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Population dynamics are heavily influenced by the underlying structure or distribution

of physiological features among individuals. Even when the governing dynamical system is

linear, a population may converge to a stable structural distribution as it continues to grow

exponentially in number. Asymptotic analysis provides a framework for establishing under

what conditions this behavior can be expected in a cell population described by the linear,

hyperbolic partial differential equation (PDE) model we have developed.

The motivation for developing this model was to better understand and characterize

variation in photosynthetic capacity across growing microcolonies of cyanobacteria in an

effort to support a broad range of industrial and agricultural applications. Cyanobacteria

efficiently convert light energy into more stable forms of chemical energy, such as biomass,

through a carbon concentrating mechanism. This process results in the formation of micro-

compartments, called carboxysomes, which, once assembled, persist over many generations.

As a result, wild-type cells contain both inherited carboxysomes, older than themselves, and

more recently formed carboxysomes produced as they grow. Carboxysome productivity is a

key factor driving cell growth, and is thought to decrease over time.

To investigate this claim, we have drawn from existing population models and expanded

them to include an arbitrary number of structure variables, representing carboxysome ages in

this application. Additionally, demographic parameters describing birth, death, and growth

processes are age-, size-, and carboxysome-age-dependent. The evolutionary system is ana-

lyzed along with its associated linear operator and the strongly-continuous semigroup it is

shown to generate. Two approaches to resolving the feedback mechanism of the reproductive

process are discussed and shown to arrive at the same conclusion. The first approach is to
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derive the family of step-response operators corresponding to reproduction viewed as a per-

turbation to the semigroup solution; and in the second, the renewal equation that emerges

from the age a = 0 boundary condition is reduced to an eigenproblem. Both approaches

ultimately allow us to characterize the asymptotic behavior of this population by decoupling

evolution in time and state space.
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2.1 An illustration of the carbon concentrating function of a carboxysome within a

cyanobacterial cell, and the key enzymes involved in this process. Bicarbonate

(HCO−3 ) enters the cell and is shuttled into the carboxysome where carbonic

anhydrase catalyzes the reversible reaction transforming bicarbonate into CO2

and water. Each carbon dioxide molecule then reacts with RuBisCO to form

two 3-phosphoglycerate molecules, required to produce biomass and usable

energy for the cell [53]. Image from [14] . . . . . . . . . . . . . . . . . . . . . 10

2.2 Time-lapse images of a growing cyanobacterial microcolony. The darker pur-

ple to red regions indicate where light is being absorbed by the cell, whereas

bright orange to yellow regions indicate little to no light absorption. Interior-

colony cells experience the most mechanical stress and regulate their growth

by slowing photosynthesis in response. The pronounced W -shape appearing

at the 8-cell stage condenses to align cells in the interior of the colony, as seen

at the 16-cell stage in the right-most image. Images from [49] . . . . . . . . . 12
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2.3 Sphero-cylinder model of a cyanobacterial cell. The position of the ith cell

(i = 1, 2, ...) is given by its center of mass, xi. The orientation of a cell, ui,

is given as a unit vector pointing along the major axis of the cell such that

if a cell were positioned at the origin, ui would point in the direction of the

positive x-axis. The length of the cell, also referred to as its body axis, is the

line segment joining the points pi and qi. The width of each cell is then equal

to 2r, and remains constant for all time for all cells. . . . . . . . . . . . . . . 14

2.4 Depicted here are the three possible ways that two cells may interact by

exerting a force on one another. The first (A) is by contact at a distinct point

along the body axis, the second (B) is by end-to-end contact, and the third

(C) is when two nearly parallel cells come in contact and the unique point

of contact cannot be identified. The places where cells overlap illustrate the

interpretation of ∆ij as the distance over which the force of cell-cell interaction

is applied. Image from [60]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 A comparison of model simulated cell growth with data. The black and white

images at left depict the emergence of the aforementioned repeatedly observed

early-stage colony morphology, the middle images are taken from model sim-

ulations, and the images at right show an increase in cell fluorescence as the

colony grows and more cells compete for space. In the simulation images, the

location where a force is applied to the cell surface is lit up in white. Cells

under the greatest amount of mechanical stress are in yellow, then orange,

then red, and finally purple for cells experiencing little to no external force. . 21
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Chapter 1

Introduction

1.1 Structured Population Modeling

Population structure refers to the way in which characteristics describing an individ-

ual are distributed across a population in aggregate. Structure has a decisive impact on

population growth and survival, as death rates and reproductive behavior are contingent

on physiological traits. Age-structured models form the foundation of structured popula-

tion modeling, as age is generally the best descriptor of an individual’s position in the life

cycle. However, additional structure variables offer further insight into observed variations

between individuals, even of the same age. This main contribution of the work presented

in this dissertation is in extending existing structured population models to include an ar-

bitrary number of structure variables, and showing that the traditional solution methods

and population behavior they predict can similarly be adapted and reproduced in the larger

multi-structured model.

In deriving continuously evolving structured population models, we consider the pop-

ulation as a distribution over its structure variables and impose conservation laws. The

interpretation of a population as a distribution simply means that the size of the population

at any time t is the integral of the distribution over all ages and structure variables. As

such, structured population models consist of a balance law—a partial differential equation

(PDE) describing population evolution in time, a boundary condition describing how new

individuals enter the population, and an initial distribution. The first of this class of math-
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ematical models was the linear age-structured model with age-specific birth and death rates

proposed by Sharpe and Lotka in 1911 [58], and rederived by McKendrick in 1926 [48]. Since

that time, this model has been generalized many times over to a size-structured model [59],

an age-and-size-structured model [10, 11], as well as nonlinear versions of all of these [39, 47]

(see G.F. Webb’s monograph [67] on this topic for a more complete history).

In general, analysis of these structured equations has vastly expanded our understand-

ing of how overall population dynamics are governed by the defining features of these classes

(i.e., their fecundity and death rates) as well as the competitive or cooperative interactions

between them, and their environment. These contributions have appeared in a wide variety

of applications including epidemiology [35, 19], ecology [55], and cell biology [5], to name a

few of the most pivotal examples.

A solution to a structured population model determines the population-level evolution

as an aggregated picture of individual behavior as function of age or other structure variables.

The general procedure for arriving at such a solution is by the method of characteristics.

Applying the age a = 0 boundary condition describing births inevitably leads to a Volterra-

type integral renewal equation at the boundary, solved by Laplace transform [12].

Extensions to age-structured models which include further structuring, and even non-

linear effects due to competition or crowding, continue to follow this central formulation

and methodology [6]. The linear multi-structured model presented and analyzed in this

dissertation similarly follows this general solution procedure, but in an abstract setting where

solutions to the renewal equation are operators in a Banach space.

The motivation for developing the multi-structured model was to better understand

how photosynthesis is regulated by structural components of varying efficiency within indi-

vidual cyanobacterial cells. Mathematical modeling of population structure provides a frame-

work for hypothesis testing and parameter estimation when model predictions are compared

with data to evaluate a proposed relationship between certain structure variables to growth,

death, and fecundity rates. Linear models are well suited for this purpose, as individual
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behavior is fully determined by age and physiological state, and not in response to external

factors, including the population as a whole. A linear model generally does not admit the

possibility of reaching a steady-state solution, with the exception of a few special cases, e.g.,

the trivial zero solution. The long-term population-level behavior must be either reaching

extinction or becoming infinitely large in infinite time. However, our asymptotic analysis

will show that under certain conditions, a steady-state solution in structure is reached, while

the population as a whole continues to grow without bound.

Asymptotic analysis is a broad field of study aimed at studying systems which re-

quire some resolution of processes occurring on small versus large scales. For many systems

which, in general, do not converge to a steady-state, asymptotic analysis is the framework

used to identify long-term behavior by separating the fast or short time processes with those

unfolding over larger time scales [8]. For example, in a migrating or commuting popula-

tion, the spatial distribution of individuals will reach equilibrium within a short amount

of time, while population growth will continue indefinitely [44, 4]. Similarly, in a continu-

ously evolving structured population, the distribution of individuals which can be grouped

by physiological traits will stabilize within a short period of time, while again, population

growth continues indefinitely.

The evolution equations describing demographic processes, e.g., birth, death, and

growth, are viewed abstractly as an operator A acting on a Banach space B, which is shown

to generate a strongly-continuous semigroup S(t) of linear operators mapping B into itself.

The semigroup approach is particularly advantageous for modeling cell populations as they

allow for ‘jumps’ in the state space, that is, when a cell divides it may disappear from the

population and reappear in a different form at the age a = 0 boundary—not a possibil-

ity for classical solutions to a PDE. Spectral properties of the operator A, specifically the

dominant eigenvalue λ0 and corresponding eigenvector (or eigenfunction) ψλ0 , provide a de-

composition of the solution space X = R+ ×B into two invariant subspaces: the eigenspace

spanned by the eigenvector corresponding to the dominant eigenvalue, Xλ0 , and its comple-
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ment X c
λ0

= X \ Xλ0 . Under this decomposition, we find that, as t → ∞ the semigroup

acting on elements from the complement space go to zero, while the semigroup acting on the

eigenspace grows exponentially [47]. Let φ ∈ X = ψλ0 + ψc, where ψλ0 ∈ Xλ0 , and φc ∈ X c
λ0

,

then

lim
t→∞

S(t)φ = lim
t→∞

(S(t)ψλ0 + S(t)ψc) = eλ0tψλ0 .

In this way, the asymptotic behavior of the system can be characterized as the long time

behavior of the semigroup acting to advance in time the stable structural distribution of the

population, reached after a short transient phase.

Discrete time analogous example For completeness, here we present an introduc-

tory example of structured population modeling in a discrete setting1 . The solution and its

decomposition into separate time and age dependent parts is entirely analogous to the solu-

tion in the continuous setting. These abstract concepts can be made concrete in the discrete

setting. We form an age-structured model by dividing our population into N discrete age

classes and evolve the distribution at time t, nt ∈ RN , forward by multiplying by a Leslie

matrix L, the discrete-time analogue of a system of evolution equations. For example, if

N = 4, our Leslie matrix system might look like,

nt+1 =



P1 0 F3 F4

G1 P2 0 0

0 G2 P3 0

0 0 G3 P4


nt = Lnt = Ltn0 (1.1)

where Pi represents the probability that an individual survives, but remains in the same age

class, Gi represents the probability that an individual survives and advances to the next age

class, and Fi is the fecundity rate for that age class. Since all of these vital rates are required

to be positive, the Perron-Frobenius Theorem guarantees a positive largest eigenvalue, λ0,

and corresponding positive eigenvector ψλ0 . Let A = Lt be our evolution operator, then the

1 For those with prior training in mathematical biology, this section may be skipped.
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semigroup S(t) = eA, the matrix exponential. Writing n0 as a linear combination of the

eigenvectors of L, we find that,

nt+1 = c0Aψλ0 + c1Aψλ1 + c2Aψλ2 + c3Aψλ3

= c0λ
t
0ψλ0 + c1λ

t
1ψλ1 + c2λ

t
2ψλ2 + c3λ

t
3ψλ3

lim
t→∞

nt+1 = lim
t→∞

c0λ
t
0

(
ψλ0 + c1

(
λ1

λ0

)t
ψλ1 + c2

(
λ2

λ0

)t
ψλ2 + c3

(
λ1

λ0

)t
ψλ3

)

= c0λ
t
0ψλ0

= c0e
λ0tψλ0

In this example, we have shown that the long-term behavior of a structured population is

determined by the spectral properties of its evolution operator. The population age-structure

reaches a steady state determined by the dominant eigenvector of the evolution operator,

while the population continues to grow exponentially at the rate given by the dominant

eigenvalue.

1.2 Outline

In this dissertation, we present a multi-structured partial differential equation model

of a cyanobacteria population. This model extends existing age and size structured models

to include an arbitrary, finite number of additional structure variables. The central ad-

vancement achieved by the analysis presented in this dissertation is to demonstrate that the

methods used to solve and predict the asymptotic behavior of existing age-, or age-and-size

structured models of cell populations can be applied successfully to the multi-structured

model, and similarly resolve the asymptotic behavior into a time-dependent operator acting

on a stable-structural distribution in an invariant subspace of the state space.

In Chapter 2, we present the biological motivation for the development of this model,

as well as a biomechanical model for the very early (on the order of 1 to 32-cell) stages of a

growing cyanobacterial microcolony. While the multi-structured model that is the focus of
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this dissertation is not concerned with colony development at the early stages, this section

includes our first contributions to understanding this problem and the work presented here

was included in two publications [49, 41]. The biomechanical model described in this chapter

identifies points of contact between cells where a repulsive force is applied. At these contact

points, light is emitted rather than absorbed due to the cell regulating its growth in response

to mechanical stress. Model generated simulations are shown to be in agreement with time-

lapse fluorescence microscopy images.

In Chapter 3, the multi-structured model is presented and solved using the method of

characteristics. A series solution is presented for the integral renewal equation derived at

the age a = 0 boundary. While we prove that a continuous solution exists, it is not possible

to express such a solution in a closed form. The next two chapters present two different

approaches to reach an asymptotic solution for the long-term behavior of this population.

Chapter 4 introduces semigroup theory and the beneficial properties of a semigroup

solution. We provide some of the key theorems and results of this rich theoretical framework

before applying them to the multi-structured model and showing that the model solution of

the previous chapter is a semigroup of linear operators. To resolve the boundary condition

describing cell renewal, we consider a perturbation to the generator of the semigroup solution,

and determine the long-term behavior of the perturbed semigroup it generates by analysis

of the spectral properties of the perturbed generator. This connection is made by defining a

step-response operator describing how the system responds to an input entering at the age

a = 0 boundary. Convolution of the step-response with the original semigroup becomes the

perturbation (to the orignial semigroup) through which the perturbed semigroup is defined.

Taking Laplace transforms of the equations relating the semigroups leads to a characteristic

equation for the dominant eigenvalue of the perturbed generator, and we show that this

eigenvalue and its corresponding eigenfunction determine the asymptotic behavior of the

system. We conclude this chapter by deriving and explicitly stating this eigenproblem.

In Chapter 5, we derive a similar eigenproblem beginning from the renewal equation
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at the age a = 0 boundary cast as an abstract renewal equation of operators in a Banach

space. Applying Laplace transforms to the abstract equation allows us to reduce it to an

eigenproblem as the long-term behavior of the system is determined by singularities of the

convolution operator appearing in the renewal equation. We show that this singularity is

uniquely determined by the eigenvalue for which the spectral radius of this operator is equal

to one, and again conclude the chapter by deriving and explicitly stating this eigenproblem.

Solving the eigenproblem requires specification of conditions for cell division. In Chap-

ter 6 we solve the eigenproblem under a set of such conditions and discuss the resulting

solutions and their interpretation. Finally, we conclude with a discussion of our analysis and

results including future applications and amendments to the multi-structured model.



Chapter 2

Cyanobacteria

This chapter details the biological motivation for studying cyanobacteria and the ad-

vantage this brings to many important applications. The biomechanical model presented in

the second section of this chapter has a separate focus from the multi-structured model pre-

sented in the next chapter. However, the biomechanical model was a successful contribution

to first grappling with the problem of understanding photosynthesis in cyanobacteria. The

results presented here were published in Nature microbiology [49], and included as part of a

followup published in Science advances [41].

2.1 Biological Motivation

Cyanobacteria play a critical role in the global carbon cycle. Prehistorically, they are

credited with oxygenating the earth’s atmosphere, and they continue to perform over 35%

of global carbon fixation, despite comprising less than 0.2% of all photosynthetic biomass

[57, 7]. In order to maintain their efficiency in today’s ambient CO2 levels (low from their

point of view), cyanobacteria have evolved a carbon concentrating mechanism (ccm) which

encapsulates the necessary enzymes for carbon fixation into microcompartments called car-

boxysomes. Specifically, a carboxysome is an icosahedral protein shell containing the key en-

zymes ribulose 1, 5-biphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase.

The carboxysome’s role in carbon fixation is depicted in Figure 2.1 where two molecules of

3-phosphoglycerate, an antecedant of the sugars and amino acids the cell uses as an energy
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source or to form biomass, are produced from a single carbon-containing molecule. Concen-

trating the enzymes in this way boosts their catalytic efficiency as CO2 is aggregated so as

to maximize contact with these enzymes at a distance from oxygen, a competing substrate

[17]. The vital operation of carbon fixation as the gateway to all other metabolic processes

in the cell illustrates the dependency of cell growth upon carboxysome efficacy.

Carboxysomes are the dominant contribution in regulating growth at both the cellular

and population level, and the model presented in this work aims to elucidate this mechanism.

This will bring valuable insight to advance large-scale industrial applications in clean energy,

such as carbon sequestration, and the production of biofuels or bioplastics derived from the

hydrocarbon chains forming the cell membrane [46], as well as more recently proposed agri-

cultural applications exploring the possibility of boosting yield by transferring carboxysomes

to plants, thus increasing their photosynthetic capability [37].

The assembly pathway of a carboxysome is well understood [17]; however, detailing

the life-cycle of a carboxysome is an active area of research. In recent years, fluorescence-

microscopy imaging has been used more broadly and this powerful technology has allowed

our collaborators in the Cameron Lab at RASEI, the Renewable and Sustainable Energy

Institute, to develop a platform to measure carboxysome number, position, and activity over

time in a growing cyanobacteria population [41]. One class of these experiments is focused

on measuring the contribution of a single carboxysome. This is performed by knocking out

the ccm operon, the collection of genes encoding for the formation of new carboxysomes,

so that after a few generations, many cells contain only a single carboxysome. For a cell

with a single carboxysome (at ambient CO2), all carbon fixation, and therefore growth, can

be attributed to the catalytic activity of that carboxysome [41]. Therefore, we may use the

growth rate of the cell as a measure of carboxysome activity over time.
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Figure 2.1: An illustration of the carbon concentrating function of a carboxysome within
a cyanobacterial cell, and the key enzymes involved in this process. Bicarbonate (HCO−3 )
enters the cell and is shuttled into the carboxysome where carbonic anhydrase catalyzes
the reversible reaction transforming bicarbonate into CO2 and water. Each carbon dioxide
molecule then reacts with RuBisCO to form two 3-phosphoglycerate molecules, required to
produce biomass and usable energy for the cell [53]. Image from [14]

.
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2.2 Preliminary investigation

Prior to developing the multi-structured model, we wanted to better understand the

growth dynamics of this population, including additional factors that impact photosynthetic

capability at every stage of microcolony growth. To that end, we began with a biomechan-

ical model of early-stage microcolony development. For completeness, here we present the

biomechanical model.

2.2.1 Force of cell-cell interactions

Photosynthesis is regulated by individual cells in response to their environment. Im-

proving efficiency at the larger, micro-colony scale requires a full biomechanical picture of

cell-to-colony dynamics. Colonies grown under a substrate with no boundary constraint are

observed to self-organize spatially. Patterns observed repeatedly at the 4-, 8-, 16-, and 32-cell

stages eventually grow into round colonies comprised of regions of cells all oriented in the

same direction. The shape and structure of the resulting colony are principally guided by

the competition between steric, repulsive forces between neighboring cells as they push each

other out of the way and, the extensile stress a cell experiences as it attempts to grow in a

confined area. These forces govern micro-colony morphology at the early stages of growth

and have a large impact on the resulting behavior and characteristics of the colony as it

expands to become a biofilm.

2.2.2 Biomechanical model

Biofilms typically grow from a single bacterial cell elongating and dividing to form a

highly organized and repeatedly observed spatial structure at the early microcolony stage.

Self-organization is primarily the result of steric, repulsive forces that tend to order the colony

as neighboring cells push each other out of the way and into alignment with one another.

In this way, colonies may aggregate into nematic micro-domains reminiscent of those seen
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Figure 2.2: Time-lapse images of a growing cyanobacterial microcolony. The darker purple
to red regions indicate where light is being absorbed by the cell, whereas bright orange to
yellow regions indicate little to no light absorption. Interior-colony cells experience the most
mechanical stress and regulate their growth by slowing photosynthesis in response. The
pronounced W -shape appearing at the 8-cell stage condenses to align cells in the interior of
the colony, as seen at the 16-cell stage in the right-most image. Images from [49]

.

in active liquid crystals [36]. However, steric forces must balance with extensile stress which

brings disorder to the colony as cells struggle to grow in a confined area. Competition between

these two forces can disrupt the balance between them, fracturing nematic regions or even

bring about a transition from mono-layer to multi-layer growth [60]. However, these later-

stage phenomena will not be reported on here, as the focus of the biomechanical model is in

simulating the organization and asymmetry observed at the earliest stages of microcolony

formation from a single cell.

A biomechanical model of microcolony formation in cyanobacteria is presented to in-

vestigate and support the claim that cyanobacteria regulate photosynthesis in response to

mechanical stress. As described above, the primary mechanical forces considered are steric

forces from cell-cell interactions and extensile stress from friction and crowding. Of par-

ticular interest is the way in which these forces effect the photosynthetic capability of an

individual cell and the impact on the colony as a whole. Cells under mechanical stress do

not have space to grow freely, and therefore, become limited in the amount of light they can

absorb. The excess light is then reflected away from the cell causing them to appear brightly

in fluorescence microscopy images, as depicted in Figure 2.2. As a result, cell growth in the

densely packed interior of the colony is expected to be slower than for those cells at the

periphery, and experimental data is in agreement with this assumption.
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Cell colonies occupy a two-dimensional space with no boundary constraint. Throughout

the simulation, cells maintain a constant width, and grow only along their major body

axis. Cell division is symmetric in that the mass of a dividing cell is split evenly to form

two daughter cells, and a cell divides upon reaching the division length Ldiv. Crucially,

cyanobacteria are observed to bend in a prescribed way as they divide. To replicate this

observed behavior in simulation, the angle between the major body axis of two recently

divided cells is just under 180 degrees, rather than in perfect alignment.

The main loop of the model consists of two parts which can be regarded as a bio-part

describing individual growth and division, and a mechanical -part describing how cells inter-

act with one-another. First, cell length increases according to an ODE exponential growth

model. Cells which have reached the division length are then replaced by two daughter cells

of equal length. In reality, cell division does not occur instantaneously, so to mimic the

slow process of septum formation preceding the full separation of the two daughter cells, a

spring-like attachment exists temporarily between recently divided cells with a strength ks

which falls off linearly in time until it reaches zero, at which time the connection is deleted.

The second part of the loop adjusts cell position and orientation in response to cell-cell

interactions and frictional forces according to Newtonian mechanics, that is, by computing

the net force acting on each cell and integrating the resulting acceleration to find its new

position.

The remaining sections of this chapter give the model equations and specifications, and

conclude with a comparison of our simulation results with time-lapse fluorescence images of a

growing microcolony captured in vivo. The structure and governing equations of this model

are largely adapted from [60] and [36].

2.2.3 Cell Properties and Growth

Each cell is modeled as a sphero-cylinder of fixed radius, r = 1, and variable length,

L, referring to the body axis of the cell, as illustrated in Figure 2.3. At each time step, cell
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length is increased according to the exponential growth model,
dL

dt
= αL. Division occurs

once cell length reaches or exceeds 2.5 times its radius. Following cell growth and division,

the force of friction between the cell wall and the agar on which it is grown, and the force

of cell-cell interaction exerted on each cell by its neighbors, are calculated and applied as

updates to cell position and orientation by integrating numerically1 the system of equations

derived from Newtonian mechanics [60].

Figure 2.3: Sphero-cylinder model of a cyanobacterial cell. The position of the ith cell
(i = 1, 2, ...) is given by its center of mass, xi. The orientation of a cell, ui, is given as a
unit vector pointing along the major axis of the cell such that if a cell were positioned at
the origin, ui would point in the direction of the positive x-axis. The length of the cell, also
referred to as its body axis, is the line segment joining the points pi and qi. The width of
each cell is then equal to 2r, and remains constant for all time for all cells.

Cell mass and moment of inertia are functions of cell length and radius, and are sim-

ilarly adjusted at each time step. Without loss of generality, we will adopt the biologically

reasonable assumption that cell density ρ is equal to 1, the density of water [60]. Let mi be

the mass of the ith sphero-cylindrical cell, then

mi = ρ

[
4

3
πr3 + πr2L

]
,

and its moment of inertia Ii is,

Ii =
1

48
πρ(2r)2L3 +

3

64
πρ(2r)4L+

1

60
πρ(2r)5 +

1

24
πρ2r3L2.

Initially, each cell grows at the average rate, αavg, taken to be 0.224 µm
s

, for an average

doubling time of just over three hours. However, decreased photosynthetic activity for cells

1 Both the growth model and equations of motion are integrating using MATLAB’s built-in ODE solver
ode45.
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in the tightly packed colony interior leads to a slow-down in growth. The growth rate, α,

then decreases linearly to a minimum of 0.218 as the total force acting on a particular cell

increases.

2.2.4 Cell Division

Reproducing the repeatedly observed W -shape most clearly seen in the 4- and 8-cell

stages, requires two adjustments which serve to model cell division more accurately as a

process, rather than an instantaneous event. That is, according to the model, a cell splits

instantaneously to form two daughter upon reaching the division length. However, in reality,

cell division occurs through continuous deformation of the cell wall forming a septum between

daughter cells before they fully separate. During this process, one daughter cell will generally

grow slightly faster than its sister, depending on its position in the colony, and begin to push

her out of the way and bringing them out of alignment. Therefore, the first adjustment

included in our model is a perturbation to cell orientation following division by an angle

θ ∈ [±1◦,±10◦] according to cell position.

Secondly, an ephemeral connection is maintained between recently divided cells, mod-

eled as a spring, the stiffness of which, ks, falls off linearly in time from its initial value k0

until it is deleted after a period of time t∗. The spring “constant” ks is then a function of

the length of time since division tsd given by

ks(tsd) =


k0(1− tsd/t∗), for tsd < t∗

0, for tsd ≥ t∗.

2.2.5 Mechanics

Let the two-dimensional vector Fi be the net force acting on the ith cell with vector

components giving the net force in the x− and y−directions, respectively. Then,

Fi = Fcs +
∑
j 6=i

Fij.
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The first term, Fcs, represents the force of friction acting on cell i by contact with the

surrounding substrate, and the sum accounts for cell-cell interactions, where each term Fij

denotes the elastic, repulsive force cell j exerts on cell i. Note that Fii = 0, and Fij = Fji.

The mechanical system within the model is governed by the following three equations

describing the spatial translation of the ith cell in response to the mechanical forces acting

upon it,

mi
d2xi
dt2

= Fi

Ii
dωi
dt

= τi

dui
dt

= ωi × ui

(2.1)

where τi is the net torque acting on cell i, and ωi is its angular velocity.

2.2.6 Cell-Cell Interactions

The force exerted on cell i by cell j is calculated from the formula,

Fij = k∆ijn̂ij (2.2)

where n̂ij is a unit vector indicating the direction along which the force is applied, ∆ij is the

degree of deformation which, if nonzero, signifies a repulsive interaction occurring between

the ith and jth cells, and finally, the constant k gives the strength of cell-cell interactions, a

measure of cell stiffness2 .

To determine the force direction n̂ij and resulting degree of deformation, ∆ij, cells are

allowed to ‘overlap,’ theoretically, and we calculate the shortest distance s between their

body axes [36]. The degree of overlap or deformation ∆ij is zero, when 2r < s, in which case

the distance between the ith and jth cells is great enough that they are not in contact (recall

2 Formally, k is determined by the Young‘s modulus of the cell, a measure of the stress (force per unit
area) required to deform the cell by a given amount. However, without access to the Young’s modulus of
this particular strain, the value used in model simulations was approximated from values reported in the
literature for E. coli [36].
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that r is the cell radius) and Fij vanishes, and nonzero if 2r > s suggesting that these cells

do ‘overlap’ and therefore exert a force on one another. When ∆ij is nonzero, it takes on

the value 2r − s, the distance over which the repulsive force is applied, and the two closest

points along the body axis of the ith and jth cells, ti and tj, respectively, become the contact

points for this interaction.

The normalized vector from contact point tj to ti,

n̂ij =
ti − tj
|ti − tj|

. (2.3)

determines the direction along which the repulsive force Fij is applied to the ith cell. If cells

are nearly parallel, such that contact points cannot be uniquely identified, the center of mass

is used as the contact point, as in, ti = xi and tj = xj.

The three two-cell configurations in Figure 2.4 depict the three possible scenarios in

which an elastic cell-cell interaction may occur. Cells are shown to overlap in this illustration

to convey how Fij is derived as a force of strength k applied in the direction n̂ij over a distance

∆ij, the length of the line segment s falling within the overlapping region. The force Fij

exerted by cell j acts to push cell i out of its way, and equivalently for Fji, and as a result,

no overlapping cells appear in model simulations, as expected.

2.2.7 Frictional Forces

Friction between cells and the substrate (agar gel pads), is proportional to the velocity,

v, or angular velocity, ωi, of the cell with respect to the agar. Friction inhibiting translational

motion is given by,

Fcs = −btv (2.4)

where bt is the friction coefficient for translation.

The ith cell experiences a net torque given by,

τi = (ti − xi)× Fij − brωi (2.5)
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Figure 2.4: Depicted here are the three possible ways that two cells may interact by exerting
a force on one another. The first (A) is by contact at a distinct point along the body axis,
the second (B) is by end-to-end contact, and the third (C) is when two nearly parallel cells
come in contact and the unique point of contact cannot be identified. The places where cells
overlap illustrate the interpretation of ∆ij as the distance over which the force of cell-cell
interaction is applied. Image from [60].
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where br is the friction coefficient for rotation3 . The point ti appearing in (2.5) is the same

contact point inside cell i where the force from cell j is most directly applied.

2.2.8 Numerical implementation

The linear system (2.6) fully describes the mechanical component of the biomechanical

model. At each time step, the system is solved for each cell and its position and orientation

are updated accordingly. Velocity and angular velocity are also updated and become the

initial conditions for the next iteration. Superscripts such as x(N), denote the N th component

of the corresponding vector. Note that the orientation vector u is appended to include a

zero as its z-component.

d

dt



x(1)

x(2)

v(1)

v(2)

ω(1)

ω(2)

ω(3)

u(1)

u(2)

u(3)


i

=



v(1)

v(2)

(1/m)[(
∑

Fij)
(1) − btv(1)]

(1/m)[(
∑

Fij)
(2) − btv(2)]

(1/I)((
∑

(ti − xi)× Fij)
(1) − brω(1))

(1/I)((
∑

(ti − xi)× Fij)
(2) − brω(2))

(1/I)((
∑

(ti − xi)× Fij)
(3) − brω(3))

ω(1) × u(1)

ω(2) × u(2)

ω(3) × u(3)


i

(2.6)

3 The true force of friction between these cells and their agar substrate is, as of yet, unknown. Instead,
both coefficients were chosen to most accurately match experimental observations, i.e., small enough so as
not to interfere with cell growth and to allow for movement, but large enough that cells at the periphery of
the colony do not slide or spin away from the colony when pushed by another cell. The frictional coefficients
for the model presented in [60] were similarly determined, a method the authors describe as, “by trial and
error.”
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2.3 Results and Conclusion

We conclude this chapter by presenting in Figure 2.5 a comparison of time-lapse fluo-

rescence images of a growing microcolony against still images taken from simulations of the

biomechanical model we developed. Simulated cells are colored according to the net force

acting upon them, cells under the least amount of mechanical stress appear in purple, in-

creasing to red, then orange, and finally, yellow for the highest amount of mechanical stress.

Points on the cell wall where a force is being applied are lit up in white, fading to black

according to the magnitude of the applied force. The biomechanical model replicates colony

morphology through the 16-cell stage, and moreover, there is good agreement between the

position of simulated cells under the various levels of mechanical stress and the brightness

of corresponding cells in the fluorescence images.

The biomechanical model we have developed is able to accurately match the observed

morphology and spatial distribution of mechanical force within a growing cyanobacterial

microcolony, under the assumption that cells under mechanical stress grow more slowly.

This result supports the claim published in [49] asserting that cyanobacteria regulate their

photosynthetic activity, which has the direct effect of slowing cell growth, in response to

mechanical stress.

Furthermore, the repeatedly observed folding pattern (beginning at the 4-cell stage)

leading to cell alignment in the colony interior, appears in a similar manner in other cyanobac-

terial strains—including, for example, the filamentous nitrogen-fixing Anabaena. Future

work will include adapting this model to replicate and characterize colony morphology for

an array of cyanobacterial strains. Here we have presented a model wherein colony morphol-

ogy emerges as the result of cells simply obeying Newtonian mechanics, and [less simply]

regulating their growth in response to mechanical stress as they compete for space to grow

and divide. The central goal of this work moving forward is then to classify expected or

observed colony morphologies by asymmetries in cell growth emerging at the earliest stages
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Figure 2.5: A comparison of model simulated cell growth with data. The black and white
images at left depict the emergence of the aforementioned repeatedly observed early-stage
colony morphology, the middle images are taken from model simulations, and the images at
right show an increase in cell fluorescence as the colony grows and more cells compete for
space. In the simulation images, the location where a force is applied to the cell surface is
lit up in white. Cells under the greatest amount of mechanical stress are in yellow, then
orange, then red, and finally purple for cells experiencing little to no external force.
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of colony formation.



Chapter 3

Multi-structured Modeling

3.1 The multi-structured model

The multi-structured model presented in this chapter and its analysis are the focus of

the remainder of this dissertation. The partial differential equation-based model we present

was developed to evaluate the claim that carboxysome efficacy decreases over time. To that

end, the state of an individual cell is characterized by its age, length, and k additional struc-

ture variables each representing the age of one of its carboxysomes. Including the additional

structure variables and expanding to a multi-structured model is required to describe the

evolution of this population, because cyanobacteria naturally contain carboxysomes of dif-

ferent ages. Once these microstructures are formed, they remain intact, even through cell

division. Furthermore, carboxysomes take up space inside the cell, and so the formation of

new carboxysomes is necessarily concurrent with growth, as opposed to all at once. A typical

cell will have both inherited carboxysomes older than itself, as well as the carboxysomes it

has formed since birth. The multi-structured model then, using carboxysome age as a proxy

for efficacy, is needed in order to capture the dynamics of this population and identify the

true relationship between carboxysome age and efficacy.

In this chapter, the model is presented and solved using the method of characteristics.

The solution in the region where age is greater than time is fully determined by propagating

the initial distribution forward in time. However, incorporating the boundary condition at

the age a = 0 boundary leads to a renewal equation which does not admit a closed form
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solution. A power series representation of the solution to the renewal equation is given, and

used to prove the existence and uniqueness of a continuous solution. In light of this result,

we conclude this chapter by introducing two approaches to finding an asymptotic solution.

3.1.1 Model components

The motivation for developing this model is most clearly described through the growth

curves and cell length at birth data seen in Figure 3.1. As we have seen, carbon fixation

is performed inside the carboxysome and this is the first, crucial step in cyanobacterial

metabolism. By interrupting protein expression within the carbon-concentrating-mechanism-

operon, the formation of new carboxysomes is effectively turned off, and after a few cell cycles,

many cells will contain only a single carboxysome [17]. With a single carboxysome, all of

the growth of that cell and its future lineage can be attributed to that one carboxysome.

Part (A) of Figure 3.1 depicts cell length over time for a chosen cell lineage. Carboxysome

formation is turned off at time zero, and the green curves at left show length over time for

the originator of this lineage, and her daughter and granddaughter, all grown with more

than one carboxysome. The curves to right of the vertical dashed line in blue show cell

length over time for the last three generations of this lineage, all of which were grown by one

carboxysome. Clearly, the blue curves show a decrease in both the growth rate and length

at birth, as this carboxysome is passed from one generation to the next. The data plotted

at right in part (B) corroborates this story as each pink dot represents the length at birth

of a cell containing a single carboxysome, and the vertical bars separate generations. The

mathematical model presented here builds on the hypothesis that carboxysome functionality

decreases over time, and we intend to use this model as a framework for understanding the

rate at which degradation occurs and in what way this dictates overall population dynamics.

In order to investigate how carboxysome efficacy governs population dynamics in

cyanobacteria, we will need to resolve the structure of the population. As opposed to ag-

gregate models such as, the linear Malthusian or nonlinear Logistic growth models, wherein
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Figure 3.1: (A) Cell length over time for a cyanbacterial cell lineage. No new carboxysomes
are formed, and after the three generations shown in bright green, the dark blue cells to the
right of the vertical dashed line are all grown from the same single carboxysome. (B) Length
at birth over generations, separated by bars, for cell lineages grown from one carboxysome.
Images from [41].
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each individual has the exact same likelihood of reproducing or dying, a structured model al-

lows for finer precision in that individuals are characterized by discrete classes or continuous

physiological properties—the structure variables. In the context of cell biology, individu-

als are traditionally characterized by age and/or size, which are generally good proxies for

determining where a cell is in the cell cycle.

Carboxysome efficacy determines photosynthetic capability in cyanobacteria at both

an individual and population level [41]. As these microstructures persist through multiple

division cycles, carboxysome ages, a proxy for efficacy, are included as structure variables

in the multi-structured model, along with cell size and chronological age. The main contri-

bution of this work is in demonstrating that key model features, such as, the existence of a

stable distribution in population structure, are maintained upon extending existing age and

size structured models to include an arbitrary (but finite) number of additional structure

variables. The model presented here is derived from three principal sources; these are, the

age and size structured models presented by George I. Bell [10] and Henk Heijmans [47], as

well as Susan Tucker and Stuart Zimmerman’s nonlinear model [63].

The multi-structured model describes a population of cells structured by age a ∈ R+ =

[0,∞), and k additional structure variables, xi, stored in the vector x̄ ∈ Ω ⊂ Rk. Let x1 ∈

(xm, xM ] represent cell size, where xm is the lower bound, and xM is the maximum allowable

size. In this application, x1 will refer to length, but cell size is commonly measured as volume

as well. The remaining k − 1 structure variables, x = x2, x3, · · · , xk ∈ Rk−1
+ , represent

carboxysome ages, the number of which may vary depending on strain and environment.

However, at the individual level, the number of carboxysomes per cell, k−1 is fixed. Vectors
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in state space Ω are constructed in the following manner,

x̄ =

x1

x

 =



x1

x2

x3

...

xk


=



Cell Length

Age of Carboxysome 1

Age of Carboxysome 2

...

Age of Carboxysome k − 1


.

Age is kept separate from the remaining physiological features to maintain clarity in the

renewal condition at the age a = 0 boundary. It will also be necessary at times to refer to age

and cell length separately from carboxysome ages, particularly when defining characteristic

curves, hence the assigned notation 1 .

The population density, n(t, a, x̄), is naturally defined on L1(R+×R+×Ω) as we assume

a finite population size such that integrating over all ages and structure variables,∫ ∞
0

∫
Ω

n(t, a, x̄)dx̄da,

gives the total number of individuals at any time t.

3.1.2 Definition and interpretation of model components

Let µ(a, x̄) = d(a, x̄) + b(a, x̄) be the age- and state-specific rate of cell loss due to

death, d(a, x̄), and division, b(a, x̄). We assume that cell division is entirely symmetric in

the structure variables, meaning, for each structure variable, both daughter cells inherit

exactly one half of the mass or productivity its mother had at the time of division. The

birth modulus, β(a, ȳ, x̄), gives the average number of daughter cells of state x̄ produced per

mother cell of age a and state ȳ. In this model, mitosis is an instantaneous event resulting

in the disappearance of the mother cell of state ȳ, and two daughter cells of state x̄ = 1
2
ȳ

appearing at the a = 0 boundary.

1 A note on notation: throughout this document, an overbar on a bolded variable, e.g., x̄, refers to a
vector containing all k structure variables (length and carboxysome ages), whereas a bolded variable with
no bar, e.g., x, represents the k − 1 carboxysome ages separately.
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To be clear, this means that both of the two daughter cells inherit one half of the

quantity their mother had of each structural variable. In previous applications, structure

variables have stood for DNA or RNA mass. For our application, however, we measure

carboxysome age as a proxy for photosynthetic capacity—the speed with which light is con-

verted to biomass. Dividing this quantity between daughter cells allows us to maintain a

fixed number of carboxysomes in the model, in that, for each carboxysome inherited at birth,

a new full-capacity carboxysome is formed prior to division. With this assumption, daugh-

ter cells are born with approximately half the photosynthetic capability of their mothers.

In Section 7.2 we propose some adaptations which may lead to a higher fidelity model of

carboxysome aging and inheritance.

Furthermore, the symmetric division assumption imposes a partition of the state space

into a region of cells large enough to divide, Ωm = (xM
2
, xM ] × Rk−1

+ ⊂ Ω, and a region Ωb

restricted to the allowable states at birth Ωb = (xm,
xM
2

]× Rk−1
+ ⊂ Ω. The birth modulus is

then a Dirac-delta function applied to each structure variable of the form,

β(a, ȳ, x̄) = 2β1(a)δ(x̄− 1

2
ȳ) for x̄ ∈ Ωb, ȳ ∈ Ωm, (3.1)

and β1(a) a condition for age-at-division. Integrating the birth modulus over Ωb with respect

to x̄ gives the total average number of daughter cells produced per unit time by a mother

cell of age a and state ȳ. Therefore, the rate of cell loss due to division is,

b(a, ȳ) =
1

2

∫
Ωb

β(a, ȳ, x̄)dx̄

=
1

2

∫
Ωb

2β1(a)δ(x̄− 1

2
ȳ)dx̄

= β1(a)χ{ȳ∈Ωm},

(3.2)

where χ{ȳ∈Ωm} is the indicator function on Ωm. The factor of 1
2

balances the removal of

a dividing mother cell with her two daughter cells—as in, the rate at which offspring are

produced is twice the rate of cell loss due to division. Assuming a constant death rate,
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d(a, ȳ) = µd, the total loss rate becomes,

µ(a, ȳ) = µd + β1(a)χ{ȳ∈Ωm}. (3.3)

Each structure variable xi grows or evolves with velocity vi(a, x̄) =
dxi
dt

(a, x̄), forming

the velocity vector v̄(a, x̄) = [v1(a, x̄) v2(a, x̄) · · · vk(a, x̄)]T . Velocity functions vi(a, x̄)

are required to be bounded, continuous, and continuously differentiable with respect to

each of its arguments. Additionally, vi(a, x̄) must be strictly positive on the interior of Ω,

inf{(a,x̄)∈(0,∞)×(xm,xM )×(0,∞)k} |vi(a, x̄)| > 0, to guarantee a uniquely determined flow along

characteristic curves across Ω, and, vi(a, x̄) must vanish on the boundary of Ω, ∂Ω, so that

all trajectories beginning at time t with (a, x̄) ∈ R+ × Ω, remain in R+ × R+ × Ω.

3.1.3 Model equations

Accordingly, multi-structured population evolution follows the (k+ 2)-dimensional hy-

perbolic, linear PDE,

∂n

∂t
+
∂n

∂a
+∇ · [v̄(a, x̄)n(t, a, x̄)] = −µ(a, x̄)n(t, a, x̄)

n(t, 0, x̄) = B(t, x̄) =

∫ ∞
0

∫
Ωd

β(a, ȳ, x̄)n(t, a, ȳ)dȳda

n(0, a, x̄) = φ(a, x̄)

(3.4)

where

∇ · [v̄(a, x̄)n(t, a, x̄)] =
k∑
i=1

∂ [v̄i(a, x̄)n(t, a, x̄)]

∂xi

is the divergence of the vector field v̄(a, x̄)n(t, a, x̄).

Since each velocity term vi(a, x̄) is required to be continuously differentiable with re-

spect to xi, the balance law may be written as a directional derivative in the 〈1, 1, v̄〉 direction,

D〈1,1,v̄〉n(t, a, x̄) = −
(
µ(a, x̄) +

k∑
i=1

∂vi
∂xi

(a, x̄)

)
n(t, a, x̄), (3.5)

giving the instantaneous rate of change at time t in the direction of aging and growth from

every age and state in Ω. Ignoring the loss term µ(a, x̄) for a moment, viewing the PDE this
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form shows that the movement of population density from convection or transport (left of the

equals sign), is balanced with the dilation or contraction of volume elements as individuals

are translated through state space.

3.2 Solution via Method of Characteristics

3.2.1 Characteristic curves

Setting the right-hand-side of (3.5) equal to zero says that the rate of change in density

n at any point (t, a, x̄) is zero in the 〈1, 1, v̄〉 direction. A parameterized curve advancing

from an initial position in the 〈1, 1, v̄〉 direction, along which n is constant, is called a

characteristic curve. Integrating along these curves produces a solution to the model (3.4)

where the density at time t is expressed in terms of the initial data φ(a, x̄) propagated

forward in time along characteristics. The characteristic curves2 for this system are solutions

T = T (θ, t), A = A(θ, a), X1 = X1(θ, x1), and X = X(θ,x) to the following system of

differential equations parameterized by auxiliary variable θ, standing for time when t ≤ a,

and age when t > a.

d

dθ
[T (θ, t)] = 1, T (0, t) = t

d

dθ
[A(θ, a)] = 1, A(0, a) = a

d

dθ
[X1(θ, x1; a,x)] = v1(A(θ, a), x1,X(θ,x)), X1(0, x1) = x1

d

dθ
[Xi(θ, xi; a, xj 6=i)] = vi(A(θ, a), X1(θ, x1),X(θ,x)), Xi(0, xi) = xi

(3.6)

The characteristics along which time passes and age advances are given by,

T (θ, t) = θ + t and A(θ, a) = θ + a.

For the characteristic curves describing cell growth,

d

dθ
[X1(θ, x1; a,x)] = v1(A, x1,X) ⇒

∫ X1

x1

dξ

v1(A, ξ,X)
= θ

2 Capital letters are used to refer to characteristic curves. Generally, these will be presented with two
arguments, as in X(θ, x), however, the characteristics in state space may also depend on age and other
structure variables, considered to be fixed, and will be denoted explicitly by X(θ, x; a,x) only when necessary.
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Let G(x) = G(x; a,x) =

∫ x

xm

dξ

v1(A(θ, a), ξ,X(θ,x))
, the time required for a cell of age a and

state x to grow from the smallest possible size xm to arbitrary size x ≤ xM . A cell of fixed

size x1 at time t, will reach arbitrary size x ≤ xM a time G(x) − G(x1) later. Continuing

from the above,

θ =

∫ X1

x1

dξ

v1(A, ξ,X)
=

∫ X1

xm

dξ

v1(A, ξ,X)
−
∫ x1

xm

dξ

v1(A, ξ,X)

θ = G(X1)−G(x1) ⇒ G(X1) = θ +G(x1)

X1(θ, x1) = G−1(θ +G(x1)).

The inverse, G−1(θ;x1) = G−1(θ; a, x1,x), is guaranteed to exist as long as the physical

growth rate v1 : [xm, xM ]→ R+ is uniformly continuous and positive on [xm, xM ]. G−1(θ;x1)

is called the growth curve as it computes the size of an individual after a time period of

length θ. For instance, an individual of size x1 at time t0 will be of size G−1(θ;x1) at time

t0 + θ. It is helpful to note that G−1(0;x1) = x1.

For each additional structure variable in x, the characteristic curves Xi(θ, xi; a, xj 6=i)

will be similarly expressed through integral equations. While by definition vi(a, x1,x) should

be 1 if xi represents carboxysome age, velocity functions are not required to be positive, and

it’s worthwhile to lay the framework for replacing vi(a, x1,x) with a more direct measure of

carboxysome efficacy in the future.

d

dθ
[Xi(θ, xi; a, xj 6=i)] = vi(A(θ, a), X1(θ, x1),X(θ,x)) ⇒

∫ Xi

xi

dξ

vi(A,X1, X̄|xi=ξ)
= θ

Let Fi(x) = Fi(x; a,x) =

∫ x

0

dξ

vi(A,X1,x|xi=ξ)
, be the time required for the ith carboxysome

initially of age zero to reach age x along the characteristic curve.

θ =

∫ Xi

0

dξ

vi(A,X1, X̄|xi=ξ)
=

∫ X1

0

dξ

vi(A,X1, X̄|xi=ξ)
−
∫ x1

0

dξ

vi(A,X1, X̄|xi=ξ)

θ = Fi(Xi)− Fi(xi) ⇒ Fi(Xi) = θ + Fi(xi)

Xi(θ, xi) = F−1
i (θ + Fi(xi)).
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The inverse functions, F−1
i (θ;xi) = F−1

i (θ; a, x1,x), are again guaranteed to exist as long as

vi : R+ → R+ is positive and uniformly continuous on R+. F−1
i (θ;xi) should be interpreted

as the age of a carboxysome after a time period of length θ.

Consider a cell of age a and state x̄. The vector X̄(θ, x̄) is the vector of characteristic

curves advancing the cell to its next state X̄, after a time interval of length θ. A cell’s

state-at-birth X̄(−a, x̄) can always be found by traveling backwards along a characteristic

curve for a time a.

3.2.2 Exponential growth model for cell length

Exponential growth is a biologically reasonable assumption for the majority of cell

populations, including cyanobacteria [18]. Under this assumption, cell size increases in pro-

portion to itself at a rate α(x). The growth rate could be constant, in which case α(x) = α,

or have an inverse relationship with carboxysome age wherein the maximum growth rate

α = α(x = 0), and lim
a→∞

α(x) = 0.

In this model, cell growth is according to
dx1

dt
= v1(A, x1,X(a,x)) = α(X(a,x))x1.

Consider a cell that was of size xm at age a = 0 with carboxysome ages x. The time required

for that cell to grow to size x is,

G(x) =

∫ x

xm

dξ

v1(A, ξ,X(a,x))
=

∫ x

xm

dξ

α(X(a,x))ξ
=

1

α(X(a,x))
ln (x/xm).

The size of that cell after a time period of length t is, G−1(t;x1) = xme
tα(X(a=0,x)), and the

characteristic curve for cell length is then X1(t, x1; x) = x1 exp [tα(X(a,x))]. Carboxysomes

age with velocity vi = 1, along characteristic curves Xi(a, xi) = xi + a.
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Figure 3.2: Left: G1(X1)− G1(x0), the time required for cells to grow from initial sizes x0

to an arbitrary size X1. Right: The growth curves, G−1
1 (t), or size at time t, for various

values of initial cell size x0.

Figure 3.3: Two views of the characteristic curves X1(θ, x1). Notice that projections of
X1(θ, x1) onto the at-plane are lines of slope 1, consistent with da

dt
= 1.
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3.3 Model Solutions

We obtain a solution for n(t, a, x̄) by integrating the total derivative of n along char-

acteristic curves, as in,

d

dθ

[
n(T (θ, t), A(θ, a), X̄(θ, x̄))

]
=
∂n

∂t

dt

dθ
+
∂n

∂a

da

dθ
+

k∑
i=1

∂n

∂xi

dxi
dθ

which we recognize from the model equations (3.4) to be equivalent to,

dn

dθ
= −

(
µ(A, X̄) +

k∑
i=1

∂vi
∂xi

(A, X̄)

)
n(T,A, X̄),

with solution,

n(T,A, X̄) = C exp

[
−
∫ θ

0

µ(A, X̄)dθ′ −
∫ θ

0

k∑
i=1

∂vi
∂xi

(A, X̄)dθ′
]
.

To find the constant term C, we divide the at-plane along the line a = t. In the region where

t < a, our solution propagates the initial distribution n(0, a, x̄) = φ(a, x̄) forward in time,

and in the region where t ≥ a, the boundary condition n(t, 0, x̄) dispenses a distribution at

the age a = 0 boundary that is then propagated forward as well. Let

Π(s; a, x̄) = exp

[
−
∫ s

0

µ(a− s+ σ, X̄(σ − s, x̄))dσ

]
be the survival probability, the probability that a cell of age a and state x̄ at time t will remain

in the population at time t + s, that is, the cell will not have died or divided during the

time interval of length s. For an age-structured model, the survival probability is sufficient to

determine the density of a cell cohort over time. However, for the multi-structured model, we

must also resolve how the volume occupied by a given cohort is distorted as it is translated

through state space. The volume distortion is illustrated in Figure 3.4 below. The Jacobian,

J(s; a, x̄) = exp

[
−
∫ s

0

k∑
i=1

∂vi
∂Xi

dσ

]
=

∣∣∣∣∂(A(s, a), X̄(s, x̄))

∂(a, x̄)

∣∣∣∣ ,
is the determinant of the Jacobian matrix for the characteristic curves (see Appendix A for

proof). The Jacobian term may be interpreted as a coordinate transformation in time, that
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is, from the current time to a small time s later on [3]. Said another way, this term accounts

for the fact that a cohort occupying a volume V initially will grow to occupy a volume that

is larger by a factor of exp

[∫ s

0

k∑
i=1

∂vi
∂Xi

dσ

]
at time s [10].

Finally, we arrive at the following solution for the population density,

n(t, a, x̄) =


φ(a− t, X̄(−t, x̄))Π(t)J(t) for t < a

n(t− a, 0, X̄(−a, x̄))Π(a)J(a) for t > a.

(3.7)

In the region where t < a, the solution is fully determined from the initial condition. As an

example, Figure 3.5 shows the evolution of the age and size distribution of a cohort of cells

beginning at time t = 0. Resolving the boundary condition, however, may not be possible

in a closed form.

3.4 Series solution

To obtain the solution to (3.4) where 0 ≤ a < t, the piecewise-defined solution for n is

inserted into the boundary condition,

n(t, 0, x̄) = B(t, x̄) =

∫ ∞
0

∫
Ω

β(a, ȳ, x̄)n(t, a, ȳ)dȳda,

resulting in the following integral equation for the birth-rate function B(t, x̄).

B(t, x̄) =

∫ t

0

∫
Ω

β(a, ȳ, x̄)B(t− a, Ȳ(−a, ȳ)) exp

[
−
∫ a

0

µ(σ, Ȳ(σ − a, ȳ))dσ

]
J(a)dȳda

+

∫ ∞
t

∫
Ω

β(a, ȳ, x̄)φ(a− t, Ȳ(−t, ȳ)) exp

[
−
∫ t

0

µ(a+ σ − t, Ȳ(σ − t, ȳ))dσ

]
J(t)dȳda

= K(B)(t, x̄) + Φ(t, x̄)

(3.8)

The above equation may be simplified slightly by a change of variables. The Jacobian term

acts as a coordinate transformation on Ω from a time dt ago to the present. The Jacobian

matrix used to change of variables from the past, Ȳ(−t, ȳ) to current-time coordinates,
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Figure 3.4: This figure depicts the deformation in state space as a cohort of cells increases
in volume as it moves through the space. A cohort of cells originally occupying an area of x2

will grow to occupy and area of x2eαt as it ages from age a to a+ t. The Jacobian accounts
for this expansion to maintain a constant density along characteristic curves. In other words,
propagating a cohort forward in time can be thought of as a coordinate transformation in
state space from x̄→ X̄(t, x̄).
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Figure 3.5: A forward simulation of the semigroup solution applied to the age and size
distribution of an initial cohort of cells drawn from a multivariate-normal distribution.
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Ȳ(t, ȳ), is exactly the inverse of the Jacobian in the solution. The integral equation for

B(t, x̄) is equivalently expressed,

B(t, x̄) =

∫ t

0

∫
Ω

β(a, Ȳ(a, ȳ), x̄)B(t− a, ȳ) exp

[
−
∫ a

0

µ(σ, Ȳ(σ, ȳ))dσ

]
dȳda

+

∫ ∞
0

∫
Ω

β(a+ t, Ȳ(t, ȳ), x̄)φ(a, ȳ) exp

[
−
∫ t

0

µ(a+ σ, Ȳ(σ, ȳ))dσ

]
dȳda

= K(B)(t, x̄) + Φ(t, x̄).

(3.9)

The first integral behaves as an operator acting on B, call this operator K and the integral

K(B)(t, x̄). The second integral depends on the initial condition and will be labeled Φ(t, x̄).

The proof of the following existence and uniqueness theorem shows that the integral

equation (3.8) for B has a solution B(t, ·) which admits a continuous mapping for t in the

interval [0, T ] to the state space Ω, and that this mapping can be extended to the full space

as t→∞. Though we may not find a closed form solution for B, the method of successive

approximations gives a solution in the form of a convergent series of repeated applications

of the operator K to the initial cohort Φ. In this way, each application of K corresponds to

the next generation of cells.

Theorem 1. There exists a unique, continuous and bounded solution B to (3.9).

Proof. Let Ω1 ⊂ Ω be the volume of state space occupied by the initial cohort, and β̃ an

upper bound on the birth modulus. (Refer to the integral equations as presented in (3.8) to

see clearly how the Jacobian increases Ω1 with each application of K.) The operator K is

continuous in t and x̄, and bounded in sup norm by,

||K|| ≤ tβ̃Ω1 sup
0≤σ≤t

||B||.

Φ is also continuous in t and x̄, and bounded by, ||Φ|| ≤ β̃||φ||L1 . By the method of successive

approximations,

B = Φ +K(Φ) +K2(Φ) + · · · =
∞∑
N=0

KN(Φ).
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The series solution for B converges on an interval [0, T ≤ 1
β̃Ω1

] as repeated applications of

K, each representing the next newly born cohort of cells, remain bounded

||KN(Φ)|| ≤ (T β̃Ω1)N · β̃||φ||L1 .

Since B is the uniform limit of continuous functions, it is also continuous. Assuming there

are two solutions, B1 and B2, and inserting their difference B1−B2 into the above inequality

in place of Φ shows that this solution is unique as well.

We have shown that a unique and continuous solution B to the integral equation

B(t, x̄) = K(B)(t, x̄) + Φ(t, x̄), (3.10)

exists, and can by approximated by a power series. The series converges to the solution B on

a closed time interval, however, the length of the interval grows with the addition of each new

term, or generation. In other words, we can always find the distribution of newborn cells as

the sum of the contribution, determined through K, from all of the previous cohorts, and the

population will become infinitely large in infinite time—which is eventually how long it would

take to add all of this up. Nevertheless, we will still be able to extract valuable information

about the long-term behaviour of the population, particularly, if a stable distribution is

reached in age and within the structure variables, even while the population continues to

grow in time.

3.5 Asymptotic Behavior

We conclude this chapter with a brief discussion of what it means to find an asymp-

totic (long-term) solution. An asymptotic solution describes the behavior of a system as

time increases to infinity. Generally, there is a short, transient phase before the promised

asymptotic behavior is realized, the challenge is in separating out the dominant behavior

that will persist over time and showing that all other contributions quickly become negligi-

ble. The asymptotic solution is analogous to an equilibrium solution for a linear model in
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that, the population will continue to increase for all time (or go extinct) while the fraction

of the total population of a given state remains constant.

If such a solution exists, evolution in time can be separated from the structural distri-

bution yielding solutions B(t, x̄) of the form

B(t, x̄) = eλtψ(a, x̄),

where the constant λ is the Malthusian growth parameter, intrinsic to the population itself.

Due to the formulation of our model, there are two approaches one could use to arrive

at this type of result, and we will show that under certain conditions on cell growth, the

multi-structured model admits a (periodic) steady-state solution.

In the first approach, we will show that the PDE (3.4) is the generator of a strongly

continuous semigroup. The boundary condition is interpreted as a perturbation to the gen-

erator of this semigroup by a bounded linear operator, and analysis of the spectral properties

of this operator determine conditions for a steady-state solution. In the second approach, we

view (3.10) as an abstract renewal equation and solve the eigenproblem for the eigenvalue

λ and eigenfunction ψ, which again determine conditions for a steady-state solution for B.

Finally, we discuss how the two approaches are linked, what it means to arrive at a periodic

steady-state solution, and what is gained from this analysis.



Chapter 4

Semigroup Approach

From the semigroup point of view, the evolution of a structured population is cast as

a dynamical system in state-space. That is to say, rather than our previous understanding

of the model PDE (3.4) through a directional derivative, as in Equation (3.5), we move

everything except the rate of change in density with respect to time,
∂

∂t
n(t, a, x̄), to the

right-hand-side, and consider this, the sum of all of the changes to the density occurring

in state-space, as a linear operator acting on the state-space. This leads to an abstract

formulation of the dynamical system in state-space, which has a family strongly-continuous

linear operators, called a semigroup, as its solution. A semigroup is analogous to a matrix

exponential, and we will see that it has many of the same nice continuity properties and

functions in much the same way. However, one of the major advantages a semigroup solution

offers is that, unlike a classical PDE solution, a semigroup solution may be perturbed to

include discontinuous jumps in state-space. In constructing a solution for our model, cell

division will be included as one such jump discontinuity in that a dividing cell is removed

from the population only to instantaneously reappear as a transformation of itself at the age

a = 0 boundary.

In this chapter, we present some of the key theorems and concepts from semigroup

theory, and apply them to find the semigroup solution of our model. We then show that

the boundary condition may be resolved by a perturbation to the semigroup solution, and

conclude by deriving the eigenproblem (to be solved in Chapter 6) whose solutions determine
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the asymptotic behavior of the population.

4.1 Semigroup Solution and Properties

We show that the solution obtained by the method of characteristics is a strongly-

continuous semigroup of linear operators acting on the state space. Analysis of the semigroup

and its generator describe the long-term, or asymptotic, behavior of the population. For

this linear model, the population will either reach the locally asymptotically stable zero

solution, or grow infinitely large in infinite time. Neither of these options are particularly

captivating, unless we can show that the population exhibits some structural organization

along the way. The aim of this section is to characterize this behavior through asymptotic

analysis. In this section, a brief overview of the theory and its utility will be presented.

We define well-posedness of the Abstract Cauchy Problem (ACP) and establish spectral

properties of generators of strongly continuous semigroups. We then turn our attention to

the multi-structured model (3.4) and establish that this theory applies to the problem under

consideration by explicitly stating and proving well-posedness of the ACP and semigroup

solution.

In the semigroup formulation, we think of a PDE, such as (3.4), as being associated

with a linear operator A acting on a Banach space U . That is, the state of our population

density at any time t is identified with a point in the Banach space U = L1(R+ × Ω), and

the semigroup, said to be generated by A, is the continuous map from any initial state

φ1(a, x̄) ∈ U to the state φ2(a, x̄) ∈ U at time t. As an illustrative example, consider the

Malthusian growth model for a population n(t). The population evolves according to the

ODE

dn(t)

dt
= λn, n(0) = φ.

The operator A in this case is simply the constant λ, and the semigroup it generates is eλt.

The solution to this ODE is n(t) = φeλt, from which it is clear to see that the semigroup,
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eλt, maps an initial state φ to the state at any future time t. But, it is the properties of A

that dictate the fate of this population in that, if λ > 0, the population grows to infinity in

infinite time, and if λ < 0, the population will die out.

4.2 The Abstract Cauchy Problem

In an entirely analogous way, the time evolution of n(t, a, x̄) is described by a function

mapping t ∈ R+ → n(t, ·, ·) ∈ U , governed by the ACP,

dn(t)

dt
= An(t), n(0) = φ (ACP)

where A is a linear, closed, and generally unbounded (differential) operator with dense

domain D(A) ∈ U [52]. The word abstract in Abstract Cauchy Problem signifies that

solutions are Banach space valued.

A function n : R+ → U is a solution of (ACP) if it is continuously differentiable, takes

on values in D(A), and satisfies the ACP. The ACP is well-posed if for every initial state

φ ∈ D(A), there exists a unique solution with continuous dependence on φ. Solutions of a

well-posed ACP give rise to a family {S(t)} of bounded linear operators on U , defined as

the unique set of operators satisfying n(t) = S(t)φ [38]. Finally, this family of operators

{S(t)} is a strongly-continuous semigroup, meaning, it satisfies the following four defining

properties (reminiscent of how exponentials behave):

(1) S(t) is a continuous mapping from U into itself.

(2) S(0) = I.

(3) The semigroup property, S(s)S(t)φ = S(t+ s)φ.

(4) Strong continuity, limt↘0 ||S(t)φ− φ|| = 0.

On the other hand, each semigroup can be associated with a closed, densely defined
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operator A called the infinitesimal generator, or simply the generator, of S, defined

Aφ = lim
t↘0

1

t
(S(t)φ− φ). (4.1)

The operator A uniquely determines the semigroup, and gives rise to a well-posed ACP [52].

The relationship between the ACP, a semigroup, and its generator is summarized by the

Well-Posedness Theorem [51], [38]:

Theorem 2. Well-Posedness Theorem. For a closed linear operator A with domain D(A)

dense in a Banach space U , the following properties are equivalent:

(1) The ACP defined on B is well-posed.

(2) The operator A is the generator of a strongly-continuous semigroup {S(t)}t≥0 on B,

and classical solutions of the ACP are given by n(t) = S(t)φ for φ ∈ D(A).

4.3 Spectral Properties of the Generator

While the ultimate goal is to solve (ACP), it is the spectral properties of the generator

A that give us an idea of the asymptotic behavior of solutions. This is made clear by

the Hille-Yosida Theorem, the central theorem of semigroup theory which distiguishes the

generators of strongly continuous semigroups among the class of all linear operators. This

theorem has many formulations, stated here is the version appearing in [64]. And, as in

[64], we first make the observation that every strongly continuous semigroup is exponentially

bounded which follows from semigroup property (III) above.

Lemma 3. Let A be a linear operator on a Banach space U , let S(t) be a strongly continuous

semigroup, and let ω ∈ R, and M ≥ 1 be constants. Then the following two properties hold.

(1) S(t) is generated by A and satisfies ||S(t)|| ≤Meωt for all t ≥ 0.
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Proof. Choose M ≥ 1 such that ||S(s)|| ≤ M for all 0 ≤ s ≤ 1 and write t ≥ 0 as

t = s+ n for n ∈ N and 0 ≤ s < 1. Then,

||S(t)|| ≤ ||S(s)|| · ||S(1)||n ≤Mn+1

= Men ln(M) ≤Meωt

holds for ω := ln(M) and each t ≥ 0 [32].

(2) A is closed, and densely defined on U . The half-line (ω,∞) is contained in the

resolvent set ρ(A), and we have the estimates,

||R(λ,A)m|| ≤ M

(Re(λ)− ω)m
, ∀λ > ω, m ∈ N.

Proof. By the Hille-Yosida Theorem [52].

The fact that the second property implies the first means that spectral properties of A

signify the existence of a corresponding semigroup S, and well-posedness of the associated

ACP. The question is, which spectral properties of A will allow us to make conclusions about

the asymptotic behavior of S, and thus the solutions of the ACP. Of particular interest are

the spectrum of an operator, the resolvent set, the resolvent operator, and the spectral radius

defined in Appendix C.

The primary result from the spectral properties of the generator, A, is that it allows

us to establish a growth bound on the semigroup it generates, and therefore on solutions to

the associated ACP. The uniform growth bound, ω0(S), is defined as

ω0(S) := inf{ω ∈ R : ∃M > 0 such that ||S(t)|| ≤Meωt,∀t ≥ 0}.

From the Hille-Yosida Theorem, we have that the spectrum of the generator of a strongly

continuous semigroup is always contained in some left half-plane, as in, the maximum real

part of an element of the spectrum defines an infinite vertical boundary (an abscissa) and
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all other elements in the spectrum of the generator are contained in the half-plane to the

left of this boundary. We can then define the spectral bound s(A) by

s(A) := sup{Re(λ) : λ ∈ σ(A)}.

Furthermore, the Perron-Frobenius Theorem for positive semigroups states that, for a posi-

tive semigroup, s(A) is always in the spectrum of A [38].

The Spectral Mapping Theorem states that, for a linear operator L, and an analytic

function f ,

σ(f(L)) = f(σ(L)).

The Taylor series for an exponential function is everywhere convergent, so that σ(etA) is

equal to etσ(A). Therefore, et(ω0(S)) = r(etA) = ets(A), from which we can conclude that

s(A) ≤ ω0(S), with equality if and only if A is bounded [64].

These spectral bounds will aid us in our quest to characterize steady-state solutions

of the multi-structured model. This property has been demonstrated for the age-structured

model in [33], and we conclude this section with a mathematical formulation of this problem

wherein we seek a rank-one operator P ∈ L(U,Uλ), the space of bounded linear operators

from U to Uλ, where Uλ is an eigenspace of A corresponding to eigenvalue λ, such that

e−λtS(t)−P

goes to zero exponentially in operator norm as t→∞ [65]. We are guaranteed the existence

of such a projection if the following lemma (from [33]) is satisfied.

Lemma 4. If λ is the positive, strictly dominant, simple, and real eigenvalue of the generator

A of a strongly continuous semigroup S(t), then there exists a rank-one operator P in the

Banach space L(U,Uλ) such that the range of P = ker(A−λI), a one-dimensional invariant

subspace.

Then there exist positive constants M and δ such that,

||e−λtS(t)−P||B ≤Me−δt. (4.2)
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4.4 Semigroup Solution and ACP for the Multi-Structured Model

The solution given in (3.7) forms a strongly-continuous semigroup of linear operators

{S(t)}t≥0 where,

n(t, a, x̄) = (S(t)φ)(a, x̄) =


φ(a− t, X̄(−t, x̄))Π(t)J(t) for t < a

n(t− a, 0, X̄(−a, x̄))Π(a)J(a) for t > a.

(4.3)

Lemma 5. {S(t)} is a strongly continuous semigroup on U .

Proof. Provided in the appendix.

While {S(t)}t≥0 has several convenient properties by virtue of being a strongly-continuous

semigroup, such as exponential boundedness, in order to make use of them, we must show

that {S(t)}t≥0 is generated by the linear operator associated with the model (3.4). The linear

operator A associated with the PDE in (3.4) is,

Aφ = −

[
∂φ

∂a
+

k∑
i=1

vi
∂φ

∂xi
+ φ

k∑
i=1

∂vi
∂xi

+ µφ

]
. (4.4)

Through this operator, the PDE model may be recast as the Abstract Cauchy Problem

in the Banach space U = L1(R+ × Ω), for n(t, ·, ·):

dn(t)

dt
= An(t), n(0) = φ. (4.5)

Furthermore, we have proven (in Appendix E) that A is the infinitesimal generator of

{S(t)}t≥0 by showing that

Aφ = lim
t↘0

1

t
(S(t)φ− φ)

is satisfied for every φ in the domain of A, D(A) [31]. The Well-Posedness Theorem then

guarantees that the ACP (4.5) is well-posed, and therefore n(t, ·, ·) = S(t)φ is the unique

classical solution for φ ∈ D(A).
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4.5 The domain of the generator

The definition of the semigroup S(t) and its generator A are incomplete without a

definition of the domain, D(A). In the most general sense, the domain of a semigroup is

a Banach space, or subset of a Banach space, where its generator is defined [32]. For this

problem, D(A), is the subset of all φ in the Banach space L1(R+×Ω) satisfying the following

two properties:

(1) The boundary conditions must match. This means

lim
t→0+

1

t

∫ t

0

∫
Ω

|φ(a, x̄)− B̂(0, x̄)|dx̄da = 0

where B̂(t, x̄) =

∫ ∞
0

∫
Ω

β(a, ȳ, x̄)S(t)u(a, ȳ)dȳda.

(2) The derivative must remain in the domain. This means that there exists some

φ′ ∈ L1(R+ × Ω) such that for every τ ∈ R,

φ(a− τ, Ḡ−1(Ḡ(x̄)− τ))− φ(a, x̄) =

∫ τ

0

φ′(a− s, Ḡ−1(Ḡ(x̄)− s))ds

where φ(a− τ, Ḡ−1(Ḡ(x̄)− τ)) is defined to be zero on [0,−τ)× Ω if τ < 0. If this

is satisfied, then the directional derivative

D(1,v̄)φ(a, x̄) = lim
τ→0

1

τ
[φ(a− τ, Ḡ−1(Ḡ(x̄)− τ))− φ(a, x̄)]

exists almost everywhere and is equal to φ′(a, x̄)

Under these conditions, we can restrict our domain to the Sobolev space W 1,1(R+ × Ω),

giving us the correct balance of regularity and integrability [42].

4.6 Reproduction as a semigroup perturbation

We have shown that the operator A generates the strongly continuous semigroup S(t).

A perturbation to the generator of a semigroup by a bounded linear operator produces
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another generator of a strongly continuous semigroup [52]. If cells entering the population

at the a = 0 boundary are conceived of as an input or impulse m(t) fed into the system

by the bounded linear operator C, this acts as a perturbation to A, changing our original

abstract Cauchy problem to,

dn(t)

dt
= An(t) + Cm(t). (4.6)

However, specifying the generator of the perturbed semigroup is likely to be exceedingly

difficult. Instead, we apply the variation of constants formula to get an integral equation for

n(t),

n(t) = S(t)φ+

∫ t

0

S(t− s)Cm(s)ds,

and seek to characterize conditions on φ and m which make n differentiable.

By defining the system input cumulatively as F (t) =
∫ t

0
Cm(s)ds, the above integral

equation can be expressed as the Stieltjes integral1 ,

n(t) = S(t)φ+

∫ t

0

S(t− s)F (ds). (4.7)

Alternatively, the cumulative input to the system can be defined by a family of operators

V0(t) =
∫ t

0
S(s)Cds, which form a step response for S, and the same expression for n becomes

the Stieltjes integral,

n(t) = S(t)φ+

∫ t

0

V0(ds)m(t− s). (4.8)

The interpretation of the step response is the same as in the ordinary differential equation

setting. For example, take the suspension mechanism of a car to be the system, and rolling

it off a curb to be the input. The step response of the suspension is the frequency and

1 A Stieltjes integral, ∫ t

0

W (ds)V (s)

in a Banach space is defined as the limit of the sums

n∑
j=0

(U(rj+1)− U(rj))V (sj), sj ∈ [rj , rj+1]

as the partition 0 = r0 < · · · < rn+1 = t becomes finer and finer.
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amplitude with which the car wobbles in response. With this in hand, one can evaluate the

car’s performance on a variety of road conditions by convolving the response with the input

function describing the surface of a particular road.

If the initial state of a system is at rest at the origin, φ = 0, and receives an input, or

an external force is applied in the form of a step function

m(t) =


0 t < 0

γ t ≥ 0,

the time evolution of the system is given by V0(t)γ. That is to say, convolution of an input

with the step response determines the how the system will behave as a result.

As the rate of cell loss due to division is required to match the birth rate of new

cells in our PDE model formulation, we account for this type of feedback mechanism by

equating input to output. Setting n(t) = m(t) in the variation-of-constants formula (4.8),

and recognizing that n(t) = T (t)φ, the perturbed semigroup, leads to a system of equations

for T (t) in terms of its associated step response V (t), which inherits the step response

properties of V0(t)

T (t) = S(t) +

∫ t

0

V (ds)S(t− s) (4.9)

V (t) = V0(t) +

∫ t

0

V (t− s)V0(ds). (4.10)

Accordingly, a step response V0 must satisfy the relationship,

V0(t+ s)− V0(t) = S(t)V0(s),

where the right hand side says that the state of the system at time s is V0(s) which S

advances to S(t)V0(s) over the time interval s to t+ s; the state of the system at time t+ s

in response to an input over the whole time interval [0, t + s), subtracting V0(t) on the left

makes the change equivalent over the interval [s, t+ s).

Asymptotic behavior of the semigroup T is determined by its generatorA+C. However,

without access to this operator, we instead analyze spectral properties of A through its
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resolvent operator R(λ,A) = (λI − A)−1 and the step response V0. The following theorem

gives the relationship between a strongly continuous semigroup and the resolvent operator

of its generator [52].

Theorem 6. Let T = {T (t)}t≥0 be a strongly continuous family of bounded linear operators.

Then the following are equivalent.

(1) T is a strongly continuous semigroup.

(2) There exists s0 ∈ R+ such that the Laplace transform

∫ ∞
0

e−λtT (t)xdt of t→ T (t)x

exists for all λ > λ0 and x in the Banach space X, and there exists a linear operator

(A,D(A)) such that (λ0,∞) ⊂ ρ(A) and, for all x ∈ X and λ > λ0,

R(λ,A)x =

∫ ∞
0

e−λtT (t)xdt.

where R(λ,A) = (A− λI)−1 is the resolvent operator of the generator of the semi-

group T (t).

Defining V (t)x =

∫ t

0

S(r)xdr, we recognize the first integral in (4.9) as a Stieltjes

convolution integral defined,

(S ∗ f) =

∫ t

0

V (ds)f(t− s).

Taking Laplace transforms,

L(f(t)) = f̂(λ) =

∫ ∞
0

e−λtf(t)dt,

of the integrals in (4.9) produces,

L(T (t)) = L(S(t)) +

∫ t

0

V (ds)S(t− s))⇒ R(λ,A+ C) = R(λ,A) + V̂ (λ)R(λ,A)

L(V (t)) = L(V0(t) +

∫ t

0

V (t− s)V0(ds))⇒ V̂ (λ) = V̂0(λ) + V̂ (λ)V̂0(λ)

⇒ R(λ,A+ C) = (I − V̂0(λ))−1R(λ,A)

(4.11)
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Singularities of R(λ,A + C) are eigenvalues of the generator of the perturbed semigroup

T (t). The Hille-Yosida Theorem says that this eigenvalue λ0 is of multiplicity 1 and by

Theorem 4.5, we see that this eigenvalue is the spectral bound of the operator A + C.

Furthermore, Lemma 4.3 above states that the corresponding eigenfunction ψλ0 spans the

eigenspace ker((A+C)−λI), an invariant subspace. Putting this all together, we see that if

(A+ C)ψλ = λψλ

has a solution λ0, a singularity of the corresponding resolvent operator, then the eigenfunction

ψλ is a rank-one projection to an invariant subspace of our state-space Ω, and therefore the

asymptotic behavior of the population is determined by this eigenpair in that,

n(t, ·, ·) = T (t)φ ∼ eλ0tψλ0 . (4.12)

From (4.11), it is clear that singular points of R(λ,A + C), meaning eigenvalues of

(A + C), are values of λ for which V̂0(λ) has an eigenvalue equal to one. Identifying the

operator V0(t), and taking its Laplace transform leads to the characteristic equation for λ0.

4.7 Solving the characteristic equation for our model

For the multi-structured model, the semigroup S(t) and its corresponding step response

V0(t) are defined by,

(S(t)φ)(a, x̄) = φ(a− t, X̄(−a, x̄))Π(t)J(t)

(V0(t)φ)(a, x̄) = Π(a)J(a)

∫ t

0

(∫
Ωm

φ(a+ s, ȳ)β0(a+ s, x̄)(dȳ)

)
L(a+ ds, x̄).

(4.13)

In the expression for the step response V0 above, β0(a, x̄)(dȳ) is a probability measure on Ω.

Consider for a moment cell length to be the only structure variable, then Ωm = (xM
2
, xM ],

and the interval can be partitioned more and more finely, as in Ωm = xM
2

= r0 < r1 <

· · · < rj−1 < rj < −rj+1 < · · · < rN = xM ]. Within each interval of the partition,

β0(a, x1)(rj+1)−β0(a, x1)(rj) is the probability that a newborn cell will have length x1, given
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that its mother was of length y1 ∈ [rj, rj+1] and age a at division. With all of the structure

variables included, these partitions become subsets ω ⊂ Ω. Integrating this probability

measure against a distribution over all of Ω, as in

∫
Ωm

φ(a, ȳ)β0(a, x̄)(dȳ) counts of the

number of individuals of state ȳ times the probability that they will divide.

The functional L(da, x̄) is also defined as a measure on Ω and represents the cumulative

expected number of cells of state x̄, produced by a mother cell of age a ∈ [a, a+ da], thus

L(da, x̄) =

∫ a+da

a

∫
Ωm

β(s, ȳ, x̄)dx̄ds =

∫ a+da

a

2k+1β1(s)χ{ȳ∈Ωm}ds.

The expression for the step response V0(t) is saying that, given the input, the distribution

φ(a, x̄) of cells at time t, the system response is the number of cells of age zero and state x̄

produced within the infinitesimal time interval [t, t+ dt].

The Laplace transform of the step response is,

L((V0(t)φ)(a, x̄)) =

∫ ∞
0

e−λτV0(dτ)(a, x̄)

= Π(a)J(a)

∫ ∞
0

e−λτ
(∫

Ωm

φ(a+ s, ȳ)β0(a+ s, x̄)(dȳ)

)
L(a+ dτ, x̄)

= Π(a)J(a)

∫ ∞
0

e−λτ
(
2k+1β1(a+ s)φ(a+ s, 2x̄)

)
L(a+ dτ, x̄)

Let σ = a+ τ

= Π(a)J(a)eλa
∫ ∞
a

e−λσ
(
2k+1β1(σ)φ(σ, 2x̄)

)
2k+1β1(σ)dσ

= Π(a)J(a)eλa
∫ ∞
a

e−λσ22k+2(β1(σ))2φ(σ, 2x̄)dσ

(4.14)

Finally, we see that if V̂0(λ) is to have an eigenvalue of one, we need to find λ such that

(V̂0(λ)φ)(a, x̄) = Π(a)J(a)eλa
∫ ∞
a

e−λσ22k+2(β1(σ))2φ(σ, 2x̄)dσ = φ(a, x̄) (4.15)

However, by absorbing the Jacobian into the integral to perform the coordinate transforma-

tion x̄→ X̄(−a, x̄) and defining an operator K(λ) : C(Ω)→ C(Ω) by

(K(λ)ψ)(x̄) =

∫ ∞
0

e−λσ22k+2(β1(σ))2ψ(X̄(−a, 2x̄))dσ
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we derive an equivalent eigenproblem,

(K(λ)ψ)(x̄) = ψ(x̄) =

∫ ∞
0

e−λσ
(
2k+1β1(σ)

)2
ψ(X̄(−a, 2x̄))dσ (4.16)

for the eigenvalue λ and corresponding eigenfunction ψ(x̄), since V̂0(λ) will have an eigenvalue

of one whenever K(λ) does. We will return to this eigenproblem for the perturbed semigroup

in comparison with the eigenproblem derived from the renewal equation.

In summary, solutions to (6.1) lead to an asymptotic solution to the multi-structured

model (3.4) with growth rate λ and state-space distribution ψ(x̄). We derived this equation

by perturbing the generator of the semigroup solution (4.3) with a bounded linear operator.

As is typical in this scenario, we do not have access to the perturbed generator, and instead

we relate the associated perturbed semigroup T (t) to our original semigroup solution S(t)

through a step-response operator. Spectral properties of the perturbed operator determine

the long-term behavior of the perturbed semigroup, and Theorem 6 provides a connection to

the spectrum of the perturbed generator as its resolvent operator is the Laplace transform

of the perturbed semigroup.

This leads to an expression for the resolvent operator of the perturbed generator, from

which we can access its spectrum as singularities of the resolvent are necessarily in the

spectrum. It is clear from this expression that an eigenvalue of the perturbed generator is

the value of λ for which the Laplace transform of the step-response operator has itself an

eigenvalue of 1. By solving this characteristic equation we arrive at the eigenproblem (6.1)

above.

Together, the Hille-Yosida Theorem and the Perron-Frobenius Theorem for positive

semigroups assert that the eigenvalue λ is the spectral bound of the perturbed generator.

By applying the Spectral Mapping Theorem, we see that λ is also the uniform growth bound

of the perturbed semigroup T (t). Furthermore, the corresponding eigenfunction ψ(x̄), spans

the eigenspace of the perturbed generator corresponding to λ, the kernel of (A+C)−λI, and

is therefore the projection P described in Lemma 4 describing the steady-state distribution



55

in state-space.



Chapter 5

Renewal Equation Approach

In the previous chapter, we perturbed the generator of the semigroup solution to the

multi-structured model (3.4), and arrived at an eigenequation for which the eigenvalue λ

and corresponding eigenfunction ψ(x̄) dictate the asymptotic behavior of the population as

t → ∞. In this chapter, we will analyze an abstract renewal equation derived from the

renewal equation at the age a = 0 boundary found in Chapter 3, and arrive at a similar

eigenfunction (to be solved in Chapter 6) with solutions λ and ψ(x̄) to determine again the

asymptotic behavior of the population as t→∞.

5.1 Reduction to an abstract renewal equation

In this section, an alternative approach to resolving cell renewal at the age a = 0

boundary is presented. The integral equation for B(t, x̄) is repeated here from (3.8).

B(t, x̄) =

∫ t

0

∫
Ω

β(a, ȳ, x̄)B(t− a, Ȳ(−a, ȳ)) exp

[
−
∫ a

0

µ(σ, Ȳ(σ − a, ȳ))dσ

]
J(a)dȳda

+

∫ ∞
t

∫
Ω

β(a, ȳ, x̄)φ(a− t, Ȳ(−t, ȳ)) exp

[
−
∫ t

0

µ(a+ σ − t, Ȳ(σ − t, ȳ))dσ

]
J(t)dȳda

= K(B)(t, x̄) + Φ(t, x̄)

(5.1)

Identifying Φ(t, x̄) and B(t, x̄) with their respective mappings t → Φ(t, ·) and t →
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B(t, ·), we can write (3.8) as the abstract renewal equation,

B(t) = Φ(t) +

∫ t

0

K(a)B(t− a)da. (5.2)

where, for each fixed t, B(t) and Φ(t) are operators in L1(Ω) in that B(t, x̄) = (B(t))(x̄),

and similarly for Φ.

And similarly, for each fixed t, K(t) defines a bounded linear operator from L1(Ω) →

L1(Ω). Let ψ(x̄) be an L1-function on Ω. Then, (K(t)ψ)(x̄) maps ψ(x̄) ∈ L1(Ω) to another

function in L1(Ω) through multiplication and translation by the kernel K(t, x̄), where,

K(B)(t, x̄) =

∫ t

0

∫
Ω

β(a, ȳ, x̄)B(t− a, Ȳ(−a, ȳ))Π(a; a, x̄)J(a; a, x̄)dȳda

=

∫ t

0

∫
Ω

β1(a)χ{ȳ∈Ωm}δ(x̄−
1

2
ȳ)B(t− a, Ȳ(−a, ȳ))Π(a; a, x̄)J(a; a, x̄)dȳda

=

∫ t

0

β1(a)χ{ȳ∈Ωm}B(t− a, Ȳ(−a, 2ȳ))Π(a; a, 2x̄)J(a; a, 2x̄)da

=

∫ t

0

K(a, 2x̄)B(t− a, Ȳ(−a, 2ȳ))da.

(5.3)

We define K(a, x̄) by, K(a, x̄) = β1(a)Π(a; a, x̄)J(a; a, x̄)χ{ȳ∈Ωm}, and see that,

(K(t)Ψ)(x̄) = K(t, 2x̄)Ψ(X̄(−t, 2x̄)) ∈ L1(Ω).

5.2 Domain and Range of Operators

In this section, we will discuss the continuity requirements and restrictions for each

operator. The renewal equation is composed of three operators, B(t, x̄), Φ(t, x̄), and K(a, x̄),

which functions as an integral kernel integrated against B(a, x̄) with respect to a on [0, t].

Each of these continuous functions is non-negative, has compact support, and acts on the

space R+ × Ω.

Lemma 7. For each t ∈ [0, T ], there is a unique, continuous mapping from the interval

[0, T ] into L1(Ω), such that Φ(t, ·) and B(t, ·) satisfy the integral equation (3.8).
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Proof. Φ(t, x̄) is obtained by integrating the initial condition φ(a, x̄) along characteristic

curves for a ∈ (0,∞). Since φ is assumed to be a Lipschitz continuous, compactly supported

function in L1(R+×Ω), integration over all ages a produces a continuous function in L1(Ω).

In this way, for each fixed t ∈ [0, T ], there exists a unique, continuous mapping t→ Φ(t, x̄)

from the interval [0, T ]→ L1(Ω), with Φ(t, ·) satisfying the integral equation (3.8).

The result for B was proven in Theorem 3.1.

Further, since G(2x1) is the time required for the smallest possible cell to reach a

length of 2x1, we consider Φ(t, x̄) = 0 if t ≥ G(2x1), because any cell present at time t = 0

will necessarily have surpassed this length, and there will be no contribution of new cells of

length x1.

And finally, K(a, x̄) can be thought of as an integral kernel, continuous in both a and

x̄. Continuity of K guarantees the existence of a unique, continuous L1-function B that is

the solution to (3.8). K(a, 2x̄) = 0 if x̄ 6∈ Ωm, as these cells are too small to divide, and

K(a, 2x̄) = 0 if a ≥ G(2x1) as, similar to Φ, these cells are older than the time it takes to

grow to size 2x1, and would therefore be too large to produce cells of size x1.

5.2.1 Laplace Transform

The Laplace transform of a function f(t) is denoted and defined

f̂(λ) =

∫ ∞
0

e−λtf(t)dt.

Taking the Laplace transform of both sides of the abstract renewal equation,

B(t) = Φ(t) +

∫ t

0

K(a)B(t− a)da (5.4)

yields,

B̂(λ) = Φ̂(λ) + K̂(λ)B̂(λ) ⇒ B̂(λ) = (I − K̂(λ))−1Φ̂(λ). (5.5)

The solution B(t) is then the inverse Laplace transform of B̂(λ),

B(t) = L−1{B̂(λ)} =
1

2πi

∫ c+i∞

c−i∞
eλt(I − K̂(λ))−1Φ̂(λ)dλ.
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Cauchy’s Residue Theorem says that the solution to this complex integral is the sum over

the residues of B̂(λ) at each pole. We will show that singularities of B̂(λ) only exist when

(I − K̂(λ))−1 is singular, and that this a simple pole defined for a unique value of λ.

We have shown previously that the solution to the model (3.4) generates a semigroup

of linear operators which, one of the properties this endows K(t) and Φ(t) with, is that they

are exponentially bounded by a bound on the probability of cell loss. Let

µ∞ = lim
σ→∞

µ(a+ σ, X̄(σ, x̄)) ≤ d+ 1 <∞.

Then, ||Φ(t)|| ≤ M1e
−µ∞t, and ||K(t)ψ|| ≤ ||ψ||M2e

−µ∞t. Therefore, K̂(λ) and Φ̂(λ) are

both analytic where they are defined, that is for all λ in the right-half plane

Λ = {λ ∈ C|Re(λ) > −µ∞}.

The operators are not defined for Re(λ) < −µ∞ as the exponent in the Laplace transform

would become positive forcing the integral to diverge.

As the operators K̂(λ) and Φ̂(λ) are both analytic in Λ, the only singularities will arise

when 1 ∈ σ(K̂(λ)), the spectrum of the Laplace transform of K(t). Therefore, the long-term

behavior of B(t) will be determined by the element λ ∈ Λ with the largest real part such

that I − K̂(λ) is singular.

Here we present a series of arguments as laid out in Heijman’s analysis of an age and

size structured model appearing in [47]. These results hold for the multi-structured model

and together assert that there is one dominant eigenvalue λ0, equal to the spectral radius of

the semigroup S(t), thus determining the long-term behavior of the system along with the

corresponding eigenfunction ψλ0 .

Lemma 8. For all λ ∈ Λ, K̂(λ) is compact.

Lemma 9. The function λ→ (I − K̂(λ))−1 is meromorphic in Λ.

If the mapping from λ to the operator (I − K̂(λ))−1 is meromorphic, the set

Σ = {λ ∈ Λ|1 ∈ σ(K̂(λ))}
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is a discrete set whose elements are poles of (I − K̂(λ))−1 of finite order.

Lemma 10. If ψ is an eigenfunction of K̂(λ), then ψ(x̄) = 0 for x̄ 6∈ Ωm.

From this lemma, we see that repeated applications of K̂(λ) are ultimately restricted

to the subspace of L1(Ω) spanned by ψ, and therefore, K̂(λ) restricted to this subspace is

non-supporting. If K̂(λ) is non-supporting, then the spectral radius r = r(K̂(λ)), is a pole

of the resolvent, (λI − K̂(λ))−1, and an algebraically simple eigenvalue of K̂(λ).

Lemma 11. The corresponding eigenvector ψλ(x̄) > 0 ∀ x̄ ∈ Ωm.

Lemma 12. There is a unique λ0 ∈ Λ ∩ R such that r = 1, and therefore λ0 ∈ Σ.

Lemma 13. And finally, all other λ ∈ Σ have Re(λ) < λ0.

That is, λ0 is the unique eigenvalue which makes the spectral radius of K̂(λ) equal to

one, and all other eigenvalues in the set Σ are separated from λ0 by some positive horizontal

distance.

Therefore, solving the abstract renewal equation reduces to the characteristic equation

for K̂(λ), for which we must find the value of λ, and its corresponding eigenvector ψλ, such

that (K̂(λ)ψ)(x̄) = 1ψ(x̄) = ψ(x̄).

5.3 Solution to the eigenproblem

We seek a solution to the renewal equation wherein the contribution from the initial

condition becomes negligible on a large time frame, and the behavior of B(t, x̄) can be

described in terms of its dominant eigenvalue and corresponding eigenfunction, as in

B(t, x̄) = K(B)(t, x̄) + Φ(t, x̄) ∼ eλtψ(x̄),
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as t→∞. We have shown in the previous section that λ and ψ are the unique solutions to

the characteristic equation for K̂(λ). That is,

(K(t)eλtψ)(x̄) = eλtψ(x̄) =

∫ t

0

K(a, 2x̄)B(t− a, X̄(−a, 2x̄))da

= eλtψ(x̄) =

∫ t

0

eλ(t−a)K(a, 2x̄)ψ(X̄(−a, 2x̄))da

⇒ ψ(x̄) =

∫ t

0

e−λaK(a, 2x̄)ψ(X̄(−a, 2x̄))da

ψ(x̄) =

∫ t

0

e−λaΠ(a)J(a)β1(a)ψ(X̄(−a, 2x̄))da

(5.6)

Here we have arrived at the eigenequation for λ and ψ. Solving this equation requires us to

specify a division condition as well as conditions on the growth rate which we will complete

in the following concluding chapter.

As in the previous chapter, we begin by casting our problem abstractly (Banach-space

valued), and seek solutions in the form of linear operators acting on a Banach space. By

taking Laplace transforms on either side of the abstract renewal equation (5.2), we find

that the long-term behavior of B(t) is determined by the value of λ such that the Laplace

transform of K(t) has itself eigenvalue 1. Properties of the unperturbed semigroup solution

(4.3) guarantee that K(t) is analytic and exponentially bounded, from which we show that

the spectral radius of K̂(λ) is an algebraically simple eigenvalue equal to 1. This defines the

characteristic equation we solve to arrive at the eigenequation for λ and ψ(x̄).

In the next chapter, we make assumptions and impose a division condition on our

population so that we may solve the eigenequations derived from both the semigroup and

renewal equation approaches, and determine the long-term behavior of the population.



Chapter 6

Summary of multi-structured modeling

In this chapter we will make some simplifying assumptions about cell growth and

division in order to solve the eigenfunctions we have derived from the semigroup perturbation

approach, and in the previous chapter, by solving the renewal equation. We conclude by

comparing these solutions and discussing their interpretation.

6.1 Steady-state

At the end of Chapters 4 and 5, we concluded with the eigenproblem for the asymptotic

solution to the renewal equation derived from semigroup perturbation and applying Laplace

transforms to the renewal equation, respectively.

In order to complete these solutions, we must specify a division condition. For sim-

plicity, will assume a constant growth rate α so that,

X1(t, x1) = x1e
tα,

and the Jacobian J(t) reduces to

J(t) = e−tα.

As a condition for division, we will require a cell to double in length, so that if a cell

is of size x̄ at birth, it will divide upon reaching size 2x̄. Under this division condition, and

with a constant growth rate, all cells will divide upon reaching the same age, a∗. Therefore,

β1(a) becomes δ(a− a∗).

Now, we apply these conditions to the eigenproblems derived in Chapters 4 and 5.
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6.1.1 Eigenproblem solution from semigroup perturbation

The eigenproblem for the Laplace transform of the step response operator V̂0(λ) is

equivalent to the eigenproblem defined through operator K(λ) : C(Ω)→ C(Ω) where

(K(λ)ψ)(x̄) =

∫ ∞
0

e−λσ22k+2(β1(σ))2ψ(2x̄)dσ.

And the equivalent eigenproblem is,

(K(λ)ψ)(x̄) = ψ(x̄) =

∫ ∞
0

e−λσ
(
2k+1β1(σ)

)2
ψ(X̄(−a, 2x̄))dσ (6.1)

Inserting our definition of β1(a) and δ(a− a∗), we find,

ψ(x̄) =

∫ ∞
0

e−λσ
(
2k+1β1(σ)

)2
ψ(X̄(−a, x̄))dσ

=

∫ ∞
0

e−λσ
(
2k+1δ(σ − a∗)

)2
ψ(X̄(−a, 2x̄))dσ

= 22k+2e−λa∗ψ(X̄(−a∗, 2x̄))

(6.2)

If all cells grow at a constant rate α, we find that the time it will take a cell to double

in size is a∗ = 1
α

ln(2). Inserting this above, we find that λ must be equal to the growth rate

α. Then the eigenfunction ψ(x̄) = Cδ(x̄) where C = 22k+1. This eigenfunction says that

once a cell reaches age a∗, any state is a solution to the eigenequation as it will have reached

the appropriate size for division, and divide to make a cell of state x̄.

Finally, we can express the long term behavior of the semigroup T (t) as,

n(t, ·, ·) = T (t)φ ∼ eλ0tψλ0 = eαt
(
22k+1δ(x̄)

)
.
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6.1.2 Eigenproblem solution from renewal equation

Now, we will turn to the eigenequation we derived from the renewal equation in Chapter

5. We have,

ψ(x̄) =

∫ t

0

e−λaΠ(a)J(a)β1(a)ψ(X̄(−a, 2x̄))da

ψ(x̄) =

∫ t

0

2
1
α

+1e−a(d+1+α+λ)ψ(X̄(−a, 2x̄))da

=

∫ t

0

(
2

1
α e−a

)
2e−a(d+α+λ)ψ(X̄(−a, 2x̄))da

(6.3)

The term in parenthesis is the contribution to the survival probability due to cell

division,

exp

[
−
∫ a

0

µ(σ, Ȳ(σ − a, ȳ))dσ

]
= e−ad exp

[
−
∫ a

0

b(σ, Ȳ(σ − a, ȳ))dσ

]
= e−ad2

1
α e−a,

meaning, it gives the probability at each age that a cell of a given state will not divide.

However, because we know that each cell must divide at the exact same age, a∗ = 1
α

ln 2, we

can change this probability to be zero everywhere and 1 (or infinite) upon reaching age a∗.

That is to say, the probability of cell division a large t is entirely concentrated at a∗ and so

we can represent it with the Dirac delta function δ(a−a∗). Making this change in the above

equation allows us to evaluate the integral and find a solution for the eigenvalue λ and it’s

corresponding eigenfunction ψ.

ψ(x̄) =

∫ t

0

(
2

1
α e−a

)
2e−a(d+α+λ)ψ(X̄(−a, 2x̄))da

=

∫ t

0

δ(a− a∗)2e−a(d+α+λ)ψ(X̄(−a, 2x̄))da

= 2e−a∗(d+α+λ)ψ(X̄(−a∗, 2x̄))

(6.4)

The Jacobian term e−a∗α must remain with the characteristic curve to avoid creating an

imbalance as cells grow. The eigenfunction ψ will take the form of a δ function as it will

act to “pick up” cells of the appropriate state, e.g., cells of length 2x1. However, since every

cell divides upon doubling in size and reaching age a∗, every cell-state is a solution in that,
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the characteristic curve on the right-hand-side describes a cell currently of length 2x1 that

was of length x1 at birth, a time a∗ ago, exactly the cell required to produce the one on the

left-hand-side. Therefore, ψ(x̄) = Cδ(x̄), where C is a constant. Since deaths are included

in this model, the arbitrary constant C will absorb the constant probability of cell death.

Finally, ψ(x̄) = e−da∗δ(x̄). Solving for λ here is equivalent to setting

2e−a∗λ = 1⇒ λ =
ln 2

a∗
= α.

Therefore, after a short transient phase, we can characterize cell renewal for large values

of t as

B(t, x̄) ∼ eλtψ(x̄) = eαt
(
e−a∗dδ(x̄))

In both cases, we find that the asymptotic growth rate is equal to the constant growth

rate of cells, and that if all cells divide at the same age, the eigenfunction ψ reduces to a

Dirac-delta function for which any cell of age a∗ is a solution as these cells will necessarily

have doubled in size. The eigenfunction solutions differ only by a constant, showing that

from the two different approaches we presented, our results are consistent and predict the

same asymptotic behavior.



Chapter 7

Conclusion

7.1 Comparison of solution

We have presented two different analyses and solution methods for resolving the asymp-

totic behavior of the population described by the multi-structured model, and shown that

both methods arrive at the same conclusion. Following a short, transient phase, the system

grows asymptotically according to,

n(t, a, x̄) ∼ Ceαtδ(x̄)

as time grows toward infinity. The asymptotic solution says that, given an initial distribution,

we will observe a wave-front like behavior wherein the initial cohort of cells will grow to

double in size, and then reappear as cells of age zero at the exact same state that they and

their mother cells had at birth.

7.2 Discussion

There is some debate as to whether this constitutes a true steady-state solution, or

if it should instead be interpreted as a periodic solution (see Bell’s 1967 conclusion [10],

and Heijman’s rebuttal [47]). Nevertheless, we have demonstrated that under some simple

assumptions on cell growth and division, an asymptotic solution wherein evolution in time is

separate from a predictable state-space behavior does exist for the multi-structured model.
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This solution lays a framework for future investigation of structured population dy-

namics. For example, it has been proposed that a more accurate condition for cell division,

which leads to convergence in cell length at birth, has cells grow by a constant amount before

they divide, as opposed to reaching some set division length or doubling in size [18]. Under

this assumption on division, and with a constant growth rate, we can similarly resolve the

asymptotic behavior of our system by expressing the division age a∗, the time it takes to

grow by a prescribed constant length ∆L, as a function of cell length at birth, X1(−a, x1).

We have that G(x) is the time it takes to grow from the smallest possible size, xm to size x,

therefore a∗ would be a∗ = G(X1(−a, x1) + ∆L)− a.

In future work, we will apply this model, and the methods used to find an asymptotic

solution, to investigate the effect of aging on carboxysome productivity by changing the

growth rate of cells to be carboxysome age-dependent. Changing the model in this way,

or expanding it to include competition between cells, will introduce further complexity and

nonlinearity to our model equations. However, the work presented in this dissertation will

serve as the linearized model upon which analysis of the nonlinear extension would rely.
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Appendix A

Proof of Jacobian and Exponential Term Equivalence

After integrating the PDE (3.4) along characteristic curves, we are are left with the

exponential term

exp

[
−
∫ s

0

k∑
i=1

∂vi
∂Xi

dσ

]
,

which we claim is equal to the Jacobian determinant,

J (s) = exp

[
−
∫ s

0

k∑
i=1

∂vi
∂Xi

dσ

]
=

∣∣∣∣∂(A(s, a), x̄(s, x̄))

∂(a, x̄)

∣∣∣∣ .
The following is a proof of this claim using Liouville’s Formula.

Liouville’s Formula.
Consider the first-order, linear, homogeneous ODE

dr

dt
= K(t)r(t), r(0) = r0, r ∈ Rn

with fundamental matrix solution Φ(t) satisfying

Φ′(t) = K(t)Φ(t), Φ(0) = I.

The determinant of Φ(x) then satisfies the ODE,

d

dt
det(Φ(t)) = Tr(K(t)) det(Φ(t)),

with solution,

det(Φ(t)) = det(Φ(t0)) exp

[∫ t

t0

Tr(K(s))ds

]
where Tr(K) is the trace of K, the sum of its diagonal elements.
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To make the extension to the arbitrary k-dimensional model clear, first assume that

k = 2 and let x1 = x, x2 = y, dx
dt

= g(a, x, y), and dy
dt

= f(a, x, y), so that our population

distribution is given by n(t, a, x, y).

This gives the following system of ODEs and solutions,

da
dt

= 1, A(t, a) = a− t

dx
dt

= g(a, x, y), X(t, x) = G−1(G(x)− t), G(x) =
∫ x
xm

1
g(a,s,y)

ds

dy
dt

= f(a, x, y), Y (t, y) = F−1(F (y)− t), F (y) =
∫ y
ym

1
f(a,x,s)

ds.

Capital letters again denote solutions to this system of ODEs, i.e., characteristic curves.

X = (A,X, Y )T are all functions of t, but x = (a, x, y)T are not. Denote by v the vector

field (1, g, f). Lastly, note that A(0, a) = a,X(0, x) = x, and Y (0, y) = y.

The matrix K(t) from Liouville’s Formula is DXv(t,X):

K(t) =


∂(1)
∂A

∂(1)
∂X

∂(1)
∂Y

∂g
∂A

∂g
∂X

∂g
∂Y

∂f
∂A

∂f
∂X

∂f
∂Y


(A,X,Y )

=


0 0 0

∂g
∂A

∂g
∂X

∂g
∂Y

∂f
∂A

∂f
∂X

∂f
∂Y


(A,X,Y )

and the trace of K(t) is ∂g
∂X

+ ∂f
∂Y

= ∇ · v, the divergence of v.

The fundamental solution Φ(t) for the system Φ′(t) = K(t)Φ(t) is DxX(t,x), the

Jacobian matrix of the characteristic curves:

Φ(t) =


∂A
∂a

∂A
∂x

∂A
∂y

∂X
∂a

∂X
∂x

∂X
∂y

∂Y
∂a

∂Y
∂x

∂Y
∂y

 =


1 0 0

0 g(a,X,y)
g(a,x,y)

0

0 0 f(a,x,Y )
f(a,x,y)


which is equal to the identity matrix I when evaluated at t = 0.

Note: To be clear, the off-diagonal entries such as, ∂X
∂a

, are, in fact, zero. When we write

G(x) =
∫ x
xm

1
g(a,s,y)

ds, this is purely a function of x as a and y are understood to be fixed.

Therefore, differentiating X with respect to a or y is zero, and not g(a,X, y)
∫ x

0
−

∂g
∂a

(a,s,y)

(g(a,s,y))2
,

what you would get if G(x) were G(a, x, y).
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The determinant of this matrix is, g(a,X,y)
g(a,x,y)

· f(a,x,Y )
f(a,x,y)

, consistent with Liouville’s Formula.

d

dt
det(Φ(t)) =

d

dt

[
g(a,X, y)

g(a, x, y)
· f(a, x, Y )

f(a, x, y)

]
=
−g(a,X, y) ∂g

∂x
(a,X, y)

g(a, x, y)
· f(a, x, Y )

f(a, x, y)
−
−f(a, x, Y )∂f

∂y
(a, x, Y )

f(a, x, y)
· g(a,X, y)

g(a, x, y)

= −
(
∂g

∂x
(a,X, y) +

∂f

∂y
(a, x, Y )

)(
g(a,X, y)

g(a, x, y)
· f(a, x, Y )

f(a, x, y)

)
= −tr(K(t)) det(Φ(t))

Applying Liouville’s formula, we see that

det(Φ(t)) = det(Φ(0)) exp

[
−
∫ t

0

Tr(K(s))ds

]
= exp

[
−
∫ t

0

∇ · v(A,X, Y )ds

]
.

The extension to the arbitrary k case is tedious but straightforward, and thus not included.

�

Secondary Claim: J (s) is bounded.

Conditions imposed on the velocity functions vi such as, boundedness, continuity, and regu-

larity (see Section 1), are what make J bounded. On the interior of Ω, vi(a,X, y)/vi(a, x, y)

is bounded. The product of bounded functions is also bounded, and as a result, J (s) is

always bounded, and we can say that ||J (s)||∞ = 1. �



Appendix B

Proof of Stability of the Zero Solution

Suppose that λ ∈ σ(A) \ σess(A), the complement of the essential spectrum in the

spectrum of A. There is a result (from [15]) which states that because A is closed in

L1(R+ ×Ω), such a λ is an eigenvalue of A. This means that there exists some u(a, x̄) such

that (λI −A)u = 0.

(λI −A)u(a, x̄) = λu+
∂u

∂a
+

k∑
i=1

vi
∂u

∂xi
+ u

k∑
i=1

∂vi
∂xi

+ µu

=
∂u

∂a
+

k∑
i=1

vi
∂u

∂xi
+ u

k∑
i=1

∂vi
∂xi

+ (µ+ λ)u

= 0

(B.1)

We solve this ‘new’ PDE using the method of characteristics as follows.

∂u

∂a
+

k∑
i=1

vi
∂u

∂xi
= − [∇ · v̄ + (µ+ λ)]u (B.2)

da

dθ
= 1, a(0) = 0 ⇒ a = θ

dxi
da

= vi(a, x̄), xi(0) = x̃i ⇒ G(xi)−G(x̃i) = a+ c

c = 0⇒ x̃i = G−1(G(xi)− a)

du

da
= − (µ(a, x̄) + λ+∇ · v̄)u(a, x̄) ⇒ u(a, x̄) = ce−

∫ a
0 (µ+λ+∇·v̄)da′ (B.3)



78

Now use an initial/boundary condition to solve for c.

The first condition of the domain of A says that,

lim
t→0+

1

t

∫ t

0

∫
Ω

|u(a, x̄)− B̂(0, x̄)|dx̄da = 0.

Using l’Hopital’s rule, we can write this limit as,

lim
t→0+

d
dt

∫ t
0

∫
Ω
|u(a, x̄)− B̂(0, x̄)|dx̄da

d
dt
t

= lim
t→0+

∫
Ω
|u(t, x̄)− B̂(0, x̄)|dx̄

1

=

∫
Ω

|u(0, x̄)− B̂(0, x̄)|dx̄ = 0.

This implies that the integrand, |u(0, x̄)− B̂(0, x̄)| = 0, and therefore

u(0, x̄) = c = B̂(0, x̄) =

∫ ∞
0

∫
Ω

β(a, ȳ, x̄)S(0)u(a, ȳ)dȳda =

∫ ∞
0

∫
Ω

β(a, ȳ, x̄)u(a, ȳ)dȳda.

Returning to our solution for u, we get:

u(a, x̄) =

∫ ∞
0

∫
Ω

β(a, ȳ, x̄)u(a, ȳ)dȳda · exp

[
−
∫ a

0

(µ+ λ+∇ · v̄) da′
]

=

∫ ∞
0

∫
Ω

β(a, ȳ, x̄)u(a, ȳ)dȳda · exp

[
−
∫ a

0

(
µ(a′, Ḡ−1(Ḡ(x̄)− a′)) + λ

)
da′
]
J (a)

(B.4)

Which we can bound by:

||u(a, x̄)||1 =

∫ ∞
0

∫
Ω

∣∣∣∣∣
∫ ∞

0

∫
Ω

β(a, ȳ, x̄)u(a, ȳ)dȳda · exp

[
−
∫ a

0

(µ+ λ) da′
]
J (a)

∣∣∣∣∣dx̄da
≤ β̄VΩ||u||1

∫ ∞
0

exp

[
−
∫ a

0

(µ+Re(λ)) da′
]
da

= β̄VΩ||u||1 ·
exp

[
−
∫ a

0
(µ+Re(λ)) da′

]
−(Re(λ) + µ(a, x̄))

∣∣∣∣∣
∞

0

⇒ ||u(a, x̄)||1 ≤
β̄VΩ||u(a, x̄)||1
Re(λ) + µ(a, x̄)

where β̄ is an upper bound on the birth modulus β, and VΩ =
∫

Ω
dx̄ is the volume of Ω.

Provided µ(a, x̄) > −Re(λ),

Re(λ) ≤ β̄VΩ − µ(a, x̄).
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We can guarantee that supλ∈σ(A)\σess(A){Re(λ)} is negative as long as µ is sufficiently large,

i.e. µ > max{β̄VΩ,−Re(λ)}.

There is a theorem (cited in [63]) that states that if

sup
λ∈σ(A)\σess(A)

{Re(λ)} < 0,

then the solution u is locally asymptotically stable. �

That is, for every initial population relatively close to zero, the solution will tend to zero

as t → ∞. Moreover, this should imply that we will have a nonzero population whenever

µ(a, x̄) is not large enough that supλ∈σ(A)\σess(A){Re(λ)} ≥ 0.



Appendix C

Definitions for the Spectrum of Linear Operators

These definitions are collected from [42] and [4].

Let L be a closed and bounded linear operator with domain D(L) dense in a Banach space

B.

Definition 1. The resolvent set of L, denoted ρ(L), is the open set

ρ(L) = {λ ∈ C : (L− λI) is one-to-one and onto}.

The Open Mapping Theorem [42] implies that (L − λI)−1 is bounded for
λ ∈ ρ(L).

Definition 2. The resolvent operator, denoted by R(λ, L) or Rλ, is the
operator-valued function

(L− λI)−1

defined only on the set ρ(L).

Definition 3. The spectrum of L, denoted σ(L), is the closed set

σ(L) = C \ ρ(L) = {λ ∈ C : (L− λI) is not boundedly invertible}.

The spectrum is composed of three disjoint sets:

σ(L) = σP (L) ∪ σC(L) ∪ σR(L)

• The point spectrum

σP (L) = {λ ∈ σ(L) : (L− λI) is not one-to-one}.

These are the eigenvalues of L.
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• The continuous spectrum

σC(L) = {λ ∈ σ(L) : (L− λI) is one-to-one but not onto,

and the range of (L− λI) is dense in B}.

• The residual spectrum

σR(L) = {λ ∈ σ(L) : (L− λI) is one-to-one but not onto,

and the range of (L− λI) is not dense in B}.

Definition 4. The spectral radius, denoted r(L), is a bound on σ(L)—the
radius of smallest disk centered at zero containing σ(L),

r(L) = sup{|λ| : λ ∈ σ(L)}.

Note that if N is a nilpotent operator, i.e., ∃m : Nm = 0, σ(N) = {0} and
therefore, r(N) = 0. The spectral radius can be thought of as a measure of
the distance from L to the set of nilpotent operators, and this is reflected in
the formula

r(L) = lim
m→∞

||Lm||1/m.

Definition 5. The essential spectrum, denoted σess(L), is the set of λ ∈
σ(L) such that at least one of the following holds:

(1) The range of (L− λI) is not closed.

(2) The generalized eigenspace associated with (L− λI) is infinite dimen-
sional.

(3) λ is a limit point of σ(L).



Appendix D

Proof of Semigroup Properties

S(t) satisfies the four defining properties of a strongly continuous semigroup.

(1) S(t) is a continuous mapping.

Let ε > 0 and ||φ(a, x̄)− φ(b, ȳ)|| < ε where || · || is the L1-norm. We require that φ

be continuously differentiable.

Then,

||(S(t)φ)(a, x̄)− (S(t)φ)(b, ȳ)||

= ||φ(a− t, Ḡ−1(Ḡ(x̄)− t))P(t,−t)J (t)

− φ(b− t, Ḡ−1(Ḡ(ȳ)− t))P(t,−t)J (t)||

= ||[φ(a− t, Ḡ−1(Ḡ(x̄)− t))− φ(b− t, Ḡ−1(Ḡ(ȳ)− t))]P(t,−t)J (t)||

≤ ||φ(a− t, Ḡ−1(Ḡ(x̄)− t))− φ(b− t, Ḡ−1(Ḡ(ȳ)− t))||

· ||P(t,−t)||∞ · ||J (t)||∞

= ||J (t)||∞||φ(a− t, Ḡ−1(Ḡ(x̄)− t))

− φ(b− t, Ḡ−1(Ḡ(ȳ)− t))||

Consider only the difference in φ for now. We will show that this difference is

bounded in the age-and-size-structured case where φ(a, x̄) becomes φ(a, x), a func-

tion of age and size only, with the growth rate g for v1. The following arguments

can be extended naturally to the multi-structured model.
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||φ(a− t, G−1(G(x− t))− φ(b− t, G−1(G(y)− t))||

=

∣∣∣∣∣
∣∣∣∣∣φ(a, x)− t

(
1

G′(x)

∂φ

∂x
(a, x) +

∂φ

∂a
(a, x)

)

−

[
φ(b, y)− t

(
1

G′(y)

∂φ

∂y
(b, y) +

∂φ

∂b
(b, x)

)]∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣φ(a, x)− t

(
g(a, x)

∂φ

∂x
(a, x) +

∂φ

∂a
(a, x)

)

−

[
φ(b, y)− t

(
g(b, y)

∂φ

∂y
(b, y) +

∂φ

∂b
(b, y)

)]∣∣∣∣∣
∣∣∣∣∣

≤ ||φ(a, x)− φ(b, y)||+

∣∣∣∣∣
∣∣∣∣∣t
[
g(b, y)

∂φ

∂y
(b, y) +

∂φ

∂b
(b, y)

−

(
g(a, x)

∂φ

∂x
(a, x) +

∂φ

∂a
(a, x)

)]∣∣∣∣∣
∣∣∣∣∣

≤ ε+

∣∣∣∣∣
∣∣∣∣∣t
(
g(b, y)

∂φ

∂y
(b, y)− g(a, x)

∂φ

∂x
(a, x)

)∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣t
(
∂φ

∂b
(b, y)− ∂φ

∂a
(a, x)

)∣∣∣∣∣
∣∣∣∣∣

= ε+

∣∣∣∣∣
∣∣∣∣∣t
(
g(b, y)

∂φ

∂y
(b, y)− g(a, x)

∂φ

∂x
(a, x)

)∣∣∣∣∣
∣∣∣∣∣+ |t|ε3

= ε+

∣∣∣∣∣
∣∣∣∣∣t
(
g(b, y)

∂φ

∂y
(b, y)− g(a, x)

∂φ

∂x
(a, x)

)∣∣∣∣∣
∣∣∣∣∣+ |t|ε3

= ε+ |t|

∣∣∣∣∣
∣∣∣∣∣g(b, y)

∂φ

∂y
(b, y)− g(b, y)

∂φ

∂x
(a, x)

+ g(b, y)
∂φ

∂x
(a, x)− g(a, x)

∂φ

∂x
(a, x)

∣∣∣∣∣
∣∣∣∣∣+ |t|ε3

= ε+ |t|

∣∣∣∣∣
∣∣∣∣∣g(b, y)

(
∂φ

∂y
(b, y)− ∂φ

∂x
(a, x)

)

+
∂φ

∂x
(a, x)

(
g(b, y)− g(a, x)

)∣∣∣∣∣
∣∣∣∣∣+ |t|ε3
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≤ ε+ |t|

∣∣∣∣∣
∣∣∣∣∣g(b, y)

(
∂φ

∂y
(b, y)− ∂φ

∂x
(a, x)

)∣∣∣∣∣
∣∣∣∣∣

+ |t|

∣∣∣∣∣
∣∣∣∣∣∂φ∂x(a, x)

(
g(b, y)− g(a, x)

)∣∣∣∣∣
∣∣∣∣∣+ |t|ε3

≤ ε+ |t|

(
||g(b, y)||∞

∣∣∣∣∣
∣∣∣∣∣∂φ∂y (b, y)− ∂φ

∂x
(a, x)

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣∂φ∂x(a, x)

∣∣∣∣∣
∣∣∣∣∣
∞

∣∣∣∣∣
∣∣∣∣∣g(b, y)− g(a, x)

∣∣∣∣∣
∣∣∣∣∣
)

+ |t|ε3

≤ ε+ |t|

(
εa||g(b, y)||∞ + εb

∣∣∣∣∣
∣∣∣∣∣∂φ∂x(a, x)

∣∣∣∣∣
∣∣∣∣∣
∞

)
+ |t|ε3

= ε+ |t|(ε2 + ε3)

where εa = ε2/2||g||∞, εb = ε2/2||∂φ/∂x||∞, and ε3 comes from the fact that φ must

be continuously differentiable. (You could also get ε2 from the fact that the product

of continuous functions are is continuous.)

Finally,

||(S(t)φ)(a, x)− (S(t)φ)(b, y)|| ≤ ε+ |t|(ε2 + ε3) = δ(ε).

Since for every ε such that ||φ(a, x)− φ(b, y)|| < ε there exists a δ(ε) > 0 such that

||(S(t)φ)(a, x)− (S(t)φ)(b, y)|| ≤ δ, the mapping is continuous.

(2) S(0) = I.

(S(0)φ)(a, x̄) = φ(a− 0, Ḡ−1(Ḡ(x̄)− 0))J (0)

× exp

[
−
∫ 0

0

µ(a− t′, Ḡ−1(Ḡ(x̄)− t′))dt′
]

= φ(a, x̄) = (Iφ)(x̄)

⇒ S(0) = I
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(3) The semigroup property: S(s)S(t)φ = S(t+ s)φ.

S(s)[(S(t)φ)](a, x) = (S(s)φ)(a− t, Ḡ−1(Ḡ(x̄)− t))P(t,−t)J (t)

= φ((a− t)− s, Ḡ−1((Ḡ(x̄)− t)− s))P(t,−t)

× e[−
∫ s
t µ(a−t′,Ḡ−1(Ḡ(x̄)−t′))dt′]J (t)e

∫ s
t ∇·v̄dt

′

= φ(a− (t+ s), Ḡ−1(Ḡ(x̄)− (t+ s))P(t+ s,−t)J (t+ s)

= (S(t+ s)φ)(a, x̄)

Where

P(t,−t)e[−
∫ s
t µ(a−t′,Ḡ−1(Ḡ(x̄)−t′))dt′] = e[−

∫ t
0 µ(a−t′,Ḡ−1(Ḡ(x̄)−t′))dt′]

× e[−
∫ s
t µ(a−s′,Ḡ−1(Ḡ(x̄)−s′))ds′]

= exp

[
−
(∫ t

0

µdt′ +

∫ s

t

µdt′
)]

= exp

[
−
∫ t+s

0

µ(a− t′, Ḡ−1(Ḡ(x̄)− t′))dt′
]

= P(t+ s,−t)

and similarly for J (t+ s).

(4) Strong continuity: limt↘0 ||S(t)φ − φ|| = 0 where || · || is the operator norm in the

Banach space B = L1.

lim
t↘0
||S(t)φ− φ|| = lim

t↘0
||φ(a− t, Ḡ−1(Ḡ(x̄)− t))P(t,−t)J (t)− φ(a, x)||

= || lim
t↘0

φ(a− t, Ḡ−1(Ḡ(x̄)− t))P(t,−t)J (t)− φ(a, x̄)||

= 0

Therefore, {S(t)}t≥0 forms a strongly continuous semigroup on L1(R+ × Ω). �



Appendix E

Infinitesimal Generator Proof

Proof that A is the infinitesimal generator of the strongly-continuous

semigroup S(t)

An operator A is the generator of a semigroup if

Aφ = lim
t↘0

1

t
(S(t)φ− φ)

for every φ ∈ D(A).

lim
t↘0

1

t
(S(t)φ− φ) = lim

t↘0

1

t

(
φ(a− t, Ḡ−1(Ḡ(x̄)− t))P(t,−t)J (t)− φ(a, x̄)

)
= lim

t↘0

1

t

(
φ(a− t, Ḡ−1(Ḡ(x̄)− t)) exp

[
−
∫ t

0

µ(a− t′, Ḡ−1(Ḡ(x̄)− t′))dt′
]

· exp

[
−
∫ t

0

∇ · v̄(a− t, Ḡ−1(Ḡ(x̄)− t′))dt′
]
− φ(a, x̄)

)
(E.1)

In the next step, we proceed by expanding each term in a Taylor series
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about zero from the right.

= lim
t↘0

1

t

(
φ(a, x̄)− t

[∂φ
∂a

(a, x̄) +
k∑
i=1

vi(a, x̄)
∂φ

∂xi
(a, x̄) + φ(a, x̄)

k∑
i=1

∂vi
∂xi

(a, x̄)

+ µ(a, x̄)φ(a, x̄)
]

+O(t2)− φ(a, x̄)
)

= lim
t↘0

(∂φ
∂a

(a, x̄) +
k∑
i=1

vi(a, x̄)
∂φ

∂xi
(a, x̄) + φ(a, x̄)

k∑
i=1

∂vi
∂xi

(a, x̄)

+ µ(a, x̄)φ(a, x̄) +O(t)
)

=−
(∂φ
∂a

(a, x̄) +
k∑
i=1

vi(a, x̄)
∂φ

∂xi
(a, x̄) + φ(a, x̄)

k∑
i=1

∂vi
∂xi

(a, x̄)

+ µ(a, x̄)φ(a, x̄)
)

=−

(
∂φ

∂a
+

k∑
i=1

vi
∂φ

∂xi
+ φ

k∑
i=1

∂vi
∂xi

+ µφ

)

=Aφ

(E.2)

Therefore, A is the infinitesimal generator of the strongly continuous one-

parameter semigroup {S(t)}t≥0. �
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