

A PRACTICAL FRAMEWORK FOR FINDING

SOFTWARE VULNERABILITIES IN SDN CONTROLLERS

by

WALID SHARIF

B.A., Brandeis University, 2013

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Master of Science

Department of Telecommunications

2017

This thesis entitled:
A Practical Framework for Finding Software Vulnerabilities in SDN Controllers

written by Walid Sharif
has been approved for the Department of Telecommunications

Levi Perigo

Joe McManus

Charles Cook

Date

The final copy of this thesis has been examined by the signatories, and we
find that both the content and the form meet acceptable presentation standards

of scholarly work in the above mentioned discipline.

	iii	

Sharif, Walid (M.S., Telecommunications)

A Practical Framework for Finding Software Vulnerabilities in SDN Controllers

Thesis directed by Dr. Levi Perigo.

Software-defined networking (SDN) has the potential to greatly reduce the cost and

increase the manageability of large networks. However, there are multiple security concerns

holding back its wide-scale adoption. While previous research has mainly examined securing the

data and application planes of SDN, we argue that the controller itself is the most vulnerable

component in the SDN architecture because it is both the most central and the most software-

reliant component. Therefore, research into better securing the controller is central to any effort

at securing the SDN architecture. This study examines the question of how to better secure the

controller by developing a practical framework for finding vulnerabilities in the underlying

software of the OpenDaylight controller. By finding vulnerabilities in its software, we aim to not

only improve the security of the controller software, but also build a foundation to allow

previous research to implement better solutions to secure other SDN components.

	iv	

DEDICATION

 This thesis is dedicated to my mother, Tabassum Taqi, my partner, Katharine Cohen, and

my brother, Umair Sharif, whose constant support made it possible.

	v	

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Levi Perigo, for the time,

guidance, and feedback that made this thesis possible. His expertise in Software-defined

Networking provided an excellent foundation for my research.

	vi	

CONTENTS

CHAPTER

I. INTRODUCTION...1

 Problem Setting..1

 Research Question...2

Research Sub-problems...3

Thesis Arrangement...5

II. LITERATURE REVIEW..6

 SDN Security...6

 Fuzzing...15

 OpenDaylight...25

III. METHODOLOGY..28

 OpenFlow Plugin (odl-l2switch-all)..29

 RESTCONF Plugin (odl-restconf-all)...38

IV. RESULTS..46

 OpenFlow Plugin (odl-l2switch-all)..46

 RESTCONF Plugin (odl-restconf-all)...49

V. CONCLUSION..52

 Summary..52

 Future Research...52

BIBLIOGRAPHY..58

APPENDIX..63

A. OpenFlow Header..63

	vii	

B. OpenFlow Payloads...63

	1	

CHAPTER I

INTRODUCTION

I. Problem Setting

Despite the obvious cost-savings and improvements in manageability, many data centers

are reluctant to switch from traditional to software-defined networking (SDN). 1 One of the main

reasons is concerns about security; recent surveys demonstrate that a significant percentage of

Information Technology (IT) professionals both believe that SDN will make networks less

secure and have major concerns about the security of open-source SDN technology.2,3 While the

benefits of SDN derive from the properties of increased software-reliance and centralization, so

do the security risks. 4 Increased software-reliance leads to a higher chance of compromise

because it is difficult to either guarantee that software is defect-free or identify and fix every

vulnerability within a piece of software. Likewise, increased centralization leads to a higher

chance of compromise because if a single network component is compromised in a centralized

system, it is more likely that the entire network is compromised.

The controller is the most software-reliant and centralized component of the SDN

architecture, and therefore it is the most vulnerable.5 While previous research has addressed

important issues related to the security of the data and application planes, there is a lack of

research relating to the security of the controller itself. This area of study is important because it

is difficult to secure the SDN architecture without first securing the controller. For example, a
																																																								

1	Mark	Leary,	"SDN,	NFV,	and	open	source:	the	operator’s	view,"	Gigaom,	March	19,	2014,	accessed	April	
1,	2017,	https://gigaom.com/report/sdn-nfv-and-open-source-the-operators-view/.	

2	Jim	Metzler,	"Understanding	Software-Defined	Networks,"	InformationWeek,	October	2012,	accessed	
April	1,	2017,	https://www.necam.com/docs/?id=28a3203e-ef17-4f0e-b193-0edc4eb065cc.	

3	Leary,	"SDN,	NFV,	and	open	source:	the	operator’s	view,"	2014.	
4	Diego	Kreutz,	Fernando	M.	V.	Ramos,	and	Paulo	Verissimo,	"Towards	secure	and	dependable	software-

defined	networks,"	Proceedings	of	the	second	ACM	SIGCOMM	workshop	on	Hot	topics	in	software	defined	
networking	-	HotSDN	'13,	2013.	

5	Sakir	Sezer	et	al,	"Are	we	ready	for	SDN?	Implementation	challenges	for	software-defined	networks,"	
IEEE	Communications	Magazine	51,	no.	7	(2013):	36-43.	

	2	

system to secure communications between switches and the controller or applications and the

controller is not of much use if a software vulnerability in the controller allows an attacker to

execute arbitrary code on it. It is also important because studying how to better secure the

controller will lead to improvements in securing other components; when we understand how to

secure the most central component in a system, it is likely that that knowledge can be used to

secure more peripheral components. Therefore, research into securing the controller will enhance

the body of knowledge (BoK) because 1) it will improve the security of the most vulnerable

component in the SDN architecture, 2) it will reinforce solutions for securing the data and

application planes yielded by previous research, and 3) it will lead to progress on securing more

peripheral components.

II. Research Question

The central question we are examining is: how can we improve the software security of

the controller in a SDN architecture? We propose that this can be done in measurable terms by

developing a framework for discovering vulnerabilities in a widely-used controller like

OpenDaylight. Our research question is broken down into three sub-problems, summarized by

Table 1.

Sub-problem Hypothesis

What is the most effective methodology for
finding vulnerabilities in the controller?

Fuzzing

How can this methodology be applied? Smart, generation-based, blackbox fuzzer
created with Python modules

How does the controller respond to this
methodology?

Unexpected behavior observed through CPU
usage, memory usage, and log output

Table 1: Sub-problems and Hypotheses.

	3	

III. Research Sub-problems

A. What is the most effective methodology for discovering vulnerabilities in the controller?

This sub-problem is important to examine because it lays the foundation for the rest of

the research. We are more likely to find vulnerabilities in the controller, and hence improve its

security, by using an effective vulnerability discovery method. Our hypothesis is that fuzzing, as

opposed to static analysis, which requires analysis of the target program’s source code, is the

most effective method for vulnerability discovery in a large and complex software system like

the OpenDaylight.

Although the source code for OpenDaylight is freely available and can be analyzed for

possible vulnerabilities, doing so is difficult for two reasons. First, analysis of the OpenDaylight

source code requires a large time investment. Figure 1 shows that the entire OpenDaylight code

base currently consists of 2222 Java classes.

$ wget https://github.com/opendaylight/controller/archive/master.zip
$ unzip master.zip
$ find controller-master -type f -name *.java | wc -l
 2222

Figure 1: Number of Java Classes in OpenDaylight’s Code Base.

Analysis of these classes is bound to require a substantial amount of time.

Second, analysis of the OpenDaylight source code requires in-depth knowledge of the

OpenDaylight architecture. The OpenDaylight project is open-source, which makes it easier to

contribute to as a developer, but more difficult to understand all the connected subsystems; the

OpenDaylight Wiki describes many aspects of the system well, but most of the information is

geared towards making it easier for developers to extend the project by developing custom

	4	

modules.6 To this end, most of the OpenDaylight Wiki describes the core controller code in high-

level terms, making it difficult to understand exactly how the core functionality works at a low-

level and therefore if any vulnerabilities exist.

For example, it is well-known that the java.util.Random class is not safe to use for

cryptographic purposes.7 Figure 2 shows that the java.util.Random library is imported by three

Java classes in the OpenDaylight code base: DatastoreAbstractWriter.java,

AbstractRaftActorBehavior.java, and LogGenerator.java.

$ grep -R "java.util.Random" controller-master | awk -F '/' '{print $NF}'
DatastoreAbstractWriter.java:import java.util.Random;
AbstractRaftActorBehavior.java:import java.util.Random;
LogGenerator.java:import java.util.Random;

Figure 2: Usage of java.util.Random in OpenDaylight’s Code Base.

We know that OpenDaylight supports TLS usage.8 However, it is not entirely clear how these

three classes interact with the larger overall system and it is therefore difficult to discern whether

they are used by OpenDaylight to support TLS.

B. How can this methodology be applied?

This sub-problem is important to examine because the existence of fuzzing techniques

does not necessarily imply that they can be applied to or are even suited to vulnerability

discovery with OpenDaylight. We will therefore examine different fuzzing techniques and

determine which ones are best suited. Our hypothesis is that smart, generation-based, blackbox

fuzzing through the use of various Python modules is the most applicable technique for fuzzing
																																																								

6	"OpenDaylight	Project,"	OpenDaylight	Project,	accessed	April	1,	2017,	https://wiki.opendaylight.org.	
7	"Random	(Java	Platform	SE	7),"	Java	Platform,	Standard	Edition	7	API	Specification,	accessed	April	1,	

2017,	https://docs.oracle.com/javase/7/docs/api/java/util/Random.html.	
8	"OpenDaylight	OpenFlow	Plugin:	TLS	Support,"	OpenDaylight	Project,	accessed	April	1,	2017,	

https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:_TLS_Support.	

	5	

various OpenDaylight features.

C. How does the controller respond to this methodology?

This sub-problem is important to examine because it is the defining sub-problem in

determining if we can discover vulnerabilities in OpenDaylight and subsequently improve its

security with our chosen methodology. Our hypothesis is that spikes in central processing unit

(CPU) or memory utilization may indicate the presence of a vulnerability because these spikes

indicate that OpenDaylight is unable to smoothly handle the fuzzy input sent to it by our chosen

fuzzer. This may be because, for example, the controller is using the fuzzy input to make

calculations for memory allocation, performing arithmetic operations on the fuzzy input, or is

using an intensive algorithm that is not properly bounded.9

IV. Thesis Arrangement

The remainder of this thesis is arranged as follows. First, we review the literature in

relation to 1) SDN security, in order to determine the extent of research into securing the

controller and how our research can contribute to the BoK, 2) fuzzing in order determine the best

methodology to use to fuzz OpenDaylight, and 3) OpenDaylight’s architecture in order to

understand how to apply our chosen methodology. We then apply our chosen methodology to

two OpenDaylight features: odl-l2switch-all, a Northbound plugin, and odl-restconf-all, a

Southbound plugin. Next, we discuss the results of our fuzzing runs. Finally, we conclude with a

summary and suggestions for future research.

																																																								
9	Peter	Oehlert,	"Violating	Assumptions	with	Fuzzing,"	IEEE	Security	and	Privacy	Magazine	3,	no.	2	(2005):	

58-62.	

	6	

LITERATURE REVIEW

I. SDN Security

SDN relies on the abstraction of network functions from network hardware into software.

This is achieved by separating traditional network functionality into three planes: data, control,

and application. Kreutz et al. organize SDN security threats into seven categories.10 We further

reduce these threats into data, control, and application plane threats because most of the threats

listed by Kreutz et al. can be classified as either a threat to a specific plane or a threat to traffic

coming out of that plane. 11 This approach is summarized by Table 2.

Our Classification Kreutz et al. Classification

Data Plane Threats Forged or fake traffic flows (1)

Attacks on vulnerabilities in switches (2)

Attacks on control plane communication (3)

Control Plane Threats Forged or fake traffic flows (1)

Attacks on control plane communication (2)

Attacks on and vulnerabilities in controllers
(4)

Application Plane Threats Forged or fake traffic flows (1)

Attacks on control plane communication (3)

Lack of mechanisms to ensure
trust between the controller and management
applications (5)

																																																								
10	Kreutz,	"Towards	secure	and	dependable	software-defined	networks,"	2013.	
11	Ijaz	Ahmad	et	al.,	"Security	in	Software	Defined	Networks:	A	Survey,"	IEEE	Communication	Surveys	and	

Tutorials	17,	no.	4	(2015):	2317-	2346.	

	7	

Attacks on and vulnerabilities in
administrative stations (6)

Table 2: SDN Security Threats.

While there has been extensive research into data and application plane threats, the same

cannot be said about control plane threats, especially as it relates to software vulnerabilities in

the controller. We first examine previous research in regards to data, control, and application

plane threats and then argue how our research can contribute to the BoK.

A. Data Plane Threats

An example of a data plane threat is an attacker exploiting a vulnerability in a switch’s

software that allows for arbitrary code execution.12 The attacker may be able to use this

vulnerability to launch a Distributed Denial of Service (DDoS) attack, exfiltrate valuable data, or

stay hidden in the hopes of developing a permanent presence on the network, like many

Advanced Persistent Threats (APTs).

A second example is the possibility of an attacker poisoning the network topology. An

attacker can poison the Address Resolution Protocol (ARP) cache of other switches or

controllers by forging packets that contain the hardware address of legitimate switches or

controllers and tricking other SDN components into sending traffic its way. The attacker can

then launch a Man-in-the-Middle (MitM) attack by extracting valuable data from packets or a

Denial of Service (DoS) by dropping the packets, preventing them from reaching their

destinations.13 An attacker can also poison packets used by the Host Tracking Service, which

																																																								
12	Kreutz,	"Towards	secure	and	dependable	software-defined	networks,"	2013.	
13	Li	Dawei,	Xiaoyan	Hong,	and	Jason	Bowman,	"Evaluation	of	Security	Vulnerabilities	by	Using	ProtoGENI	

as	a	Launchpad,"	2011	IEEE	Global	Telecommunications	Conference	-	GLOBECOM	2011,	2011.	

	8	

tracks the location of hosts across the network, and the Link Discovery Service, which discovers

links between switches. The former can result in the hijacking of the location of important

network devices, like a server, and the latter can result in the creation of false links between

switches that, in turn, can lead to a MitM or DoS attack. 14,15

Hong et al. propose TopoGuard to combat the poisoning of the Host Tracking and Link

Discovery Services by verifying the packets associated with them. Dhawan et al. propose

SPHINX, which uses flow graphs to both approximate the actual network topology and validate

all network updates. SPHINX first monitors all controller communication to identify the packets

that are required to build a comprehensive network topology, including incoming OpenFlow

packet headers, outgoing flow path setup directives, and actual flow traffic measurements over

network links. SPHINX then constructs and verifies flow graphs to prevent the poisoning of the

network topology.

A third example is the possibility of an attacker overwhelming the data plane. When a

switch receives a new flow that does not have a match in its flow table, it must send the packet to

a controller to resolve the query, which can cause high bandwidth utilization between the switch

and controller, store the packet in memory until the flow table entry is returned, which can

overflow switch memory, and store the resulting flow table entry in its flow table, which can

become overloaded with entries. An attacker can therefore cause a DoS by producing a series of

unique flow requests, perhaps through the use of distributed botclients, to saturate the data plane

by either 1) causing congestion in the link between the switch and the controller, 2) causing an

overflow in the switch’s memory, or 3) causing an overflow in the switch’s flow

																																																								
14	Sungmin	Hong	et	al.,	"Poisoning	Network	Visibility	in	Software-Defined	Networks:	New	Attacks	and	

Countermeasures,"	Proceedings	2015	Network	and	Distributed	System	Security	Symposium,	2015.	
doi:10.14722/ndss.2015.23283.	

15	Mohan	Dhawan	et	al.,	"SPHINX:	Detecting	Security	Attacks	in	Software-Defined	Networks,"	Proceedings	
2015	Network	and	Distributed	System	Security	Symposium,	2015.	doi:10.14722/ndss.2015.23064.	

	9	

table.16,17,18,19,20,21

Shin et al. propose a data plane extension called connection migration that can reduce the

amount of interactions between the data and control plane.22 Their solution allows the data plane

to initiate a Transmission Control Protocol (TCP) handshake with a host and only proceed to

send flow requests to the control plane once the handshake is completed. Benton et al. observe

that although Transport Layer Security (TLS) would effectively protect against the threats of

DoS and MitM attacks, the administrative overhead of implementing it has so far proven

prohibitive.23 They observe that this overhead results from the fact that TLS requires the

generation of a sitewide certificate, controller certificates, switch certificates, the signing of

certificates with the site-wide private key, and the installation of the correct keys and certificates

on all devices. In contrast, the only configuration requirement without TLS is the controller's

address. Additionally, many switch and controller vendors have either not fully implemented or

skipped the TLS specification completely, further increasing the difficulty of adopting it.

B. Control Plane Threats

																																																								
16	Sezer,	"Are	we	ready	for	SDN?	Implementation	challenges	for	software-defined	networks,"	2013.	
17	Seungwon	Shin	and	Guofei	Gu,	"Attacking	software-defined	networks:	A	first	feasibility	study,"	

Proceedings	of	the	second	ACM	SIGCOMM	workshop	on	Hot	topics	in	software	defined	networking	-	HotSDN	'13,	
2013.	

18	Qai	Yan	and	F.	Richard	Yu,	"Distributed	denial	of	service	attacks	in	software-defined	networking	with	
cloud	computing,"	IEEE	Communications	Magazine	53,	(2015):	52–59.	

19	Qiao	Yan,	F.	Richard	Yu,	Qingxiang	Gong,	Jianqiang	Li,	"Software-defined	networking	(SDN)	and	
distributed	denial	of	service	(DDoS)	attacks	in	cloud	computing	environments:	A	survey,	some	research	issues,	and	
challenges,"	IEEE	Communications	Surveys	and	Tutorials,	2015.	

20	Rowan	Kloti,	Vasileios	Kotronis,	and	Paul	Smith,	"OpenFlow:	A	security	analysis,"	2013	21st	IEEE	
International	Conference	on	Network	Protocols	(ICNP),	2013.	

21	Sandra	Scott-Hayward,	Sriram	Natarajan,	and	Sakir	Sezer,	"A	survey	of	security	in	software	defined	
networks,"	IEEE	Communication	Surveys	and	Tutorials,	2015.	

22	Seungwon	Shin	et	al.,	"Avant-Guard,"	Proceedings	of	the	2013	ACM	SIGSAC	conference	on	Computer	
and	communications	security	-	CCS	'13,	2013.	

23	Kevin	Benton,	L.	Jean	Camp,	and	Chris	Small,	"OpenFlow	vulnerability	assessment,"	Proceedings	of	the	
second	ACM	SIGCOMM	workshop	on	Hot	topics	in	software	defined	networking	-	HotSDN	'13,	2013.	

	10	

 One of the more concerning threats to the control plane is the possibility of an attacker

exploiting a vulnerability in the controller's software that allows for arbitrary code execution,

which would give an attacker a large amount of control over the network. 24 Although there is a

notable lack of research examining solutions to such threats, Shalimov et al. present an initial

method to evaluate the security of controllers.25 They send both malformed headers and

malformed payloads in OpenFlow packets to several controllers and evaluate how those packets

are handled through hcprobe, a custom implementation of a controller benchmarker called

cbench. For malformed headers, they manipulate the length, version, and type fields. For

malformed payloads, they limit their testing to two particular OpenFlow packet types: PacketIn

and PortStatus. For PacketIn packets, they indicate that the packet encapsulates an ARP packet

when it actually encapsulates an IP packet. For PortStatus packets, they do not terminate the

name field in the port description with a null byte, as is required. Shalimov et al. were able to

crash several controllers with these techniques and their results show that sending malformed

packets to the controller can be an effective method for discovering vulnerabilities.

C. Application Plane Threats

An example of an application plane threat is the possibility of an attacker exploiting a

vulnerability in an application's software that allows for arbitrary code execution. As the SDN

ecosystem expands it is likely that a market for SDN applications will evolve, similar to the

mobile application stores for iOS and Android devices. If this is the case, it is likely that the SDN

application market will have many vulnerable applications just like the iOS and Android

																																																								
24	Kreutz,	"Towards	secure	and	dependable	software-defined	networks,"	2013.	
25	Alexander	Shalimov	et	al.,	"Advanced	study	of	SDN/OpenFlow	controllers,"	Proceedings	of	the	9th	

Central	&	Eastern	European	Software	Engineering	Conference	in	Russia	on	-	CEE-SECR	'13,	2013.	
doi:10.1145/2556610.2556621.	

	11	

application markets, which, according to a 2015 study, contained a combined average of 9.041

vulnerabilities per application.26

Another example is the possibility that a malicious application masquerading as a

legitimate one is installed in the application plane. There is currently no standardized way for the

controller to discern trusted applications from untrusted ones and it is therefore possible for

untrusted applications to make their way into the application plane. A particular concern is the

ability for malicious applications to write flow rules that violate existing network security policy.

For example, a malicious application disguised as a security application could try to write flow

rules that allow packets from previously blacklisted domains. Such behavior would be difficult to

detect with traditional methods as it is conceivable for a security application to have such

privileges in the network.

A large portion of previous research in SDN security focuses on solutions to application

plane threats and the majority of this research suggests that the best solution is to improve and

enforce network security policy. We summarize these solutions below, including VeriFlow,

FLOWGUARD, FLOVER, NICE, FortNOX, FlowChecker, FlowVisor, and Flow Security

Language (FSL). VeriFlow, FortNOX, FLOWGUARD, and FLOVER mainly check for

violations in security policy through the verification of flow rules. VeriFlow does this by first

intercepting flow rules between the control and data planes, before they can be installed.27 It then

finds the set of network elements whose operation can be altered by a flow rule. Next, it builds

forwarding graphs for every element using the current network state. Finally, it traverses the

graphs to determine how the flow rule affects the status of one or more network components and

																																																								
26	"The	State	of	Mobile	Application	Security	2014-2015,"	Checkmarx	and	AppSec	Labs,	accessed		

April	1,	2017,	https://www.checkmarx.com/wp-content/uploads/2015/11/The-State-of-Mobile-Application-
Security-2014-20151.pdf.	

27	Ahmed	Khurshid	et	al.,	"Veriflow,"	ACM	SIGCOMM	Computer	Communication	Review	42,	no.	4	(2012):	
467.	

	12	

if the flow rule causes a violation in security policy.

FortNOX is an extension for the NOX and it addresses flow rules that may result in

security policy violations by first assigning each application a privilege level. 28 Every flow rule

that an application attempts to install must be accompanied by a digital signature that enables

FortNOX to identify the application and its privilege level. Flow rules that have no digital

signature are assigned the lowest privilege level. FortNOX then intercepts new flow rules and

detects if they conflict with any existing flow rules through the use of a custom algorithm. New

flow rules that conflict with existing flow rules are only installed if they supersede the privilege

levels of the existing flow rules.

Hu et al. note that detecting flow rules that violate security policy is difficult because

flow rules support wildcards and because flows can be dynamically modified as they traverse the

network. 29 Both these facts make it unclear which flow rules actually violate security policy.

FLOWGUARD addresses these two problems by checking for security policy violations at the

ingress switch of each flow and then tracks the flow path through the network to identify both

the original source and final destination of each flow. Hu et al. also note that resolving policy

violations is difficult because a flow rule may only partially violate policy and because deleting a

flow rule may impact other flow rules. Both these facts make it difficult to remove flow rules.

FLOWGUARD addresses these two problems by incorporating a network-wide view of flow

rules to systematically resolve policy violations.

FLOVER addresses flow rules that may result in security policy violations by first

translating flow rules and security policy to into an assertion set, or a series of true or false

																																																								
28	Philip	Porras	et	al.,	"A	security	enforcement	kernel	for	OpenFlow	networks,"	Proceedings	of	the	first	

workshop	on	Hot	topics	in	software	defined	networks	-	HotSDN	'12,	2012.	
29	Hongxin	Hu	et	al.,	“FLOWGUARD:	Building	robust	firewalls	for	software-defined	networks,”	Proceedings	

of	the	third	ACM	SIGCOMM	workshop	on	Hot	topics	in	software	defined	networking	-	HotSDN	’14,	(2014):	97–102.	

	13	

statements. 30 This assertion set can then be processed and verified by a Satisfiability Modulo

Theories (SMT) solver, which is a program that can solve large systems of true and false

equations. The results of the SMT solver help to verify if security policy is violated by the flow

rules in questions.

NICE and FlowChecker mainly check for violations in security policy through model

checking, which is the process of determining whether a given model meets a given

specification. NICE uses model checking in combination symbolic execution to discover security

policy violations.31 Symbolic execution is the process of determining which inputs exercise

different code paths within the application in question. Canini et al. model the network through a

custom algorithm, which enumerates all the possible states of the network and all the possible

transitions between these states, including the transitions that cause security policy violations.

They then use model checking and symbolic execution to enumerate all the possible code paths

within a particular application and determine if a particular code path causes a state transition

that, in turn, causes a security policy violation. In contrast to NICE, FlowChecker models the

network by encoding OpenFlow configuration information using Binary Decision Diagrams,

which are data structures used to represent boolean functions. 32 It then uses model checking to

identify security policy violations in the network.

Sherwood et al. propose FlowVisor, which acts as a proxy between switches and multiple

controllers.33 It segments the network by re-writing flow rules so that they only affect their own

																																																								
30	Sooel	Son	et	al.,	"Model	checking	invariant	security	properties	in	OpenFlow,"	2013	IEEE	International	

Conference	on	Communications	(ICC),	2013.	
31	Marco	Canini	et	al.,	"A	NICE	way	to	test	OpenFlow	applications,"	Proceedings	of	the	9th	USENIX	

conference	on	Networked	Systems	Design	and	Implementation,	2012.	
32	Ehab	Al-Shaer	and	Saeed	Al-Haj,	"FlowChecker,"	Proceedings	of	the	3rd	ACM	workshop	on	Assurable	

and	usable	security	configuration	-	SafeConfig	'10,	2010.	
33	Rob	Sherwood,	Glen	Gibb,	Kok-Kiong	Yap,	Guido	Appenzeller,	Martin	Casado,	Nick	McKeown,	and	Guru	

Parulkar,	"Flowvisor:	A	network	virtualization	layer,"	OpenFlow	Switch	Consortium,	2009.	

	14	

segment. This enables multiple controllers to share a single network, making it easier to enforce

security policy. Finally, Hinrichs et al. propose Flow Security Language (FSL), which serves as a

replacement to Access Control Lists (ACLs), firewalls, Network Address Translators (NATs)

and Virtual Local Area Networks (VLANs) in the SDN environment.34 FSL allows for basic

network access controls, directionality in communication establishment (similar to NAT),

network isolation (similar to VLANs), communication paths, and rate limits.

D. Extending the BoK

While the majority of previous research has focused on the data and application planes,

we have outlined it in order to illustrate how our research can contribute to the field; research

into securing the controller is important not only because it is fundamental to the security of the

entire SDN infrastructure, but also because it can inform previous research that aims to secure

other aspects of the SDN infrastructure. It can help us narrow in on potential vulnerabilities in

switches and applications, prevent us from exposing the controller to additional vulnerabilities

when we implement solutions to other security problems, and inform applications that check for

the correctness of flow table rules and the network structure. Discovering vulnerabilities in the

controller software may even lead to important insights about the vulnerability discovery process

in other software; certain methods of static analysis or fuzzing may be uniquely suited to

discovering vulnerabilities in large, complex software in general. With the help of this research

and previous research, we can stop implementing security haphazardly within the SDN

environment and start implementing it by design, leading to a more robust and secure system as a

whole.

																																																								
34	Timothy	Hinrichs	et	al.,	"Expressing	and	enforcing	flow-based	network	security	policies,"	University	of	

Chicago,	2008.	

	15	

II. Fuzzing

Fuzzing is the process of sending specific data to a program that accepts input in an effort

to cause it to behave unexpectedly.35 The idea is that if a program behaves unexpectedly, the

portion of code responsible for the abnormal behavior will likely contain an exploitable

vulnerability. An effective fuzzer will create input that is valid enough so that it is not rejected at

a shallow level within a program but invalid enough to trigger unexpected behavior within the

program.36 Fuzzers can be categorized in three main ways.37 A fuzzer can be 1) mutation-based

or generation-based depending on whether inputs are generated from scratch or by modifying

existing inputs, 2) dumb or smart depending on whether it is aware of input structure, and 3)

blackbox or whitebox depending on whether it is aware of program structure. These differences

are summarized in Table 3.

Term Definition

Mutation-based Generation of input based on sample input

Generation-based Generation of input based on a specific model,
without requiring any sample input

Dumb fuzzing Sending input to target program without
regard to structure

Smart fuzzing Sending input to target program within the
constraints of a particular structure, such as
base-64 encoding and checksums

Blackbox fuzzing Sending input to target program without any
measurement of code coverage

																																																								
35	Oehlert,	"Violating	Assumptions	with	Fuzzing,"	2005.	
36	Christian	Holler,	Kim	Herzig,	and	Andreas	Zeller,	"Fuzzing	with	code	fragments,"	Proceedings	of	the	21st	

USENIX	Security	Symposium,	2012.	
37	John	Neystadt,	"Automated	Penetration	Testing	with	White-Box	Fuzzing,"	Microsoft	Developer	

Network,	accessed	April	1,	2017,	https://msdn.microsoft.com/en-us/library/cc162782.aspx.	

	16	

Whitebox fuzzing Sending of input to target program, measuring
the code coverage of input, and using that
information to intelligently form new input

Table 3: Categories of Fuzzers.

A. Mutation-based Fuzzing

 Mutation-based fuzzing begins with a valid sample input, which is then modified

according to various strategies, like flipping, substituting, moving, or deleting random chunks of

data. The input produced in mutation-based fuzzing is limited by the original valid input. For

example, if an input can have up to three fields but the initial sample input only has two fields, a

mutation-based fuzzer algorithm will never produce input that has all three fields.

B. Generation-based Fuzzing

Generation-based fuzzing begins with a model, which is a general outline of the input

that the target program should accept. A generation-based fuzzer uses such an outline to produce

fuzzed input for the target program. In general, the effectiveness of generation-based fuzzing

relies on the accuracy of the initial model. If the model implies certain inputs should be accepted

by the application when they actually are not, then the fuzzing process will be inefficient.

However, if the model is well defined, the fuzzing process can be effective in producing novel

inputs that are effective in causing exceptions.

C. Dumb Fuzzing

 A dumb fuzzer is unaware of the structure of program input. It must therefore resort to

either sending completely randomly generated input to the program or starting with a sample

input and then apply fuzzing strategies to that sample input in order to produce new input. Since

	17	

the former is usually inefficient and unlikely to yield results, dumb fuzzers are usually mutation-

based.

D. Smart Fuzzing

 A smart fuzzer is aware of the structure of program input. They usually use a formal user-

supplied model to identify the structure of input and then use various fuzzing strategies to

produce new input. Since input is usually generated from a model, smart fuzzers are usually

generation-based.

E. Blackbox Fuzzing

 A blackbox fuzzer is unaware of program structure. It simply sends input to the target

program and receives no feedback as to the amount of code coverage a particular input is able to

produce. Blackbox fuzzing has the advantage of being relatively simple to implement. Although

there has been plenty of research on whitebox fuzzing techniques, it is not readily apparent how

to apply successful techniques to arbitrary target programs. Blackbox fuzzing can therefore be

useful for revealing easy-to-find vulnerabilities as well as establishing a foundation for the

application of more advanced whitebox fuzzing techniques.

F. Whitebox Fuzzing

There are two main problems with blackbox fuzzing that whitebox fuzzing helps to solve.

First, the probability that a blackbox fuzzer will reveal a software vulnerability is small because

there is no guarantee that the input generated by the dumb fuzzer will reach all parts of the target

program. Figure 3 shows a sample program.

	18	

x = raw_input(‘Enter a number between 1 and 100: ’)
if x == 50:
 sys.exit(1)
else:
 print x

Figure 3: Shortcomings of Blackbox Fuzzing.

Sending random input to the program only has a 1 percent chance of reaching the part of the

code that causes an error. 38,39 While this example is simplified, it is useful in demonstrating why

blackbox fuzzers inevitably fall short. The more complex a software system, the more code

branches it will likely have and the less likely that random input will hit new branches in the

program. This means that a dumb fuzzer is unlikely to cover a sufficient amount of the target

program’s code base to reveal a vulnerability. There is therefore a need for whitebox fuzzers,

fuzzers that can intelligently choose input to send to the target program so as to increase the code

covered by that input and therefore increase the likelihood of finding a vulnerability.

 Second, blackbox fuzzers have no way of reducing the input space, which can cause

problems in trying to scale the fuzzer. The Eddington Number, which is 1080 or the number of

protons in the known universe, serves as a useful upper bound on any fuzzing process; even if we

assume we have access to an infinitely powerful computer, it is not possible to store more inputs

to the target application than 1080. 40 There are therefore two options: 1) store fewer than 1080

inputs or 2) discard unsuccessful or uninteresting inputs. For example, a target application that

accepts a High-definition (HD) picture as input. A HD picture consists of 1920 x 1080 pixels.

Each pixel is represented by three bytes which can take on a total of 2563 different values.
																																																								

38	Patrice	Godefroid,	"Random	testing	for	security,"	Proceedings	of	the	2nd	international	workshop	on	
Random	testing	co-located	with	the	22nd	IEEE/ACM	International	Conference	on	Automated	Software	Engineering	
(ASE	2007)	-	RT	'07,	2007.	

39	Owen	W.	Redwood,	"Lecture	8:	Fuzzing	Lecture	1,"	Florida	State	University,	accessed	April	1,	2017,	
http://www.cs.fsu.edu/~redwood/OffensiveComputerSecurity/lectures.html.	

40	Ibid.	

	19	

Therefore, the total possible HD picture that can be sent to the application are 2563 x 1920 x 1080

which greatly exceeds 1080. Therefore, in this case and many cases in general, it is unfeasible to

completely exhaust the input space, as blackbox fuzzers are designed to do.

 Whitebox fuzzers aim to reduce the input space through two main methods: dynamic

taint analysis and forward symbolic execution. Dynamic taint analysis executes a program to

observe which portions of code are affected by tainted sources like user input.41 The idea is that

the potions of code affected by user input are more likely to contain software vulnerabilities.

computations There are two kinds of dynamic taint analysis: data flow dependencies and control

flow dependencies. Data flow dependencies are when variables are tainted simply because they

are derived from input. Figure 4 shows an example of a data flow dependency, where the

variable z is tainted because it is derived from x.

x = raw_input('Enter an integer:	')
y = 1
z = x + y

Figure 4: Data Flow Dependency.

Control flow dependencies are when variables are tainted because they are part of control flow

that is influenced by input. Figure 5 shows an example of a control flow dependency, where the

variable z is tainted because its value depends on a conditional influenced by x.

x = raw_input('Enter an integer:	')
if x >= 0:
 z = 1
else:
 z = 2

Figure 5: Control Flow Dependency.

																																																								
41	Schwartz,	Edward	J.,	Thanassis	Avgerinos,	and	David	Brumley.	"All	You	Ever	Wanted	to	Know	about	

Dynamic	Taint	Analysis	and	Forward	Symbolic	Execution	(but	Might	Have	Been	Afraid	to	Ask)."	2010	IEEE	
Symposium	on	Security	and	Privacy,	2010.	

	20	

Forward symbolic execution builds a logical formula that describes the execution path of

the target program in order to determine which inputs results in different execution.42 The

forward symbolic execution process is as follows. First, a program’s logic is represented in

symbols, which allows for a special focus on branches in the program. Next, all of the constraints

that are required to produce a specific code path are recorded. This is repeated until all the

different ways to reach all the different paths are enumerated. A constraint solver is then used in

order to determine the constraints that need to be placed on program input in order to reach

different code paths in the program. After enumerating all the different constraints on input, the

fuzzing process can then be started with a much smaller input space, allowing for more effective

fuzzing and increasing the likelihood of discovering vulnerabilities in the target program.

Research in the whitebox fuzzing domain often combines the use of dynamic taint

analysis and forward symbolic execution in order to build logical formulas for those parts of a

target program that depend upon tainted values.43 In doing so, it is possible to not only determine

which portions of code are influenced by tainted sources and are therefore likely to contain

vulnerabilities, but also what input can be constructed to reach those potions of code. We

summarize whitebox fuzzers presented by previous research below, including TaintCheck,

SAGE, BuzzFuzz, TaintScope, and MAYHEM.

TaintCheck uses dynamic taint analysis with the help of Valgrind, an emulator that can

help trace a program as it is runs.44 Whenever the target program reaches a new block of code,

																																																								
42	Schwartz,	"All	You	Ever	Wanted	to	Know	about	Dynamic	Taint	Analysis	and	Forward	Symbolic	Execution	

(but	Might	Have	Been	Afraid	to	Ask),"	2010.	
43	Ibid.	
44	James	Newsome	and	Dawn	Song,	"Dynamic	taint	analysis	for	automatic	detection,	analysis,	and	

signature	generation	of	exploits	on	commodity	software,"	Proceedings	of	the	12th	Network	and	Distributed	
System	Security	Symposium	(NDSS’05),	2005.	

	21	

Valgrind translates and passes the block to TaintCheck, which traces the block to incorporate it

in its dynamic taint analysis. TaintCheck then passes the block back to Valgrind, which translates

the block back so that it may be executed. In order to make it flexible and extensible for future

use, TaintCheck is broken down into three distinct parts: TaintSeed, TaintTracker, and

TaintAssert. TaintSeed determines what inputs should be tainted, TaintTracker determines how

the taint attribute should propagate, and TaintAssert determines the usage of tainted data should

be interpreted as an exploit. TaintCheck was able to detect exploits on vulnerable versions of the

ATPhttpd, cfingerd, and wu-ftpd programs.

SAGE (Scalable, Automated, Guided Execution) uses forward symbolic execution to

improve the code coverage of the inputs it generates and a custom algorithm designed to find

bugs in large search spaces.45,46 SAGE has found 30 new Windows application bugs. Godefroid

et al. extend SAGE by introducing a grammar, which is a set of rules that limit how input is

crafted observe that the effectiveness. 47 They do this because programs that only accept highly-

structured input usually reject a large number of inputs at shallow levels of code because they do

not meet the basic requirements for input the program accepts. In an effort to increase the

effectiveness of whitebox fuzzing with such programs, they present a method to generate

grammars directly from forward symbolic execution to ensure that inputs reach beyond shallow

parts of. Evaluating their algorithm against a regular whitebox fuzzing with the JavaScript

interpreter of Internet Explorer 7, they are able to increase code coverage from 53% to 81%

while using three times fewer tests.

BuzzFuzz uses dynamic taint analysis to identifies parts of a well-formed input that

																																																								
45	Patrice	Godefroid,	"Random	testing	for	security,"	2007.	
46	Patrice	Godefroid,	Michael	Y.	Levin,	and	David	Molnar,	"SAGE:	Whitebox	Fuzzing	for	Security	Testing,"	

Queue	10,	no.	1	(2012):	20.	
47	Patrice	Godefroid,	Adam	Kiezun,	and	Michael	Y.	Levin,	"Grammar-based	whitebox	fuzzing,"	Proceedings	

of	the	2008	ACM	SIGPLAN	conference	on	Programming	language	design	and	implementation	-	PLDI	'08,	2008.	

	22	

influence variables at key points in the target program.48 BuzzFuzz automatically generates new

inputs by modifying these identified parts of well-formed input. Because these new inputs

typically preserve the underlying syntactic structure of the well-formed input, they tend to make

it past the initial input parsing components of the program and reach code deep within the

program. BuzzFuzz has found errors in two open-source applications: Swfdec, an Adobe Flash

player, and MuPDF, a PDF viewer.

TaintScope also seeks to improve the effectiveness of whitebox fuzzing with programs

that only accept highly-structured inputs. 49 It does this by using dynamic taint analysis to

identify identify checksum-based checks on input and forward symbolic execution to bypass

those checks. Additionally, it uses dynamic taint analysis to identify which parts of input are

used in security-sensitive operations, such as invoking system or library calls, and then focuses

on modifying those parts.

 Cha et al. distinguish between an offline symbolic executor, which symbolically executes

a single code path in a single run, with an online symbolic executor, which tries to execute all

possible code paths in a single run.50 They observe that offline executors are able to make

progress for arbitrarily long times because each run involves executing a new code path. Offline

executors are also able to use the results of previous runs for future runs as each run is executed

independently. However, they repeat a lot of work because a lot of the same code needs to be

executed for each run. In contrast, online symbolic executors are able to avoid re-executing the

same code because they fork at branch points. However, they are unable to make progress for

																																																								
48	Vijay	Ganesh,	Tim	Leek,	and	Martin	Rinard,	"Taint-based	directed	whitebox	fuzzing,"	2009	IEEE	31st	

International	Conference	on	Software	Engineering,	2009.	
49	Tielei	Wang	et	al.,	"TaintScope:	A	Checksum-Aware	Directed	Fuzzing	Tool	for	Automatic	Software	

Vulnerability	Detection,"	2010	IEEE	Symposium	on	Security	and	Privacy,	2010.	
	 50	Sang	Kil	Cha	et	al.,	"Unleashing	Mayhem	on	Binary	Code,"	2012	IEEE	Symposium	on	Security	and	
Privacy,	2012.	doi:10.1109/sp.2012.31.	

	23	

arbitrarily long times because forking at branch points usually results in an exponential increase

in code paths. They are also unable to use of the results of previous runs for future runs because

they are not run multiple times. Cha et al. present Mayhem, which combines offline and online

symbolic execution by alternating between online and offline symbolic execution runs. Mayhem

has found 29 exploitable vulnerabilities in both Linux and Windows programs.

G. Practical Fuzzing Tools

While research into fuzzing has yielded some effective tools, it is not certain that these

tools are applicable to a range of different software systems. Therefore, it is important to

consider tools that have not necessarily been developed in an academic setting but have been

proven practically effective nonetheless. Two particularly effective fuzzers are Peach and

American Fuzzy Lop (AFL).

i. Peach

Peach is a smart, generation-based, blackbox fuzzer, which generates fuzzed input

through XML configuration files called Peach Pits.51 A Peach Pit consists of a Data Model,

which tells Peach what format of input to expect, a State Model, which tells Peach how that input

format changes as the program goes through different phases, and a Test, which brings the Data

and State Models together. By decoupling the Data Model, State Model, and fuzzing engine,

Peach allow the creation of custom fuzzers without having to write each fuzzer from scratch.

The Data Model tells Peach what format of input to expect. For example, to fuzz a

webserver Peach would have to send one or more Hypertext Transfer Protocol (HTTP) requests

																																																								
51	"Peach	Introduction,"	Deja	vu	Security,	accessed	April	1,	2017,	

http://community.peachfuzzer.com/Introduction.html.	

	24	

and receive one or more HTTP responses, so both HTTP requests and responses would have to

be defined in separate Data Models. The State Model tells Peach how that input format changes

as the program goes through different phases. It consists of one or more States, which describe

phases in the fuzzing process, and each State consists one or more Actions, which describes the

steps to be taken in each phase. For example, to fuzz a webserver Peach would have to send a

TCP SYN packet, receive a TCP SYN-ACK packet, send a TCP ACK packet, send one or more

HTTP requests, and then receive one or more HTTP responses. Each one of these steps represent

a State and its associated Actions in the State. The Test is the portion of the Peach Pit that

describes how different Data and State Models interact during the length of a complete fuzzing

run. It also defines a Publisher, which specifies how to send input to and received output from

the target program during a fuzzing run. For example, to fuzz a webserver Peach would have to

send input to the target program on TCP port 80 and receive output from the target program on a

TCP user port.

ii. American Fuzzy Lop (AFL)

AFL is a dumb, whitebox, mutation-based fuzzer that has proven to be particularly

effective at finding vulnerabilities. AFL was not constructed with the intention of being a proof

of concept for any academic theory. Instead, the only governing principles are "speed, reliability,

and ease of use."52 The basic algorithm can be described in a few steps. The target program first

has to be compiled with a special utility that allows AFL to conduct taint analysis. AFL then

takes a valid sample input, executes the target program, and traces the execution path. It then

attempts to reduce the size of the sample input until it no longer produces the same trace. Next,

																																																								
52	Michał	Zalewski,	"Technical	"whitepaper"	for	afl-fuzz,"	accessed	April	1,	2017,	

http://lcamtuf.coredump.cx/afl/technical_details.txt.	

	25	

AFL applies various mutation-based fuzzing strategies to modify this reduced input, executing

and tracing the execution path each time. For each modified input that results in a new execution

trace, AFL repeats the process of reducing the size of that input until the reduced input no longer

produces the same execution trace. If any of the inputs causes the target program to crash, that

input is saved for later inspection.

 AFL is particularly effective because it avoids global-scale comparisons of complete

execution traces, which are particularly costly and can slow down the fuzzing process

substantially. To achieve this, AFL first compiles each line of code so that it records the tuple:

[ID of current code location], [ID of previously-executed code location]. Then AFL records both

previously-unseen tuples in order to detect subtle changes in the control flow and the hit rate for

every tuple in order to determine the code coverage of particular inputs. This ensures that both

explicit conditional branches, and indirect variations in the behavior of the target program are

recorded. Therefore, even if the mutations that AFL do not produce any unusual behavior, it is

still a particularly useful tool in producing a set of inputs that collectively produce a substantial

amount of code coverage. This set could then be utilized with other fuzzers in an effort to

produce more interesting behavior from the target program.

III. OpenDaylight

The OpenDaylight controller is a framework to connect Southbound plugins, which

generally communicate with network devices, to Northbound plugins, which generally

communicate with applications that configure those same network devices. 53 The controller does

this through a Service Abstraction Layer (SAL). Southbound plugins register themselves with

																																																								
53	Jan	Medved	et	al.,	"OpenDaylight:	towards	a	model-driven	SDN	controller	architecture,"	IEEE	15th	

international	symposium	on	a	world	of	wireless,	mobile	and	multimedia	networks	(WoWMoM),	2014.	

	26	

the SAL and the SAL then alerts Northbound plugins to the various Southbound plugins that are

available. This approach resembles the way the Hardware Abstraction Layer (HAL) operates in

Linux-based Operating Systems. In these systems, the HAL allows applications to use hardware

connected to the system independent of the underlying hardware. With the SAL, the

OpenDaylight controller allows Northbound plugins to interact with Southbound plugins,

regardless of the specifics of the underlying network devices.

The Boron release of OpenDaylight uses a special SAL called a Model-driven Service

Abstraction Layer (MD-SAL). MD-SAL uses YANG, which is a data modeling language used to

model network device configuration so that the configuration of any network device can be

abstracted out to provide extensibility and flexibility to Northbound protocols.54 Once a YANG

model is defined, the controller uses it to automatically create an interface via the RESTCONF

plugin. This interface allows the consumers of the YANG model, or Southbound plugins, to be

configured by producers of the YANG model, or Northbound plugins.

Take the example of an application adding a flow to an OpenFlow-enabled switch. When

the controller starts up, both the Flow Programmer Service and the OpenFlow Plugin register

themselves with the MD-SAL. When an application adds a flow through the controller’s

RESTCONF plugin, the add flow request is deserialized and a new flow is created in the Flow

Service data tree. The Flow Programmer Service then receives a notification that a flow has been

added as it is registered to receive updates for changes in the Flow Service data tree. Next, the

Flow Programmer Service then uses the OpenFlow (OF) Plugin to generate a Remote Procedure

Call (RPC), or a procedure that is executed remotely but coded as if it were executed locally, to

add the flow in the appropriate switch. This RPC is then routed through the OF Plugin to the

																																																								
54	Martin	Bjorklund,	"RFC	6020	-	YANG	-	A	data	modeling	language	for	NETCONF,"	IETF	Tools,	accessed	

April	1,	2017,	https://tools.ietf.org/html/rfc6020.	

	27	

correct switch. Figure 6 illustrates this process.55

Figure 6: Adding a Flow in the OpenDaylight Controller

CHAPTER II

																																																								
55	"OpenDaylight	Controller:MD-SAL:FAQ,"	OpenDaylight	Project,	accessed	April	1,	2017,	

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ.	

	28	

METHODOLOGY

Our fuzzing framework utilizes a Virtual Machine (VM) running on VirtualBox 5.1.18

r114002 (Qt5.6.2). The specifications of the VM were chosen in accordance with benchmarks set

by the OpenDaylight Project and are summarized in Table 4.56

Component Specification

Operating System (OS) Ubuntu 16.04 LTS

Memory 3.9GiB

CPU Intel Core i7-3740QM CPU @ 2.70GHz

OS type 64-bit

Disk 14.6 GB

Table 4: VM Specifications.

First, we downloaded and extracted OpenDaylight within the VM. Figure 7 illustrates this

process.

$ wget
https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendayl
ight/integration/distribution-karaf/0.5.2-Boron-SR2/distribution-karaf-0.5.2-Boron-
SR2.tar.gz
$ tar -xzf distribution-karaf-0.5.2-Boron-SR2.tar.gz

Figure 7: Downloading and Extracting the OpenDaylight Controller.

Next, we increased the maximum size of the log file, karaf.log, so that it is not rotated before log

output can be recorded later on during the fuzzing process. Figure 8 illustrates this process.

$ sed -i s/maxFileSize=1MB/maxFileSize=500MB/ distribution-karaf-0.5.2-Boron-
SR2/etc/org.ops4j.pax.logging.cfg

																																																								
56	"CrossProject:Integration	Group:Performance	Test:Results,"	OpenDaylight	Project,	accessed	April	1,	

2017,	https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Performance_Test:Results.	

	29	

Figure 8 Changing the Maximum File Size of karaf.log.

Finally, we set the JAVA_HOME variable and ran the controller process. Figure 9 illustrates this

process.

$ export JAVA_HOME=/usr/lib/jvm/default-java
$ distribution-karaf-0.5.2-Boron-SR2/bin/karaf

Figure 9: Setting the JAVA_HOME Variable and Starting the OpenDaylight Controller..

We chose to use Python modules to construct a smart, generation-based, blackbox fuzzer

to fuzz the OpenDaylight controller. This fuzzing framework is available on GitHub.57 We chose

this methodology because, although we outlined several fuzzing frameworks in Chapter I,

including ones that have been particularly successful in finding vulnerabilities in other programs,

it is uncertain whether those frameworks are as applicable to a large and complex software

system such as the OpenDaylight controller. By developing a basic fuzzing framework with

Python modules, our hope is to provide a foundation for future efforts to develop more advanced

frameworks. We chose to use this approach to fuzz two OpenDaylight features that form a large

part of the core controller functionality: the controller’s odl-l2switch-all and odl-restconf-all

features. For each feature, we followed the guidelines of the Microsoft Security Development

Lifecycle for network fuzzing and repeated the fuzzing process for one hundred thousand

iterations.58

I. OpenFlow Plugin (odl-l2switch-all)

																																																								
57	Walid	Sharif,	"wsharif/thesis,"	accessed	April	1,	2017,	https://github.com/wsharif/thesis.	
58	"SDL	Process	-	Phase	4:	Verification,"	Microsoft	Developer	Network,	accessed	April	1,	2017,	

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.aspx.	

	30	

The odl-l2switch-all feature in the OpenDaylight controller implements OpenFlow

Version 4 (v4). Figure 10 illustrates how we installed the feature.

feature:install odl-l2switch-switch

Figure 10: Installing odl-restconf-all.

The OpenFlow protocol allows controllers and switches to communicate for the purposes of

forwarding packets. OpenFlow v4 has a total of thirty different packet types, which facilitate this

basic purpose. Our methodology for fuzzing the OpenFlow feature of the controller includes four

main steps: 1) construct each of the thirty OpenFlow packet types within the constraints of the

OpenFlow v4 specification, 2) generate an OpenFlow packet randomly chosen from the thirty

packet types, 3) establish a connection with the controller, 3) send the generated OpenFlow

packet, and 4) record CPU usage, memory usage, and log output.

We first constructed each of the thirty OpenFlow packet types. According to the

OpenFlow specification, each packet consists of several fields, some of which are constrained to

certain values and some of which are not.59 Our approach was to adhere to the general structure

of the packet and only vary fields within their constraints. Our hope is that this fine-grained

approach will have a greater likelihood of reaching code deeper within the controller’s

OpenFlow feature and that packets are not rejected as malformed by shallow, parsing portions of

the feature. This will increase the likelihood that the generated packets will cause the controller

to exhibit unexpected behavior. We used the os module to generate packet fields that have no

constraints. Figure 11 shows how one byte of random data can be constructed with the os

module.
																																																								

59	"OpenFlow	Switch	Specification,"	Open	Networking	Foundation,	accessed	April	1,	2017,	
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.3.pdf.

	31	

from os import urandom
field = urandom(1)

Figure 11: Constructing One Byte of Random Data with the os Module.

Figure 12 shows how one byte of random data can also be constructed with the random and

struct modules.

from random import randint
from struct import Struct
field = Struct(‘! B’).pack(randint(0, 255))

Figure 12: Constructing One Byte of Random Data with the random and struct Modules.

We favored using the os module to construct unconstrained fields because this approach is about

33% faster, as illustrated by figure 13, and this helps to speed up the fuzzing process.

>>> timeit.Timer("os.urandom(1)", "import os, random, struct").timeit(1) /
timeit.Timer("struct.Struct('! H').pack(random.randint(0, 255))", "import os, random,
struct").timeit(1)
0.6666666666666666
Figure 13: Comparing the Time to Construct One Byte of Random Data with the os Module and

the random and struct Modules.

For packet fields that are constrained to particular values, we used the random and struct

modules in tandem. Figure 14 shows how a one byte field that can only take on values between

zero and ten can be constructed.

from random import randint
from struct import Struct
field = Struct(‘! B’).pack(randint(0, 10))

Figure 14: Constructing a One Byte Field that Can Only Take on the Value between Zero and

Ten.

	32	

We packed data in network byte order, represented by the ‘!’ argument passed to the Struct

function, because that data eventually has to be sent to the controller over the network.

Each OpenFlow packet consists of a header, which is basically the same for each packet

type, and a payload, which varies from packet type to packet type. Figure 15 illustrates this

structure.60

Figure 15: OpenFlow Packet Structure.

The header for each OpenFlow packet has four fields: version, type, length, and xid. Only the

type field varies amongst the thirty different packet types. The Appendix describes each part of

the header, its constraints, and how it can be generated by a Python expression. The version field

is the value of the OpenFlow protocol version, which is 4, packed into a one-byte unsigned

integer in big-endian. Figure 16 shows how the version field can be expressed in Python.

version = Struct(‘! B’).pack(4)

Figure 16: Constructing the Version Field.
																																																								

60	"Message	Layer,"	Flowgrammable,	accessed	April	1,	2017,	
http://flowgrammable.org/sdn/openflow/message-layer/.	

	33	

The type field is the value of the OpenFlow packet type packed into a one-byte unsigned integer

in big-endian. Figure 17 shows how the type field can be expressed in Python.

type = Struct(‘! B’).pack(packetType)

Figure 17: Constructing the Type Field.

The length field is equal to the combined length of the OpenFlow packet header and payload

packed into a two-byte unsigned integer in big-endian. Thus, the maximum length of any given

OpenFlow packet is 65535 bytes as this is the maximum value of a two-byte unsigned integer.

The length of the header for any OpenFlow packet will always be eight bytes. However, the

length of the payload for an OpenFlow packet varies, depending on the packet type. Figure 18

shows how the length field can be expressed in Python.

length = Struct(‘! H’).pack(8 + len(payload))

Figure 18: Constructing the Length Field.

The xid, or transaction ID, field is a 4-byte field that does not have any constraints. Figure 19

shows how the version field can be expressed in Python.

xid = urandom(4)

Figure 19: Constructing the Xid Field.

The payload of an OpenFlow packet varies quite drastically in both content and length

depending on the packet type. The Appendix lists these payloads, their field constraints, and the

Python expressions that we used to generate them. The ofptHello, ofptBarrierReq,

ofptBarrierRes, ofptFeatureReq, ofptGetAsyncReq, and ofptGetConfigReq packets do not have

	34	

payloads. Many of payloads of the remaining twenty-four packet types can be constructed with

simple use of the os, random, and struct modules. However, there are thirteen packet types that

have more complicated payloads: ofptEchoReq, ofptEchoRes, ofptError, ofptExperimenter,

ofptFlowMod, ofptFlowRemoved, ofptGroupMod, ofptMeterMod, ofptMultipartReq,

ofptMultipartRes, ofptPacketIn, ofptPacketOut, and ofptQueueGetConfigRes. The payloads for

these packets are complicated to construct because they have one or more fields that are variable

in length.

For the ofptEchoReq, ofptEchoRes, ofptError, and ofptExperimenter payloads, the

process is not too difficult because the fields that are variable in length are not constrained in

terms of content. For these payloads we used the os module to generate a field with random data

of random length. For example, the payload for the ofptEchoReq packet consists of a data field

that is variable in length but is not constrained in terms of content. Figure 20 shows how we

constructed the payload for this packet with the os module.

data = urandom(randint(0, maxLength - 8))

Figure 20: Constructing Random Data of Variable Length.

For the remaining nine packet types, the process is slightly more difficult because the

fields that are variable in length are sometimes constrained in terms of content. This poses a

problem because we had to generate the content for these fields and do so for a randomly

assigned length. Some of these fields have subfields that are of variable length as well, further

complicating the process. In order to effectively construct these payloads, we defined several

helper functions: generateActions, generateBuckets, generateGroupDescriptions,

generateGroupStats, generateInstructions, generateMatch, generateMeterBands,

generateMeterConfigs, generateMeterStats, generateOxm, generateQueues, generatePorts, and

	35	

generateTableFeatures.

All the helper functions have the same basic structure. First, they are passed an integer

which represents the maximum length of the string they return. They then declare a list, which

holds the generated strings. Next, they enter a while loop and strings are generated according to

their constraints under the OpenFlow v4 specifications. Each generated string is added to the

declared list if its addition does not make the combined length of the list’s entries larger than the

maximum length the function was passed. If the generated string is added to the list and the

current combined length of all the strings in the list plus the maximum possible length of a

generated string is less than the maximum length, the while loop is executed for an additional

iteration. If not, the while loop is exited. A random number of list elements are then combined

and returned as a string.

Take, for example, the generateActions function. The function is passed a maximum

length as an argument and declares a list of actions. The function then enters a while loop and a

single action is generated according to the action constraints under the OpenFlow v4

specifications.61 The generated action is added to the list if its addition does not make the

combined length of the list’s entries larger than the maximum length the function was passed. If

the generated action is added to the list and the combined length of the list’s entries plus sixteen

is greater than the maximum length the function was passed, the while loop is exited. Sixteen

represents the largest possible action that can be generated by the while loop and ensures that it

is possible for any of the actions to be added to the list if randomly selected when the while loop

is executed for an additional iteration. A random number of list elements are then combined

together and returned.

 After constructing all thirty packet types, we established a connection with the controller
																																																								

61	"Actions,"	Flowgrammable,	accessed	April	1,	2017,	http://flowgrammable.org/sdn/openflow/actions/.	

	36	

before sending it a generated packet. This is a required step because the controller will simply

drop the sent packet unless a connection is established first. To establish a connection, the

controller first sends a ofptHello packet to a switch it has not seen before, or vice versa, in order

to negotiate the version of OpenFlow they will use to communicate. Next, either the switch or

controller sends a ofptHello packet in response, depending on whether the controller or switch

sent the original ofptHello packet. Then, the controller sends a ofptFeaturesReq packet in order

to determine what features the switch it is communicating with supports. The switch replies with

a ofptFeaturesRes packet to describes the features it supports. When this process is finished, the

controller and switch can proceed with further communication. Figure 21 illustrates the initial

negotiation process.62

																																																								
62	"State	Machine,"	Flowgrammable,	accessed	April	1,	2017,	

http://flowgrammable.org/sdn/openflow/state-machine/.	

	37	

Figure 21: Controller-Switch Connection Process.

We established a connection with the controller by sending an ofptHello and ofptFeatureRes

packet and used the time module to wait half a second each time for the controller to respond

with acknowledgements. We then generated a packet at random and sent it to the controller,

waiting another half a second for an acknowledgement. We then wrote the packet that was sent

to a file for later reference , checked the CPU and memory usage of the controller process, and

recorded any log output. We obtained the CPU and memory usage of the controller process by

running and getting the output of the ps command as a subprocess. We obtained any log

information written to the controller log file, karaf.log, by running and obtaining the output of

the wc and tail commands as subprocesses.

	38	

II. RESTCONF Plugin (odl-restconf-all)

 The odl-restconf-all feature in OpenDaylight implements the RESTCONF protocol.

Figure 22 illustrates how we installed the feature.

feature:install odl-restconf-all

Figure 22: Installing odl-restconf-all.

After installation of the feature, a REST interface is created that listens on port 8181 and can be

accessed through HTTP requests. Our methodology for fuzzing the OpenFlow feature of the

controller follows four main steps: 1) enumerate all valid HTTP requests that can be sent to the

RESTCONF feature, 2) generate a fuzzy request chosen randomly from the list of valid requests,

3) send the request, and 4) record CPU usage, memory usage, and log output.

We first enumerated all valid HTTP requests that could be sent to the RESTCONF

feature. Unlike with the OpenFlow feature, there is no standardized list of HTTP requests that all

RESTCONF implementations must support. RESTCONF implementations have different

purposes and so the exact HTTP requests accepted by any given implementation varies.

Additionally, there does not seem to be a comprehensive list of valid requests within the

OpenDaylight documentation. However, there is an OpenDaylight feature, known as the apidocs

explorer, that provides such a list. Its purpose is to document the Application Programming

Interfaces (APIs) provided by the RESTCONF feature. Figure 23 illustrates how we installed the

feature.

feature:install odl-mdsal-apidocs

Figure 23: Installing odl-mdsal-apidocs.

	39	

After we installed the apidocs explorer, we accessed a complete list of valid HTTP requests

accepted by the RESTCONF feature at http://127.0.0.1:8181/apidoc/explorer/index.html with the

default username and password of ‘admin’ and ‘admin’ respectively. This apidocs explorer is

illustrated by Figure 24.

Figure 24: Apidocs Explorer.

We used the apidocs explorer to enumerate a list of valid requests through the use of the

Python modules selenium, a web browsing automation module, and bs4, a HTML parsing

module. The apidocs explorer is mainly rendered through JavaScript and so simply passing the

loaded page to the bs4 module did not allow us to enumerate all the HTTP requests. Instead, we

used the selenium module to automate the loading of all dynamically rendered JavaScript content

	40	

before passing the HTML document to the bs4 module.

First, we downloaded a webdriver that the selenium module could use. We chose to use

the FireFox webdriver. Figure 25 shows how we downloaded and installed the FireFox

webdriver.

$ wget https://github.com/mozilla/geckodriver/releases/download/v0.15.0/geckodriver-
v0.15.0-linux64.tar.gz
$ tar -xzf geckodriver-v0.15.0-linux64.tar.gz
$ sudo mv geckodriver /usr/bin

Figure 25: Downloading and Installing the FireFox webdriver.

Next, we started the web browser and passed it the URL of the apidocs explorer as an argument.

We included the username and password in the URL to avoid having to instruct the selenium

module to enter the credentials through additional actions. We then dismissed the popup dialog

that resulted. This popup dialog is illustrated by figure 26.

Figure 26: FireFox Popup Dialog.

Next, we waited until the page was fully. In particular, we waited until a specific HTML

element, the ‘Show/Hide’ link, was loaded because clicking this element exposes the HTML

content that corresponds to the HTTP requests we wished to enumerate. We used the FireFox

Inspector feature to manually inspect the page and find the HTML tag associated with the

	41	

‘Show/Hide’ link. Figure 27 shows the FireFox Inspector with a ‘Show/Hide’ HTML element

highlighted.

Figure 27: FireFox Inspector.

After identifying the tag that belongs to the ‘Show/Hide’ link, we used the selenium module to

wait until those HTML elements were clickable. If they took more than thirty seconds to load,

we assumed there was an error loading the page and restarted our program. We then used the

selenium module to click on all of the 'Show/Hide' links and passed the rendered page to the bs4

module. Figure 28 shows the apidocs explorer with all of the 'Show/Hide' links clicked.

	42	

Figure 28: Apidocs Explorer with All HTTP Requests Listed.

Finally, we parsed the rendered page for all the listed HTTP requests and saved them to a file. In

particular, we saved the HTTP method, URL, and any accompanying payload.

After enumerating all valid HTTP requests, we used those requests to generate fuzzy

requests. Again, our approach was to adhere to the general structure of the requests and only vary

fields within their constraints and we hope is that this approach will have a greater likelihood of

reaching code deeper within the controller’s RESTCONF feature. First, we modified the request

that contained variable fields, which were demarcated by '{' and '}'. These variable fields are

meant to represent specific instances within MD-SAL. We modified these fields while ensuring

that 1) the maximum URL length was not exceeded and 2) the URL did not contain any invalid

characters. We verified the maximum length of a URL that the RESTCONF feature accepts is

	43	

5909 bytes. We verified this length with the program shown in Figure 29.

from requests import post, get, put, delete
from requests.auth import HTTPBasicAuth

requests = [post, get, put, delete]
maxLength = []

for i in requests:
 url = '/restconf/'
 while True:
 response = i('http://127.0.0.1:8181' + url, auth =
HTTPBasicAuth('admin', 'admin'), headers = {'Content-Type': 'application/json'})
 if response.status_code == 413:
 maxLength.append(len(url))
 break
 else:
 url += 'a'

print min(maxLength)

Figure 29: Program to Verify the Maximum Length of a URL in a HTTP Request to the

RESTCONF Feature.

The RESTCONF feature accepts all characters specified by RFC 3986 except the ‘%’, ‘[‘, and ‘]’

characters.63 We verified this with the program shown in Figure 30.

from string import letters, digits, punctuation
from requests import get
from requests.auth import HTTPBasicAuth

urlCharacters = [i for i in letters + digits + punctuation] + ['%' +
hex(i)[2:].zfill(2) for i in range(256)]

for i in urlCharacters:
 response = get('http://127.0.0.1:8181/restconf/' + i, auth =
HTTPBasicAuth('admin', 'admin'))
 if response.status_code not in (204, 404):
 print i

Figure 30: Program to Verify the URL Characters Accepted in the URL in a HTTP Request to

the RESTCONF Feature.

																																																								
63	Tim	Berners-Lee,	Roy	Fielding,	Larry	Masinter,	"RFC	3986	-	Uniform	Resource	Identifier	(URI):	Generic	

Syntax,"	IETF	Tools,	accessed	April	1,2017,	https://tools.ietf.org/html/rfc3986.	

	44	

After we verified these two constraints, we modified the URLs of requests that contained

variable fields with the modifyUrl function, which reserves a minimum length for each field that

must be generated, generates a random combination of valid URL characters of random length,

and then inserts those characters into the URL.

Next, we modified the request payloads that had variable fields, which were demarcated

by the placeholder strings "string", "integer", "number", "boolean", and "object". We replaced

these placeholder strings with randomly generated data within specific constraints.64,65 These

constraints are specified by JavaScript Object Notation (JSON), which states that a string can be

any unicode string, an integer can be any integer that is less than nineteen digits, a number can

either be integer less than nineteen digits or a float, a boolean can be any boolean, and an object

can be any dictionary where all the keys are strings and all values are either be strings, integers,

numbers, or booleans.66 We generated random data for each type with the generateString,

generateInteger, generateNumber, generateBoolean, and generateObject functions respectively.

These functions return strings because the generated request iseventually converted to a string by

the requests module before it is sent over the network to the RESTCONF feature.

The functions basically operate in the same way; they choose a random length for the

string that is returned and then generate a string of that length one iteration at a time. For

example, the generateString function chooses a random length between six, which is the

																																																								
64	The	RESTCONF	feature	accepts	payloads	in	both	JSON	and	Extensible	Markup	Language	(XML)	format.	

While	the	apidocs	explorer	provide	outlines	for	the	structure	of	JSON	payloads,	it	provides	no	such	outlines	for	the	
structure	of	the	same	payloads	in	XML.	Given	this	difficulty	and	the	fact	that	the	documentation	suggests	that	
JSON	and	XML	payloads	get	processed	in	identical	fashion,	we	have	chosen	to	only	generate	payloads	in	JSON.	

65	"Overview	for	programmers,"	OpenDaylight	Project,	accessed	April	1,	2017,	
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Restconf:Overview_for_programmers.	

66	We	exclude	generating	objects	that	include	objects	because	of	the	difficulties	associated	with	doing	so	
randomly.	

	45	

minimum length of a valid unicode string, and the maximum length it is passed. It then generates

a unicode string of that chosen length one iteration at a time.

We then replaced the placeholders in the payload with the generated data and saved the

modified requests to a text file for later inspection so that if a certain request is observed to cause

unexpected behavior, there is a way to reference that particular request. Next, we randomly

selected a request and sent it to the RESTCONF feature by reading from the

modifiedRequests.txt file and sending the request through either the post, get, put, or delete

functions of the requests module as necessary. Finally, we recorded CPU usage, memory usage,

and log output after each request was sent. We obtained the CPU and memory usage of the

controller process by running and getting the output of the ps command as a subprocess. We

obtained any log information written to the controller log file, karaf.log, by running and

obtaining the output of the wc and tail commands as subprocesses. We then recorded the

response status code and requests error, if any, through the requests module.

	46	

CHAPTER III

RESULTS

I. OpenFlow Plugin (odl-l2switch-all)

Figures 31 and 32 illustrate CPU and memory usage throughout the fuzzing run for the

OpenFlow plugin of the OpenDaylight controller.

Figure 31: OpenFlow CPU Usage Results.

	47	

Figure 32: OpenFlow Memory Usage Results.

This single run of the fuzzing process took about seven hours to complete as illustrated by Figure

33.

$ time openFlowFuzzer.py distribution-karaf-0.5.2-Boron-SR2/bin/karaf

real 414m57.283s
user 90m59.552s
sys 45m53.476s

Figure 33: Time to Complete OpenFlow Fuzzing Run.

The variance in CPU usage is not particularly interesting; there seems to be a general downward

trend in usage with no significant spikes. There does, however, seem to be several spikes in

	48	

memory usage throughout the fuzzing run. The four spikes that occur before the twenty-

thousandth packet is sent are particularly interesting because they run opposed to the more

gradual increases in memory usage of 0.1 percentage point increments. Inspecting the results.csv

file reveals that these readings were taken after packets 2995, 5216, 6781, and 8717 were sent.

We can reference these packets in the packets.txt file with the code shown in Figure 34, where x

is the packet number referenced.

with open(‘packets.txt’, ‘r’) as f:
 data = f.read().split(‘#packet’)[1:]
print data[x]

Figure 34: Code to Reference Requests with OpenFlow Plugin.

Referencing these packets in the packets.txt file allows us to determine that packets 2995,

5216, 6781, 8716 are ofptSetAsync, ofptGetConfigReq, ofptGroupMod, and ofptMultipartRes

packets respectively. Table 5 summarizes these packets.

Packet number Packet type Bytes

2995 ofptSetAsync 32

5216 ofptGetConfigReq 8

6781 ofptGroupMod 26552

8716 ofptMultipartRes 58008
Table 5: Packets that Caused Spikes in CPU Usage.

Further inspection of the packets does not provide any compelling evidence as to why they

would cause such sudden spikes in memory usage. The log output for the packets does not seem

to give any clues either. However, we believe repeating the fuzzing process multiple times

exclusively using the packets in question may reveal patterns that can help to answer this

	49	

question.

II. RESTCONF Plugin (odl-restconf-all)

Figures 35 and 36 illustrate CPU and memory usage throughout the fuzzing run for the

RESTCONF plugin of the OpenDaylight controller.

Figure 35: RESTCONF CPU Usage Results.

	50	

Figure 36: RESTCONF Memory Usage Results.

This single run of the fuzzing process took about an hour and fifteen minutes to complete as

illustrated by Figure 37.

$ time restconfFuzzer.py distribution-karaf-0.5.2-Boron-SR2/bin/karaf

real 74m57.786s
user 35m30.912s
sys 23m14.260s

Figure 37: Time to Complete RESTCONF Fuzzing Run.

The trends in CPU and memory usage for the RESTCONF fuzzing run are quite similar to those

of the OpenFlow fuzzing run; the variance in CPU usage is not particularly interesting but there

	51	

are three spikes in memory usage that occur before the twenty-thousandth request is sent.

Inspecting the results.csv file reveals that these readings were taken after requests 3347, 5126,

and 7431. We can reference these requests in the modifiedRequests.txt file with the code shown

in Figure 38, where x is the request number referenced.

with open(‘modifiedRequests.txt’, ‘r’) as f:
 data = f.read().split(‘#request’)[1:]
print data[x]

Figure 38: Code to Reference Requests with RESTCONF Plugin.

Referencing these requests in the modifiedRequests.txt file allows us to determine that requests

3347, 5216, and 7431 are GET, POST, and DELETE requests respectively. Table 6 summarizes

these requests.

Request number Request method Bytes

3347 GET 3304

5126 POST 59563

7431 DELETE 916

Table 6: Requests that Caused Spikes in Memory Usage.

Like with the OpenFlow fuzzing run, further inspection of the requests does not provide any

compelling evidence as to why they would cause spikes in memory usage but we believe

repeating the fuzzing process exclusively with the requests in question may be able to help

answer this question.

	52	

CHAPTER IV

CONCLUSION

I. Summary

Our goal with this project was to provide a practical framework for finding vulnerabilities

in SDN controllers. We successfully achieved this objective by developing a fuzzing tool with

standard Python modules to fuzz the OpenFlow and RESTCONF plugins of the OpenDaylight

controller. To develop this framework, we chose to use the OpenDaylight controller, because it is

well-documented, and fuzzing, because it is an effective method for finding vulnerabilities in

large software systems. We chose two controller features, odl-l2switch-all, a Southbound plugin

and odl-restconf-all, a Northbound plugin, to fuzz with a smart, generation-based, blackbox

fuzzing approach. This approach consisted of determining the structure of valid packets or

requests to the controller, determining the fields within those packets or requests that could be

varied, and varying those fields randomly.

Our hypothesis was that fuzzing these two OpenDaylight plugins would cause

unexpected behavior within the controller that could be measured through careful observation of

CPU usage, memory usage, and log output. There is some evidence to suggest that this was the

case; we observed spikes in memory usage while testing both the odl-l2switch-all and odl-

restconf-all features. It is not immediately clear why the packets or requests in question caused

the observed spikes in memory usage. However, we believe the next step is to conduct multiple

fuzzing runs exclusively with the packets or requests that caused spikes in memory usage as it

may reveal patterns that can help to explain the spikes in memory usage.

II. Future Research

	53	

As mentioned, repeating the fuzzing process multiple times exclusively with the packets

or requests that caused spikes in memory usage is a promising place to start for future research.

Besides this, though, we believe our framework provides a good foundation for future research

because it can be both extended and expanded. First, our methodology can be extended to more

OpenDaylight features and more SDN controllers. There are a total of forty features listed by the

OpenDaylight Wiki.67 These features can be fuzzed in a similar manner to our methodology by

determining the normal structure of input sent to those features, determining what parts of that

input can be varied, and varying those parts randomly. Similarly, other SDN controllers such as

Floodlight, OpenContrail, ONOS, and RYU, have their own implementations of Northbound and

Southbound plugins, similar to OpenDaylight’s OpenFlow and RESTCONF features, that may

reveal vulnerabilities when subjected to the fuzzing framework outlined in our methodology.

Second, our methodology can be expanded to incorporate more advanced fuzzing tools,

like Peach or AFL. Our modeled OpenFlow packets and RESTCONF requests can be leveraged

to create Peach Pits that model those packets and requests in a similar way. Figure 39 and figure

40 illustrate Peach Pits that model an OpenFlow packet and a RESTCONF HTTP request

respectively.

<?xml version="1.0" encoding="utf-8"?>
<Peach xmlns="http://peachfuzzer.com/2012/Peach"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://peachfuzzer.com/2012/Peach ../peach.xsd">

 <DataModel name="DataModel">
 <Number name="version" size="8" value="4" endian="big" mutable="false"/>
 <Number name="type" size="8" value="0" endian="big" mutable="false"/>
 <Number name="length" size="16" value="64" endian="big" mutable="false"/>
 <Number name="xid" size="32" endian="big"/>
 </DataModel>

																																																								
67	"OpenDaylight	Features	List,"	OpenDaylight	Project,	accessed	April	1,	2017,	

https://www.opendaylight.org/opendaylight-features-list.	

	54	

 <StateModel name="StateModel" initialState="InitialState">
 <State name="InitialState">
 <Action type="output"><DataModel ref="DataModel"/></Action>
 </State>
 </StateModel>

 <Test name="Default">
 <StateModel ref="StateModel"/>
 <Publisher class="TcpClient">
 <Param name="Host" value="127.0.0.1"/>
 <Param name="Port" value="6653"/>
 </Publisher>
 </Test>

</Peach>

Figure 39: Peach Pit for a OpenFlow Packet.

<?xml version="1.0" encoding="utf-8"?>
<Peach xmlns="http://peachfuzzer.com/2012/Peach"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://peachfuzzer.com/2012/Peach ../peach.xsd">

 <DataModel name="DataModel">
 <String value="POST /restconf/config/ HTTP/1.1\r\n" mutable="false"/>
 <String value="Host: 127.0.0.1:8181\r\n" mutable="false"/>
 <String value="Connection: keep-alive\r\n" mutable="false"/>
 <String value="Accept-Encoding: gzip, deflate\r\n" mutable="false"/>
 <String value="Accept: */*\r\n" mutable="false"/>
 <String value="User-Agent: python-requests/2.13.0\r\n" mutable="false"/>
 <String value="Content-Type: application/json\r\n" mutable="false"/>
 <String value="Content-Length: " mutable="false"/>
 <String>
 <Relation type="size" of="Payload"/>
 </String>
 <String value="\r\n" mutable="false"/>
 <String value="Authorization: Basic YWRtaW46YWRtaW4=\r\n" mutable="false"/>
 <Block name="Payload">
 <String value='{"address-tracker-config":{"observe-addresses-from":"'
mutable="false"/>
 <String/>
 <String value='","timestamp-update-interval":"' mutable="false"/>
 <Number name="timestamp-update-interval" size="64"/>
 <String value='"}}' mutable="false"/>
 </Block>
 </DataModel>

 <StateModel name="StateModel" initialState="InitialState">
 <State name="InitialState">
 <Action type="output">
 <DataModel ref="DataModel"/>
 </Action>

	55	

 </State>
 </StateModel>

 <Test name="Default">
 <StateModel ref="StateModel"/>
 <Publisher class="TcpClient">
 <Param name="Host" value="127.0.0.1" />
 <Param name="Port" value="8181" />
 </Publisher>
 </Test>

</Peach>

Figure 41: Peach Pit for a RESTCONF HTTP Request.

Although AFL is generally better suited to binary programs, it may be possible to

incorporate AFL into our fuzzing process. Figure 41 is a simple Java class, figure 42 is a

makefile to compile that Java class, and figure 43 is a set of commands to start the fuzzing

process with AFL. Collectively they demonstrate how AFL can be used to fuzz a simple Java

class. 68

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
public class Testcase{
 public native void nativeCrash();
 public static void main(String args[]){
 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
 try{
 String s = in.readLine();
 if(s == null || s.length() == 0){
 System.out.println("Hum?");
 System.exit(1);
 }
 if(s.charAt(0) == '0'){
 System.out.println("Looks like a zero to me!");
 //System.exit(134); //Doesn't work, although it looks "the same"
in a bash $?, it's not the same, therefore:
 new Testcase().nativeCrash();
 }
 else{
 System.out.println("A non-zero value? How quaint!");

																																																								
68	Floyd-fuh,	"Floyd-fuh/AFL_GCJ_Fuzzing_Simple,"	GitHub,	December	05,	2016,	accessed	April	1,	2017,	

https://github.com/floyd-fuh/AFL_GCJ_Fuzzing_Simple.	

	56	

 }
 System.exit(0);
 }
 catch(IOException ioe){
 System.out.println("Hum?");
 System.exit(1);
 }
 }
}

Figure 40: A Simple Java Class.

Testcase: Testcase.o crash.o
 afl-gcj -o Testcase \
 Testcase.o crash.o -lstdc++ --main=Testcase

Testcase.o: Testcase.class
 afl-gcj -c Testcase.class

Testcase.class: Testcase.java
 afl-gcj -C Testcase.java

Testcase.h: Testcase.class
 gcjh -cp . Testcase

crash.o: Testcase.h crash.cc
 g++ -c crash.cc

clean:
 rm -f Testcase Testcase.o crash.o Testcase.class Testcase.h

Figure 41: A Makefile to Compile the Java Class.

set -x
mkdir input
echo "AAA" > input/A
export AFL_DONT_OPTIMIZE=TRUE
make clean
make
./Testcase < input/A
echo "last command exit code: $?"
afl-fuzz -i input/ -o output -m 100 ./Testcase

Figure 42: Commands to Start AFL Fuzzing Process.

Two major challenges need to be overcome to incorporate AFL into our fuzzing process. The

first challenge is to compile the OpenDaylight controller code with the GNU Compiler for Java

	57	

(GCJ). The second challenge is to redirect the OpenDaylight controller to read input from files

instead of network sockets. Both challenges may be difficult to overcome because of the

complexity of the controller code. If they are overcome, our modeled OpenFlow packets and

RESTCONF requests can be leveraged to construct sample input for AFL. AFL can then use

these as starting sample inputs to fuzz the OpenDaylight controller.

	58	

BIBLIOGRAPHY

Ahmad, Ijaz, Suneth Namal, Mika Ylianttila, and Andrei Gurtov. "Security in Software Defined

Networks: A Survey." IEEE Communication Surveys & Tutorials, Vol. 17, No. 4, Fourth
Quarter, 2015.

Al-Shaer, Ehab, and Saeed Al-Haj. "FlowChecker." Proceedings of the 3rd ACM workshop on

Assurable and usable security configuration - SafeConfig '10, 2010.
doi:10.1145/1866898.1866905.

Benton, Kevin, L. Jean Camp, and Chris Small. "OpenFlow vulnerability assessment."

Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined
networking - HotSDN '13, 2013. doi:10.1145/2491185.2491222.

Berners-Lee, Tim, Roy Fielding, Larry Masinter. "RFC 3986 - Uniform Resource Identifier

(URI): Generic Syntax." IETF Tools. Accessed April 1, 2017.
https://tools.ietf.org/html/rfc3986.

Bjorklund, Martin. “RFC 6020 - YANG - A Data Modeling Language for the Network

Configuration Protocol (NETCONF).” IETF Tools. Accessed April 1, 2017.
https://tools.ietf.org/html/rfc6020.

Canini, Marco, Daniele Venzano, Peter Peresini, Dejan Kostic, and Jennifer Rexford. "A NICE

way to test OpenFlow applications." Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, 2012.

Cha, Sang Kil, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. "Unleashing

Mayhem on Binary Code." 2012 IEEE Symposium on Security and Privacy, 2012.
doi:10.1109/sp.2012.31.

Dhawan, Mohan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann. "SPHINX: Detecting

Security Attacks in Software-Defined Networks." Proceedings 2015 Network and
Distributed System Security Symposium, 2015. doi:10.14722/ndss.2015.23064.

"Flowgrammable." Flowgrammable. Accessed April 1, 2017. http://flowgrammable.org/.

Floyd-fuh. "Floyd-fuh/AFL_GCJ_Fuzzing_Simple." GitHub. December 05, 2016. Accessed

April 1, 2017. https://github.com/floyd-fuh/AFL_GCJ_Fuzzing_Simple.

Ganesh, Vijay, Tim Leek, and Martin Rinard. "Taint-based directed whitebox fuzzing." 2009

IEEE 31st International Conference on Software Engineering, 2009.
doi:10.1109/icse.2009.5070546.

	59	

Godefroid, Patrice. "Random testing for security." Proceedings of the 2nd international
workshop on Random testing co-located with the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2007) - RT '07, 2007.
doi:10.1145/1292414.1292416.

Godefroid, Patrice, Michael Y. Levin, and David Molnar. "SAGE: Whitebox Fuzzing for

Security Testing." Queue 10, no. 1 (2012): 20. doi:10.1145/2090147.2094081.

Godefroid, Patrice, Adam Kiezun, and Michael Y. Levin. "Grammar-based whitebox fuzzing."

Proceedings of the 2008 ACM SIGPLAN conference on Programming language design
and implementation - PLDI '08, 2008. doi:10.1145/1375581.1375607.

Hinrichs, Timothy, Natasha Gude, Martin Casado, John Mitchell, and Scott Shenker.
 "Expressing and enforcing flow-based network security policies." University of Chicago,
 2008.

Holler, Christian, Kim Herzig, and Andreas Zeller. "Fuzzing with code fragments." Proceedings

of the 21st USENIX Security Symposium, 2012.

Hong, Sungmin, Lei Xu, Haopei Wang, and Guofei Gu. "Poisoning Network Visibility in

Software-Defined Networks: New Attacks and Countermeasures." Proceedings 2015
Network and Distributed System Security Symposium, 2015.
doi:10.14722/ndss.2015.23283.

Hu, Hongxin, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. "FLOWGUARD: Building
 robust firewalls for software-defined networks." Proceedings of the third ACM
 SIGCOMM workshop on Hot topics in software defined networking - HotSDN ’14,
 (2014): 97–102.

Khurshid, Ahmed, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. "Veriflow." ACM

SIGCOMM Computer Communication Review 42, no. 4 (2012): 467.
doi:10.1145/2377677.2377766.

Kloti, Rowan, Vasileios Kotronis, and Paul Smith. "OpenFlow: A security analysis." 2013 21st

IEEE International Conference on Network Protocols (ICNP), 2013.
doi:10.1109/icnp.2013.6733671.

Kreutz, Diego, Fernando M. V. Ramos, and Paulo Verissimo. "Towards secure and dependable

software-defined networks." Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking - HotSDN '13, 2013.
doi:10.1145/2491185.2491199.

Leary, Mark. "SDN, NFV, and open source: the operator’s view." Gigaom. March 19, 2014.
 Accessed April 1, 2017. https://gigaom.com/report/sdn-nfv-and-open-source-the-
 operators-view/.

	60	

Li, Dawei, Xiaoyan Hong, and Jason Bowman. "Evaluation of Security Vulnerabilities by Using
ProtoGENI as a Launchpad." 2011 IEEE Global Telecommunications Conference -
GLOBECOM 2011, 2011. doi:10.1109/glocom.2011.6134465.

Jan Medved, Robert Varga, Anton Tkacik, Ken Gray. “OpenDaylight: towards a model-driven

SDN controller architecture.” IEEE 15th international symposium on a world of wireless,
mobile and multimedia networks (WoWMoM), 2014.

Metzler, Jim. "Understanding Software-Defined Networks." InformationWeek Reports. October

2012. Accessed April 1, 2017.
http://reports.informationweek.com/abstract/6/9044/DataCenter/research-understanding-
software-defined-networks.html.

Newsome, James and Dawn Song. “Dynamic taint analysis for automatic detection, analysis, and

signature generation of exploits on commodity software.” Proceedings of the 12th
Network and Distributed System Security Symposium (NDSS’05), 2005.

Neystadt, John. “Automated Penetration Testing with White-Box Fuzzing.” Microsoft Developer

Network. Accessed April 1, 2017.
https://msdn.microsoft.com/en-us/library/cc162782.aspx.

Oehlert, Peter "Violating Assumptions with Fuzzing." IEEE Security and Privacy Magazine 3,
 no. 2 (2005): 58-62. doi:10.1109/msp.2005.55.

"OpenDaylight Wiki." OpenDaylight Project. Accessed April 1, 2017.

https://wiki.opendaylight.org/view/Main_Page.

“OpenFlow Switch Specification.” Open Networking Foundation. Accessed April 1, 2017.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specificati
ons/openflow/openflow-spec-v1.3.3.pdf.

"Peach Introduction." Deja vu Security. Accessed April 1, 2017.

http://community.peachfuzzer.com/Introduction.html.

Porras, Philip, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson, and Guofei

Gu. "A security enforcement kernel for OpenFlow networks." Proceedings of the first
workshop on Hot topics in software defined networks - HotSDN '12, 2012.

"Random (Java Platform SE 7)." Java Platform, Standard Edition 7 API Specification. Accessed

April 1, 2017. https://docs.oracle.com/javase/7/docs/api/java/util/Random.html.

Redwood, Owen W. "Lecture 8: Fuzzing Lecture 1." Florida State University. Accessed April 1,

2017. http://www.cs.fsu.edu/~redwood/OffensiveComputerSecurity/lectures.html.

Schwartz, Edward J., Thanassis Avgerinos, and David Brumley. "All You Ever Wanted to Know

about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been

	61	

Afraid to Ask)." 2010 IEEE Symposium on Security and Privacy, 2010.
doi:10.1109/sp.2010.26.

Scott-Hayward, Sandra, Sriram Natarajan, and Sakir Sezer. "A survey of security in software

defined networks." IEEE Communications Surveys & Tutorials, 2015.

“SDL Process - Phase 4: Verification.” Microsoft Developer Network. Accessed April 1, 2017.

https://msdn.microsoft.com/en-us/library/windows/desktop/cc307418.aspx.

Sezer, Sakir, Sandra Scott-Hayward, Pushpinder Chouhan, Barbara Fraser, David Lake, Jim

Finnegan, Niel Viljoen, Marc Miller, and Navneet Rao. "Are we ready for SDN?
Implementation challenges for software-defined networks." IEEE Communications
Magazine 51, no. 7 (2013): 36-43. doi:10.1109/mcom.2013.6553676.

Shalimov, Alexander, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and Ruslan Smeliansky.
 "Advanced study of SDN/OpenFlow controllers." Proceedings of the 9th Central &
 Eastern European Software Engineering Conference in Russia on - CEE-SECR '13,
 2013. doi:10.1145/2556610.2556621.

Sherwood, Rob, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick

McKeown, and Guru Parulkar. "Flowvisor: A network virtualization layer." OpenFlow
Switch Consortium, Tech.Rep, 2009.

Seungwon Shin and Guofei Gu. ‘‘Attacking software-defined networks: A first feasibility

study.’’ Proceedings of the 2nd Workshop Hot Topics Software Defined Networking,
2013. pp. 1–2.

Shin, Seungwon, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. "Avant-Guard."

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security - CCS '13, 2013. doi:10.1145/2508859.2516684.

Son, Sooel, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. "Model

checking invariant security properties in OpenFlow." 2013 IEEE International
Conference on Communications (ICC), 2013. doi:10.1109/icc.2013.6654813.

"The State of Mobile Application Security 2014-2015." Checkmarx and AppSec Labs. Accessed

April 1, 2017.
https://www.checkmarx.com/wp-content/uploads/2015/11/The-State-of-Mobile-Applicati
on-Security-2014-20151.pdf.

Wang, Tielei, Tao Wei, Guofei Gu, and Wei Zou. "TaintScope: A Checksum-Aware Directed

Fuzzing Tool for Automatic Software Vulnerability Detection." 2010 IEEE Symposium
on Security and Privacy, 2010. doi:10.1109/sp.2010.37.

Yan, Qai, F. Richard Yu, "Distributed denial of service attacks in software-defined networking

with cloud computing." IEEE Communications Magazine 53, April 2015. pp. 52–59.

	62	

Yan, Qiao, F. Richard Yu, Qingxiang Gong, Jianqiang Li. "Software-defined networking (SDN)

and distributed denial of service (DDoS) attacks in cloud computing environments: A
survey, some research issues, and challenges." IEEE Communications Surveys &
Tutorials, 2015.

Zalewski, Michal. "Technical "whitepaper" for afl-fuzz." Accessed April 1, 2017.

http://lcamtuf.coredump.cx/afl/technical_details.txt

	63	

APPENDIX

OPENFLOW HEADER

Field Bytes Constraints Python expression

Version 1 4 Struct(‘!
B’).pack(4)

Type 1 0-29 Struct(‘!
B’).pack(type)

Length 2 ≥ 8 Struct(‘!
H’).pack(8 +
len(payload))

Xid 4 None urandom(4)

OPENFLOW PAYLOADS

I. ofptHello: No payload

II. ofptError

Field Bytes Constraints Python expression

errorType 2 0-13 Struct(‘!
H’).pack(randint(0,
13))

errorCode 2 Depends on
errorType

Struct(‘!
H’).pack(errorCode)

data 8 ≤ data ≤ Maximum
length of packet - 8 -4

None urandom(randint(8,
maxLength - 8 - 4))

III. ofptEchoReq and ofptEchoRes

Field Bytes Constraints Python expression

data (optional) ≤ Maximum length of
packet - 8

None urandom(randint(0,
maxLength - 8))

	64	

IV. ofptExperimenter

Field Bytes Constraints Python expression

experimenterId 4 None urandom(4)

experimenterType 4 None urandom(4)

data (optional) ≤ Maximum length of
packet - 8 - 8

None urandom(randint(0,
maxLength - 8 - 8))

V. ofptFeatureReq: No payload

VI. ofptFeatureRes

Field Bytes Constraints Python expression

dataPathId 8 None urandom(8)

nBuffers 4 None urandom(4)

nTables 1 None urandom(1)

auxiliaryId 1 None urandom(1)

pad 2 None urandom(2)

capabilities 4 Only bits 0, 1, 2, 3, 5,
6, and 8 are variable

Struct('!
I').pack(generateBi
tFlags([0, 1, 2, 3,
5, 6, 8]))

reserved 4 None urandom(4)

VII. ofptGetConfigRes and ofptSetConfig

Field Bytes Constraints Python expression

flags 2 0-3 Struct('!
H').pack(randint(0,
3))

missSendLen 2 None urandom(2)

	65	

VIII. ofptPacketIn

Field Bytes Constraints Python expression

bufferId 4 None urandom(4)

totalLen 2 None urandom(2)

reason 1 0-2 Struct('!
B').pack(randint(0,
2))

tableId 1 None urandom(1)

cookie 8 None urandom(8)

pad 2 None urandom(2)

match ≤ Maximum length of
payload - 18

Match constraints generateMatch(paylo
adLength - 18)

data (optional) 14 ≤ data ≤
Maximum length of
payload - 18

None urandom(randint(14,
payloadLength - 18
- len(match)))

IX. ofptFlowRemoved

Field Bytes Constraints Python expression

cookie 8 None urandom(8)

priority 2 None urandom(2)

reason 1 0-3 Struct('!
B').pack(randint(0,
3))

tableId 1 None urandom(1)

durationSec 4 None urandom(4)

durationNSec 4 None urandom(4)

idleTimeout 2 None urandom(2)

hardTimeout 2 None urandom(2)

packetCount 8 None urandom(8)

	66	

byteCount 8 None urandom(8)

match ≤ Maximum length of
payload - 40

Match constraints generateMatch(paylo
adLength - 40)

X. ofptPortStatus

Field Bytes Constraints Python expression

reason 1 0-2 Struct('!
B').pack(randint(0,
2))

pad 7 None urandom(7)

portID 4 4294967040,
4294967288-
4294967295

Struct('!
I').pack(choice([42
94967040] +
range(4294967288,
4294967296)))

pad2 4 None urandom(4)

hwAddr 6 None urandom(6)

pad3 2 None urandom(2)

name 16 None urandom(16)

config 4 Only bits 0, 2, 5, and
6 are variable

Struct('!
I').pack(generateBi
tFlags([0, 2, 5,
6]))

state 4 0-15 Struct('!
I').pack(randint(0,
15))

current 4 0-65535 Struct('!
I').pack(randint(0,
65535))

advertised 4 0-65535 Struct('!
I').pack(randint(0,
65535))

supported 4 0-65535 Struct('!
I').pack(randint(0,
65535))

	67	

peer 4 0-65535 Struct('!
I').pack(randint(0,
65535))

curSpeed 4 None urandom(4)

maxSpeed 4 None urandom(4)

XI. ofptPacketOut

Field Bytes Constraints Python expression

bufferID 4 None urandom(4)

inPort 4 0-4294967040 Struct('!
I').pack(randint(0,
4294967040))

pad 6 None urandom(6)

actionsLen 2 Length of actions
field

Struct('!
H').pack(len(action
s))

actions (optional) ≤ Maximum length of
payload - 16

Action contraints generateActions(pay
loadLength - 16)

data (optional) 14 ≤ data ≤
Maximum length of
payload - 16 - length
of actions

None urandom(randint(14,
payloadLength - 16
- len(actions)))

XII. ofptFlowMod

Field Bytes Constraints Python expression

cookie 8 0-
18446744073709551
614 (the max value of
a long long)

Struct('!
Q').pack(randint(0,
1844674407370955161
4))

cookieMask 8 None urandom(8)

tableId 1 0-254 Struct('!
B').pack(randint(0,
254))

	68	

command 1 0-4 Struct('!
B').pack(randint(0,
4))

idleTimeout 2 None urandom(2)

hardTimeout 2 None urandom(2)

priority 2 None urandom(2)

bufferID 4 None urandom(4)

outPort 4 None urandom(4)

outGroup 4 None urandom(4)

flags 2 0-31 Struct('!
H').pack(randint(0,
31))

pad 2 None urandom(2)

match ≤ Maximum length
of payload - 40

Match constraints generateMatch(paylo
adLength - 40)

instructions (optional) ≤ Maximum length of
payload - 40 - length
of match

Instruction constraints generateInstruction
s(payloadLength -
40 - len(match))

XIII. ofptGroupMod

Field Bytes Constraints Python expression

command 2 0 - 2 Struct('!
H').pack(randint(0,
2))

type 1 0-3 Struct('!
B').pack(randint(0,
3))

pad 1 None urandom(1)

groupId 4 None urandom(4)

buckets (optional) ≤ Maximum length of
payload - 8

Bucket constraints generateBuckets(pay
loadLength - 8)

	69	

XIV. ofptPortMod

Field Bytes Constraints Python expression

port 4 None urandom(4)

pad 4 None urandom(4)

hwAddr 6 None urandom(6)

pad2 2 None urandom(2)

config 4 Only bits 0, 2, 5, and
6 are variable

Struct('!
I').pack(generateBi
tFlags([0, 2, 5,
6]))

mask 4 Only bits 0, 2, 5, and
6 are variable

Struct('!
I').pack(generateBi
tFlags([0, 2, 5,
6]))

advertise 4 0-65535 Struct('!
I').pack(randint(0,
65535))

pad3 4 None urandom(4)

XV. ofptTableMod

Field Bytes Constraints Python expression

tableId 1 0-254 Struct('!
B').pack(randint(0,
254))

pad 3 None urandom(3)

config 4 3 Struct('!
I').pack(3)

XVI. ofptMultipartReq

Types 0, 3, 7, 8, 11, and 13 only consist of type, flags, and pad fields.

Field Bytes Constraints Python expression

	70	

type 2 0-13, 65535 Struct('!
B').pack(choice(ran
ge(14) + [65535]))

flags 2 0-1 Struct('!

H').pack(randint(0,

1))

pad 4 None urandom(4)

A. Type = 1, 2

Field Bytes Constraints Python expression

tableId 1 None urandom(1)

pad 3 None urandom(3)

outPort 4 0-4294967279 Struct('!
I').pack(randint(0,
4294967279))

outGroup 4 None urandom(4)

pad2 4 None urandom(4)

cookie 8 None urandom(8)

cookieMask 8 None urandom(8)

match ≤ Maximum length of
payload - 8 - 32

Match constraints generateMatch(paylo
adLength - 8 - 32)

B. Type = 4

Field Bytes Constraints Python expression

portNumber 4 0-4294967279 Struct('!
I').pack(randint(0,
4294967279))

pad 4 None urandom(4)

	71	

C. Type = 5

Field Bytes Constraints Python expression

portNumber 4 0 - 4294967279 Struct('!
I').pack(randint(0,
4294967279))

queueId 4 None urandom(4)

D. Type = 6

Field Bytes Constraints Python expression

groupId 4 None urandom(4)

pad 4 None urandom(4)

E. Type = 9, 10

Field Bytes Constraints Python expression

meterId 4 None urandom(4)

pad 4 None urandom(4)

F. Type = 12

Field Bytes Constraints Python expression

tableFeatures
(optional)

≤ Maximum length of
payload - 8

Table Feature
constraints

generateTableFeatur
es(payloadLength -
8)

G. Type = 65535

Field Bytes Constraints Python expression

experimenterId 4 None urandom(4)

experimenterType 4 None urandom(4)

	72	

XVII. ofptMultipartRes

Field Bytes Constraints Python expression

type 2 0-13, 65535 Struct('!
B').pack(choice(ran
ge(14) + [65535]))

flags 2 0-1 Struct('!

H').pack(randint(0,

1))

pad 4 None urandom(4)

A. Type = 0

Field Bytes Constraints Python expression

mfrDesc 256 None urandom(256)

hwDesc 256 None urandom(256)

swDesc 256 None urandom(256)

serialNum 32 None urandom(32)

dpDesc 256 None urandom(256)

B. Type = 1

Field Bytes Constraints Python expression

tableId 1 None urandom(1)

pad 1 None urandom(1)

durationSec 4 None urandom(4)

durationNSec 4 None urandom(4)

	73	

priority 2 None urandom(2)

idleTimeout 2 None urandom(2)

hardTimeout 2 None urandom(2)

pad2 6 None urandom(6)

cookie 8 None urandom(8)

packetCount 8 None urandom(8)

byteCount 8 None urandom(8)

match ≤ Maximum length of
payload - 8 - 48

Match constraints generateMatch(paylo
adLength - 8 - 48)

instructions (optional) ≤ Maximum length of
payload - 8 - 48 -
length of match

Instruction constraints generateInstruction
s(payloadLength - 8
- 48 - len(match))

C. Type = 2

Field Bytes Constraints Python expression

packetCount 8 None urandom(8)

byteCount 8 None urandom(8)

flowCount 4 None urandom(4)

D. Type = 3

Field Bytes Constraints Python expression

tableId 1 None urandom(1)

pad 3 None urandom(3)

activeCount 4 None urandom(4)

lookupCount 8 None urandom(8)

matchedCount 8 None urandom(8)

	74	

E. Type = 4

Field Bytes Constraints Python expression

portNumber 4 0-4294967279 Struct('!
I').pack(randint(0,
4294967279))

pad 4 None urandom(8)

rxPackets 8 None urandom(8)

txPackets 8 None urandom(8)

rxBytes 8 None urandom(8)

txBytes 8 None urandom(8)

rxDropped 8 None urandom(8)

txDropped 8 None urandom(8)

rxErrors 8 None urandom(8)

txErrors 8 None urandom(8)

rxFrameErr 8 None urandom(8)

rxOverErr 8 None urandom(8)

rxCrcErr 8 None urandom(8)

collisions 8 None urandom(8)

durationSec 4 None urandom(4)

durationNSec 4 None urandom(4)

F. Type = 5

Field Bytes Constraints Python expression

portNumber 4 0-4294967279 Struct('!
I').pack(randint(0,
4294967279))

queueId 4 None urandom(4)

	75	

txBytes 8 None urandom(8)

txPackets 8 None urandom(8)

txErrors 8 None urandom(8)

durationSec 4 None urandom(4)

durationNSec 4 None urandom(4)

G. Type = 6

Field Bytes Constraints Python expression

groupStats (optional) ≤ Maximum length of
payload - 8

Group Stats
constraints

generateGroupStats(
payloadLength - 8)

H. Type = 7

Field Bytes Constraints Python expression

groupDescriptions
(optional)

≤ Maximum length of
payload - 8

Group Descriptions
constraints

generateGroupDescri
ptions(payloadLengt
h - 8)

I. Type = 8

Field Bytes Constraints Python expression

types 4 0-15 Struct('!
I').pack(randint(0,
15))

capabilities 4 0-15 Struct('!
I').pack(randint(0,
15))

maxGroups 4 None urandom(4)

maxGroups2 4 None urandom(4)

maxGroups3 4 None urandom(4)

maxGroups4 4 None urandom(4)

	76	

actions 4 Only bits 0, 11, 12,
and 15-28 are
variable

Struct('!
I').pack(generateBi
tFlags([0, 11, 12]
+ range(15, 28)))

actions2 4 Only bits 0, 11, 12,
and 15-28 are
variable

Struct('!
I').pack(generateBi
tFlags([0, 11, 12]
+ range(15, 28)))

actions3 4 Only bits 0, 11, 12,
and 15-28 are
variable

Struct('!
I').pack(generateBi
tFlags([0, 11, 12]
+ range(15, 28)))

actions4 4 Only bits 0, 11, 12,
and 15-28 are
variable

Struct('!
I').pack(generateBi
tFlags([0, 11, 12]
+ range(15, 28)))

J. Type = 9

Field Bytes Constraints Python expression

meterStats (optional) ≤ Maximum length of
payload - 8

Meter Stats
constraints

generateMeterStats(
payloadLength - 8)

K. Type = 10

Field Bytes Constraints Python expression

meterConfigs
(optional)

≤ Maximum length of
payload - 8

Meter Config
constraints

generateMeterConfig
s(payloadLength -
8)

L. Type = 11

Field Bytes Constraints Python expression

maxMeter 4 None urandom(4)

bandType 4 None urandom(4)

capabilities 4 None urandom(4)

	77	

maxBands 1 None urandom(1)

maxColor 1 None urandom(1)

pad 2 None urandom(2)

M. Type = 12

Field Bytes Constraints Python expression

tableFeatures
(optional)

≤ Maximum length of
payload - 8

Table Features
Constraints

generateTableFeatur
es(payloadLength -
8)

N. Type = 13

Field Bytes Constraints Python expression

ports (optional) ≤ Maximum length of
payload - 8

Port constraints generatePorts(paylo
adLength - 8)

O. Type = 65535

Field Bytes Constraints Python expression

experimenterId 4 None urandom(4)

experimenterType 4 None urandom(4)

XVIII. ofptBarrierReq and ofptBarrierReq: No payload

XIX. ofptQueueGetConfigReq

Field Bytes Constraints Python expression

port 4 0-4294967039 Struct('!
I').pack(randint(0,
4294967039))

pad 4 None urandom(4)

	78	

XX. ofptQueueGetConfigRes

Field Bytes Constraints Python expression

port 4 0-4294967039 Struct('!
I').pack(randint(0,
4294967039))

pad 4 None urandom(4)

queues (optional) ≤ Maximum length of
payload - 8

Queue constraints generateQueues(payl
oadLength - 8)

XXI. ofptRoleReq and ofptRoleRes

Field Bytes Constraints Python expression

role 4 0-3 Struct('!
I').pack(randint(0,
3))

pad 4 None urandom(4)

generationId 8 None urandom(8)

XXII. ofptGetAsyncReq: No payload

XXIII. ofptGetAsyncRes and ofptSetAsync

Field Bytes Constraints Python expression

packetInMask 4 0-7 Struct('!
I').pack(randint(0,
7))

packetInMask 4 0-7 Struct('!
I').pack(randint(0,
7))

packetStatusMask 4 0-7 Struct('!
I').pack(randint(0,
7))

packetStatusMask2 4 0-7 Struct('!
I').pack(randint(0,
7))

	79	

flowRemovedMask 4 0-15 Struct('!
I').pack(randint(0,
15))

flowRemovedMask2 4 0-15 Struct('!
I').pack(randint(0,
15))

XXIV. ofptMeterMod

Field Bytes Constraints Python expression

command 2 0-2 Struct('!
H').pack(randint(0,
2))

flags 2 0-15 Struct('!
H').pack(randint(0,
15))

meterId 4 0, 4294901760,
4294967293-
4294967295

Struct('!
I').pack(choice([0,
4294901760] +
range(4294967293,
4294967296)))

meterBands
(optional)

≤ Maximum length of
payload - 8

Meter band
constraints

generateMeterBands(
payloadLength - 8)

