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Abstract— In this paper we synthesize controllers for in-
terconnected systems to enforce parametric assume-guarantee
contracts (AGC), which encode behaviors of the systems in
some parameter domains. In our approach to solve the design
problem, we synthesize a controller for each component of the
system so that it satisfies its own parametric AGC separately,
and then define a mapping that generates the sequence of
parameters for which the corresponding contracts are satisfied
after interconnecting the components. Then if a small-gain like
condition on the sequence of parameters hold, a parametric
AGC is declared for the interconnected system. The classical
small-gain theorem on bounded input bounded output (BIBO)
stability is recovered by the obtained results showing the
relation between the assume-guarantee reasoning and the small-
gain approach. We also provide an example of a large-scale
transportation system to illustrate our results.

I. INTRODUCTION

The computational complexity of synthesizing controllers
monolithically for interconnected system (power networks,
transportation systems, multi-robot systems, etc.) is often
exponential in the number of interacting components. One
technique to address this state-explosion problem is by using
assume-guarantee contracts. AGCs enable a “divide-and-
conquer” approach for designing controllers compositionally,
by designing the systems’ components separately while mak-
ing assumptions on each component’s environment [1], [2].
In this context we consider a notion of parametric AGCs
[3], encoding behaviors of a system in a parameter domain.
Indeed, parametrization of contracts allows for tighter guar-
antees on the system’s behavior since the system must satisfy
only the guarantees whose assumptions are triggered. On the
other hand, a contract with a different form, e.g. fixed AGCs
[4], [5], has a coarse guarantee since it is designed based on
the worst case assumption on the system’s environment.

Here, we study the parametric AGC design problem: given
an interconnected system composed of N ≥ 2 compo-
nents and N parametric AGCs for each component, design
a controller so that the interconnected system satisfies a
global property. In our approach to solve the parametric
AGC synthesis problem, we design a controller for each
system’s component separately to satisfy its own contract
and then impose conditions on the contracts’ guarantees and
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assumptions. We also define a mapping that generates the
sequence of parameters for which the parametric AGCs are
satisfied after interconnecting the system’s components. If
this sequence of parameters converges to a limit point, a new
parametric AGC is declared for the interconnected system.

The classical small-gain theorem on bounded input
bounded output (BIBO) stability is recovered by the ob-
tained results here showing the relation between the assume-
guarantee reasoning and the classical trajectory-based small-
gain theorems [6]. In addition to BIBO stability, more com-
plex specifications for designing an interconnected system,
such as a fragment of linear temporal logic (LTL) specifi-
cations, can be embedded in the framework of parametric
AGCs here. Finally, we demonstrate our results by synthe-
sizing a controller to enforce a temporal logic specification
on a large-scale transportation system.

Various compositional approaches are developed in the
literature to address the state-explosion problem when study-
ing interconnected system. In the traditional control theory
literature which is concerned mainly with stability properties,
compositional methods in the form of small-gain theorems
(SGTs) are established in [7], [6] for continuous-time sys-
tems and in [8] for discrete-time systems. Those SGTs
mainly provide a general condition guaranteeing stability of a
system described as an interconnection of stable subsystems.
In the formal verification and symbolic controller synthesis
literature, where the desired properties on the system become
much more complex (e.g. temporal logic properties [9]),
several compositional results are presented. See, e.g., [10],
[11], [12], [13], [14], [15] for abstraction-based controller
synthesis approaches and [16], [17], [4], [5], [18], [19]
for methods relying on assume-guarantee reasoning. Our
approach is mostly related to the work in [3], [20], where
the authors consider verification of interconnected systems
via parametric AGC, instead of fixed AGCs as in [4], [5].
This work uses the former approach to synthesize controllers
for interconnected systems, composed of an arbitrary given
number of components, using parametric AGCs.

This manuscript is organized as the following: after the
introduction, the parametric AGC design problem is formu-
lated in Section II. The problem’s solution is presented in
Section III where the main result is established in Theorem
1. Section V shows how the classical small-gain theorem can
be recovered using the main of this paper. An example on
a transportation network illustrates the effectiveness of our
approach in Section VI before concluding our work. We note
that proofs are ommited due to space limitations.
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Notations

Let R, R+
0 , R+, N, N+ denote the sets of reals, non-

negative reals, positive reals, non-negative integers and pos-
itive integers, respectively. For I ⊆ R+

0 , let NI = N ∩ I .
For N ∈ N we denote by N(i) the set N[1,N ] \ {i}. For
a set S, we denote the set of all subsets of S by 2S . We
denote by cl(S) the closure of the set S. We denote by
M = diag(a1, . . . , aN ) a matrix with diagonal elements
Mii = ai, i ∈ N[1,N ], and zero off-diagonal elements.

II. PROBLEM FORMULATION

In this paper a dynamical system is defined as a relation
between internal input signals, control input signal, external
input signals, and output signals.

Definition 1: A Dynamical system
Σ(Ue[·],Uc[·],Uf [·],Y[·],K) is a relation:

Σ(Ue[·],Uc[·],Uf [·],Y[·],K)⊆Ue[·]×Uc[·]×Uf [·]×Y[·], (1)

where Ue[·], Uc[·], Uf [·], and Y[·] are the external input,
control input, internal input, and output sets of signals
respectively. Moreover, K : Y[·]→ Uc[·] is a control map and
any (ue[·], uc[·], uf [·], y[·]) ∈ Σ(Ue[·],Uc[·],Uf [·],Y[·],K)
satisfies uc[·] = K(y[·]).
We assume that any input (ue[·], uc[·], uf [·]) ∈ Ue[·]×Uc[·]×
Uf [·] is paired with at least one y[·] ∈ Y[·] using the relation
Σ(Ue[·],Uc[·],Uf [·],Y[·],K). Such y[·] is unique if (1) is
deterministic, and we write y[·] = Σ(ue[·],K(y[·]), uf [·]),
otherwise y[·] is not unique where in this case we say
that y[·] ∈ Σ(ue[·],K(y[·]), uf [·]). If a dynamical system
does not have internal inputs then Definition 1 reduces to
Σ(Ue[·],Uc[·],Y[·],K). We use the latter definition when we
define the interconnected system in Section II-A. Note that
in some cases and for the sake of brevity we just use the
notion Σ for a dynamical system.

A. Interconnected system

The notion of interconnection is given here similar to [21,
Definition 3.1]:

Definition 2: Given an output set Y[·] and an internal
input set Uf [·], an interconnection I is a tuple I =
(Y[·],Uf [·],G), where G : Y[·] Z⇒ Uf [·] is a set-valued map
that maps output signals to internal input signals.

Now we formally define an interconnected system Σ.

Σ
1

Σ
N

.
.
.

G

[u1

e[·]; . . . ; u
N
e [·]]

[y1[·]; . . . ; yN [·]]

[u1

f [·]; . . . ; u
N
f [·]]

[u1

c [·]; . . . ; u
N
c [·]]

Fig. 1: The interconnected system I(Σ1, . . . ,ΣN ).

Definition 3: Consider N ∈ N+ subsystems
Σi(U i

e[·],U i
c[·],U i

f [·],Yi[·],Ki), i ∈ N[1,N ], and an
interconnection

I = (

N∏
i=1

Yi[·],
N∏
i=1

U i
f [·],G), (2)

defining the coupling between these subsystems. We de-
fine an interconnected system I(Σ1, . . . ,ΣN ) as a rela-

tion Σ(Ue[·],Uc[·],Y[·],K), with Ue[·] =

N∏
i=1

U i
e[·], Uc[·] =

N∏
i=1

U i
c[·], Y[·] =

N∏
i=1

Yi[·], where internal inputs of

Σ1, . . . ,ΣN are constrained as

[u1f [·]; . . . ;uNf [·]] ∈ G([y1[·]; . . . ; yN [·]]), (3)

and control inputs are defined by

[u1c [·]; . . . ;uNc [·]] = K([y1[·]; . . . ; yN [·]]),
= [K1(y1[·]); . . . ;KN (yN [·])].

B. Assume-guarantee contracts

In the sequel, a specification Φ over the set Z[·] describes
a set of desirable input-output behaviors, and in the set
point of view it satisfies the set inclusion Φ ⊆ Z[·]. For
example an input (or output) specification Φ, for system
Σ(Ue[·],Uc[·],Y[·],K), satisfies Φ ⊆ Ue[·] (or Φ ⊆ Y[·])
where no specifications are considered on the control inputs
for simplicity. In the Boolean point of view, z[·] |= Φ
means that a signal z[·] ∈ Z[·] satisfies the specification
Φ. Consequently, projection from a Boolean point of view
of a specification to a set point of view is possible, where
Φ = {z[·] ∈ Z[·] : z[·] |= Φ}. It is obvious then that z[·] ∈ Φ
if and only if z[·] |= Φ. We note that it will be clear from the
context whether a specification is interpreted from the set or
Boolean point of view.

Next, we define an assume-guarantee contract as given in
[3]:

Definition 4: (Assume-Guarantee Contract) An assume-
guarantee contract C is a pair (Φa,Φg) consisting of an
assumption specification Φa and a guarantee specification
Φg such that Φa ⇒ Φg holds true.

We say that a system Σ satisfies C = (Φa,Φg), if
Σ ∩ Φa ⊆ Φg . It can also be easily shown that (Φa,Φg) =
(Φa,Φa ⇒ Φg). This transformation of the contract is useful
when dealing with parametric assume-guarantee contracts for
a system Σ(Ue[·],Uc[·],Uf [·],Y[·],K), which are given as the
following.

Definition 5: (Parametric Assume-Guarantee Contract)
An assume-guarantee contract C = (Φa,Φg) is in paramet-
ric form if there exists an external parametric assumption
specification Ψae : Pae 7→ 2Ue[·], an internal parametric
assumption specification Ψaf : Paf 7→ 2Uf [·], a parametric
guarantee specification Ψg : Pg 7→ 2Y[·], and parameter map
λ : Pae × Paf 7→ Pg such that:

Φa =
∨

(pe,pf )∈Pae×Paf

(
Ψae(pe) ∧Ψaf (pf )

)
(4a)
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Φg =
∧

(pe,pf )∈Pae×Paf

((
Ψae(pe) ∧ Ψaf (pf )

)
(4b)

⇒ Ψg(λ(pe, pf ))

)
,

where Pae, Paf , and Pg are the external input parametric
set, internal input parametric set, and output parametric set.
We note that no specifications over the control input signals
are considered.

Remark 1: In case a system does not have an internal
input then Φa and Φg in (4) reduces to:

Φa =
∨

pe∈Pae

Ψae(pe) (5a)

Φg =
∧

pe∈Pae

(
Ψae(pe)⇒ Ψg(λ(pe))

)
. (5b)

A parametric assume-guarantee contract could be also writ-
ten as a conjunction of smaller contracts:

C =
∧

(pe,pf )∈Pae×Paf

C(pe, pf ),

where C(pe, pf ) =
(

Ψae(pe) ∧ Ψaf (pf ),
(
Ψae(pe) ∧

Ψaf (pf )
)
⇒ Ψg(λ(pe, pf )

)
and it is clear that system Σ

satisfies C if for all (pe, pf ) ∈ Pae × Paf , one gets Σ ∩(
Ψae(pe)∩Ψaf (pf )

)
⊆ Ψg(λ(pe, pf )). Definition 5 says that

a system under a given parametric AGC must satisfy only
the guarantee specifications whose corresponding assumption
specifications are triggered. In this paper, we are interested
in designing a controller for an interconnected system so
that it satisfies a parametric assume-guarantee contract, or
equivalently we provide a solution to the following problem:

Problem 1: Consider an interconnection I =
(Σ1, . . . ,ΣN ) and a set of parametric assume-
guarantee contracts {C1, . . . , CN}. Design control maps
Ki : Yi[·] → U i

c[·], i ∈ N[1,N ], such that each system Σi

satisfies the contract Ci, i ∈ N[1,N ], and that there exists a
global parametric AGC which I(Σ1, . . . ,ΣN ) satisfies.

Problem 1 states that we are in search for a decentralized
controller that enforces a global parametric AGC C, to be
determined as a function of {C1, . . . , CN}, on the behavior
of the interconnected system after enforcing local parametric
AGCs on its components. In Section III, We derive a gen-
eralized small-gain theorem (SGT) for parametric contracts
synthesis. In Section V, we recover a classical small-gain re-
sult that ensures BIBO stability of an interconnected system.

III. A GENERAL SGT FOR PARAMETRIC
ASSUME-GUARANTEE CONTRACTS

This section presents the main results in this manuscript
by solving Problem 1. The parametric AGCs Ci = (Φi

a,Φ
i
g),

i ∈ N[1,N ], are given where Φi
a and Φi

g are defined by (4)
with specifications Ψi

af , Ψi
ae, and Ψi

g and parameter sets
Pi
af , Pi

ae, and Pi
g .

Also each subsystem Σi(U i
e[·],U i

c[·],U i
f [·],Yi[·],Ki), i ∈

N[1,N ], has an internal input and an output satisfying:

Assumption 1: The input sets U i
f [·], i ∈ N[1,N ], are given

by:
U i
f [·] = Yi1 [·]× · · · × YiN−1 [·]. (6)

where i1, . . . , iN−1 ∈ N(i) and ij 6= ik for j 6= k.
Assumption 1 is made for the well-posedness of the intercon-
nection. The internal assumption parameter sets are further
partitioned:

Assumption 2: The internal assumption parameter sets
Pi
af , i ∈ N[1,N ], satisfy

Pi
af = Pii1

af × · · · × P
iiN
af , (7)

where i1, . . . , iN−1 ∈ N(i) and ij 6= ik for j 6= k.
Following Assumptions 1 and 2, we assume that Ψi

af is a
conjunction of specifications:

Assumption 3: The specifications Ψi
af : Pii1

af × · · · ×
PiiN
af 7→ 2Y

i1 [·]×···×YiN−1 [·], i ∈ N[1,N ], i1, . . . , iN−1 ∈
N(i) and ij 6= ik for j 6= k, satisfy:

Ψi
af (pif ) =

∧
j∈N(i)

Ψij
af (pijf ), (8)

where Ψij
af : Pij

af 7→ 2Y
j

[·] and pif = (pii1f , . . . , p
iiN−1

f ).
Assumptions 2 and 3 restricts the internal parametric as-
sumption specification to be a conjunction of specifications
made on the behavior of each subsystem separately. This
assumption although not necessary to get a parametric AGC
that the interconnected system satisfy, but is needed in
Lemma 1 to simplify the obtained guarantee. The parametric
guarantee specification for Σi, i ∈ N[1,N ], is also given by
Ψi

g : Pi
g 7→ 2Y

i[·] and the parameter map in Definition 5,
associated to system Σi, is given by

λi : Pi
ae × Pi

af 7→ Pi
g. (9)

One last assumption is made on the assumption and guaran-
tee specifications in order to simplify the guarantee satisfied
by the interconnected system. First with respect to each
subsystem its own parametric AGC must be satisfied and the
guarantees of the other subsystems must imply the former’s
own assumptions. Second, there must exist at least one
external and one internal parameter such that the assumption
specifications are satisfied.

Assumption 4: Consider Assumptions 1, 2, 3,
I(Σ1, . . . ,ΣN ), and a set of parametric assume-guarantee
contracts {C1, . . . , CN}. Then:

1) There exist control maps Ki : Yi → U i
c, i ∈ N[1,N ],

such that every system Σi satisfies its parametric
assume-guarantee contract Ci = (Φi

a,Φ
i
g).

2) The parameter sets satisfy Pij
g ⊆ Piij

af , j ∈ N[1,N−1],
ij ∈ N(i), and i ∈ N[1,N ]. Also, the guarantee
specifications must imply the internal assumption spec-
ifications:

Ψij
g (p)⇒ Ψ

iij
af (p), (10)

for p ∈ Pij
g , ij ∈ N(i), j ∈ N[1,N−1], and i ∈ N[1,N ].
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3) There exists an external parameter pe =
(p1e, . . . , p

N
e ) ∈ P1

ae × · · · × PN
ae such that for

all i ∈ N[1,N ], Ψi
ae(p

i
e) is satisfied.

4) There exists an internal parameter pf [0] =
(p1f [0], . . . , pNf [0]) ∈ P1

af × · · · × PN
af such that

Ψi
af (pif ) is satisfied for all i ∈ N[1,N ].

Remark 2: The first item of Assumption 4 or equivalently
verifying whether or not subsystem Σi satisfies the para-
metric AGC Ci is checked by following the falsification
procedure as explained in Section IV.
Before presenting the main result, we state a lemma which
will be used in the former’s proof.

Lemma 1: Consider Assumptions 1, 2, 3, I(Σ1, . . . ,ΣN ),
and a set of parametric assume-guarantee contracts
{C1, . . . , CN}. Suppose that Assumption 4 holds with in-
ternal and external parameters pf [0] and pe respectively.
In addition, define for every contract Ci, i ∈ N[1,N ], and
using function of λi in (9), a new internal parameter map
λ̂i(·) = λi(pie, ·) and define guarantee parameter iterations

pg[k + 1] = Γ(pg[k]), k ∈ N, (11)

with pg[k] = [p1g[k]; . . . ; pNg [k]], Γ = [λ̂1; . . . ; λ̂N ], and
pig[0] = λ̂i(pf [0], . . . , pNf [0]), i ∈ N[1,N ]. Then the guarantee
simplifies to ∧

i∈N[1,N]

∧
k∈N

Ψi
g(pig[k]). (12)

We note that a similar result to Lemma 1 exists in [20] for
the case of subsystems with no control inputs. By exploiting
some additional assumptions on the map Γ in (11) the
guarantee in (12) could be further simplified.

Theorem 1: (SGT for parametric AGCs) Consider
I(Σ1, . . . ,ΣN ) and a set of parametric assume-guarantee
contracts {C1, . . . , CN}. Suppose that the assumptions of
Lemma 1, with an external parameter pe = (p1e, . . . , p

N
e ),

hold. Assume also that

1) For every i ∈ N[1,N ] there exists a metric di : Pi
g ×

Pi
g 7→ R+

0 on Pi
g . The Hausdorff distance dH is also

a metric on Ψi
g(·), i ∈ N[1,N ].

2) The specification Ψi
g varies continuously with parame-

ters in Pi
g , i ∈ N[1,N ]. In other words, for every εi > 0

and p1 ∈ Pi
g there exists a δi > 0 such that

di(p1, p) < δi ⇒ dH(Ψi
g(p1),Ψi

g(p)) < εi,

for i ∈ N[1,N ].
3) The sequence (pg[k])k∈N satisfying (11) converges for

any pg[0] ∈ P1
g × · · · × PN

g to a parameter p̂g =
[p̂1g; . . . ; p̂Ng ].

Then I(Σ1, . . . ,ΣN ) satisfies the parametric AGC C =

(Φa,Φg) given by (5) with Pae =

N∏
i=1

Pi
ae, Pg =

N∏
i=1

Pi
g ,

Ψae(pe) =
∧

i∈N[1,N]
Ψi

ae(p
i
e), λ(pe) = p̂g , and

Ψg(p̂g) =
∧

i∈N[1,N]

(
cl
(
Ψi

g(p̂ig)
))
. (13)

IV. CONTROLLER SYNTHESIS FOR PARAMETRIC
ASSUME-GUARANTEE CONTRACTS

In this section, we design a control map Ki : Yi → U i
c for

a single subsystem Σi, i ∈ N[1,N ], so that it satisfies a given
parametric AGC Ci. For the sake of better readability we drop
the index i and we assume that C has a fixed external input
parameter. The overall method is summarized in Algorithm
1.

Line 3 corresponds to the partitioning of the internal
assumption parameter set Paf into L sets {Sk}k∈N[1,L]

with
{sk}k∈N[1,L]

being some fixed parameters such that sk ∈ Sk,
k ∈ N[1,L]. Line 4 synthesizes for k ∈ N[1,L] a controller
Kk so that Σ satisfies the parametric AGC C when fixing
the parameter to sk. Line 6, and in case the synthesis of
all controllers Kk was successful, verifies whether or not
for k ∈ N[1,L], system Σ satisfies the contract C with a
controller Kk for all internal assumption parameters that
belong to the set S. Note that in this step verification is
checked by following the falsification procedure as explained
in [3]. Lines 9 − 10, and if verification is successful for
all controllers Kk, k ∈ N[1,L], returns a control map K.
Practically, K checks online in which region Sk, k ∈ N[1,L],
the internal assumption parameter belongs to and then en-
forces the guarantees of the parametric AGC C via Kk. In
case the synthesis of the control map was not successful,
set Paf is further partitioned into finer sets until reaching a
granularity corresponding to Lmax sets. In that case, and
if no control map is designed then Algorithm 1 returns
unknown indicating that our method fails in synthesizing
a control map for Σ.

Algorithm 1: Controller synthesis for parametric
AGC
function synth(Σ, C)
input: Σ, C
output: control map K if controller synthesis was suc-

cessful, unknown otherwise
parameter: Lmax

1: unsat:= false;
2: for L = 1 to Lmax do . main loop
3: {Sk, sk}k∈N[1,L]

:=partition(Paf );
4: sat, {Kk}k∈N[1,L]

:= syn(Σ, C, {sk}k∈N[1,L]
);

5: if sat then
6: unsat:= falsify(Σ, C, {Kk,Sk}k∈N[1,L]

);
7: end if
8: if unsat then
9: K:= controller({Sk,Kk}k∈N[1,L]

);
10: return K;
11: end if
12: end for
13: return unknown;

V. SGT ON BOUNDED INPUT BOUNDED OUTPUT
STABILITY

Using the proposed results in the previous sections and
under an additional assumption on the map Γ in (11), we
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recover here the classical small-gain theorem on bounded
input bounded output (BIBO) stability of an interconnected
system which is analogous to the asymptotic gain property
(AG) in [6]. In this section, we assume that we have already
designed controllers for subsystems that makes them BIBO
stable (i.e. each subsystem satisfies (15)) using existing
methods [22]. Then we consider for simplicity dynamical
systems with no control inputs, i.e. Σ(Ue[·],Uf [·],Y[·]).

Given a norm |·|, we denote by L the set of norm bounded
signals. A function γ : R+

0 7→ R+ is said to be of class K,
or γ ∈ K, if it is continuous, increasing, and γ(0) = 0. We
say γ ∈ K∞ if it is of class K and unbounded. For later
derivations, we define a map Γs : (R+)N 7→ (R+)N , which
is used in Corollary 1 to identify the map Γ.

Definition 6: Γs : (R+
0 )N 7→ (R+

0 )N is an irreducible map
satisfying

(Γs ◦Ds)(s) � s, ∀s ∈ (R+)N , (14)

where D : (R+
0 )N 7→ (R+

0 )N is defined by
Ds(s

1, . . . , sN ) = [(Id+ α1)(s1); . . . ; (Id+ αN )(sN )], for
some αi ∈ K∞, i ∈ N[1,N ].
The next result follows from Theorem 1.

Corollary 1: (SGT on BIBO stability) Consider an in-
terconnected system I(Σ1, . . . ,ΣN ), with Σi(L,LN−1,L),
i ∈ N[1,N ]. Assume that for every i ∈ N[1,N ], there exist
γi1, . . . , γiN , γui ∈ K ∪ {0}, γii = 0, such that

|yi[·]| ≤
∑
j∈N

γij(|yj [·]|) + γui(|ui[·]|). (15)

If Γs : (R+
0 )N 7→ (R+

0 )N , defined by

Γs(s1, . . . , sN ) =
[ N∑
j=1

γ1j(sj); . . . ;

N∑
j=1

γnN (sj)
]
, (16)

satisfies Assumption 6, then there exists a β ∈ K∞ such
that:

||y[·]|v| ≤ β(|D(|u[·]|v)|), (17)

where |y[·]|v = [|y1[·]|; . . . ; |yN [·]|], D =
diag(γu1 , . . . , γ

u
N ), and |u[·]|v = [|u1[·]|; . . . ; |uN [·]|].

In the next section we present a large-scale transportation
system to demonstrate the results obtained by Theorem 1.

VI. ILLUSTRATIVE EXAMPLE

We consider a large-scale transportation system
I(Σ1, . . . ,ΣN ) consisting of N ∈ N[3,+∞) interconnected
segments Σi, depicted each by Figure 2. Subsystem Σi

x
i

1

x
i

2

x
i

3

x
i

4

x
i

5

x
i

6

x
i

7
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Fig. 2: Model of subsystem Σi.

consists of 10 links li1, . . . , l
i
10 and is given by the discrete

dynamics, as in [23]:

xi1[k + 1] = xi1[k]− fouti1 [k] + f ini
1 [k]

xi2[k + 1] = xi2[k]− fouti2 [k] + f ini
2 [k]

xi3[k + 1] = xi3[k]− fouti3 [k] + fouti1 [k] + fouti2 [k]

xi4[k + 1] = xi4[k]− fouti4 [k] + f ini
4 [k]

xi5[k + 1] = xi5[k]− fouti5 [k] + fouti3 [k] + fouti4 [k]

xij [k + 1] = xij [k]− foutij [k] + foutij−1 [k], j ∈ N[6,10]

where xij ∈ R
+
0 represents the average number of vehicles

in link lij , j ∈ N[1,10] and the output of Σi is [xi1[·];xi10[·]].
The interconnection I is given by (2) with G ∈

R2N(N−1)×2N defined in accordance with Figure 3.
The flows out of links li1, . . . , l

i
9 are given, for i ∈ N[1,N ],

by:

fouti1 [k] = min (0.8(40− xi3[k]), 10, xi1[k]),

fouti2 [k] = min (0.2(40− xi3[k]), 5, xi2[k]),

fouti3 [k] = min (0.8(40− xi5[k]), 10, xi3[k]),

fouti4 [k] = min (0.2(40− xi5[k]), 5, xi4[k]),

foutij [k] = min (0.8(40− xij+1[k]), 10, xij [k]), j ∈ N[5,9],

As for links li10, i ∈ N[1,N ], the output flows are given by:

fouti10 [k] = min (0.2(40− xi+1
1 [k]), 10ui, xi10[k]), i ∈ N[1,N−1],

foutN10 [k] = min (0.2(40− x11[k]), 10uN , xN10[k]),

where ui ∈ [0, 1], i ∈ N[1,N ], are control inputs, representing
ramp meters, to be determined. Furthermore, the flows into
links are given by:

f in1
1 [k] = foutN10 [k],

f ini
1 [k] = min (0.8(40− xi1[k]), 10, xi−110 [k]), i ∈ N[2,N ],

f ini
2 [k] = min ((20− xi2[k]), di2[k]), i ∈ N[1,N ],

f ini
4 [k] = min ((20− xi4[k]), di4[k]), i ∈ N[1,N ].

A. Controller synthesis for certifying assume-guarantee con-
tracts

For all subsystems, the on-ramp demands are limited to
be always less than 3:

�(dij ≤ 3), j ∈ {2, 4}, i ∈ N[1,N ]. (18)

All links are assumed to have an initial number of vehicles
less than 4. Using signal temporal logic (STL) formulas [24],
we consider the parametric assume-guarantee contracts Ci =
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Fig. 3: Interconnections of subsystem Σi i /∈ {1, N}.
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(Φi
a,Φ

i
g), i ∈ N[1,N ] with:

Φi
a =

∨
si≥0,di≥0

(
�[0,3]♦[0,2](s(x

i+1
1 ) ≥ 10− si)

∧�[0,3]♦[0,2](min(10, xi−110 ) ≤ di)
) (19a)

Φi
g =

∧
si≥0,di≥0

((
�[0,3]♦[0,2](s(x

i+1
1 ) ≥ 10− si)

∧�[0,3]♦[0,2](min(10, xi−110 ) ≤ di)
)

⇒
(
�[0,3]♦[0,2](s(x

i
1) ≥ 10− λ2(di))

∧�[0,3]♦[0,2](min(10, xi10) ≤ λ1(si))
))

,

(19b)

for i ∈ N[2,N−1], where s(x) = 0.8(40 − x), λ1(s) =
0.9s+ 6.1, and λ2(d) = 0.2d. We note that the assumption
and guarantee specifications for C1 and CN are similar to (19)
but for C1 the assumptions are made on the states x21 and xN10
whereas for CN the assumptions are made on x11 and xN−110 .
Following Remark 2 and Algorithm 1, we reformulate the
controller synthesis problem, for each modular component,
having signal temporal logic formulas into mixed integer
linear programs [25]. Using the Gurobi optimization tool
[26] the latter problem was solved successfully and a control
map Ki that defines the control inputs ui, i ∈ N[1,N ], is
synthesized. Therefore Σi with Ki satisfies the parametric
assume-guarantee contract (φia, φ

i
g), i ∈ N[1,N ]. The condi-

tions for the small-gain theorem (i.e. Theorem 1) hold as the
following:
• The parametric contracts are satisfied for each network.
• The internal assumptions of any network are implied by

guarantees from neighboring networks because they are
of the same form.

• The external assumptions are satisfied via (18).
• For any i ∈ N[1,N ] for a large enough di ≥ 0 and
si ≥ 0, the internal assumption Φi

a is satisfied because
min(10, xi−110 ) has a maximum value of 10 and s(x)
has a minimum value of 0.

It can also be shown that the sequence of parameters
in (11) converges to a limit point [di; si] = [7.44; 1.48],
i ∈ N[1,N ]. Thus we conclude that the interconnected
system I(Σ1, . . . ,ΣN ) is guaranteed to satisfy the following
specification, for i ∈ N[1,N ]:

�[0,3]♦[0,2](s(x
i
1) ≥ 8.52)∧�[0,3]♦[0,2](min(10, xi10) ≤ 7.44).

VII. CONCLUSION

ISmall-gain conditions were derived for parametric AGCs
allowing for the compositional analysis of a large-scale
system based on a fragment of STL specifications. Using
these conditions we recovered a classical small-gain theorem
guaranteeing BIBO stability for an interconnected system.
Also, the validity of our approach was illustrated by a
large-scale transportation system. Further investigations are
carried to solve the controller synthesis problem in order to
enforce a larger class of temporal logic specifications on an
interconnected system.
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