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Towing objects in space has become an increasingly researched mission concept. Active debris re-

moval, satellite servicing, and asteroid retrieval concepts in many cases rely on a thrusting vehicle to redirect

and steer a passive object. Focus is often placed on the method of attachment, considering techniques such

as grappling or netting the passive object. However, the actual process of towing, once capture has occurred,

has not yet received much attention. This research considers the process of towing in space with the tug and

passive object attached by a tether. Tethers are not only an effective way of transmitting forces, but they are

utilized on many of the towing concepts considered, especially in orbital debris removal.

Because the two end bodies are tethered, there is a potential for collision after any maneuver. To

avoid collisions, the maneuver, and therefore thrust profile, must be designed in such a way as to limit

separation distance reduction between the end bodies. Open-loop input shaping techniques are developed

and employed in order to control the flexible system in both deep space and on-orbit environments. To

study the behavior, an active debris removal system is proposed as a case study. This system, called the

tethered-tug, considers using the reserve fuel from a recently launched upper stage rocket to rendezvous

with, capture, and tow a near-by debris object.

The system’s performance is considered for five distinct open-loop thrust control profiles including

on-off/step, frequency notched, discretized notch, Posicast, and bang-off-bang. Tether property variations

are also considered along with off-axis towing, slack tethers, and debris with initial rotation rates. Input

shaping is not only necessary but, it can be robust to unknown system properties while nearly zeroing

relative motion between the end bodies. When considering on-orbit behavior specifically, the system settles

into a tumbling or gravity gradient oscillation formation. This is highly advantageous because the orbital

dynamics keep the end bodies separated. While the study focuses on the debris problem, conclusions from

this dissertation are applicable to general tethered towing mission concepts.
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Chapter 1

Introduction

Figure 1.1: Illustration of human-made orbital debris surrounding Earth1

Throughout the course of human history, exploration into unknown, new environments has been

dangerous, but also exciting and hope-filled endeavors. Frequently, explorers have set the path for pioneers

who create infrastructure and economic foundations for settlers to then arrive and prosper. This often brings

about great change in the world. Unfortunately, humans also introduce a myriad of problems to the new

frontier.

While we are only yet explorers in space, we have begun to litter our near-Earth environment. The

extensive use of Earth orbit, without regard for the the effects we can have, has literally created an orbital

environmental issue. Figure 1.1 illustrates this by marking approximate locations of orbital debris, at a given
1 http://firstlook.pnas.org/michael-najjar-artist-in-space/
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time. Still, there is hope that this problem can not only be corrected, but improved so that our continued use

of space remains relatively unhindered by space debris.

This dissertation considers the current Low Earth Orbit (LEO) debris environment and considers one

possible method for actively removing high-risk, large debris from orbit.

1.1 Space Debris: Environment and Active Debris Removal

In order to understand why the orbits around Earth have become hazardous, the context of human

operations in space must be known. A very brief history of debris in orbit is given and the decision to

consider Active Debris Removal is discussed.

1.1.1 Growth of Human-Made Objects in Space

1.1.1.1 Historical Orbital Debris Events

The space surrounding Earth has become increasingly crowded due to our growing dependence on

satellite technology for communications, exploration, and military endeavors. Objects in Earth orbit have

been tracked and cataloged since 196167 by the U.S. Air Force for communications tracking as well as

identification of foreign satellites. However, the use of tracking to provide conjunction assessments has

become an increasingly important role of the catalog. Out of the 22,000 objects of at least 10 cm in size that

are tracked22 in orbit, approximately 1,100 are functioning assets. This means that there are about 20,900

objects that are debris. The number of debris jumps significantly when the known, but uncataloged debris

are considered. These are debris that may be seen by some of the more powerful observatories, however

they are not consistently tracked due to the lack of ability for persistent observation or unknown dynamics

as with high area-to-mass ratio objects.74 This number is often registered in the many tens of thousands.84

An estimated number of debris by size is shown in Figure 1.2. (Note that this figure is from 1998 and does

not capture the major recent events and therefore is an underestimate.)

When space operations first started in 1957, the majority of the objects in Earth orbit were dust

and micro-meteoroids. For all intents and purposes, it was assumed that the “Big Sky Theory” held true:
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Figure 1.2: Estimated number of objects in Low Earth Orbit, as of 199867

due to the large volume of space and small volume of a satellite the probability for collisions was very

small. Therefore, most organizations paid little attention to debris and sources of debris creation. This

can be summarized by the 1967 Apollo collision analysis: “the number of untrackable fragments ... from

explosions ... constitutes an insignificant increase in the total number of objects in earth orbit and hence can

be neglected in the calculation of collision probability”.53

The first rocket body break-up occurred in 1961. Multiple other contributions to the debris population

has occurred throughout the years including some hypothesized collisions, anti-satellite tests (ASAT), and

the deployment of West Ford needles.67 Micro-meteoroids and orbital debris (MMOD) were considered

enough of a threat to include shielding on manned missions like Skylab however the shielding was for very

small MMOD. Due to the increasing debris population, a small group of people began characterizing the

environment, and in 1978, Cour-Palais and Kessler published their landmark paper39 describing the likely

‘debris cascade effect’. Understanding the debris environment was further fueled by the idea of creating

a large, relatively permanent space station in orbit. The orbital debris program gained traction in NASA

and was funded soon afterwards. By 1980, a Geosynchronous Earth Orbit (GEO) disposal method was

also proposed.67 Throughout the 1980s and 1990s further emphasis was placed on the growing orbital

debris population by both NASA and the U.S. military. The first mitigation guidelines were outlined in
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19921 prompting similar discussions in Russia and Europe. The creation of the Inter-Agency Space Debris

Coordination Committee (IADC) and its efforts have helped to better formulate and summarize mitigation

strategies that are in use today.18

In recent years, the creation of LEO debris has increased, largely due to two major catastrophic

events: the Fengyun 1C ASAT test60 that created over 3300 objects38 and the Cosmos-Iridium collision37

that created over 1700 objects.61 This collision has helped to demonstrate that the debris cascade effect,

first predicted by Kessler and Cour-Palais in 1978,39 is occurring. Further, environmental models developed

at the NASA Johnson Space Center Orbital Debris Office have shown that the debris environment is un-

stable and will grow in size dramatically, especially for LEO.48 As of 2008, there have been a total of 194

fragmentations56 with over ten more fragmentations since 2008.57, 58

1.1.1.2 Orbital Debris Mitigation

In order to reduce debris creation, mitigation techniques have been employed. The primary debris

mitigation methods include captive spacecraft elements (i.e. captive bolts), passivation (dumping excess

fuel and shorting batteries), and demonstrating that all objects in LEO will deorbit within 25 years. These

guidelines have been adopted by many nations (those in the IADC), however, adherence to these methods is

not universal or consistently practiced.

Still, there has been a lot of evidence that mitigation methods are important to controlling the growth

of space debris. Ruediger Jehn, from the European Space Agency (ESA), has demonstrated that mitigating

both large and small sources of debris is effective at reducing the overall population. Figure 1.3 shows that

there will be significant increases in the number of large, damaging debris objects if current practices are

continued. The use of mitigation techniques are shown to noticeably reduce the number of debris created.

Passivation helps to stop break-ups, however, solid rocket motor (SRM) slag is a large contributor to the

smaller debris diameters and therefore its prevention will more significantly reduce debris objects.

Similar to ESA’s findings, NASA has shown that the “business as usual” approach will cause drastic

increases to the number of debris in orbit. Figure 1.4 shows the expected number of large objects to grow

for all orbital regimes where LEO experiences the most drastic growth. The NASA model in Figure 1.4



5

shows larger increases in the debris population than the ESA estimates due to the fact that information on

the A-SAT and Cosmos-Iridium debris is included.

..

Figure 1.3: Mitigation Techniques: Impact of Passivation and SRM Slag Avoidance35

..

Figure 1.4: No Mitigation as Predicted by NASA’s LEGEND47

When the time to deorbit a spacecraft after End of Mission is considered (Figure 1.5(a)), the debris

environment and the number of collisions predicted change drastically. The “business as usual” plan, without
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any artificially reduced spacecraft lifetimes, experiences large, non-linear growth in the number of collisions.

This demonstrates that the behavior is unstable and will accelerate. Almost any deorbit time frame less than

the natural lifetime of a spacecraft drastically reduces the number of collisions expected over the next 100

years. What is also interesting about Figure 1.5(a) is that the differences in number of collisions between

25 to 100 year deorbits are all about the same. The 0 or 10 year deorbit solutions reduce the number of

collisions predicted in the next 100 years to about 10.

(a) Impact of Differing End of Mission Deorbiting Times.35 ESA predictions

(b) Number of Collisions from Mitigation and ADR Predicted by NASA’s LEG-
END49

Figure 1.5: Expected number of future collisions due to debris
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Figure 1.5(b) shows NASA’s predictions of the number of collisions over the next 200 years. This plot

differs from Figure 1.5(a) in that it considers disposal 25 years after End of Mission (for both rocket bodies

and satellites, this occasionally includes moving to disposal orbits instead of deorbiting) as well as ADR.

Still, similar trends can be seen between the two plots. First, collisions will occur in the future, even with

aggressive mitigation and ADR measures. Second, both ESA and NASA models predict there to be about

15 collisions over the next 100 years when using 25 year End of Mission disposal practices (equivalent of

the post mission disposal (PMD) line in Figure 1.5(b)). This shows that both models are predicting similar

outcomes with the debris environment. Further, the use of current-day mitigation techniques alone will not

stop the debris growth.

1.1.2 The Case for Active Debris Removal

Implementation of mitigation practices for on-orbit spacecraft have been shown to be effective at

reducing debris growth in orbit. Both ESA and NASA predictive models seem to agree on this result. How-

ever, it has also been shown that mitigation only slows the growth of debris, it does not stop it. Because

proper mitigation standards are not always followed, the effectiveness of the methods (Figure 1.3 and Fig-

ure 1.5(a)) are reduced. Looking at the number of break-up events from 1961 to 199867 and comparing

them to the total number of launches for each given year,43 Figure 1.6 is obtained. There has been about an

average of 146 launches per year from 1961 to 1998, however, the number of break-ups each year are shown

in Figure 1.6 to be increasing. Note that this figure was produced by:

Percent of Break-ups =
Number of Recorded Break-ups for Year X

Number of Launches in Year X
x 100

The break-up events are from mostly old but some newer satellites (that should be practicing mitigation

techniques). This demonstrates that mitigation is not a perfect method and another, more aggressive option

might need to be considered because the number of break-ups have not been reduced during this time frame.

Active debris removal (ADR) is the next step, above and beyond mitigation, to reduce orbital debris.

NASA’s Orbital Debris Office has shown that removing 5 large objects from orbit a year,49 while achieving

90% PMD with all future launches will stop the debris growth in LEO. Figure 1.1.2 demonstrates this
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aggressive approach’s effectiveness over the next 200 years. Thus, it is obvious that ADR, in combination

with the common use of mitigation methods, are pivotal to controlling the LEO debris population.

..

Figure 1.6: Percentage of All Observed Breakups Compared to the Number of Launches in a Given Year

Figure 1.7: Mitigation and ADR Estimates for Improving LEO Debris Populations47

Unfortunately, the scenario presented in Figure 1.1.2 may be in many ways optimistic. The model

used to obtain the figures assumes that 90% of all satellites and rocket bodies deorbit in 25 years, something



9

that is not achieved today. Further, the models assume that ADR will start in 2020. This is only 6 years

away and the current economic and political environment may likely push this date back, which reduces

some of the effectiveness of ADR.47 (Dr. Liou also looked at how ADR will behave if it does not start until

2060 and found that it is still quite effective, but there does appear to be growth in the LEO population,

unlike the 2020 start.) These results also assume that the rate of launches does not increase over the next

200 years, which can be very variable. Finally, this model assumes that no further A-SAT tests will occur. It

is therefore likely that, for a multitude of reasons, ADR will not be as effective as described in Figure 1.1.2.

It may also require that more than just 5 objects per year are deorbited to achieve the same reduction in the

debris environment. All of these facts demonstrate a pressing need for ADR technology development so that

if, and when, ADR is needed, it will be available.

1.1.3 Challenges for Active Debris Removal

The process of active debris removal creates many old and new challenges. Because ADR is de-

fined by using an active craft to maneuver a debris object, several key events must occur: identification and

tracking of the debris, rendezvous, uncooperative docking, and execution of removal operations. In LEO,

tracking is a continuous process, most notably performed by the U.S. Air Force’s Joint Space Operations

Center (JSpOC). Still, this process is not always perfect and the locations of tracked objects can have sig-

nificant error bounds. Identification of the most hazardous debris is also necessary and the classification of

how they are hazardous can vary. If debris can be accurately tracked and identified as sufficiently hazardous,

an ADR system can focus on that particular object.

After launching into orbit, the ADR system will then have to rendezvous with the debris object. While

rendezvous has occurred on a variety of manned missions, it is less practiced for unmanned and autonomous

vehicles in orbit. A multitude of studies have been done to address this issue and it is an active area of

research.25, 55, 64, 65, 85, 93 Uncooperative docking is also an active area of research and requires continued

development to be useful for on-orbit implementation86, 91, 92

Finally, once the ADR system has rendezvoused and docked with the debris, it will need to properly

maneuver the debris to a disposal orbit. For LEO, this means an orbit that will decay within 25 years or a
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direct reentry into the atmosphere. All of these technologies will either need to be improved or created to

function properly for ADR.

1.2 Tethered - Tug Concept: Prospects and Challenges

Rocket 
Body 

Debris
Gas rocket 

engines

New Upper 
Stage with 

Fuel Reserve

Periapses lowered 
for quicker 

atmospheric re-entry

multi-km Tether

(a) Tethered ADR concept with rocket bodies (b) Tethered Tug with a small asteroid

Figure 1.8: Examples of tethered tug concepts

1.2.1 System Description

LEO ADR translates technically into changing debris’ orbital momentum to lower their periapses.

Some proposed ADR methods2, 10, 34, 69, 70, 87 utilize harpoons, mechanical grapples, or nets to grab the debris

object. This is done so that the active tugging system does not need to directly interface with large, tumbling

debris which could be a dangerous process. While the study of the debris capture system is beyond the scope

of this research, all of these methods are likely to use tethers to connect the debris to the ADR craft. Tethers

are a very efficient way to change the orbital momentum of on-orbit objects.

This research considers a specific engineering solution to ADR. The proposed concept is a mechanical

debris towing system, shown in Figure 1.8(a). The concept uses a tether with one end attached to a vehicle

with thrusting capabilities, known as the tug. The other end of the tether is attached to the debris object.

A tethered tug system could also be utilized for missions other than ADR, as shown in Figure 1.8(b).
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The basic principles and dynamics correspond to satellite servicing or even asteroid towing. For satellite

servicing, the towing vehicle could maneuver the target object to a desired orbit. NASA also has many plans

to retrieve an asteroid as described in the NASA FY2014 Complete Budget2 . There have been studies23 of

mission concepts to bring a small asteroid near to Earth for further investigation and resource harvesting.

Earth protection from asteroid collisions has been a recent topic of discussion. Towing asteroids may be

applicable to moving asteroids that may impact Earth.24, 51 A tethered system could be utilized for these

mission plans.

Returning to ADR, one ideal model for this system is for the tug to be a rocket that is assumed to

have deployed its payload and completed its primary mission.50 Its secondary mission goal is to use the

remaining fuel reserves to rendezvous with a debris object of similar orbital parameters. After attaching

a tether to the debris object, the tug thrusts, lowering the periapsis of both objects. The general concept,

originally developed by Dr. Trushlyakov from Omsk State University and shown in Figure 1.8(a), will

change the periapsis so that drag forces cause both objects to deorbit within 25 years. Depending upon

initial starting altitude and amount of reserve fuel available to the active upper stage, the debris-tug system

could be deorbited within half an orbit (direct re-entry).34, 50, 87

This concept is advantageous because it utilizes a rocket that is already going to fly and deliver a

satellite to orbit. Therefore this launch is not solely for the ADR mission. Further, it is likely that the

rocket’s payload will require an orbit in which many debris objects are already orbiting. Figure 1.2.1 shows

high-priority targets for ADR, and many of them are in heavily used orbits. These orbits are likely locations

for the launch vehicle/tug to fly to. It is therefore probable that the tug will be relatively close to debris that

is most important to remove from orbit. The tethered-tug debris architecture provides a cost-effective ADR

system because it deorbits two pieces of potential debris for each mission from orbits that are the highest in

debris density.

Any tethered tug system, independent of mission, presents challenging rotational and translational dy-

namics and control behavior. Tethers have not been used or studied in a high force, high thrust environment.

Some of the top-level challenges include:
2 http://www.nasa.gov/news/budget/index.html
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Figure 1.9: Top 500 Objects for ADR47

· Collision avoidance between end masses

· Understanding the system’s translational and rotational motion

· Starting the thrust maneuver with a slack tether, causing whipping

· Unintentionally inducing rotational motion caused by off-centered tether attachment location

· Uncertainty in the system properties, such as debris mass

1.2.2 Motivation of Research

Rendezvous and attaching to debris receives a lot of research attention. While rendezvous and un-

cooperative docking remain challenging topics, all these studies consider the process of ADR ‘completed’

once docking has occurred. This thesis considers the research niche that is not studied: what to do with

debris after capturing it. Again, since many capture concepts explicitly, or implicitly, use tethers, it makes

sense to study how to perform maneuvers with a tethered system.

The tethered-tug concept requires study of a tethered system with two large end bodies. The flexing

motion and modes of the tether itself are of interest to determine how it interacts with the large end masses.
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Simulations are run in deep space and on-orbit environments. Deep space simulations allow for a detailed

analysis on how idealized input shaping controls impact the post-burn relative motion, without the compli-

cation of orbital motion and perturbations. This allows for the post-burn dynamics to be studied subject to

unknown debris mass properties and considering unmodeled higher order tether modes. Deep space is also

applicable to asteroid retrieval as differential gravity is essentially negligible for close objects in such large

heliocentric orbits. On-orbit simulations are conducted to determine flight-like behavior of the system and

verify that control methods utilized produce desirable behavior for the ADR scenario.

Tethers have been studied and developed for years. However, little work has been performed in

exploring their possible use as a towing mechanism and more effort is required in the study of tether-to-rigid

body dynamics. Further, towing will generally induce large forces on the tether creating challenging thrust

and post-thrust system dynamics. Tethers behave in a non-linear manner because they only apply a force

while in tension. They are also very sensitive to whipping due to the sudden onset of a tension force. The

challenging environments and dynamics that a tethered towing system must operate in, thus, require more

detailed analysis.

The system is represented with large rigid body end masses and a lumped mass model of the tether is

used (Chapter 2.2). Because this research focuses on the end body response, and is not a detailed analysis of

the tether motion, the lumped mass model is acceptable. The lumped mass model still allows for nonlinear

tether deflections to occur, along with higher order flexible tether modes and the simulation of slack tether

behavior. Since the lumped mass model captures all of these behaviors, it provides an effective means to

study tethered towing.

1.3 Literature Review

1.3.1 Active Debris Removal Related Research

There are numerous studies that relate to ADR and the technologies required for ADR. There are

several primary avenues of study that relate to an ADR mission: rendezvous, on-orbit servicing, and capture.

These research areas have huge bodies of work but the literature review focuses on studies that are relevant
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to this dissertation.

One of the most difficult phases of an ADR mission will be the capture of debris. The most obvious

method is to have the towing vehicle approach and mechanically dock to the object in question. Docking

with the target vehicle has merit because it has been demonstrated many times. The basic principles behind

this process have been around since Gemini12 and have been practiced many times since in the world of

human spaceflight. The Russian Progress vehicle has been used very successfully for rendezvous and dock-

ing for several decades on Mir and Salyut3 . International Space Station servicing also has led to continued

development in these processes with a multitude of vehicles such as Astrium’s Automated Transfer Vehi-

cle (ATV), Orbital Sciences’ Cygnus module along with SpaceX’s Dragon capsule and, again, the Russian

Progress module. Several on-orbit missions have pushed the boundaries of this process by taking the human

out of the loop. Specifically, Defense Advanced Research Projects Agency’s (DARPA) Orbital Express25

is a mission that demonstrated rendezvous, docking, and on-orbit servicing in 2007. MIT’s SPHERES55

program, and the Air Force’s XSS-1193 have also conducted autonomous rendezvous and docking on-orbit.

Unfortunately, the majority of these programs consider cooperative rendezvous and docking. De-

bris rotation rates can vary widely but may generally be on the order of a few degrees per second68 for

objects that have been on orbit for several years. This provides very challenging docking requirements on

an ADR mission to not only dock but slow the rotation of the debris in order to perform maneuvers. Fur-

ther, approaching a tumbling object adds extra risk to the tug vehicle. This has promoted the study of new

technologies and methods for keeping the tow separated from the debris.

Many of these concepts are creating exciting technology developments. Several concepts propose

touch-less force application such as ion-beam thrusting on the debris,9 or electrostatic towing.73 A large

number of mechanical systems are also proposed such as grappling with an actuated ‘arm’, nets, and har-

poons. Astrium is developing some of the most promising mechanisms that have undergone some testing.

Figure 1.10 demonstrates several of these.

The net capture concept,70 Figure 1.10(a), literally deploys a net around the object of interest. A

net is attractive because it provides distributed loading to the debris when a maneuver is performed. Nets
3 http://www.astronautix.com/craft/progress.htm
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(a) Net Capture2 (b) Harpoon2

(c) Grappling Arm2

Approaching 
SP-T

Docking and Tether 
Tensioning

Orientation of 
SP-T De-Orbit

Gas Rocket 
Engine of ADS

(d) Mini-capture vehicle34

Figure 1.10: Debris Capture Concepts

also have the advantage of ensnaring appendages of the debris, such as solar panels. Finally, nets do allow

for the debris to have some rotational motion and could provide rotation damping as well, depending upon

the towing strategy and the net properties. The net concept has been tested in micro-gravity flights and

in vacuum deployments, making their technical readiness level relatively high compared to most debris

capture systems. Very recent work has considered how a net capture may actually perform on orbit and how

the system behaves once maneuvered with a tether-net.8 The study by Benvenuto et. al.8 is directly related

to the research performed in this thesis and provides a good external verification that the dynamics seen are

very similar to what is presented in following chapters. Still, net capture technology requires further study

and testing because net orbital dynamics are challenging and the ability to capture a tumbling object without

breaking appendages is a concern.
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Harpooning debris may also provide a reasonable capture mechanism,69 shown in Figure 1.10(b).

The tested harpoon systems have been shown to penetrate various surfaces and can withstand large loads,

such as thrust loads that would be applied by the tethered-tug system. Harpoons also allow for separation

distance between the tug and debris, increasing safety. Finally, harpoons can also can operate properly even

with debris rotation, making them an attractive design.

Finally, there are grappling devices designed to grip the debris, while maintaining some distance

from the tug. These systems fall into two main categories: arms (Figure 1.10(c)) and mini-capture vehicles

(Figure 1.10(d)). Arms allow for articulated capture of an object on the debris. Arms also make it easier

for manipulation of the debris once capture has occurred. The mini-capture vehicle has a mechanism that

interfaces with spent rocket nozzles87 attached to a tether. These systems allow for potentially more secure

attachment to the debris, but encounter many of the issues of uncooperative docking. Provided the mini-

capture vehicle can attach to the debris, it does allow for spin rates while keeping the tug safely at a distance

due to the tether.

In a separate proposed ADR mission concept by CNES (the French space agency), it was envisioned

that towing debris through the use of a tether could be very effective.10 The tether would be tolerant to center

of gravity offsets, fuel sloshing, and any other challenging dynamic response from debris. The study also

identifies that a Soyuz vehicle, or similarly large launch vehicle, would be required for an ADR mission.

These independent conclusions plus the frequent use of tethers in the net, harpoon and mini-capture vehicle

concepts provide motivation for the study of the tethered-tug concept.

The original tethered-tug concept was developed by Dr. Valery Trushlyakov and explored in the

papers “The Use of Adapted Upper Stages for the Removal of Satellite and Rocket Body Debris from

Unstable Orbital Regions”50 and “Tethered Tug for Large LEO Debris Removal”.34 The second paper by

Jasper, Seubert, Schaub, Trushlyakov and Yutkin, provided the first analysis of towing in space. This paper

originally considered the use of the mini-capture vehicle, but nets or tethers may be just as effective. The

research has since expanded to include the work recorded in this thesis.
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1.3.2 Previous Tether Research

Space tether applications have been studied for years13, 15, 36 and have shown promise. Space tethers

also have flight heritage with several space shuttle missions and the Small Expendable Deployer System

(SEDS)14 missions which demonstrated a tether deployment of 20 kilometers and closed-loop tether de-

ployment. However, these missions have been preliminary demonstration missions and have not executed

many of the tasks required by ADR and towing. Tether applications still require extensive study because

of the limited scope to these missions. (It is interesting to note that the first SEDS payload had its tether

severed by debris.67 This originally made the prospect of using tethers appear doubtful due to an apparently

high collision probability. However, numerous on-orbit tethered missions have flown since SEDS and not

experienced a debris hit, therefore making the probably of collision much lower than originally expected,

although it is not negligible.5, 6, 62)

The analysis of tethered systems (also known as Tethered Systems in Space or TSS) is often broken

into three models to describe tether motion: continuum, finite element, and discrete mass models.90 Contin-

uum models usually consider partial differential equations and the solutions to these are either impossible

to analytically solve or beyond the scope of this research. Finite element models (FEM) can produce high-

accuracy results, however their proper implementation can be difficult and FEM is generally computationally

intensive. This research focuses on the gross behavior of large end bodies attached through a space tether

which can be adequately described with a discrete mass model.

Discrete mass, or lumped mass, models are used frequently. Reference 40 creates a discrete mass

model to describe a distributed, tethered infrared telescope. Their system differs from the tethered-tug

because it is a rotating, variable tether length system. Further, the model only considers small point masses

on the ends of the tethers. The tethered-tug research considers a very different formation with rigid body end

masses, providing different, challenging dynamics. Williams90 provides a very similar discrete mass model

to what is used within this thesis research, however Williams’ tether is designed as a space elevator anchored

to the Earth. The towing system explored here focuses on tether lengths that are much smaller with vastly

different end mass behavior. Tethers have been used underwater for years, and there are even similar discrete
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mass models developed for these underwater tethers.11, 20, 21 However buoyancy, surface wave motion, and

other environmental inputs create different dynamics. The model developed for this research is capable of

modeling higher-order tether modes while capturing large rigid end body motion on both ends of the tether.

Further, the model focuses on towing large bodies, something that has not been studied.

Electrodynamic tethers are often proposed for ADR concepts and they have been studied exten-

sively.40, 63, 89 Electrodynamic tethers rely on using differential charging along the tether to create an electron

flow, creating a magnetic field that can be controlled to change orbital altitude through the Lorentz force.

While this technology is promising, it operates in a fundamentally different way from the tethered-tug con-

cept by utilizing the Earth’s magnetic field, instead of towing debris with chemical propulsion. Further,

electrodynamic tethers operate in significantly lower force environments and are therefore not directly ap-

plicable to this research.

In the past, tethers have been considered as a mechanism for changing a satellite’s orbit, like the

tethered-tug system is required to do. Various concepts use tethers for momentum exchange where tethered

end masses spin about the system’s center of gravity. One of the masses is then released and thrown into

a different, desired orbit. The concepts generally look at LEO to GTO or lunar injection orbits.16, 28, 29, 83

While these concepts generally consider relatively large force environments, ‘momentum exchange’ is dif-

ferent than the tethered-tug premise. With a momentum exchange device, in order to conserve momentum,

as one object is thrown into a higher orbit, the other object is thrown to a lower orbit. This is specifically not

desirable for an ADR system since both objects should ideally be removed from orbit. Further, these studies

generally do not consider slack tethers, something that is a reality for the towing architecture.

1.4 Research Intent

1.4.1 Goals

The goal of this research is to describe and control the motion of the tether-tug system while avoiding

collisions between the end masses. The primary fundamental questions are:

(1) How does a tether interact with rigid masses on both ends after a large thrust maneuver?
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(2) Can the potential for collisions between end bodies be reduced through open-loop control shaping?

(3) How does variability in tether and debris properties affect performance to lower periapses?

(4) What motions and orientations occur between the end masses because of input shaping?

(5) If a tether is slack before thrusting, does it severely increase collision potential?

Investigating the fundamental questions help to determine if tethered towing is actually a safe and

viable option for ADR, satellite servicing or asteroid retrieval. This research focuses on the end mass and

tether dynamics and control. The process and mechanism by which the tether attaches to the debris (or

functioning satellite or asteroid) is not considered due to the significant and unique challenges docking

presents.

The specific research goals are as follows:

• Research Goal 1: Model the rigid body-to-tether interaction

• Research Goal 2: Examine the tether system’s ideal motion with a taut tether and an aligned CG-

to-tether attachment point

• Research Goal 3: Investigate the tether system’s non-ideal motion with a slack tether and an offset

CG-to-tether attachment point

Goal 1 focuses on analytic and numerical model development of the tethered-tug system. Goal 2 is used not

only to study the behavior, but to develop input-shaped controls to properly maneuver the system and explore

tether properties. Goal 3 looks at how the system and controls behave in more realistic and challenging

conditions.

1.4.2 Scope

The research comprising this thesis is heavily focused in astrodynamics and will consist of computer

simulation-based studies. While the tether plays a significant role in the system behavior, much of the focus

is placed on the end body motion as opposed to the tether. This is because the end bodies are much more
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massive and capable of creating debris. The purpose of this system is to maneuver both objects without

causing a collision, thus performance is based upon end body behavior.

A constraint is placed on the system throughout the dissertation, that the end bodies shall not collide.

This is a conservative approach to avoiding debris creation because the relative velocities between the end

bodies will generally be small. It is unlikely low velocity end body collisions will have enough energy to

produce additional debris. Further, if a collision occurs after the periapsis lowering maneuver is performed,

the entire system has a lowered lifetime, including any debris caused by an end body collision.

It is assumed that the maneuver does not cause a direct re-entry of both objects. A direct re-entry

simplifies much of the behavior because there is not enough time to see much interaction of the system

components before they burn up. Long duration behavior is not considered primarily because focus is

placed on how to maneuver the system instead of behavior after months or years.

Rendezvous and docking/attachment are their own, unique challenges that are actively being re-

searched. It is assumed that these processes have already occurred and the system is ready for further

maneuvering.

Finally, the economic and political challenges associated with this system, and ADR in general, will

not be addressed. There are tremendous hurdles to be overcome in both these areas before ADR can become

a reality.4, 31, 52, 75 The author has had many conversations with a variety of people in the community about

these challenges and while the topic is of interest, this discussion does not concisely fit into the thesis. It

can be said though, that there is an aversion to funding ADR systems due to the fact that they can easily

be considered weapons systems. Further, there is still considerable debate among funding agencies and

policy makers that ADR is necessary (versus continued mitigation). Clearly, these are complicated issues

that require their own contemplation and, again, are not addressed beyond this point.

1.4.3 Contributions

The work in this thesis has been collected from these publishings on the tethered-tug system:

• L. E. Z. Jasper and H. Schaub, “Tether Design Considerations for Large Thrust Debris De-orbit

Burns,” AAS/AIAA Spaceflight Mechanics Meeting, Santa Fe, New Mexico, January 26-30, 2014.
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• L. E. Z. Jasper and H. Schaub, “Discretized Input Shaping for a Large Thrust Tethered Debris Ob-

ject,” AAS/AIAA Spaceflight Mechanics Meeting, Santa Fe, New Mexico, January 26-30, 2014.

• L. E. Z. Jasper and H. Schaub, “Input Shaped Large Thrust Maneuver with a Tethered Debris

Object,” Acta Astronautica, Vol 96, March - April 2014, pp. 128 - 137.

• Lee E. Z. Jasper and Hanspeter Schaub, “Input Shaped Large Thrust Maneuver with a Tethered

Debris Object,” 6th European Conference on Space Debris, Darmstadt, Germany, April 22 - 25,

2013.

• L. E. Z. Jasper, C. R. Seubert, H. Schaub, T. Valery and E. Yutkin, “Tethered Tug for Large LEO

Debris Removal,” AAS Spaceflight Mechanics Meeting, Charleston, January 29 - February 2, 2012.

Paper No. AAS 12-252.

• L. E. Z. Jasper, H. Schaub, “Discretized Input Shaping for a Large Thrust Tethered Debris Object,”

In preparation.

Other publishings related to orbital debris research, but not specifically concerning the tethered-tug

concept, and therefore not addressed in this thesis:

• H. Schaub and L. E. Z. Jasper, “Circular Orbit Radius Control Using Electrostatic Actuation for 2-

Craft Configurations,” AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, July

31 - August 4, 2011. Paper No. AAS 11-498.

• L. E. Z. Jasper and H. Schaub, “Effective Sphere Modeling for Electrostatic Forces on a Three-

Dimensional Spacecraft Shape,” AAS/AIAA Astrodynamics Specialist Conference, Girdwood,

Alaska, July 31 - August 4, 2011. Paper No. AAS 11-465.

• H. Schaub and L. E. Z. Jasper, “Orbit Boosting Maneuvers for 2-Craft Coulomb Formations,” AIAA

Journal of Guidance, Control and Dynamics, Vol. 36, No. 1, Jan.-March 2013, pp. 74-82.

• Jasper, L. E. Z. and Schaub, H., “Effective Sphere Modeling for Electrostatic Forces on Three-

Dimensional Spacecraft Shapes,” Adventures on the Interface of Mechanics and Control, K. T.
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Alfriend, M. Akella, J. E. Hurtado, J. Juang, and J. D. Turner, Tech Science Press, Duluth, Georgia,

2012, pp. 267-298.

• L. E. Z. Jasper, P. Anderson and H. Schaub, “Economic and Risk Challenges of Operating in the

Current Space Debris Environment,” Submitted to 3rd workshop on Space Debris Modeling and

Remediation in Paris, CNES-HW, Paris, France, June 16-18, 2014

• L. E. Z. Jasper, P. Anderson and H. Schaub, “Cost and risk assessment for spacecraft operation de-

cisions caused by the space debris environment,” Submitted to the 65th International Astronautical

Congress, Toronto, Canada, Sept. 29 - Oct. 3, 2014.

1.5 Thesis Outline

The thesis is organized into 6 chapters. While the first chapter gives introductory material and motiva-

tion for the research, the remaining chapters describe the results from the research. Chapter 2 describes the

model and simulation software used for this research. Chapter 3 describes the control methods devised for

the tethered-tug system and their performance. Variability of the system due to changes to tether properties

is explored in Chapter 4. A high-level description of the tether design space is identified given desirable

system behavior. Next, Chapter 5 demonstrates the losses of performance due to a slack tether prior to ma-

neuvering, and induced rotations in the end bodies. Finally, Chapter 6 ends the thesis by providing the final

conclusions in Chapter 6.1 and Chapter 6.2 highlights possible continuations of this research.



Chapter 2

Modeling the Rigid Body-to-Tether Interaction

The tether system model and simulation software is described in this chapter. First, a brief explanation

of the simulation is given, describing its capabilities. Next, the tether model is described, analyzed, and

verified. Finally, the concept’s parameters, such as masses considered, are given.

2.1 Simulation Software Architecture

The simulation software is designed to model orbital and attitude motion of rigid bodies. It is written

in C as was originally made for Coulomb Structure research.72, 76 However, it has been modified for tethered-

tug analysis. The software is based upon inertial propagation of all bodies. Because all accelerations are

applied in the inertial frame (Earth centered), there are no truncations or linearizations applied to the forces

used. It should be emphasized that while Section 2.2 discusses the tether model and linearizes it for analysis,

the software does not linearize the dynamics, allowing for full 3 degree-of-freedom motion. Again, the

software also models rigid body motion allowing for attitude dynamics to be studied. However, bodies can

be specified as point masses making their radii zero, effectively removing inertia, attitude, and rotation rate

dependences.

The simulation can model multiple types of forces. Gravitational forces include two-body, as well as

J2 - J6 gravity harmonics. Of course tether forces are also applied, only while the tether is in tension. The

model is also capable of accounting for Electrostatic/Coulomb forces and Solar Radiation Pressure. These

forces are not used in this thesis. Finally, control inputs are also allowed giving the user the ability to apply

torques and forces to any craft/body simulated. Any of these forces can be enabled or disabled, allowing for
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various environments to be considered, like deep space where the gravitational parameter is zero.

The integrator used is a Runge-Kutta 4-5 method with both fixed and variable step sizes. This was

originally chosen for the Coulomb Structure research however it is sufficient for the dynamics present in this

thesis. Section 2.2.3 further describes verification of the simulation and the modifications made to it for this

research.

2.2 Tethered-Tug System Model

ds

⇢(s
)

~T (ds)

~T (ds+)~T (ds�)

Figure 2.1: Segment of a string model of a tether

To study the tethered-tug system, a model is necessary to capture tether motion and rigid end body

motion. The first question to answer when conducting this research is to determine the tether model to be

used. Modeling the tether as a string, as shown in Figure 2.1, can achieve high accuracy results. Eq. (2.1)3

is the full partial differential equation for a string model of a tether:

ρ
∂2R

∂t2
=
∂T

∂s
− µρR

R3
+ F (2.1)

where ρ is the density of a given element,R is the position vector of a given element, T is the tension force

over the element, s is the distance along the tether, t is the time, µ is the Earth’s gravitational constant, and

F represents external forces. This is difficult to analytically solve and a Finite Element Model (FEM) is

often used.

As described in Chapter 1.3 it is commonly accepted to remove the added complexity of using FEM

solved string dynamics and to discretize the tether into lumped masses with visco-elastic spring forces be-

tween each. Because this research focuses on the end body response, instead of the specific tether dynamics,

the lumped mass model is a reasonable approximation. The discretized mass model can be seen in Fig-

ure 2.2. Note that the end bodies are rigid, 6 degree-of-freedom (DOF) large bodies, and the tether masses
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Figure 2.2: Discretized tether model example with 2 tether masses

are treated like point masses. The visco-elastic model is described in more detail in the following sections

including its derivation, an Eigenvalue analysis, verification of the software, and a description of the two

primary simulation types.

2.2.1 Equations of Motion

The tether model used approximates the tether as multiple lumped masses attached by visco-elastic

(spring) forces to rigid end bodies. These end bodies have the ability to translate and rotate, and the lumped

masses are considered point masses. The tether model is easily linearized and therefore well suited to linear,

second order differential equation analysis, such as Eigenvalue (natural frequency) analysis. This section

derives the equations of motion for the system.

2.2.1.1 Tether Equations of Motion

The tethered-tug system consists of a tow vehicle that can thrust, the object to be towed, and a tether

between the two (Figure 1.8). The tug and the towed object are modeled as rigid bodies that can rotate and

translate. The tether is discretized into multiple lumped point masses connected by visco-elastic forces, as

shown in Figure 2.2.

The tether is made taut for many of the studies in this thesis because slack in the tether causes ampli-
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fied responses, and whipping behavior. However, Chapter 5 does explore both initial slack in the tether and

spinning end bodies. The tug has active attitude control while thrusting and all the thrust is applied in the

in-track/along-track direction. The attitude control is turned off when the thruster is off.

Discretized mass models for tethers are commonly used.11, 20, 21, 40, 90 However, none of these have

considered the process of towing with a tether, in space, with similar end body sizes. The translational

equations of motion, caused by the tether, for the system in Figure 2.2 can be expressed as

R̈i = 1
mi

(
KS(|Ri+1 −Ri| − L0,i)êi + C

L0
(|Ṙi+1 − Ṙi|)êi

)
R̈i+1 = 1

mi+1

(
KS(|Ri+2 −Ri+1| − L0,i+1)êi+1 + C

L0
(|Ṙi+2 − Ṙi+1|)êi+1 −miR̈i

)
...

R̈N = 1
mN

(
−KS(|RN −RN−1| − L0,N )êN−1 − C

L0
(|ṘN − ṘN−1|)êN−1

)
(2.2)

where N is the number of masses and ê is the unit vector the tether force is applied along, defined as

êi =
Ri+1 −Ri

|Ri+1 −Ri|
(2.3)

Ri is the ith mass’s position, L0,i is the unstretched tether length of segment i, mi is the mass, C is the

damping coefficient, KS is the spring constant, and L0 is the total unstretched tether length. These are only

part of the equations of motion used for the numerical simulation used in this thesis. Gravity and the thrust

control acceleration are also present as well as the rigid body dynamics for the tug and debris. Thrust is also

applied to the tug mass.

The natural frequency ωn of the system can be found by taking the three-dimensional model in Fig-

ure 2.2 and simplifying it to a one-dimensional problem, as in Figure 2.3.

The separation between the bodies can now be expressed as

Li = |Ri+1 −Ri| − L0

Li = xi+1 − xi − L0

L̇i = ẋi+1 − ẋi

L̈i = ẍi+1 − ẍi

(2.4)

assuming all unstretched tether lengths, L0, are the same. Using the one dimensional set-up in Eq. (2.4),

the discrete mass model in a state space representation is given in Eq. (2.5). Here n is the number of links
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Figure 2.3: Discretized tether model example with 2 tether masses

between each mass. Therefore, if there are four masses (N = 4), there are three tether links and n = 3.

Ẋ = [A]X + [B]u (2.5)

The variables in Eq. 2.5 are given below.

X2n×1 =



L1

...

Ln

L̇1

...

...

L̇n



[B]2n×1 =



0

...

0n

1

02

...

0n



u = FT
m1

FT is the thrust force, applied only to m1. The matrix [A] can be broken up into four smaller matrices:

[A]2n×2n =

 [0]n×n [I]n×n

[A2,1]n×n [A2,2]n×n


The acceleration caused by the visco-elastic spring force is given in Eq. 2.6, which is entirely position

dependent.

[A2,1] = KS [M ] (2.6)
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with

[M ] =



− (mi+mi+1)
mimi+1

1
mi+1

0n−1 · · · 0n

1
mi+1

− (mi+1+mi+2)
mi+1mi+2

1
mi+2

. . .
...

0n−1
. . . . . . . . . 0n−1

...
. . . 1

mn−1
− (mn−1+mn)

mn−1mn
1
mn

0n · · · 0n−1
1
mn

− (mn+mn+1)
mnmn+1


(2.7)

Again, mi is each body’s mass and the spring constant KS is defined in Eq. (2.8).

KS =
EA

L0
(2.8)

with units of N
m . Here L0 is the initial, unstretched (equidistant) length of the tether between each mass, E

is the Young’s modulus of elasticity for the tether, and A is the cross sectional area of the tether. Because

Eq. (2.5) models a tether as a spring, it is only active while the tether is in tension. When the separation

distance is less than L0, all spring and damping forces go to zero.

Without damping [A2,2] = [0]n×n. Using a strain based damping model90

εi =
|Ri+1 −Ri| − L0

L0
=
Li
L0

(2.9)

then the strain rate is

ε̇i =
L̇i
L0

(2.10)

assuming L0 is a constant. The force due to damping is then expressed as

FDi = Cε̇iêi (2.11)

Here, C (kgs ) in Eq. (2.11) is the damping coefficient. With this linear damping model, [A2,2] becomes

[A2,2] =
C

L0
[M ] (2.12)

with [M ] from Eq. (2.7). This is also only correct while in tension. There is no damping present while the

separation between two masses is less than L0.
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2.2.1.2 Rotational Motion Control of the Tug Vehicle

Because the tether can induce a torque and rotation on the thrusting body, a simple Lyapunov feedback

control is developed to maintain the thrusting body’s heading (and therefore the thrust) in the along-track

direction. This control is only active while the thrust is on. The attitude feedback control is not the focus of

this research and is only given for completeness. Other than the discussion in this section, the control is not

analyzed for performance and the process by which this control could be applied is not considered.

The Lyapunov function, shown in Eq. (2.13), is positive definite and its derivative is negative definite

if the constraint of −ωT [P ]ω is used.71

V =
1

2
ωT [I]ω + 2Kσ ln(1 + σTσ) (2.13)

Here, ω is the angular velocity of the tug body, σ̄ is the attitude, represented as Modified Rodriguez Param-

eters (MRPs), [I] is the inertia of the tug, and Kσ is a positive scalar. This then leads to the control feedback

torque in Eq. (2.14).

τc = ω × [I]ω − [P ]ω −Kσσ − τext (2.14)

In this expression, [P ] is a positive definite gain matrix, τext are external torques, and τc are the control

torques. Combining Eq. (2.13) and Eq. (2.14) produces the closed loop dynamics

ω̇ = [I]−1(−[P ]ω −Kσσ − τext) (2.15)

Here τext is considered to be zero because the external torques applied to the system are relatively small and

have no major influence over the several minutes that the thrust occurs.

The gain values for [P ] andKσ are computed using linear system theory as described in Reference 71.

If [P ], Kσ and [I] are assumed to be diagonal then the rotational dynamics for each axis can be written as σ̇i

ω̇i

 =

 0 1
4

−Kσ
Ii
−Pi
Ii


 σi

ωi


where i is a particular rotational axis (1, 2, 3). From linear control theory, Eq. (2.15) will produce a natural

frequency of

ωni =

√
Kσ

4Ii
(2.16)
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and a damping coefficient of

ζi =
Pi√
KσIi

(2.17)

Because the first fundamental modes of the tether system are known from Eq. (2.22), Eq. (2.23) and

Eq. (2.24), the gain Kσ should be chosen so that the rotational control does not excite the tether. Therefore

Eq. (2.16) can be rewritten so that the gain can be selected given a natural frequency that is reasonably

different from the tether modes.

Kσ = 4Iiω
2
ni (2.18)

Similarly, the rotational control will be chosen to be critically damped. This results in ζi = 1 or the gain

selection of

Pi =
√
KσiIi (2.19)

Given the masses and the tether properties in Table 2.1 and the tether modes from the three body

system in Eq. (2.24), the Eigen frequencies turn out to be 0.19 Hz and 3.43 Hz. Therefore, the rotational

control should be chosen to not be near these values. Selecting ωni = 0.01 Hz for all axes allows for the

rotational control natural frequency to be over an order of magnitude slower than the tether modes. Using

ωni = 0.01 Hz Eq. (2.18) yields:

Kσ = 161 (2.20)

and Eq. (2.19) yields

P =


1283 0 0

0 1283 0

0 0 673

 (2.21)

2.2.2 Modal Analysis

There are four primary control types that have been considered for the tethered-tug system:

• Step input

• Notch Filter
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• Posicast

• Bang-off-bang

The first, is a step input that thrusts in the along-track direction for the duration required to achieve a desired

∆v. This is effective at changing the orbital parameters of the tug and debris but because it is a step input,

all frequencies of tether are excited. This is undesirable as the collision potential between the objects is

increased, along with larger tether tensions.

To reduce collision potential, other control methods are utilized to avoid collision between the end

bodies. These control methods are designed to avoid exciting the natural modes of the tethered tug system.

Most of the controls, therefore, require knowledge of the system’s Eigenvalues. Thus, this section presents

an example of the Eigenvalue analysis.

The other control types considered are open-loop input shaping on the thrust’s step profile. These

controls are further discussed in Chapter 3 however they include a continuous notch profile, and impulsive

methods such as discrete, Posicast, and bang-off-bang profiles. The notch control33 highly attenuates, in the

frequency domain, undesirable modes of the tether system. The discrete control32 is simply a discretization

of the notch control. The Posicast control32 properly times varying thrust amplitudes so that it does not

excite the system. Finally, the bang-off-bang32 control properly accelerates the masses so that there is little

relative motion between the bodies during the maneuver.

Performing an Eigen value analysis on the system in Eq. (2.5), the fundamental mode of the system

can be found. As an example, the Eigen-frequencies ωd of a three body (single tether mass) system are

found by solving for the roots of Eq. (2.22).

z0 + z1ωd + z2ω
2
d + z3ω

3
d + z4ω

4
d = 0 (2.22)
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where

z0 = K2
Sm1 +K2

Sm2 +K2
Sm3

z1 = 2CKSm1 + 2CKSm2 + 2CKSm3

z2 = C2m1 + C2m2 + C2m3 +KSm1m2 + 2KSm1m3 + km2m3

z3 = Cm1m2 + 2Cm1m3 + Cm2m3

z4 = m1m2m3

The undamped natural frequencies (ωn) can be found by setting C = 0 kg
s . As an example, the

Eigenvalues of two rigid bodies connected by a massless tether are:

ωn =



0

0

−
√

KS(m1+m2)
m1m2√

KS(m1+m2)
m1m2


(2.23)

The Eigen-frequencies ωn of a three body (single tether mass) system are:

ωn =



0

0

±
√

KSZ1 +KSZ2

±
√

KSZ3 +KSZ4


(2.24)

where

Z1 = (m2m3+m1(m2+2m3))
2m1m2m3

Z2 =

√
m2

1m
2
2−2m1m2

2m3+(4m2
1+m

2
2)m

2
3

2m1m2m3

Z3 = (−2m1m3−m2(m1+m3)
2m1m2m3

Z4 =

√
−2m1m2

2m3+m2
2m

2
3+m

2
1(m

2
2+4m2

3)

2m1m2m3

Note that this analytic solution to the Eigen frequencies can be used to approximate the first modes of the

massive tether independent of the number of discretized masses actually used. Therefore, the first mode of

the system with only one tether node is the same as the system with many tether nodes, assuming the masses

are unchanged.
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The repeated 0 roots relate to the DC offset present in the formulation of Eq. (2.5). Because Eq. (2.5) is

formulated from the positions of the bodies, the equations naturally assume that zero tether force corresponds

to separation distances between the masses that add up to the full tether length (i.e. L0). Therefore the bodies

have a constant, DC offset in their positions. The complex pair(s) in Eq. (2.23) and Eq. (2.24) represent the

purely oscillatory motion, as expected from a spring-mass system. Eq. (2.24) has two sets of complex pairs

due to the fact that a three body (single tether node) system has two modes: one from the full tether length

is the first mode and one from the addition of the tether mass, causing a higher frequency.

Unfortunately, it becomes very difficult to analytically solve for the Eigenvalues and frequencies

of the tether as more nodes are added. The Abel-Ruffini theorem demonstrates that there are no general

algebraic solutions to polynomials of degree five and higher.7, 59 This means that it is not likely that the full

set of Eigenvalues for tether discretizations beyond three or four nodes is analytically achievable. Also, as

the number of nodes, n, increases, so does the integration time. However, this is not a major concern because

the majority of the energy and dynamics of the system come from the first few modes, or Eigenvalues.

Therefore, the primary modes of interest can be analytically computed for any system. Further, these modes

will be the same, independent of the number of discretized nodes placed on the tether.

2.2.3 Verification of Model

With a complicated software model such as this, it is necessary to verify that it is physically realistic.

This is done two ways, first by verification with a FEM method and second by conservation of energy and

momentum.

2.2.3.1 Tethered Coulomb Structure Model Verification

The discrete tether mass system is compared to a FEM of a repulsive, Coulomb-force system. This

system, known as the Tethered Coulomb Structure (TCS),76 models several spheres with equal potential on

each and explores the dynamics of the structure in multiple environments. The FEM compared two rigid

end bodies, connected by a continuous tether, in various rotational initial conditions. An example is shown

in Figure 2.4(a) where an initial rotation induces motion of the end masses and deflection of the massive
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tether.

m1 m3

(a) Continuous tether72

Ft Ft

m2

m1 m3

(b) Single discretized tether mass

Figure 2.4: TCS rotational test model. Voltages applied to rigid end bodies

The discrete tether model is compared against the FEM model using a single tether mass and equiva-

lent end body rotational conditions (Figure 2.4(b)). The FEM model and the discrete tether model responses

are very similar in both timing and displacements of the tether and bodies. For example, the FEM maximum

rotation angle of the bodies is seen to be about 58.34 degrees occurring at 235 seconds, while the discrete

tether model shows a rotation of 54.88 degrees occurring at 236 seconds. The energy and FEM verifications

helped to demonstrate that the tether model was properly implemented and provided reasonable answers.

2.2.3.2 Conservation of Energy

The kinetic, potential, and rotational energy profiles are also computed by the software at each time

step. This is done for each body and then summed to obtain the total system energy. The system’s energy is
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computed using the following four energies:

gravitational =
N∑
i=1
− µ
|Ri|mi

spring = 1
2KS

n∑
i=1
|Ri+1 −Ri|2

translational kinetic = 1
2

N∑
i=1

mi|Ṙi+1 − Ṙi|2

rotational kinetic = 1
2

N∑
i=1
ωTi [I]iωi

(2.25)

Thrust is always applied to this system, and this is known to cause a change to the energy. Thus, to check

that energy is conserved, the system energy is considered just after the thrust is turned off.

In order to characterize the energy, a two body (no tether mass) model is used. The initial conditions

for the end bodies are taken from the system values just after a thrust maneuver has occurred and the thrust

force has reached zero. The simulation is then run using the Runge-Kutta 4-5 variable step integrator at the

following time steps: 1/100th s, 1/64th s, 1/32nd s, 1/16th s, 1/8th s, 1/4th s, 1 s, 2 s, 4 s, 8 s, 16 s, and 32 s.

The changes in energy correspond to changes over two orbits.

Figure 2.5 shows the results from the energy study. Figure 2.2.3.3 shows the most positive and

negative change in energy for each integration time step. Figure 2.5(b) shows the maximum magnitude of

the energy change. Figure 2.2.3.3 demonstrates that integrator time steps of over 1 s experience energy

changes in the tens to hundreds of Joules. Further, some of the larger time steps experience unbounded

growth in some states, causing unrealistic motion. Therefore, smaller time steps are required. Figure 2.5(b)

shows a dramatic reduction in energy change with the 1/4th s, 1/8th s, and 1/16th s time steps achieving a

change of 0.58 J at a step size of1/16th s. However, the smallest time steps experience a slight increase

in energy change, all hitting about 2 J. This suggests that the 1/100th s, 1/64th s, 1/32nd s time steps have

maximized the integrator performance and may begin to accumulate more floating point error than error due

to integrator accuracy.

It turns out that the fixed step RK 5 integrator conserves energy better in some cases, however it does

take longer to run. Often, energy is conserved to on the order of 1 × 10−2 J for deep space and orbital

simulations. This integrator is used in tandem with the variable step RK 4-5 integrator, depending upon

which conserves overall energy best.
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Figure 2.5: Energy change in simulation due to integration step size, 2 orbits. Maximum energy of system
≈ 100× 1011 J.

2.2.3.3 Conservation of Momentum

Momentum conservation is also considered for the model used. The system’s total momentum is

defined as:

H =
N∑
i=1

Ri ×miṘ+ [IB]([I]iωi) (2.26)

where [IB] is the rotation matrix between the body frame and the inertial frame, assuming the position and

velocity vectors are expressed in the inertial frame. In deep space, angular momentum for the system is

conserved to within 1 × 10−3 N-s or better. Figure 2.6 demonstrates the change in momentum for initially

rotating end-bodies.
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Figure 2.6: Angular momentum change for 6o/sec end body rotation rate in deep space. Maximum momen-
tum of system ≈ 2× 106 N-s.
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2.2.4 Number of Tether Discretizations

One obvious question about the model concerns how many tether nodes should be used. Discretiz-

ing the tether into many, small lumped-masses should more accurately predict the behavior of the tether.

However, the tether mass is relatively small compared to the end bodies. Since the tether mass is small, it is

not expected that lumped-masses should greatly influence the overall behavior significantly. While adding

nodes allows for a higher modes, and in some ways more tether-like behavior, it also creates longer integra-

tion times and worse energy and momentum conservation performance. These things coupled can actually

cause significant computational issues.

It turns out that using multiple tether masses does not actually cause major variation in motion. Fig-

ure 2.7 shows how the behavior of the system varies with only end bodies, one, and two tether masses.

Figures 2.7(a) and 2.7(b) show that the overall response is very similar between the cases shown. Fig-

ures 2.7(c) and 2.7(d) show how the energy changes over the simulation. The end body only simulation

conserves energy to 2× 10−2 J but adding several nodes causes energy variation on the order of 5 J. (It was

seen that the variable step RK 4-5 saw many hundreds of Joules of energy change on orbit when more than

the end bodies were considered. This caused the shift to using a fixed step method with small time steps,

which is often used for orbital simulations.)

This leads to the conclusion that over relatively short duration, the behavior is primarily described by

the end body motion. Further, this research is most concerned with end body behavior (to avoid collisions)

and not exact tether performance, therefore the tether model does not require extreme fidelity. Finally, it

turns out that input shaping control only requires knowledge of the first mode of the system (see Chapter 3).

For simplicity, the number of tether nodes used within this thesis is limited to two nodes or less.

2.2.5 Deep Space Simulations

There are two overarching simulation types: deep space and on-orbit. For deep space, the simulation

software model simply has the gravity turned off. This allows for pure tether-to-rigid body motion to be

studied. Oscillation rates, control performance and tether mass motion can all be observed as they naturally
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Figure 2.7: System performance variation due to multiple tether masses

occur. This gives significant insight into how to control the system and the potential for collision between

the bodies. Because Eq. (2.5) is the equation of motion, linear system analysis can be easily performed

(see Chapter 2.2.2), including Eigen mode analysis, allowing for significant knowledge gains about the

behavior. Deep space simulations are also generally applicable to towing in large, heliocentric orbits where

the gravitational field is weaker than near massive bodies. This is particularly applicable to asteroid towing

missions where relative motion is more dominant than the orbital motion, in short term time scales.

2.2.6 Orbital Simulations

Orbital simulations demonstrate how well the controls and system perform in a realistic setting for

satellite servicing and the ADR mission concepts. Several unexpected results have occurred, primarily that

collisions are not as likely in orbit and that gravity gradient orientations can occur (maximizing the distance
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between tug and tow mass). While deep space simulations are key to understanding the system, the orbital

simulations comprise a larger portion of the research.

2.3 Baseline Concept Parameters

(a) Soyuz upper stage - the tug (b) Second stage of SLV Cosmos-3M34 - the debris

Figure 2.8: Upper stage rocket bodies used for this study

For this thesis the tug, debris, tether, and simulation parameters are given in Table 2.1. The mass and

inertia values for the tug are similar to the Soyuz upper stage rocket (Figure 2.8(a)1) and the debris values

are close to the Cosmos-3M second stage (Figure 2.8(b)). Kevlar is used as the tether material because

it is commonly used in tether analysis14 and the diameter of 3 mm is chosen to withstand the stresses

experienced. A ∼2000 N thrust is chosen to be representative for the Soyuz upper stage thrusters while

achieving the worst case, maximum tension in the tether at the time of engine cutoff.34 Note that the ‘step-

input’ thrust linearly ramps on and off, to and from the max thrust over a period of 1 second. The ∆v

capability is based upon the fuel reserves that may be available in the Soyuz after delivering a payload to

orbit. Finally, the starting altitude of 800 km is based upon the known high density of Cosmos rocket bodies

at that altitude and the fact that they are considered high priority targets for ADR.47

If Eq. 2.24 is analyzed given the values in Table 2.1, the natural frequencies of the system are obtained.
1 http://www.arianespace.com
2 http://www.matweb.com/index.aspx



40

Table 2.1: Vehicle, Tether and Simulation Parameters

Tug Mass 2500 kg
Tug Inertia diag[10208, 10208, 2813] kg m2

Tug Radius 1.5 m
Debris Mass 1500 kg
Debris Inertia diag[1285, 6829, 6812] kg m2

Debris Radius 1.2 m
1000 m

Tether Length
equal space between masses

Tether Material Kevlar
E 1470 GPa

Tether Yield Stress 3.54 GPa
Tether Diameter 3.2 mm
Tether Density 1470 kg/m32

Thrust 2009 N
∆v 100 m/s

Starting Altitude 800 km (circular)

It is interesting to note that the fundamental frequency is the same between the two-body, three-body, or

four-body cases. This turns out to be (for two bodies: m1 = 2500 kg, m2 = 1500 kg; for three bodies:

m1 = 2500 kg, m2 = 11.82 kg, and m3 = 1500 kg, for four bodies: m1 = 2500 kg, m2a + m2b =

5.91 + 5.91 = 11.82 kg, and m3 = 1500 kg) ωn1 = 0.19 Hz. The three node case also has its second mode

at ωn2 = 3.43 Hz. The first mode is of greatest concern and is the frequency that all input-shaping methods

consider in Chapter 3.



Chapter 3

Open-Loop Input Shaping for the Tethered-Tug System

No active debris removal system should create debris in orbit. Safety is highly important for any

ADR system and the creation of even small debris from a larger body should be unacceptable. With respect

to the tethered-tug system, safety is defined through collision avoidance between the end bodies. Collision

between these two bodies, even at fairly low relative speeds is likely to cause some particulates. The ill

effects of a post-burn collision are minimized because all objects will have a lower periapsis, and shorter

orbital lifetime. But, this is still an undesirable situation. Therefore, the system must be designed to maintain

separation between the end bodies.

Unfortunately, the fact that the two end bodies are tethered means that collision is a risk for the

system. During the thrusting maneuver the tether is strained. When the thrust is no longer present the tether

will restore itself to zero strain, pulling the tug and debris together. Because the tether only pulls on the

masses when in tension, and does not provide a ’pushing’ force when in compression, collisions between

the large end-masses becomes possible. It therefore is important to study the complex system dynamics

between high-force and slack tether motion and to control those dynamics.

3.1 Un-Shaped Input: the Step Input

The possibility of collision is illustrated in Figure 3.1 which demonstrates that a step input to achieve

a ∆v = 100 m/s in deep space results in collisions. The simulation used to produce Figure 3.1 uses

two discrete tether masses. This behavior is discussed in greater detail in the following sections and in

References 34 and 33. Therefore, it is important to reduce strain and relative motion between the bodies to
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Figure 3.1: Relative motion and tether tension between tug and debris for a step input. Thrust duration of
2̃00 s. Deep space

remove collision potential.

There are several ways to avoid collisions between the end bodies. One obvious method is to design

the thruster control output to reduce the end body relative motion. This is done through open-loop input

shaping of the thrust profile.

3.2 Description of Input Shaping

Input shaping is based upon the concept of modifying a desired input into a system such that it does

not excite the system. An input shaped control or thrust profile can be designed so the primary natural

frequency(ies) of the flexible body are not excited by the control input.77, 80 Figure 3.2 shows the open-loop

control, S, that is based upon the modeled linear system dynamics H(s).

u
H(s) =

1

s2 + Cs + !2
n

S = f (H(s))
ushape

Figure 3.2: Open-loop control block diagram

Several input shaping methods have been developed and applied to cranes used to lift and maneuver

loads at the end of a cable. There have been multiple studies of input shaping on flexible bodies, primarily

led by Singhose or Singh.42, 77–82 Watanabe et. al and Singhose have considered input shaping for tethered
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systems80, 89 but do not attempt velocity control or consider multiple input-shaping techniques.

For input shaping, the flexible system is simplified and modeled as a linear system, so that the natural

frequencies of the system can be identified. As an open loop control, only a priori knowledge of the modes

of the system is used to design the controller. With this information, many input shaping controls essentially

place zeros over the poles of the flexible system, removing the oscillatory behavior. Of course, zero-pole

cancellation is susceptible to the accuracy of the model. However, robustness of input shaping techniques

have been studied33, 77 and are discussed below.

Figure 3.3 shows the thrusting profiles considered in this thesis including the baseline step input

(Figure 3.3(a)), a continuously notched input (Figure 3.3(b)), a discretized notch profile (that looks similar

to Figure 3.3(c)), a Posicast controller (Figure 3.3(c)), and an impulsive/bang-bang method (Figure 3.3(d)).
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ru
st

Time
(a) Step-input thrust profile
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(b) Continuous notch thrust profile
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(c) Discretized notch and Posicast thrust profile
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(d) Bang-off-bang thrust profile

Figure 3.3: Example thrust profiles considered

The step input in Figure 3.3(a) is produced by specifying the thrust, T , the mass of the system M ,

and the amount of ∆v capability. The duration of the step profile, ∆t, is then computed.

∆t =
M

T
∆v
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Because the step profile excites all modes, shaped inputs are required to remove this excitation. The thrust

applied can be continuously varied to minimize relative motion between the end bodies,33 shown in Fig-

ure 3.3(b). However, this continuous, smooth thrust profile is difficult to achievable by current-day rocket

engines. It is possible that solid motor fuel core designs could be made to continuously vary the thrust, but

this requires very specific and smooth burn rates which is a challenge. This motivates exploring discretized,

Posicast, and bang-bang input shaping thrust profiles that are more realistic. The discretized thruster pro-

file, Figure 3.3(c), could be implemented with a cluster of thrusters. For example, having 3 thrusters that

can be turned on individually would provide 3 discrete levels of thrust. The bang-bang thruster profile,

Figure 3.3(d), with time delays would be suitable for a single on-off thruster implementation.

This chapter explores the use of all the thrust profiles in Figure 3.3 and their merits and shortcomings.

First, the continuous notch profile is presented. Next, this chapter expands upon the impulsive input shaping

studies of Watanabe et. al89 and Singhose80 by analyzing convolution of multiple delay transfer functions,

a Posicast system, and how such an open-loop deorbiting thrust profile is applicable for space-based towing

applications. Bang-bang input shaping is also explored in high-thrust environments with rigid body end

masses. Further, the continuous notch profile presented by Reference 33 is discretized so that only a set of

discrete thrust-level steps are implemented. The later is considered as a simple reference case to illustrate

the benefits of the more rigorous discrete-step and bang-bang input shaping profiles. The effectiveness of the

input shaping methods is analyzed in deep-space simulations to understand the difference in performance

between each method. On-orbit studies are then explored to consider the low Earth orbit ADR application.

3.3 Notch Filter Input Shaping

3.3.1 Concept

Input shaping is a common way to remove an undesired frequency response in a linear system.46, 79

For this specific application, a notch filter is used to remove, or highly attenuate, the natural frequency of

the tethered system, as shown in Figure 3.4. In signal processing30 a signal can be removed by applying a

notch filter at the signal frequency. This however causes lag in the system, as shown by the phase shift. For



45

the tethered-tug system this only translates to slightly longer thrusting times. As stated in Section 3.2, the

notch filter effectively translates to placing a zero over the pole of the system. The design of the notch filter

and its performance is given in the following discussion.
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Figure 3.4: Bode plot demonstrating notch frequency response

3.3.2 Design

In the frequency domain, a first order notch filter is defined as:

g(s) =
s2 + ω2

c

s2 + BWs+ ω2
c

(3.1)

where s is the frequency, ωc is the cut-off or notch frequency, and BW is the bandwidth of the notch filter.

Converting the frequency domain equation to the discrete time domain using the trapezoidal difference

rule,88 the notch filter can be written as shown in Eq. 3.2.

yk = 1
4+2BWh+h2ω2

c
(yk−1(8− 2h2ω2

c ) + yk−2(−4 + 2BWh− h2ω2
c ) + xk(4 + h2ω2

c )+

xk−1(−8 + 2h2ω2
c ) + xk−2(4 + h2ω2

c ))
(3.2)

Here, yk is the latest value of the shaped input from the filter and yk−i is the k − ith value. xk is the latest

desired input into the system and xk−i is the k − ith desired value. h is the time step of the discrete time

system where most simulations use a time step of 0.25 s therefore h = 0.25.

It is also helpful to be able to notch multiple frequencies at once. This is simply created by multiplying

multiple notch filters together, in the frequency domain, that have different cut-off frequencies. An example
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of a double notch filter is given in Eq. (3.3)

g(s) =
(s2 + ω2

c1)(s
2 + ω2

c2)

(s2 + BW1s+ ω2
c1)(s

2 + BW2s+ ω2
c2)

(3.3)

ωc1 is the first cut-off or notch frequency, ωc2 is the second cut-off or notch frequency, and BW1 and BW2

are the bandwidths for each notch. Eq. (3.3) is converted into the discrete time domain the same way as

Eq. (3.2) and is given in Eq. (3.4).

yk = 1
(4+2BW1h+h2ω2

c1)(4+2BW2h+h2ω2
c2)

(yk−1(−4(−16 + BW2h(−4 + h2ω2
c1) + h4ω2

c1ω
2
c2 + BW1h(−4 + h2ω2

c2)))+

yk−2(−96 + 8BW1BW2h
2 − 6h4ω2

c1ω
2
c2 + 8h2(ω2

c1 + ω2
c2))+

yk−3(4(16 + BW2h(−4 + h2ω2
c1)− h4ω2

c1ω
2
c2 + BW1h(−4 + h2ω2

c2)))+

yk−4((−4 + 2BW1h− h2ω2
c1)(4− 2BW2h+ h2ω2

c2))+

xk((4 + h2ω2
c1)(4 + h2ω2

c2))+

xk−1(−64 + 4h4ω2
c1ω

2
c2)+

xk−2(96 + 6h4ω2
c1ω

2
c2 − 8h2(ω2

c1 + ω2
c2))+

xk−3(−64 + 4h4ω2
c1ω

2
c2)+

xk−4((4 + h2ω2
c1)(4 + h2ω2

c2)))

(3.4)

In order to properly reduce motion between the tug and debris, the system’s natural frequencies (Eigen

values) must be known. Because the tether system is modeled as a linear spring when in tension, Eigen value

analysis lends itself perfectly to this model. This is discussed further in Section 2.2.2.

3.3.3 Adding Robustness

It is likely that the mass of the debris is not well known. Based upon the Two-Line Element (TLE)

catalog of tracked satellites, the general information about the object is probably available (rocket body or

satellite, basic specifications of size and mass, etc.) however the exact information may not be available

or missing. Mass is one of the most important and least well known parameters. Depending upon fuel

remaining and passivation methods used by the operators, mass may vary noticeably.
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This means that the Eigenvalues in Eq. (2.22), (2.23), or (2.24) are not well known and they can

change from what is expected, lowering the effectiveness of the notch filter. The Eigen values are a function

of multiple of the system properties, shown in Eq. (3.5).

λ = ωd = f(mtug,m2,m3, ...,mdebris, E,A, L0, C) (3.5)

The linear sensitivity of the natural frequency to changes in debris mass is found by taking the partial

derivative of the Eigenvalues with respect to the debris mass (mdebris). The partial is then evaluated at the

expected value (given in Table 2.1, where the expected debris mass mdebris E = 1500 kg). Eq. (3.6), shows

the linear change in the natural frequency given the true debris mass, mdebris T .

∆ωd(mdebris T ) =
∂ωd

∂mdebris

∣∣∣∣
KS ,mtug,m2,...,mdebris E

(mdebris T −mdebris E) (3.6)

Note that ωd is the damped natural frequency which becomes the purely oscillatory natural frequency ωn if

C is zero in Eq. 3.5.

For a three body example with one tether mass and no damping, the sensitivity to the natural frequen-

cies in Eq. (2.24) is given below. Here, m1 = mtug, m2 = mtether, and m3 = mdebris. For the first pair of

non-zero Eigenvalues the sensitivity expressions become:

∂ωn
∂m3

= ±
KS

(
m1m2−m2m3+

√
m2

1m
2
2−2m1m2

2m3+(4m2
1+m

2
2)m

2
3

)
2m2

3

√
−4m1m2

2m3+2m2
2m

2
3+2m2

1(m
2
2+4m2

3)
∗

√
m1m2m3√

−KS
(
m2m3+m1(m2+2m3)+

√
m2

1m
2
2−2m1m2

2m3+(4m2
1+m

2
2)m

2
3

) (3.7)

and second pair of non-zero Eigenvalues are:

∂ωn
∂m3
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Evaluating Eq. (3.7) and Eq. (3.8) from m3 = 600 kg to 2400 kg, Figure 3.5(a) shows that the mass

of the debris can vary by 900 kg (60%) and it will only change the first mode by 0.034 Hz. The second mode

in Figure 3.5(b) is even more insensitive and changes by only 0.002 Hz. Because the first mode contains the

most energy and creates the most relative motion between masses, this mode will be focused on. (Notching
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multiple modes was tested however no significant reduction in end body motion was experienced leading to

the conclusion that the first mode should be the focus.)

Given the tether properties, masses of the tug and debris, the first mode should occur near 0.19 Hz. It

turns out that a variance of 0.034 Hz in the first mode is enough to cause the notch filter to have noticeable,

but relatively small, performance problems. One robust method to avoid sensitivity issues is to add a second

notch in the region of the first mode.
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Figure 3.5: Sensitivity of the tether-mass system’s first two fundamental modes to imperfect debris mass
knowledge

To design a double notch around the first mode, Figure 3.5(a) is used to determine the potential range

over which the first mode can vary. When two notches are placed near each other, they effectively attenuate

a range of frequencies. This behavior can be seen in Figure 3.6 where frequencies 0.14 Hz – 0.22 Hz are

very heavily notched. While there is reduced attenuation between these two frequencies it is still very large,

peaking near -58 dB (half way between the notched range, at 0.18 Hz). This is sufficient to reduce the first

mode’s energy while being robust to knowledge errors in the debris mass. The results of notch input shaping

are discussed further in Sections 3.3.4 and 3.3.5.

While the debris mass will be the least well known, the tether spring constant may have variability

as well. Because the natural frequencies are very dependent upon this parameter (KS), it is important to

consider. Using a similar linear sensitivity analysis as in Eq. (3.6), the system’s natural frequency response

to variable material properties is:

∆ωn(KS T ) =
∂ωn
∂KS

∣∣∣∣
KS E ,mtug,m2,...,mdebris E

(KS T −KS E) (3.9)
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Figure 3.6: Double notch centered about first fundamental mode of system

Evaluating Eq. (3.9) across a 20% change from the expected spring constant (KSe ≈ 4, 100 N/m, between

each node), Figure 3.7 is obtained. Note that a 20% change in spring constant is approximately equal to a

Young’s Modulus change of 34 GPa or a 0.7 mm change in the radius of the tether, both fairly large numbers.

However, these can be considered worst case and they achieve similar variability in the natural frequency as

a 500 kg change in debris mass. These results are further discussed in Section 3.3.4.
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Figure 3.7: Sensitivity of the tether-mass system’s first fundamental mode (ωn = 0.17 Hz) to variable spring
constant

Figure 3.8 demonstrates the continuous notch thrust profiles compared to the step input. This step

input is the input that is shaped by the notch. Notching does cause phase lag in the thrust profiles and the

system responses. Therefore the thrust period of a step input is shorter than a single or double notch. It takes

the step input (no shaping) about 201 seconds to achieve a ∆v = 100 m/s while the single notch takes 238

seconds and the double notch 283 seconds to reach within about 1% of a 0 N thrust. This means that it takes
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less than five minutes for any of these methods to perform their burn, a time duration which is short when

considering an orbital period of around 90 minutes in LEO.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Time [s]

A
cc

el
er

at
io

n 
[m

/s2 ]

 

 
No Shaping
Single Notch
Double Notch

Figure 3.8: Thrust profiles with different input shaping techniques

3.3.4 Deep Space Performance

Deep space performance is given to show how the profiles work in a simplified environment that may

also be applicable to some towing scenarios. Note that the simulations shown utilize the following:

• The trapezoidal difference method is used to go from the frequency domain to discrete time, for the

notch filter input-shapers

• The attitude on the tug (m1) is maintained while thrusting occurs

• The ∆v applied is equal to 100 m/s. Based upon input-shaping method, this can vary the thrusting

duration

• Two tether masses and two rigid end bodies are used for this study

To demonstrate why input shaping (notching) is required, consider Figure 3.1 where no shaping

method is used during thrusting. Here the thruster cuts off at ∆v = 100 m/s while there still is tension

in the tether. The restoring spring force in the tether will pull all masses together and eventually cause a

collision, as seen beyond 1000 s in Figure 3.1. It therefore becomes imperative to reduce the remaining

tether tension to stop post thrust relative motion between the masses.
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As an alternate control method, the thrust profile is filtered so that the fundamental frequencies of

the tethered system are removed. Using a notch filter (Eq. (3.1)), the first fundamental mode, shown in

Figure 3.9(a) at ωn = 0.19 Hz, is removed and the behavior becomes much more desirable. Figure 3.10

and Figure 3.9(b) show the improvement in the post thrust dynamics. In this case, the notching shown in

Figure 3.9(b) presents an ideal situation where all system parameters are well known. The relative motion

between the tug and the first discrete tether mass is significantly reduced, Figure 3.10, and there is less than

a meter of relative drift between the two. This result is very similar for the relative motion between the other

tether masses and the debris. Figure 3.9(b) demonstrates the dramatic difference in the response profile. The

fundamental mode, seen as the first peak in Figure 3.9(a), is heavily attenuated in Figure 3.9(b).

Figure 3.11 compares the tether mass frequency responses. Note that this response is very similar

between both tether masses modeled, therefore only one set of plots is shown. The tether masses are shown

here to generally move and oscillate at higher frequencies than the larger rigid bodies. The notching has

less of an effect on their behavior however there are subtle reductions in the profile below 1 Hz in Fig-

ure 3.11(b). Figure 3.12 compares the debris behavior between the step input and notched thrust profiles. In

Figure 3.12(b) it is also obvious that the first mode at 0.19 Hz has been significantly attenuated, as desired.
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(a) Step-input thrust profile
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(b) Notch at ωc = 0.19Hz

Figure 3.9: Tug vehicle frequency response to 2009 N thrust, with 2 discrete tether masses. Deep space

If knowledge of the debris mass is in error, then the performance of the single notch is reduced. Using

a double notch, as described in Section 3.3.3, while including errors in debris mass knowledge, significant

reductions in relative motion are still produced (Figure 3.13). Figure 3.13(a) shows the single notch placed

at the expected, but incorrect, natural frequency. This causes a small but noticeable collapse of the system.
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Figure 3.10: Relative motion and tether tension response between tug and debris for a single notch with the
cut off frequency at the first mode. 2009 N thrust, with 2 discrete tether masses. Deep space
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(a) Step-input thrust profile
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(b) Notch at ωc = 0.19Hz

Figure 3.11: Tether mass frequency response to 2009 N thrust, with 2 discrete tether masses. Deep space
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(a) Step-input thrust profile
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(b) Notch at ωc = 0.19Hz

Figure 3.12: Debris object frequency response to 2009 N thrust, with 2 discrete tether masses. Deep space

Conversely, Figure 3.13(b) shows that the double notch effectively reduces the motion between the masses,

even though the exact natural frequency is not well known. It turns out that the relative motion of the masses

are reduced nearly as well as the perfect single notch of Figure 3.10. The performance difference between



53

the single notch and the double notch spanning a wide range of frequencies can be seen in Figure 3.14.

The double notch experiences more attenuation of the first mode, compared to the improperly placed single

notch. The double notch frequency response does see less attenuation near 0.2 Hz, in the same location as

the ’hump’ in Figure 3.6, which is expected.

If knowledge of the debris mass is in error, then the performance of the single notch is reduced. Using

a double notch, as described in Section 3.3.3, while including errors in debris mass knowledge, significant

reductions in relative motion are still produced (Figure 3.13). Figure 3.13(a) shows that the single notch

placed at the expected, but incorrect, natural frequency experiences small but noticeable collapse of the

system. Conversely, Figure 3.13(b) shows that the double notch effectively reduces the motion between the

masses, even though the exact natural frequency is not well known. It turns out that the relative motion

of the masses are reduced nearly as well as the perfect single notch of Figure 3.10. The performance

difference between the single notch and the double notch spanning a wide range of frequencies can be seen

in Figure 3.14. The double notch experiences more attenuation of the first mode, compared to the improperly

placed single notch. The double notch frequency response does see less attenuation near 0.2 Hz, in the same

location as the ’hump’ in Figure 3.6, which is expected.
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(a) Single notch, ωc = 0.17Hz
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(b) Double notch spanning 0.14 ≤ ωc ≤ 0.22Hz

Figure 3.13: Relative motion and tether tension response between tug and debris for an expected debris mass
of 2000 kg (ωn = 0.17 Hz), actual mass is 1500 kg (ωn = 0.19 Hz). 2009 N thrust, with 2 discrete tether
masses. Deep space

When the input shaping capabilities are compared between the single and double notch for spring

constant variability (Figure 3.15), it can again be seen that the double notch successfully reduces the relative
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(a) Single notch, ωc = 0.17Hz
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(b) Double notch spanning 0.14 ≤ ωc ≤ 0.22Hz

Figure 3.14: Tug vehicle frequency response with 2 discrete tether masses. Expected ωn = 0.17 Hz, actual
ωn = 0.19 Hz. Deep space

motion between the two end bodies (Figure 3.15(b)) when compared to the single notch (Figure 3.15(a)).
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(b) Double notch spanning 0.15 ≤ ωc ≤ 0.25Hz

Figure 3.15: Tug vehicle frequency response to Spring ConstantKS variability with 2 discrete tether masses.
Expected ωn = 0.17 Hz, actual ωn = 0.21 Hz. Deep space

This demonstrates that the double notch spanning the possible range of the first mode can effectively

reduce collision potential between the masses with large uncertainties in the debris mass and tether material

properties. This also demonstrates that the first mode is the most important because nearly all relative motion

is stopped by notching only the first mode, while leaving the other modes unshaped. Tether models can

become very complex, as they use partial differential equations and finite element solvers. It is significant to

determine that the first mode is the only mode that needs to be notched because it is the most simple mode

to model, estimate, and analyze, simplifying the control analysis.
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3.3.5 On-orbit Performance

Deep space simulations motivate the use of a given thrust profile for on-orbit analyses. However,

the orbital dynamics create interesting behavior that is not predicted by deep space analysis, including the

tendency toward the formation tumbling end-over-end. Gravity gradient, or nadir oscillations can occur,

too.33

To show the effectiveness of this method when on-orbit, a four mass (two tether mass) system is used

with a double notch spanning across the first mode as shown in Figure 3.6. While the system’s actual natural

frequency is 0.19 Hz, the double notch allows for uncertainties in debris mass knowledge. The debris and

tug craft are started in an 800 km circular orbit and a burn is produced in the anti-velocity direction to lower

both object’s orbits. A ∆v = 100 m/s lowers the periapsis to about 425 km.

3.3.5.1 On-orbit Results

While the step input thrust profile (Figure 3.16(a)) transitions between periods of tension and slack,

with highly dynamic behavior, the double notch (Figure 3.16(b)) experiences a slow and steady drift. The

periodic behavior in the drift is from the small eccentricity in the orbit, after the maneuver. This drift is

somewhat expected from the deep space results because the relative velocity between the end bodies is quite

small and the formation only slowly collapses. This is fairly desirable behavior because the bodies are

simply drifting, zeroing tension in the tether and reducing jerk and other strains on the system. If the applied

∆v is large enough, the system could de-orbit while the bodies are still drifting, thus avoiding collisions.

The notch also is very beneficial when the end body spin rates are considered. Figure 3.17 shows the

norm of the angular velocity of the rigid end bodies. It is clear that the step input causes large rotation rates

in the end bodies and the tensioning events also cause large spin up/down behavior. Conversely, the notch’s

performance in Figure 3.17(b) demonstrates very small rotation rates, only several tenths of a degree per

second.

Figure 3.18 helps to demonstrate why the system using the notch thrust profile does not see much rel-

ative motion. The end bodies start thrusting aligned with the in-track orbital direction (0o) and the formation
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(b) Double notch spanning .14 ≤ ωc ≤ .22Hz

Figure 3.16: Relative motion and tether tension response between tug and debris for four orbits. Tether
ωn = .19 Hz. 2009 N thrust, with 2 discrete tether masses. On-orbit
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(b) Double notch spanning .14 ≤ ωc ≤ .22Hz

Figure 3.17: Notch end body rotation rates over 4 orbits

essentially stays in that orientation. The bodies are just slightly offset in position and slowly drift towards

each other. The unshaped/step input ends flipping into an oscillation about the nadir direction, however this

oscillation does not appear very constant.

Figure 3.19 – Figure 3.21 show the relative tether frequency responses due to the step-input and

notched thrust profiles. In each case, the notched tether response is at least an order of magnitude smaller

than the step-input, demonstrating again that there is less motion of the masses and less stress placed on the

tether, all desirable traits of the notch. The first mode is easily identified for the step input in Figure 3.19(a)

and Figure 3.21(a). The same mode in the notch profiles is attenuated by about two orders of magnitude
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Figure 3.18: Angle from along-track vector. 90o is the radial vector. On-orbit

and the higher modes are also visible (Figure 3.19(b) and Figure 3.21(b)). Another interesting trend is

shown from the frequency response of the tether mass in Figure 3.20. Both of these response amplitudes

are relatively high, showing that for their small mass, they experience significant motion. The step input

causes such a high noise level, none of the frequencies are obvious in Figure 3.20(a). The frequency plots

give another indicator that the notch input-shaper positively affects the motion of the tethered-tug system by

reducing the overall motion between the bodies.
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(a) Step-input thrust profile
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(b) Double notch spanning 0.14 ≤ ωc ≤ 0.22Hz

Figure 3.19: On-orbit tug/mT vehicle frequency response with 2 discrete tether masses. Tether ωn =
0.19 Hz. On-orbit

Because the end bodies experience a slow drift towards each other when using the notch profile, it

is interesting to consider what happens to the formation after a significantly longer duration. Figure 3.22

shows the end body motion, the formation’s angle from nadir, the tension, and the rotation rates of the end
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(a) Step-input thrust profile
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(b) Double notch spanning 0.14 ≤ ωc ≤ 0.22Hz

Figure 3.20: On-orbit tether mass frequency response with 2 discrete tether masses. Tether ωn = 0.19 Hz.
On-orbit
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(a) Step-input thrust profile
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(b) Double notch spanning 0.14 ≤ ωc ≤ 0.22Hz

Figure 3.21: On-orbit debris/mD object frequency response with 2 discrete tether masses. Tether ωn =
0.19 Hz. On-orbit

bodies. Near orbit 9, Figure 3.22(a) shows the end bodies becoming very close, although they do not contact.

The bodies pass by each other and the formation eventually tensions, and then experiences two separate

behaviors. The first, occurring between orbits 16 - 20 is a tumble where the formation is spinning end

over end. Near orbit 21 the formation experiences a tensioning event and the system changes into a gravity

gradient/nadir vector oscillation. (Tumbling or nadir oscillations are defined as the formation rotating about

the center of mass either a full 360o or along the radial/nadir vector of the orbit.) The tensioning event causes

fairly high spin rates, as seen by Figure 3.22(b) however future tensionings reduce some of this spinning



59

motion.
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(a) Double notch spanning .14 ≤ ωc ≤ .22Hz
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(b) Notch end body rotation rates over 4 orbits

Figure 3.22: Behavior of the double notched system over 36 orbits. Tether ωn = .19 Hz. 2009 N thrust,
with 2 discrete tether masses. On-orbit

Unfortunately, this motion is not entirely believable for this system as significant system energy is

lost during the integration, starting specifically when the tether re-tensions and tumbling starts. There are

still several key take-aways from Figure 3.22. The first is that if the system loses energy, it can settle into

a tumbling or gravity gradient oscillation, two motions that guarantee collision avoidance between the end

bodies. This type of energy loss could be provided through damping in the system or possibly through

atmospheric drag. Therefore, it is hypothesized that the longer the tethered-tug system stays on-orbit, the

more likely it would fall into one of these motions. The next take away is that the notch provides good

performance over short duration but the close approach is undesirable.

This motivates a slight alteration to the notch profile: once the perigee lowering maneuver has been

performed with the notch filter, a short thrust burst in the radial direction to purposely given to initiate for-

mation rotation. Figure 3.23 shows how a half second, 2000 N thrust in the radial direction changes the

notch profile’s performance. The end bodies maintain their initial separation distance of L0 = 1000 m (Fig-

ure 3.23(a)) while getting into a gravity gradient oscillation (Figure 3.23(c)). (This simulation does conserve

energy and therefore appears correct.) When re-tensioning does occur, the end bodies can experience large

spin rates however the body ends up oscillating due to the tether tensioning. Tumbling of the end bodies

occurs however wrapping of the tether with the bodies is not considered and left for future work. In the end,
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this appears to be a better implementation of the notch profile to maintain separation distance of the end

bodies.
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(b) Notch end body rotation rates over 4 orbits
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(c) Angle from along-track vector. 90o is the radial vector

Figure 3.23: Behavior of the double notched system given a 0.5 s radial thrust after notch filtering. Tether
ωn = .19 Hz. 2009 N thrust, with 2 discrete tether masses. On-orbit

3.3.5.2 Reducing Orbital Lifetime

To demonstrate the effectiveness of lowering the system’s perigee due to the thrusting maneuver,

an orbital lifetime analysis is completed. Assuming the tethered-tug system starts in an 800 km circular

orbit, Figure 3.24 shows the impulsive ∆v required to achieve a periapsis of a desired altitude. Figure 3.24

also demonstrates approximated capabilities of several launch vehicles’ upper stages, assuming a 3% fuel

margin for the stage. While the ∆v capabilities of the vehicles are likely optimistic, this shows that most

large vehicles today can at least reduce orbital lifetime, if not completely de-orbit, the tethered-tug system.
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Figure 3.24: Required impulsive ∆v to achieve periapsis altitude, given a starting 800 km circular orbit

Table 3.1 presents the lifetime results. On-orbit lifetime is modeled using drag coefficients for cylin-

ders66 that range between 2.4 and 2.9 assuming the long axis of the cylinders are directly into the ram-vector.

The atmospheric temperatures are assumed not to vary significantly. The computation of drag coefficients

of general shapes is complex and is still an active area of research. For the purpose of this study, simplified

drag coefficients suffice as only approximate decay lifetimes are being determined. The tug and debris are

assumed to be cylindrical bodies and the drag force is computed for each object and then summed about

the center of mass. The tether is not included in this analysis due to the difficulty of determining the drag

coefficient of such a large and thin structure. This means that the lifetimes obtained should actually be less

than those given in Table 3.1. The ballistic coefficients under consideration fall between 0.0459 and 0.0555.

If no ADR or mitigation system is used, a circular orbit of about 700 km takes two to three decades to

deorbit, a 800 km takes fifty to seventy years to deorbit while a 1000 km orbit takes more than a century.84

By reducing the periapses to the 300-400km range, the tethered-tug system significantly reduces these time

scales to less than 5 years, a major improvement. The elliptical 800 km by 425 km post-burn orbit used in

this dissertation (Table 3.1, in bold) deorbits in about 3 years, much shorter than the natural decay rate or the

25 year requirement. If more residual fuel is present, a direct reentry maneuver is also feasible. However,

as this table illustrates, using the small ∆v to lower the periapsis of the tethered system has a significant

impact on the debris’ decay time.
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Table 3.1: Lifetime of Tethered-Tug system using Jacchia 1977 atmosphere model44

Perigee Apogee Drag Coefficient Circ. Orbit at Apogee (years) Post-Maneuver (years)
350 700 2.4 27.72 0.74

2.9 25.22 0.57
425 700 2.4 27.72 1.93

2.9 25.22 1.56
350 800 2.4 73.39 0.99

2.9 53.84 0.82
425 800 2.4 73.39 2.71

2.9 53.84 2.22
350 1000 2.4 >100 1.48

2.9 >100 1.19
425 1000 2.4 >100 4.39

2.9 >100 3.66

3.3.6 Discretized Double Notch

The discussion so far has assumed that the thruster can provide any desired thrust level required by

the notch filter. This is unrealistic for current-day thruster capabilities. Therefore, it is proposed to use the

continuous notch thrust profile as a guideline, and then discretize that profile to several distinct thrust levels.

The discretized input shaping control assumes the thruster is only capable of a set number of thrust levels.

For example, with a cluster of 4 equal thrusters, the open-loop towing control is only capable of stepping the

net thrust in 25% increments of the maximum thrust available. This is implemented by having each thruster

individually turn on or off at the desired times. The basic algorithm is given in Eq. 3.10.

step size = Tstep

desired thrust = Tdesired

τratio = Mid-Point Rounding
(
Tdesired
Tstep

)
Tapplied = τratio ∗ Tstep

(3.10)

The algorithm uses a simple rounding method. The rounding scheme in Eq. 3.10 uses a mid-point method

so that if the desired thrust is greater than 50% of Tstep, then the applied thrust will jump to the next step

size, otherwise the applied thrust remains at the previous level. This causes the desired thrust to be above

each step size to achieve a new Tapplied level. The difference between the continuous and discrete applied

thrust is demonstrated by Figure 3.25.
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Figure 3.25: Applied thrust profiles with different input shaping techniques

3.3.6.1 Deep Space Discretized Notch Performance

Figure 3.26 shows two discretized notch, system responses. Figure 3.25 gives the profiles used. The

continuous notch profile used to generate Figure 3.13(b) has been discretized into 100 N and 1000 N steps,

producing Figure 3.26. The 100 N step size was chosen to study a relatively small discretization that could

follow the desired continuous profile somewhat effectively. The 1000 N step size was chosen because it is

much more likely that a realistic thruster is capable of a small range of different thrusts. A ∼2000 N thrust

could be attained by coupling two, 1000 N thrusters and turning them on at desirable times.
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(a) 100 N step discrete double notch spanning .14 ≤ ωc ≤
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(b) 1000 N step discrete double notch spanning .14 ≤ ωc ≤
.22Hz, collision at about 1000 s

Figure 3.26: Relative motion and tether tension response between tug and debris using a discretized notch
profile. Expected debris mass of 2000 kg (ωn = .17 Hz), actual mass is 1500 kg (ωn = .19 Hz). 2009 N
thrust, with 2 discrete tether masses. Deep space
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Altering the continuous thrust profiles to discrete steps is moderately effective in reducing post-burn

relative velocity even when introducing these discrete thrusting steps. The 100 N discretization sees greater

than 900 m of separation between the two end bodies, showing that there was only a small amount of tension

remaining in the tether at the end of the thrusting duration. However, the much cruder 1000 N discretization

of the continuous thrust profile experiences much more relative motion, and the system collapses to 570 m

after 1500 s. This shows the 1000 N discretization appears to be too crude of a discretization, even though

it is more practical for current-day engine capabilities.

Figure 3.27 shows the frequency domain response of the tug mass, given the discretized thrust profiles.

With the continuous notch profile, Figure 3.9(a) shows a step input exciting the modes of the tethered-tug

system. The primary mode occurs at 0.19 Hz and has a fairly large magnitude. The double notch in Fig-

ure 3.14(b) reduces this first mode by about two orders of magnitude in power, thus creating the tiny relative

motion in Figure 3.13(b). Conversely, the magnitude of the first mode in the 100 N discretized frequency

response (Figure 3.27(a)) is only slightly attenuated from the step input. However, this is enough to produce

small relative motion, as shown by Figure 3.26(a). The 1000 N discretization response (Figure 3.27(b)) has

very little difference from the step input, and therefore experiences a post-burn collision quite quickly.
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(b) 1000 N discretized double notch spanning .14 ≤ ωc ≤
.22Hz

Figure 3.27: Tug vehicle frequency response to 2009 N thrust, with 2 discrete tether masses. Deep space

It is clear that simply discretizing the notch thrust profile is not overly effective for a deep space

scenario. Higher levels of discretization are preferred to better approximate the continuous profile, but this

defeats the purpose of discretizing: making a more realistic thrust profile. This type of profile should not be

used for deep space implementation.
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3.3.6.2 On-orbit Discretized Notch Performance

Even though the 100 N discretized thrust profile had better performance in a deep space environment,

it is not realistic performance for a thruster. Therefore, the 1000 N discretization is used in the on-orbit

analysis. The 1000 N discretized thrust profile is used, unaltered from its deep-space implementation.

Figure 3.28 shows the relative separation distance and tension present in the tethered-tug system for

a continuous and discrete notch. (The continuous notch performance is the same from Figure 3.16(b) and

is given here for ease of comparison.) As discussed previously the continuous notch tends to drift together.

However, as shown by Figure 3.22(a) the two end masses do get very close. What is interesting about the

discretized thrust profile, Figure 3.28(b), is that the 1000 N discretized thrust that did not work well in

deep space, performs moderately in orbit, maintaining more separation distance between end bodies. This

is likely due to larger differences in relative motion post-maneuver that cause the two craft to stay further

separated.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

199.998

399.996

599.994

799.992

999.99

Dis
tan

ce 
[m]

Orbits

Sep. distance and tension for m1 and m4 No Shaping T = 2000N

0 0.5 1 1.5 2 2.5 3 3.5 4
0

700

1400

2100

2800

3500

Ten
sio

n[N
]

200

4

35001000

0
3210

2800

0

Orbits

Di
st

an
ce

 [m
] Tension [N]

800

600

400

2100

1400

700

Tension
Distance

(a) Continuous double notch spanning .14 ≤ ωc ≤ .22Hz

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

Dis
tan

ce 
[m]

Orbits

Sep. distance and tension for m1 and m2 No Shaping T = 2000N

0 0.5 1 1.5 2 2.5 3 3.5 4
0

700

1400

2100

2800

3500

Ten
sio

n[N
]

200

4

35001000

0
3210

2800

0

Orbits

Di
st

an
ce

 [m
] Tension [N]

800

600

400

2100

1400

700

Tension
Distance

(b) 1000 N discretized double notch spanning .14 ≤ ωc ≤
.22Hz

Figure 3.28: Relative motion and tether tension response between tug and debris for four orbits. Tether
ωn = .19 Hz. 2009 N thrust, with 2 discrete tether masses. On-orbit

Unfortunately, the end body rotation rates shown in Figure 3.29 are fairly high, about as high as the

step input. This is not unexpected as the discretized notch profile is literally just a set of step inputs that

excite motion in the system.

Figure 3.30 shows the angle between the end masses and their alignment to nadir. Using that angle

as a metric for how well each thrusting method achieves the nadir alignment, it is clear that the 1000 N
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discretized notch does oscillate about nadir. But, it is not clear that this method achieves gravity gradient

any better than a step input, and it is certainly worse than the continuous notch that is induced to create

formation oscillations.
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Figure 3.29: Discretized notch end body rotation rates over 4 orbits
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Figure 3.30: Discretized notch angle from along-track vector. 90o is the radial vector

Therefore, the discretized notch has no guarantee that it could yield better performance than a step

input. In the end, simply discretizing the continuous notch control is not overly effective. This motivates the

use of a more rigorous impulsive input shaping control design.
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3.4 Posicast Input Shaping

3.4.1 Concept

As shown by Singh,77 a time delay system can be used as an open loop control on a system.

A0 +
N∑
i=1

Aie
−sTi = 0 (3.11)

where Ai are the amplitudes, Ti are the delay times, and s is the frequency. Singh demonstrates a number of

Posicast methods to properly actuate a system, as well as make the control more robust to modeling errors.

Singh also generally considers moving a system from one position to another. However, this section expands

upon these works by formulating a robust Posicast, open-loop input shaper, that achieves a desired velocity

without exciting natural frequencies. Because the first mode of the tethered system has been shown to be

the most important,33 a Posicast controller is developed only for the first mode.

The Posicast input shaping profile operates on the assumption that a step input control/thrust profile

is given to the controller. The controller then takes the step and manipulates it so that it does not excite

undesirable modes. Physically, this means that each change in the controller amplitude is timed to occur

when there is no relative motion in the system, i.e. between the end bodies. The thrust profile created by the

Posicast control is shown in Figure 3.25 but in the time scale shown, it is harder to differentiate between the

impulsive profiles and the step input. It should be emphasized that the Posicast profile does behave similarly

to the illustration in Figure 3.3(c).

3.4.2 Design

Assuming there are only two end bodies with a spring force between them, the equations of motion

are simplified to:

ẍ1 = 1
m1

(K(x2 − x1 − L0)− FT )

ẍ2 = 1
m2

(−K(x2 − x1 − L0))

(3.12)

This model will only recover the first mode of the system, but again, it is the most important to remove. The

separation distance between the two end bodies is defined as L = x2−x1−L0, where L0 is the unstretched
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length, a constant. The resulting tether flexing dynamics is written as

L̈ = ẍ2 − ẍ1

L̈ = −Km1+m2
m1m2

L+ FT
m1

(3.13)

where
√
Km1+m2

m1m2
is the natural frequency ωn of a two body spring-mass system. Taking the Laplace

Transform of the system in Eq. (3.13) gives the transfer function

H(s) =
L

u(s)
=

1

s2 +Km1+m2
m1m2

(3.14)

Eq. (3.14) shows that the poles of the system occur at s = ±
√
−Km1+m2

m1m2
= ±jωn, where j =

√
−1.

3.4.2.1 Two Body Example

Jasper et. al34 demonstrate that a single step input thrust profile could (based upon the tether properties

and rigid body end masses) be set to achieve the desired ∆v without leaving the tether in tension. It turns

out that this is a single amplitude Posicast system. An analytic solution to Eq. (3.13) is easily obtained and

is given in Eq. (3.13).

L(t) = C1 cos (ωnt) + C2 sin (ωnt) +
FT
ω2
nm1

(3.15)

If the initial separation distance is assumed to be L(t = 0) = L0 and the initial velocity to be zero,

L̇(t = 0) = 0, then C1 = L0 − FT
m1ω2

n
m, C2 = 0 and the analytic solution for L becomes:

L(t) = (L0 −
FT
m1ω2

n

) cos (ωnt) +
FT
ω2
nm1

(3.16)

Again, this solution is only valid when there is tension in the tether. Eq. (3.16) can provide insight into

several of the basic behaviors of the system. If the cosine term reaches its maximum value of 1, then the

separation distance simply becomes the initial separation L0. Therefore, the separation will never become

less than L0 while thrusting. The maximum separation distance (when the cosine term becomes zero) is

simply a ratio of the thrust, the natural frequency representing tether material properties, and the tug mass.

Insight into the oscillation periods and general dynamical behavior of the system is obtained through

a deep-space analysis. During the constant thrusting period, the two masses oscillate, never approaching



69

each other closer than the unstretched tether length. When using the step input, the thrust stops whenever the

desired ∆v is achieved. The thrust force is frequently removed while the tether is still in tension, causing the

system to collapse. To demonstrate how the thrusting behavior can be utilized to reduce collision potential,

an example deep space simulation is run. Figure 3.31 uses a thrust of 5 kN, m1 = 2700 kg, m2 = 1500 kg

and the tether properties of E = 170 GPa, A = 8e−6 m2 with an initial separation distance of L0 = 1000 m

between the two masses.

0 50 100 150 200
0

1000

2000

0 50 100 150 200
0

2000

40002000

200

4000

1000

0
150100500

2000

0

Time [s]

Se
pa

ra
tio

n 
D

is
ta

nc
e 

[m
]

Tension [N
]

Tension
Distance

�tburn = 101s

(a) Example motion with E = 3x109 GPa. Collision at 157 s

0 100 200 300 400 500 600 700 800
0

1000

2000

Se
pa

ra
tio

n D
ist

an
ce

[m
]

Time [s]

Separation distance and Tension

0 100 200 300 400 500 600 700 800
0

2000

4000

Te
ns

ion
 [N

]

2000

800

4000

1000

0
6004002000

2000

0

Time [s]

Se
pa

ra
tio

n 
D

is
ta

nc
e 

[m
]

Tension [N
]

Tension
Distance

�tburn = 101s

(b) E = 170x109 GPa. Collision at 741 s

Figure 3.31: Separation distance and tether tension in deep space, ∆tburn = 101 s, ∆v = 120 m/s. KS =
1360 N/m, T = 5kN

Figure 3.31 shows two different behaviors, Figure 3.31(a) with a low Young’s Modulus, shows ex-

aggerated motion, and Figure 3.31(b) shows more realistic motion of the tether system. Figure 3.31(a)

demonstrates the periodic motion of both the tether and the tension. Once thrusting stops, remaining tension

causes the craft to collapse in on themselves. Figure 3.31(b) behaves similarly, however the maximum sep-

aration is much smaller, reaching only about 1003 m due to the higher stiffness. The system then begins to

collapse upon itself and collision occurs at about 741 seconds. During the thrusting period, it is important

to note that the tether tension is always at or above zero. This corresponds to the separation distance always

being at, or greater than, L0.

The peaks and valleys in the tension and separation distance (Figure 3.31(a)) lines are points when

the velocities between the end masses are traveling at equal speed. To achieve the desired ∆v and avoid

collisions, the ‘equal speed points’ provide a metric for when to reduce all forces between the masses to zero.

One possible option would be to cut the tether at the equal speed points because the acceleration on both



70

objects will be zero and they will continue at the same relative velocity i.e. zero. This helps to guarantee

that collision will not occur. Cutting the tether is not proposed here, however, because a loose ended tether

will make tracking difficult and it could be dangerous to leave a loose multi-kilometer tether in orbit for long

durations. Therefore, designing a maneuver profile to make the equal speed point coincide with the desired

∆v is a reasonable alternative to cutting the tether.

Starting from Eq. (3.16), its time derivative can be taken:

L̇ = −(L0 −
FT
ω2
nm1

) sin (ωnt) (3.17)

The relative velocity is zero, L̇ = 0, when the sine expression is zero. A desired ∆v can be expressed in

terms of the thrust FT , the system mass M = m1 +m2, and the burn time ∆t.

∆v =
FT
M

∆t (3.18)

Solving for ∆t from Eq. (3.18) and substituting it into Eq. (3.17), an expression for the required thrust to

make L̇ = 0 is found. Here n is any integer.

arcsin 0 = ωnt = ωn

(
M

FT
∆v

)

FT =
ωn∆vM

arcsin 0
=
ωn∆vM

nπ
(3.19)

As might be expected, the number of oscillations made during thrusting are directly related to the

integer used for n (20π = 10 ∗ 2π = 10 oscillations). Because the system does not start in tension, even

n values relate to an unstretched tether, equal speed point. Odd n values relate to maximum stretch, equal

speed points therefore, even n values should be used. The relative velocity between the two craft can be all

but zeroed simply by selection of thrust and/or time of burn, for a given spring-mass system, thus reducing

the likelihood of a collision.

The development given in Eq. (3.15) - (3.19) produce something similar to a single amplitude Posicast

system. However, the more rigorous development in the following section produces a more capable control

that does not require an analytic solution to the system’s motion, as in Eq. (3.15), and it can be made more

robust to errors in the system model.
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3.4.2.2 Detailed Posicast Design

The most basic Posicast controller uses only one time delay and is solved as an example. A single

delay takes the form

A0 +A1e
−sT = 0 (3.20)

Plugging in s = ±jωn to Eq. (3.20) the exponential term can be written as

ejωnT = cos(ωnT ) + j sin(ωnT ) (3.21)

To solve the system, Eq. (3.21) is placed back into Eq. (3.20) and separated into real and imaginary compo-

nents.

Real A0 +A1 cos(ωnT ) = 0

Imaginary A1 sin(ωnT ) = 0

(3.22)

This quickly results in the solutions for A0 and T if A1 is defined to equal 1, the maximum normalized

input.

T = (2n− 1) π
ωn

A0 = − cos(ωnT ) = − cos ((2n− 1)π)

(3.23)

Note that the time T in Eq. (3.23) relates to the same time it takes to complete n oscillations, as seen in

Figure 3.31(a).

3.4.3 Adding Robustness

The time delay control from Eq. (3.20) is very sensitive to modeling errors, therefore several delays

are given to make the system more robust. To make the system solvable, Singh77 specifies that each time

delay is only a multiple of the single delay T , from Eq. (3.23). The delay time T can change, however,

adding this as a variable gives too many variables for the number of constraints that can be applied to the

system. Thus the selection of a constant T is desirable, and comes from Eq. (3.23). The controller designed

for the tethered tug system is shown in Eq. (3.24).

A0 +A1e
−sT +A2e

−2sT +A3e
−3sT +A4e

−4sT = 0 (3.24)
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To solve this system for the impulse amplitudes, Ai, several equations are required. Note that implementing

the system in Eq. (3.24) would require 5 thrusters, one for each amplitude Ai. The real and imaginary parts

are found again, as in Eq. (3.22).

Real A0 +A1 cos(ωnT ) +A2 cos(2ωnT ) +A3 cos(3ωnT ) +A4 cos(4ωnT ) = 0

Imaginary A1 sin(ωnT ) +A2 sin(2ωnT ) +A3 sin(3ωnT ) +A4 sin(4ωnT ) = 0

(3.25)

However three more constraints are defined:

d
dωn

(Real) = 0

d
dωn

(Imaginary) = 0

A0 +A1 +A2 +A3 +A4 = 1

(3.26)

The derivatives of the real and imaginary components of Eq. (3.24) add robustness by reducing the size of

the residual vibration in the system after an input has been added (see Figure 3.32). The constraint that all

of the amplitudes sum to one is used so that the input is not scaled but equal to its full value after all delays

have occurred. Solving this system of equations, the amplitudes are found to be

A0 = 1
16 csc

(
Tωn
2

)4
A1 = −1

4 cos(Tωn) csc
(
Tωn
2

)4
A2 = 1

8(2 + cos(2Tωn)) csc
(
Tωn
2

)4
A3 = −1

4 cos(Tωn) csc
(
Tωn
2

)4
A4 = 1

16 csc
(
Tωn
2

)4
(3.27)

To turn this development into a velocity control instead of a position control, the amplitudes from

Eq. (3.27) are used at the beginning and end of the step input thrust profile to achieve a ramping on and

off as shown in Figure 3.3(c). The amplitudes increase, summing from A0 to A4,hold at the maximum

amplitude of the input for the thrust duration, and then decrease fromA4 to zero. For example, a three thrust
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velocity control would require:

t = 0 Thrust = A0

t = T Thrust = A0 +A1

t = 2 T Thrust = A0 +A1 +A2

t = Tburn Thrust = A0 +A1

t = T + Tburn Thrust = A0

t = 2 T + Tburn Thrust = 0

Here, Tburn is the approximate burn time required by Eq. (3.18). The duration of the burn is nearly the same

as the step input but is extended by 8T to account for the ramp on/off behavior.

To demonstrate why a 5 thrust level system is used in Eq. (3.24), versus the two impulse version of

Eq. (3.20), their expected vibration amplitudes are compared. These amplitudes can be expressed as:80

A =

√
B∑
i=0

(Ai cos(ωnTi))2 +
B∑
i=0

(Ai sin(ωnTi))2 (3.28)

where Ti are the times of the impulses Ai and ωn is the natural frequency. (For the 2 impulse case, i goes to

B = 2 while i goes toB = 5 for the 5 impulse case.) Summing these up over a range of natural frequencies,

due to uncertain debris mass, the expected response of each system can be demonstrated. Figure 3.32 shows

the percentage remaining vibration in the tethered-tug system, given the two different Posicast controls. It

is clear from Figure 3.32 that as debris mass changes, the residual vibration is much smaller for the multi-

impulse control, versus the two impulse control. Variations on the order of 40% can be expected from the

non-robust method while the robust 5 impulse control only experiences about 0.3% variation across the

expected mass range. Thus, the 5 impulse control is a major improvement.

Figure 3.32 also shows the effect of the constraints in Eq. (3.26). The robust Posicast, Figure 3.32(b),

has a much more flat response to changes in debris than the 2 thrust level control, Figure 3.32(a). By setting

the real and imaginary components of the transfer function to zero the control zeros the system response at

the expected system properties. Zeroing the derivatives of the transfer function, flattens the response of the

Posicast to a wider range of system properties.
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(a) 2 thrust level Posicast, Eq (3.20)
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(b) 5 thrust level (robust) Posicast, Eq (3.24)

Figure 3.32: Residual vibration (percentage) from each Posicast method. Debris mass varies between
1000 kg and 2000 kg (nominal at 1500 kg, ωn = 1.21 rad/s).
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3.4.4 Deep Space Performance

Note that the simulations shown utilize the following:

• The attitude on the tug (m1) is maintained while thrusting occurs

• The ∆v applied is equal to 100 m/s. Based upon input-shaping method, this can vary the thrusting

duration

• Two tether masses and two rigid end bodies are used for this study

The time T that results from Eq. (3.23) is about 2.83 s and is used to implement the profile of

Eq. (3.24). This means that the Posicast amplitudes change, using T as the baseline actuation time. For

a five step Posicast system, the ramp on or off takes just over 14 s
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Figure 3.33: Relative motion and tether tension response between tug and debris. Robust Posicast thrust
shaping, Eq. (3.24). Expected debris mass of 2000 kg (ωn = 0.17 Hz), actual mass is 1500 kg (ωn =
0.19 Hz). 2009 N thrust, with 2 discrete tether masses. Deep space

When considering the impulsive input shaping method in Figure 3.33, it can be seen that this thrust

profile (Figure 3.25) produces very desirable behavior, even in the presence of a larger debris mass than

expected. The Posicast controller only sees about 7 m of drift over the time span considered. These results

are exciting because they demonstrate that input shaping controllers can be designed with profiles that are

more reasonable for current-day engine capabilities.

Figure 3.34 shows the frequency domain response of the tug mass, given the Posicast thrust profile.

Unlike the step input profile in Figure 3.9(a) that excites the modes of the tethered-tug system, Figure 3.34
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shows the Posicast frequency response, which shows a very attenuated fundamental mode (0.19 Hz). The

Posicast response is comparable to the continuous double notch in Figure 3.14(b). This again demonstrates

that impulsive input shaping is a viable method to controlling the tethered-tug system. While some other

frequencies do appear amplified, they are not around the fundamental mode of the system, and therefore do

not adversely affect the system as modeled.
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Figure 3.34: Tug vehicle frequency response to Robust Posicast 2009 N thrust, with 2 discrete tether masses.
Deep space

3.4.5 On-orbit Performance

Taking the Robust Posicast thrust profile, unaltered from the deep-space implementation, on-orbit

simulations are run. Figure 3.35 shows the Robust Posicast performance. The control profile again demon-

strates admirable performance because the end bodies do not approach each other, as occurs with the con-

tinuous double notch in Figure 3.16(b). This is due to the fact that the formation enters into a tumble, shown

in Figure 3.37. Further, the Posicast response appears are more benign experiencing lower tension (100 N

versus 700 N and 1400 N for the continuous and discrete notch profiles, respectively) and the system quickly

settles into a tumble, with end body separations near the full length of the tether.

The rotation rates of the end bodies is also relatively small as shown in Figure 3.36. The rates here are

generally less than 5o/sec but the notch with the radial thrust has some rotation rates between ten to twenty

degrees per second and the discretized notch has rates reaching 45o/sec. While the rates in Figure 3.36

change quickly, it is because the tether is constantly pulling the masses back in alignment so the masses

never really complete a full rotation, avoiding the potential of wrapping in the tether.

Figure 3.37 shows the angle between the end masses and their alignment to nadir. The step input (no
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Figure 3.35: Robust Posicast relative motion and tether tension response between tug and debris for four
orbits. Tether ωn = 0.19 Hz. 2009 N thrust, with 2 discrete tether masses. On-orbit
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shaping) does not reach a steady gravity gradient motion and has much more dynamic response, compared

to Figure 3.16.33 The Robust Posicast profile settles into a tumble quickly ensuring the end masses stay

separated.
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Figure 3.37: Robust Posicast angle from along-track vector. 90o is the radial vector

3.5 Bang-Bang Input Shaping

3.5.1 Concept

The bang-off-bang controller creates a profile that can be implemented by a single thruster that can

repeatably be turned on and off. This method also assumes that a step input is given to the controller that

is then modified to not excite system modes. Singh77 demonstrates several ways to create a bang-off-bang

controller; however, the basic principle is to find a linear system’s state transition matrix and control matrix.

Combining these matrices with several constraints, similar to those in Eq. (3.26), yields a system that can be

solved as a linear programming problem. Full details are given by Singh, however, an abbreviated derivation

is given for clarity. Further, the thrust profile is shown in Figure 3.25 but is better illustrated by Figure 3.3(d).

3.5.2 Design

Given initial and final conditions, x0 and xf and a system of the form in Eq. (2.5), the problem can

be set up as follows. We wish to minimize the maneuver time, so

Minimize fT t (3.29)
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where t is the maneuver time vector and f is a vector that defines the given time we wish to minimize. In

this case, since it is desired to minimize the total time, f is a vector of zeros except the last value, which is

a 1 corresponding to the last time. The continuous linear system of Eq. (2.5) is then discretized, obtaining

xk+1 = [AD]xk + [BD]uk (3.30)

where [AD] is the discrete dynamics matrix obtained from Eq. (3.31), [BD] is the discrete control matrix

obtained from Eq. (3.32) and T is the discretization time.

[AD] = eAT (3.31)

[BD] =

 τ=T∫
τ=0

eAτdτ

B (3.32)

Writing the system in terms of the initial state (x0) gives:

xk+1 = [AD]kx0 +
k∑
i=1

[AD]k−i[BD]ui (3.33)

Assuming the final and initial state are known, the summation of inputs can be rewritten and solved for as a

matrix giving:

[
[AD]N−1[BD] [AD]N−2[BD] · · · [AD][BD] [BD]

]


u1

u2

...

uN


= xf − [AD]Nx0 (3.34)

or equivalently

[M(AD, BD)]u = b(x0,xf , [AD]) (3.35)

The system given in Eq. (3.34) allows the user to specify the initial and final conditions (x0, xf ) and

it is solvable using linear programming techniques, in the form of Mu = b. However, to be useful as a

bang-off-bang system, several additional constraints are required. One is that the inputs end in either zero

or one. This is enforced by adding a row to [M ] that is all zeros except for the last column, which is a

one. The [b] matrix also has an additional value added to the end that is either a zero or one. This allows
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for the final control value uN to be specified as whatever value is designated in [b], off (0) or on (1). The

second constraint is on the input sizes. To create a bang-off-bang control, the inputs u are required to be

bounded between zero and one. The value of one is used so that the user defined input is used in its entirety

and not scaled. For this particular implementation, the system is discretized into more than 300 steps over

the minimum cost time determined by the linear programming routine. The large number of discretizations

(over only several seconds for each ON or OFF segment) allows accuracy in the solution. If the discretization

size were bigger, poor results can ensure.

To create a velocity control bang-off-bang profile, the linear programming problem is solved twice.

To begin thrusting while avoiding exciting system modes:

• x0 = 0

• xf = L1

• The final input uN is specified to be 1

The value L1 is defined simply from the approximate separation distances seen from the other control

methods, like the continuous notch. The tether usually ends up stretching less than a meter, for a 1000 m

tether. The selection of this value does not drastically affect the performance of the system, unless it is larger

than the stretch distance possible given the thrust magnitude and the tether material properties. The final

control input is kept at one for the burn duration to achieve the desired ∆v (computed from Eq. (3.18)). The

linear programming problem is then solved again to end thrusting using:

• x0 = L1

• xf = 0

• The final input uN is specified to be 0

The beginning and ending bang-off-bang profiles are then placed at the beginning and end of the step input

thrust profile. This allows for proper relative motion reduction with the desired ∆v. The exact thrust profile

used is shown in Figure 3.25 however the switch times are small enough that they are hard to see on the time

scale shown. The exact timing is as follows:
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• t = 0, ON

• t = 0.6849, OFF

• t = 1.6438, ON

• t = 198.35, OFF

• t = 199.31, ON

• t = 200, OFF

Rocket engines are capable of lighting within fractions of a second, therefore achieving the specific timing

of the bang-off-bang is probably possible. However, re-lighting engines is a significant challenge so a bang-

off-bang profile would likely require some engine development.

3.5.3 Deep Space Performance

Note that the simulations shown utilize the following:

• The attitude on the tug (m1) is maintained while thrusting occurs

• The ∆v applied is equal to 100 m/s. Based upon input-shaping method, this can vary the thrusting

duration

• Two tether masses and two rigid end bodies are used for this study

The time T that results from Eq. (3.23) and is used to implement the profiles of Eq. (3.34) is about

2.83 s. This means that the bang-bang profile switches using T as the baseline actuation time. Figure 3.38

shows the bang-off-bang non-continuous thrust system. Figure 3.25 gives the profile used.

When considering the impulsive input shaping methods in Figure 3.38, it can be seen that this thrust

profile (Figure 3.25) produces desirable behavior, similar to the Posicast system. The bang-off-bang profile

sees about 100 m of drift, however the debris mass is 500 kg from the expected value and the bang-off-bang

profile is not designed to be robust to system model errors. Still, the bang-off-bang profile behaves fairly

desirably.
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Figure 3.38: Relative motion and tether tension response between tug and debris using a Bang-off-bang
thrust profile. Expected debris mass of 2000 kg (ωn = 0.17 Hz), actual mass is 1500 kg (ωn = 0.19 Hz).
2009 N thrust, with 2 discrete tether masses. Deep space

Figure 3.39 shows the bang-off-bang frequency response which does not see nearly as much atten-

uation as the Posicast or double notch profile, but it does attenuate the fundamental mode enough to see

reduced relative motion between the two bodies, as shown in Figure 3.38. Again, this is due to imperfect

debris mass knowledge.

3.5.4 On-orbit Performance

Taking the bang-off-bang thrust profile, unaltered from the deep-space implementation, on-orbit sim-

ulations are run. Figure 3.40 shows the bang-off-bang performance. The bang-bang profile sees significant

motion between the end bodies, however separation distances remain large. Tensions are also about the

same size as those seen in the notch implementation, but larger than the Posicast.

When considering the end body rotation rates in Figure 3.41, it is obvious that they are fairly large.

These are again, about the same size as the step input meaning that the end bodies spin quite fast and have

the potential to wrap up in the tether.

Figure 3.42 shows the angle between the end masses and their alignment to nadir. The bang-off-bang

profile oscillates about the nadir vector but it is not a consistent oscillation, similar to the unshaped input.
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Figure 3.39: Tug vehicle frequency response to a Bang-off-bang 2009 N thrust, with 2 discrete tether masses.
Deep space
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Figure 3.40: Bang-off-bang relative motion and tether tension response between tug and debris for four
orbits. Tether ωn = 0.19 Hz. 2009 N thrust, with 2 discrete tether masses. On-orbit
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Figure 3.41: Bang-off-bang end body rotation rates over 4 orbits
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Figure 3.42: Bang-off-bang angle from along-track vector. 90o is the radial vector

3.6 Conclusions

A step input (impulsive) thrust profile is shown to be inadequate for a tethered ADR system due

to the chaotic motion, collision potential, and relatively high tether tensions induced. The excitement of,

primarily, the tether’s first mode causes the majority of the relative motion between the end bodies. Open-

loop input shaping of only the first mode can largely negate relative motion between the end bodies once

the thrust maneuver is performed. This helps the system stay separated in deep space, or achieve a tumbling

or gravity gradient motion in orbit. While the continuous notch input shaping performs well by limiting

relative velocity between end bodies, it still experiences a collapse in the formation over time. This can

be corrected by inducing a spin but that adds other complications to the motion, such as high end body

spin rates. The impulsive Posicast and bang-off-bang profiles are more achievable for high-thrust rockets.

The bang-off-bang profile performs reasonably well in deep space but is not nearly as robust while in orbit.

However, the Posicast filter creates desirable tumbling motion, large end body separations, and relatively

low end body spin rates. This makes the Posicast control the most attractive input shaping method.



Chapter 4

Tether Design

FT

✓

L0, E, C

Figure 4.1: Tether properties considered for on orbit towing to achieve gravity gradient oscillation about θ

Using an input shaped control profile yields good results for reduced end body relative motion and

collision avoidance as shown in Chapter 3 and References 33 and 32. This chapter expands the discussion

and considers how tether properties affect the end body behavior with, and without input shaping. There

are three parameters that are directly considered in this chapter and their affects on avoiding collisions.

Specifically, tether length, L0, is considered to see if there is a length that is too short or too long. The tether

damping coefficient, C, and modulus of elasticity, E, are considered to see if these parameters can substitute

for thrust input shaping so that a step thrust profile can be used. The effect of changes to combinations of

these tether properties will be analyzed based upon the desired capability to avoid collisions between the
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large end-bodies while achieving a tumbling formation or gravity gradient motion. Figure 4.1 shows the

desired behavior of the system and the tether properties that are to be considered.

The system model from Chapter 2 is used, including damping. The robust Posicast is used here

because it provided some of the best behavior for the system in Chapter 3.4. When damping is used, both

the Posicast and step inputs are considered together to determine how much of an improvement damping

provides. First, each tether property is varied individually and the behavior of the system is studied. Then,

simultaneous changes to damping and elasticity are explored.

4.1 Considered Tether Properties

The basic properties for the system are given in Table 2.1. These are the baseline values and are varied

depending upon the simulation. As each tether property is varied, the change of the fundamental frequency

for the system is given in the second column of Table 4.1 - 4.2. This frequency is the frequency used by

the input shaping methods (Chapter 3.4). Tether mass changes as the unstretched length changes and the

volume of the tether is assumed to be a cylinder.

4.1.1 Length Trade Space

The use of tethers in space has received considerable study.13, 15, 36 They have also been demon-

strated on orbit with large tether lengths. The Small Expendable Deployer System (SEDS)14 experiments

were launched by NASA on Delta-II rockets. These tethers spanned up to 20 km kilometers. The Space

Shuttle Tethered Space System (TSS) missions deployed tethers and TSS-2 reached a tether length of nearly

20 km191. Several other missions have shown shorter deployments. It is therefore likely that the tether

length for the tethered-tug system can span a large range of distances.

The tether lengths considered are developed based upon safe distance considerations and previous

flight missions.14, 19 Based upon the relative motion often seen in previous studies,33, 34 the minimum sep-

aration distance between the two end bodies should be at least 100 m. The maximum distance of 10 km

is within demonstrated tether lengths from previous flight missions. The natural frequency and change in
1 http://www.nasa.gov/mission pages/shuttle/shuttlemissions/archives/sts-75.html



87

tether mass (Eq. (3.6)) is given in Table 4.1.

Table 4.1: Change in natural frequency, and mass with tether length, L0. E = 170 GPa, C = 0 kg
s

L0 (m) ωn (Hz) Tether Mass (kg)
100 0.617 1.18
500 0.273 5.91
1000 0.192 11.82
2000 0.136 23.64
5000 0.086 59.11

10000 0.061 118.22

4.1.2 Elasticity Trade Space

Young’s modulus of elasticity affects the tether’s stiffness, KS (Eq. (2.8)), therefore it is an important

property to consider. Tethers can be made from a variety of materials but the material frequently considered

for use in space tethers is Kevlar.3, 13, 19, 26, 41 Assuming Kevlar is the primary load bearing material, it

has a fairly wide range of possible moduli to consider. This range has been explored through the use of

www.matweb.com2. The natural frequency, and its sensitivity to change in debris mass (Eq. (3.6)) is given

in Table 4.2.

Table 4.2: Change in natural frequency with Young’s modulus, E. L0 = 1 km, C = 0 kg
s

E (GPa) ωn (Hz)
27 0.0767

60.5 0.115
94 0.143

161 0.187
194.5 0.206
228 0.223

4.1.3 Damping Trade Space

Damping in tethers has received much less attention than the modeling of the undamped dynamics.

However, there have been some theoretical, terrestrial, and on orbit experimental analyses done concerning

damping.26, 45 Characterizing the damping present in a tether, especially long tethers on orbit is challenging.
2 http://www.matweb.com/index.aspx
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Still, damping ranges can be bounded10, 26 and the value of damping can also potentially be designed to re-

duce several of the modes of the tether.45 A potential range of longitudinal damping coefficients is explored

for the system.

Unfortunately, there is not much good data on the damping that occurred with tethers that have

flown.3, 26 The lower bound on damping is based upon ‘structural’ properties which depend upon how

the tether is built. The upper bound is based upon viscous forces internal to the tether and external forces

(such as atmospheric drag). This gives a range on C between 1× 10−3 and about 1.10, for the tethered-tug

system.26 Materials other than Kevlar, like Zylong have shown natural damping of about 0.08.10 However,

making the assumption that the tether can be designed to achieve various material properties, a wider range

will be explored. Specifically, larger values of C will be used. (Achieving a damping of C = 8 kg/s may be

optimistic but the idea is to determine when damping can have a significant affect.) Longitudinal damping

is considered in this thesis and transverse tether damping is set to zero because it is much smaller.

Table 4.3: Change in natural frequency with tether damping, C. L0 = 1 km, E = 170 GPa.

C (kgs ) ωd (Hz)
0.1 0.192470203
1 0.192470203
2 0.192470198
4 0.192470184
8 0.192469904

10 0.192469735

4.2 Modifications to Posicast Control

With damping, the Posicast control is modified slightly. Chapter 3.4 assumes that damping is zero,

leaving only oscillatory behavior. With damping the frequency has both real and imaginary components:

s = ε± jωd (4.1)

The robust Posicast control, shown again for ease of reference in Eq. (4.2), is altered to include the addition

of the real component of the Eigen value.

A0 +A1e
−sT +A2e

−2sT +A3e
−3sT +A4e

−4sT = 0 (4.2)



89

The constraints placed on the solution of Eq. (4.2) now become:

Real A0 +A1e
−εT cos(ωdT ) +A2e

−2εT cos(2ωdT ) +A3e
−3εT cos(3ωdT )

+A4e
−4εT cos(4ωdT ) = 0

Imaginary A1e
−εT sin(ωdT ) +A2e

−2εT sin(2ωdT ) +A3e
−3εT sin(3ωdT )

+A4e
−4εT sin(4ωdT ) = 0

(4.3)

The derivative constraints to flatten the vibration response and add robustness are still:

δ
δωd

(Real) = 0

δ
δωd

(Imaginary) = 0

A0 +A1 +A2 +A3 +A4 = 1

(4.4)

Finally, the new thrust levels are expressed as:

A0 = 1
(1+e2Tε−2eTε cos(Tωd))2

A1 = − e−Tε cos(Tωd)
(cos(Tωd)−cosh(Tε))2

A2 = 2+cos(2Tωd)
2(cos(Tωd)−cosh(Tε))2

A3 = − eTε cos(Tωd)
(cos(Tωd)−cosh(Tε))2

A4 = e4Tε

(1+e2Tε−2eTε cos(Tωd))2

(4.5)

4.3 Tether Length

Figure 4.2 and Figure 4.3 show the relative separation of the tether-tug system end bodies, the angle

from nadir, and the tether tension for the L0 lengths in Table 4.1. A nadir/gravity gradient alignment is

defined as the tethered-tug system oscillating about the nadir vector (0o) while maintaining a separation

distance between the end bodies of close to L0. Note that the tension in the tether is scaled in each plot so

that it properly fits the ‘angle from nadir’ axis. Therefore, if the tension is scaled by 0.5 and its value reads

90, the actual tension is 45 N. The tension is zero at an angle of 0o.

Figure 4.2 demonstrates the general motion of the tethered-tug system using a step input compared to

Figure 4.3 that uses the Posicast thrust profile. While Figure 4.2 does see some oscillation of the formation

about the nadir vector, the separation distance between the end bodies is quite dynamic and the angle from
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Figure 4.2: Relative motion and tether tension between tug and debris with a step input. L0 = 1 km,
E = 170 GPa and C = 0 kg

s . The debris’ expected mass is 1500 kg but it is actually 2000 kg in simulation.
Tension scaled by 27.78. Tether length study.

nadir does not reach a consistent motion. The step input therefore this does not achieve tumbling or gravity

gradient motion. Conversely, Figure 4.3 shows that some of the distances do achieve desirable motion and

many do maintain large separations with small tensions.

Figure 4.3(a) achieves a gravity gradient oscillation fairly quickly. While the end bodies continue

to move relative to each other, they remain at nearly L0. Figure 4.3(b) experiences similar behavior to the

unaltered double notch filter in Figure 3.16(b) where the end bodies end up drifting relative to each other.

Gravity gradient or tumbling formation motion is partially the result of having some relative velocity in

the radial direction, post-thrust. This velocity helps to begin the formation’s rotation. The slow drift in

Figure 4.3(b) has less of this radial velocity, leaving the end bodies more or less in the along-track direction.

Figures 4.3(c) and 4.3(d) go into a tumble post-thrust, a desirable motion to avoid collision. However

for L0 = 1 km, near 4.5 orbits the formation appears to hold at near 90o (both masses are aligned along-

track), allowing the two masses to begin drifting closer together. As the two masses drift and re-tension

the formation begins to settle into the desirable nadir motion. It has been observed that transitioning from

tumbling to gravity gradient has a corresponding reduction in separation distance. Therefore, it is likely that

the 1 km also settles to gravity gradient. However, Figure 4.3(e) and Figure 4.3(f) do not tumble or appear

to achieve gravity gradient motion. It is interesting to note that the two furthest distances considered had the
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(a) L0 = 100 m.
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(b) L0 = 500 m.
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(c) L0 = 1000 m.
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(d) L0 = 2000 m.
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(e) L0 = 5000 m.
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(f) L0 = 10000 m.

Figure 4.3: Relative motion and tether tension between tug and debris with a Posicast input. E = 170 GPa
and C = 0 kg

s . The debris’ expected mass is 1500 kg but it is actually 2000 kg in simulation. Tension scaled
by 27.78. Tether length study.

closest approaches showing that longer tethers do not guarantee further separation.

An example of the end body rotation rates is given in Figure 4.4. This behavior seems common for the
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Posicast control with a tumble or gravity gradient motion. The transition from tumbling to gravity gradient

can be seen on this plot as the constant spin rate between about 4.5 and 5.5 orbits. Table 4.4 summarizes
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Figure 4.4: Rotation rate of end bodies for L0 = 1000 m tether length study.

the average and standard deviation of the rotation rates from the results in Figure 4.3. The gravity gradient

and tumbling rotation rates are all relatively small and the bodies generally do not make full rotations, but

oscillate about their attachment point. The drifting end bodies in L0 = 500 m have the smallest rotation

rate, as expected. The longer distances see very large spin rates, induced by large tensions spinning up the

bodies. This further demonstrates the poor performance of the 5000 m and 10000 m cases.

There are multiple observations made from this study that are summarized in the following para-

graphs. First, when the angle becomes large, but the system does not tumble, the separation distance re-

duces. This is because at large angles the two bodies are nearly aligned in the along-track direction. Any

velocity differences will cause drift between the two bodies, thus they begin to approach each other. The

end bodies generally have enough distance in the radial direction to pass by each other. Eventually the tether

catches them, causing gravity gradient motion. This behavior is consistent throughout all the results for each

tether property. Generally, angles above about 70o seem to cause this collapsing behavior.

Second, major dips in the separation distance only occur while an end body is above, and forward of,

the center of mass of the system. Being in a higher orbit than the lower body, the forward body will drift

(relatively) backwards. The lower body moves faster and drifts (relatively) forwards. In all simulations, after

thrusting the tug always begins with a slightly higher relative velocity than the debris (due to the thruster
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Table 4.4: End body rotation rate average and standard deviation for L0 study. E = 170 GPa, C = 0 kg
s

L0 (m) Body Mean ωB/I (deg/s) Standard Deviation ωB/I (deg/s)
100 Tug 0.663 0.505

Debris 0.450 0.331
500 Tug 0.009 0.004

Debris 0.080 0.004
1000 Tug 1.463 1.336

Debris 0.499 0.450
2000 Tug 1.693 1.467

Debris 1.461 1.190
5000 Tug 35.904 43.008

Debris 39.538 31.970
10000 Tug 57.101 52.940

Debris 54.219 44.571

and being in a slightly lower orbit). The tug then naturally increases in orbit altitude and begins swinging

over the top of the formation. This causes the initial dip in relative separation distance and the transition to

either tumbling or gravity gradient motion.

Third, the transition from a tumbling formation to gravity gradient has been observed to always be

accompanied by a large rotation angle, that does not pass 90o, and a reduction in the separation distance.

When the bodies drift apart again and re-tension, they catch and begin the gravity gradient oscillation. The

end bodies often experience higher rotation rates, at least temporarily, during the transition.

Fourth, this system is challenging to characterized because the initial conditions do not directly cor-

relate to whether, or when, the formation will transition from a tumble to gravity gradient. This behavior

is a complex interaction between position in orbit, relative end body states, and tension in the tether. What

is encouraging is that if the system achieves a tumbling or gravity gradient oscillation, it stays that way.

Thus, if these conditions can be achieved (through proper input shaping and/or selection of E, C, or L0) the

system reaches a desirable configuration.

The overall results from the length study are given in Table 4.5. A ‘close approach’ occurs when the

end bodies approach each other. (Generally, it has been seen that using a step input causes poor performance,

independent of tether length.) The Posicast input shaped thrust profile performs well. Still, not all of the

lengths achieve a tumble or gravity gradient motion. It also appears that as tether length gets longer, the

performance reduces and more relative motion occurs.
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Table 4.5: Summary of tether length, L0, study. E = 170 GPa, C = 0 kg
s

L0 (m) Gravity Gradient/Tumble Notes
100 Grav. Gradient
500 No Drift between end bodies
1000 Tumble to Grav. Gradient Transitions at 4.5 orbits
2000 Tumble
5000 No End body motion w/o oscillation

10000 No Close approach of 44 m

4.4 Tether Stiffness

Figure 4.5 shows the relative motion, angle from nadir and tether tension of the tether-tug system.

Figures 4.5(a), 4.5(c), and 4.5(e) all start in a tumble and begin to transition to gravity gradient motion.

However, Figure 4.5(b) has drift between the end bodies, like the notch and the 500 m length results. Con-

versely, Figures 4.5(d) and 4.5(f) do not appear to settle into any obvious trend. As stated earlier, the timing

of any re-tensioning events seems to be particularly important for whether or not the system achieves tum-

bling or gravity gradient motion.

Table 4.6 gives the average and standard deviation of the rotation rates for each E trial. Similar to

the L0 study, the rotation rates of the gravity gradient/tumbling behavior are relatively small and behave

similar to Figure 4.4. The drifting rotation rates for E = 60.5 GPa are very small, just like all other drifting

scenarios. The more dynamic behavior of E = 161 GPa and E = 228 GPa have generally higher rotation

rates, and large deviations showing that they are undesirable.

Table 4.6: End body rotation rate average and standard deviation for E study. L0 = 1000 m, C = 0 kg
s

E (GPa) Body Mean ωB/I (deg/s) Standard Deviation ωB/I (deg/s)
27 Tug 1.724 1.901

Debris 1.155 1.144
60.5 Tug 0.010 0.004

Debris 0.0260 0.006
94 Tug 4.034 7.544

Debris 1.353 2.365
160 Tug 6.269 6.633

Debris 4.811 6.139
194.5 Tug 1.538 1.394

Debris 1.110 0.935
228 Tug 7.888 9.520

Debris 3.138 4.015
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(a) E = 27 GPa.
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(b) E = 60.5 GPa.
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(c) E = 94 GPa.
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(d) E = 161 GPa.
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(e) E = 194.5 GPa.
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(f) E = 228 GPa.

Figure 4.5: Relative motion and tether tension between tug and debris with a Posicast input. L0 = 1 km,
C = 0 kg

s . The debris’ expected mass is 1500 kg but it is actually 2000 kg in simulation. Tension scaled by
27.78. Stiffness study.
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A summary of the results from the stiffness study are given in Table 4.7. Changes to elasticity does

not seem to cause any discernible trends to the motion. Some of the motion is advantageous, some is not.

Table 4.7: Summary of tether stiffness, E, study. L0 = 1000 m, C = 0 kg
s

E (GPa) Gravity Gradient/Tumble Notes
27 Tumble to Grav. Gradient Transitions at about 5 orbits

60.5 No Drift between end bodies
94 Tumble to Possible Grav. Gradient Transitions at about 4.5 orbits

161 No End body motion w/o constant oscillation
194.5 Tumble to Possible Grav. Gradient Transitions at about 5 orbits
228 No End body motion w/o constant oscillation

4.5 Longitudinal Damping

While the length and elasticity studies can produce ideal motion of the system with input shaping,

the use of a step input consistently performs poorly. However, with the addition of damping, the step thrust

profile may respond much better as damping can remove unwanted motion. This section considers both the

robust Posicast and step thrust profiles.

Figure 4.6 shows the response of the system due to a step input with damping. Figure 4.6(a) shows

that the undesirable chaotic motion occurs with small damping but higher damping actually does help the

system achieve gravity gradient (Figure 4.6(b)). As is summarized in Table 4.10 only the higher damping

cases with C = 8 and C = 10 achieve gravity gradient. This is very different from the step responses

without damping which always perform poorly.

Figure 4.7 shows results from the various damping coefficients given in Table 4.3 while using the

Posicast thrust profile. The Posicast does perform well with damping achieving a tumbling motion that

begins to transition to gravity gradient. As expected, an input shaped thrust profile produces good results

however they do not appear appreciably different than those seen for the Posicast results from the L0 and E

studies with similar elasticity or length (Figure 4.3 and Figure 4.5).

Figure 4.8 is shown to demonstrate the change in energy of the system, after the thrust maneuver

has been completed, due to damping. This also shows the rotation rates of the end bodies, which behave

similarly to the other Posicast rotation rates.
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(a) C = 0.1 kg
s
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(b) C = 8 kg
s

Figure 4.6: Relative motion and tether tension between tug and debris with a step input. L0 = 1 km,
E = 170 GPa and C = 8 kg

s . The debris’ expected mass is 1500 kg but it is actually 2000 kg in simulation.
Tension scaled by 27.78. Damping study.

It turns out that input shaping works against damping. Because input shaping is designed to reduce

relative motion, and therefore stress in the tether, there is less damping. As damping successfully reduces

motion between the end bodies, the tether eventually reaches its unstretched length and tension reaches

nearly zero. This eventually causes the formation to behave similarly to a rigid bar, oscillating in orbit

without further reduction in motion.

Table 4.9 shows that the average end body rotation rates stay fairly small and within the ranges

seen by the previous Posicast simulations. In fact, no overly large rotation rates are experienced showing

some of the benefits of the damping present. Similarly, for the step input with high damping (C = 8 and

C = 10), the end body rotation rates are fairly small. Lower damping sees much higher rotation rates (and

non-tumbling/gravity gradient motion). But the cases where the step input achieves gravity gradient, small

rotation motion also occurs.

Again, it is challenging to produce better metrics than some of these qualitative observations because

the system is not only influenced by post-thrust conditions, but also when tensioning occurs. Tension and

relative motion of the bodies along with angle from nadir can alter the motion of the system significantly,

as seen in all of these studies. Still, it is informative to see that tumbling and gravity gradient motion is a

common behavior, aiding collision avoidance.
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(a) C = 0.01 kg
s
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(b) C = 1 kg
s
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(c) C = 2 kg
s
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Figure 4.7: Relative motion and tether tension between tug and debris with a Posicast input. L0 = 1 km,
E = 170 GPa. The debris’ expected mass is 1500 kg but it is actually 2000 kg in simulation. Tension scaled
by 27.78. Damping study.
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Table 4.8: End body rotation rate average and standard deviation for the Posicast profile C study. L0 =
1000 m, E = 170 GPa

C (m) Body Mean ωB/I (deg/s) Standard Deviation ωB/I (deg/s)
0.1 Tug 0.604 0.601

Debris 1.002 0.883
1 Tug 1.140 1.133

Debris 0.643 0.680
2 Tug 0.384 0.772

Debris 0.614 0.634
4 Tug 0.698 1.004

Debris 1.426 3.060
8 Tug 1.234 3.235

Debris 1.297 1.579
10 Tug 2.718 5.315

Debris 3.022 4.803

Table 4.9: End body rotation rate average and standard deviation for the step profile C study. L0 = 1000 m,
E = 170 GPa

C (m) Body Mean ωB/I (deg/s) Standard Deviation ωB/I (deg/s)
0.1 Tug 13.206 9.176

Debris 6.687 5.361
1 Tug 15.337 12.088

Debris 12.309 7.082
2 Tug 11.934 6.905

Debris 12.451 6.186
4 Tug 7.384 5.172

Debris 7.098 4.005
8 Tug 4.401 5.051

Debris 3.222 3.616
10 Tug 2.583 2.900

Debris 2.166 2.490
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Figure 4.8: Example system properties of C = 0.1kgs for the Posicast control

The summary of the results from the damping study is given in Table 4.10. Generally, larger damping

ratios are required for the step input to not require input shaping. All input shaped trials tumble and begin

to transition to gravity gradient motion, an ideal scenario.

Table 4.10: Summary of tether damping, C, study. E = 170 GPa, L0 = 1 km

C (kgs ) Thrust Profile Gravity Gradient/Tumble Notes
0.1 Step No End body motion w/o oscillation
0.1 Posicast Tumble to Possible Grav. Gradient Transitions before 5 orbits
1 Step No Close approach of ≈45 m
1 Posicast Tumble to Possible Grav. Gradient Transitions at about 5 orbits
2 Step No End body motion but constant oscillation occurs
2 Posicast Tumble to Possible Grav. Gradient Transitions before 5 orbits
4 Step No End body motion but constant oscillation occurs
4 Posicast Tumble to Possible Grav. Gradient Transitions before 5 orbits
8 Step Yes
8 Posicast Tumble to Possible Grav. Gradient Transitions at about 5 orbits
10 Step Yes
10 Posicast Tumble to Possible Grav. Gradient Transitions at about 4 orbits

4.6 Stiffness and Damping Study

Due to the promising results of damping with a step input, both Young’s modulus and damping are

explored together. Note, the tether length is kept constant at L0 = 1 km, because this consistency seems to

produce desirable behavior. There are two avenues used to explore the stiffness and damping trade space.

First, the system is linearized andE and C are computed to see if it is possible to damp both the longitudinal
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motion and the in-plane rotation (gravity gradient oscillations). Then, E and C are swept to determine the

behavior of the system over a wide range of applicable values.

4.6.1 Linearized ‘Gain’ Study

It is desirable to have an idea of the required combination of Young’s modulus and damping to prop-

erly reduce the motion between the end bodies, while damping the in-plane rotations. Keeping the formation

completely aligned gravity gradient along the radial direction is ideal. However, the use of large moduli

generally means the system does not flex much and damping is small. The formation quickly settles into

behavior similar to a rigid bar, thus inducing gravity gradient oscillations.

In order to get a high-level idea of the Young’s modulus and damping coefficient needed to damp

both in-plane oscillations and tether stretching, the developments of Natarajan and Schaub are followed.54

Young’s modulus and damping are treated like gains and computed to find the lower-bounds on these values.

The analysis makes several large assumptions: first is that the tethered-tug motion is in a circular orbit and

second is that there are small in-plane oscillations. Of course, after the thrusting maneuver the orbit is no

longer circular (e ≈ 0.02) and the tether often oscillates in the 30o - 80o range. Still, the computed Young’s

modulus and damping should bound these parameters for the system.

Figure 4.9 shows the basic definition of the orbit frame (ô) and the tether frame (t̂) aligned along the

tether longitudinal axis. The rotation from the orbit frame into this frame is defined by a 3-axis rotation

ôh

ô✓

ôrrc

θx1

y1

z1

circular center
of mass motion

t̂1

t̂2
t̂3

S = L + �S

m2

m1

Figure 4.9: Orbit and tether frame definitions using Euler Angles

about the out-of-plane axis (ôh). The rotation about the longitudinal axis does not affect the dynamics,
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to first order. The out-of-plane motion decouples from the in-plane motion, as shown by Reference 54,

and is not considered here. Using a massless tether with the tug and debris end bodies, the position of

m1 in the tether frame is represented as ρ1 =
[

m2
m1+m2

S, 0, 0
]

with respect to the center of mass. (S =√
∆x2 + ∆y2 + ∆z2, the distance norm.) Therefore, the rotation from the tether frame to the orbit frame

is given by Eq. (4.6). 
x

y

z

 =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1




m2

m1+m2
S

0

0

 (4.6)

Linearizing about small angles and taking derivatives of Eq. (4.6) gives
x

y

z

 ≈
m2

m1 +m2


S

Sθ

0

 (4.7)


ẋ

ẏ

ż

 ≈
m2

m1 +m2


Ṡ

Ṡθ + Sθ̇

0

 (4.8)

From the center of mass, the following relative position vector description must be true:

m1ρ1 +m2ρ2 = 0 (4.9)

Taking the center of mass constraint into account, S2 can be written as:

S2 =
(m1 +m2)

2

m2
1

(
x21 + y21 + z21

)
(4.10)

Taking two derivatives of Eq. (4.10), substituting in the Clohessy-Wiltshire-Hill17, 27 equations, and using

Eq. (4.9) to get everything in terms of the position of body 1, the tug, produces:

2Ṡ2 + 2SS̈ =
2(m1 +m2)

2

m2
1

(
ẋ2 − 2nyẋ+ ẏ2 + 3n2x2 + 2nxẏ + ż2 − n2z2

)
(4.11)

Here n is the mean motion of the approximated circular orbit. Eq. (4.7) and Eq. (4.8) are then used to rotate

the expression into the spherical tether frame. Eq. (4.11) can be solved for the acceleration of the tether
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expansion, S̈. The equation can then be focused on the variation of the tether expansion:

S = L0 + δS (4.12)

where L0 is, as before, the unstretched tether length. Plugging Eq. (4.12) into Eq (4.10), linearizing, and

then removing higher order terms gives:

δS̈ = − 1
L0m2

1m2

(
Cm1(m1 +m2)δṠ + L0(KSm1(m1 +m2)− 3m3

2n
2)δS − 2L2

0m
3
2nθ̇
)

(4.13)

The in-plane rotation is derived by Reference 54 and given here for ease of reference.

θ̈ = −2n

L0
δṠ − 3n2θ (4.14)

The linearized natural frequency of the in-plane oscillations from Eq. (4.14) is Ω =
√

3n2. For an

800 km circular orbit, this turns into about 3494 s or one cycle per 0.577 orbits. This period is reason-

ably consistent with the oscillation rates seen in the other simulations with smaller angle gravity gradient

behavior.

In Eq. (4.13), KS = EA
L0

and C are considered control parameters, essentially like gains. For stability

of Eq. (4.13), the natural frequency of this system must be greater than zero and the damping terms must

also be greater than, or equal to zero:

KSm1(m1 +m2)− 3m3
2n

2

m2
1m2

> 0 (4.15)

C(m1 +m2)

L0m1m2
≥ 0 (4.16)

To allow for the separation distance to damp the in-plane rotations, Eq. (4.15) is solved for E such that this

frequency is the same as the in-plane frequency (Ω =
√

3n2) resulting in:

E =
3L0m2(m

2
1 +m2

2)n
2

Am1(m1 +m2)
(4.17)

Eq. (4.16) is then solved for C, using Eq. (4.17) while being equated to the general expression for damping,

2ζΩ.

C =

2ζL0m1m2

√
AEm2

1+AEm1m2−3L0m3
2n

2

L0m2
1m2

m1 +m2
(4.18)
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Using the values from Table 2.1 for area, end body masses, and a mean orbit altitude of 610 km

(mean of 800 km × 420 km) to get the mean motion n, the elasticity is E = 555, 545 Pa and the damping

is C = 3, 509.95 kg
s , when critically damped at ζ = 1. This modulus is much lower than what is generally

considered for space tethers. A modulus of E ≈ 0.5 MPa can be found with some types of rubber, which

have considerably lower yield stresses than Kevlar. The damping is much greater than anything studied so

far and is not likely possible with existing materials, especially in combination with such a low modulus.

Since the value of C varies linearly with ζ, critical damping is not required. However, ζ would need to

be in the range of 1×10−3 to be within the previously determined damping coefficient range of Table 4.3.

Making ζ this small also ensures that the system is under damped and will oscillate for a significant period

of time making the orbital motion, end body spin rates, etc. much more important factors, likely reducing

the effectiveness of damping. Therefore, material properties alone are not likely to get the formation to

achieve a stationary gravity gradient orientation.

Reference 45 also found that properly damping longitudinal modes requires the tether to have a very

low stiffness. Not only are these tether properties unachievable by current materials, but highly elastic

materials behave poorly with the input shaping filters. The system’s natural frequency becomes very low

making thrust durations last over many orbits with thrust magnitudes that are on the order of tens of Newtons.

This violates the high-thrust premise of the tethered-tug system. Further, significant portions of the ∆v

and remaining rocket fuel are used stretching the tether, not lowering the periapsis, reducing the overall

effectiveness of such extreme tether properties.

It therefore becomes important to consider how the more realistic tether properties behave over a

range of elasticity and damping.

4.6.2 Stiffness and Damping Sweeps

Transitioning back to realistic modulus and damping values in Table 4.2 and Table 4.3, Table 4.11

summarizes the behavior of the tethered-tug system as E and C vary. The table shows whether there is a

collision, tumbling motion, highly dynamic motion (Figure 4.6(a)), or gravity gradient motion. If there is a

close approach, the minimum separation distance is given next to the behavior seen.
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This study demonstrates some very encouraging results. A step input thrust profile often causes

collisions and does not achieve a tumbling or gravity gradient orientation. The results in Table 4.11 show

that with damping, this is not true. With higher damping coefficients, and without input shaping, the step

input achieves desirable nadir oscillations. For C = 4, it appears that gravity gradient motion is induced,

but the end body separation distance does vary somewhat for multiple orbits. It is likely that this damps to

gravity gradient. It also appears that elasticity is not a driving factor in the performance of the system. In

the end, if damping is at or above 4 kg
s the system likely achieves a taut, gravity gradient behavior.

Table 4.11: Summary of tether stiffness E and damping C study using a step input. L0 = 1 km

C kg
s E = 27 GPa 60.5 GPa 94 GPa 161 GPa 194.5 GPa 228 GPa

0.1 Collision Dynamic Dynamic Dynamic Dynamic Dynamic
1 Dynamic, ≈ 26 m Dynamic Dynamic Dynamic, ≈ 30 m Dynamic Dynamic
2 Dynamic, ≈ 35 m Dynamic Dynamic Dynamic Dynamic Dynamic
4 Grav. Grad? Grav. Grad? Grav. Grad? Grav. Grad? Grav. Grad? Grav. Grad?
8 Grav. Grad Grav. Grad Grav. Grad Grav. Grad Grav. Grad Grav. Grad

10 Grav. Grad Grav. Grad Grav. Grad Grav. Grad Grav. Grad Grav. Grad

4.7 Conclusions

Changing the tether properties can have significant effects on the tethered-tug system in orbit. Various

lengths change the system’s response to a Posicast thrust profile from drifting, to tumbling, and highly

dynamic motion. Longer tether lengths seem to reduce the effectiveness of input shaping. Intermediate and

short lengths appear better suited for this system.

Elasticity appears to not have a discernible effect on the behavior of the system. By itself, and with

damping, the elasticity did not greatly alter the performance by comparison to changes in C and L0.

Damping, however, can create drastic changes in the system. Higher damping coefficients can replace

the use of input shaping and allow a step input to achieve gravity gradient oscillations. While it does not alter

the Posicast behavior significantly, it does make the overall motion and end body spin rates more benign.



Chapter 5

Slack Tethers and Rotational Debris Motion

Chapters 3 and 4 assumed that rotational motion was not induced, effectively making the end masses

behave somewhat like point masses while thrusting (even though rotation is allowed). Further, the tether is

always assumed to be taut when starting the thrusting maneuver. This chapter considers the effects of the

tether being slack before the thrusting maneuver. It also considers how a tether attached to the debris, offset

from the debris center of mass, affects the system. Preexisting rotational motion of the debris is also briefly

explored. This chapter seeks to describe how the tethered-tug system behaves with less than ideal initial

conditions.

5.1 Slack Tethers

FT

L0

L < L0

Figure 5.1: Illustration of a slack tether, just prior to thrusting, with a taut length of L0
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5.1.1 Effects of a slack tether

Having a slack tether prior to thrusting (Figure 5.1) can drastically change performance of the system.

All previous simulations presented in this paper have assumed that both objects are initially separated by

the tether length of L0. That is, the tether is virtually taut when the thrust starts. Conversely, Figure 5.2

shows how a slack tether amplifies the dynamic response of the system while removing all effects of input

shaping. A collision occurs near 400 seconds and the tether force jumps to nearly 27,000 N, not 800 N seen

in Figure 3.13(b). This is likely enough to cause the tether to yield and the quick on-set of the force has a

large potential to break the connection to the debris (i.e. the harpoon, net, etc.).
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Figure 5.2: Slack tether: 1000 m tether with 200 m of slack. Simulated in deep space with a double notch
(.14 ≤ ωc ≤ .22 Hz), assuming a debris mass of 2000 kg (actual 1500 kg), 2009 N thrust, 2 discrete tether
masses. Deep space

This poor behavior is caused by the fact that the majority of the input shaped thrust profile occurs

during the time it takes to remove the slack in the tether and pull it taut. The tether is not effected by desired

input shaping profiles. Instead, the tether experiences a large step increase all while the tug is increasing in

velocity. This causes the substantial ‘whipping’ effect seen in Figure 5.2.

A brief sensitivity study is performed to examine the effect of how much slack can be present in the

tether without severely altering performance of the input shaping methods. An alternative to the slack tether,

a tensioned tether, is also explored.
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5.1.2 Input Shaping Methods’ Sensitivity to a Slack Tether

5.1.2.1 Deep Space Study

The system is placed in deep space and the three primary input shaping methods are compared for

ability to perform with slack in the tether. The distance between the end bodies is taken from L0 = 1 km

and reduced by ‘X’ meters. All bodies start equally spaced.

Table 5.1 shows the results for each input shaping method. The maximum slack distance is determined

by the slack possible without the end bodies colliding within 1500 s. If a different simulation duration were

used, the maximum slack distance would change. Any larger slack distance causes a collision within 1500 s.

While this metric is somewhat arbitrary, the major take-away is that all methods experience collisions fairly

quickly. The double notch filter performs the best, being most robust to slack in the tether, however it can

only handle 25 m of slack out of 1000 m. The Posicast and Bang-off-bang profiles are highly sensitive to a

slack tether and essentially must start with a taut system. This study again demonstrates how amplified the

motion between the end bodies becomes with a slack tether.

Table 5.1: Maximum slack possible in tether for a given shaping method. Deep space. L0 = 1 km, the
debris mass is 2000 kg (1500 kg expected). Simulation duration of 1500 s.

Input Shape Method Slack In Tether (m) Travel Dist. After 1500 s (m) Max. Tension (N)
Double Notch 25 303 7584

Robust Posicast 2 406 2337
Bang-off-bang 0 105 873

5.1.2.2 On-orbit Study

Because the behavior of the system changes quite significantly while on-orbit, it is important to

consider how a slack tether affects this motion. Table 5.2 shows the general behavior of the system using

the slack results from the deep space study in Table 5.1 as a baseline.

With the same slack in the tether as the deep space results, the input shaping methods fail to produce

gravity gradient or tumbling motion of the system. Because the slack distance is so small for the Posicast and

bang-off-bang profiles, it can be concluded that neither are capable of withstanding any slack in the tether.
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Table 5.2: Maximum slack possible in tether for a given shaping method. On-orbit. L0 = 1 km, the debris
mass is 2000 kg (1500 kg expected). Simulation duration of 6 orbits.

Input Shape Slack In Minimum Average, both bodies Gravity Gradient?
Method Tether (m) Separation (m) ωbody (deg/s)

Double Notch 5 943 ≈2.05 ±1.7 Yes
Double Notch 25 642 ≈7.70 ±4.6 No - large change in distance

Robust Posicast 2 621 ≈5.45 ±4.5 No - large change in distance
Bang-off-bang 2 603 ≈9.90 ±4.8 No - large change in distance

However, the notch can achieve gravity gradient and small rotation rates with very small slack distances of

less than 10 m.

Figure 5.3 demonstrates the motion experienced by all of the input shaping methods when the slack

distance has become too large for the controller. Overall, the tethered-tug system oscillates about gravity

gradient but has a lot of end body motion, with periods of slack and tension. This is not ideal, however the

distances do stay fairly large making this a decent response.
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Figure 5.3: Motion of system using a notch and 25 m of slack

In the end, the system is not tolerant to an initially slack tether. The best way to combat this is to

allow for the orbital motion to tension the tether passively and then apply thrust. The question then arises:

how tolerant is the system to tension in the tether prior to input shaping? This behavior is explored next.
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5.1.3 Input Shaping Methods’ Sensitivity to a Tensioned Tether

5.1.3.1 Deep Space Study

The system is placed back in deep space and the input shaping methods are again compared for the

ability to perform with tension in the tether. The starting positions of the bodies are stretched just enough

to achieve the desired tensions in the tether. These stretch distances are less than a meter. All bodies start

equally spaced.

Table 5.3 shows that the system is much more robust to pre-tension in the tether than slack. With tens

to a few hundred Newtons of tension force, all input shaping methods perform relatively well. This is highly

encouraging because ensuring the tether is taut appears like a requirement for the system, to avoid any slack

behavior. Tether tension could also potentially be detected fairly easily by the system, allowing for a metric

to determine when the thruster should actuate.

Table 5.3: Response of various pre-existing tensions in tether for a given shaping method. Deep space.
L0 = 1 km, the debris mass is 2000 kg (1500 kg expected). Simulation duration of 1500 s.

Input Shape Method Tension in Tether (N) Travel Dist. After 1500 s (m) Max. Tension (N)
10 8 801

100 14 870
Double Notch 250 106 1475

500 284 2295
800 458 3572
1000 637 4256
10 19 774

100 34 880
Robust Posicast 250 304 1177

500 832 1838
800 Collision at 1369 s 2795
1000 Collision at 1216 s 3280
10 110 895

100 174 949
Bang-off-bang 250 299 1047

500 535 1294
800 113 1705
1000 467 2039

When the force is relatively low in the tether, the Posicast and notch filters behave very well and do

not see much degraded performance. Once tensions get higher, however, the notch and the bang-off-bang

profiles appear more robust. It should be noted that once the pre-existing tension in the tether reaches about

the same size as the tension created by the thrust, all forms of input shaping appear to stop working. Pre-
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existing forces of about 500 N or larger negate most of the positive benefits of the input shaping methods,

therefore any shaping should occur before this force is reached.

5.1.3.2 On-orbit Study

Based upon the results from the deep space study, pre-tensions of 100 N and 250 N are used to

explore the performance of the input shaping methods on-orbit. These forces are used because they produced

reasonably good results in deep space and should on-orbit as well. Table 5.4 shows that the system generally

continues to respond well to a pre-tensioned tether. As with deep space, a tension of 100 N still produces

good motion for the system and actually initiates the notch to achieve a tumble/gravity gradient motion,

which is not caused from a direct notch implementation. The Posicast system also falls into a tumble/gravity

gradient motion and both methods have small residual end body rotation rates.

With 250 N of pre-tension, the notch continues to perform very well. The Posicast unfortunately does

not tumble or get into a gravity gradient oscillation. Similarly, the bang-off-bang profile does not perform

as well with pre-tension, however this is expected from the deep space results since the bang-off-bang never

had great performance. Still, the separation distance remains relatively large for both Posicast and bang-off-

bang profiles. Their formations end up oscillating about nadir but the end bodies simply do not settle to the

full tether length. The end body rotation rates are also larger than the 100 N pre-tension results.

Table 5.4: Response of various existing tensions in tether for a given shaping method. On-orbit. L0 = 1 km,
the debris mass is 2000 kg (1500 kg expected). Simulation duration of 6 orbits.

Input Shape Tension in Minimum Average, both bodies Gravity Gradient?
Method Tether (N) Separation (m) ωbody (deg/s)

Double Notch 100 525 ≈2.3 ±3.9 Tumble-to-gravity gradient
250 141 ≈1.1 ±.94 Tumble-to-gravity gradient

Robust Posicast 100 217 ≈.87 ±.71 Tumble-to-gravity gradient
250 617 ≈5.1 ±3.6 No - large change in distance

Bang-off-bang 100 627 ≈6.2 ±4.6 No - large change in distance
250 652 ≈7.7 ±6.0 No - large change in distance

This generally shows that a slack tether prior to thrusting is not acceptable. Small to moderate pre-

tension generally allows for much better performance and the notch and Posicast are more robust to this

change in the system.
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5.2 Rotational Motion

5.2.1 Challenges of Towing Rotating Debris

It can be easily imagined that many of the debris capture concepts do not guarantee that the tether

attachment location will be aligned with the center of mass (CM). The net and harpoon capture methods are

likely to create off-axis forces. Many mechanical grapples may also attach to the most structurally sound

component that is not necessarily in line with the CM.

In this study debris attachment point will be varied from the CM around the body, but the tether will

remain aligned with the tug’s CM. The attachment will be placed at an angle about the body’s radial, or

‘pitch’, axis. The rotation rates induced by variable offsets angles are characterized in both deep space and

on-orbit simulations. ‘Yaw’ axis rotation (Figure 5.4(b)) is not directly considered however the analysis and

results are similar.

FT
m1 m4

(a) In-line tether attachment

FT
m1 m4

~!induced

(b) Off-axis tether attachment

Figure 5.4: Tether attachment locations on debris

Further, some debris have been found to tumble at rates of just a few degrees per second68 in orbit

which is reasonably small, improving the viability of attaching a tether. Asteroids also tumble or spin.

Removing existing motion of the target mass might be difficult, however, because a single axis tether force

cannot always reduce a three axis tumble. The tether must be attached intelligently so that it is relatively far

from the (moving) spin axis of the object. This will allow the tether to properly apply torque to the object to

remove the spin. Achieving an ideal tether attachment location to reduce the tumble rate of the debris is not

directly considered because it includes many aspects of the capture system that are beyond the scope of the

control methods explored here. However, the debris is given an initial tumble rate and the control’s ability
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to reduce that motion is briefly discussed, assuming a tether attachment that is in-line with the CM.

5.2.2 Offset Tether Attachment to Debris

An offset tether attachment will cause rotation of the debris once thrust is applied and the tether begins

to tension. To avoid this, it is useful to find the natural rotation rate of the debris, given an offset attachment,

and apply input shaping to remove that mode from the system.

Figure 5.5 demonstrates a simplified attachment model so that the natural rotation rate can be found.

This model only considers±90o in rotation angle φ due to the fact descriptions become non-unique for larger

angles. Also, the simulation does not account for wrapping of the tether around bodies, again reducing the

angle to ±90o.

FT

yD

zD
m2

� rD
ŷ

ẑ

x̂

⇢Dcp

Figure 5.5: Tether attachment model inducing rotation about ‘pitch’ axis (about the minor axis of the cylin-
der)

Using the geometry set-up in Figure 5.5, a model of the debris’ pitching rotation can be created.

Euler’s rigid body equations of motion, Ḣ = τ , are used. Because the cylinder is rotating in a pure spin

about a principal axis the derivative of the angular momentum,H simply becomes:

Ḣ =


I11ω̇

0

0

 (5.1)

where ω here is the rotation rate of the debris and I11 is the body’s minor axis inertia. The torque can then

be defined as:

τ = r × FS (5.2)

where r is the radius vector of the cylinder and FS is the tether tension force. Rotating the tether radius into
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the local tethered-tug frame (which is an inertial frame in deep space and the orbit/LVLH frame in orbit) can

be expressed as:

r =


−rD cos(φ)

0

rD sin(φ)

 (5.3)

Simplifying the system so that tension in the tether is only related to the position of the debris:

ρD =


0

yD

zD

 (5.4)

and the vector to the tether connection point:

ρDcp = ρD + r (5.5)

For this model, there is no x-axis contribution because it does not change the rotational motion in the pitch

axis. Using Eq. (2.3) for the direction of the tether force the tether unit vector is written as:

ê =
ρDcp − ρTcp
|ρDcp − ρTcp|

=
ρDcp
|ρDcp|

(5.6)

Here, ρTcp is the connection point to the tug, which is defined as the ‘zero’ position. The tether force can

then be defined as:

FS = KS(|ρDcp| − L0)ê = KS(|ρDcp| − L0)
ρDcp
|ρDcp|

(5.7)

Crossing Eq. (5.7) and Eq. (5.3), solving for the angular acceleration φ̈, and linearizing with respect

to φ, a rotational natural frequency can be found. It should be noted that the z-position is nominally zero

and the y-position is set to the average separation distance given a thrust, or yD = FT
2KS

+ L0. This means

that the frequency is not only a function of the tether properties, the tether length, the size and inertia of the

debris, but also the amount of thrust used. This makes sense as the tension in the tether is directly related to

the thrust force applied and a higher thrust should provide a “stiffer” tensioning force. The debris’ rotational

natural frequency is:

ωn Rot =

√√√√√√ −KSL0rDyD +
KSr

2
Dz

2
D√

r2D−2rDyD+y2D+z2D
+KSrDyD

√
r2D − 2rDyD + y2D + z2D

I11

√
r2D − 2rDyD + y2D + z2D −

rDzD(−KSL0rDzD+KSrDzD
√
r2D−2rDyD+y2D+z2D

I11(r2D−2rDyD+y2D+z2D)3/2

(5.8)
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Evaluating Eq. (5.8) given the properties in Table 2.1, zD = 0, yD = FT
2KS

+ L0, the rotational

frequency of the system is 0.123 Hz. A similar analysis can be performed for a major axis spin of the debris

but this is not analyzed here.

Figure 5.6 shows how the natural frequency in Eq. (5.8) changes as the thrust force is varied from zero

to 2000 N. The frequency changes by about 0.07 Hz over this thrust range. As was shown in Chapter 3.3.3 a

change of even 0.03 Hz has noticeable effects on the behavior of the system. Also, the continuous notch and

Posicast input shape methods utilize variable thrust levels, meaning that the frequency will change because

of the control.
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Figure 5.6: Approximate frequency response as thrust varies

Because all thrust profiles baseline 2000 N as the maximum thrust, the frequency predicted at this

level (0.123 Hz) is assumed to be the frequency to remove from the thrust profile. All thrust methods

assume that the debris mass knowledge is perfect in the following discussion. The double notch control is

modified to place one notch at 0.19 Hz for the tether, and the other is placed at 0.123 Hz for the rotational

motion. The Posicast filter is unaltered in this discussion due to the fact that the residual vibration in the

system for this frequency is still less than 1% (Figure 3.32). The robust Posicast already utilizes 5 thrust

levels and adding another frequency to the control would add more delays, something that is undesirable,

especially if this control can handle such a wide range of frequency changes. (If the Posicast control was

not robust, this rotational frequency should definitely be added to the system to ensure this mode is not

overly excited.) The next sections consider the various control strategies in deep space and on-orbit using

the frequency found in Eq. (5.8).
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5.2.2.1 Deep Space Study

First, the rotation induced by variable tether offset angles is considered in deep space. Figure 5.7(a)

shows the rotation frequency of the debris given an initial attachment offset of 10 degrees. The rotation rate

is about 0.1338 Hz, which is reasonably close to the 0.123 Hz computed from Eq. (5.8). It is interesting to

see that this frequency is relatively unchanged by the tether attachment angle, as shown in Figure 5.7(b).

The frequency falls between 0.12 Hz and 0.14 Hz consistently. This is encouraging because it should help

to make the input shaping profiles more effective, independent of the oscillation amplitude of the debris.
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Figure 5.7: Deep space performance of system with various tether attachment offsets about debris minor
inertia axis

Figure 5.7(c) shows the frequency response of the debris with a Posicast control applied. One exciting

result is that the primary frequency peak is attenuated, when compared to the step input frequency response

in Figure 5.7(a), demonstrating that the rotation rate should be minimized. It is also interesting to see the

frequency peak shift slightly, as predicted since the frequency depends upon thrust amplitude. Similar results

are witnessed for the notch and bang-off-bang profiles.
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Figure 5.7(d) shows the post-thrust rotation rate of the debris, given an initial tether angle. All thrust

profiles perform decently with small angles but larger angles cause issues for the step and bang-off-bang

profiles. The notch and Posicast profiles experience an arcing behavior with a peak in rotation rate at about

φ0 = 50o. Thrusting in general does cause spinning but not as large as maybe originally expected.

Input shaping does seem to help reduce the final rotation rate of the debris, as shown in Figure 5.8.

The Posicast control performs best over the range of possible angles but is beaten sometimes especially by

the the bang-off-bang at smaller angles.
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Figure 5.8: Example deep space rotation rates of the end bodies with φ0 = 10o

5.2.2.2 On-Orbit Study

When putting the rotating system on-orbit, the overall performance changes considerably from the

deep space behavior. Like in Chapter 3, both the notch and bang-off-bang controls do not settle into gravity

gradient or tumbling motion. However the Posicast can achieve a tumble about nadir, as shown in Fig-

ures 5.9(a). Further, the rotation rate in Figure 5.9(c) is on par with the rates seen when the debris was not

induced to spin. Much of the change in the rotation rate is induced by frequent tensioning of the tether on

the bodies. The end bodies rarely complete a full rotation due to the tether tensioning frequently.

Looking at the maximum rotation rate angle from the deep space results, 50o, Figure 5.9(b) that the

the motion is no longer tumbling and there is a much more dynamic response in the end body separation.

Figure 5.9(d) shows that the end body rotation rates are also much larger, causing them to spin up, potentially
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50o

Figure 5.9: End body motion for a Posicast control with initial tether attachment offset, on-orbit

wrapping-up in the tether. This shows that while the Posicast control generally performs the best out of all

the control methods for handling an offset tether attachment, it is limited to high or low angles, where the

final end body rotation rates are relatively small.

5.2.3 Tumbling Debris

Tumble rates of debris is very hard to characterize. Radar frequently cannot provide spin rate infor-

mation and optical observations are limited in their capabilities as well. When considering rocket bodies,

studies suggest that if the rocket has been on-orbit for many months or several years, the eddy currents

caused by the rocket’s interaction with the Earth’s magnetic field damp out its spin motion to only few de-
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grees per second.68 Using this as a metric for estimated tumble rates, the rocket is given an initial tumble

rate of 1.15 deg/s about each axis (a 2 deg/s magnitude).

The Posicast control is applied to this system since it performed well in the on-orbit and deep space

offset tether attachment study. Figure 5.10 demonstrates that the system can still achieve a tumbling motion

with moderate rotation rates of the end bodies. Unfortunately, the debris is spun up more than its initial

rotation rate, however this is consistent with the other scenarios that utilize Posicast input shaping and is

an expected rotation rate profile. Because the system is spinning, but not necessarily making complete

rotations, wrapping of the tether may be avoided, making this motion bad.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

Di
sta

nc
e [

m]

Orbits

Sep. distance and tension for m1 and m4 q = 50o T = 2000N

0 0.5 1 1.5 2 2.5 3 3.5 4
ï90

ï45

0

45

90

An
gle

 fr
om

 N
ad

ir [
de

g]

200

3

901000

0
210

-90

Orbits

Di
st

an
ce

 [m
]

Angle from
 Nadir [deg]

800

600

400
0

4

-45

45

Tension
Distance

Angle

(a) Separation distance, tension, and angle from nadir

0 1 2 3 4
0

2

4

6

Tu
g 

|t
B/

N
| [

de
g/

s]
Time [orbits]

0 1 2 3 4
0

5

10

D
eb

ris
 |t

B/
N

| [
de

g/
s]

Time [orbits]

(b) Angular rotation rates

Figure 5.10: End body motion for a Posicast control with body rotation rate of 1.15o/sec about each axis,
on-orbit

5.3 Conclusions

With more realistic debris behavior and system performance, the tethered-tug still has a considerable

design space in which to operate. While a slack tether, prior to thrusting, is unacceptable, pre-tensioning of

the tether is a viable option, especially for the notch and Posicast filters.

Rotational motion of the debris adds another challenge to the system. However, the rotation rate

of the debris can be approximated and used in input shaping techniques. Input shaping techniques can

reduce some rotational motion in the debris, when compared to a step input while achieving the target

tumble/gravity gradient behavior. Finally, it is interesting to see that the Posicast filter again appears to be
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the most versatile for the wide range of system variables, while still being reasonably feasible with current

rocket technology.



Chapter 6

Conclusion

6.1 Thesis Summary

Towing objects in space is a fundamentally challenging process that has been considered for many

future missions. Frequently, capturing the target object is considered the primary obstacle and maneuvering

the objects is not even mentioned. This dissertation addresses the complications associated with towing

and suggests several open loop input shaping controllers to maneuver the system. Properly maneuvering

this system is not simple if excessive end body motion, and high tether tensions, are to be avoided. Input

shaping provides a method of applying thrust to the system that successfully maneuvers the bodies.

Step input thrust profiles are shown to have poor characteristics for the tethered system due to the

highly dynamic motion of the end bodies, collision potential, and high tether tensions induced. The majority

of the relative motion that occurs between both end bodies is due to the tether’s first fundamental mode, that

is excited by the step thrust profile. Reducing energy input into the system at this frequency, through thrust

input shaping, effectively reduces these problems. Because the fundamental mode is the primary contributor

to motion between the large end bodies only tether material properties and length affect the frequency. This

means that the end body motion can be effectively modeled and studied without incredibly high-fidelity

tether dynamics.

Applying a frequency notch to the step input allows for the thrust profile to have highly attenuated

input at the system’s natural frequency. This effectively reduces the relative motion between the end bodies

causing almost zero relative velocity in deep space, and small drift rates while on-orbit. The notch is also

made robust to system uncertainties through a double notch frequency filter spanning around the fundamen-
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tal mode.

Unfortunately, the notch requires a continuously varying thrust profile that is not realistic with cur-

rent rocket engine technology. The utilization of rigorous impulsive input shaping techniques, such as the

Posicast and Bang-off-bang controllers, successfully attenuates the first natural frequency of the tethered-

tug system providing reduced relative motion and tether tension while being more realistic for current-day

rocket technology capabilities. The impulsive techniques are useful in both deep-space and on-orbit appli-

cations. However, the Posicast control produces the most beneficial motion on-orbit, falling into a tumbling

motion about the nadir vector, with small end body rotation rates. Still, this dissertation has shown that a

multitude of thrust profiles can be successfully implemented to control this system while avoiding collisions.

The design space for the tether is not directly intuitive and increases in length do not guarantee

desirable performance. Similarly, the value of elasticity alone does not appear to significantly change system

performance. However, it is very obvious that input shaping on the thrust profile is required to achieve any

form of desirable performance without damping. With the correct conditions the system achieves a tumbling

or gravity gradient motion with input shaping. Further, it appears that short to intermediate values for tether

length (L0 = 100 − 2000 m) achieve the best performance. Again, elasticity does not seem to drastically

change performance of the system and so any stiff (Kevlar-based) tether appears acceptable.

With damping, the performance of the system significantly changes. Damping helps to moderately

improve performance of an input shaped thrust profile by reducing end body motions and spin rates. How-

ever, when damping is applied to the step input thrust profile, the performance is drastically improved with

higher damping ratios and gravity gradient motion can be induced. One of the most exciting results is that

damping can be used as a replacement to input shaping, reducing some complexity for the rocket engine.

A slack tether, prior to thrusting, is detrimental to the system for all thrust profiles considered. It is

therefore pivotal for the tether to be taut, or have some small pre-existing tension. The notch filter’s response

degrades the most gracefully as tension increases while the Posicast performs best with smaller tensions and

the bang-off-bang performance is not greatly degraded by larger tensions.

Rotational motion also does not drastically reduce input shaping performance. The notch and bang-

off-bang filters both can withstand some rotational motion but the Posicast filter performs the best on average
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and causes fairly consistent end body rotation rates across all trials.

While multiple different thrust profiles could be utilized for this system, the robust Posicast filter is

the most versatile to a variety of conditions and system properties. To implement a towing system in reality,

significantly more design work is required. Still, there is a large design space for the tethered-tug and many

possible configurations could be utilized to realize a safe system.

6.2 Future Work for the Tethered-Tug System

Beyond this dissertation, there are many avenues of future research for the tethered-tug system. For

ADR systems in general, the process of rendezvous with the debris needs further study. Because the launch

vehicle (tug) has minimal fuel resources after it has delivered its payload to orbit, its ability to reach another

debris object will be limited. The range of the tug, and the phasing maneuver to another debris object should

be understood to identify the amount of fuel that can be used for the de-orbit burn. Further, the capability

of a launch vehicle to accurately rendezvous with another object should be explored. The identification of

desirable debris to remove is another large task itself and continues to be studied.

The risks and expense associated with modifying a launch vehicle to perform the ADR mission is

a real concern. While most of this dissertation is applicable to general towing in space, if the tethered-

tug concept were to be used, significant changes to launch vehicles must be made. It is not a trivial task

to perform rendezvous and capture operations, let alone have a rocket engine re-start multiple times, as is

required by the input shaping profiles suggested.

An emerging and very active arena of research are the capture methods to be used. Grapples, har-

poons, nets and other systems have all been proposed but all necessitate further research and testing before

they would be ready for operation. Servicing of a satellite would require similar grappling methods however

it may be assumed that the satellite to be serviced is cooperative, reducing overall complexity. Asteroid

towing will require considerable development of attachment methods and asteroid properties.

Once the connection has been made and the orbit altering burn has been applied, the longer duration

behavior of the system should be explored. A step input thrust creates very dynamic behavior. This behavior

over a longer duration (more than several orbits) should be studied to determine if collisions actually do
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occur. If the control has input shaping, the behavior of the system should be much more benign but long-

term simulations should be explored to see how the behavior evolves over days, months and years.

If large damping within the tether is desired, it seems unlikely that material selection alone can achieve

functional damping values. There are many mechanical solutions that could be used for this purpose. One

example is a spring-shock system attached to either, or both, ends of the tether that are similar to shock

systems in car suspensions. Cable brake systems could also be investigated for this purpose.

Improvements to the tether model can always be made and increasing the fidelity with more accurate

internal forces (i. e. curling of the tether and use of string-like PDEs) may help to demonstrate less well

understood tether effects. Further, FEM models could be used to achieve similar results however this would

limit longer-duration simulations. Modeling the interaction between the tether and end bodies, with respect

to wrapping in the tether, is also an improvement to the model that may yield new results for the behavior of

the system. This will help to determine how pre-existing rotational motion and an offset tether attachment

point will affect the system. This work shows that in deep space, each control method can minimize the

induced spin, but they do not zero it. Induced spin will occur. How this behavior changes with wrapping is

unknown.

Finally, the ADR system could be studied to determine its impact on the overall debris field. A

kilometer long tether is a large structure in orbit. This is bound to create unforeseen complications and the

likelihood of collision with other objects, both big and small, can be studied over a wide range of altitudes.

The result of the tether being severed by a small piece of debris is also unknown and should be studied.

There are likely many questions beyond those addressed above, to be answered before this concept

could ever become a reality. Encouragingly, there are many components of the concept that are currently

possible and the concept relies on many technologies that exist today.
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