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ABSTRACT 

 Climate change is resulting in a number of rapid changes in forests worldwide.  Forests 

comprise a critical component of the global carbon cycle, and therefore climate-induced changes 

in forest carbon balance have the potential to create a feedback within the global carbon cycle 

and affect future trajectories of climate change.  In order to further understanding of climate-

driven changes in forest carbon balance, I (1) develop a method to improve spatial estimates 

forest carbon stocks, (2) investigate the effect of climate change and forest management actions 

on forest recovery and carbon balance following disturbance, and (3) explore the relationship 

between climate and forest growth, and identify climate-driven trends in forest growth through 

time, within San Juan National Forest in southwest Colorado, USA.  I find that forest carbon 

estimates based on texture analysis from LandsatTM imagery improve regional forest carbon 

maps, and this method is particularly useful for estimating carbon stocks in forested regions 

affected by disturbance.  Forest recovery from disturbance is also a critical component of future 

forest carbon stocks, and my results indicate that both climate and forest management actions 

have important implications for forest recovery and carbon dynamics following disturbance.  

Specifically, forest treatments that use woody biomass removed from the forest for electricity 

production can reduce carbon emissions to the atmosphere, but climate driven changes in fire 

severity and forest recovery can have the opposite effect on forest carbon stocks.  In addition to 

the effects of disturbance and recovery on forest condition, I also find that climate change is 
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decreasing rates of forest growth in some species, likely in response to warming summer 

temperatures.  These growth declines could result in changes of vegetation composition, or in 

extreme cases, a shift in vegetation type that would alter forest carbon storage.  This work 

provides insight into both current and future changes in forest carbon balance as a consequence 

of climate change and forest management in the western US.  
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CHAPTER I 

 

INTRODUCTION 

1.1 Background 

 Global climate change and increasing pressures from a growing human population are 

resulting in rapid changes to forests around the world.  Drought and insect outbreaks are causing 

widespread forest mortality, rates of forest growth are changing and wildfire activity is 

increasing in many regions [Westerling et al., 2006; Soja et al., 2007; Beck et al., 2011; Carnicer 

et al., 2011].  These forest changes have been observed on every forested continent, and are 

largely attributed to increasing temperatures and the resultant drought and heat stress [Allen et 

al., 2010; Choat et al., 2012].  With global temperatures expected to increase further in the 

future, these trends may be an indication of the future trajectory of many forests worldwide. 

 Forests make up a critical component of the carbon cycle, and broad-scale changes in 

forest condition in response to climate change could have large effects on forest carbon storage 

and terrestrial carbon balance [Reichstein et al., 2013].  Altered forest dynamics that result in 

greater forest growth may increase carbon storage in forest biomass and therefore remove carbon 

dioxide from the atmosphere.  Conversely, forest modifications that decrease forest biomass and 

increase carbon emissions may increase the rate that CO2 accumulates in the atmosphere.  

Globally forests store nearly half of the carbon contained within terrestrial ecosystems [Sabine et 

al., 2004], and therefore changes in forest carbon dynamics due to climate change have the 

potential to create a feedback within the global carbon-climate system.  Thus understanding the 
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nature of forest response to regional climate change, and quantifying increases or decreases in 

forest carbon storage in response to climate trends, are critical to informing current and future 

changes within the global climate system.  

 The rate and magnitude of carbon exchange between forests and the atmosphere varies 

through space and time, and the relevance of different forest processes to carbon exchange 

depends on the time and spatial scale in question (Figure 1.1).   

Figure 1.1 Conceptual diagram of the temporal and spatial scales on which common 
forest processes controlling forest carbon balance occur. 

 

Processes that drive forest carbon exchange occur on timescales ranging from seasonal to 

decadal to centennial.  At the seasonal scale, carbon exchange is dominated by annual growth 

and respiration, at the decadal scale disturbance processes and trends in growth, mortality and 

regeneration affect carbon exchange, and over the centennial timescales forest carbon can change 

as a result of shifts in vegetation type or composition.  The dominant processes driving forest 

carbon exchange also vary across spatial scales ranging from the scale of a tree, forest scale, to 
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region and continent. At the scale of an individual tree, respiration and growth control carbon 

exchange.  At the spatial scale of a forest, forest management, disturbance and trends in growth, 

mortality and regeneration control carbon exchange.  On regional to continental scales, carbon 

exchange is controlled by vegetation composition and large disturbances.  In addition to variable 

processes acting on forests at different time and spatial scales, a given forest process may have a 

different effect on forest exchange depending on the time or spatial scale in question (Figure 

1.2).   

Figure 1.2 Conceptual diagram of forest carbon storage in live biomass through time 
for the following forest processes: a) annual growth and respiration, b) forest 
management, and c) forest disturbance over seasonal, decadal and centennial 
timescales. 

 
For example, a disturbance such as wildfire may result in a net flux of carbon to the atmosphere 

over the timescale of a decade, but could result in a net carbon balance of zero over the time 

scale of a century following forest recovery.  Therefore, the timescale and spatial scale of forest 
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dynamics are critical when considering the carbon balance of forest ecosystems, particularly in 

the context of forest carbon policy. 

 Forests can impact the global carbon-climate system by acting as either a source or sink 

of carbon on the timescales that are important for human response to global climate change.  

Forest policy planning horizons are generally no longer than decadal timescales.  Global 

assessments, such as reports produced by the International Panel on Climate Change, focus most 

heavily on the time period before 2100 [Pachauri et al., 2014], and forest policies, such as 

National Forest plans, are frequently on the order of 10 years [Forest and Rangeland Renewable 

Resources Planning Act of 1974, 2001].  Considering the decadal timeframe meaningful for 

policy response to anthropogenic climate change, there are three processes that can affect forest 

carbon exchange on this timescale: (1) an increase the frequency or severity of forest disturbance 

events, (2) an increase in the time necessary for a forest to recover from disturbance, or (3) 

trends in forest processes of growth, mortality and regeneration in response to climate change. 

 There are extensive and well-documented cases of forest changes in response to climate 

change already underway in the western United States (US). The frequency and duration of 

wildfires in the western US has increased [Westerling et al., 2006], insect outbreaks are 

occurring at higher elevations and latitudes [Hicke et al., 2006; Raffa et al., 2008], rates of 

background tree mortality are accelerating [van Mantgem et al., 2009] and human population is 

growing in fire-prone areas [Radeloff et al., 2005; Theobald and Romme, 2007] leading to an 

increased need for forest management in order to protect private property from wildfire.  In the 

southwestern region of the US, wildfire and insect outbreaks have resulted in some degree of 

forest mortality, ranging from local mortality to widespread events, on nearly 20% of forested 

regions between 1997 and 2008 [Williams et al., 2010].  These changes have taken place during 

a time when the climate of the western US is becoming warmer [Diaz and Eischeid, 2007], and 
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projections of future climate change indicate that this region will become increasingly warm and 

dry in the coming decades [Seager et al., 2007; Rangwala et al., 2012].  Warming temperatures 

in the future have the potential to produce changes in carbon storage over the next several 

decades by influencing disturbance regimes, forest recovery, and trends in forest growth, 

mortality and regeneration. 

 

1.2 Frequency and Severity of Disturbance 

 Forest disturbances lead to a release of carbon over several seasons or a decade, followed 

by forest re-accumulation of carbon over the next decades to centuries.  This longer-term carbon 

exchange is superimposed on seasonal variations in carbon exchange from forest growth and 

respiration.  Over the time period of several centuries, periodic disturbances followed by forest 

recovery, combined with seasonal carbon exchange, will result in no net carbon exchange 

between the forest and the atmosphere.  However, if the frequency or severity of disturbance 

increases, the forest will establish a new equilibrium with the atmosphere.  Forest atmosphere 

carbon exchange during the time it takes for the system to re-equilibrate can result in a decrease 

in carbon stocks, and net efflux of carbon from the forest to the atmosphere (Figure 1.3).  

Therefore, increased severity or frequency of disturbances in forests of the western US (hereafter 

Western forests) could reduce forest-level carbon storage over the coming decades. 
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Figure 1.3 Conceptual diagram showing changes in forest biomass through time in 
response to a) seasonal growth and respiration, b) forest disturbance, c) forest 
disturbance with shortened return interval, d) forest disturbance with shortened return 
interval and seasonal exchange, e) decadal trend of forest carbon in response to 
shortened return interval of disturbance. 
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 Wildfires are a regular disturbance in Western forests and have substantial impacts on 

forest carbon dynamics.  Wildfires change forest carbon balance both by releasing pyrogenic 

carbon to the atmosphere as a direct result of combustion, and also through the decomposition of 

trees killed during the fires [Meigs et al., 2009; Dore et al., 2010].  In the western US, warmer 

spring temperatures and longer fire seasons in the last several decades have led to an increase in 

the number of large fires in Western states [Westerling et al., 2006].  In the future, annual 

wildfire area burned is expected to further increase [Littell et al., 2009], and potentially double 

relative to current levels by the end of the century [McKenzie et al., 2004].  An increase in 

wildfire area burned means a decrease in fire return interval at the forest scale, and could result 

in a net efflux of carbon from the forest to the atmosphere as the forest carbon dynamics in that 

region reach a new equilibrium.  Fires can also lead to vegetation change.  A recent example 

highlights the potential for increased wildfire frequency to produce a substantial vegetation 

change in an ecosystem within the Rocky Mountains.  In the Greater Yellowstone region of the 

northern Rocky Mountains, shorter fire return intervals are projected to change the dominant 

vegetation type from lodgepole pine to ponderosa pine by the end of the century [Westerling et 

al., 2011], which could result in a decrease of forest carbon storage as a consequence of the 

change in vegetation type.  Future potential vegetation shifts in this forest and other forests have 

large implications for carbon storage, and specifically could result in lower carbon storage in 

biomass of forests of the western US over the coming decades, particularly timescales relevant to 

forest policy.  

 Periodic outbreaks of tree-killing insects are another natural part of forest ecosystem 

function within Rocky Mountain forests, but current trends in insect outbreaks in response to 

climate trends could change decade-scale forest carbon balance in some Western forests.  Recent 

years have seen a number of large insect outbreaks within Rocky Mountain forests [Raffa et al., 

2008].  The location and timing of these outbreaks is closely linked to climatic factors because 

many of the life-history strategies of the beetles are dependent on temperature [Bentz et al., 
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1991; Logan et al., 2003], and also because climate conditions such as drought can influence 

host trees and therefore leave a stand more vulnerable to a beetle outbreak [Raffa et al., 2008; 

McDowell et al., 2011].  Mortality as a result of insect outbreaks can result in large changes to 

forest carbon balance.  For example, in British Columbia the cumulative impact of a current 

Mountain pine beetle outbreak is projected to release 270 Mt (270,000,000 Mg) of carbon 

between 2000 and 2020 [Kurz et al., 2008]. In some regions of the western US the extent and 

severity of outbreaks may be increasing as a result of climate trends [Breshears et al., 2005; 

Hicke et al., 2006].  If warming climate conditions reduce the vigor of host trees, beetle 

infestations could occur at greater frequency and severity in the future [Bentz et al., 2010].  Such 

a change could increase the area of forest affected by insects, and therefore increase the area of 

forest acting as a carbon source in the next few decades, and reduce the potential for forest 

recovery between disturbance events. 

 

1.3 Forest Recovery Following Disturbance and Management 

 Modified or reduced rates of forest recovery following disturbance is the second process 

that can change forest carbon storage over decadal timescales.  Forest recovery is important in 

determining both the carbon balance in the decades following natural disturbances such as 

wildfire or insect outbreaks, and also in determining decadal carbon balance of forest 

management actions.  Many forests of the western US are routinely managed for purposes such 

as timber production or wildfire risk reduction.  While controlling carbon stocks is not the 

objective of most forest management actions [Hurteau et al., 2008], management does alter 

forest carbon dynamics for a period of years to decades [North et al., 2009; Stephens et al., 

2009], and therefore forest recovery is important in determining the decadal scale carbon balance 
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of management actions.  Forest recovery following natural disturbances and management is 

primarily dependent on the processes of regeneration and growth. 

 Rates of regeneration are controlled by several factors but in particular are altered where 

severe disturbance, such as a high severity wildfire, removes the seed source necessary for 

regeneration [Donato et al., 2009; Greene and Johnson, 2011].  Instances of reduced 

regeneration following severe wildfire have been observed in some regions of the American 

Southwest.  A recent study found that conifer regeneration was completely lacking on 57% of 

sites investigated up to two decades following wildfire [Roccaforte et al., 2012].  In some cases, 

low or no regeneration following wildfire can lead to previously forested regions transitioning to 

meadow and shrubland ecosystems post-fire [Savage and Mast, 2005].  In the last several 

decades, warmer conditions in the western US have resulted in larger fire sizes and increased 

wildfire area burned, and these larger fires have in turn produced an increase in area burned at 

high severity [Cansler and Mckenzie, 2014].  High severity wildfire is more likely to remove an 

overstory seed-source, or increase the distance seeds must travel to re-establish within a burned 

area [Greene and Johnson, 2011].  Therefore, increasing area burned by high severity wildfire 

will likely reduce regeneration after fire, and where no regeneration occurs, the forest may 

transition to meadow or shrubland.  Forest transition to a non-forest vegetation type, or delayed 

regeneration in regions of severe wildfire, could reduce forest-scale carbon stocks over the next 

several decades. 

 Changes in the rates of forest recovery are also important when evaluating the carbon 

consequences of forest management actions on decadal timescales.  Direct management actions 

are frequently used in many forests of the western US to reduce the risk of high severity wildfire.  

These fuel reduction treatments are designed to ‘thin’ the forest and reduce the risk of fires 
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spreading within a forest canopy [Agee and Skinner, 2005].  Although forests are not currently 

managed for carbon management goals, these management practices can alter decadal scale 

forest carbon balance in several ways.  First, fuel reduction treatments are designed to reduce 

overstory tree mortality and therefore they will limit pyrogenic emissions in the case of a 

wildfire [Finkral and Evans, 2008; Mitchell et al., 2009; Stephens et al., 2009; North and 

Hurteau, 2011].  Secondly, forest treatments require removing woody biomass from the forest 

and thereby reduce forest carbon storage [North et al., 2009; Stephens et al., 2009].  As a result, 

the decadal-scale carbon balance of forest treatments is highly dependent on forest re-growth 

following treatment.  Future climate change may alter the re-sequestration of carbon in a forest 

following treatment or disturbance by changing rates of forest recovery, and in some cases the 

forest may not recover to pre-treatment carbon levels [Azpeleta et al., 2014].  If this is the case, 

then the fuel-reduction treatment produced flux of carbon to the atmosphere that is not re-

sequestered via forest growth over decadal timescales.  Therefore, forest recovery rates are an 

important part of determining the decadal-scale carbon balance of forest management actions.   

 

1.4 Trends of Forest Decline 

 Trends in forest processes such as rates of mortality, regeneration and growth compose 

the final forest change that can alter forest-scale carbon storage over decadal timescales.  

Changes of this nature, such as an increase in background forest mortality without commensurate 

increases regeneration, have the potential to slowly reduce forest-scale carbon stocks over 

several decades.  Furthermore, trends in changing rates of growth, mortality or regeneration do 

not replace disturbance processes, so the effects of trends could be compounded by subsequent 
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disturbance. Therefore, trends persisting over a period of decades can change forest-scale carbon 

balance.  

 Over the past several decades, forests of the western US have been undergoing a trend of 

increasing rates of background mortality. This increasing rate of background forest mortality is 

observed in old (>200 year) undisturbed forest stands across all elevations, tree sizes, genera, and 

in ecosystems with varying fire return intervals [van Mantgem et al., 2009].  This trend is 

attributed to regional warming taking place across the western US [van Mantgem et al., 2009].  

Rates of recruitment have not increased commensurately with mortality, so this trend has the 

possibility to decrease carbon storage in forest biomass over decadal time scales through 

persistent changes in forest age and structure.   

 Regional warming in the western US could also affect carbon storage in forest biomass 

through changes in rates of forest growth.  Particularly in low elevation regions of the American 

Southwestern US, many conifer species grow less in years with especially warm temperatures 

[Williams et al., 2010] and continued warming in this region could reduce tree growth and 

potentially leave these forests vulnerable to other types of disturbance [Williams et al., 2012].  

Warming temperatures have resulted in sustained growth declines in forests in other parts of the 

world [Jump et al., 2006; Beck et al., 2011], and similar trends in the western US could affect 

forest carbon storage and make forested ecosystems of the western US more vulnerable to other 

types of forest disturbance. 

 Many of the changes taking place in forests of the western US in response to climate 

change and increasing human populations could affect decadal-scale forest carbon storage by 

altering the frequency and severity of disturbance, prolonging forest recovery times, or 
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producing trends of forest decline.  In this dissertation I address these three mechanisms of 

carbon balance change in Western forests through the following objectives: 

(1) Develop a method to improve regional-scale maps of forest carbon storage and identify 

changes in forest carbon stocks in response to disturbance; 

(2) Evaluate climate controls on forest recovery and short and long-term carbon balance 

following forest management; 

(3) Investigate patterns of forest growth and decline as a result of current climate change.   

This dissertation provides insight to the nature and magnitude of changes in forest condition and 

carbon balance as a result of climate and management in forests of the western US. 
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CHAPTER II 

 

ESTIMATES OF ABOVEGROUND BIOMASS FROM TEXTURE ANALYSIS OF 

LANDSAT IMAGERY 

2.1 Introduction 

 Accurate spatial maps of forest biomass are necessary for managing forest resources, 

informing climate change modeling studies, and meeting national and international reporting 

requirements for greenhouse gas inventories [Ryan et al., 2010; EPA, 2011].  Forest biomass 

maps are also necessary at the sub-national level for purposes such as completing the US Forest 

Service Climate Change Scorecard that necessitates annual estimates of carbon stocks and fluxes 

for each National Forest [USDA, 2011], and for quantifying changes in forest biomass on 

regional scales in response to disturbance.  However, there are few spatially explicit regional and 

local biomass maps available, and as a consequence, relatively few resources available to 

determine how local biomass changes with disturbance.  In this study I evaluate an alternative to 

traditional spectral analysis approaches to create local biomass maps.  

 There are two primary methods of mapping aboveground forest biomass.  The first is an 

approach that assigns a biomass value, or a range of biomass values, to areas of land 

distinguished by characteristics such as vegetation type or land use.  This approach, frequently 

referred to as ‘stratify and multiply,’ uses ground-based measurements to determine biomass 

values, and spatial datasets to delineate mapping units.  Although the stratify and multiply 

approach is relatively simple to implement, there are some limitations to this technique, namely 

the ambiguities present in land area classification, and the wide range of variability in 

aboveground biomass within a given land cover type [Goetz et al., 2009]. 

 The second common approach to mapping aboveground biomass employs a set of 

spatially continuous variables to predict biomass values at unobserved locations.  In this direct 
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mapping approach, a relationship is established between aboveground biomass and one or 

several spatially continuous variables, and these relationships are used to predict biomass across 

the population.  The direct mapping approach takes advantage of a variety of geospatial variables 

such as climate and topography, and information from remote sensing platforms.  Many types of 

remotely sensed information can be used to aid in mapping biomass such as spectral information 

from remotely sensed imagery [Richards, 2013], backscattered energy from Synthetic Aperture 

Radar (SAR) [Le Toan et al., 1992; Kasischke et al., 1997], and Light Detection and Ranging 

(LiDAR) [Dubayah and Drake, 2000].  The two primary advantages to using a direct mapping 

approach are 1) the resulting map will more accurately depict variations in biomass across the 

landscape, and 2) changes to mapped forest biomass are easier to update [Goetz et al., 2009]. 

 There are also some limitations to the direct mapping techniques, particularly related to 

the use of remotely sensed information.  One limitation is the mismatch of spatial scale between 

the area encompassed by a measurement plot and the area of a remotely sensed pixel.  In the case 

of Landsat imagery, the area of a measurement plot only accounts for a small part of the area 

represented by a pixel and the plot measurement value may not accurately represent the 

aggregate value of biomass within that pixel.  This disparity in spatial scale can introduce error 

into the resulting map.  Secondly, direct mapping techniques that employ spectral band ratios, 

such as the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index 

(EVI) tend to under-predict forest biomass in regions of high biomass and multi-storied forest 

canopies where NDVI in particular can saturate [Huete and van Leeuwen, 1997].  SAR is a 

promising technique for biomass estimation, particularly when used in conjunction with methods 

that model forest biomass by empirically relating backscatter to ground-based biomass 

measurements, and interferometric SAR (InSAR) techniques that can estimate forest height 

[Ouchi, 2013].  However, SAR biomass estimation techniques also saturate in regions of dense 

forest canopy [Kasischke et al., 1997; Ouchi, 2013], and SAR data is only available on a limited 

bases.  Finally, LiDAR provides a direct measure of forest canopy height [Dubayah and Drake, 

2000; Lim et al., 2003], but its wide scale use is currently limited by the expense of acquiring 
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LiDAR data at fine spatial scales.  Until these data access limitations are resolved, other 

publically available remote sensing products will be required to create regional biomass maps. 

 Texture analysis is an image processing technique that may address some of the existing 

problems with vegetation index saturation and the data acquisition constrains related to mapping 

forest biomass at regional scales.  Texture is a measure of variability in pixel values among 

neighboring pixels for a defined analysis window.  A primary advantage of texture is that it can 

be calculated from optical data, among other types of raster data.  The use of optical imagery in 

calculating texture is advantageous because there are several sources of publically available 

optical imagery, including Landsat, and therefore mapping biomass with image texture analysis 

is not subject to the constraints in obtaining data that are present for SAR or LiDAR.  

Furthermore, image texture has been used to aid in mapping forest biomass in dense tropical 

forests [Cutler et al., 2012], and in some regions texture is a better predictor of biomass than 

spectral vegetation indices [Lu, 2005; Eckert, 2012].  Because texture has been shown to be an 

effective method of mapping biomass in dense canopies, and can be calculated on widely 

available optical imagery, texture may be a useful technique for improving biomass maps at local 

and regional scales.   

 In this work I use a case study of San Juan National Forest in southwest Colorado to 

evaluate whether inclusion of image texture features can be used to improve the prediction 

quality of local scale biomass maps for use in land management and research. I evaluate the 

prediction quality of local scale biomass maps constructed with physical variables, spectral 

variables, and image texture metrics. These methods include only publically available data.  The 

wide range of vegetation types and the complex topography of this region make San Juan 

National Forest an ideal location to evaluate remote sensing based biomass mapping methods. 

 

2.2 Materials and Methods 

 The San Juan National Forest in southwest Colorado, USA is centered at 37°N and 

108°W (Figure 2.1).   
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Figure 2.1 Location of San Juan National Forest within southwest Colorado, and 
distribution of Forest Inventory and Analysis plots within San Juan National Forest.  
Scale bar applies to regional San Juan National Forest map.  Base map for San Juan 
National Forest extent: ESRI shaded relief imagery [ArcGIS Services Directory, 
2013]. Projection: Albers NAD83. 

 

 
This forest is roughly 7000 km2 in area and ranges in elevation from 1500m to 3800m.  Total 

annual average precipitation ranges from 400mm in the lower elevations to over a meter 

(1150mm) in the higher elevation forests [PRISM, 2013].  Forests of this region contain 

Ponderosa Pine woodlands, Warm-Dry Mixed Conifer forests, Cool-Moist Mixed Conifer 

forests, and Spruce-Fir forests.  San Juan National Forest is managed for recreation, timber 

production and wildfire fuel reduction, and is divided into stands that vary in stand age, 

treatment, and disturbance history.  Landcover type for this region was determined from the 

Field Sampled Vegetation (FSVeg) database, an online inventory of information on trees, fuels, 
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down woody material, surface cover and understory vegetation, sampled and maintained by San 

Juan National Forest [SJNF, 2013]. Only regions defined as forest were included in this study.   

 

 2.2.1 Field and Satellite Data.  A total of 164 Forest Inventory and Analysis (FIA) 

Program plots from forested regions within San Juan National Forest (SJNF) were used for this 

study.  The FIA Program consists of a system of ground-based forest inventory plots that are 

situated approximately one every 2400 ha throughout the coterminous United States, and are 

measured every 5 to 10 years [Blackard et al., 2008].  FIA ground-based plot biomass data was 

obtained from the FIA online DataMart: [FIA, 2013].  FIA plots consist of four 1/24 acre (168.7 

m2) subplots in which live tree biomass is determined from measurements of tree dimensions.  

This biomass value is hereafter referred to as observed biomass.  The observed biomass values 

for FIA plots within SJNF range from 2.1 to 490.2 Mg ha-1, with a mean biomass of 134.8 Mg 

ha-1.  Although the exact location of FIA plots are not provided to the public, exact locations of 

the FIA plots within SJNF were obtained from the FIA program for the purposes of this study.  

All FIA plots used in this study were measured between 2002 and 2009.  All plot locations were 

measured by FIA using the Global Positioning System (GPS), and have a horizontal accuracy of 

around 5 meters [Hoppus and Lister, 2005]. 

 Observed biomass values from eight independently sampled plots within or near forest 

stands clear-cut in the 1970’s were used to validate biomass predictions for clear-cut stands and 

adjacent untreated forest.  Of these eight plots, five plots were located in untreated forest and 

three plots were located in stands clear-cut in the 1970’s.  Aboveground biomass measurements 

consisted of 50 m diameter circular plots (1963.49 m2) surveyed in 2012.  Within each plot the 

diameter of every tree over 1.37 m tall was measured at 1.37 m to obtain a measure of diameter 

at breast height (DBH) for all trees within the plot. Aboveground live tree biomass was 

calculated from tree DBH using allometric equations [Jenkins et al., 2004; Kaye et al., 2005].  

Total observed aboveground live tree biomass was determined as the sum of all trees present 

within plot. 
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 2.2.2 Landsat TM Image Analysis. For each FIA plot, spectral information was 

obtained for the corresponding geographic location from Landsat 5 TM imagery.  Images from 

two adjacent Landsat TM paths were necessary to cover the entire spatial extent of the study 

area; the two images were acquired in June and July of 2011 (June 18; July 21).  The two scenes 

used in this study were selected because they are high-quality, cloud-free scenes acquired at 

similar dates and processed with Level 1T Standard Terrain Correction.  All Landsat TM scenes 

were converted to top of atmosphere (TOA) reflectance using post-launch calibration 

coefficients [Chander et al., 2009], and an atmospheric correction was applied using Dark 

Subtraction Method [Chavez, 1988].  A C-correction [Teillet et al., 1982] was applied to correct 

for illumination differences due to sun-earth-sensor geometry across the variable topography of 

these two Landsat scenes using a 30-meter resolution digital elevation model [NED, 2014]. 

 In this study, I evaluate the prediction quality of regional biomass maps constructed from 

physical variables, spectral variables, and image texture variables. The physical variables used 

included slope, aspect, and elevation calculated from regional digital elevation models [NED, 

2014], vegetation type determined from the SJNF FSVeg database, and precipitation obtained 

from the PRISM Climate Group [PRISM, 2013].  The spectral information used included both 

the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) 

calculated from Landsat TM imagery. Finally, image texture metrics were generated statistically 

using a Gray Level Co-occurrence Matrix (GLCM) computed from a relative displacement 

vector (d, θ) that describes the spatial distribution of grey level pairs separated by distance d in 

direction θ.  Many textural metrics can be derived from the GLCM; I use the eight metrics of 

mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation 

[Haralick et al., 1973] as these eight have previously been used to good effect in mapping forest 

biomass in dense tropical forests [Lu and Batistella, 2005; Cutler et al., 2012; Eckert, 2012].  In 

addition to d and θ, texture metrics are also dependent on the window size, or the number of 

pixels, used to calculate the GLCM.  A small window size will identify fine-scale variations in 
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pixel brightness while a large window will be sensitive to larger-scale variations.  Therefore, a 

window that is too small may identify variations in pixel brightness that are irrelevant for the 

task at hand, whereas a window that is too large may overlook important variations in pixel 

brightness. For purposes of mapping forest biomass, the optimal window size was determined by 

the window size that had the strongest correlation between texture-predicted biomass and 

observed biomass.  In order to determine the optimal window size for this study, all texture 

metrics were calculated on four Landsat TM bands (Bands 2-5) using four window sizes: 3 × 3, 5 

× 5, 7 × 7, and 9 × 9 pixels.  For each window size, texture was also calculated at four offsets, 

(θ), represented in Cartesian coordinates as [0,1], [1,1], [1,0], and [1,–1].  All GLCMs were 

constructed using a 64 gray level quantization; this value was chosen to reduce computational 

effort during GLCM construction, and to avoid creating sparse GLCMs [Clausi, 2002]. 

 
 2.2.3 Biomass Prediction. Physical variables, spectral vegetation indices, and texture 

metrics were used to predict aboveground forest biomass using feedforward neural networks 

built in Statistica12 (StatSoft, Inc., Tulsa, OK).  Neural networks are advantageous for this sort 

of modeling because they do not require any assumptions about the distribution and 

independence of input data.  This neural network model was constructed using FIA biomass 

values, and the corresponding physical, spectral and image texture information for that plot 

location.  The observed biomass values from FIA plots were randomly divided into three groups: 

training, testing and validation data.  Seventy percent of the plots were used as training data (116 

plots), 15% as testing data (24 plots), and the remaining 15% as validation data (24 plots). 

Training data were used to build the network, testing data were used to refine the network as it 

was being built, and validation data were withheld from the training process and used to evaluate 

the map.  The correlation between observed and predicted values for the training and testing 

groups was carefully monitored as the networks were being built in order to avoid over fitting; 

the correlation between the testing data and observed data was maintained below 0.7.  The 

relative importance of each variable used in the neural network was evaluated using a global 
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sensitivity analysis in Statistica.  The sensitivity analysis is designed to test how the neural 

network predictions respond to changes in the input variable.  The dataset is repeatedly 

submitted to the network, but each time one variable is replaced with its mean as calculated from 

the training data.  The error in the resulting network is recorded, and the most important 

variables are identified as those that, when modified, result in the greatest increase in network 

error.   

 Forest biomass was predicted on a pixel-by-pixel basis for all forested regions of SJNF 

by using physical variables, spectral information and Landsat TM texture calculations as input to 

the neural network model.  The model feature selection process is as follows: initial models were 

constructed using all combinations of physical, spectral, and texture variables.  The model 

complexity was systematically reduced using the global sensitivity analysis to identify the most 

important variables in the model.  I continued reducing the model complexity by removing the 

least important predictors as long as reductions continued to improve the model.  Model quality 

was repeatedly evaluated using the four measures of error described below, and these measures 

were used to choose the final model.   

 

 2.2.4 Statistical Analysis.  I used four statistical measures to evaluate model 

performance: Pearson’s Correlation (r),  

r = (!!  !!)(!!!!)

(!!!!)! (!!!!)!
  

where x is the observed value, 𝑥 is the average of the observed values, y is the predicted value 

and 𝑦  is the average of the predicted values; the Root Mean Square Error (RMSE): 

RMSE = !!!!! !

!
  

where n is the number of observed values; the Coefficient of Variation of the Root Mean Square 

Error (CV-RMSE),  
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CV-RMSE = !"#$
!

  

where RMSE is the root mean square error; and Akaike’s Information Criteria (AIC),  

AIC = n ∙ ln
SSE
n +  2k  

where SSE is the summed square error of the model and k is the number of model parameters.  

AIC is a relative measure of model quality for a given dataset and it provides a means for model 

selection based on both model fit and model parsimony.  In other words, AIC values aid in 

identifying the model that provides the best description of the data using the smallest number of 

parameters.  Higher quality models are identified by lower AIC values; generally AIC values that 

differ by >2 indicate that the model with the lower AIC is superior, whereas models with AIC 

values differing by <2 are similarly effective in describing the data [Spendelow et al., 1995]. 

 Biomass prediction quality was also evaluated at fine spatial scales within two regions of 

the forest with a history of forest disturbance.  Forest biomass predicted by the best performing 

texture-based map was compared to the biomass predicted by the best performing physical-

spectral based map for two regions: a region with five forest stands clear-cut in the 1970’s, and a 

region of forest burned by a wildfire in 2002.  In each case the average predicted biomass within 

the disturbed stand was compared to the average predicted biomass in an adjacent undisturbed 

stand.  Stand delineations were obtained from the SJNF FSVeg database.   

 

2.3 Results 

 The final biomass map was constructed using the best performing neural network model 

constructed from the texture metrics of entropy, mean and correlation calculated from Landsat 

Band 2 on a 3x3 window and an offset of [0,1], and the physical variable slope (Table 3.1).  
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Table 2.1 Correlation between predicted and observed biomass (r), Akaike’s 
Information Criteria (AIC), Root Mean Square Error (RMSE) and Coefficient of 
Variation Root Mean Square Error (CV-RMSE) for the five best performing neural 
network models constructed with texture metrics (top 5 rows), and the five best 
performing neural network models constructed without texture metrics (lower 5 
rows). The architecture of each neural network is indicated in the form of input-
hidden-output units.  The GLCM texture metrics used in the highest preforming 
models were calculated on Band 2, on a 3x3 window at an (0,1) offset; they are: 1-
mean, 2-variance, 3-homogeneity, 4-contrast, 5-dissimilarity, 6-entropy, 7-second 
moment and 8-correlation. 

Parameters Network 
Architecture r AIC RMSE CV-RMSE 

6, 1, 8, Slope 4-10-1 0.86 199.0 45.6 0.31 
1, 6, 7, Slope, 8, 5 6-9-1 0.81 204.2 52.7 0.36 

1, 8, Slope, 6, 5 5-6-1 0.84 207.4 51.9 0.36 
1, Slope, 6 3-4-1 0.78 209.1 58.1 0.40 

1, Slope, Aspect, 6, NDVI 5-9-1 0.79 211.7 56.4 0.39 
Elevation, NDVI, Aspect, Slope 4-8-1 0.57 224.9 76.5 0.53 

Elevation, Slope, Aspect 3-3-1 0.44 224.9 79.7 0.55 
Elevation, Aspect, Slope, EVI, Precipitation 5-9-1 0.51 226.7 76.3 0.53 

Elevation, Aspect, Slope, EVI 4-5-1 0.43 227.6 80.8 0.56 
Vegetation Type, Aspect, Slope, Elevation 9-3-1 0.34 229.5 83.9 0.58 

 
The best performing network was determined as the model with the lowest RMSE and CV-

RMSE, 45.6 Mg ha-1 and 0.31 respectively, the highest correlation between predicted and 

observed biomass values, 0.86, and the lowest AIC, 199.0 (Table 2.1; Figure 2.2).  
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Figure 2.2 Observed versus predicted biomass values for Landsat TM image texture 
based biomass map.  

 

The AIC value of the best performing model differs from the next smallest AIC value of 204.2 

by > 5 indicating this model is preferable to the other models investigated (Table 2.1).  The 

texture-based biomass model predicts a wide range of aboveground biomass values across SJNF, 

with a maximum biomass value of 394 Mg ha-1.  Generally the greatest biomass values were 

predicted in the high elevation regions and smaller biomass values in the lower elevations 

(Figure 2.3).   
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Figure 2.3 Landsat TM image texture-based map of aboveground biomass within 
forested regions of San Juan National Forest.  The boxes labeled 4 and 5 indicate the 
location of Figure 2.4 and Figure 2.5, respectively. 

 

A global sensitivity analysis was used to determine the importance of each variable in the 

context of this neural network.  The texture variable mean contributed the most to this model, 

followed by correlation, the physical variable slope and the texture variable entropy.  The 

relative importance of each variable is represented by the ratio of model error when the model is 

constructed excluding and including the variable in question.  The relative sensitivities of mean, 

correlation, slope and entropy are 3.7, 1.8, 1.5, and 1.3 respectively.  

 Models including texture metrics performed better than those constructed with only 

physical variables (slope, aspect, elevation, precipitation and vegetation type) and spectral 

variables (NDVI and EVI; Table 2.1).  The best-performing model constructed without any 

texture information was produced by a network including slope, aspect, elevation and NDVI 

(Table 2.1), and had a lower correlation, higher error and higher AIC than models including 

texture. 

Aboveground Biomass (Mg ha-1) 

394 

0 
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 The texture-based biomass map also appears better able to capture the magnitude and 

direction of biomass change due to forest disturbance compared to spectral approaches.  The 

texture-based map predicted a larger difference in biomass between untreated stands and 

adjacent clear-cut stands than the physical-spectral map (Figure 2.4).  

Figure 2.4 a) True color image from National Agricultural Imagery Program 
acquired by a Leica ADS80 Airborne Digital Sensor; b) image texture-based biomass 
map; and c) physical-spectral (slope, aspect, elevation, Normalized Difference 
Vegetation Index) based biomass map for a region of San Juan National Forest 
containing forested stands clear-cut in the 1970’s.  Color bar and scale bar apply to 
a), b) and c).  d) Observed and modeled stand-average aboveground biomass from 
adjacent untreated and treated (clear-cut) forest stands.  Observed values are 
calculated from nearby stands of the same vegetation type.  Modeled stand-average 
biomass of treated stands was compared to the stand-average biomass of the 
untreated stand located directly to the west.  Letters indicate locations of biomass 
comparisons, shown on a).   

 
 

The observed biomass values suggest an average difference of 64.5 Mg ha-1 between untreated 

and clear-cut stands. The texture-based biomass predicted an average difference of 65.3 Mg ha-1 

A
B

C

D
E

Aboveground
Biomass 
(Mg ha-1)

0

350

a) b) c)

d)

N



 

26 

between the clear-cut and untreated stands, whereas the physical-spectral map predicted an 

average difference of 23.53 Mg ha-1 between the clear-cut and untreated stands (Figure 2.4).  

 The texture-based biomass map also improved prediction quality over the physical-
spectral map in a region of San Juan National Forest burned in a wildfire in 2002 (Figure 2.5).  

 
Figure 2.5 a) True color image from National Agricultural Imagery Program, 
acquired by a Leica ADS80 Airborne Digital Sensor; b) image texture-based biomass 
map; and c) physical-spectral (slope, aspect, elevation, Normalized Difference 
Vegetation Index) based biomass map for a region of San Juan National Forest 
burned by a wildfire in 2002.  Color bar and scale bar apply to a), b) and c).  d) 
Modeled stand-average biomass of the burned region was compared to the unburned 
region to the East of the fire.   

 
 In the eastern portion of the Missionary Ridge Fire burn area, the texture-based map predicted a 

52.64 Mg ha-1 decrease in biomass between the burned area and the adjacent unburned forest, 

where as the physical-spectral based biomass map predicted a 14.0 Mg ha-1 increase in the 

amount of biomass present in the burned forest relative to the adjacent unburned forest (Figure 

2.5).  
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2.4 Discussion 

 In this study I demonstrate the utility of image texture analysis on Landsat TM imagery 

as a method of improving local biomass estimates.  Biomass maps including image texture 

variables perform better than biomass maps created from physical and spectral variables only.  

Furthermore, the texture-based biomass map is better able to capture biomass change in response 

to disturbance than maps created excluding image texture.  This analysis provides an alternative 

avenue for advancing the development of more accurate local biomass maps through a novel 

application of a widely established remote sensing tool. 

 

 2.4.1 Biomass Prediction from Image Texture. Aboveground biomass predicted by the 

texture-based model was greatest in high elevation regions, and smallest in the low elevation 

regions (Figure 2.3).  This pattern is generally spatially consistent with national scale biomass 

maps for this region [Kellndorfer et al., 2000; Blackard et al., 2008], however, the greatest 

biomass value predicted by the texture-based map, 394 Mg ha-1, is lower than the highest 

observed biomass for this region (490 Mg ha-1).  The correlation between the texture-based 

model biomass predictions and observed biomass values was r = 0.86 (Table 2.1; Figure 2.2).  

 My successful use of texture to map biomass in SJNF is encouraging for several reasons.  

First, the texture-based model was constructed using only publically available data and Landsat 

TM imagery, whereas most existing biomass maps are constructed from a large suite of 

geospatial predictors.  Although I recognize that many spatial predictors are needed for national 

scale maps, I suggest that alternate approaches, such as use of texture analysis, may be more 

appropriate for local maps.  Secondly, I believe that texture analysis may be able to improve 

biomass estimation in regions of forest where spectral indices such as NDVI can saturate.  

Unlike NDVI, which is calculated on a pixel-by-pixel basis, texture is calculated from a small 

neighborhood of pixels and the size of this neighborhood can be adjusted to maximize the 

potential for texture to predict biomass.  I find that texture is particularly useful in regions of 
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disturbed forest (Figures 2.4 and 2.5), where the texture-based map is more sensitive to changes 

in forest biomass than a map produced from physical and spectral variables.  Furthermore, 

texture analysis also has the potential to be sensitive to changes in forest biomass even in regions 

of dense canopy; studies from tropical forests indicate that texture correlates with biomass more 

strongly than spectral indices [Eckert, 2012], and texture is correlated with biomass in some 

regions where spectral signatures are not [Lu, 2005].  Finally, I also acknowledge the possibility 

that the success of texture in predicting forest biomass is partially due to the aggregation process 

of the window used in texture analysis accounting for errors between image geo-rectification and 

GPS field locations.  If the Landsat image is offset by even just one pixel, the plot locations will 

be 30 meters removed from the corresponding pixel in the Landsat image.  In this case texture 

analysis may help account for this geographic error by aggregating pixel values over the window 

used in texture analysis (i.e., 3 × 3).   

 There are several opportunities for introduction of error into the texture-based biomass 

model.  First, the ground-based FIA plots used in the model were sampled between 2002 and 

2009, whereas the Landsat scenes used for the texture calculation were acquired in 2011.  While 

the Landsat scenes I used in the analysis are temporally consistent with the recently sampled FIA 

plots, there is almost a 10-year lag between the sampling date of the earliest plots, and the time 

of Landsat image acquisition.  During this time the amount of biomass on the landscape could 

have changed due to growth or disturbance, thereby introducing error into the resulting map.  

However, the direction of the map errors (the map under predicts biomass) is not consistent with 

errors introduced due to forest disturbances that remove biomass such as forest treatment or 

wildfire.  In the case of disturbances including treatment and wildfire, forest biomass on the 

landscape would decrease, and therefore the biomass map would over predict forest biomass for 

disturbed areas.  In contrast, my map under predicts forest biomass in some regions.  

 
 2.4.2 Texture Analysis for Local Biomass Maps.  The texture-based biomass map I 

present here is an effective method for developing local forest biomass maps, and could have 
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substantial implications for carbon accounting and land management purposes.  Local biomass 

maps are important for tracking biomass stocks and carbon fluxes in regions such as National 

Forests, which are sites of frequent land management and disturbance. My texture-based biomass 

map is particularly sensitive to changes in biomass following disturbance, and actually improves 

biomass predictions within disturbed regions relative to maps made from exclusively physical 

and spectral variables. Specifically, the texture-based map produced biomass predictions that 

closely match observed biomass values from nearby forest stands of the same vegetation type 

and treatment history (Figure 2.4).  Furthermore, the physical-spectral map predicted an increase 

in forest biomass in a region of recently burned forest relative to the adjacent unburned forest, 

whereas the texture-based map predicted a decline in forest biomass in the burned region (Figure 

2.5).  I believe this result is due to high prevalence of understory vegetation growing in the 

burned region, resulting in high NDVI but low biomass. Because texture appears to be sensitive 

to changes in forest biomass following disturbance in SJNF, I suggest that texture may be an 

important tool not only for creating biomass maps in regions such as national forests, but also for 

updating these maps following disturbance or management.  The Landsat data used to construct 

this map are available on sub-annual timescales so map updates are not subject to constraints in 

data acquisition.  Potential future climate change mitigation policies enacted through forest 

management, or trading schemes introduced under cap-and-trade type policy, will rely on 

biomass maps to inform decisions, and image texture analysis provides a potential avenue to 

make necessary improvements to local biomass estimates.  

 

2.5 Conclusions 

 Local forest biomass maps are necessary for understanding and anticipating the effects of 

disturbance and management on forest area, habitat, and local carbon stocks and fluxes.  In this 

study I use a combination of physical variables, spectral information and image texture metrics 

calculated from Landsat TM imagery to create a local forest biomass map within San Juan 

National Forest in southwest Colorado, USA.  Aboveground biomass maps were created using 
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neural networks constructed from Forest Inventory and Analysis Program ground-based biomass 

observations and the corresponding physical, spectral and image texture information for each 

plot location.  I draw the following conclusions:  

• Biomass models constructed including image texture variables are more strongly 

correlated with observed biomass than those constructed using physical and spectral 

information alone. 

• This texture-based biomass model is sensitive to changes in forest biomass following 

disturbance such as logging and wildfire; the texture-based model I present in this paper is 

better able to predict the direction and magnitude of biomass change following 

disturbance than biomass models constructed without the use of image texture. 

• Because the Landsat data used to construct this map are available on sub-annual 

timescales, texture may be an important tool for creating and updating biomass maps 

following local forest disturbance or land management actions. 

• The methods I present here are widely applicable across the US because I use entirely 

publically available data processed with relatively simple analytical routines. 

 

 The next steps of this research will include evaluating the transferability of this local 

texture-based biomass model to other geographic regions with varying vegetation and 

disturbance regimes. 

 

 
  



 

31 

 

 

CHAPTER III 

 

SHORT AND LONG-TERM CARBON BALANCE OF BIOENERGY ELECTRICITY 

PRODUCTION FUELED BY FOREST TREATMENTS 

 

3.1 Introduction 

 Forests are an important component of the global carbon cycle because of their role as a 

terrestrial carbon sink and their potential for long-term carbon storage.  Many types of natural 

and human induced disturbances affect forest carbon storage including wildfire, insect outbreaks 

and drought.  In the Intermountain West, forests are also commonly modified by fuel reduction 

treatments performed to reduce the risk of high severity wildfire, restore forests modified by fire 

suppression, and to protect homes in the wildland urban interface. Fuel reduction treatments also 

influence forest carbon balance both through their potential to modify fire behavior in recently 

treated forest stands, and because the treatments themselves remove woody biomass from the 

forest [Finkral and Evans, 2008; North et al., 2009; Stephens et al., 2009; Dore et al., 2010].   

 Forest fuel reduction treatments are designed to reduce fire severity by modifying surface 

fire behavior, reducing the risk of fire spreading from the ground surface to the forest canopy, 

and limiting fire spread within the forest canopy by decreasing canopy bulk density [Agee and 

Skinner, 2005].  A number of studies indicate that fuel reduction treatments do reduce wildfire 

severity [Weatherspoon and Skinner, 1995; Pollet and Omi, 2002; Cram et al., 2006; Ritchie et 

al., 2007; Fulé et al., 2012], and in some cases fuel treatments have been credited with altering 

the course of a wildfire when it encounters a previously treated area [Finney et al., 2005].   
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 Forest fuel reduction treatments have also been proposed as a potential technique to limit 

carbon emissions from wildfire in some ecosystems [Hurteau et al., 2008; Hurteau and North, 

2009].  Forest treatments are designed to reduce mortality that would result from a high severity 

fire, and therefore they may ultimately limit wildfire carbon emissions to the atmosphere because 

carbon is maintained in the biomass of live trees [Finkral and Evans, 2008; Mitchell et al., 2009; 

Stephens et al., 2009; Hurteau et al., 2011].  However, because forest treatments also remove 

woody biomass from the forest [North et al., 2009; Stephens et al., 2009], there is debate 

regarding whether the reduction in pyrogenic emissions is greater than the reduction in biomass 

during treatment [Campbell et al., 2012].  Most pyrogenic emissions result from the combustion 

of surface fuels that burn comparably in both high and low intensity fires [Meigs et al., 2009].  

High intensity fires produce only 30% more direct emissions than low intensity fires, and fuel 

reduction treatments can remove as much or more biomass from the forest as is lost in a high 

intensity wildfire [Campbell et al., 2012].  In some cases the total carbon emissions from 

treatment and subsequent wildfire may be greater in a treated forest stand than an untreated stand 

[North and Hurteau, 2011].  Furthermore, not all treated forest stands are likely to experience a 

wildfire because of the low probability of fire occurring in one location during a given time 

period [Campbell et al., 2012], so some treated stands will have reduced carbon stores without 

any benefit from avoided pyrogenic emissions.  Ultimately the carbon balance of a forest 

treatment will depend both on the fate of biomass harvested during treatment and the timeline of 

investigation. 

 There are two potential fates of carbon in harvested biomass, emission to the atmosphere 

or stabilization, and the balance between emission and stability may shift depending on the 

timeline of interest (1, 10, 100 years).  Immediately following a forest treatment, woody debris 
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may be burned or left in the forest to decompose where it will result in emission of carbon to the 

atmosphere, or the carbon contained within harvested biomass may be may be stabilized if it 

used for timber and ultimately converted to durable goods [Finkral and Evans, 2008].  An 

increasingly common fate for woody biomass is as a fuel for bioenergy-based electricity 

generation (Figure 3.1).   

Figure 3.1 Sources of carbon emissions and types of carbon stabilization for different 
fates of harvested biomass following a forest fuel reduction treatment. 

 

The small diameter trees and understory biomass removed from forests during treatment can be 

directly combusted or converted to a synthetic natural gas, with both used for electricity 

production.  Such use of biomass can stabilize carbon by offsetting carbon emissions from fossil 

fuels, and via sequestration of carbon during forest regrowth. However, bioenergy use also 

results in emissions of carbon during harvest, transport and electricity generation, with potential 

implications for overall carbon sequestration.  Further, these processes can be of variable 
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efficiency.  For example, synthetic natural gas, or syngas, is produced from biomass by a 

thermochemical process called gasification (only partially efficient) that converts the biomass 

into fuel through partial oxidation at elevated temperatures [Pereira et al., 2012].  High moisture 

content of the woody biomass can reduce the efficiency of the gasification process [Ruiz et al., 

2013], producing further emissions.  During electricity production, the syngas is combusted and 

the carbon within the syngas is emitted to the atmosphere.  

To investigate the carbon implications of fuel reduction treatments and the use of woody 

biomass for bioenergy electricity generation, I evaluate the carbon emissions and the short-term 

and long-term carbon balance of a 5MW demonstration biomass gasification power plant in San 

Juan National Forest in southwest Colorado (Figure 3.2) under varying scenarios of forest 

treatment, disturbance and regeneration.  I ask these questions:  

(1) What are the relative carbon emissions of electricity generation from biomass and 

electricity generation from coal?  

(2) How does the use of woody biomass for electricity generation change the carbon balance 

of forest fuel reduction treatments on a short-term (1 year) and long-term (100 years) 

time frame?  

(3) How do treatment and bioenergy production affect forest carbon balance after a fire?  

How does post-fire carbon balance vary over differing scenarios of future fire intensity 

and regeneration? 
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Figure 3.2 Arial image of the study area within San Juan National Forest, and 
location of San Juan National Forest in Southwest Colorado, USA. 

 

3.2 Materials and Methods 

 3.2.1 Study Site.  The site of this study was the Turkey Springs Demonstration Area in 

the eastern portion of San Juan National Forest (SJNF).  The site is located at 37° 15’ N and 107° 

10’ W, and at 2500 meters elevation (Figure 3.2).  Average maximum and minimum 

temperatures are 14.2°C and -2.16°C respectively, and average annual precipitation is 618.4 mm 

(http://prismmap.nacse.org/nn/).  The total area of the Turkey Springs demonstration site is 116 

hectares.  The site is broken into five units, Units 1-5.  All biomass measurements were made on 

Unit 5, which is 39 hectares in size.  Biomass values from Unit 5 were used for the area of all 

units, which are covered by the same vegetation type.  Units 1 through 4 have a similar 

management history as Unit 5; records of historical treatment activities maintained by the Forest 

Service indicate that all units were harvested by individual tree selection in 1967, parts of Units 
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3, 4 and 5 were commercially thinned in 1968, and the east half of Unit 5 was logged again in 

1983.  Vegetation present at the site is dominantly ponderosa pine (Pinus ponderosa Dougl. Ex 

Laws) with scattered pockets quaking aspen (Populus tremuloides (Michx.)), douglas fir 

(Pseudotsuga menziesii Mirb.), white fir (Abies concolor (Gord. & Glend.)) and gambel oak 

(Quercus gambelii Nutt.). 

 

 3.2.2 Forest Biomass. Forest biomass present before treatment was measured in 2011 

using 34 circular inventory plots, each 80 m2 in area (diameter = 10.24 m).  Within each plot the 

diameter of every tree over 1.37 m tall was measured at 1.37 m to obtain a measure of diameter 

at breast height (DBH) for all trees within the plot. Aboveground live tree biomass was 

calculated from tree DBH using allometric equations from Jenkins et al. (2004) and Kaye et al. 

(2005).  Aboveground live tree biomass for the plot was determined as the sum of all trees 

present on that plot, and carbon was calculated as 50% of dry biomass [Penman et al., 2003].  

Biomass inventory plots were re-measured in 2012 following the fuel reduction treatment using 

the same inventory methodology.  The amount of forest biomass removed during the 

demonstration fuel reduction treatment was determined by weighing all woody material as it was 

removed from site.  Dry biomass was determined by assuming 45% moisture content of material 

removed. 

 

 3.2.3 Bioenergy and Coal Reference Systems. The reference bioenergy system I 

investigate is assumed to produce 5.0 Megawatts of electrical power (MW) and operate 8000 

hours per year (91% operating time). 58,400 Mt of wet biomass (45% moisture) will be 

necessary to fuel 5 MWe production.  Once the raw wood is harvested and transported, it is dried 
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to 20% moisture.  The wood is then converted to syngas, which is used to fuel the internal 

combustion engines of the plant.  

 Total carbon emissions from a hypothetical 5 MW coal reference system were calculated 

to compare the carbon intensity, or the carbon emissions per unit energy, of the coal to that of the 

bioenergy electricity generation system.  Coal was chosen as a reference system because coal is 

the primary energy source for Southwest Colorado [CGEO, 2010].  Total emissions from the 

coal reference system included three components: mining, transportation, and combustion.  

Mining, transportation and combustion emissions were calculated based on values from Kerr, 

Mann and Spath [1999].  The coal reference system was assumed to operate at 32% efficiency 

and use coal with 70% carbon content [Spath et al., 1999].  I also calculated ash production 

during coal combustion, and subtracted ash carbon content from total carbon emissions from the 

system.  No assumption was made regarding the eventual fate of the ash; for this work here I do 

not consider further emissions from ash decomposition.  

 

 3.2.4 Bioenergy and Forest Harvest Emissions Expected carbon emissions from the 

bioenergy power plant are derived from three primary sources: emissions associated with 

biomass removal and transport, emissions from syngas production, and emissions from syngas 

combustion.  The first source of emissions from bioenergy production was emissions associated 

with biomass harvest and transport.  Operational hours for each piece of equipment used in all 5 

Units (116 hectares) of the fuel treatment area were tracked by the biomass harvesting team and 

used to calculate total emissions [EPA, 2010].  Emissions from transportation of biomass from 

the treatment site to the bioenergy facility were also calculated based on the total hours of 

operation, and the average fuel consumption per hour for both gasoline and diesel [EPA, 2010]. 
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 I calculated carbon emissions for syngas production (gasification) based on projections 

that 8000 operational hours are necessary to produce 5 MW of electricity, and carbon emissions 

from biomass gasification obtained from Basu [2010].  Total emissions from combustion within 

the bioenergy system included both syngas production for electricity generation, and also the 

combustion of natural gas necessary to maintain the high internal temperature of the gasification 

operation. Using the projected syngas composition and the volumes of biomass and natural gas 

necessary for 5 MW of electricity production, gas volumes for each constituent of gas were 

converted to grams of carbon, and summed to determine total projected emissions for syngas 

combustion.  Carbon emissions from natural gas combustion were determined from projections 

of net gas consumption and gas composition obtained Liuewen et al. [2010].  All char produced 

through the gasification process was considered an emission to the atmosphere. 

 

 3.2.5 Forest Growth and Disturbance Modeling.  Forest growth and the effects of 

future disturbance were modeled using the Central Rockies variant of the Forest Vegetation 

Simulator (FVS) and the Fire and Fuels Extension (FEE) [Dixon, 2008].  FVS is a widely used 

forest growth and yield model, and is frequently used to inform ponderosa pine management 

[Teck et al., 1996].  The FEE can be used to predict tree mortality, fuel consumption and carbon 

emissions following fire based on inputs of weather, fuel, and stand characteristics [Reinhardt 

and Holsinger, 2010].  I used FVS-FEE to simulate the carbon emissions associated with the fuel 

reduction treatment in 2011 and the prescribed fire following treatment in 2013.  FVS was also 

used to determine live tree and total stand carbon following repeated treatments recurring every 

40 years designed to reduce stand basal area to 7.4 m2 (80 ft2). 
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 I also investigated three scenarios concerning the fate of biomass removed during forest 

treatment: a ‘no stabilization’ scenario which is considered the ‘business-as-usual scenario, a 

scenario where biomass is used for durable goods, and finally one in which all biomass removed 

during treatment is used for bioenergy electricity production.  FVS was used to simulate the 

amount of biomass removed from the forest during treatment.  Projections from FVS were also 

used to determine what fraction of the biomass removed was considered merchantable, defined 

as a bole with a top diameter greater than 10.2 cm.  Forty percent of merchantable material was 

assumed to be lost as milling waste, and the remaining 60% converted to durable goods [Skog 

and Nicholson, 2000; North et al., 2009]. 

 FVS was also used to project changes in total stand carbon and live tree carbon 

associated with a future wildfire at this site in 2030.  Wildfires tend to burn in a highly 

heterogeneous manner, with patches of lightly burned and intensely burned forest depending on 

variables including weather conditions and landscape patterns [Turner and Romme, 1994]. 

Because it is impossible to know the severity and intensity of a future wildfire at this site, I 

simulated 96 future wildfires by varying the wildfire controls present within FVS.  The wildfire 

controls present within FVS are: wind speed, fuel moisture, air temperature, percentage of stand 

burned, and the season of the fire.  For my model simulations, I varied wind speed between 

16.09, 32.18, 48.28 and 64.37 kilometers per hour, fuel moisture was varied between ‘very dry’ 

and ‘moist’ settings, percentage of stand burned was varied between 40 and 90 percent in 

increments of 10, and the season of the fire was set as ‘early season (compact leaves)’ and ‘after 

greenup (before fall)’.  Air temperature was maintained at 29.4 degrees Celcius.  I also varied the 

prescription of future forest regeneration to account for uncertainties in regeneration under future 

climate and wildfire conditions.  Regeneration scenarios were based on empirical data from 



 

40 

Savage and Mast [2005], indicating that 50% of ponderosa pine sites investigated following a 

stand-replacing fire did not regenerate.  No regeneration was prescribed in either the treated or 

untreated stand until after the wildfire.  All fire and regeneration scenarios were run on a treated 

and untreated forest stand for a total of 384 simulations.  

 

3.3 Results 

 3.3.1 Relative Carbon Intensity of Biomass and Coal Electricity Production. I found 

that electricity generation through biomass gasification produces almost twice the carbon 

emissions of a hypothetical coal reference system for the same amount of electricity production 

(Figure 3.3). 

Figure 3.3 Carbon emissions for 8000 hours of 5 MW electricity produced from 
bioenergy and a coal reference system. 

 

The projected carbon emissions from biomass harvest, transportation, and electricity production 

for the amount of biomass necessary to fuel 5 MW electricity production for 8000 operational 
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hours (estimated operation for one year), was 20,510 Mg C.  The calculated emissions from the 

coal reference system for 8000 operational hours was 10,580 Mg carbon (Figure 3.3).  These 

emissions are equivalent to emissions of 20.0 Mg carbon ha-1 for biomass electricity production 

and 10.3 Mg carbon ha-1 for coal electricity production according the number of hectares that 

must be treated annually on SJNF (1024 ha) to harvest the necessary amount of biomass. 

 

 3.3.2 Short-term Carbon Balance of Bioenergy Production. The use of woody 

biomass for electricity generation reduces short-term net carbon emissions relative to other forest 

treatment scenarios investigated: one in which merchantable biomass is stored in durable goods, 

and a second ‘business-as-usual’ scenario in which the forest is treated, but all of the woody 

biomass removed from the forest is all allowed to decompose (Table 3.1).   

Table 3.1 Total carbon (C) emissions, total carbon stabilized and net carbon 
emissions over one year from forest treatment considering three fates of harvested 
biomass: no biomass stabilized (business-as-usual scenario), merchantable timber 
stabilized in durable goods, and use of woody biomass in bioenergy production. 

 Total 
Emissions 

C Stabilized in 
Durable Goods 

C Offset through 
avoided coal emissions 

Net Emissions 

No Stabilization  
(Business-as-usual) -19.23 0.00 0.00 -19.23 

C Stabilized in 
Durable Goods -13.75 5.48 0.00 -13.75 

C Stabilized in 
Bioenergy production -20.03 0.00 10.33 -9.70 

 
 

The bioenergy scenario reduces carbon emissions relative to the other two scenarios largely 

because the carbon emissions from bioenergy production (20,510 Mg C) were partially offset by 

the avoided emissions from coal-generated electricity production (10,580 Mg C).  To determine 

emissions from the ‘durable goods’ scenario, I used simulations from the forest growth model 
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that indicate that 49.5% of the biomass removed from the forest during treatment is considered 

merchantable.  I assume that 60% of the total amount of carbon contained within the 

merchantable biomass (5611.6 Mg C) is sequestered in durable goods and therefore the total 

emissions from the forest treatment are equal to 14,082.4 Mg carbon or 13.8 Mg carbon ha-1.  

The net short-term emissions from bioenergy production were 9929 Mg carbon or 9.7 Mg carbon 

ha-1.  The projected emissions for the no stabilization scenario are 19,694 Mg carbon, or 19.2 Mg 

carbon ha-1. 

 

 3.3.3 Long-term Carbon Balance of Bioenergy Production. On a long-term time frame 

(>100 years), the use of woody biomass removed during forest treatments for electricity 

generation has a large effect on forest carbon balance.  Repeated forest treatments reduce total 

stand C.  Stand regrowth following treatment allows for some recovery of stand carbon storage 

through time (Figure 3.4a), but in many cases the repeated treatments necessary to maintain low 

risk of wildfire result in total stand carbon remaining below the pre-treatment stock (Figure 

3.4b).   
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Figure 3.4 a) Total stand carbon b) net stand carbon c) cumulative carbon offset 
through bioenergy production and avoided coal emissions and d) net stand carbon 
including carbon offset in a stand with repeated treatments.  e) Forest wide carbon 
balance with forest treatments to fuel bioenergy production every year through 2100. 

 

Without any sequestration of the harvested biomass, the repeated treatments will result in a net 

emission of carbon to the atmosphere, even if there is forest regrowth between treatments.  

However, the use of woody biomass for bioenergy production sequesters carbon in the form of 

an offset of coal-generation carbon emissions.  Through time as more treatments are completed, 
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and more coal emissions are offset through bioenergy electricity production, the total amount of 

carbon sequestered increases (Figure 3.4c).  I find that for the forest stand investigated here, the 

amount of carbon sequestered by bioenergy production via syngas and forest re-growth surpasses 

the carbon deficit incurred by the reduction in forest biomass before the end of this century 

(Figure 3.4d).  If the treatments are repeated forest wide through 2100, the net carbon balance, 

including the coal offset, reaches zero around 2140 (Figure 3.4e).  Following 2140, the net 

carbon balance of the forest is going to remain positive, even if the forest treatments are repeated 

indefinitely.  The positive carbon balance is maintained because the amount of carbon offset due 

to bioenergy production increases with each treatment, even though repeated treatments continue 

reducing forest biomass below pre-treatment levels.  In other words, once the cumulative amount 

of carbon removed during treatment is surpassed by the cumulative amount of carbon offset 

through bioenergy production and carbon sequestered during forest regrowth, the forest carbon 

balance will remain positive. 

 

 3.3.4 Carbon Balance of Bioenergy Treatments and Future Wildfire. Simulated post-

wildfire stand carbon stocks vary depending on wildfire intensity and stand treatment history.  I 

found that the range of simulated post-wildfire total stand carbon values was greater in an 

untreated stand than in a treated stand.  Potential total stand carbon in 2100 ranged from 87 to 

166 Mg carbon ha-1 in the untreated forest, and from 75 to 109 Mg carbon ha-1 in the treated 

forest (Figure 3.5). 
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Figure 3.5 a) Total stand carbon in a forest stand treated mechanically in 2011 and 
with prescribed fire in 2013, followed by multiple simulations of varying intensity 
wildfire and regeneration in 2030; b) total stand carbon in an untreated forest stand 
with simulations of varying intensity wildfire and regeneration in 2030.  Dark lines 
(numbered 1, 2, 3, 4, 5) represent the selected comparisons presented in Tables 3.2, 
3.3 and 3.4. 
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The untreated forest also had a greater minimum and maximum total stand carbon value than the 

treated forest.  However, the introduction of fuel treatments modified fire behavior; I find that in 

a selected comparison of a treated and untreated forest stand that both burn in a wildfire, the 

treated stand maintains more live tree carbon and total stand carbon in 2100 than the untreated 

stand, due to the difference in wildfire fire intensity and severity following forest treatment 

(Table 3.2).   

Table 3.2 Effects of treatment on fire behavior and forest carbon (C) balance.  
 
 

    
2100 

Plot Treated Bioenergy 
Wildfire 
Intensity Regeneration 

Δ Live Tree C 
(Mg ha-1) 

Δ Total Stand C 
 (Mg ha-1) 

Net C balance 
(Mg ha-1) 

1a Y Y moderate normal 35.98 10.01 20.31 
2b N N high reduced -31.19 -4.75 -4.75 

a Wildfire parameters in FVS: windspeed, 16.09 km/hr; fuel moisture, very dry; 40% stand burned; 
season, ‘before fall’; regeneration, 300 trees per acre 
b Wildfire parameters in FVS: windspeed, 64.37 km/hr; fuel moisture, very dry; 90% stand burned; 
season, ‘before fall’; regeneration, 0 trees per acre 
 

A selected comparison of the effects of forest treatment on year 2100 forest carbon 
balance following wildfire.  The effects of the treatment and subsequent changes in 
wildfire intensity and regeneration are reflected in the ‘Δ Live Tree C’ and ‘Δ Total 
Stand C’ columns, and the effect of treatment and bioenergy production is shown in 
the ‘Net C balance’ column.  ‘Wildfire Intensity’ is a qualitative descriptor of the 
wildfire parameterizations used in the forest growth model.  The Plot column 
indicates the line number depicted in Figure 3.5. 

 

In this example, the treatment results in 14.76 Mg ha-1 of avoided pyrogenic carbon emissions, 

plus 10.3 Mg ha-1 of carbon due to the offset of carbon emissions from the replacement of coal 

energy production with bioenergy production.   

Forest treatment and bioenergy production also have the potential to reduce carbon 

emissions even without avoided pyrogenic emissions due to the offset of coal-generated 

emissions.  In a selected comparison of two treated forest stands with low severity fire, the use of 

biomass for electricity production increased the net carbon balance from 19.50 Mg ha-1 in a 
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treatment without bioenergy production to 29.80 Mg ha-1 in a treatment with bioenergy 

production (Table 3.3).  

Table 3.3 Effects of bioenergy production on forest carbon (C) balance 
 
 

    
2100 

Plot Treated Bioenergy 
Wildfire 
Intensity Regeneration 

Δ Live Tree C 
(Mg ha-1) 

Δ Total Stand C 
 (Mg ha-1) 

Net C balance 
(Mg ha-1) 

3a Y Y low normal 19.53 19.50 29.80 
3a Y N low normal 19.53 19.50 19.50 

a Wildfire parameters in FVS: windspeed, 16.09 km/hr; fuel moisture, moist; 40% stand burned; season, 
‘early season’; regeneration, 300 trees per acre 
 

A selected comparison of the effects of bioenergy production from biomass harvested 
during forest treatment on year 2100 forest carbon balance following wildfire.  The 
effects of bioenergy production on carbon balance are evident in ‘Net C balance’ 
column, and would be the same regardless of wildfire intensity or regeneration 
parameters.  ‘Wildfire Intensity’ is a qualitative descriptor of the wildfire 
parameterizations used in the forest growth model.  The Plot column indicates the line 
number depicted in Figure 3.5. 

 

Finally, regeneration following wildfire also influences forest net carbon balance in 2100.  

In a comparison investigated here, a forest stand with normal regeneration following a high 

severity fire reaches a positive carbon balance by 2100, whereas a stand that burns in the same 

wildfire but does not regenerate has a negative carbon balance in 2100 (Table 3.4).   

Table 3.4 Effects of regeneration on forest carbon (C) balance 
 
 

    
2100 

Plot Treated Bioenergy 
Wildfire 
Intensity Regeneration 

Δ Live Tree C 
(Mg ha-1) 

Δ Total Stand C 
 (Mg ha-1) 

Net C balance 
(Mg ha-1) 

 
4a Y Y high normal -17.68 2.65 12.95 
5b Y N high reduced -27.06 -8.15 -8.15 

a Wildfire parameters in FVS: windspeed, 64.37 km/hr; fuel moisture, very dry; 90% stand burned; 
season, ‘before fall’; regeneration, 300 trees per acre 
b Wildfire parameters in FVS: windspeed, 64.37 km/hr; fuel moisture, very dry; 90% stand burned; 
season, ‘before fall’; regeneration, 0 trees per acre 
 

A selected comparison of the effects of varying regeneration and bioenergy 
production on year 2100 forest carbon balance following wildfire.  The effect of 
regeneration on carbon balance is shown in the difference in ‘Δ Total Stand C’ and 
the effects of bioenergy production plus regeneration is shown in the ‘Net C balance’ 
column. ‘Wildfire Intensity’ is a qualitative descriptor of the wildfire 
parameterizations used in the forest growth model.  The Plot column indicates the 
line number depicted in Figure 3.5. 
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3.4 Discussion 

 Here I explore the short-term (~1 year) and long-term (~100 year) carbon balance of a 

demonstration fuel reduction treatment with use of woody biomass for bioenergy electricity 

production.  I find that although bioenergy is a more carbon intensive energy source than coal, 

the use of bioenergy production in this forest reduces overall treatment emissions relative to 

other treatment scenarios investigated.  I also find that while repeated forest treatments can lower 

forest carbon storage, when the harvested biomass is used for electricity generation, the carbon 

sequestered by offsetting coal-generated carbon emissions results in a net carbon sink by 2140.  

In addition to the carbon benefit obtained through bioenergy production, the forest treatment may 

also reduce carbon emissions through avoided pyrogenic emissions in a subsequent wildfire.  

However, the carbon benefit incurred through the bioenergy production is comparable, or in 

some cases smaller, than the changes in stand carbon due to variable wildfire intensity or 

regeneration.  Future changes in disturbance or regeneration regimes also have the potential to 

affect forest carbon balance in addition to the use of bioenergy for electricity generation.  

 

 3.4.1 Short-term Carbon Balance of Bioenergy Production.  Bioenergy electricity 

generation results in lower carbon emissions to the atmosphere than the other treatment scenarios 

investigated (Table 3.1).  There are several factors that explain the relatively low emission from 

the bioenergy scenario.  First, although biomass electricity generation produces carbon emissions 

through the combustion of biofuel, nearly half of the carbon emissions from bioenergy 

production are offset by avoided coal emissions. Secondly, there are relatively few carbon 

emissions from biomass waste in the bioenergy production process because the bioenergy 

production facility used as a reference for these calculations has few limitations regarding the 
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size of woody material that can be used in electricity production.  Therefore, small biomass 

scraps that cannot be used in durable goods can be utilized in bioenergy production.  

Furthermore, the reduction in carbon emissions of the bioenergy scenario relative to the durable 

goods scenario may be even greater than that represented here.  Transportation emissions from 

the treatment site to a mill were assumed to be the same as the emissions recorded for 

transporting the biomass from the treatment site to the bioenergy production site, even through 

there is currently no mill located within that proximity to the forest.  Finally, the durable goods 

scenario does not include any further emissions incurred for transportation of the final product, 

or during processing.  However, emissions incurred during processing, such as from milling 

waste, can be difficult to estimate because many mills will use waste to generate electricity or 

another type of non-durable product [Skog and Nicholson, 2000]. 

 The relative future emissions of the these three scenarios will vary depending on several 

factors including the distance between the harvest site and the bioenergy facility, the efficiency 

of the bioenergy production process, and the size of biomass available for harvest.  The distance 

between the harvest site and the bioenergy production facility can impact the carbon balance of 

the bioenergy production process because a longer haul distance that requires greater carbon 

emissions during transportation of biomass may reverse the carbon benefit provided from 

bioenergy production.  I calculated two maximum haul distances for this study: the maximum 

haul distance at which bioenergy production will provide a carbon benefit over the durable goods 

scenario, and the maximum haul distance at which the bioenergy scenario will provide a carbon 

benefit over the no stabilization scenario.  In both cases, the maximum haul distance is great 

enough that biomass could be retrieved from all available regions of San Juan National Forest.  

In addition to changes in the haul distance of harvested biomass, there also may be future 
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changes in the efficiency of the bioenergy production process, which would increase the carbon 

benefit provided by this scenario relative to the other two.  Finally, the size of biomass available 

for harvest will vary with time and in the future there may be fewer trees of merchantable size, 

which would decrease the amount of biomass that could be stored in durable goods. 

 

 3.4.2 Long-term Carbon Balance of Bioenergy Production.  Treatments designed to 

reduce the risk of high intensity wildfire necessarily lower the amount of forest biomass present 

on the landscape because biomass is removed from the forest [Finkral and Evans, 2008; North et 

al., 2009; Stephens et al., 2009; Dore et al., 2010].  When these treatments are periodically 

repeated in order to maintain reduced fire risk, they result in lower carbon storage on the 

landscape (Figure 3.4a).  If the treatment reduces emissions from a future wildfire by an amount 

greater than the amount of carbon removed during treatment, then the treatment will result in a 

net carbon benefit.  However, this is only possible in the case of a future wildfire, and 

considering only a portion of the landscape is burned in a wildfire each year, many treated areas 

will not be subsequently burned during the lifespan of treatment effectiveness [Campbell et al., 

2012]. 

 I find that in the bioenergy scenario I investigate here, repeated treatments with bioenergy 

electricity production result in a net carbon benefit even without a future wildfire.  Because some 

carbon is ‘sequestered’ from every treatment through the offset of coal energy production 

(Figure 3.4c), and carbon is also taken up through forest regrowth, the cumulative carbon 

emission to the atmosphere is reduced with every treatment.  In the case of the forest stand 

investigated here, repeated treatments result in a net carbon balance of zero by 2080 (Figure 

3.4d).  A forest level analysis, assuming continued operation of the bioenergy plant every year 
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through the end of the century indicates that the net carbon balance of the forest reaches 0 by the 

year 2140, and will remain positive thereafter (Figure 3.4e).  The results I report here are 

contingent on the size of the forest investigated and the use of coal as the energy reference 

system, however these results are highly applicable to decision makers in Southwest Colorado.  

Because current forest policy mandates forest treatments to reduce wildfire risk [USDA-USDI, 

2000], these types of forest treatments are routinely performed on Western forests whether or not 

there is an opportunity to produce electricity from the harvested biomass.  My results indicate 

that the use of biomass for electricity generation may reduce the overall carbon emissions 

resulting from these ongoing forest treatment practices.  

 

 3.4.4 Carbon Balance of Bioenergy Treatments and Future Wildfire. In addition to 

the carbon offset from bioenergy production, forest treatments may also provide a carbon benefit 

by reducing emissions from a future wildfire.  I find that in a comparison of two scenarios of 

future wildfires occurring in treated and untreated stands, the treated stand provides a carbon 

benefit due to avoided emissions as a result of the treatment.  However, over larger temporal and 

spatial scales, the carbon benefit of forest treatment is contingent on three factors: (1) the rate of 

forest growth following treatment, (2) the effectiveness of the treatment in modifying fire 

behavior, and (3) the probability of future wildfire (Figure 3.6).   
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Figure 3.6 Conceptual model of the effect of a) regrowth time, b) treatment 
effectiveness, and c) fire probability on carbon benefit of forest treatment.  The 
timeframe is assumed to be smaller than the disturbance cycle in the specified forest. 

 

 

 3.4.4 a) Forest Growth.  The carbon benefit of forest treatments is dependent on the rate 

of forest growth following treatment (Figure 3.6a).  Indeed the long-term carbon balance of all 

forest disturbances is dependent on the forest recovery and the frequency of the disturbance.  

Over a time scale of one hundred to several hundred years, forest disturbances including 

treatment or wildfire will only result in forest carbon loss if the forests are not allowed to recover 

in the time period between disturbances [Hurteau and Brooks, 2011; Campbell et al., 2012].  In 

other words, net carbon loss to the atmosphere occurs in instances where the disturbance interval 

is shorter than the time required for the forest to regrow to its pre-disturbance state, or where the 

forest experiences a permanent conversion to a different vegetation type. I find that in the 

scenario I investigate here, repeated treatments necessary to maintain the forest at a low risk of 

high severity wildfire do not allow the forest to recover to its pretreatment carbon stock (Figure 

3.4b).  However, because bioenergy production offsets some carbon emissions with every 

treatment, the net carbon balance of these treatments in the demonstration stand eventually does 
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reach zero around the end of the century (Figure 3.4d), and forest wide net carbon balance equals 

zero by 2140. 

 

 Treatment Effectiveness.  The effectiveness of forest treatments is critical in determining 

the ultimate carbon benefit of a forest treatment; a treatment that does not effectively reduce 

future emissions will incur a low, or no, carbon benefit, whereas a treatment that is highly 

effective in decreasing future wildfire emissions will incur a larger carbon benefit.  Ultimately 

this effect will saturate when so much biomass has been removed from the forest that further 

treatment will not further reduce fire potential (Figure 3.6b).  

The effects of forest treatments on wildfire behavior are difficult to characterize, but there 

are many studies indicating that treatments can effectively reduce fire behavior and post-fire 

mortality in dry Western forests.  A comparison of fire severity indices, fireline intensity, stand 

characteristics and post-fire recovery in treated and untreated stands in New Mexico and Arizona 

indicates that fire severity was lower in treated areas, and more aggressive treatments made 

stands less susceptible to crown fire [Cram et al., 2006].  Analyses with satellite data indicate 

that treatments reduced wildfire severity and also changed the progress of the Rodeo and 

Chediski fires in Arizona [Finney et al., 2005], and Pollet and Omi [2002] found that among four 

sites in the western US revisited following wildfire, crown fire severity was mitigated (fire 

severity and crown scorch was lower) in stands that had some type of fuel reduction treatment.  

Investigations of stand structure, composition and mortality following a wildfire in adjacent 

treated and untreated stands indicate that treated stands have lower post-wildfire mortality 

[Safford et al., 2012], and greater carbon storage in live tree carbon pools [North and Hurteau, 

2011; Carlson et al., 2012].  
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Given the current understanding of the effects of forest treatments on wildfire behavior, it 

is nearly impossible to definitively determine how treatments will affect wildfire carbon 

emissions.  However, projections of avoided pyrogenic emission due to forest treatments are 

critical in determining future forest carbon balance.  In the selected scenario I investigate here, 

the forest treatment results in 14.76 Mg ha-1 of avoided carbon emissions, while the carbon 

emissions offset through bioenergy electricity production is 10.3 Mg ha-1, indicating that a 

reduction from high intensity to low intensity fire in this region could potentially have a larger 

effect on stand carbon balance that the use of bioenergy along.  Projections of pyrogenic carbon 

emissions and the effects of forest treatment on fire behavior can have substantial implications 

for projecting future forest carbon balance and therefore this is an area of research that deserves 

careful analysis in the future.  

 

 Wildfire Probability.  In addition to forest growth and treatment effectiveness, the carbon 

benefit of a forest treatment is also dependent on the probability of a future wildfire in the treated 

area (Figure 3.6c).  If the area of the treatment does not experience a wildfire during the lifespan 

of the treatment effectiveness, then the emissions resulting from the treatment are not offset by a 

subsequent reduction in pyrogenic emissions.  Within San Juan National Forest there are 171,400 

hectares of ponderosa pine forest, and according to data from LANDFIRE, 56,600 hectares of 

ponderosa pine on SJNF burned between 1999 and 2010, indicating that an average of 0.3%, or 

5150 hectares, of ponderosa pine forest on SJNF burned each year during that time period.  

Given the relatively small probability of a specific treated stand experiencing a fire during the 

life span of the treatment, and the fact that 1024 ha must be treated annually to harvest enough 
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biomass to fuel the plant, the primary carbon benefit of the treatment will likely come from the 

bioenergy production and the associated carbon offset, not avoided pyrogenic emissions. 

 In the future, wildfire probability may be influenced by climate-induced changes in 

wildfire regimes.  Recent analyses indicate that annual wildfire area burned is correlated with 

climate [McKenzie et al., 2004; Littell et al., 2009]; large wildfire activity and wildfire season 

duration have increased since the mid-1980’s [Westerling et al., 2006] and in many western 

states the annual wildfire area burned may double by the end of the century [McKenzie et al., 

2004].  An increased probability of wildfire also increases the potential for a stand treatment to 

incur a carbon benefit through avoided pyrogenic emissions.  Under future conditions of more 

frequent wildfire in this region, the potential for stand treatments to provide a carbon benefit may 

increase, although this increase will likely remain small, as the probability of wildfire in one 

particular location is low. 

 In addition to wildfire size and frequency, potential future changes in wildfire intensity 

and severity may also have consequences for ecosystem recovery.  In a study surveying 10 sites 

following stand-replacing wildfire in ponderosa pine ecosystems, Savage and Mast [2005] found 

that only 50% of the sites experienced any regeneration, and the remaining sites appeared to have 

transitioned to grassland or shrub land with reduced potential to recover C.  In my analyses I find 

that in the absence of regeneration following wildfire, it takes longer for the forest to re-sequester 

carbon emitted during the wildfire.  Indeed, the difference in year 2100 total stand carbon stocks 

between a burned stand with reduced regeneration and a burned stand with normal regeneration 

is as large as the carbon offset obtained through bioenergy production (Table 3.3; Table 3.4).  

While more frequent wildfires in the future may mean that forest treatments have a greater 

potential to reduce total carbon emissions, reduced forest regeneration or recovery may lessen 
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the potential carbon benefit of forest treatment for bioenergy.  Further investigation of treatment 

effects on fire behavior and projected trends in forest regeneration and recovery following 

disturbance are critical in determining the ultimate carbon balance of treatments and bioenergy 

production. 

 

3.5 Conclusions 

 Forest treatments influence forest carbon balance by removing woody biomass from the 

forest, and also by affecting future wildfire behavior.  I find that the use of harvested biomass for 

electricity generation can reduce carbon emissions to the atmosphere by offsetting emissions 

from fossil fuel electricity generation, and potentially avoiding pyrogenic emissions by reducing 

the intensity of a future wildfire.  However, future variations in fire frequency and intensity, and 

in forest regeneration following disturbance, may also influence forest carbon stocks and in some 

cases these changes in forest carbon stocks are larger than the carbon sequestered through 

offsetting coal emissions. 
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CHAPTER IV 

 

CLIMATE AND LANDSCAPE PHYSIOGRAPHY DRIVE TRENDS OF GROWTH AND 

DECLINE IN SUBALPINE FORESTS 

 

 

4.1 Introduction 

 The response of forest ecosystems to rising CO2 concentrations and changing climate is 

one of the most important and complex feedbacks within the climate system.  Rising CO2 

concentrations in the atmosphere may increase productivity of forest ecosystems, and thereby 

increase the rate at which forests remove CO2 from the atmosphere via photosynthesis (Korner, 

1993).  Conversely, climate change, and specifically changing temperature and precipitation 

regimes may counteract or overwhelm the effects of CO2 fertilization (Reichstein, 2013).  The 

mechanisms that determine the nature of a future carbon cycle-climate feedback lie in the 

physiological response of trees to external forcings, and most global biogeochemical dynamic 

vegetation models include some representation of this feedback.  The results of model simulation 

studies universally highlight the importance forest-climate system feedbacks [Purves and 

Pacala, 2008], but also underscore the uncertainty regarding the direction and magnitude of 

future forest change [Friedlingstein et al., 2006; Dolman et al., 2010; Arora et al., 2013].  There 

are a number of factors that are responsible for the varied projections of forest responses, but 

some of the largest uncertainties come from the physiological links between increasing CO2 

concentrations, climate change, and the forest processes of regeneration, mortality and growth 
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that collectively determine long-term changes in forest biomass and composition [Moorcroft, 

2006].  While changes in regeneration and mortality frequently lag changes in climate, tree 

growth responds to climate conditions over relatively short timescales of one to several years 

such that current growth rates are generally indicative of current climate conditions.  Growth 

rates are also specific to a given tree meaning that growth can vary between individuals within 

close proximity to one another depending on their local environmental conditions [Bunn et al., 

2005].  The immediacy of growth response to climate, and the individual nature of tree growth 

according to local conditions, makes climate-induced growth rates an important, but uncertain, 

component of forest carbon dynamics. 

 The growth of an individual tree is controlled by climate, specifically a tree’s access to 

sufficient water and energy.  In regions where potential evapotranspiration exceeds precipitation, 

tree growth is usually limited by access to water.  Conversely, in ecosystems characterized by 

higher rates of precipitation, growth is primarily limited by short growing seasons [Waring and 

Running, 2007].  Despite these general patterns, local scale factors including species, stand 

dynamics, topography and soil type all influence how climate affects forest growth.  Within the 

same ecosystem, different species may respond differently to the same climate conditions due to 

species-level variation physiology [Villalba and Veblen, 1994; Adams and Kolb, 2005; 

Miyamoto et al., 2010].  Suppressed trees growing under the forest canopy typically have a 

muted response to climate variables relative to dominant trees [Martín-Benito et al., 2007].  

Finally, local stands of trees may respond differently to climate than neighboring stands 

depending on their local physiographic environment including aspect [Peterson and Peterson, 

1994], elevation [Littell et al., 2008; Lo et al., 2010] and soil properties (Barger & Woodhouse, 

in press).   
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 In order to understand the relationship between tree growth and climate in the face of 

large variations in local physiography, studies of tree growth generally focus on a collection of 

trees from the same forest stand (Frits and Shatz, 1975).  This approach offers a robust 

understanding of how localized groups of trees respond to climate, but provides little insight into 

how relationships between tree growth and climate may vary in a predictable manner between 

landscape positions.  The basic physiology of trees suggests that the variation in growth patterns 

between neighboring stands is likely a function of the local environment and how that 

environment mediates climate, but currently we lack a detailed understanding of how tree 

response to climate varies as a function of local physiographic factors.  Because growth at the 

forest-scale is an aggregate response of many individual stands of trees to both climate and local 

physiographic conditions, identifying how local physiography interacts with climate to drive 

growth is necessary in order to understand the response of forests to climate at the landscape-

scale. 

 The interacting effects of climate and local physiography are particularly important in 

determining growth within subalpine forests of North America.  These regions have experienced 

greater warming than lower elevation regions over the past several decades (Diaz and Eischeid, 

2007), and are generally characterized by highly complex topography that likely leads to variable 

tree growth patterns in response to climate.  Subalpine regions usually have cool and wet 

climates, and therefore tree growth in these regions is primarily related to climate variables 

associated to the length of the growing season and the depth of seasonal snowpack [Peterson and 

Peterson, 1994; Splechtna et al., 2000; Miyamoto et al., 2010].  However, some studies show 

that in locally drier and warmer landscape positions these species respond negatively to warm 

summer temperatures (Adams & Kolb, 2005, Villalba & Veblen, 1994; Peterson et al., 2002), 
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indicating local water limitation.  Continuing warming in these regions could mean that more 

subalpine forests are vulnerable to water limitation, but anticipating the future condition of 

forests requires understanding how forest response to climate varies as a function of landscape 

physiography. 

 The purpose of this work is to examine the effect of climate on subalpine forest growth 

across variable elevation, aspect and soil types.  My overarching hypothesis is that the response 

of subalpine forest growth to climate will vary across physiographic gradients, specifically those 

that affect local temperature and moisture conditions such as elevation, aspect and soil 

properties.  The three primary objectives of this work are: 1) identify the climate variables that 

most strongly influence growth in two subalpine forest species of southwest Colorado; 2) 

investigate how climatic drivers interact with local physiological variables to influence forest 

growth; and 3) explore long-term growth trends in response to warming across physiographic 

gradients.  My findings have important implications for anticipating the effects of future climate 

on subalpine forest species in a region already experiencing substantial climatic and ecological 

change.  

 

4.2 Materials and Methods 

 4.2.1 Study Area.  The study was conducted in San Juan National Forest located in 

southwest Colorado (~38°N, ~108°W; Figure 4.1).   
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Figure 4.1 a) Distribution of Spruce-fir type subalpine forest through North America 
and location of Colorado; b) Location of San Juan National Forest in Colorado; c) 
Location of study plots within San Juan Nation Forest.  

 

The climate of this region is characterized by low temperatures with high snowfall between 

November and April, and monsoonal rainfall from July through October [Blair, 1996].  This 

region receives approximately 98 cm of precipitation annually; average maximum temperatures 

(~19.5°C) occur in late summer, and minimum temperatures (-13.9°C) occur mid-winter 

(http://www.wcc.nrcs.usda.gov/snow/).  Treeline in this region is approximately 3600 meters.  

The geology of this region consists of interbedded sandstone, limestone and shale of 

Pennsylvanian and Mississippian age, with some Tertiary volcanics [Yager and Bove, 2002].  

Soils are predominantly cobbly sand clay loam (NRCS).   

 

 4.2.2 Sampling Design and Tree Growth Data.  Tree ring data was collected from 23 

sites within a subalpine spruce-fir forest (Table 4.1).   
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Table 4.1 Site characteristics of tree ring sampling sites derived from PRISM data.  
Abbreviations: AWC- available water capacity; Precip – annual mean precipitation; T 
max – annual mean monthly maximum temperature; T min – annual mean monthly 
minimum temperature, N – north, S – south, E – east, W – west, ES – Engelmann 
Spruce,       SF – Subalpine Fir.  

Site Latitude Longitude Elevation 
(m) Aspect AWC 

(cm) 
Precip 
(cm) 

T max 
(°C) 

T min 
(°C) 

Species 
Sampled 

1 37.72 -107.71 3366 N 355.0 78.9 9.3 -6.0 ES 
2 37.81 -107.70 3011 N 117.0 76.7 8.9 -6.9 ES/SF 
3 37.81 -107.70 3019 E 81.8 76.7 8.9 -6.9 ES/SF 
4 37.83 -107.67 2940 N 273.5 57.6 9.2 -6.9 ES 
5 37.84 -107.68 2997 W 244.7 57.6 9.2 -6.9 ES/SF 
6 37.88 -107.68 3365 N 237.3 66.7 8.3 -6.9 ES/SF 
7 37.65 -107.85 3114 E 217.6 69.5 10.5 -5.6 ES/SF 
8 37.39 -108.06 2979 N 273.1 61.2 9.8 -5.5 ES/SF 
9 37.39 -108.07 2793 N 274.3 61.2 9.8 -5.5 ES 

10 37.37 -108.08 2710 N 242.9 61.2 9.8 -5.5 ES 
11 37.43 -108.04 3041 W 178.9 69.1 8.8 -5.4 ES 
12 37.81 -107.74 3001 E 405.0 66.2 8.1 -6.8 ES 
13 37.81 -107.74 2998 W 136.7 74.4 8.7 -6.6 ES/SF 
14 37.85 -107.72 3254 W 215.3 63.6 8.7 -6.7 ES/SF 
15 37.81 -107.78 3095 S 145.0 70.2 7.6 -7.1 ES/SF 
16 37.70 -107.78 3235 E 155.2 78.8 9.7 -5.6 ES/SF 
17 37.71 -107.77 3320 N 158.7 78.8 9.8 -5.6 ES/SF 
18 37.75 -107.71 3379 S 288.0 72.8 9.1 -6.6 ES/SF 
19 37.75 -107.70 3388 E 75.6 72.8 9.1 -6.6 ES/SF 
20 37.71 -107.78 3380 N 300.9 78.8 9.8 -5.6 ES/SF 
21 37.77 -107.98 2874 N 147.1 57.8 9.3 -7.0 ES/SF 
22 37.77 -107.98 2924 N 235.7 57.8 9.3 -7.0 ES 
23 37.80 -107.93 3125 S 280.3 62.3 8.3 -7.8 ES 

 

Sites were chosen to represent a variety of soil types on north, east, south and west facing aspects 

across an elevational gradient from 2700m to 3400m.  At each site I selected approximately 20 

individuals of both subalpine fir (Abies lasiocarpa (hook.) Nutt.) and Engelmann spruce (Picea 

engelmannii Parry ex Engelm.).  A 50 meter transect was established perpendicular to the slope, 

and trees were selected as those closest to the transect that were greater than 20cm diameter at 
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breast height (DBH) with no visible damage to crowns or stems.  At sites where subalpine fir 

was not present, only Engelmann spruce were sampled.  

 I collected a total of 450 cores from Engelmann spruce and 210 cores from subalpine fir.  

An increment borer was used to extract one core from each tree at a height of 1.3 meters. The 

cores were mounted and then sanded with progressively finer grades of sand paper in order to 

produce a flat surface on which tree rings were easily visible.  Cores were measured using the 

Velmex ring-measurement system (Velmex Inc., Bloomfield, NY), and cross-dated visually and 

statistically. Cross-dating accuracy was checked using the program COFECHA [Holmes, 1983; 

Grissino-Mayer, 2001].  

 

 4.2.3 Physiographic Variables.  At each site I also obtained measurements of site 

elevation, aspect, and soil available water capacity (AWC).  Elevation and aspect were measured 

at three points along the 50 meter transect (at 0m, 25m and 50m).  AWC was calculated from soil 

texture information and soil depth [Saxton and Rawls, 2006].  To quantify soil texture, I 

collected 6 soil samples (10 cm in depth) at each site.  Soils were then sieved through a 2 mm 

sieve; the >2mm fraction was weighed as gravel and the <2mm fraction was used to estimate 

percent sand, silt and clay using the hydrometer method [Gee and Or, 2002].  Soil depth at each 

site was determined at 6 locations along the transect by inserting a 2 meter soil probe into the soil 

until resistance.  Where the probe was fully inserted without meeting bedrock, the soil depth was 

recorded as greater than 2 meters.  I used the estimates of soil depth and percentage sand, silt, 

clay and gravel from each site to calculate soil available water capacity by subtracting the 

wilding point (θ1500) from field capacity (θ33), which I calculated following the equations in Table 

2 of Saxton & Rawls (2006), and multiplying by the soils depth. 
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 4.2.4 Climate Data and Variable Selection.  Long records of measurement of mountain 

climate are not available in this study area, and therefore I chose to evaluate monthly state 

climate-division data from the NOAA National Climatic Data Center (Divisional data hereafter), 

and gridded climate data from the PRISM climate group (PRISM data hereafter). Divisional data 

consist of regional monthly temperature and precipitation values which are computed from area-

weighted observational data [Karl and Koss, 1984].  PRISM data is also based on observational 

data, which is used as input for models that use complex algorithms to anticipate how 

precipitation and temperature values will vary over regions of complex terrain [PRISM, 2004].  

For my purposes, Divisional data have the disadvantage of a rather course spatial scale (the area 

of the climate division containing this study site is 99763 km2), whereas the PRISM data, which 

are available at a much higher spatial resolution, are based on algorithms that do not always 

perform well in this topographically complex region [Gutmann et al., 2012].  I used both 

Divisional data and PRISM data to see which dataset produced the strongest correlations 

between climate and growth, and as Divisional data consistently produced stronger correlations 

between climate and growth, Divisional data were used in all subsequent analyses.  Divisional 

data were also used to investigate trends in temperature through this time for the region of this 

study (Figure 4.2). 
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Figure 4.2 a) Average annual temperature and b) summer average monthly minimum 
temperature from NOAA Divisional Data for western Colorado during the period 
1895 through 2012.  The dashed line shows the temperature trend from 1895-2012 
and the solid line shows the temperature trend from 1975-2012.  The slopes and 
correlations for 1985-2012 are 0.014 and 0.61 (p<0.00) respectively for a) and 0.016 
and 0.71 (p<0.00) respectively for b).  The slopes and correlations for 1975-2012 are 
0.033 and 0.55 (p<0.00) respectively for a) and 0.029 and 0.44 (p=0.004) for b).  

 

 Correlations between climate and growth were calculated from Divisional climate data 

and detrended ring width index values for the time period 1895 through 2012.  Detrended ring 

width index values were determined by fitting a cubic smoothing spline with a 50% frequency 

response cutoff of 20 years, followed by an autoregressive model to remove autocorrelation 

present within each series (dplR package, Bunn, 2008, R Core Development Team). This method 

produces a unitless ring-width index (RWI) for each tree, consisting of one value for each year of 

growth.  RWI values for a given tree have a mean of one; values less than one indicate a year of 
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relatively small growth, and values greater than 1 indicate a year of relatively large growth.  I 

chose to use correlations between RWI and climatic variables to identify the most important 

climate variables affecting growth because this method was developed to identify climate 

influence on growth, independent of tree age and stand dynamics.  I used Pearson product-

moment correlations to compare growth in a given year within a given tree to the seasonal 

climate time series from the Divisional data from 1895 to 2012.  I calculated the correlation 

between growth and aggregated seasonal variables because seasonal variables can be better than 

monthly climate data at approximating the actual ecophysiological mechanisms leading to annual 

growth-climate correlations [Fritts, 1976; Watson and Luckman, 2002; Littell and Peterson, 

2011], and secondly, seasonal aggregations are less likely to produce spurious significant 

correlations.  Seasonal aggregations for this study were created as follows: Spring was defined as 

April through June of the year of ring formation, Summer was defined as May through 

September of the year of ring formation, and winter was defined as October through February 

starting in the year preceding ring formation. All variables (monthly maximum temperature, 

monthly minimum temperature, monthly precipitation and monthly growing degree days) were 

averaged over these time periods to produce seasonal aggregations with the exception of 

precipitation, which was summed.  Growing degree days (GDD) represent the number of days 

each month that temperatures were above freezing.  The most important climatic variables were 

identified as those that yielded the highest mean correlation between climate and growth.  Mean 

correlations were calculated from all trees, rather than chronologies, according to the suggestion 

of Galván et al., (2014) who show that an individual tree-scale approach to quantifying climate-

growth relationships is necessary to investigate the climate sensitivity of trees. 
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 4.2.5 Modeling the Effects of Climate and Physiography on Tree Growth.  I 

examined the relationship between tree growth and climate, including the interaction of climate 

and site-level physiographic variables, by the means of linear-mixed effects models.  For this 

modeling approach, detrended RWI data are an inappropriate choice as a tree growth metric 

because, due to the detrending, the mean growth of each tree is the same making it impossible to 

evaluate the effect of site level physiographic variables (elevation, aspect, soil type) on growth.  

Instead, I use a measure of standardized basal area increment (BAI).  BAI is the cross-sectional 

area of new growth that a tree produces each year according to the following formula: 

𝐵𝐴𝐼 =   𝜋(𝑅!! − 𝑅!!!! ) 

 where R is the radius of the tree and n is the year of ring formation.  Because BAI will 

increase through a tree’s life, particularly in younger trees, I chose to standardize BAI by the 

basal area (BA) of the tree in the year of ring formation, (BAI/BA), as used in McDowell et al. 

(2009).  This standardized BAI, BAI/BA, was used as the response variable in the generalized 

linear-mixed models with seasonal climatic variables and site level physiographic variables as 

predictor variables. The models were constructed as follows: 

𝑦! = 𝛼 + 𝑋!𝛽 +   𝑏! +   𝜀! 

 where 𝑦! represents the growth index value for each year from tree 𝑖, 𝛼 is the intercept, 𝑋! 

is the fixed effects (climatic variables) and 𝛽 is the vector of parameters associated to the fixed 

effects, 𝑏! is the matrix including the vectors of random effects, and 𝜀! is the within group error 

vector.  I used a random slopes model to estimate the effect of the predictor variables on tree 

growth.  The intercept for tree and site were included as random effects (lmer function in th R 

package lme4; Bates D., Bolker B., and Walker S., 2014, R Core Development Team). 
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 I adjusted 24 candidate models using different combinations of climatic and site level 

physiographic variables and their interactions, with the 25th model as a null model that did not 

include any climatic or physiographic variables.  The specific climatic variables used in the 

models were: summer average monthly maximum temperature, summer average monthly 

minimum temperature, summer total monthly precipitation, summer average monthly GDD.  The 

specific physiographic variables included in the models were elevation, aspect, and AWC.  The 

seasonal variables were chosen according to the results of the climate-growth correlation 

analyses.  The candidate models included all possible combinations of one climate variable and 

one physiographic variable, with and without interactions.  The response variable, BAI/BA was 

transformed using a logarithm transformation to produce a normal distribution prior to analyses.  

All climate and physiographic variables were centered and scaled such that the mean value is 

equal to zero and the standard deviation is equal to 1. 

 For each model I determined the Akaike Information Criteria (AIC) and Bayes 

Information Criteria (BIC; MuMIn package, Bartón, K., 2014, R Core Development Team).  

AIC and BIC are model evaluation metrics that reward parsimonious models and penalize 

complex models.  I based the model selection on BIC because the sample size I use here greatly 

exceeds the parameter space of the model [Aho et al., 2014].  In order to determine the goodness-

of-fit I use pseudo r2 calculated according to the recommendation of Nakagawa and Schielzeth 

(2012), which provides a ‘variance explained’ term for generalized linear mixed effects models.  

The climatic and physiographic variables and interactions present in the best fitting model were 

taken as the variables most important for determining growth. 
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 4.2.6 Analysis of Long Term Growth Trends.  To assess long-term trends in tree 

growth, I examined the trend in BAI over time.  I used the time period 1974-2012 because this is 

the time for which there is a complete record for each tree.  I chose to use the trend of BAI over 

time for this analysis because the other methods of quantifying tree growth through time, the 

detrended RWI and standardized BAI/BA, remove trends of growth with time through their 

standardization procedures.  BAI preserves the growth trend of a tree through time, and provides 

a conservative way to detect growth declines [Duchesne et al., 2003].  In a mature tree BAI will 

typically increase through time or stabilize [Phipps and Whiton, 1988; Duchesne et al., 2002; 

Biondi and Qeadan, 2008], but BAI will not decline over time until the tree begins to senesce 

[Pedersen, 1998; Duchesne et al., 2003; Elvir et al., 2003].  Therefore, trends of decreasing BAI 

are indicative of tree decline. 

 To evaluate trends of BAI over time, I calculated annual BAI for each tree, and then used 

Pearson product-moment correlations to determine the correlation of BAI and year, which is 

equal to the trend of growth over time.  The result is one value for each tree indicating the 

magnitude and sign of its growth trend over time.  A decrease in BAI at the tree level could 

occur as a result of competition for space and resources, and therefore to account for the 

variation in BAI trend among trees, and to determine if specific physiographic variables were 

important in determining the sign and magnitude of the growth trends from 1974 to the present, I 

used these trends as the response variable in a generalized linear-mixed effects modeling 

framework.  Nine models were constructed including a null model and the best model was 

selected using BIC.  The physiographic variables included in the mixed models were determined 

as those variables found to be most important in predicting growth in the analyses above: aspect, 

elevation, and average temperature at each site from 1974 to the present from the Divisional 
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climate dataset.  Site temperature was included because temperature was the most important 

climate variable identified in the climate-growth relationships.  The diameter of each tree was 

also included as a fixed effect to account for variable sized trees. 

 

4.3 Results 

 Within this study site of San Juan National Forest, I found that Engelmann spruce were 

on average slightly older than subalpine fir.  The mean series length was 126 (± 58 [standard 

deviation]) years for Engelmann spruce and 103 (± 31 [standard deviation]) for subalpine fir.  

These analyses included approximately 78,330 ring widths in all.  The longest series was that of 

an Engelmann spruce, at 433 years, with the longest subalpine fir series at 207 years. 

 

 4.3.1 Climate Growth Relations.  Subalpine fir growth was the lowest in years with 

warm temperatures, and was slightly greater in years with more precipitation. Subalpine fir grew 

less in years with more monthly GDDs in summer months (r = -0.24, p<0.05), and warmer 

summer average monthly maximum and minimum temperatures (r = -0.21, p<0.05 and r=-0.23, 

p<0.05 respectively).  Subalpine fir growth was less responsive to spring and winter 

temperatures than summer temperatures (Figure 4.3).   
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Figure 4.3 Boxplot of Pearson product moment correlation between ring width index 
and seasonal climate variables calculated from National Ocean and Atmospheric 
Administration Divisional climate data for a) subalpine fir and b) Engelmann spruce.   
Spring was defined as April-June of the year of ring formation, Summer was defined 
as May-September of the year of ring formation, and winter was defined as October-
February starting in the year preceding ring formation.  Lines represent the median, 
bars represent the interquartile range, whiskers represent the range and open circles 
are outliers.  The gray horizontal lines show the 0.05 significance thresholds given 
the sample size. 

 
Abbreviations: Precip – seasonal total precipitation, GDD – seasonal average 
monthly growing degree days, Tmax – seasonal average monthly maximum 
temperature, Tmin – seasonal average monthly minimum temperature.   

 
 

In terms of precipitation, subalpine fir had slightly greater growth in years with more spring and 

summer precipitation, but the correlation between growth and precipitation was weak (Figure 

4.3).  Engelmann spruce generally grew more in warmer years, but overall Engelmann spruce 

growth was largely unresponsive to climatic variables (Figure 4.3). 
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 4.3.2 Interactions of Climate and Physiography.  Climate and physiography were both 

important drivers of growth in subalpine fir and had interacting effects on growth.  Summer 

average monthly minimum temperature, elevation and the interaction between temperature and 

elevation were all included in the best performing mixed models of subalpine fir growth, 

determined by BIC (Table 4.2).   

Table 4.2 Statistical parameters (± 1 standard error) of the top three performing linear 
mixed effects models evaluated by BIC for growth of Subalpine Fir (top) and 
Engelmann Spruce (bottom).  Growth is equal to basal area increment standardized 
by tree size.  All parameters were centered and scaled such that the mean is equal to 
zero, and the standard deviation equal to 1.   

 
Subalpine Fir: 
Model Tmin Tmax Precip GDD Elevation Aspect1 AWC Interaction ∆ BIC ∆ AIC R2 

m2 -0.39 
(±0.01) -- -- -- -0.06 

(±0.08) -- -- Elev*Tmin; 
0.07 (±0.01) 0 0 0.55 

m10 -0.39 
(±0.01) -- -- -- -- x -- Aspect*Tmin 

 149 118 0.54 

m18 -0.39 
(±0.01) -- -- -- -- -- -0.158 

(±0.07) 
AWC*Tmin; 
0.02 (±0.01) 228 229 0.54 

 
Engelmann Spruce: 
Model Tmin Tmax Precip GDD Elevation Aspect1 AWC Interaction ∆ BIC ∆ AIC R2 

m10 -0.44 
(±0.01) -- -- -- -- x -- Aspect*Tmin 0 0 0.23 

m2 -0.39 
(±0.06) -- -- -- 0.05 

(±0.06) -- -- Elev*Tmin; 
-0.03 (±0.01) 10 63 0.23 

m6 -0.39 
(±0.01) -- -- -- 0.05 

(±0.06) -- -- -- 19 80 0.23 
1 Statistical parameters for ‘Aspect’ are denoted as “x” because aspect is a categorical 
variable and therefore has more than one statistical parameter for each model. 
Abbreviations: Tmin - growing season average monthly minimum temperature,   
Tmax - growing season average monthly maximum temperature, Precip-growing 
season total precipitation, GDD - Growing Degree Days, AWC - Available Water 
Capacity, AIC - Akaike’s Information Criteria, BIC - Bayes Information Criteria. 
 

 
The interaction between temperature and elevation indicates that in warm years, growth was 

greater at high elevations (above ~ 3100m) and lower at low elevations, and in cool years growth 

was lower at high elevations and greater at low elevations (Figure 4.4).   
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Figure 4.4 Interaction effect of summer average monthly minimum temperature by 
elevation on tree growth (expressed as basal area increment standardized by basal 
area; BAI/BA) for Subalpine Fir.  Growth versus elevation is shown for five 
progressive temperature intervals: a) lowest 0-19%, b) 20-39%, c) 40-59%, d) 60-
79% and e) 80-100%.  This interaction was identified in the top-performing model 
(evaluated by BIC) generated in a generalized linear-mixed modeling framework. 
Dashed lines denote the 95% confidence intervals. 

 

These results are consistent with the results from the correlation analysis above that indicate 

summer temperature the most important climatic variable in determining growth of subalpine fir.  

Elevation was the most influential physiographic variable and was more important than aspect or 

soil AWC in determining growth of subalpine fir. 

 Climate and physiography also had interacting effects on Engelmann spruce growth 

(Table 4.2), but mixed models of Engelmann spruce growth explained only a small proportion of 

the inter-annual variation in growth.  Average summer minimum temperature, aspect and the 

interaction between aspect and temperature were all included in the best performing mixed 

models of Engelmann spruce growth (Table 4.2; Figure 4.4). 

 

 4.3.3 Trends in Growth.  Subalpine fir growth is declining through time.  I used the 

correlation between BAI and year for the time period 1975 through 2012 to determine the growth 

trend, and I modeled the trend for each tree using site and tree level variables to determine which 

trees are declining the most.  Tree diameter and aspect were the two most important variables in 
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determining the growth trend of subalpine fir (pseudo r2 = 0.36, Table 4.3).  Trees growing on 

east facing aspects have the largest declines (negative trends) in growth (Figure 4.5) followed by 

those trees growing on south and west facing aspects, respectively.  Only subalpine fir growing 

on north facing aspects had positive trends of growth through time.  Engelmann spruce growth is 

increasing through time on all landscape positions (Table 4.3). 

Figure 4.5 Top: Mean basal area increment (BAI) through time for trees located on 
different aspects, north (N), south (S), east (E), west (W), for a) Subalpine Fir and b) 
Engelmann Spruce. Bottom: Box plot of BAI trend (correlation of BAI and year) 
from 1975-2012 by aspect for c) subalpine fir and d) Engelmann spruce; bars 
represent median trend, boxes represent 25-75 quartiles, whiskers represent range and 
open circles are outliers. 
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Table 4.3 Statistical parameters of the top five performing linear mixed effects 
models for basal area increment trend for Subalpine Fir (top) and Engelmann Spruce 
(bottom).  Site temperature refers to the average monthly minimum temperature for 
the growing season from 1975 through 2012. 

 
Engelmann spruce 

Model Diameter Elevation Aspect1 Site Temperature2 ∆ BIC ∆ AIC R2 
baim2 -0.128 -- x -- 0 0 0.36 
baim5 -0.121 -- x -0.005 4 1 0.36 
baim0 -0.120 -- -- -- 5 15 0.37 

 
 
Subalpine fir 

Model Diameter Elevation Aspect1 Site Temperature2 ∆ BIC ∆ AIC R2 
baim0 -0.019 -- -- -- 0 0 0.08 
baim1 -0.019 -0.107 -- -- 5 2 0.08 
baim2 0.039 -- x -- 17 5 0.08 

 
1 Statistical parameters for ‘Aspect’ are denoted as “x” because aspect is a categorical 
variable and therefore has more than one statistical parameter for each model. 

2Average growing season monthly minimum temperature from 1975 – 2012 
 

4.4 Discussion 

 Interacting effects of regional climate and local physiography dictate the response of 

forests to climate change.  This interaction is particularly important in subalpine forests of the 

western US that are characterized by complex topography and have experienced greater warming 

than lower elevation regions over the past several decades [Diaz and Eischeid, 2007].  My results 

indicate that increasing temperatures may be reducing rates of forest growth in subalpine regions 

in the Southwest.  I find that warm summer minimum temperatures reduce growth in subalpine 

fir, and this effect is greatest in the lower elevation portion of its range.  This species has also 

experienced growth declines over the past 40 years and declines are most pronounced on specific 

landscape positions.  Climate projections indicate that the subalpine regions explored in this 

study will likely experience continued warming in the future, with temperature increases 
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potentially as great as 4ºC by 2070 [Rangwala et al., 2012].  My results indicate that subalpine 

fir is already responding to changes in climate, and that this species is particularly vulnerable to 

temperature trends that are expected to intensify in the future.  Engelmann spruce growth, in 

contrast, is not experiencing declines under current climate conditions. 

 

 4.4.1 Climate Growth Relations.  Within the subalpine regions of San Juan National 

Forest, growth of subalpine fir is reduced in years with warm summer temperatures.  

Specifically, subalpine fir growth is lowest in years with high summer minimum temperatures.  

Subalpine fir growth is affected more by summer minimum temperatures than by summer 

maximum temperatures, potentially because while high maximum temperatures may be the result 

of one or two warm days, high minimum temperatures indicate that temperatures never become 

cool. Subalpine fir also shows some climate sensitivity to precipitation.  Although the 

correlations between growth and precipitation are much weaker, the correlations between 

subalpine fir growth and precipitation are consistent with a signal of drought stress as they show 

a weak positive correlation with precipitation in the same months that tree growth is negatively 

correlated to warm temperatures.  Previous research in other parts of North America indicates 

that in locally dry and warm locations, low soil water availability reduced growth of subalpine fir 

in the summer months [Splechtna et al., 2000; Peterson et al., 2002].  This observation is 

consistent with the results observed here where subalpine fir growth is negatively associated with 

summer temperature, and weakly positively associated with summer precipitation.  

 Engelmann spruce of this region have a low sensitivity to climate, but do grow slightly 

more in years with warmer temperatures (Figure 4.3).  My observations of the climate-growth 

relationships of Engelmann spruce are consistent with those from other regions of North 
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America such as the Northern Cascade and Rocky Mountains where Engelmann spruce grew 

more in response to warm summer temperatures [Peterson and Peterson, 1994; Villalba and 

Veblen, 1994].  Engelmann spruce may respond positively to warm summer temperatures 

because warm summers are indicative of a below-average snowpack which means earlier snow 

melt and longer growing seasons [Peterson and Peterson, 1994]. Additionally, if warm summer 

temperatures are associated with less cloud cover, then temperature may also act as a surrogate 

measure of light intensity and thus increase stomatal conductance [Kaufmann, 1982].  In either 

case, the warm summer temperatures have a slightly positive effect on growth of Engelmann 

spruce. 

 The greater climate sensitivity of subalpine fir relative to Engelmann spruce may be due 

in part to physiological differences.  Subalpine fir has greater transpiration flux density and 

greater leaf conductance than Engelmann spruce [Knapp and Smith, 1981], and subalpine fir 

exhibit generally higher isotopic discrimination against 13CO2 relative to 12CO2 across their 

elevational range, suggesting that subalpine fir has lower water-use efficiency than Engelmann 

spruce [Marshall and Zhang, 1994].  These physiological differences may account for some of 

the divergence in how these two species respond to regional climate.  

 The negative effect of high summer temperatures on subalpine fir growth is a particularly 

noteworthy result in light of the projected temperature increases for the southwestern US in 

upcoming decades.  Downscaled regional climate models predict an increase of 2ºC of both 

minimum and maximum temperatures in all seasons for this region [Rangwala et al., 2012].  For 

the elevation band stretching from 2450m to 3350m, the increase in summer maximum 

temperatures is expected to be even greater, at 3 to 4ºC.  In other words, the warm temperatures 

that reduce subalpine fir growth are expected to increase the most in the exact season, and the 
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exact location, where they will have the greatest negative effect on subalpine fir.  This 

temperature increase, and the stress associated with high temperatures, may leave subalpine fir 

more vulnerable to other short-term stresses [Pedersen, 1998]. 

 

 4.4.2 Interactions of Climate and Physiography.  Subalpine fir growth is governed not 

only by climate, but also by physiography, and the interaction between the two.  Specifically, 

summer minimum temperature, elevation and their interaction were the most important variables 

determining subalpine fir growth (Table 4.2).  The nature of this interaction indicates that in the 

coolest years, subalpine fir growth was greater in lower elevations, and lower in higher 

elevations.  However, this relationship reversed during warm years.  In warmer conditions, 

subalpine fir at high elevations grew the most while growth at low elevations was reduced 

(Figure 4.4). Similar variations in the climate-growth relationship of subalpine fir across an 

elevational gradient have been observed in other regions including the Pacific Northwest and 

British Columbia.  In Southern British Columbia, subalpine fir growth was controlled by 

interacting effects of elevation and temperature such that low summer temperatures limited wood 

formation in high elevation trees, but warm spring temperatures limited growth in low elevation 

trees [Splechtna et al., 2000].  This switch in limiting climatic factors between lower and higher 

elevations may represent a transition from a large snowpack limiting growth by shortening the 

growing season in the case of high elevation trees in cold years, to growth being limited by 

potential moisture stress in the low elevation sites in warm years [Splechtna et al., 2000].  In 

addition to subalpine fir, these results also indicate that Engelmann spruce growth is also 

governed by interactions between climate and physiography, but the interactions are not nearly 

as strong (Table 4.2).  
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 4.4.3 Trends in Growth.  Subalpine fir growth is declining through time among trees in 

specific physiographic positions.  Subalpine fir present on east facing aspects are experiencing 

the most precipitous declines in BAI, followed by trees on south and west facing aspects (Figure 

4.5).  Only trees present on north facing aspects do not show a pattern of mean declines in BAI 

through time from 1975 to the present.  I recognize this pattern of BAI through time as a decline 

because in a mature healthy tree, BAI should either increase over time or remain static [Biondi 

and Qeadan, 2008].  Sustained decreases in BAI in a mature tree are associated with tree decline 

[Phipps and Whiton, 1988; Duchesne et al., 2002] and eventual senescence [LeBlanc, 1990a, 

1990b; Pedersen, 1998].  Causes of BAI decline in a mature tree can be related to an external 

stressor such as atmospheric pollutants [LeBlanc, 1990b; Duchesne et al., 2002] drought and 

insect outbreaks [Pedersen, 1998; Hogg et al., 2002] or unfavorable changes in climate such as 

drought stress related to climate warming [Jump et al., 2006]. Drought stress of high elevation 

trees in response to warmer temperatures has resulted in growth declines of tree species in other 

alpine environments [Jump et al., 2006; Linares and Camarero, 2011].  In the case of subalpine 

fir present within San Juan National Forest, the trends in decreasing BAI may be a response to 

warm summer temperatures. Both mean annual temperature and summer average monthly 

minimum temperature, the variable that has the strongest negative effect on growth, have been 

increasing during the time period where I see evidence of decline (Figure 4.2), and therefore the 

decline may be due to increasing temperatures and associated drought stress in subalpine regions. 

In contrast to subalpine fir, Engelmann spruce in this region show trends of increasing BAI 

through time for most trees, regardless of elevation, aspect or site temperature (Figure 4.5, Table 

4.3). 
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4.5 Conclusions 

 Forests of the Rocky Mountains are already responding to climate change through 

increasing rates of background tree mortality [van Mantgem et al., 2009], greater instances of 

insect outbreaks occurring at unusually high elevations and latitudes [Hicke et al., 2006; Raffa et 

al., 2008], and wide-spread mortality due to drought [Breshears et al., 2005].  In this study I 

show that forest growth rates are also changing, potentially as a result of climate change. 

Subalpine fir, which exists within 17,000 km2 of subalpine forests of the southern and central 

Rocky Mountains, show trends of decreasing growth over the past several decades, and declines 

are most evident on specific landscape positions.  Subalpine fir trees with depressed growth rates 

prior to drought are more likely to be killed by short duration severe drought conditions [Bigler 

et al., 2007], and therefore subalpine fir within southwest Colorado may be particularly 

vulnerable to future drought conditions.  Furthermore, as declines are more evident in specific 

landscape positions, the vulnerability of these trees may also be dependent on local 

physiography.  These declines could have substantial effects on subalpine forests.  Prolonged 

drought stress can leave forests more vulnerable to disturbance such as beetle outbreaks 

[Breshears et al., 2005; Raffa et al., 2008].  Selective mortality from drought or insect outbreaks 

may result in changes in forest species composition, and in more extreme cases, widespread 

mortality from severe disturbance could ultimately result in shifts of vegetation boundaries 

[Allen and Breshears, 1998].  Such large-scale changes in forest condition at regional and global 

scales could ultimately impact how forests contribute to the interaction between the terrestrial 

biosphere and the atmosphere to control global climate. 
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CHAPTER V 

 

CONCLUSIONS 

 Forests globally are in a rapid period of change in response to changing climate and 

mounting pressures from human populations.  In many regions forests are experiencing declines 

due largely to trends of increasing temperatures [Allen et al., 2010; Williams et al., 2010; Choat 

et al., 2012].  Particularly dramatic changes in forest condition have been observed in the semi-

arid regions of the western US where forests are responding to large wildfires, increased 

instances of insect outbreaks and drought, and intense management in regions where urban 

centers abut forested land [Breshears et al., 2005; Westerling et al., 2006; Theobald and Romme, 

2007; Raffa et al., 2008].  These trends of forest decline and mortality in response to climate 

change create the potential for a feedback within the global climate system, and therefore it is 

important quantify changes in forest carbon in response to these trends.   

 Climate-driven changes in forest carbon dynamics vary between individual forests, 

making carbon exchange at the forest-scale an important component of terrestrial carbon fluxes.  

Further, changes in forest carbon balance occurring over decadal timescales are particularly 

important because these changes affect forest carbon storage over the timeframe relevant for 

carbon and climate policy.  Therefore, forest changes taking place on the scale of an individual 

forest over a period of decades - specifically the processes of forest disturbance, recovery, and 

growth - are highly important for determining carbon exchange between forests and the 

atmosphere.  In this dissertation I further efforts to quantify these processes within the region of 

San Juan National Forest in southwest Colorado, USA by developing a method to improve 
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estimates of forest carbon stocks in regions of forest disturbance (Chapter 2), projecting climate 

and management impacts on forest recovery following disturbance (Chapter 3), and investigating 

climate-induced patterns of forest growth and decline (Chapter 4).   

 Spatial representations of forest carbon storage, or carbon maps, are frequently used to 

inventory carbon stocks from the forest scale to the continental scale, and can inform estimates 

of changes in forest carbon stocks from disturbance events. Despite their importance, maps of 

forest carbon stocks are frequently only available at limited spatial resolution and include large 

uncertainties.  In Chapter 2 of this dissertation I presented a method of mapping forest carbon 

stocks present in forest biomass using a combination of physical variables and texture analysis 

performed on remotely sensed images, and I used this method to create a map of carbon stocks in 

forest biomass within San Juan National Forest.  I found that spatial forest carbon models created 

from image texture metrics were more strongly correlated with ground-based measurements of 

forest carbon, and therefore had smaller errors, than models created using only spectral 

information from remotely sensed imagery.  Furthermore, the texture-based model was sensitive 

to changes in forest carbon following disturbance such as wildfire or logging, and was a better 

predictor of forest carbon stocks following disturbance than maps created from spectral 

information alone.  

 In the future, the texture-based forest carbon model I presented in this dissertation could 

be used for creating and updating maps of carbon storage in forest biomass throughout the 

forested regions of the United States.  The LandsatTM imagery I used to create this model is 

available at sub-annual time scales and therefore current LandsatTM images can be obtained to 

update maps of forest carbon storage following a disturbance.  In addition, the methods I used in 

the creation of this carbon model are based on entirely publically available data: the image 
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texture analysis was performed on publically available LandsatTM imagery and the forest 

inventory information obtained to train and validate the model was from the national Forest 

Inventory and Analysis program.  This texture-based method of mapping carbon storage in forest 

biomass could be particularly important in the future if climate trends continue to influence 

forest disturbance regimes, and ultimately lead to forest or regional scale changes in forest 

carbon stocks.  

 Forest recovery following disturbance and management is another important factor in 

determining forest-scale carbon stocks in the western US over the coming decades.  In many 

regions of the western US, forest fuel-reduction treatments are used to reduce the risk of high 

severity wildfire [Agee and Skinner, 2005].  These treatments can provide a carbon mitigation 

benefit if they reduce pyrogenic emissions from a future wildfire, but that benefit is contingent 

on forest recovery to re-sequester the carbon removed during treatment [Hurteau and North, 

2010].  In Chapter 3 of my dissertation I investigated the carbon balance of a forest fuel 

reduction treatment considering variable scenarios of forest recovery, and also varying scenarios 

of the fate of forest biomass removed during treatment.  My results indicate that carbon 

emissions to the atmosphere are lowest when the biomass removed from the forest is used for 

bioenergy electricity generation, because of the carbon offset from avoided fossil fuel electricity 

production emissions.  Furthermore, my results indicated that the carbon benefit achieved 

through bioenergy electricity production will increase through time as offset emissions 

accumulate.  In contrast, projections of climate-induced changes in forest disturbance regimes 

and regeneration had the potential to decrease future forest carbon storage, and the effect of 

climate was as great, or greater, than the benefit obtained from bioenergy electricity production.  

In summary, forest-scale carbon balance following management is dependent both on the fate of 
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the biomass removed from the forest and future climate trends, and bioenergy electricity 

production may not provide the same carbon benefit under future climate conditions. 

 Forest-scale changes in carbon storage can also be affected by trends in forest 

demographic processes such as growth.  Trends of this nature have received little attention 

compared to climate-related disturbance events and forest die-offs globally, but may have 

widespread implications [Jump et al., 2006; van Mantgem et al., 2009; Beck et al., 2011].  In 

Chapter 4 of my dissertation I investigated the effects of climate warming on forest growth at the 

forest scale.  I used correlations between historical climate and tree ring widths through time to 

determine the most important climate variables driving growth in subalpine conifer species and 

to detect trends in tree growth through time.  My results indicated that subalpine fir, a species 

found in subalpine regions throughout the Rocky Mountains, grew less in years with warm 

summer temperatures and that subalpine fir growth has been declining over the past several 

decades.  The observed trends of subalpine fir decline are most pronounced on specific landscape 

positions, and occurred concurrent with increasing temperatures in this region.  These results 

indicate that subalpine fir growth declines may be in response to drought stress induced by 

increasing summer temperatures, particularly in the warmest landscape positions. 

 Summer temperatures within San Juan National Forest are expected to increase over the 

coming decades.  Projections of future climate in this region indicate an increase of 2ºC by 2070 

under a relatively high emissions scenario, with increases up to 4ºC at elevations above 2500 

meters [Rangwala et al., 2012].  Increasing temperatures will likely further stress the subalpine 

forests of this region and could leave these forests more susceptible to other types of disturbance 

such as insect outbreaks or severe, short-duration drought [Bigler et al., 2007; Bentz et al., 2010].  

Previous studies have suggested that future temperature increases could dramatically decrease 
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growth in many low-elevation tree species of this region in coming decades [Williams et al., 

2010].  My results suggest that subalpine species of the southwest may also be vulnerable to 

climate change, specifically increasing temperatures.  This work contributes to a growing body 

of literature demonstrating the changes taking place in forests globally in response to climate 

change, and in particular emphasizes the importance of studying decadal trends of forest 

response to climate change in addition to the effects of climate-driven forest disturbance events.  
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