

= δφaM
2
ab, (A.38)

where we’ve used that ∂V/∂φa vanishes. The generators of the unbroken symmetry HF produce

vanishing variations (δφa = 0), while generators of the coset GF/HF generate non-vanishing vari-

ations (δφa 6= 0). Therefore the mass matrix has dimGF/HF eigenvectors with eigenvalue zero,

corresponding to dimGF/HF massless modes.
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We have completed the proof for classical field theory. The proof in the quantum mechanical

case is similar, relying on the fact that the conserved charge associated with the broken symmetry

generates a manifold of states.

A.4 The General CCWZ Construction

The Callan–Coleman–Wess–Zumino (CCWZ) construction provides a general method for

writing down the effective field theory of a broken global symmetry GF → HF. The idea is to

construct the induced, nonlinear representation of GF acting on the broken generators in GF/HF.

The power of their method lies in the fact that, after determining the objects which transform

homogeneously under GF, it suffices to construct Lagrangians which are superficially invariant

under the subgroup HF. This appendix describes the CCWZ construction. The discussion in

Panico and Wulzer is a useful companion [121] to the original classic papers [38, 43].

Consider a Lie group GF with a Lie subgroupHF. We shall denote the generators ofHF as T a;

they are the “unbroken generators” and carry an un-hatted index. We shall denote the remaining

generators of GF as X â; the are the “broken generators” and carry a hatted index. Often it will be

a convenient to overload our terminology to refer to the X â simultaneously as being generators of

GF and of the coset GF/HF. Let us first consider the transformation properties of the generators.

[T, T ] = T (A.39)

[T,X] = X (A.40)

[X,X] = T +X (A.41)

The first equation says that, sinceHF is a group, its generators close to form an algebra. The second

equation say that GF/HF transforms in a (linear) representation of the unbroken HF. The final

equation provides the essential complication and says that the generators of GF/HF do not close,

since the coset is not, in general, a group. Moreover, the final equation says that GF/HF transforms

in a nonlinear representation of the full group GF. All three equations can be summarized by the

decomposition AdGF = AdHF
⊕ rπ. The final summand, rπ, is the induced representation of the
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Goldstone bosons.

A certain subclass of symmetry breaking patterns, known as symmetric spaces, play a special

role in many physical applications, including QCD. A symmetric space enjoys a discrete “parity”

symmetry. This notion of parity is a group automorphism of GF which swaps the sign of the broken

generators:

P :T a 7−→ +T a (A.42)

X â 7−→ −X â. (A.43)

This symmetry simplifies the commutation relation in Eq. (A.41) and requires that [X,X] = T .

Although the induced representation remains nonlinear, certain formulae simplify.

To see more clearly what is meant by a non-linear representation, let us reconsider the physical

motivation. In the presence of a broken symmetry GF → HF, the vacuum manifold remains invariant

under the unbroken subgroup HF while acquiring non-trivial transformation properties under the

full group GF. Suppose that F is some particular vacuum state within Hilbert space. The Goldstone

matrix U [ξ] = eiξâX
â

is an element of the coset GF/HF. Acting with U [ξ] reorients F within the

(degenerate) vacuum manifold: F 7−→ U [π]F . Our task is to infer an action of GF on GF/HF which

preserves the form of the Goldstone matrix.

The natural action of GF on the pion field is that of conjugation (ξ 7→ gξg−1), and infinitesimal

conjugation is commutation. According to Eq. (A.41), an arbitrary transformation in GF pushes

the Goldstone matrix out of the coset. This relation suggests that one should first act on GF/HF

with a group element and then include a “correction step” in order to return the result to the coset.

Let g ∈ GF act on U with left multiplication. Without loss of generality, we can write the result in

the following factored form:

g U [ξ] = U [ξ′]h[g; ξ], (A.44)

where U [ξ′] ∈ GF/HF and h[g; ξ] ∈ HF. Both quantities depend implicitly on the original Goldstone

matrix and the group element g. This factorization inspires us to define a representation D(GF)
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acting on the Goldstone matrix as

D(GF) : GF/HF → GF/HF (A.45)

U [ξ] 7−→ U [ξ′] = gU [ξ]h−1[g; ξ]. (A.46)

In the literature on Lie groups, this representation is known as the induced representation. In

the physics literature, D(GF) is often called a nonlinear realization of the symmetry, since the new

Goldstone fields ξ′ are a nonlinear function of ξ and g.

Because the “correction function” h is implicit and nonlinear, no explicit formula exists

for general groups. Moreover, its explicit form is not generally necessary or useful in practical

applications. However, the linearized from of this equation is instructive:

gU = (1 + igâX
â + igaT

a)(1 + iξâX
â) +O(g2, ξ2) (A.47)

' 1 + i(ξâ + gâ)X
â + igaT

a (A.48)

' (1 + i(ξâ + gâ)X
â)(1 + igaT

a) (A.49)

= (1 + iξ′âX
â)h. (A.50)

From this expression, we can read off the leading-order results for the implicit function h and the

transformed Goldstone modes:

h−1 = (1− igaT a) ' e−igaT
a

(A.51)

ξ′â = ξâ + gâ. (A.52)

The latter result is particularly important; it says that the Goldstone modes enjoy a shift symmetry

under the nonlinear representation of GF acting on GF/HF. Because the resulting dynamics must

obey this symmetry, the interactions between Goldstone bosons in the EFT must contain derivatives

and therefore vanish at zero momentum. Beyond leading order, the Goldstone bosons transform

with a nonlinear shift.

In order to construct a GF-invariant Lagrangian, we must take derivatives. Consider therefore

the Maurer-Cartan form U−1∂µU , which takes values in the algebra. We can decompose this object
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into components along the broken and unbroken generators,

iU−1∂µU = dµ,âX
â + eµ,aT

a = dµ + eµ, (A.53)

where the factor of i cancels that emerging from the use of Hermitian group generators. This

expression defines the symbols dµ and eµ, which transform in the following suggestive manner.

U−1∂µU 7−→ U ′−1∂µU
′ (A.54)

= (hU−1g−1)∂µ(gUh−1) (A.55)

= hU−1∂µUh
−1 + h∂µh

−1 (A.56)

= hdµh
−1 + heµh

−1 − (∂µh)h−1. (A.57)

Since h is an element of HF, the last term (∂µh)h−1 contains only generators of HF. Therefore eµ

contains a shift, while dµ transforms homogeneously:

dµ 7→ hdµh
−1 (A.58)

eµ 7→ heµh
−1 − (∂µh)h−1. (A.59)

We can summarize the results with two statements. First, dµ is the “covariant derivative of ξ” (in

the sense dµ = ∂µξ + . . . ) which transforms correctly under the full group GF. That is, dµ neatly

packages the infinite series of terms—involving different numbers of fields—necessary to maintain

nonlinear symmetry of Eq. (A.52) to all orders. Second, eµ transforms as a non-abelian gauge

field of HF. If any unbroken symmetries are gauged, the symbol eµ is used to construct, e.g., field

strength tensors with the correct GF transformation properties.

Computing explicit formulae for the dµ and eµ symbols means computing the Maurer-Cartan

form. To do so, we need the derivative of the exponential function, which is given by Eq. (A.12).

This result tells us that the Maurer-Cartan form is

iU−1∂µU = i

(
1− e−i adξ

adξ

)
∂µξ. (A.60)
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In the case of a symmetric space, a notion of parity decomposes the Maurer-Cartan form along

the broken and unbroken generators, which contain either an odd or even number of commutators,

respectively. This fact is useful in the computations of Appendix A.5.

At lowest-order, the most general GF-invariant Lagrangian is simply L ∼ Tr dµâd
µâ. Note in

particular that this expression does not include a term ∼ Tr eµae
µa. Because eµ transforms with a

linear shift, this quantity is not invariant under a general GF transformation.

To write the Lagrangian in a more transparently physical form, we shall reinstate dimen-

sions. First, we observe that the Goldstone modes ξ are dimensionless angular variables. Since the

Goldstone modes are bosonic excitations, the should have mass-dimension unity. Therefore, one

writes ξ =
√

2π/f , where π now denotes the “pion field.” The factor of
√

2 is conventional. The

low-energy constant f is the pion decay constant. Next, since dµ ' ∂µξ+ · · · = ∂µ
√

2π/f + · · · , we

must rescale the overall Lagrangian to possess a canonically normalized kinetic term. Overall one

finds

L =
f2

4
Tr dµâd

µâ. (A.61)

A.5 CCWZ for SO(5)/SO(4)

In this section we compute the decomposition of the Maurer-Cartan form into the tensor dµ

for the case of SO(5)/SO(4) broken symmetry. We consider the expressions both with and without

external gauge fields for the unbroken symmetry SO(4). In principle, one can choose an explicit

basis of generators for SO(5) and compute the matrix exponential

U [π] = exp
i
√

2πâ
f

T â. (A.62)

The results would then follow by taking explicit derivatives. Instead, we find it convenient to tread

more lightly, using only the abstract group structure to guide the calculation.

We recall the definition iU [π]−1∂µU [π] = dµ + eµ, where dµ is parallel to the broken gener-
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ators. Using Eq. (A.12) for the derivative of an exponential from Lie theory, we find:

iU [π]−1∂µU [π] = i(∂µπâ)
∞∑
n=0

(−1)n

(n+ 1)!

(
i
√

2

f

)n (
πb̂ ad

T b̂

)n
T â. (A.63)

Because SO(5)/SO(4) is a symmetric space, terms involving even powers of adTb̂ (i.e., even num-

bers of commutators) will belong to the coset, while odd powers will be parallel to to unbroken

generators. Therefore, computing dµ amounts to summing even powers, which the following lemma

enables.

Lemma 1. For n > 0, the following formula computes even powers of adπ acting on the broken

generators:

(∂µπâ)(ad2
π)nT â =

1

2n
[
(π2)n(∂µπâ)− (∂µπ · π)(π2)n−1πâ

]
T â (A.64)

Proof. The proof shall proceed by induction. To establish notation, we shall use the commutation

relations

[T b̂, T â] = (td)
âb̂T d (A.65)

[T d, T ĉ] = T ê(td) ĉ
ê (A.66)

and the completeness relation for orthogonal groups

(te)d̂ĉ(te)
b̂â =

1

2

(
δd̂âδĉb̂ − δd̂b̂δĉâ

)
, (A.67)

where the ta are generators of SO(4). We remark that hatted indices can be raised and lowered

trivially. To established the base case, we compute (adπ)2∂µπ. Consider first the double commu-

tator. The commutation relations together with a single application of the completeness relation

delivers:

[T ĉ, [T b̂, T â]] =
1

2

(
δd̂âδĉb̂ − δd̂b̂δĉâ

)
Td̂. (A.68)

Contracting this quantity with πĉπb̂∂µπâ, we find

1

2
(π · π(∂µπâ)− (∂µπ · π)πâ)T

â, (A.69)
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n-1n

Figure A.2: A graphical demonstration of the inductive proof of the preceding lemma. The square
represents the generator T â, the circles represent πâ, and the rounded rectangle represents ∂πâ.
The first line establishes the base case, and the induction proceeds by contracting powers of the
quantity in parentheses.

which is the desired expression for n = 1. Suppose now that the expression holds for the nth case.

1

2n
[
(π2)n(∂µπâ)− (∂µπ · π)(π2)n−1πâ

]
πĉπb̂[T

ĉ, [T b̂, T â]] (A.70)

=
1

2n
[
(π2)n(∂µπâ)− (∂µπ · π)(π2)n−1πâ

]
πĉπb̂

1

2

(
δd̂âδĉb̂ − δd̂b̂δĉâ

)
Td̂ (A.71)

=
1

2n+1

[
(π2)n+1(∂µπâ)− (∂µπ · π)(π2)nπâ

]
(A.72)

Therefore the nth case implies the (n+ 1)th, completing the proof. Because the tensor contractions

are somewhat opaque, more revealing graphical version of the induction appears in Figure A.2.
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With the help of the previous lemma, the sum of the even terms takes the following shape:

dµ = −
√

2

f

∞∑
n=0

1

(2n+ 1)!

(
i
√

2

f

)2n (
ad2

π

)n
(∂µπâ)T

â (A.73)

= −
√

2

f

[
∂µπâ +

∞∑
n=1

(−1)n

(2n+ 1)!

1

f2n

(
(π2)n(∂µπâ)− (∂µπ · π)(π2)n−1πâ

)]
T â (A.74)

=

[
√

2

(
1

π
sin

(
π

f

)
− 1

f

)
π · ∂µπ
π2

πâ −
√

2

π
sin

(
π

f

)
(∂µπâ)

]
T â, (A.75)

where we have used the familiar infinite series form of the sine function from elementary calculus.

Obtaining this result depended only the abstract group structure of the problem and not on any

particular basis of generators.

We now investigate the gauge-covariant derivative dµ[π,A] which results from promoting

∂µ 7−→ ∂µ − iAµ, with Aµ = Aµ,aT
a the gauge field associated with (any desired subset of) the

unbroken generators. Evidently we must consider the behavior of the quantity U [π]−1AµU [π] =

Ad
e−i
√
2π/f Aµ. Fortunately, Eq. (A.7) gives exactly the result we need:

Ad
e−i
√
2π/f Aµ = e

− i
√
2
f

adπAµ (A.76)

=

∞∑
n=0

−1

n!

(
i
√

2

f

)n
(adπ)nAµ. (A.77)

Because we are computing dµ[π,A], we must extract the components parallel to the broken genera-

tors. Once again, the fact the SO(5)/SO(4) is a symmetric space provides a simplification. Acting

with once with adπ on Aµ pushes the generator into the coset, and subsequent applications of

(adπ)2 remain in the coset. Therefore, all the odd powers of adπ acting on Aµ belong to the coset.

The sum of the odd powers is:

∞∑
n=0

−1

(2n+ 1)!

(
i
√

2

f

)2n+1

(adπ)2n+1Aµ, (A.78)

which is seen to be a sum of the same form as Eq. (A.73). A moment’s study of the coefficients

confirms that dµ[π,A] follows from replacing ∂µ 7−→ Dµ in dµ[π]:

dµ[π,A] =

[
√

2

(
1

π
sin

(
π

f

)
− 1

f

)
π ·Dµπ

π2
πâ −

√
2

π
sin

(
π

f

)
(Dµπâ)

]
T â (A.79)

=

[
√

2

(
1

π
sin

(
π

f

)
− 1

f

)
π · ∂µπ
π2

πâ −
√

2

π
sin

(
π

f

)
(Dµπâ)

]
T â, (A.80)
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where the second equality follows since generators of SO(N) are antisymmetric and the π are

bosonic.

A.6 Anomalous Symmetries in QFT

A classical field theory is defined in terms of its symmetries, which specify the classical action.

A quantum field theory is defined by allowing the classical fields to fluctuate according to the rules

of quantum mechanics, as described mathematically by the path integral. A natural question is

whether the quantum fluctuations respect the symmetries of the classical theory. As it turns out,

quantum fluctuations often do not respect the classical symmetries, inducing effects which the

classical theory would seem to forbid. When this effect is present, the symmetry is said to be

anomalous.

Anomalous symmetries play an important role in real-world applications. Perhaps the best-

known and most physical example is the decay of a neutral pion into two photons: π0 → γγ. Because

the π0 is neutral, it does not couple directly to electromagnetism. However, quantum fluctuations

induce a coupling at the 1-loop level; this effect goes by the name of the “chiral anomaly.”

An elegant method, due to Fujikawa, for computing anomalies in a general setting investigates

the measure of the path integral [78]. Although this quantity seems abstract, the motivation is

simple: the measure is the quantum part of the quantum field theory. The technical details exceed

this scope of this thesis, but general idea is straightforward. Define a path integral in terms of

a classical Lagrangian with some global symmetry GF. Now imagine changing the variables of

the path integral by performing a symmetry transformation g ∈ GF. The action is invariant by

construction. However, as in elementary calculus, the measure transforms with a Jacobian factor.

Fujikawa’s method computes this Jacobian factor explicitly. The resulting axial anomaly is phrased

in terms of the anomalous divergence of the axial current

∂µJ
A,µ ∝ 1

16π2
εµνρσFµνFρσ, (A.81)

a result which often goes by the name of the Adler-Bell-Jackiw anomaly, after the physicists who
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discovered it originally [3, 21].

The axial anomaly has another important consequence for the particle spectrum of QCD.

Neglecting the anomaly, the chiral condensate would spontaneously break the axial U(1) symmetry,

yielding another light, pseudo-Goldstone boson. Because the anomaly already explicitly breaks this

symmetry, no such state is present. Indeed, the meson with the correct valence-quark content is

the η′, which has a mass of nearly 1GeV.

The role of the anomaly is particularly interesting in multirep gauge theories. In such theories,

each fermion species has an anomalous, flavor-singlet axial current. However, a certain linear

combinations of these currents will decouple from the anomaly and therefore remain unbroken. In

this case, the formation of a chiral condensate breaks the axial symmetry explicitly, and a light,

pseudo-Goldstone analogue of the η′ appears in the spectrum.

The axial anomaly explains why physicists refer usually refer to the global symmetry group of

QCD as SU(N)×SU(N)×U(1)V . Although the classical action in fact possesses a U(N)×U(N) =

SU(N)×SU(N)×U(1)×U(1), the axial U(1) symmetry is anomalous. Discussions of spontaneously

broken symmetries then proceed from the non-anomalous global symmetry group. For brevity, the

residual vector U(1) symmetry is omitted, since it often remains unbroken, both in the presence of

the anomaly and spontaneously broken symmetry.



Appendix B

The Method of Conjugate Gradients

B.1 Overview

The method of conjugate gradients is a numerical algorithm for solving linear systems of the

form Ax = b. Many explanations of this method exist in the lattice literature and in textbooks [59,

82], but it is useful to reiterate and amplify the usual discussion for the purpose of this thesis. My

own understanding has benefited particularly from the discussion of Luenberger and Ye [114]. Aside

from rephrasing and incidental remarks, the essential mathematical ideas below are are theirs.

Solving the system Ax = b amounts to inverting the matrix A. Compared to direct inversion,

the method of conjugate gradients is most advantageous for sparse matrices. The geometric origin

of conjugate gradient comes from recognizing that A is quadratic form. Instead of directly solving

Ax = b, one instead solves the auxiliary problem of minimizing the function f(x) = 1
2x·Ax−b·x+c,

the gradient of which is simply Ax− b. When A is positive-definite, looking for a unique minimum

is a well-posed question. When A is also symmetric, finding this minimum is equivalent to solving

the linear system Ax = b. The method of conjugate gradients provides a way to find the minimum

and solve the system. These hypothesis are not strictly satisfied by Dirac operators encountered

in lattice gauge theory, but the necessary modifications are essentially technical in nature, and

we ignore them here. The generalization to the so-called stabilized bi-conjugate gradient method

(“Bi-CGStab” ) is described, e.g., in Ref. [82].

Given a vector x∗ ∈ Rn and some basis {ei} for Rn, a basic postulate of linear algebra
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guarantees that this vector has a decomposition:1

x∗ =
∑
i

eT
i x
∗

eT
i ei

ei =
∑
i

〈ei, x∗〉
〈ei, ei〉

ei. (B.1)

Of course, computing this decomposition requires direct knowledge of the vector. Suppose, however,

that we only possess indirect knowledge of the vector through some additional condition. For

instance, suppose that the vector x∗ solves the linear equation Ax = b. In this case, the matrix A

(assumed to be symmetric and positive definite) induces an additional product structure on Rn.

Suppose that {di} is an A-orthogonal basis of conjugate directions for Rn:

〈di, dj〉A = 〈di, Adj〉 = dTi Adj ∝ δij , (B.2)

which we do not assume satisfies any particular normalization condition. Expanding x∗ in terms

of this basis yields:

x∗ =
∑
i

dTi Ax
∗

dTi Adi
=
∑
i

dTi b

dTi Adi
=
∑
i

〈di, b〉
〈di, di〉A

. (B.3)

This formula is the foundation for the following theorem, which constructs the unknown vector x∗

from the matrix A and vector b, starting from an arbitrary initial guess x0.

B.2 The Method of Conjugate Directions

Theorem 2 (Method of Conjugate Directions). Suppose Ax∗ = b. Let {d0, d1, . . . dn−1} be an

ordered basis of A-orthogonal conjugate directions in Rn, and take x0 be an arbitrary point in Rn.

Then the sequence {x0, x1, . . . xn} with xk+1 = xk + αkdk and

αk = − 〈dk, gk〉
〈dk, dk〉A

(B.4)

converges to x∗ − x0 within n steps.

Proof. Begin by expanding x∗ − x0 in the basis {dk}:

x∗ − x0 = α0d0 + α1d1 + · · ·+ αn−1dn−1.

1 Throughout this appendix we shall temporarily abandon the summation convention for repeated indices.



126

A-orthogonality delivers that the coefficients take the form:

αk =
〈dk, x∗ − x0〉A
〈dk, dk〉A

. (B.5)

Next, using the recursive definition of xk, write

xk − x0 = α0d0 + α1d1 + · · ·+ αk−1dk−1. (B.6)

But since the conjugate directions are A-orthogonal, it follows that 〈dk, xk − x0〉A = 0. In other

words, 〈dk, xk〉A = 〈dk, x0〉. Substituting this result into the original formula for the expansion

coefficients, one discovers that

αk = − 〈dk, gk〉
〈dk, dk〉A

, (B.7)

which was to be shown. Because we have explicitly constructed x∗ − x0 using a basis expansion in

Rn, the convergence is clear.

As the previous proof demonstrates, the “method of conjugate directions” is nothing more

than a convenient basis expansion. The expansion is somewhat unusual because the conjugate

directions is not orthogonal with respect the Euclidean structure of Rn. The following theorem

and its corollaries reveal the geometric structure of this expansion.

Theorem 3 (Expanding Subspaces). Let {d0, d1, . . . dn−1} an ordered basis of A-orthogonal con-

jugate directions in Rn, and take x0 be an arbitrary point in Rn. Let {x0, x1, . . . xn−1} and

{g0, g1, . . . gn−1} be the sequences of points and gradients, respectively, from Theorem 2. Let Bk =

span{d0, . . . , dk−1} ⊆ Rn denote the span of the first k conjugate directions. Then each element

in the sequence of expanding subspaces B0 ⊂ B1 ⊂ . . .Bn−1 = Rn is orthogonal to the respective

gradient: gk ⊥ Bk.

Proof. The proof is by induction. By definition B0 is empty, so g0 ⊥ B0. Suppose that gk ⊥ Bk.

By definition of the gradients and the definition of αk, the following product vanishes identically,

〈dk, gk+1〉 = 〈dk, gk〉+ αk 〈dk, dk〉A = 0. (B.8)
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We must argue that similar results hold for all i < k. But

〈di, gk+1〉 = 〈di, gk〉+ αk 〈di, dk〉A = 0, (B.9)

since the first term vanishes by assumption and the second by A-orthogonality of the conjugate

directions. Therefore, gk+1 is orthogonal to the span of the first k + 1 conjugate directions, which

was to be shown.

Corollary 1. Let {di} and {gi} be the conjugate directions and gradients of Theorem 2. Then

〈gk, di〉 = gTk di = 0 for all i < k.

Corollary 2. Let {xi} be the sequence of points from Theorem 2 with arbitrary point x0 in Rn.

Then each point xk in this sequence minimizes f(x) = 1
2x

TAx− xTb on the linear variety x0 +Bk.

In particular, the point xk minimizes f(x) along the line xk−1 + αdk−1, α ∈ R.

B.3 The Method of Conjugate Gradients

From a computational perspective, the main drawback to using the basis expansion in terms of

conjugate directions is that they are required to be given in advance. It would be more convenient

if the linear system Ax = b also furnished an ordered basis of conjugate directions. In fact,

given an arbitrary starting guess x0, we shall discover that such a basis does exist. The idea is to

consider conjugate gradients. The conjugate gradients dk+1 are each defined recursively as the linear

combination of the gradient gk+1 and the previous conjugate direction dk which is A-orthogonal to

gk:

dk+1 = −gk+1 + βkdk. (B.10)

The constant βk is fixed by imposing A-orthogonality: 〈dk, dk+1〉A = 0. We begin with a lemma,

which illustrates that the conjugate gradients are in fact nothing but a convenient basis for the

Krylov subspaces generated by g0 and A.
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Lemma 2 (Krylov subspaces). Let Kk(g0, A) = span{A0g0, A
1g0, . . . A

kg0} denote the order-k

Krylov subspace generated by g0 and A. Then the spans of the first k + 1 gradients and conjugate

gradients are both equal to the Kk. Moreover, the first k conjugate gradients are A-orthogonal.

Proof. The lemma amounts to the following three conditions:

span{g0, g1, . . . gk} = Kk(g0, Q) (B.11)

span{d0, d1, . . . dk} ≡ Bk+1 = Kk(g0, Q) (B.12)

dT
kAdi = 〈dk, di〉A = 0 for all i < k. (B.13)

The proof proceeds by simultaneous induction on all three cases. The base case (k = 0) holds by

definition. Suppose that the conditions hold for k. We must demonstrate the validity for k + 1.

First, by definition of the gradient,

gk+1 = gk + αkAdk. (B.14)

For the first term, the inductive hypothesis says that gk ∈ Kk ⊆ Kk+1. For the second term, the

inductive hypothesis says dk ∈ Kk, so Adk ∈ Kk+1. Moreover, Theorem 3 says that gk+1 ⊥ Bk+1,

so (unless gk+1 = 0, in which case the sequence terminates) gk+1 /∈ Kk. Thus we have established

that span{g0, g1, . . . gk+1} = Kk+1 for all k. Next consider the definition of the conjugate gradient

dk+1 = −gk+1 + βkdk. (B.15)

The previous argument for the gradients demonstrated that gk+1 ∈ Kk+1. By the inductive hy-

pothesis, dk ∈ Kk, so Bk+2 = Kk+1 for all k.

Finally, we must show that the conjugate gradients are all A-orthogonal. Consider therefore

the following product

〈dk+1, di〉A = −〈gk+1, di〉A + βk 〈dk, di〉A . (B.16)

When i = k, the definition of βk guarantees that this expression vanishes. For i < k both terms on

the right-hand side vanish. The second term vanishes by the induction hypothesis. To see that first
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term vanishes, note that the induction hypothesis—the statement that the conjugate gradients are

A-orthogonal through order k—implies Adi ∈ Bi+1. Theorem 3 then shows that gk+1 is orthogonal

to Bi+1, so 〈gk+1, di〉A vanishes. Thus all the conjugate gradients are, in fact, A-orthogonal.

The previous lemma makes it easy to extend the method of conjugate direction to a method

of conjugate gradients. The beauty of the method of conjugate gradients is that it constructs the

necessary A-orthogonal basis of conjugate directions {dk} alongside the sequence of points {xk}.

Theorem 4 (Method of Conjugate Gradients). Suppose Ax∗ = b. Let x0 be an arbitrary point in

Rn and gk = Axk − b be the gradient. Then the following sequence {x0, x1, . . . xn} converges to

x∗ − x0 after n steps:

xk+1 = xk + αkdk (B.17)

αk = − 〈gk, dk〉
〈dk, dk〉A

(B.18)

dk+1 = −gk+1 + βkdk (B.19)

βk =
〈gk+1, dk〉A
〈dk, dk〉A

(B.20)

Proof. By Lemma 2, the conjugate gradients {dk} form an A-orthogonal basis for Rn. By Theo-

rem 2, the sequence {xk} converges to x∗ − x0 after n steps.

Alternative forms forms for the coefficients αk and βk reduce the number of explicit matrix-

times-vector operations necessary in the method of conjugate gradients. These “improved” coef-

ficients therefore reduce the computational cost of the method, which might reasonably be called

“improved conjugate gradient.”

Theorem 5 (Improved Conjugate Gradients). The following alternative expressions are equivalent

to the original definitions for the coefficients αk and βk:

αk =
〈gk, gk〉
〈dk, dk〉A

(B.21)

βk =
〈gk+1, gk+1〉
〈gk, gk〉

(B.22)
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Proof. Comparing the new formula for αk to the definition reveals that we must show 〈gk, gk〉 =

−〈gk, dk〉. But the definition of dk says that

−〈gk, dk〉 = 〈gk, gk〉 − βk−1 〈gk, dk−1〉 , (B.23)

and the second term vanishes by Theorem 3. To check the proposed formula for βk, notice that

the definitions of the gradients gk and points xk imply

gk+1 − gk = A(xk+1 − xk) (B.24)

xk+1 − xk = αkdk. (B.25)

Solving these equations, we find that Adk = (gk+1 − gk)/αk. Taking the product with gk+1 reveals

〈gk+1, dk〉A =
1

αk
〈gk+1, gk+1〉 (B.26)

=
〈dk, dk〉A
〈gk, gk〉

〈gk+1, gk+1〉 . (B.27)

In the first line we have used that gk ∈ Bk and gk+1 are perpendicular by Theorem 3. In the second

line we have used the expression for αk. But this quantity is the numerator in the definition for

βk, so the result is now immediate.
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The following algorithm summarizes the results of this appendix.

Algorithm 1: The Method of Conjugate Gradients (Theorems 4 and 5)

Data: Matrix A, vector b, starting vector x0 and tolerance ε > 0.

Result: The vector x∗ solving Ax− b = 0 within the specified tolerance.

Initialize: Set x0 arbitrarily or by guessing;

g0 ← Ax0 − b;

d0 ← −g0;

while |gk| > ε do

αk ← 〈gk,gk〉
〈dk,dk〉A

;

xk+1 ← xk + αkdk;

gk+1 ← Axk+1 − b;

βk ← 〈gk+1,gk+1〉
〈gk,gk〉 ;

dk+1 ← −gk+1 + βkdk;

end

return xk ≈ x∗



Appendix C

Construction of Lattice Correlation Functions

C.1 Chimera Baryons

Let Q denote a sextet fermion and q a fundamental fermion. The interpolating field for a

chimera baryon has the form OεB = εabcdQ
ab
α q

c
γq
d
δC

αγδε, where Latin indices indicate SU(4) color

and Greek indices indicate spin. For brevity we suppress flavor SU(2) indices. The tensor C is some

combination of gamma matrices which projects onto the desired spin state. Because these chimera

operators are fermionic, they naturally carry a free spinor index. We find it useful to work in a “non-

relativistic” formulation, projecting onto eigenstates of P± = 1
2(1 ± γ4). This projection produces

two-component spinors, which we identify with the familiar spin-up and spin-down states of a non-

relativistic fermion. To extract the ground-state mass from a two-point correlation function, any

gauge-invariant operator with the correct spin and internal quantum numbers suffices. Since the

mass spectrum is the focus of the present work, we find the non-relativistic formulation easiest to

implement. For a discussion of its use in the existing lattice literature, see [113, 109] and references

therein.

Propagators form the numerical building blocks of our correlation functions:

D−1
q (m|n)a,bα,β ≡

〈
q(m)aαq̄(n)bβ

〉
, (C.1)

where m,n are points on the lattice; a, b are SU(4)-color indices; and α, β are non-relativistic spin

indices. There is an analogous expression for the sextet propagator D−1
Q . A chimera propagator
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then takes the form〈
OλB(m)OζB(n)

〉
= εabcdεefghC

αγδλCεφηζD−1
Q (m|n)ab,efα,ε

×
[
D−1
q (m|n)c,gγ,φD

−1
q (m|n)d,hδ,h −D

−1
q (m|n)c,hγ,ηD

−1
q (m|n)d,gδ,φ

] (C.2)

The bracketed expression contains both a direct and an exchange term. Both terms are necessary

for states like the charged Σ or Σ∗ in QCD which consist of a single light flavor u or d. States like the

Λ, Σ0, or Σ∗0 inherently contain light quarks of two different flavors u and d. Since different valence

flavors cannot be contracted, such states possess no exchange term. For the chimera analogues of

the Σ and Σ∗, we consider Iz = 1 states, which include both the direct and exchange term.

The spin projectors Cαβγλ isolate the correct spin states for the initial and final baryons. For

example, the standard decomposition of the spins of the S = −1 hyperons is:

Σ∗ : |J = 3/2, I = 1〉 = | ↑↑↑〉

Σ : |J = 1/2, I = 1〉 =
1√
6

[2| ↓↑↑〉 − | ↑↑↓〉 − | ↑↓↑〉]

Λ : |J = 1/2, I = 0〉 =
1√
2

[| ↑↑↓〉 − | ↑↓↑〉] . (C.3)

In each line we have taken the state with largest value of Jz: for example, |J = 1/2, I = 0〉 is

shorthand for the Jz = +1/2 state. The states on the right-hand side are |SQz SqzSqz〉.



Appendix D

Data Tables

Ensemble β κ4 κ6 Configurations

1 7.2 0.13173 0.13423 67
2 7.2 0.1318 0.1341 29
3 7.2 0.132 0.134 42
4 7.3 0.1314 0.1333 17
5 7.3 0.1315 0.1333 17
6 7.308 0.1304 0.1339 29
7 7.31 0.1305 0.1339 17
8 7.32 0.13 0.134 17
9 7.33 0.1314 0.1332 17
10 7.33 0.1314 0.1333 17
11 7.33 0.1315 0.1335 17
12 7.4 0.1307 0.133 17
13 7.4 0.131 0.133 29
14 7.5 0.13 0.132 17
15 7.5 0.13 0.1325 29
16 7.5 0.13 0.1327 29
17 7.5 0.13 0.1328 29
18 7.5 0.1305 0.1327 29
19 7.75 0.129 0.131 29
20 7.75 0.129 0.1315 29

Table D.1: List of ensembles with V = 163 × 18 generated for this study. Configurations are
separated by 4 Monte Carlo trajectories.
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Ensemble β κ4 κ6 Configurations

21 7.25 0.13095 0.13418 61
22 7.25 0.13147 0.13395 71
23 7.276 0.13157 0.13364 96
24 7.3 0.13117 0.13363 61
25 7.3 0.13118 0.13361 96
26 7.3 0.13162 0.1334 71
27 7.308 0.1304 0.13393 96
28 7.33 0.1314 0.1332 96
29 7.4 0.1307 0.133 96
30 7.55 0.129 0.1325 84
31 7.55 0.13 0.1325 84
32 7.65 0.128 0.131 49
33 7.65 0.129 0.1308 49
34 7.65 0.13 0.131 84
35 7.65 0.13 0.132 84
36 7.75 0.128 0.131 84
37 7.75 0.129 0.1308 54
38 7.75 0.1295 0.1315 34
39 7.85 0.129 0.1308 44

Table D.2: List of ensembles with V = 163× 32. Configurations are separated by 10 Monte Carlo
trajectories.

Ensemble β κ4 κ6 Configurations

40 7.51 0.1307 0.1328 133
41 7.55 0.13 0.1327 80
42 7.55 0.1305 0.1325 91
43 7.55 0.1307 0.13234 80

Table D.3: List of ensembles with V = 243× 48. Configurations are separated by 10 Monte Carlo
trajectories.
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Ensemble t0/a
2 m̂4 m̂6

1 1.07(2) 0.024(1) 0.022(1)
2 0.92(3) 0.026(2) 0.030(2)
3 0.89(2) 0.023(1) 0.033(1)
4 0.99(3) 0.034(3) 0.043(4)
5 0.93(2) 0.028(2) 0.043(2)
6 1.07(3) 0.056(2) 0.024(2)
7 1.26(2) 0.054(3) 0.023(3)
8 1.20(3) 0.066(4) 0.018(2)
9 1.15(3) 0.027(3) 0.043(3)
10 1.22(1) 0.026(2) 0.037(1)
11 1.40(2) 0.020(1) 0.029(1)
12 1.26(2) 0.041(2) 0.041(4)
13 1.45(2) 0.030(2) 0.039(2)
14 1.09(3) 0.061(3) 0.067(4)
15 1.33(2) 0.056(2) 0.046(2)
16 1.49(4) 0.055(3) 0.035(3)
17 1.67(2) 0.055(2) 0.031(1)
18 1.89(3) 0.034(3) 0.031(3)
19 1.99(6) 0.075(2) 0.071(2)
20 2.38(6) 0.072(3) 0.043(2)

Table D.4: Measured gradient flow scale t0 and fermion masses m̂r = mr
√
t0 in the ensembles

with volume V = 163 × 18.
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Ensemble t0/a
2 m̂4 m̂6

21 1.093(9) 0.0422(7) 0.0203(10)
22 1.135(9) 0.0279(11) 0.0251(12)
23 1.128(24) 0.0243(7) 0.0326(7)
24 1.132(12) 0.0345(8) 0.0323(14)
25 1.100(10) 0.0331(5) 0.0325(5)
26 1.111(9) 0.0228(6) 0.0381(8)
27 1.174(10) 0.0556(7) 0.0220(9)
28 1.095(12) 0.0282(7) 0.0427(7)
29 1.226(10) 0.0416(8) 0.0403(8)
30 1.418(12) 0.0865(11) 0.0414(15)
31 1.845(18) 0.0495(11) 0.0340(13)
32 0.916(5) 0.1068(8) 0.0858(15)
33 1.067(5) 0.0816(10) 0.0896(8)
34 1.463(15) 0.0459(18) 0.0801(22)
35 2.294(22) 0.0382(13) 0.0357(21)
36 1.556(12) 0.1077(12) 0.0708(10)
37 1.754(15) 0.0730(19) 0.0771(16)
38 2.621(20) 0.0465(13) 0.0402(14)
39 2.670(22) 0.0602(14) 0.0599(12)

Table D.5: Same as Table D.4, but in the ensembles with volume V = 163 × 32.

Ensemble t0/a
2 m̂4 m̂6

40 2.260(16) 0.0196(4) 0.0194(9)
41 2.166(11) 0.0468(5) 0.0205(4)
42 2.182(12) 0.0264(5) 0.0293(6)
43 2.118(6) 0.0189(5) 0.0360(7)

Table D.6: Same as Table D.4, but in the ensembles with volume V = 243 × 48.
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Ensemble M̂P4 M̂P6 F̂P4 F̂P6

1 0.28(1) 0.29(1) 0.102(8) 0.143(8)
2 0.28(2) 0.32(2) 0.106(4) 0.155(6)
3 0.26(1) 0.33(1) 0.109(17) 0.149(15)
4 0.34(3) 0.41(2) 0.115(17) 0.178(33)
5 0.29(2) 0.38(2) 0.108(13) 0.170(11)
6 0.42(2) 0.31(2) 0.120(8) 0.141(19)
7 0.43(2) 0.30(2) 0.132(10) 0.163(23)
8 0.47(1) 0.28(3) 0.138(10) 0.148(19)
9 0.28(2) 0.39(2) 0.110(10) 0.169(10)
10 0.29(2) 0.38(2) 0.129(17) 0.166(28)
11 0.32(5) 0.32(2) 0.113(5) 0.170(11)
12 0.38(2) 0.40(2) 0.127(17) 0.177(23)
13 0.33(1) 0.39(1) 0.115(9) 0.176(11)
14 0.46(2) 0.50(2) 0.142(7) 0.199(9)
15 0.45(1) 0.43(1) 0.133(10) 0.183(14)
16 0.45(2) 0.38(2) 0.141(14) 0.184(19)
17 0.46(1) 0.36(1) 0.145(9) 0.179(14)
18 0.35(2) 0.35(2) 0.122(11) 0.185(13)
19 0.53(2) 0.55(2) 0.159(6) 0.223(17)
20 0.53(2) 0.43(3) 0.153(14) 0.190(20)

Table D.7: Measured pseudoscalar masses M̂Pr = MPr
√
t0 and decay constants F̂Pr = FPr

√
t0 in

the ensembles with volume V = 163 × 18.
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Ensemble M̂P4 M̂P6 F̂P4 F̂P6

21 0.366(9) 0.263(10) 0.119(6) 0.142(9)
22 0.305(9) 0.303(8) 0.105(4) 0.151(5)
23 0.275(6) 0.341(7) 0.108(4) 0.162(5)
24 0.340(5) 0.340(9) 0.119(4) 0.168(9)
25 0.339(3) 0.344(6) 0.107(4) 0.148(13)
26 0.279(7) 0.368(11) 0.103(4) 0.167(13)
27 0.423(4) 0.279(5) 0.127(4) 0.159(7)
28 0.300(8) 0.391(8) 0.115(6) 0.173(6)
29 0.372(6) 0.391(4) 0.126(3) 0.173(8)
30 0.559(8) 0.408(12) 0.156(6) 0.187(7)
31 0.429(10) 0.375(9) 0.140(9) 0.189(10)
32 0.597(8) 0.554(5) 0.159(9) 0.208(13)
33 0.514(8) 0.576(9) 0.154(8) 0.219(11)
34 0.412(9) 0.565(9) 0.141(7) 0.224(8)
35 0.400(9) 0.408(10) 0.132(6) 0.192(17)
36 0.636(7) 0.538(8) 0.166(6) 0.210(8)
37 0.530(5) 0.571(7) 0.154(4) 0.223(12)
38 0.443(14) 0.428(15) 0.135(9) 0.188(13)
39 0.505(13) 0.529(17) 0.148(8) 0.216(8)

Table D.8: Same as Table D.7, but in the ensembles with volume V = 163 × 32.

Ensemble M̂P4 M̂P6 F̂P4 F̂P6

40 0.278(4) 0.291(10) 0.114(4) 0.167(7)
41 0.418(5) 0.295(7) 0.139(4) 0.169(4)
42 0.317(6) 0.355(8) 0.125(4) 0.182(8)
43 0.267(9) 0.394(8) 0.114(4) 0.184(5)

Table D.9: Same as Table D.7, but in the ensembles with volume V = 243 × 48.
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Ensemble M̂V 4 M̂V 6 F̂V 4 F̂V 6

1 0.50(3) 0.57(4) – –
2 0.51(8) 0.59(6) 0.14(3) 0.27(4)
3 0.48(3) 0.56(9) 0.17(3) 0.23(4)
4 0.56(6) 0.67(5) – –
5 0.54(7) 0.61(4) – –
6 0.62(2) 0.62(6) – –
7 0.61(4) 0.60(8) – –
8 0.62(4) 0.61(16) – –
9 0.52(7) 0.64(7) 0.17(4) 0.26(4)
10 0.56(8) 0.63(5) – –
11 0.56(14) 0.60(5) 0.21(3) 0.30(4)
12 0.60(6) 0.67(14) 0.20(4) 0.29(3)
13 0.60(8) 0.69(4) – –
14 0.66(4) 0.73(4) 0.22(2) 0.31(3)
15 0.66(3) 0.72(4) 0.22(2) 0.30(2)
16 0.66(4) 0.68(9) – –
17 0.66(3) 0.66(3) 0.21(1) 0.28(1)
18 0.64(8) 0.67(5) 0.22(3) 0.29(7)
19 0.75(4) 0.82(3) 0.23(2) 0.34(4)
20 0.74(4) 0.77(10) – –

Table D.10: Measured vector masses M̂V r = MV r
√
t0 and decay constants F̂V r = FV r

√
t0 in the

ensembles with volume V = 163 × 18. Some ensembles did not yield reliable measurements of FV r
because of insufficient statistics. The figures and tables omit data from such ensembles.
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Ensemble M̂V 4 M̂V 6 F̂V 4 F̂V 6

21 0.56(2) 0.55(3) 0.19(2) 0.275(1)
22 0.51(2) 0.58(3) 0.17(3) 0.265(1)
23 0.53(3) 0.61(1) 0.18(1) 0.263(1)
24 0.56(2) 0.61(2) 0.19(1) 0.265(2)
25 0.52(3) 0.59(2) 0.19(1) 0.265(1)
26 0.50(3) 0.62(2) – –
27 0.59(2) 0.57(3) 0.20(1) 0.250(2)
28 0.55(3) 0.65(2) 0.19(1) 0.290(3)
29 0.59(1) 0.66(2) 0.20(1) 0.287(1)
30 0.73(2) 0.71(2) 0.24(3) 0.308(2)
31 0.65(2) 0.70(5) 0.21(1) 0.291(2)
32 0.74(1) 0.78(1) 0.24(2) 0.316(2)
33 0.70(1) 0.79(1) 0.22(1) 0.319(1)
34 0.66(3) 0.82(3) 0.22(3) 0.339(2)
35 0.68(5) 0.77(5) 0.20(5) 0.310(3)
36 0.81(1) 0.80(3) 0.25(1) 0.326(2)
37 0.74(2) 0.82(2) 0.23(4) 0.322(4)
38 0.69(4) 0.76(5) 0.24(2) 0.334(3)
39 0.75(2) 0.83(2) 0.24(2) 0.350(4)

Table D.11: Same as Table D.10, but in the ensembles with volume V = 163 × 32.

Ensemble M̂V 4 M̂V 6 F̂V 4 F̂V 6

40 0.57(6) 0.61(2) – –
41 0.64(2) 0.60(4) 0.17(1) 0.29(2)
42 0.59(3) 0.66(5) – –
43 0.57(3) 0.70(2) 0.20(2) 0.32(1)

Table D.12: Same as Table D.10, but in the ensembles with volume V = 243 × 48.
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Ensemble β κ4 κ6 Configurations

1 7.25 0.13095 0.13418 61
2 7.25 0.13147 0.13395 71
3 7.30 0.13117 0.13363 61
4 7.30 0.13162 0.13340 71
5 7.55 0.13000 0.13250 84
6 7.65 0.12900 0.13080 49
7 7.65 0.13000 0.13100 84
8 7.65 0.13000 0.13200 84
9 7.75 0.12800 0.13100 84
10 7.75 0.12900 0.13080 54
11 7.75 0.12950 0.13150 34
12 7.85 0.12900 0.13080 44

Table D.13: The ensembles list used in the baryon analysis. All ensembles have volume V =
N3
s ×Nt = 163 × 32.

Ensemble t0/a
2 m̂4 m̂6

1 1.093(9) 0.0422(7) 0.020(1)
2 1.135(9) 0.028(1) 0.025(1)
3 1.13(1) 0.0345(8) 0.032(1)
4 1.111(9) 0.0228(6) 0.0381(8)
5 1.85(2) 0.050(1) 0.034(1)
6 1.068(5) 0.082(1) 0.0896(8)
7 1.46(2) 0.046(2) 0.080(2)
8 2.29(2) 0.038(1) 0.036(2)
9 1.56(1) 0.108(1) 0.071(1)
10 1.75(2) 0.073(2) 0.077(2)
11 2.62(2) 0.047(1) 0.040(1)
12 2.67(2) 0.060(1) 0.060(1)

Table D.14: Fermion masses and flow scales for the ensembles used in the baryon analysis.
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Ensemble Chimera (J, I) = (1/2, 0) (J, I) = (1/2, 1) (J, I) = (3/2, 1)

1 0.84(3) 0.80(3) 0.94(6)
2 0.80(3) 0.75(3) 0.91(6)
3 0.84(2) 0.81(2) 0.95(4)
4 0.83(3) 0.80(3) 0.96(6)
5 0.97(3) 0.960(9) 1.13(6)
6 1.11(2) 1.09(1) 1.20(2)
7 1.04(2) 1.02(2) 1.15(3)
8 1.00(4) 0.96(4) 1.15(4)
9 1.24(3) 1.21(2) 1.34(5)
10 1.17(2) 1.14(3) 1.28(3)
11 1.07(4) 1.03(4) 1.19(5)
12 1.17(2) 1.13(3) 1.30(3)

Table D.15: Masses M̂Qqq for the chimera baryons in units of the flow scale t0/a
2.

Ensemble Fundamental (J = 0) Fundamental (J = 1) Fundamental (J = 2)

1 1.13(7) 1.20(8) 1.30(9)
2 1.07(9) 1.1(1) 1.26(9)
3 1.10(7) 1.13(8) 1.25(8)
4 1.0(1) 1.1(1) 1.3(3)
5 1.33(4) 1.39(4) 1.54(8)
6 1.46(3) 1.50(4) 1.61(5)
7 1.29(8) 1.37(5) 1.5(2)
8 1.36(6) 1.4(1) 1.6(2)
9 1.75(2) 1.79(4) 1.85(7)
10 1.54(5) 1.60(3) 1.72(6)
11 1.5(2) 1.55(9) 1.7(2)
12 1.53(4) 1.61(3) 1.73(6)

Table D.16: Masses M̂q4 for the fundamental baryons in units of the flow scale t0/a
2.
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Ensemble Sextet (J = 0) Sextet (J = 1) Sextet (J = 2) Sextet (J = 3)

1 1.89(7) 1.92(7) 2.00(6) 2.13(6)
2 1.90(6) 1.95(7) 2.1(1) 2.2(1)
3 1.880(3) 1.93(4) 2.05(6) 2.17(5)
4 1.98(5) 2.04(5) 2.11(5) 2.23(6)
5 2.27(2) 2.33(3) 2.46(2) 2.61(2)
6 2.6(2) 2.63(8) 2.7(2) 2.77(7)
7 2.76(4) 2.81(5) 2.90(5) 3.00(4)
8 2.49(4) 2.54(6) 2.67(7) 2.84(4)
9 2.55(8) 2.57(7) 2.66(6) 2.80(4)
10 2.75(6) 2.79(6) 2.9(2) 3.01(5)
11 2.54(4) 2.58(6) 2.68(6) 2.81(7)
12 2.71(5) 2.74(4) 2.89(4) 3.06(5)

Table D.17: Masses M̂Q6 for the sextet baryons in units of the flow scale t0/a
2.


