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1 Introduction

This thesis is based on lectures from John Morgan in “Gauge Theory and Topology of

Four-Manifolds” [FW91], a collection of lectures on the analytic, topological, and dif-

ferential geometric aspects of gauge theory. This paper serves as a survey of the prelim-

inary ideas and concepts that are essential to the understanding of gauge theory. This

is an attempt to fill in details that are left out in the notes and expand on ideas with an

undergraduate-level audience in mind.

This paper will cover concepts and major results regarding principal bundles, and

connections, and briefly touch on curvatures. The first section will introduce the definition

of principal bundles and certain properties with examples that are often seen in the context

of gauge theory. The second section focuses on the 3 types of connection introduced in

the lectures: geometric connection, connection as a one form, and covariant derivative.

The majority of the section is spent on developing the relationship between geometric

connections and their corresponding one-forms and understanding the space of connection

one-forms. Lastly, we introduce the idea of curvatures on principal bundles with respect

to the three types of connections.

In this thesis, we assume an understanding of some differential geometry such as

manifolds, tangent spaces, and differential forms, and fiber bundles. Some books I used

to understand some background in differential geometry include “Introduction to Smooth

Manifolds” by John Lee [Lee00], “Manifolds and Differential Geometry” by Jeffrey Lee

[Lee09], “Topics in differential geometry” by Peter Michor [Mic08].
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2 Principal Bundles

2.1 Principal Bundles

Definition 2.1. ([FW91]Def. 2.2.1) A (right) principal G-bundle consists of a triple (𝑃, 𝐵, 𝜋)

where 𝜋 : 𝑃 → 𝐵 is a map and a continuous, free right action 𝑃 ×𝐺 → 𝑃 with respect to

which 𝜋 is invariant and so that 𝜋 induces a homomorphism between the quotient space

of this action and 𝐵. Furthermore, there is an open covering {𝑈𝛼} of 𝐵 over which all

the above data are isomorphic to the product data. That is to say for each 𝛼 there exists a

commutative diagram

𝜋−1(𝑈𝛼) 𝑈𝛼 × 𝐺

𝑈𝛼 𝑈𝛼

𝜙𝛼

𝜋 𝑝1

=

(1)

where 𝜙𝛼 is a homomorphism that is equivariant with respect to the right 𝐺- actions and

𝑝1 is the projection onto the first factor.

Other sources may replace the condition of the induced homoeomorphism between

the quotient space and 𝐵 with the transitive property of the action. The action’s transitivity

leads to the “collapsing” of the fiber of (𝑃, 𝐵, 𝜋); if we consider the quotient space 𝑃/∼𝐺 ,

where 𝑝 ∼ 𝑝′ if 𝑝 = 𝑝′𝑔 for some 𝑔 ∈ 𝐺, since the action of 𝐺 is transitive, we have that

𝑃/∼𝐺� 𝐵

as for all 𝑝 ∈ 𝜋−1(𝑏), we have that 𝑝 · 𝐺 = {𝑝 · 𝑔 |∀𝑔 ∈ 𝐺} = 𝜋−1(𝑏).
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For a trivial example, consider the topological product {1,−1} × 𝑆1 over the space

𝑆1. Let 𝑔 = 𝑂 (1), then this is a trivial principal bundle.

Figure 1: trivial 𝑂 (1) bundle over 𝑆1

We can construct a nontrivial example by having also 𝑆1 as the base space and the

set {−1, 1} as fiber over 𝑆1 with one twist by gluing by −1.

Figure 2: nontrivial 𝑂 (1) bundle over 𝑆1

This space also admits a group action from 𝑂 (1).

For any manifold 𝑀 , one can construct a natural principal bundle, the frame bundle,

from the tangent bundle 𝑇𝑀 . Let 𝜋 : 𝑇𝑀 → 𝑀 be the projection map. Take 𝑥 ∈ 𝑀 and

note 𝜋−1(𝑥) = 𝑇𝑥𝑀 ⊂ 𝑇𝑀 is a real 𝑛 dimensional vector space. Let 𝐵𝑥 be the set of all

bases and 𝛽𝑥 = {𝑣1, · · · , 𝑣𝑛} be an element of 𝐵𝑥 denoting a set of basis vectors for 𝑇𝑥𝑀 ,

then construct a new principal bundle �̃� : 𝐸 → 𝑀 where 𝐸 is the new total space such

that

𝐸 |𝑥 = �̃�−1(𝑥) = {(𝑥, 𝛽𝑥) | for all 𝛽𝑥 ∈ 𝐵𝑥}

is the data over each point of 𝑀 . Since 𝑇𝑥𝑀 is a real vector space, there is a natural action

from 𝐺𝐿 (𝑛,R) on 𝐵𝑥 (linear functions map basis to basis). and we know this action to be
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free and transitive.

Another important notion of principal bundles is that they naturally determine their

associated vector bundles.

Let 𝜋 : 𝑃 → 𝐵 be a principal bundle with a 𝐺 action. Let 𝑉 be a vector space of

which 𝐺 has a natural action; if 𝐺 was a linear lie group embedded into 𝐺𝐿 (𝑛,R), then

𝑉 can be the vector space R𝑛. Let 𝐺 act on the left on the product

𝐺 × (𝑃 ×𝑉) → 𝑃 ×𝑉

𝑔 · (𝑝, 𝑣) = (𝑝 · 𝑔−1, 𝑔 · 𝑣),

and then consider the quotient space of 𝑃 ×𝑉 by the action of 𝐺 action:

𝑃 ×𝐺 𝑉 := (𝑃 ×𝑉)/𝐺 = (𝑃 ×𝑉)/∼

(𝑝, 𝑣) ∼ (𝑝𝑔−1, 𝑔𝑣), 𝑔 ∈ 𝐺.

We denote the orbits by

[(𝑝, 𝑣)] = {𝐺 · (𝑝, 𝑣)}

We also have a natural projection map

𝜋 : 𝑃 ×𝐺 𝑉 → 𝐵

𝜋( [(𝑝, 𝑣)]) = 𝜋(𝑝)

The well-definedness of 𝜋 is obvious as the action preserves the fiber; i.e., if [(𝑝1, 𝑣1)] =

[(𝑝2, 𝑣2)], then there is some 𝑔 ∈ 𝐺 such that 𝑝2 = 𝑝1𝑔 and 𝑣2 = 𝑔𝑣1, and then 𝜋(𝑝2) =

𝜋(𝑝1𝑔) = 𝜋(𝑝1).

We can then claim that 𝜋 : 𝑃 ×𝐺 𝑉 → 𝐵 is a vector bundle. To show that such space has

the appropriate trivialization we need the result of the following lemma:

4



Lemma 2.2. Let 𝑀 , �̃� , and 𝑁 be manifolds such that 𝐺 acts on the right on 𝑀 and �̃� ,

and acts on the left on 𝑁 . If we have an isomorphism

𝜙 : 𝑀 −→ �̃�

that is equivariant with respect to the 𝐺 action, then there is an isomorphism

𝜓 : 𝑀 ×𝐺 𝑁 −→ �̃� ×𝐺 𝑁

[(𝑚, 𝑛)] ↦→ [(𝜙(𝑚), 𝑛)]

Proof. We begin by checking the well definedness of 𝜓. Consider [(𝑚1, 𝑛1)] = [(𝑚2, 𝑛2)] ∈

𝑀 ×𝐺 𝑁 , so (𝑚1, 𝑛1) = (𝑚2𝑔
−1, 𝑔𝑛2) for some 𝑔 ∈ 𝐺. Then,

𝜓( [(𝑚1, 𝑛1)]) = [(𝜙(𝑚1), 𝑛1)]

and

𝜓( [(𝑚2, 𝑛2)]) = [(𝜙(𝑚2), 𝑛2)]

and given that 𝜙 is equivariant to the group action,

𝜙(𝑚1) = 𝜙(𝑚2𝑔
−1) = 𝜙(𝑚2)𝑔−1

we have that (𝜙(𝑚1), 𝑛1) = 𝑔(𝜙(𝑚2), 𝑛2), so [(𝜙(𝑚1), 𝑛1)] = [(𝜙(𝑚2), 𝑛2)], meaning 𝜓

is indeed well-defined.

To see the injectivity of 𝜓, let 𝜓 [(𝑚1, 𝑛1)] = 𝜓 [(𝑚2, 𝑛2)], so

[(𝜙(𝑚1), 𝑛1)] = [(𝜙(𝑚2), 𝑛2)]

meaning

(𝜙(𝑚1), 𝑛1) = (𝜙(𝑚2)𝑔−1, 𝑔𝑛2)

5



once again, by the equivariance of 𝜙, we have

𝜙(𝑚1) = 𝜙(𝑚2)𝑔−1 = 𝜙(𝑚2𝑔
−1)

and since 𝜙 is an isomorphism, we can claim that 𝑚1 = 𝑚2𝑔
−1 implying that (𝑚1, 𝑛1) =

𝑔(𝑚2, 𝑛2), or equivalently [(𝑚1, 𝑛1)] = [(𝑚2, 𝑛2)].

For surjectivity, take [(𝑚2, 𝑛2)] ∈ �̃� ×𝐺 𝑁 , since 𝜙 is an isomorphism, there is some

𝑚1 ∈ 𝑀 such that 𝜙(𝑚1) = 𝑚2, so 𝜓( [(𝑚1, 𝑛1)]) = [(𝑚2, 𝑛2)].

We then have that 𝜓 is an isomorphism. □

Proposition 2.3. The associated bundle �̃� : 𝑃 ×𝐺 𝑉 → 𝐵 is a vector bundle. On top of

that, the transition functions for the associated vector bundle is the same as the transition

functions for 𝑃.

Proof. First, notice that

�̃�−1(𝑈𝛼) = {[(𝑝, 𝑣)] | 𝜋(𝑝) ∈ 𝑈𝛼}

= 𝜋−1(𝑈𝛼) ×𝐺 𝑉 (2)

By the triviality of the principal bundle from (1), we have 𝜙𝛼 : 𝜋−1(𝑈𝛼)
∼−→ 𝑈𝛼 ×𝐺,

and by the last lemma, we have

𝜓𝛼 : �̃�−1(𝑈𝛼)
∼→ (𝑈𝛼 × 𝐺) ×𝐺 𝑉 (3)

[(𝑝, 𝑣)] ↦→ [(𝜙𝛼 (𝑝), 𝑣)]

Next, we want to show that there is an isomorphism

𝜙𝛼 : 𝑈𝛼 ×𝑉
∼−−→ (𝑈𝛼 × 𝐺) ×𝐺 𝑉 (4)

(𝑏, 𝑣) ↦→ [(𝑏, 𝑒), 𝑣]
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To prove injectivity, say 𝜙𝛼 (𝑏1, 𝑣1) = 𝜙𝛼 (𝑏2, 𝑣2), so [(𝑏1, 𝑒), 𝑣1] = [(𝑏2, 𝑒), 𝑣2].

Since 𝐺 acts trivially on 𝐵, 𝑏1 = 𝑏2. If for some 𝑔 ∈ 𝐺, we have 𝑒𝑔−1 = 𝑒, then 𝑔 = 𝑒, so

𝑒[(𝑏1, 𝑒), 𝑣1] = [(𝑏2, 𝑒), 𝑣2], meaning 𝑣1 = 𝑣2. So 𝜙𝛼 is injective.

To show surjectivity, take [(𝑏, 𝑔), 𝑣] ∈ (𝑈𝛼×𝐺)×𝐺𝑉 . Since [(𝑏, 𝑔), 𝑣] = [(𝑏, 𝑒), 𝑔𝑣],

we know that 𝜙𝛼 (𝑏, 𝑔𝑣) = [(𝑏, 𝑔), 𝑣], so this map is also surjective, which prove that 𝜙𝛼

is an isomorphism.

Altogether (2), (3), and (4) show that the bundle is indeed a vector bundle where the

compositions

𝜋−1
𝑎 (𝑈𝛼)

𝜓𝛼

∼ // (𝑈𝛼 × 𝐺) ×𝐺 𝑉
𝜙′−1
𝛼

∼ //𝑈𝛼 ×𝑉 (5)

[(𝑝, 𝑣)] ↦→ [(𝜙𝛼 (𝑝), 𝑣)] = [(𝜋(𝑝), 𝑔), 𝑣] ↦→ [𝜋(𝑝), 𝑣]

are the trivializations 𝑃 ×𝐺 𝑉 .

Now let𝑈𝛼 and𝑈𝛽 be open sets with nontrivial intersection, then

𝜙𝛼𝜙
−1
𝛽 : 𝑈𝛼

⋂
𝑈𝛽 × 𝐺 → 𝑈𝛼

⋂
𝑈𝛽 × 𝐺 (6)

(𝑏, 𝑔) ↦→ (𝑏,Φ𝛼𝛽 (𝑏)𝑔) (7)

where Φ𝛼𝛽 : 𝑈𝛼
⋂
𝑈𝛽 → 𝐺 is the transition function for 𝑃 over 𝑈𝛼

⋂
𝑈𝛽. Similarly,

consider:

𝜙′𝛼𝜙
′−1
𝛽 : (𝑈𝛼

⋂
𝑈𝛽 × 𝐺) ×𝐺 𝑉 → (𝑈𝛼

⋂
𝑈𝛽 × 𝐺) ×𝐺 𝑉

knowing that (𝑏, 𝑔) ↦→ (𝑏, 𝑔(Φ𝛼𝛽 (𝑏)) from (7), we can say

[(𝑏, 𝑔), 𝑣] ↦→ [(𝑏, 𝑔Φ𝛼𝛽 (𝑏)), 𝑣] (8)

Rewriting (8) as corresponding elements in (𝑈𝛼
⋂
𝑈𝛽)×𝑉 with respect to the trivialization
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in (5):

(𝑏, 𝑔𝑣) ↦→ (𝑏,Φ𝛼𝛽 (𝑏)𝑔𝑣)

So the transition function for 𝜋𝑎 : 𝑃 ×𝐺 𝑉 → 𝐵 over𝑈𝛼
⋂
𝑈𝛽 is Φ̃𝛼𝛽 : 𝑏 ↦→ Φ𝛼𝛽 (𝑏) □
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3 Connection

3.1 Geometric connection

The most geometrically intuitive way of understanding connections is by the notion of

distributions, or horizontal bundles. Recall that a distribution D on a manifold 𝑀 is a

sub-vector bundle of the tangent bundle 𝑇𝑀 , i.e., D ⊆ 𝑇𝑀 . In other words a distribution

is a smoothly varying family of subspaces of the tangent spaces to 𝑀 . If 𝑓 : 𝑀 → 𝑁

is a 𝐶∞ morphism of manifolds, then a distribution D ⊆ 𝑇𝑀 is called horizontal if the

composition D ↩→ 𝑇𝑀
𝑇 𝑓
→ 𝑓 ∗𝑇𝑁 = 𝑇𝑁 ×𝑁 𝑀 is an isomorphism.

Definition 3.1 (Geometric connection). ([FW91]p.65) A geometric connection on a prin-

cipal 𝐺-bundle 𝜋 : 𝑃 → 𝐵 is a horizontal distribution H on 𝑃 that is invariant under the

action of 𝐺.

We now explain what we mean by H being invariant under the actin of 𝐺. We are

given the action

𝑃 × 𝐺 → 𝑃.

Taking derivatives, we have

𝑇𝑃 × 𝑇𝐺 = 𝑇𝑃 × (𝑇𝑒𝐺 × 𝐺) // 𝑇𝑃

and restricting to 𝑇𝑃 × 𝐺 = 𝑇𝑃 × {0} × 𝐺 gives the action

𝑇𝑃 × 𝐺 → 𝑇𝑃.

In other words, for each 𝑔 ∈ 𝐺, we have an isomorphism 𝑔 : 𝑃 → 𝑃, and taking derivat-

ives we have an associated map 𝑇𝑃 → 𝑇𝑃. To say that H is invariant under the action of

𝐺 we mean that the following diagram commutes:
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𝑇𝑃 × 𝐺 // 𝑇𝑃

H × 𝐺
?�

OO

//H
?�

OO

In other words for each 𝑝 ∈ 𝑃 and each 𝑔 ∈ 𝐺, we have

H𝑝 · 𝑔 = H𝑝𝑔 (9)

Another equivalent definition comes naturally after defining a vertical bundle.

Definition 3.2 (vertical tangent bundle). ([FW91]Lemma 2.7.1) Let 𝑃 → 𝐵 be a smooth

fiber bundle. The vertical tangent bundle 𝑇𝑃𝑉 is the kernel of differential 𝑇𝜋 : 𝑇𝑃 → 𝑇𝐵.

A connection H is an invarriant complement of 𝑇𝑃𝑉 in the sense that for each 𝑝 ∈ 𝑃,

we have

𝑇𝑝𝑃 = 𝑇𝑝𝑃
𝑉 ⊕ H𝑝 (10)

.

With the isomorphism between H and 𝜋∗𝑇𝐵, given a vector field on 𝐵, we get a

vector field on 𝑃. Since vector fields can be integrated, this means that given a smooth

path 𝛾 : [0, 1] → 𝐵, then restricting the principal bundle to 𝛾, we obtain a vector field,

and so given any lift of 𝛾(0), there is a unique path lifting 𝛾 to 𝑃 passing through that

point, and tangent to the vector field at each point.

𝑇𝐵 � H � � //

$$

𝑇𝑃
𝑇 𝑓
//

~~

𝑇𝐵 ×𝐵 𝑃

uu

// 𝑇𝐵

��

𝑃 //

==

𝐵

𝜒

]]

Lemma 3.3 ([FW91, Def. 2.7.2]). Suppose that H is a connection for 𝑃 → 𝐵. Let

𝛾 : [0, 1] → 𝐵 be a smooth path and 𝑒 ∈ 𝜋−1(𝛾(0)). Then there is a unique path

�̄� : [0, 1] → 𝑃 such that �̃�(0) = 𝑒, 𝜋 ◦ �̃�, and �̃�′(𝑡) is contained in the horizontal space

H�̃�(𝑡) for all 𝑡 ∈ [0, 1].
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The existence of a unique lifting is a result from ODE.

Consider 𝑝0 and 𝑝0 · 𝑔 in 𝜋−1(𝑏0) and a path 𝛾 from 𝑏0 to 𝑏1 in 𝐵, from the lemma

we know that there is a unique path �̃� from 𝑝0 to a unique 𝑝1 ∈ 𝜋−1(𝑏1). Put �̃�𝑔 = �̃� · 𝑔

where the group action is carried out pointwise. We know that �̃�𝑔 is still continuous since

the group action is required to be continuous, and it is a path starting at �̃�(0) · 𝑔 = 𝑝0 · 𝑔,

and since 𝐺 actions preserve fibres, 𝜋 ◦ �̃�𝑔 = 𝛾, so �̃�𝑔 is in fact the unique lifted path

starting at 𝑝0 · 𝑔.

With this lemma, one can see that a connection determines an isomorphism between

fibers 𝜋−1(𝑏0) → 𝜋−1(𝑏1) for any 𝑏0, 𝑏1 ∈ 𝐵; let 𝛾 be a path between 𝑏0 and 𝑏1, fix-

ing 𝑝0 ∈ 𝜋−1(𝑏0), from the last lemma we know that there is a unique path �̃�0 such that

�̃�(1) = 𝑝1 which decides a unique 𝑝1 ∈ 𝜋−1(𝑏1) such that �̃�(1) = 𝑝1. By letting 𝐺 act on

�̃� we get an isomorphism from 𝜋−1(𝑏0) to 𝜋−1(𝑏1) where �̃�(0)𝑔 → �̃�(1)𝑔 for all 𝑔 ∈ 𝐺.

3.2 Connection as a one form

An equivalent way of looking at connections is through a Lie algebra valued one form

with specific properties, one of which involves a unique one form, the Maurer-Cartan

form 𝜔𝑚𝑐:

Definition 3.4. The Maurer-Cartan form 𝜔𝑚𝑐 ∈ Ω1(𝐺,G) is a unique one form invariant

under left multiplication by 𝐺 and whose value at the identity of 𝐺 is the identity map

from 𝑇𝐺𝑒 → G. This form is sometimes denoted 𝑔−1𝑑𝑔.

Lemma 3.5 ([FW91, Lemma 2.8.1]). A connection on a smooth principal bundle 𝜋 : 𝑃 →

𝐵 is equivariant to a differential one form 𝜔 ∈ Ω1(𝑃,G) with the following properties:

• Under right multiplication by 𝐺 the form 𝜔 transforms via the adjoint representa-

tion of 𝐺 on G;

𝜔𝑝·𝑔 (𝜏 · 𝑔) = 𝑔−1𝜔𝑝 (𝜏) · 𝑔 (11)
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• For any 𝑝 ∈ 𝑃, consider the embedding 𝑅𝑝 : 𝐺 → 𝑃 given by 𝑅𝑝 (𝑔) = 𝑝 · 𝑔. Then

the pullback 𝑅∗
𝑝 (𝜔) = 𝜔𝑀𝐶 .

Proof. Let us start with a one form with the given properties. Let H𝑝 denote the kernel

of the linear map 𝜔𝑝 : 𝑇𝑝𝑃 → G. Consider the left exact sequence

0 → H𝑝 ↩−→ 𝑇𝑝𝑃
𝜔𝑝−−→ G

where the exactness comes from the definition of H𝑝. From the local trivialization in (1)

𝜙𝛼 : 𝑃𝑈𝛼
� 𝑈𝛼 × 𝐺

taking the differential at 𝑝 yields

𝑇𝑝𝑃 � 𝑇𝑏𝐵 × G (12)

Now, consider the differential of the map 𝑅𝑝 at 𝑒, which gives 𝑇𝑅𝑝 |𝑒 : 𝑇𝑒𝐺 → 𝑇𝑝𝑃, and

notice that 𝜔𝑝 ◦ 𝑇𝑅𝑝 |𝑒 = 𝑅∗
𝑝 (𝜔) = 𝐼𝑑G since 𝑅∗

𝑝 (𝜔) = 𝜔𝑀𝐶 , which implies that 𝜔𝑝 is

surjective.

Since 𝑇𝑝𝑃 � 𝑇𝑏𝐵 × G, the form 𝜔𝑝 must map 𝑇𝑏𝐵 to 0 in G, so H𝑝 � 𝑇𝑏𝐵, meaning

that H𝑝 is ”horizontal”.

From the first condition in (11), we can infer that

𝜔𝑝𝑔 (𝜏𝑔) = 0 ⇐⇒ 𝑔−1𝜔𝑝 (𝜏)𝑔 = 0 ⇐⇒ 𝜔𝑝 (𝜏) = 0

with the last implication given by the fact that if 𝑔−1𝜔𝑝 (𝜏)𝑔 = 0 then 𝜔𝑝 (𝜏) = 𝑔−1 · 0 ·

𝑔 = 0 and conversely if 𝜔𝑝 (𝜏) = 0 then of course 𝑔−1𝜔𝑝 (𝜏)𝑔 = 0. Therefore there is

a one-to-one correspondence between 𝑘𝑒𝑟 (𝜔𝑝𝑔) and 𝑘𝑒𝑟 (𝜔𝑝) (specifically 𝑘𝑒𝑟 (𝜔𝑝𝑔) =

𝑘𝑒𝑟 (𝜔𝑝)𝑔), giving us the 𝐺 invariance of a connection. We then conclude that H𝑝 forms

a connection.
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Conversely, given a connection, define 𝜔𝑝 : 𝑇𝑝𝑃 → G to be

𝑇𝑝𝑃
𝑃𝑟𝑝−−−→ 𝑇𝑝𝑃

𝑉
(𝑇𝑅𝑝)−1

−−−−−−→ G (13)

where 𝑃𝑟𝑝 is projection into the vertical tangent space 𝑇𝑝𝑃𝑉 with kernel H𝑝.

We first check that such 𝜔𝑝 transforms under the adjoint representation as described

in (11):

𝜔𝑝·𝑔 (𝜏 · 𝑔) = 𝑔−1𝜔𝑝 (𝜏) · 𝑔

Let 𝐿𝑔 : 𝐺 → 𝐺 denote left multiplication on 𝐺, then based on the definition given,

we have that 𝑅𝑝𝑔 (𝑔′) = 𝑝𝑔𝑔′, but notice also

𝑅𝑝 ◦ 𝐿𝑔 (𝑔′) = 𝑝𝑔𝑔′

for all 𝑔′ ∈ 𝐺, so 𝑅𝑝𝑔 = 𝑅𝑝 ◦ 𝐿𝑔, which implies that 𝑅−1
𝑝𝑔 = 𝐿−1

𝑔 ◦ 𝑅−1
𝑝 , and we conclude

that

(𝑇𝑅𝑝𝑔)−1 = 𝑇𝐿−1
𝑔 ◦ 𝑇𝑅−1

𝑝 (14)

so we have

(𝑇𝑅𝑝𝑔)−1(𝑃𝑟) (𝜏𝑔) = 𝑔−1(𝑇𝑅𝑝)−1𝑃𝑟 (𝜏𝑔) (15)

And we know that 𝜏 = 𝑣𝑣𝑒𝑟 + 𝑣ℎ𝑜𝑟 where 𝑣𝑣𝑒𝑟 ∈ 𝑇𝑝𝑃
𝑣 and 𝑣ℎ𝑜𝑟 ∈ H𝑝 from (10), so

𝜏𝑔 = 𝑣𝑣𝑒𝑟𝑔 + 𝑣ℎ𝑜𝑟𝑔. Since connections are 𝐺 equivariant per (9) we have 𝑣ℎ𝑜𝑟𝑔 ∈ H𝑝𝑔

and it is always true that 𝑣𝑣𝑒𝑟𝑔 ∈ 𝑇𝑝𝑔𝑃𝑣, which implies that 𝑃𝑟 (𝜏𝑔) = 𝑃𝑟 (𝜏)𝑔. Combine

that with (14) and (15):

𝜔𝑝𝑔 (𝜏𝑔) = 𝑔−1𝑇𝑅𝑝 (𝑃𝑟 (𝜏)𝑔)

As we know that 𝑇𝑅𝑝 and group actions commute, we conclude that

𝜔𝑝𝑔 (𝜏𝑔) = 𝑔−1𝑇𝑅𝑝𝑃𝑟 (𝜏)𝑔
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Next, we want to show that 𝑅∗
𝑝 (𝜔) = 𝜔𝑀𝐶 . We show this by checking that 𝑅∗

𝑝 (𝜔) is

invariant under left multiplication by 𝐺 and has value at 𝑒 ∈ 𝐺 is equaled to the identity

map 𝐼G : 𝑇𝑒𝐺 = G → G

Consider the sequence

G
𝑇𝑅𝑝−−−→ T𝑝𝑃

𝑃𝑟−−→ 𝑇𝑝𝑃
𝑣

(𝑇𝑅𝑝)−1

−−−−−−→ G

We know that 𝑇𝑅𝑝 (G) = 𝑇𝑝𝑃
𝑣 since vertical tangent vectors are invariant to group ac-

tions, so 𝑅∗
𝑝 (𝜔) = 𝑇𝑅𝑝 ◦ (𝑇𝑅𝑝)−1 = 𝐼𝑑G □

Consider connections on example (2):

One can tell by looking at the figure that the horizontal distribution H is equal to the

tangent bundle 𝑇𝑃 and since from Lemma 3.5 we know that the horizontal distribution

is the kernel of the connection one-form, here we will have a trivial connection one-one.

Next, we move on to discussing the space of connections and its structure.

Definition 3.6. Let 𝑀 be a manifold and𝑉 be some vector space. A 𝑘-form𝜔 ∈ Ω𝑘 (𝑀,𝑉)

is horizontal if for all 𝑥 ∈ 𝑀 and {𝑣1, · · · , 𝑣𝑘 } ∈ 𝑇𝑥𝑀𝑣 one has 𝜔𝑥 (𝑣1, · · · , 𝑣𝑘 ) = 0.

Lemma 3.7. Let 𝜋 : 𝑃 → 𝐵 be a principal bundle with adjoint bundle ad 𝑃. Given

𝜂 ∈ Ω1(𝑃,G), there is 𝜔 ∈ Ω1(𝐵, ad𝑃) with 𝜋∗(𝜔) = 𝜂 if and only if 𝜂 is horizontal and

transforms via adjoint representation of 𝐺 under right multiplication.

Proof. To be specific, 𝜋∗(𝜔) ∈ Ω1(𝑃, 𝜋∗(ad𝑃)) where 𝜋∗(ad𝑃) is the pull back of ad𝑃
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therefore we need

𝑃𝑟𝑝 : 𝜋∗(ad𝑃)𝑝 → G

to project onto the Lie algebra. So more precisely we have

𝜂 = 𝑃𝑟𝜋∗(𝜔) ∈ Ω(𝑃,G) (16)

Let us first show that elements in 𝜋∗(ad𝑃) transform under the adjoint representation

as well. Consider a locally trivial principal bundle 𝜋 : 𝑃 → 𝐵, so 𝑃 = 𝐵 × 𝐺. Then

ad𝑃 = (𝐵 × 𝐺) ×𝐺 G = 𝐵 × G. Consider

𝜋∗(ad𝑃) ad𝑃

𝑃 𝐵

𝜋∗

�̃�𝑟 𝑃𝑟

𝜋

where 𝜋∗(ad𝑃) = 𝑃 ×𝐵 ad𝑃 = 𝐵 × 𝐺 × G, since 𝑃 → 𝐵 is assumed to be trivial.

Consider 𝜄𝑝 : G → ad𝑃 where 𝜄(𝑣) = [𝑝, 𝑣]. Let us start with a one form 𝜂 ∈

Ω1(𝑃,G) such that 𝜂𝑝𝑔 (𝜏𝑔) = 𝑔−1𝜂𝑝 (𝜏)𝑔. For each 𝑏 ∈ 𝐵 and 𝜈 ∈ 𝑇𝑏𝐵 pick some

𝑝 ∈ 𝜋−1(𝑏) and 𝜏 ∈ 𝑇𝜋−1
𝑝 (𝜈). Then define 𝜔 ∈ Ω1(𝐵, ad𝑃) pointwise:

𝜔𝑏 (𝜈) = 𝜄𝑝 (𝜂𝑝 (𝜏)) (17)

so

𝜋∗(𝜔)𝑝 (𝜏) = 𝜔𝜋(𝑝) (𝑇𝜋𝑝 (𝜏)) = 𝜔𝑏 (𝜈) = 𝜄(𝜂𝑝 (𝜏))

We then verify that this is independent of choices made in the first step. Let 𝜏 ∈ 𝑇𝜋−1
𝑝 (𝜈);

we want that

𝜔𝜋(𝑝) (𝑇𝜋𝑝 (𝜏)) = 𝜔𝜋(𝑝) (𝑇𝜋𝑝 (𝜏))

Recall that 𝑇𝑝𝑃 = 𝑇𝜋(𝑝)𝐵 ⊕ 𝑇𝑝𝑃𝑉 , so 𝜏 = 𝜏ℎ𝑜𝑟 + 𝜏𝑣𝑒𝑟 and 𝜏 = 𝜏ℎ𝑜𝑟 + 𝜏𝑣𝑒𝑟 where 𝜏ℎ𝑜𝑟 and

𝜏ℎ𝑜𝑟 ∈ 𝑇𝜋(𝑝)𝐵 and 𝜏𝑣𝑒𝑟 and 𝜏𝑣𝑒𝑟 ∈ 𝑇𝑝𝑃𝑉 . But since 𝜏ℎ𝑜𝑟 = 𝑇𝜋𝑝 (𝜏) = 𝑇𝜋𝑝 (𝜏) = 𝜏ℎ𝑜𝑟 and

𝜂 vanishes on vertical tangent vectors, we have that 𝜔𝜋(𝑝) (𝑇𝜋𝑝 (𝜏)) = 𝜔𝜋(𝑝) (𝑇𝜋𝑝 (𝜏)).
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Next, consider 𝑝 and 𝑝 ∈ 𝜋−1(𝑏), given by the transitivity of the 𝐺 action, there is

some 𝑔 ∈ 𝐺 such that 𝑝 = 𝑝𝑔. Since 𝜂𝑝 (𝜏𝑔) = 𝑔−1𝜂𝑝 (𝜏)𝑔, and

𝜄𝑝 (𝜂𝑝 (𝜏𝑔)) = [𝑝𝑔, 𝑔−1𝜂𝑝 (𝜏)𝑔] = [𝑝, 𝜂𝑝 (𝜏)] = 𝜄𝑝 (𝜂𝑝 (𝜏))

so the definition in (17) does not depend on 𝑝 or 𝜏.

Then, let 𝜂 ∈ Ω1(𝑃,G) such that there is 𝜔 ∈ Ω1(𝐵, ad𝑃) where 𝜂 = 𝜋∗(𝜔). We

want that 𝜂𝑝𝑔 (𝜏𝑔) = 𝑔−1𝜂𝑝 (𝜏)𝑔, or 𝜋∗𝜔𝑝𝑔 (𝜏𝑔) = 𝑔−1𝜋∗𝜔𝑝 (𝜏)𝑔. To be more precise,

𝜋∗(𝜔) ∈ 𝜋∗(ad𝑃), therefore we will need a projection map 𝑖𝑝 : 𝜋∗(ad𝑃)𝑝 → G so that

𝜂 = 𝑖𝜋∗(𝜔) ∈ Ω(𝑃,G).

Consider

𝜋∗𝜔𝑝 (𝜏) = (𝑝, 𝜔𝜋(𝑝)𝑇𝜋𝑝 (𝜏)) = (𝑝, [𝑝, 𝑣𝑝]) ∈ 𝜋∗(ad𝑃)

then

𝜋∗𝜔𝑝𝑔 (𝜏𝑔) = (𝑝𝑔, 𝜔𝜋(𝑝𝑔)𝑇𝜋𝑝𝑔 (𝜏𝑔)) = (𝑝𝑔, [𝑝𝑔, 𝑣𝑝𝑔])

But notice that since 𝜋 ◦ 𝑅𝑔 = 𝜋 as 𝜋 is 𝐺 invariant, by taking the derivative on both sides

we have that 𝑇𝜋 ◦ 𝑇𝑅𝑔 = 𝑇𝜋, meaning 𝑇𝜋𝑝𝑔 (𝜏𝑔) = 𝑇𝜋𝑝𝑔𝑇𝑅𝑔 |𝑝(𝜏) = 𝑇𝜋𝑝 (𝜏).

This implies that 𝜔𝜋(𝑝𝑔) (𝑇𝜋𝑝𝑔 (𝜏𝑔)) = 𝜔𝜋(𝑝) (𝑇𝜋𝑝 (𝜏), so [𝑝, 𝑣𝑝] = [𝑝𝑔, 𝑣𝑝𝑔]. From

the equivalence relation in ad𝑃, this implies that 𝑣𝑝𝑔 = 𝑔−1𝑣𝑝𝑔. Consequently,

𝜋∗𝜔𝑝𝑔 (𝜏𝑔) = (𝑝𝑔, [𝑝𝑔, 𝑔−1𝑣𝑝𝑔])

Then

𝜂𝑝 (𝜏) = 𝑃𝑟𝑝 (𝑝, [𝑝, 𝑣𝑝]) = 𝑣𝑝

𝜂𝑝𝑔 (𝜏𝑔) = 𝑃𝑟𝑝𝑔 (𝑝𝑔, [𝑝𝑔, 𝑔−1𝑣𝑝𝑔]) = 𝑔−1𝑣𝑝𝑔

so

𝜂𝑝𝑔 (𝜏𝑔) = 𝑔−1𝜂𝑝 (𝜏)𝑔
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We conclude that there is a one-to-one correspondence between forms in Ω1(𝐵, ad𝑃)

and horizontal forms that transform under the adjoint representation in Ω1(𝑃,G) □

Lemma 3.8 ([FW91, Lemma. 2.9.2]). If 𝑃 has a connection, then the space of all con-

nections on 𝑃 is an affine space; the underlying vector space is Ω1(𝐵, ad𝑃), the space of

one-forms on 𝐵 with values in the vector bundle ad𝑃.

Proof. Consider two connection one forms 𝜔1 and 𝜔2, both of which satisfy the two

conditions in lemma 3.8, then from the first condition we get that

(𝜔1 − 𝜔2)𝑝𝑔 (𝜏𝑔) = 𝑔−1((𝜔1 − 𝜔2)𝑝 (𝜏))𝑔

since 𝜔1 and 𝜔2 each transforms under the adjoint representation.

Recall that 𝜔1𝑝 ◦ 𝑇𝑅𝑝 |𝑒 = 𝐼𝑑G and 𝜔2𝑝 ◦ 𝑇𝑅𝑝 |𝑒 = 𝐼𝑑G . Then for each 𝑣 ∈ 𝑇𝑝𝑃𝑉 we

have that 𝑣 = 𝑇𝑅𝑝 |𝑒 (𝑢𝑣) for some 𝑢𝑣 ∈ G and

𝜔1𝑝 (𝑣) = 𝜔1𝑝 (𝑇𝑅𝑝 |𝑒 (𝑢𝑣)) = 𝑢𝑣

and similarly

𝜔2𝑝 (𝑣) = 𝜔2𝑝 (𝑇𝑅𝑝 |𝑒 (𝑢𝑣)) = 𝑢𝑣

therefore (𝜔1𝑝 − 𝜔2𝑝) (𝑣) = 0 for all 𝑣 ∈ 𝑇𝑝𝑃𝑉

So we have that the difference of two connection forms transforms under the ad-

joint representation and is horizontal. So we can apply lemma 3.10 and conclude that

connection one forms from an affine vector space over Ω1(𝐵, ad𝑃) □

One can always construct a global connection one form by the local triviality of

principal bundles. The method is illustrated in the lemma below.

Lemma 3.9 ([FW91, Lemma. 2.9.23]). Any smooth principal bundle 𝑃 → 𝐵 has a con-

nection 𝐴. The space of all connections is an affine space whose underlying vector space

is identified with Ω1(𝐵, ad𝑃)
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Proof. Let {𝑈𝛼} be an open cover of 𝐵 over which 𝑃 is trivial. Since

𝑃 |𝑈𝛼

𝜙𝛼−−→
∼
𝑈𝛼 × 𝐺

which implies that

𝑇𝑃 |𝑈𝛼

𝑇𝜙𝛼−−−→
∼

𝑇𝐵|𝑈𝛼 × G

Therefore 𝑇𝜙−1
𝛼 (𝑇𝐵|𝑈𝛼) is a horizontal distribution, and by lemma 3.8, this gives rise to

a local connection one form 𝜔𝛼 on𝑈𝛼. Let {𝜆𝛼} be a partition of unity subordinate to the

covering {𝑈𝛼}. Then form

𝜔 = Σ𝛼𝜆𝛼𝜔𝛼

which is a connection one form on all of 𝑃. □

3.3 Connection as covariant derivative

Suppose that 𝜔 is a connection one-form on a principal bundle 𝜋 : 𝑃 → 𝐵, and suppose

that𝑊 → 𝐵 is a vector bundle associated to this principal bundle and a linear action of 𝐺

on a vector space 𝑉 . We can use the connection to differentiate sections of 𝑊 , producing

one-forms with values in𝑊 . This covariant differentiation is a linear operator denoted as

∇𝐴 : Ω0(𝐵,𝑊) → Ω1(𝐵,𝑊). This is defined on some section 𝜎 of𝑊 → 𝐵 where

𝜎(𝑏) = [𝑝(𝑏), 𝑣(𝑏)] (18)

with 𝑝 being a section of 𝑃 → 𝐵 and 𝑣 being a smooth function from 𝐵 to 𝑉 . Then

∇𝐴 (𝜎) (𝑏) evaluated on 𝜏𝑏 ∈ 𝑇𝑏𝐵 is equal to

[𝑝(𝑏), 𝜔𝑝(𝑏) (𝑇 𝑝𝑏 (𝜏𝑏)) (𝑣(𝑏)) + 𝑇𝑣𝑏 (𝜏𝑏)] (19)

Notice that 𝑇 𝑝𝑏 (𝜏𝑏) is an element of 𝑇𝑝(𝑏)𝑃, and 𝜔𝑏 (𝑇 𝑝𝑏 (𝜏𝑏)) is an element of G, and

since we are using some representation 𝜌 : 𝐺 → 𝐴𝑢𝑡 (𝑉), by taking the derivative 𝑇𝜌𝑒 :
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G → 𝐸𝑛𝑑 (𝑉), by which 𝜔𝑏 (𝑇 𝑝𝑏 (𝜏𝑏)) acts on 𝑣(𝑏).

One can check that this expression does not depend on the choice of 𝑝 or 𝑣 for (18).

Consider some 𝑝 and �̃� such that [𝑝(𝑏), �̃�(𝑏)] = [𝑝(𝑏), 𝑣(𝑏)]. This implies that there is

some 𝑔 ∈ 𝐺 such that

𝑝(𝑏) = 𝑝(𝑏)𝑔 (20)

and

�̃�(𝑏) = 𝑔−1𝑣(𝑏)𝑔 (21)

(since [𝑝, 𝑣] = [𝑝𝑔, 𝑔−1𝑣𝑔]). Then, following the definition of the covariant derivative

from (19)

∇𝐴 (𝜎) (𝜏𝑏) = [𝑝(𝑏), 𝜔𝑝(𝑏)𝑇 𝑝𝑏 (𝜏𝑏) (�̃�(𝑏)) + 𝑇�̃�𝑏 (𝜏𝑏)]

To unpack the expression, first notice that since 𝑝 = 𝑝𝑔, so 𝑇 𝑝 = 𝑇 𝑝𝑔, and because

𝑝(𝑏) = 𝑝(𝑏)𝑔, we have that

𝜔𝑝(𝑏)𝑇 𝑝𝑏 (𝜏𝑏) = 𝜔𝑝(𝑏)𝑔 (𝑇 𝑝𝑏 ((𝜏𝑏)𝑔))

From the properties of a connection one form from (11), we have that

𝜔𝑝(𝑏)𝑔 (𝑇 𝑝𝑏 ((𝜏𝑏)𝑔)) = 𝑔−1𝜔𝑝(𝑏)𝑇 𝑝𝑏 (𝜏𝑏)𝑔

From (21), we have �̃�(𝑏) = 𝑔−1𝑣(𝑏)𝑔, so

𝜔𝑝(𝑏)𝑇 𝑝𝑏 (𝜏𝑏) (�̃�(𝑏)) = 𝑔−1𝜔𝑝(𝑏)𝑇 𝑝𝑏 (𝜏𝑏)𝑔𝑔−1𝑣(𝑏)𝑔 = 𝑔−1𝜔𝑝(𝑏)𝑇 𝑝𝑏 (𝜏𝑏) (𝑣(𝑏))𝑔

Similarly, since �̃�(𝑏) = 𝑔−1𝑣(𝑏)𝑔, we have 𝑇�̃�(𝑏) = 𝑔−1𝑇𝑣(𝑏)𝑔, so

[𝑝(𝑏), 𝜔𝑝(𝑏)𝑇 𝑝𝑏 (𝜏𝑏) (�̃�(𝑏))+𝑇�̃�𝑏 (𝜏𝑏)] = [𝑝(𝑏)𝑔, 𝑔−1𝜔𝑝(𝑏)𝑇 𝑝𝑏 (𝜏𝑏) (𝑣(𝑏))𝑔+𝑔−1𝑇𝑣(𝑏)𝑔]
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by the construction of the associated vector bundle

[𝑝(𝑏), 𝜔𝑝(𝑏)𝑇 𝑝𝑏 (𝜏𝑏) (𝑣(𝑏))+𝑇𝑣𝑏 (𝜏𝑏)] = [𝑝(𝑏)𝑔, 𝑔−1𝜔𝑝(𝑏)𝑇 𝑝𝑏 (𝜏𝑏) (𝑣(𝑏))𝑔+𝑔−1𝑇𝑣(𝑏)𝑔]

We conclude that the choice of 𝑝 and 𝑣 does not matter.

Another important property of the covariant derivative is that given any section 𝜎 :

𝐵 → 𝑊 and real-valued function 𝑓 on 𝐵 the covaraint derivative satisfies:

∇𝐴 ( 𝑓 𝜎) = 𝑓∇𝐴 (𝜎) + 𝑑𝑓 ⊗ 𝜎
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4 Curvature

4.1 Geometric Curvature

We begin with a geometric understanding included in Morgans’s notes. Let 𝑃 → 𝐵 be

a smooth principal 𝐺 bundle and let ad𝑃 be the vector bundle associated to 𝑃 and the

adjoint action of 𝐺 on its Lie algebra G. Suppose that 𝐴 is a connection on 𝑃 which

we view as a horizontal distribution. Now fix some 𝑏 ∈ 𝐵 and two linearly independent

tangent vectors 𝜏1, 𝜏2 at 𝐵. Consider local coordinate system (𝜒1, · · · , 𝑥𝑘 ) centered at 𝑏

such that 𝜕/𝜕𝜒1 |0 = 𝜏1 and 𝜕/𝜕𝜒2 |0 = 𝜏2. Then consider the rectangle [0, 𝜖] × [0, 𝜖]

in the (𝜒1, 𝜒2) subspace. We lift the four sides of this rectangle in a counterclockwise

fashion beginning with the side on the 𝜒1- axis. Let 𝑝 ∈ 𝑃 be the point to which the initial

point lifts. There is no guarantee that the end of the last side will be equal to 𝑝, but it will

lie within the same fiber and therefore can be expressed at 𝑝 · 𝑔 for some 𝑔 ∈ 𝐺, and more

specifically, this 𝑔 depends on 𝜖 , as one can imagine the smaller 𝜖 the closer to 𝑒 our 𝑔

will be, therefore we denote it as 𝑔(𝜖). Then consider

𝐾𝐴 (𝜖) = − 𝑙𝑜𝑔(𝑔(𝜖))
𝜖2

which is an element of the Lie algebra.

Lemma 4.1 ([FW91, Lemma. 3.1.1]). The element in G given by

𝐾𝐴 (𝑝, 𝜏1, 𝜏2) = 𝑙𝑖𝑚𝜖→0𝐾𝐴 (𝜖)

depends only on 𝑝, 𝜏1, 𝜏2. Furthermore, the point

[𝑝, 𝐾𝐴 (𝑒, 𝜏1, 𝜏2)] ∈ ad𝑃

depends only on 𝜏1, 𝜏2 and is bilinear and skew-symmetric in these variables. It is given
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by evaluating a two-form on 𝐵 with values in ad𝑃, denoted 𝐹𝐴, on (𝜏1, 𝜏2). This two-form

𝐹𝐴 is called the curvature of 𝐴.

We can also define the two-form in terms of vector fields. Suppose 𝜒1, 𝜒2 are vector

fields on 𝐵 and let �̃�1, �̃�2 be lifted through H on 𝑃. Let �̃� = [ �̃�1, �̃�2], we can use the

horizontal subspaces to project this vector field to a vertical vector field �̃�𝑣 on 𝑃.

Lemma 4.2 ([FW91, Lemma. 3.1.3]). The vector field �̃�𝑣 is a 𝐺 invariant vector field on

𝑃. As such it is equivalent to a section 𝜎(𝜒1, 𝜒2) of ad𝑃.

Proof. First, notice that both �̃�1 and �̃�2 are horizontal and therefore 𝐺 equivariant, so

therefore so is �̃�. At each point 𝑝, we know that �̃�(𝑝) = 𝜒𝑉𝑝 + 𝜒𝐻𝑝 and since 𝑔�̃�(𝑝) =

�̃�(𝑝 · 𝑔) so �̃�(𝑝 · 𝑔) = 𝜒𝑉𝑝 · 𝑔 + 𝜒𝐻𝑝 · 𝑔 and since 𝜒𝐻𝑝 · 𝑔 ∈ 𝐻𝑝·𝑔, we know that 𝜒𝑉𝑝 · 𝑔 = 𝜒𝑉𝑝·𝑔.

So we conclude that �̃�𝑣 is 𝐺 invariant.

Next, define

𝜎 : 𝐵 → [𝑝, (𝐷𝑅𝑝)−1( �̃�𝑣𝑝)]

which is a section of ad𝑃 → 𝐵. Since we will be preselecting a 𝑝 ∈ 𝜋−1(𝑏), it is important

to check that our final expression does not depend on 𝑝, so consider 𝑝 · 𝑔 ∈ 𝜋−1(𝑏) and

[𝑝𝑔, (𝑇𝑅𝑝𝑔)−1( �̃�𝑣𝑝𝑔)] = [𝑝𝑔, 𝑔−1𝑇𝑅𝑝 ( �̃�𝑉 ) · 𝑔]

This comes from the result of our former calculation: 𝑇𝑅−1
𝑝𝑔 = 𝑔−1 ◦ 𝑇𝑅−1

𝑝 combined

with the fact that �̃�𝑉 is 𝐺 invariant. Based on the construction of the adjoint bundle, we

conclude that

[𝑝𝑔, 𝑔−1𝑇𝑅𝑝 ( �̃�𝑉 ) · 𝑔] = [𝑝, 𝑇𝑅𝑝 ( �̃�𝑉 )]

Therefore the definition is well-defined. □

With the construction in mind, we can now define curvature in terms of this two-

form.
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Lemma 4.3 ([FW91, Lemma. 3.1.3]). Keeping the notation from above, we have −𝜎(𝜒1, 𝜒2) =

𝐹𝐴 (𝜒1, 𝜒2)

Proof. The first thing to check is that 𝜎(𝜒1, 𝜒2) is bilinear over the smooth functions

acting on the vector fields. Consider

[ 𝑓1𝜒1, 𝑓2𝜒2]

Since 𝑓1𝜒1 = 𝑓1 �̃�1, we know that

[ 𝑓1 �̃�1, 𝑓2 �̃�2] = 𝑓1 �̃�1( 𝑓2) �̃�2 + 𝑓2 [ 𝑓1 �̃�1, �̃�2]

= 𝑓1 �̃�1( 𝑓2) �̃�2 + 𝑓2( �̃�2( 𝑓1) �̃�1 + 𝑓1 [ �̃�1, �̃�2])

= 𝑓1 �̃�1( 𝑓2) �̃�2 + 𝑓2 �̃�2( 𝑓1) �̃�1 + 𝑓2 𝑓1 [ �̃�1, �̃�2]

Since 𝑓1 �̃�1( 𝑓2) and 𝑓2 �̃�2( 𝑓1) are just smooth functions, we know that 𝑓1 �̃�1( 𝑓2) �̃�2 +

𝑓2 �̃�2( 𝑓1) �̃�1 is a sum of two horizontal vector fields and therefore is horizontal as well.

This tells us that

𝜎( 𝑓1𝜒1, 𝑓2𝜒2) = 𝑓1 𝑓2( �̃�1, �̃�2)

and it depends only on 𝜒1 and 𝜒2 and is linear.

Then by evaluating the bracket at (0, 0) we get the value for the curvature from

lemma 2.13, thus the claim is proven. □

4.2 Curvature: in terms of connection one-form

We can also understand this two-form from the perspective of a connection one form.

Lemma 4.4 ([FW91, Lemma. 3.2.2]). The two-form 𝜋∗𝐹𝐴 on P with values in G is equal

to

𝑑𝜔𝐴 + 𝜔𝐴 ∧ 𝜔𝐴
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This lemma can be proved by first noting that the defining qualities of 𝜋∗𝐹𝐴 include

giving the negative vertical projection when evaluated on two horizontal vector fields and

vanishing if one of the vector fields is vertical. Then simply check that 𝑑𝜔𝐴 + 𝜔𝐴 ∧ 𝜔𝐴

satisfies the same qualities, which mostly follows from the fact that the pullback of 𝜔𝐴 is

the Maurer Cartan form.

4.3 Curvature: covariant derivative

We can also rephrase the two-form in terms of covariant derivatives. We can extend the

covariant derivative

∇𝐴 : Ω0(𝐵,𝑊) → Ω1(𝐵,𝑊)

to

∇𝐴 : Ω𝑘 (𝐵,𝑊) → Ω𝑘+1(𝐵,𝑊)

which will help with the following lemma.

Lemma 4.5 ([FW91, Lemma. 3.3.1]). The linear operator ∇𝐴 ◦ ∇𝐴 : Ω0(𝐵,𝑊) →

Ω2(𝐵,𝑊) is given by multiplying by a two-form with values in 𝐸𝑛𝑑 (𝐸). In fact, ∇𝐴 ◦

∇𝐴 (𝜎) = 𝑎𝑑𝜌(𝐹𝐴) (𝜎)

Since we have 𝜌 : 𝐺 → 𝐴𝑢𝑡 (𝐺), by taking the differential of this map we obtain a

new representation 𝜌 : G → 𝐸𝑛𝑑 (𝑉) which extends to 𝐸𝑛𝑑 (𝐸) where 𝐸 is 𝑃 ×𝐺 𝑉 .
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