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Chapter 1

Introduction

Figure 1.1: This is a normal sensor node, specifically a MoteIV Tmote Sky[1]

with sensor package.

Sensor nodes are small microcomputers with sensors and a radio. Volatile

and non-volatile storage is usually less than a mebibyte, clock speed is usually

less than 10 megahertz, all powered by 2 AA batteries. The normal interfaces

are a serial line or over the radio. The only on board display is 3 LEDs, and

some models have a button.

Individually, a sensor node doesn’t have much utility, since there is only

so much data that can fit into the on board storage. Usually, sensor nodes are

arranged in a network where every node is connected through the network to

a node that is connected to a computer, using wireless links between nodes.

The node connected to the computer is called the “Base Station,” and is the

connection from the computer to the sensor network.
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1.1 Contributions of this thesis

This thesis is a performance analysis of a sensor network management

system that another student at CU and I developed over the course of the

year.

Some of the areas that I researched related to the SWARMS system

was a sound recorder application where the nodes would record sound from

the microphone on the sensor board, and send the sound samples over the

serial line. I then made an application that would get the sound from all of

the nodes connected to SWARMS, and create a spectral density graph while

playing back the audio. The high data rate of the sound application and its

impact on the SWARMS system made it apparent that a performance testing

suite would be an important part of the SWARMS system.

The performance suite is a client that is designed to find out what the

limits of the SWARS system are, including bandwidth and latency.
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Related Work

2.1 Programming nodes

Previously the primary interface to the nodes, for programming and

receiving the data back was a terminal. This requires an account on the

computer, with the terminals running locally or remotely via ssh. For getting

data from more than one node, one terminal is used per node. Also, if a

bunch of data comes in from several nodes at the same time, it can be hard

to determine the relative order of the data, and the absolute time of the data.

2.2 Motelab

Motelab[3] is a testbed application that is under development at Harvard.

It uses a batch programming model, where jobs start at a specific time, then

run for a specific time. Instead of the output being real-time, it is available at

the end of the job, so no runtime diagnostics or changes can be made.
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Goals and Requirements

3.1 Program many nodes at a time.

Currently, it is hard to program more than a few nodes at a time. If the

nodes use a USB interface to the computer, then that adds another complexity,

since it is impossible for a single computer to have more than 100 USB devices.

If you want to program more than 100 nodes at a time using the previous

methods, the code image would have to be on both computers, then run the

programming utilities once per node on each computer.

3.2 Have a consistent naming scheme.

One thing that scientific experiments need is repeatability. If the user

of a testbed is trying to run a test where the base station is in the corner of a

grid, then the testbed management software needs to make sure that the nodes

have consistent names from trial to trial so that the data can be compared.

By default, in Linux USB sensor nodes are assigned a name based on the order

that they are initialized in, which is almost random if the USB system gets

reinitialized. However, the Telos nodes have a serial number that can be used

in the assignment of the device name, allowing for a consistent naming scheme.
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3.3 Log data into a database

If all data is kept in a central place, and not just put in to the buffer of

a terminal, then it is possible to do historical analysis of data. This

3.4 Have a time for each log message.

Having an accurate time stamp for all data is invaluable, since this allows

comparisons between other nodes, or with other experiments that are run

simultaneously in remote places.

3.5 Allow easy access to the log messages from prior jobs

Once a trial or job has been run, unless the job was a simple functionality

check, the data will need to be post-processed. The data should be in a format

that is convenient to use.

3.6 Put old log messages into a “Snapshot”

Insertions into a database table get significantly slower after 300,000

rows in a table, so we clear out the log table to make insertions faster. Instead

of just deleting the old logs, snapshots provide a convenient way of archiving

the messages for later retrieval, while allowing the current job to have a clean

log table to use.

Since the snapshots are currently an XML file, this provides an easy way

for data from several testbeds to be combined. Currently the only filter from

XML is to a comma separated spreadsheet file.
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3.7 Performance and scaling

The system should scale in terms of number of nodes, and the rate that

the nodes send data. Due to addressing limits of USB, the system needs to be

able to use more than one computer to host sensor nodes.
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Architecture of the system from a performance prospective

Up to now we have been working on a generic test bed, with the work

shared between me and another student at CU.

4.1 Architecture Overview

Our architecture is designed to be scalable, as a result of the limitations

of the USB addressing ability of a computer. A “Node Cluster” is a computer

with nodes attached to it. The parts above the cluster controller could be one

computer, or each part could be on a separate computer, but it is the data

management part of the testbed. Rails is the web development environment

that we use. All of the daemons and the web interface are written in the same

language, Ruby[2], which makes connections between them easy, since ruby

has built in network transparency.
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Figure 4.1: Architecture of the testbed management system.

4.1.1 Node

Nodes are directly connected to a computer, either through a USB or

serial connection. SWARMS currently accesses the nodes through the /dev

file system, so in theory, any device that create a file in that file system that

is readable and writable should be supported, with just a minor change in the

node-mate to handle the device/embedded operating system specifics.
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4.1.2 Node-mate

4.1.2.1 Overview

The node-mate receives commands from the cluster controller, along

with the location on the local file system where the code image to be loaded

is. Messages are received from the node, and then forwarded to the cluster

controller over an established TCP connection.

This is also where hardware specific information about the parsing of

data coming from the node is handled, along with how to program a node.

Programming a node might involve a program that is distributed by the ven-

dor, and that is invoked here.

As the name implies every node-mate that is run is responsible for the

communication to only one node.

4.1.2.2 Performance implications

Since the node-mate does all of the computation related to the specific

sensor node including access to the hardware interface. This will scale well

since there is a limited number that can be run on a single computer due to

USB address limitations. Since the data is sent directly to the cluster controller

running on the same computer, the communication delays are small.

4.1.3 Cluster Controller

The cluster controller is responsible for controlling all of the node-mates

on a computer, and for receiving commands and code images from the head

server. The cluster controller is also used to see what nodes are attached to a

computer, by scanning the /dev file system with a wildcard search.
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Only one cluster controller is run on a computer, and only if that com-

puter has nodes attached to it.

4.1.3.1 Performance implications

The cluster controller has a single TCP connection to the head server,

which usually will go over a network connection, which limits the number of

connections that the head server has to process.

4.1.4 Head Server

The head server responds to commands from the web interface and

clients, such as “Program Nodes” or “Listen to Nodes,” and getting the neces-

sary information out to do that. Commands can also come in though a client

besides the web site. The head server also spawns a process that receives the

log messages from the node-mate, and inserts them into the database.

The head server is the only daemon in the daemon tree that has a con-

nection to the database, and is responsible for getting data from the database

to the other daemons, as they need it.

4.1.4.1 Performance implications

This the primary bottleneck, where all of the messages from all of the

nodes are distributed to all of the clients connected to the head server. To

improve performance of the system, this is the part of the system that should

be optimized first.

4.1.5 Database

The database holds all of the code images, job assignments, and the

snapshots. Since Ruby on Rails provided a database abstraction, an effort
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has been made to code just to that abstraction, so that the testbed can be

database independent. This has been fairly successful, with one deployment

of the testbed using PostgreSQL, and the rest using MySQL.

4.1.5.1 Performance implications

Since the database can be run on a dedicated computer, with a large

number of processors and ram, the impact of the database on the rest of the

system can be made very small. For a running job on the testbed system,

the database is just where the logger stores the log messages. The database

is a terminating point in the flow of data, and so doesn’t have any dependen-

dent parts. The website does use the data in the database, but it is a pull

mechanism.

4.1.6 Web Interface

The web interface is the primary method of using the testbed software.

Jobs are started here, and data is view and exported from here. Currently,

there is the ability to view data as it is coming in, either for the entire testbed,

or for a specific set of nodes.

4.1.7 Clients

Clients can connect to the head server and get the log messages in real

time as they are sent from the nodes. Clients can issue commands to the

nodes. Clients can control the head server to start/stop jobs and database

logging.

Currently, the database logger is implemented as a standard client, with

the only special features are that it is spawned by the head server, and that

it has access to the database directly.
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4.1.8 Logical groupings of the nodes

For our system, nodes have a type, which determines the specific node-

mate that will be used for that node. Then nodes are grouped together into

“Groups,” which is just a set of nodes. Groups are used for viewing the data,

and for programming. A job is a set of code images that get loaded onto a

group, and a job can be started, so that the code images get loaded onto the

corresponding groups. For viewing the data as it comes in, there is the “live

view,” where the last message per node for all nodes is refreshed at a specific

interval.
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Issues with supporting Hardware/software

5.1 Telos Nodes

The usb to serial converter on the Telos nodes needs to be read before

the buffer in the chip is full, otherwise the node will cease to send data until

it is reset. This means that if the node-mate takes to long to read from the

serial port, the node will be lost.
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Sample Applications

6.1 Sound Recorder

6.1.1 Overview

Sound recorded on the sensor node is sent through the testbed to a client

program that plays back the sound, along with displaying a spectral density

graph.

6.1.2 On the nodes

For the nodes, they just sampled the ADC connected to the microphone,

and sent that over the serial line as fast as possible. With the ADC running in

programmed IO mode, this worked at 3,000Hz, and was intelligible. However,

problems with getting the ADC to work in auto-sampling mode prevented

sound recording at higher frequencies.

6.1.3 How this changed the testbed

This motivated turning off the database, so that data isn’t logged into

the database. Instead, a client could save the data as a set of audio files, or

just play them back and not record the data at all. Also, this motivated the

performance client, since the sound application was sending data as fast as the

node could get it over the serial line.
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6.2 Performance Testing Suite

6.2.1 Overview

The performance suite a client that measures throughput from the sys-

tem, and latency from the client, to the node, and back to the client. Since

this client specifies the data load that the nodes should be sending out, the

difference between what it recieves and what it should recieve can easily be

calculated to get the packet loss. Since the data load from the nodes goes from

light to heavy several times, the recovery of the system is also tested.

The performance suite is an example of a script that sends command to

the testbed and the nodes, and then receives the output from the nodes.

Variables used:

Database: On, off

Packet Size: 1, 2, 4, 8, 16, 32, 64 bytes

Delay: 1, 4, 5, 7, 10, 25, 50, 100, 150, 200 miliseconds

Samples per data point: 10 samples

Time per data point: 1 second

For each of the input variables, (databse state, packet size, and delay

between packets), the state is set, and then samples are taken, each “Time per

data point” long, and repeated “Samples per data point” times.

6.2.2 On the nodes

The program on the nodes is really simple: it just sends out a specific size

packet over the serial line at a specific rate. The rate and size are configured

by input over the serial line, so that they don’t have to be reprogrammed to
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try a different setting. Also, a special packet can be sent to the node that

causes an instant “ACK” packet to be sent, for latency measurements.

6.2.3 The client

The client is a simple ruby script that goes through each combination

of values and runs through the tests, gathering statistics about the rate that

packets come back, and the latency to each node.

6.2.4 How this changed the testbed

Just getting the performance client to work was dificult. The commands

to the nodes had to go through the system correctly, which exposed a few

concurrency problems with reading and writing to the serial device. Beyond

that, quite a few changes were made to reduce the packet loss, and to aid in the

recovery of the system after the nodes stop sending large number of packets.

The performance suite also is a complete system validation for SWARMS,

where communication from the client down to the sensor node and back is

tested, and the resulting data can be used to determine the packet losses, and

the round trip time latency. Just getting the performance testing suite to run

was a daunting task, as quite a few parts of the SWARMS system worked

reasonably well under light loads, but crashed under heavy loads.
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Performance Testing Results

This data is from 10 nodes connected to a cluster controller on one

computer, with the head server on a separate computer. The MySQL database

is on the same computer as the head server. The web server is a separate

computer as well, but that isn’t used during the execution of the performance

testing.

7.1 Assumptions

This data assumes that the rate of packets and the size of the packets

doesn’t change during each test.
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7.2 Packets per second
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Figure 7.1: Input packets per second versus output packets per second

This graph shows the input packets sent in to SWARMS over a serial

link. The increasing variance of the packes after 1,000 packets/second, and

the deviation from the y=x line mean that SWARMS has problems handling

more than 1,000 packets per second, but that it will do a best-effort transport

of the messages. The data points beyond 3,000 packets per second show that

the system is capable of not failing even when it doesn’t have the processing

power to handle the packets coming in from the nodes.

These data points were not taken in order, so some of the points on the

left show the system after the points on the right, showing that the system

also recovers after a load higher than the system can handle.
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7.3 Percent Lost Packets per second
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Figure 7.2: Input packets per second versus output packets per second

This shows the number of packets that are lost, as a function of the

packets/second that all of the nodes togeather are sending. If the system were

perfect, this would be a flat line at 0. This is just the difference between

the output packets per second and the line showing input=output packets per

second from the previous graph.
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7.4 Latency from packets
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Figure 7.3: Latency as a function of the input packets per second

This shows that at low levels of system usage, up to about 100 pack-

ets/second, the latency is below 0.04 seconds. However, above about 200

packets/second, the latency goes to about 0.06 seconds. The range for the

x-axis is small because the excessive packet loss interefered with the latency

measurments.
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7.5 Latency from bandwidth
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Figure 7.4: Latency as a function of the input bandwidth

Since a lot of the computation in the testbed is on the basis of packets,

bandwidth would have more of an effect if the data is going over a network

link. Even with the nodes being on another computer, aross a single 100BaseT

link, bandwidth doesn’t play a significant role in the latency of the system.

This means that if a certain amount of data needs to be sent, it is best

to use packets that are as big as possible. That also has the added benefit of

reducing the percentage of overhead on the serial line out of the sensor node.

7.6 Conclusion

The system performed well up to a threshold, but after that threshold

an excessive number of packets get lost. This could be improved by making
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the head server more efficent, or even making the message redirection part be

in a more efficent language.
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Future work

Currently we are planning on getting SWARMS ready for being released

as a software package that users outside of CU can benefit from.

8.1 Authentication for clients

Currently, clients are not authenticated for a correct reservation, or to

authenticate as a valid user of the testbed. this needs to be changed so that

the clients have the same level of authentication as the users of the website.

8.2 Security

8.2.1 User access limitations

One thing that should be considered is user level speration, where a

user doesn’t have access to the jobs or snapshots of another user. This would

be important if users outside the devlopment group are given access to the

system.

8.2.2 Protocol security

Currently the protocol and communication between the parts of the sys-

tem are not encrypted or authenticated. Cluster controllers need to authen-
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ticate to the head server, and node mates need to authenticate to the cluster

controllers.

8.3 Documentation

Currently, there isn’t any documentation that covers the system and how

to install and use it.

8.4 More Robustness

The system still has bugs left, but the Performance Testing Suite is

making some of them more obvious.
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