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ABSTRACT

This theoretical study investigates the spin and orbit interplay of binary asteroid

systems during their formation. We focus on the angular momentum content in

the rotational fission process and the effects of mass transfer flux onto seeds outside

the Roche limit. We also considered the influence of secondaries’ rotation on the

emergence of chaos and established the upper rotational bound using the planar

sphere-spheroid model. Furthermore, we addressed a pivotal gap in the classical

secular theory at which the satellite body’s semimajor axis ratios approach unity,

and found a stable equilibrium separation angle of two satellites of 3π/5, thereby

concluding that multiple-seed merger event must invoke chaos. Finally, we proposed a

mechanism leading to secondary’s rotation reduction from the mass accretion process,

acting particularly effective under conditions of substantial mass transfer. Overall,

our results provide theoretical supports for the evaluation of inheritance of the orbital

and spin attributes of binary asteroid systems in the formation process.

Keywords: Resonances, spin-orbit — Satellites, formation — Asteroids, dynamics —

Asteroids, rotation

1. INTRODUCTION

A binary asteroid system (BAS) contains a pair of gravitationally bounded asteroids

and is frequently observed in the small asteroid population (constituent asteroids’

diameters, D < 15 km). The larger body in a binary asteroid system is referred as

the primary, and the smaller body as the secondary. BASs consist of a significant

portion, around 15%, of the total asteroid population in the near-earth, main belt,

and the Mars-crossing asteroid populations (Pravec et al. 2016).
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The Rotational Breakup Theory has been widely accepted to be the formation

mechanism of the majority of BASs. It is suggested that a typical BAS is formed

when a progenitor asteroid spins so fast that materials on the surface experience no

gravity and the asteroid undergoes fission and, from the released materials, a stable

two-body configuration could form. Overall, The the Rotational Breakup Theory is

in good agreement with exisiting observations data (Walsh et al. 2008).

The present work aims to investigate several foundational principles of the Ro-

tational Breakup Theory. Central to this theory are the torques exerted on aster-

oids as a consequence of thermal influences and asymmetric reflections, most notably

the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, discussed subsequently.

This effect, originating in the 1950s through the collaboration of Ivan Yarkovsky and

Vladmir Radzievskii, revolves around the alteration of small asteroids’ rotation rates

due to the uneven reflection of solar radiation on their surfaces. Subsequently, Stephen

Paddack and John O’Keefe postulated that this effect could give rise to the formation

of BASs, a concept later coined as the YORP effect. The YORP effect, aptly referred

to as a mechanism for accelerated rotation, drives a small, rotating asteroid to reach

the so-called “breakup limit”. At the breakup limit, the asteroid spins so fast that

materials on the equator of asteroids effectively experience no gravitational force, thus

are able to depart from the asteroid to the surroundings. Secondaries could form the

launched fragments through gravitation and chaotic processes.

The theory has undergone refinements over time to include a good level of details

and demonstrates no major conflict with distribution of binary asteroids’ population,

spin rate, size, age, and shape, tested by simulations and observational data (Bottke

et al. 2006; Walsh and Richardson 2006). A generalized depiction suggests that the

YORP effect exerts torque on the surfaces of small bodies, causing their rotation

rates to surge to the breakup limit within a span of 105 − 106 years (Jacobson and

Scheeres 2011). For rubble-pile structured asteroids, characterized by a conglomerate

of granular materials, the materials around the equator will drift away at the breakup

limit and carry away the extra angular momentum of the asteroid. The materials

migrate outward through collisions and gravitational interactions. Once the materials

move outside of the Roche limit, larger aggregates are able to form, which will be

referred to as seeds hereafter. The system’s evolution persists until the seed(s) solidify

into a stable configuration, involving possibilities of return, escape, or accretion. Due

to the loss of surface material, the primary asteroid undergoes a redistribution until

the YORP effect acts to decelerate its rotation. This, in turn, prompts a reversal in

the YORP-driven acceleration cycle. A visual representation of the rotational fission

process and seed formation, as described above, can be found in Figure 2 of the article

by Hyodo and Sugiura (2022).

Dynamical study of BASs is an active field of research and aims to understand

the orbital elements and stability of these systems. It is shown that non-Keplerian

binary systems can have rich dynamics and complex stability conditions (Scheeres
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2009). Non-Keplerian considerations are especially important in BASs for their per-

vasive close orbits and constituent asteroids’ irregular shapes. Spin-orbit dynamics

as an important branch has been extensively studied, from resonances to chaos to

decoupling mechanics (Murray and Dermott 1999).

Prominently, a large portion of the BASs are synchronous binary asteroids (SBA),

whose secondaries are in 1:1 spin-orbit resonance, and close binary asteroid systems

are almost unanimously SBA (Ćuk 2007; Pravec et al. 2016). A large population

of initially tidally locked binary asteroid is instrumental in explaining the orbital

profile of BAS by enabling orbit-altering mechanisms like BYORP and tidal evolution

(Jacobson et al. 2013).

While tides, thermal forces, and direct gravitational interactions are routinely in-

voked as prime candidates for inducing 1:1 spin-orbit resonance within BASs, their

individual relative contributions are constrained by data limitations and the intri-

cate interplay of effects. Classical planetary tidal locking models, when applied to

BASs, yield timescales on the order of tens of millions of years, while the lifespan of

BASs is speculated to be on the same or shorter timescale. This poses a challenge

in explaining the large SBA population (Ćuk 2007; Steinberg and Sari 2011). New

tidal theories have been proposed for BASs and shorten the classical tidal locking

process by around a factor of ten, for example, see (Goldreich and Sari 2009). Chaos

in Non-Keplerian dynamics could resonate a secondary with significant mass distri-

bution disparity along its axis of rotation in less than a year, but such secondaries

are also unlikely to be Hill stable and eventually escapes the system (Jacobson and

Scheeres 2011).

In this work, we focus on the spin-orbit coupling specifically during the formation

of BASs, and explore mechanical rotation-altering and orbit-altering processes which

are faster-acting and may have a significance in spin-orbit coupling mechanisms. We

will also propose a new method in determining the bound and distinguishing chaos

of secondary rotations.

2. MASS TRANSFER FLUX AND ORBITAL ECCENTRICITY

In this section, we embark on an exploration of secondary formation and its subse-

quent orbital evolution during the initial phase of rotational breakup. We elucidate

these processes by adopting a straightforward analysis of angular momentum charac-

teristics. This section lays the bedrock upon treatments in the subsequent sections.

We will use the terms material, mass, and grain interchangeably. These terms

collectively refer to entities within the system that are distinct from both primary

and seed elements. Our analysis is conducted under the assumption of a system

exhibiting mild collisional behavior, wherein a substantial population of materials

resides within the ring while energetic collisions which cause mass ejection from the

system are rare.

2.1. Mass transfer efficiency
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We introduce the concept of a mass transfer ratio, denoted as σ, which quantifies

the proportion of averaged mass transferred to the secondary relative to the total

mass that escapes from the primary. This ratio is defined by the integral expression:

σ =

∫ ∞

0

dr · F(r) · P(r) , (1)

Here, the weighting function F(r) = Norm(M(r) · f(r)) is introduced, with M(r)

representing the relative mass function for grains of radius r, and f(r) signifying the

escape frequency function. The term P(r) denotes the ratio of granular material

transferred to the material that has escaped.

To illustrate the application of this concept, we consider the Didymos - Dimorphos

system as a typical example of BASs in the subsequent numerical simulation. Within

this simulation, test particles of varying sizes are launched from the primary entity

at velocities around the rotational breakup threshold. The integration encompasses

gravitational forces, radiation pressure, and solar tides. A radiation pressure efficiency

of 0.5 is assumed for all particle sizes.

Figure 1. Simulated heat plot of σ as a function of the solar distance and particle size.
Extrapolating from the simulation, we expect σ is virtually 1 for particles mm-size and
larger regardless of the solar distance. Particles exceeding these dimensions exhibit stable
orbits, resulting in a lack of data due to their sustained trajectories over the simulation’s
allotted time frame of 10 days.

It is shown that in a typical BAS environment, σ for micron-size dusts is mostly from

2% - 70%, and large particles (rgrain · dsun ≥ 500µm · Au) hardly escapes the system.
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During the formation phase, consider a typical ejected particle size distribution similar

to that on asteroid surfaces, which has considerable amount of large boulder, the

majority of mass lies in the larger particles. This thereby justifies the assumption of

an overall σ value of 1. In the subsequent sections, we will not consider mass loss

in the formation phase of BASs and assume all mass escaped from the primary is

deposited onto the secondary.

2.2. Outward migration of rotational fission ejecta

We now examine the dynamics of materials ejected from the primary. To the first

order, a secondary can only form outside Primary’s Roche limit. It is thus important

to examine if rotational fission ejecta could migrate outward and reach the Roche

limit boundary. We consider a system where ejecta particles are produced continu-

ously, generating a collisional disc around the primary. While materials collide and

dissipates energy, the total angular momentum remains conserved. Consequently, the

average radial distance of fission ejecta remains unchanged while the average orbital

eccentricity decreases. With a close-to-unity ejecta mass transfer rate (Sect. 2.1), we

focus on the angular momentum of ejecta particles from a collective perspective.

Consider a configuration featuring a spheroidal primary asteroid undergoing rota-

tional fission, whose mass is denoted as M1, its radius r1, and an angular velocity

ω1. This primary body undergo fission gives rise to an ejecta ring with a mass of M2

(which could initially be zero), and this ring orbits at a mean semimajor axis a. By

taking the time derivative of the system’s angular momentum, given as the sum of

orbital and primary body angular momenta, and rearranging the equation, we obtain:

ȧ

2a
=

mr21ω1

M1M2

√
Ga

M1+M2

+
m

M1

− m

M2

, (2)

In this expression, G represents the gravitational constant, m = −Ṁ1 = Ṁ2 denotes

the mass transferred from the primary to the secondary over a given time interval, ω1

stands for the angular velocity of the primary’s rotation, and a signifies the semimajor

axis of the mutual orbit.

An intriguing insight is gleaned from Eq. 2, as it reveals that a tends towards a

state of local equilibrium defined by

s

√
r1
a

=
M1 −M2

M1 +M2

, (3)

where s represents the ratio of ω1 to the angular velocity corresponding to the rota-

tional breakup limit.

The evolution of the orbital semimajor axis, a, is numerically soluble. For demon-

stration purpose, we disregard changes in primary’s rotation and simulated the orbital

migration using the parameters of Didymos to serve as an illustrative case for small,
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i.e., BASs. Notably, Eq. 3 is independent of the primary’s density, and the ap-

pearance of parameters solely in the form of ratios. Thus this demonstration can be

extrapolated to a wide array of binary systems.

Figure 2. Panel (a) shows rings of different initial radial distance within the Roche limit will
migrate outward as the ring absorbs mass ejected by the primary. Parameters of Didymos
– Dimorphos system with initial angular speed at 1.1 times the breakup limit were used in
simulation. The radius and the Roche limit radius of Didymos is about 380m and 1000m,
respectively. Panel (b) shows a sketch of a seed located in the ring migrating outward.

The simulation results are presented in Fig. 1. Evidently, the coupling between

angular momenta of primary’s rotation and the orbit is sufficient to support the

outward motion of ejecta ring. The primary’s angular momentum is transferred to

the mutual orbit and serves as the driving force behind the movement of materials

towards the vicinity of the Roche limit. Our result also shows that, independent of

the initial locations, the final orbital radius of the ejecta ring converges to a location

approaching the Roche limit.

2.3. Further evolution of the ejecta ring

Fission ejecta likely exhibit a broad size distribution , ranging from multi-meter-

sized boulders to a multitude of granular entities down to centimeter-scale and smaller.

The positioning of these materials within the Roche limit imparts a nuanced quality

to the interactions among them. Within this regime, interactions involving the larger

boulders can be approximated as elastic collisions, while the smaller granular compo-

nents primarily engage in inelastic collisions, as the cohesion force becomes more and

more important with decreasing grain size. (Blum and Schräpler 2004; Walsh et al.

2022).

Over time, the sequence of elastic collisions involving the boulders leads to the

emergence of particular distributions governing both velocity and angular momentum,
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akin to the Maxwell-Boltzmann distribution. This phenomenon finds parallels in

the field of material kinetics within planetary rings, and readers may find pertinent

insights from those studies (e.g. Bodrova et al. 2012).

Resulting from the characteristics of the aforementioned distributions, the possibil-

ity rises that a fraction of ejecta particles could acquire sufficient angular momentum,

thereby drift beyond the Roche limit’s boundary. It is noteworthy that most larger

boulders, lacking the requisite angular momentum for egressing the Roche limit, will

necessarily undergo an evolutionary trajectory that ultimately leads them fall back

toward the primary body.

In accordance with the angular momentum redistribution mechanism that we’ve

proposed, the seeds’ angular momentum is not anticipated to significantly exceed

the threshold necessary for their escape from the Roche limit. This expectation is

grounded in the observation that the likelihood of attaining excessive angular mo-

mentum diminishes considerably as the distribution approaches its extreme values.

Concurrently, in instances where seeds do acquire augmented angular momentum due

to collision events, a portion of their orbital path may still traverse within the Roche

limit due to the presence of nonzero eccentricity. Under such circumstances, near

the periapsis of their orbits, these seeds will undergo reentry into the interior of the

Roche limit. During this process, energy and angular momentum will be transferred

back to the materials within the Roche limit, culminating in the circularization of

the orbit. Consequently, the final state of the seed’s orbit will position itself merely

outside the Roche limit, thus engendering an anticipation of low eccentricity.

3. ROTATIONAL BOUND AND ONSET OF CHAOS

In this section, our investigation delves into the constraints governing the rotation

of seeds, guided by considerations of the onset of chaos. Drawing inspiration from the

work on full two-body dynamics by Scheeres (2002), we adopt an approach wherein

the N bodies are partitioned into two substantial aggregates, denoted as Mp and Ms.

These aggregates, characterized by both translational and rotational motion confined

to a plane, allow us to capitalize on the holonomic constraints inherent to two-body

problems. For simplicity, we assume that the mutual orbit is positioned on a circular

torus, a choice that reduces complexity in the resultant equations. We will show that

the results are valid and applicable even if the orbit has non-zero eccentricity.

The rotational inertia I, kinetic energy T , and angular momentum L for a many

body system are denoted respectively as follows:

I =
N∑
i=1

mir
2
i (4)

T =
1

2

N∑
i=1

miṙ
2
i (5)



8

L =
N∑
i=1

miri × ṙi . (6)

We’ll draw upon two well-established results from N-body motion, namely the La-

grange–Jacobi identity (Dmitrašinović 2020)

Ï = 4T − 2
N∑
i=1

ri · ∇U(ri) = 4T + 2U (7)

and the Sundman’s inequality (Muller 1986)

2IT ≥ İ2

4
+ L2 . (8)

Note that, these results maintain their validity even in the presence of non-

gravitational forces. This justifies our categorization of the N bodies into two granular

aggregates.
Given our assumption of two-body granular aggregates, Eq. 4 can be expressed as

follows:

I =
N∑
i=1

mir
2
i = µr2 +

∑
i∈I1

mir
2
1,i +

∑
i∈I2

mir
2
2,i

= µr2 +
1

2
Tr[I1] +

1

2
Tr[I2] .

(9)

Neglecting the deformation of the two bodies, from Eq. 9,

İ(t) = 2µr · ∂r
∂t

(10)

Ï(t) = 2µ

(
∂r

∂t

)2

+ 2µr · ∂
2r

∂t2
, (11)

where µ = MpMs/(Mp +Ms) is the reduced mass of the two bodies.

Aligned with our observational findings, we posit that the primary possesses an

axisymmetric form (equivalent to its center of mass in planar two-body problems),

while the secondary assumes an irregular elongated shape (Ćuk 2007). r is the dis-

placement from the effective point mass of the primary to that of the secondary.

Notably, an effective point of mass refers to a point where the experienced gradient

of the gravitational potential field matches that of a calculated body. In Keplerian

(spherical) two-body problems,the effective point of mass coincides with the center

of mass. However, in the context of non-Keplerian dynamics as how our problem is

setup, deviations arise, necessitating the consideration of a point mass slightly offset

from the center of mass.
To facilitate our analysis, we introduce r = r0 + r̃, where r0 is the distance between

the two bodies’ center of masses. Compared to r̃, r0 variates negligibly as movements
in the center of mass requires considerable amount of energy exchange. Therefore, we
will treat r0 as invariant, and r̃ as the periodic part. The periodicity is presumably
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predominantly caused by the rotation of secondary. Apply to Eqs. 7, 10, 11 and
linearize:

İ(t) = 2µr0 ·
∂r̃

∂t
(12)

Ï(t) = 2µ

(
∂r0
∂t

+
∂r̃

∂t

)2

+ 2µr0 ·
(
∂2r0
∂t2

+
∂2r̃

∂t2

)
= 2µ

((
∂r̃

∂t

)2

+ vorb
∂r̃

∂t
+ r0

∂2r̃

∂t2

) (13)

T =
Ï − 2U

4
=

µ

2

((
∂r̃

∂t

)2

+ vorb
∂r̃

∂t
+ r0

∂2r̃

∂t2

)
− (Uorb + U2) ,

(14)

where vorb is the circular orbital velocity at r0, Uorb is the gravitational potential

energy of orbital coupling, and U2 is the gravitational potential energy contained by

the secondary.

We adopt the simplification of treating the primary as a point mass, which allows us

to eliminate both I1 and its corresponding rotational angular momentum contribution

from Eq. 8. Additionally, considering the secondary’s rotational angular momentum

contribution to be insignificantly small compared to the orbit, we can prudently

exclude it without violating any constraints.

Employing these simplifications in Eq. 8, we arrive at(
µr20 +

1

2
Tr[I2]

)
T ≥

(
µr0 ·

∂r̃

∂t

)2

+ L2 (15)

Moreover, we introduce substitutions for I2 and U2 by using
l =

I

µr20

k =
U

Uorb
.

(16)

Insert Eq. 16 into Eq. 15 yields

2lT

µ
≥
(
∂r̃

∂t

)2

+
L2

µ2r20
. (17)

Substituting Eq. 14 into Eq. 17 and rearranging, we obtain

vorb
∂r̃

∂t
+ r0

∂2r̃

∂t2
≥
(
v2orb
α

+
kUorb

µ

)
=

(
1

l
− k

)
v2orb .

(18)

Given our assumption that r̃ exhibits periodic motion, we can deduce∣∣∣∣vorb∂r̃∂t + r0
∂2r̃

∂t2

∣∣∣∣ ≤ (k − 1

l

)
v2orb , (19)
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This expression can alternatively be represented as∣∣∣∣∂r̃∂t
∣∣∣∣ = ω∆r̃ ≤

(
k − 1

l

)
r0ω

2
orb

ωorb + ω
, (20)

where ωorb is the circular angular velocity at orbital radius r0. The soluation of Eq.

20 is

ω ≤ 1

2

(√
1 +

(
k − 1

l

)
4r0
∆r̃

− 1

)
ωorb . (21)

To gauge the extent of variation in r̃ and express ω in a more practical manner, we

resort to approximating the secondary entity as an oblate spheroid characterized by

a semi-major axis of as, a semi-minor axis of bs, and an ellipticity e =
√

1− b2s/a
2
s.

Should the need arise to establish a more accurate mass distribution, such a goal can

be achieved by modifying the gravitational potential energy through the incorporation

of MacCullagh’s formula ([Internet] 2003).

The gravitational potential energy outside of an oblate spheroid is given by

(Hofmeister et al. 2018).

Φ ≈ −GM2

r0

(
1− 3 sin2 θ − 1

10

(
ase

r0

)2
)

, (22)

where θ represents the orientation angle from the spheroid’s semiminor axis. The

maximum variation in r̃ can be calculated from the extremes of Φ, and keep it only

to the first non-zero term

∆r̃ =
9

20
a2se

2 . (23)

Let’s now re-examine l and k. The moment of inertia of spheroid in its principal axes
is

I2 =
M

5

2b2s 0 0

0 a2s + b2s 0

0 0 a2s + b2s

 ; (24)

and the gravitational binding energy of a spheroid is (Scheeres 2004)

U2 = −3

5

GM2
2

asbs

(
a2s + b2s −

2b3s√
a2s − b2s

arctan

(√
as − bs
as + bs

))

≈ −3

5
GM2

2

(
1

as
− 5e2

6as

)
.

(25)

With Eqs. 16, 24 and 25, l and k are transformed to
l = 1 +

3− 2e2

5

(
1 +

M2

M1

)(
as
r0

)2

k = 1 +
3

5

M2

M1

r0
as

− 1

2

M2

M1

r0e
2

as
.

(26)
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By combining Eqs. 26 and 21, the rotational bound for a given spheroidal secondary
on a circular orbit is formulated as

ω ≤ 1

2

√48− 88e2

9e2

(
r0
r1

)3

+
48− 23e2

9e2
− 1

ωorb . (27)

Eq. 27 and Fig. 3 shows that, near the Roche limit, a typical elongated seed’s

rotation period is capped at around 7 times that of the orbital period (Johnston

2022). In other words, Eq. 27 provides a rotation period upper limit for a secondary

form slowly from materials ejected from rotational breakup.

This rotational limitation becomes even more pronounced when the mutual orbit

deviates from circularity and possesses non-zero eccentricity. The rationale for this

enhancement can be understood by examining the constituents of Eq. 8. Notably,

the left-hand side is roughly proportional to r, the radial distance, while the right-

hand side remains invariant to the first order of r. Among orbits sharing the same

semimajor axis, circular orbit results in the largest r values throughout their trajec-

tory. Thus, any violation of the inequality in Eq. 27 implies that either the seed

reshapes and reduces its elongation, or the orbital motion transitions into a realm of

chaos. While the fractal of chaotic orbital motion cannot be determined from Eq. 27

alone, we show that the dynamical relationship between rotation, shape, and orbital

characteristics offers a simple and viable boarder for initiation of chaos in close binary

systems.

4. SECULAR THEORY FOR SEED MERGER

In the case that there’s more than one seed, the dynamical evolution leading such

system to become BASs could be drastically different. Although double-satellite

asteroid systems do exist, their prevalence significantly lags behind that of BASs.

Therefore, our focus pertains to the merger of seeds. We are specifically concerned

with the merger of two seeds, as it represents a probable evolutionary path and

captures the fundamental dynamics of multiple-seeds interactions, yet its dynamics

remain to be addressed by classical secular theory.

Prior to the coalesce of the two seeds, their orbital semimajor axes (denoted a and

a′) gradually converge. Classical secular theory encounters a fundamental obstacle in

this context, as the Laplace coefficients diverge to infinity when the ratio of semimajor

axes approaches unity. We circumvent this divergence by directly substituting the

disturbing function into the equations of motion.

The equations governing planer motion of a single satellite body in polar coordinates

is given by (Brouwer and Clemence 2014, chap. 2)

r̈ − rϕ̇2 +
∂V

∂r
= 0 (28)

r2ϕ̇ = G , (29)
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Figure 3. Rotational bound of seeds (ω2) on circular orbits. Actual binary asteorid
systems’ data are also plotted. At the Roche limit, the rotational cap for most secondaries
is below sevenfold the orbital rotation. As secondaries migrate further outward, the bound
loosens significantly.

where ϕ is the true anomaly of the body. For near circular orbits, G ≈ a2n, where n

is the mean motion.

In the presence of perturbations, we introduce ρ and γ as small quantities char-

acterizing the proportion of deviations from the unperturbed orbit, and modify the

right-hand side of Eq. 29 as G(1 + γ) and write r = a(1 + ρ).

Additionally, we expand r in terms of δr as r = a + δr, and the potential V as

V = Vprim + R. Where δr and R are deviations from the unperturbed orbit. δr

relates to ρ by ρ = δr/a.

Incorporating these modifications, Eqs. 28 and 29 transform to

¨(a+ δr)− (a+ δr)ϕ̇2 +
∂Vprim +R

∂r
= 0 (30)

(a+ δr)2ϕ̇ = a2n(1 + γ) . (31)

Substituting Eq. 31 into 30, we obtain

¨(a+ δr)− a4n2(1 + γ)2

(a+ δr)3
+

∂(Vprim +R)

∂r
= 0 . (32)

By separating the perturbation terms according to order, we have

¨δr(1) + 2an2γ(1) + 3n2δr(1) +

(
∂R
∂r

)
(1)

= 0 (33)
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¨δr(2) + 2an2γ(2) + an2γ2(1) + 3n2δr(2)

− 6n2δr(1)γ(1) +

(
∂R
∂r

)
(2)

= 0 .
(34)

Continuing with our analysis and considering ∂R/∂r under the assumption of a =

a′, we will investigate the behavior of δr up to the second order, δr(1) + δr(2). For

this purpose, it is appropriate to designate the perturber’s radial distance as r′ =

a′ + δr′(1). We will ensure that the subsequent quantities are maintained to relevant

orders. Note that we use primed quantities to signify the perturbing body, and

interchanging primed and unprimed variables in expressions allows the conversion of

derived quantities between perturbing and perturbed bodies.

Figure 4. A sketch of two seeds on similar circular orbits and subject to mutual pertur-
bations. The mutual distance ∆ and mutual angle β are labeled on the graph.

Denote α = r/r′ ≈ 1 + ρ− ρ′, ∆ the mutual distance between the two seeds, and β
the mutual angle of the two seeds, as shown in Fig. 4. For 0 < β < 2π, we have

r′3

∆3
= (1 + α2 − 2α cosβ)−

3
2

≈ 2− 3(ρ− ρ′)

16
csc3

β

2
.

(35)

The disturbing function for this configuration is

R = Gm′
(
1

∆
− r · r′

r′3

)
. (36)

Taking the partial derivative of R with respect to r gives

∂R
∂r

=
Gm′

a′2(1 + ρ′)2

(
(cosβ − α)

(
r′

∆

)3

− cosβ

)
. (37)
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Expanding Eq. 37 in terms of ρ and ρ′ by order, we have(
∂R
∂r

)
(1)

= −Gm′

a′2

(
cosβ +

1

4
csc

β

2

)
(38)

(
∂R
∂r

)
(2)

=
Gm′

a′2

(
ρ

(
1− 3 cosβ

8

)
csc

β

2

+ρ′
(
7 cosβ + 3

64

)
csc

β

2

)
.

(39)

Combining Eqs. 33 and 38, we obtain

δr(1) = c1 sin(
√
3nt+ c2)

− sin(
√
3nt)√
3n

∫ t

1
dτ · cos(

√
3nτ)f(τ)

+
cos(

√
3nt)√
3n

∫ t

1
dτ · sin(

√
3nτ)f(τ) ,

(40)

with

f(t) =

(
∂R
∂r

)
(1)

+ 2an2γ(1) . (41)

We disregarded the influence of the perturbative parts of the orbit on β to ensure the

system can be solved in general forms. Before continuing to solve the second order of

δr, simplification of Eq. 34 is needed. Denote the deviation of the true anomaly of the

perturbed body from the unperturbed configuration as E = ϕ−λ, where λ = nt+λ0

is the mean longitude, equivalent to the true anomaly of the circular orbit. Taking

the derivative of E with respect to λ gives

∂E
∂λ

=
1 + γ

(1 + ρ)2
− 1 . (42)

Expand Eq. 42 in terms of γ and ρ, we get

∂E(1)
∂λ

= γ(1) −
2δr(1)
a

. (43)

Integrating Eq. 43 with respect to λ yields

E(1) = (2an2 + 1)γ(1)λ− c1√
3
cos(

√
3nt+ c2) + Const. . (44)

To avoid E dependent on λ, γ(1) must be zero. E(2) can be calculated with similar

arguments if needed.

By applying this result, Eq. 34 simplifies to

¨δr(2) + 2an2γ(2) + 3n2δr(2) +

(
∂R
∂r

)
(2)

= 0 . (45)
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Combining Eqs. 45 and 39, we obtain the solution for δr(2):

δr(2) = c3 sin(
√
3nt+ c4)

− sin(
√
3nt)√
3n

∫ t

1
dτ · cos(

√
3nτ)g(τ)

+
cos(

√
3nt)√
3n

∫ t

1
dτ · sin(

√
3nτ)g(τ) ,

(46)

with

g(t) =

(
∂R
∂r

)
(2)

+ 2an2γ(2) . (47)

As the seeds approach to merge, i.e., β → 0, both f(t) and g(t) diverge to infinity,

and δr also approaches infinity, a state that contradicts the near-circular orbit as-

sumption. Consequently, the merger of seeds in a non-chaotic manner is unfeasible.

In cases where seeds merge amidst chaotic dynamics, the resultant merged secondary

is unlikely to align in a spin-orbit resonance configuration, nor will its orbit be circular.
Examining Eq. 40, we find first-order stable “equilibrium points”at β = 3π/5

and β = 7π/5, corresponding to instances where f(t) = 0. Near these points, δr(1)
converges to its first sinusoidal term over time, and the stability can be examined by
denoting the last two terms of δr(1) as h(t), and take the time derivative

ḣ(t) =− cos(
√
3nt)

∫ t

1
dτ · cos(

√
3nτ)f(τ)

+ sin(
√
3nt)

∫ t

1
dτ · sin(

√
3nτ)f(τ) ,

(48)

which always has the opposite sign as h(t).

These results suggest that, when these two seeds come close to each other in near-

circular orbits, the mutual perturbation makes each of their orbital radii oscillate,

and their angular separation will approach 3π/5 instead of 0. We conclude that if

multiple seed accretion indeed occur, its process must be chaotic and will not lead

to a configuration at which a secondary is close to tidal locked, and other spin-orbit

dynamics will dominate the final rotation of the merged secondary.

5. SEED ROTATION REDUCTION

In preceding sections, we have scrutinized the intricacies of the spin and orbital

dynamics in the early phase of rotational breakup. We investigated the migration

and formation of seeds, and developed criteria for seeds to form into low-eccentric

orbits with low spin. Now, we shift our focus to the later phase of BAS formation,

where a solitary secondary has formed beyond the Roche limit. Within this stage,

particle kinetics distribution attains an equilibrium state. Notably, larger particles,

on average, exhibit lower angular momentum per unit mass. This phenomenon stems

from the secondary’s need to carry away a substantial amount of angular momentum

to escape the Roche limit.
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At this advanced stage, the secondary primarily interacts with smaller particles.

This interaction is driven by two factors: firstly, the greater prevalence of smaller

particles in the outer ring and their sensitivity to the secondary’s gravitational influ-

ence, and secondly, insights gleaned from both the classical secular theory and section

4, which affirm that mutual perturbations among larger bodies do not substantially

alter orbital semimajor axes and eccentricities.

Figure 5. Simulation shows particles mostly impact the leading side of the seed, consistent
with the angular momentum argument above.

Given the secondary’s location beyond the Roche limit, and considering that ac-

creted granular materials predominantly occupy lower orbits within or around the

Roche limit, the secondary contains a comparatively higher angular momentum per

unit mass than the ring. As a consequence, the deposition of mass onto the seed

predominantly occurs on its leading side, symmetrical in latitude (Fig. 5). Should

the seed’s rotational angular speed surpass the orbital angular speed, a transfer of

angular momentum occurs from the seed to the impacting mass and experiences a

consistently non-zero torque. This torque counteracts the seed’s rotation, inducing a

reduction in its rotational angular speed, as depicted in Fig. 6.

A numerical simulation is carried out to demonstrate the proposed scenario. In

the simulation, the rotation of the secondary is randomly selected after each impact

event, spanning from 0 to 5 times the orbital angular velocity. The simulation tracks

the impact positions of particles on the secondary and calculates the torque per unit

impacting mass for each impact event. This information is then utilized to generate

a torque profile comprising 500 data points with a dependence on primary’s rotation.

Then, we tracked the rotation alteration of a secondary originally rotating five times

faster than the orbital rotation. Impacting masses are randomly selected based on

a normal distribution of impactor size, centered at 0m with a standard deviation of

1m, and corresponding torques are drawn from the generated torque profile. The
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Figure 6. Blue arrows are linear velocity vectors of the seed, green arrows are velocity
vectors of incoming masses viewed in the co-rotating frame. Yellow arrows are the velocity
vectors of incoming masses viewed in the secondary’s rotating frame. It can be seen that a
non-zero averaged torque created by the masses counters the rotation of the secondary in
the co-rotating frame.

result in Fig. 7 shows that the secondary’s rotation rapidly decreases, converging

towards a state close to resonance.

6. CONCLUSION

The goal of this work is to understand the interplay of spin and orbital dynamics dur-

ing the formation of binary asteroid systems, within the framework of the rotational

breakup theory. This is motivated by the contrast between the observed predomi-

nance of tidal-locking binary asteroid systems and the lengthy processing timescales

required to reach 1:1 spin-orbit resonance from arbitrary initial conditions. Our in-

vestigation commences with an exploration of how the process of angular momentum

transfer influences the evolution of seeds’ orbits, driving them towards the vicinity of

the Roche limit during the initial stage of rotational breakup. We proceed to inves-

tigate the emergence of chaos prompted by the secondary’s rotation and establish a

rotational bound applicable to planar sphere-spheroid binary systems. This bound is

constructed by drawing upon relevant equations and inequality in many body kinetics

on simplifications based on non-chaotic configurations.

Significantly, built upon the classical planetary perturbing theory, our results offer

new insights as the satellite bodies’ orbital semimajor axis ratio approaches unity.

We explored the possibility of secondary pertaining to a low rotation rate and low

eccentric orbit from the accretion of slowly approaching seeds. We concluded that this

possibility is slim, as under mutual perturbations, seeds’ radial distance will engage in
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Figure 7. Simulated secondary accreting mass from the ejecta particles. The accretion
torque rapidly decreases secondary’s rotation to near resonance. The secondary is assumed
with a radius 10m, density 2 g/cm3, and a circular orbit with a radius of 1000m.

oscillatory modes and their mutual angle will converge towards 3π/5. The occurrence

of a merger event necessarily invokes chaos and the resultant merged entity’s orbit

and spin would be arbitrarily configured, inconsistent of tidally locked secondary in

most BASs.

Our final proposition centers on an mechanical mechanism driving rotation alter-

ations during the concluding stages of BAS formation. This process hinges on the

difference in angular momentum between the secondary asteroid and the granular

materials enveloping the ejecta ring. As the secondary absorbs mass from this ring,

the impact events predominantly occur on its leading side. When the secondary is

not in 1:1 spin-orbit resonance, these impacts create a net torque countering the ro-

tation of the secondary. As mass is continuously transferred from the ring to the

secondary, this process catalyzes a quick decrease in the secondary’s rotation rate.

Importantly, this outcome will materialize due to a substantial mass absorption, un-

derscoring the potency of this mechanical process in influencing the final rotation

state of the secondary entity.

This study bears notable implications and significance across various dimensions.

Foremost, it furnishes theoretical underpinnings for estimating the rotation and

orbital characteristics of BASs immediately post-formation. This aspect has far-
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reaching consequences, aiding in the refinement of estimates pertaining to the onset

time of influential mechanisms such as tidal and thermal forces and developments

of a comprehensive spin-orbit profile of BASs. Furthermore, the study establishes

constraints governing the evolution trajectory and formation environment within the

rotational breakup theory. Lastly, the proposed novel mechanism for rotation reduc-

tion holds the potential to alleviate the conundrum surrounding the prevalence of a

sizable 1:1 spin-orbit resonant BAS population. These insights collectively contribute

to the enhancement of our understanding of the distinctive properties of binary as-

teroids.

However, it is pertinent to acknowledge the study’s limitations. The approach pre-

dominantly adopts minimalistic modeling considerations, involving assumptions such

as a planar sphere-spheroid model. Additionally, aspects like the system’s inclina-

tion, obliquity, and axis tilt of the seeds have been omitted. While these simplifi-

cations notably facilitate calculations while preserving correspondence with observa-

tions, employing more intricate models would undoubtedly offer deeper insights into

the dynamics characterizing BASs and their formation. Furthermore, the descriptions

related to seed migration are grounded in a mildly collisional environment, yet the

prevalence of such environment needs further validation.
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Ćuk, M., 2007. Formation and
Destruction of Small Binary Asteroids.
The Astrophysical Journal 659,
L57–L60. URL: https://iopscience.iop.
org/article/10.1086/516572,
doi:https://doi.org/10.1086/516572.

https://linkinghub.elsevier.com/retrieve/pii/S0019103515005722
https://linkinghub.elsevier.com/retrieve/pii/S0019103515005722
https://doi.org/10.1016/j.icarus.2015.12.019
http://link.springer.com/10.1007/978-94-017-2304-6_10
http://link.springer.com/10.1007/978-94-017-2304-6_10
https://doi.org/10.1007/978-94-017-2304-6_10
https://doi.org/10.1007/978-94-017-2304-6_10
http://link.springer.com/10.1023/B:CELE.0000034503.44164.b5
http://link.springer.com/10.1023/B:CELE.0000034503.44164.b5
https://doi.org/10.1023/B:CELE.0000034503.44164.b5
http://link.springer.com/10.1007/s10569-009-9184-7
http://link.springer.com/10.1007/s10569-009-9184-7
https://doi.org/10.1007/s10569-009-9184-7
https://doi.org/10.1007/s10569-009-9184-7
http://arxiv.org/abs/1010.2676
https://doi.org/10.1088/0004-6256/141/2/55
https://doi.org/10.1088/0004-6256/141/2/55
https://linkinghub.elsevier.com/retrieve/pii/S0019103505003210
https://linkinghub.elsevier.com/retrieve/pii/S0019103505003210
https://doi.org/10.1016/j.icarus.2005.08.015
https://www.science.org/doi/10.1126/sciadv.abm6229
https://www.science.org/doi/10.1126/sciadv.abm6229
https://doi.org/10.1126/sciadv.abm6229
http://www.nature.com/articles/nature07078
http://www.nature.com/articles/nature07078
https://doi.org/10.1038/nature07078
https://iopscience.iop.org/article/10.1086/516572
https://iopscience.iop.org/article/10.1086/516572
https://doi.org/10.1086/516572

	Introduction
	Mass transfer flux and orbital eccentricity
	Mass transfer efficiency
	Outward migration of rotational fission ejecta
	Further evolution of the ejecta ring

	Rotational bound and onset of chaos
	Secular theory for seed merger
	Seed rotation reduction 
	Conclusion

