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Software-defined networking (SDN) has the potential to greatly reduce the cost and 

increase the manageability of large networks. However, there are multiple security concerns 

holding back its wide-scale adoption. While previous research has mainly examined securing the 

data and application planes of SDN, we argue that the controller itself is the most vulnerable 

component in the SDN architecture because it is both the most central and the most software-

reliant component. Therefore, research into better securing the controller is central to any effort 

at securing the SDN architecture. This study examines the question of how to better secure the 

controller by developing a practical framework for finding vulnerabilities in the underlying 

software of the OpenDaylight controller. By finding vulnerabilities in its software, we aim to not 

only improve the security of the controller software, but also build a foundation to allow 

previous research to implement better solutions to secure other SDN components. 
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CHAPTER I 

INTRODUCTION 

I. Problem Setting 

Despite the obvious cost-savings and improvements in manageability, many data centers 

are reluctant to switch from traditional to software-defined networking (SDN). 1 One of the main 

reasons is concerns about security; recent surveys demonstrate that a significant percentage of 

Information Technology (IT) professionals both believe that SDN will make networks less 

secure and have major concerns about the security of open-source SDN technology.2,3 While the 

benefits of SDN derive from the properties of increased software-reliance and centralization, so 

do the security risks. 4 Increased software-reliance leads to a higher chance of compromise 

because it is difficult to either guarantee that software is defect-free or identify and fix every 

vulnerability within a piece of software. Likewise, increased centralization leads to a higher 

chance of compromise because if a single network component is compromised in a centralized 

system, it is more likely that the entire network is compromised. 

The controller is the most software-reliant and centralized component of the SDN 

architecture, and therefore it is the most vulnerable.5 While previous research has addressed 

important issues related to the security of the data and application planes, there is a lack of 

research relating to the security of the controller itself. This area of study is important because it 

is difficult to secure the SDN architecture without first securing the controller. For example, a 
																																																								

1	Mark	Leary,	"SDN,	NFV,	and	open	source:	the	operator’s	view,"	Gigaom,	March	19,	2014,	accessed	April	
1,	2017,	https://gigaom.com/report/sdn-nfv-and-open-source-the-operators-view/.	

2	Jim	Metzler,	"Understanding	Software-Defined	Networks,"	InformationWeek,	October	2012,	accessed	
April	1,	2017,	https://www.necam.com/docs/?id=28a3203e-ef17-4f0e-b193-0edc4eb065cc.	

3	Leary,	"SDN,	NFV,	and	open	source:	the	operator’s	view,"	2014.	
4	Diego	Kreutz,	Fernando	M.	V.	Ramos,	and	Paulo	Verissimo,	"Towards	secure	and	dependable	software-

defined	networks,"	Proceedings	of	the	second	ACM	SIGCOMM	workshop	on	Hot	topics	in	software	defined	
networking	-	HotSDN	'13,	2013.	

5	Sakir	Sezer	et	al,	"Are	we	ready	for	SDN?	Implementation	challenges	for	software-defined	networks,"	
IEEE	Communications	Magazine	51,	no.	7	(2013):	36-43.	
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system to secure communications between switches and the controller or applications and the 

controller is not of much use if a software vulnerability in the controller allows an attacker to 

execute arbitrary code on it. It is also important because studying how to better secure the 

controller will lead to improvements in securing other components; when we understand how to 

secure the most central component in a system, it is likely that that knowledge can be used to 

secure more peripheral components. Therefore, research into securing the controller will enhance 

the body of knowledge (BoK) because 1) it will improve the security of the most vulnerable 

component in the SDN architecture, 2) it will reinforce solutions for securing the data and 

application planes yielded by previous research, and 3) it will lead to progress on securing more 

peripheral components. 

 

II. Research Question 

The central question we are examining is: how can we improve the software security of 

the controller in a SDN architecture? We propose that this can be done in measurable terms by 

developing a framework for discovering vulnerabilities in a widely-used controller like 

OpenDaylight. Our research question is broken down into three sub-problems, summarized by 

Table 1. 

 
Sub-problem Hypothesis 

What is the most effective methodology for 
finding vulnerabilities in the controller? 

Fuzzing 

How can this methodology be applied? Smart, generation-based, blackbox fuzzer 
created with Python modules 

How does the controller respond to this 
methodology? 

Unexpected behavior observed through CPU 
usage, memory usage, and log output 

Table 1: Sub-problems and Hypotheses. 
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III. Research Sub-problems 

A. What is the most effective methodology for discovering vulnerabilities in the controller? 

This sub-problem is important to examine because it lays the foundation for the rest of 

the research. We are more likely to find vulnerabilities in the controller, and hence improve its 

security, by using an effective vulnerability discovery method. Our hypothesis is that fuzzing, as 

opposed to static analysis, which requires analysis of the target program’s source code, is the 

most effective method for vulnerability discovery in a large and complex software system like 

the OpenDaylight. 

Although the source code for OpenDaylight is freely available and can be analyzed for 

possible vulnerabilities, doing so is difficult for two reasons. First, analysis of the OpenDaylight 

source code requires a large time investment. Figure 1 shows that the entire OpenDaylight code 

base currently consists of 2222 Java classes. 

 
$ wget https://github.com/opendaylight/controller/archive/master.zip 
$ unzip master.zip 
$ find controller-master -type f -name *.java | wc -l 
    2222 

Figure 1: Number of Java Classes in OpenDaylight’s Code Base. 

 

Analysis of these classes is bound to require a substantial amount of time. 

Second, analysis of the OpenDaylight source code requires in-depth knowledge of the 

OpenDaylight architecture. The OpenDaylight project is open-source, which makes it easier to 

contribute to as a developer, but more difficult to understand all the connected subsystems; the 

OpenDaylight Wiki describes many aspects of the system well, but most of the information is 

geared towards making it easier for developers to extend the project by developing custom 
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modules.6 To this end, most of the OpenDaylight Wiki describes the core controller code in high-

level terms, making it difficult to understand exactly how the core functionality works at a low-

level and therefore if any vulnerabilities exist. 

For example, it is well-known that the java.util.Random class is not safe to use for 

cryptographic purposes.7 Figure 2 shows that the java.util.Random library is imported by three 

Java classes in the OpenDaylight code base: DatastoreAbstractWriter.java, 

AbstractRaftActorBehavior.java, and LogGenerator.java. 

 
$ grep -R "java.util.Random" controller-master | awk -F '/' '{print $NF}' 
DatastoreAbstractWriter.java:import java.util.Random; 
AbstractRaftActorBehavior.java:import java.util.Random; 
LogGenerator.java:import java.util.Random; 

Figure 2: Usage of java.util.Random in OpenDaylight’s Code Base. 

 

We know that OpenDaylight supports TLS usage.8 However, it is not entirely clear how these 

three classes interact with the larger overall system and it is therefore difficult to discern whether 

they are used by OpenDaylight to support TLS. 

 

B. How can this methodology be applied? 

This sub-problem is important to examine because the existence of fuzzing techniques 

does not necessarily imply that they can be applied to or are even suited to vulnerability 

discovery with OpenDaylight. We will therefore examine different fuzzing techniques and 

determine which ones are best suited. Our hypothesis is that smart, generation-based, blackbox 

fuzzing through the use of various Python modules is the most applicable technique for fuzzing 
																																																								

6	"OpenDaylight	Project,"	OpenDaylight	Project,	accessed	April	1,	2017,	https://wiki.opendaylight.org.	
7	"Random	(Java	Platform	SE	7),"	Java	Platform,	Standard	Edition	7	API	Specification,	accessed	April	1,	

2017,	https://docs.oracle.com/javase/7/docs/api/java/util/Random.html.	
8	"OpenDaylight	OpenFlow	Plugin:	TLS	Support,"	OpenDaylight	Project,	accessed	April	1,	2017,	

https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:_TLS_Support.	
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various OpenDaylight features. 

 

C. How does the controller respond to this methodology? 

This sub-problem is important to examine because it is the defining sub-problem in 

determining if we can discover vulnerabilities in OpenDaylight and subsequently improve its 

security with our chosen methodology. Our hypothesis is that spikes in central processing unit 

(CPU) or memory utilization may indicate the presence of a vulnerability because these spikes 

indicate that OpenDaylight is unable to smoothly handle the fuzzy input sent to it by our chosen 

fuzzer. This may be because, for example, the controller is using the fuzzy input to make 

calculations for memory allocation, performing arithmetic operations on the fuzzy input, or is 

using an intensive algorithm that is not properly bounded.9 

 

IV. Thesis Arrangement 

The remainder of this thesis is arranged as follows. First, we review the literature in 

relation to 1) SDN security, in order to determine the extent of research into securing the 

controller and how our research can contribute to the BoK, 2) fuzzing in order determine the best 

methodology to use to fuzz OpenDaylight, and 3) OpenDaylight’s architecture in order to 

understand how to apply our chosen methodology. We then apply our chosen methodology to 

two OpenDaylight features: odl-l2switch-all, a Northbound plugin, and odl-restconf-all, a 

Southbound plugin. Next, we discuss the results of our fuzzing runs. Finally, we conclude with a 

summary and suggestions for future research. 

 

																																																								
9	Peter	Oehlert,	"Violating	Assumptions	with	Fuzzing,"	IEEE	Security	and	Privacy	Magazine	3,	no.	2	(2005):	

58-62.	
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LITERATURE REVIEW 

I. SDN Security 

SDN relies on the abstraction of network functions from network hardware into software. 

This is achieved by separating traditional network functionality into three planes: data, control, 

and application. Kreutz et al. organize SDN security threats into seven categories.10 We further 

reduce these threats into data, control, and application plane threats because most of the threats 

listed by Kreutz et al. can be classified as either a threat to a specific plane or a threat to traffic 

coming out of that plane. 11 This approach is summarized by Table 2. 

 
Our Classification Kreutz et al. Classification 

Data Plane Threats Forged or fake traffic flows (1) 

Attacks on vulnerabilities in switches (2) 

Attacks on control plane communication (3) 

Control Plane Threats Forged or fake traffic flows (1) 

Attacks on control plane communication (2) 

Attacks on and vulnerabilities in controllers 
(4) 

Application Plane Threats Forged or fake traffic flows (1) 

Attacks on control plane communication (3) 

Lack of mechanisms to ensure 
trust between the controller and management 
applications (5) 

																																																								
10	Kreutz,	"Towards	secure	and	dependable	software-defined	networks,"	2013.	
11	Ijaz	Ahmad	et	al.,	"Security	in	Software	Defined	Networks:	A	Survey,"	IEEE	Communication	Surveys	and	

Tutorials	17,	no.	4	(2015):	2317-	2346.	
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Attacks on and vulnerabilities in 
administrative stations (6) 

Table 2: SDN Security Threats. 

 

While there has been extensive research into data and application plane threats, the same 

cannot be said about control plane threats, especially as it relates to software vulnerabilities in 

the controller. We first examine previous research in regards to data, control, and application 

plane threats and then argue how our research can contribute to the BoK. 

 

A. Data Plane Threats 

An example of a data plane threat is an attacker exploiting a vulnerability in a switch’s 

software that allows for arbitrary code execution.12 The attacker may be able to use this 

vulnerability to launch a Distributed Denial of Service (DDoS) attack, exfiltrate valuable data, or 

stay hidden in the hopes of developing a permanent presence on the network, like many 

Advanced Persistent Threats (APTs). 

A second example is the possibility of an attacker poisoning the network topology. An 

attacker can poison the Address Resolution Protocol (ARP) cache of other switches or 

controllers by forging packets that contain the hardware address of legitimate switches or 

controllers and tricking other SDN components into sending traffic its way. The attacker can 

then launch a Man-in-the-Middle (MitM) attack by extracting valuable data from packets or a 

Denial of Service (DoS) by dropping the packets, preventing them from reaching their 

destinations.13 An attacker can also poison packets used by the Host Tracking Service, which 

																																																								
12	Kreutz,	"Towards	secure	and	dependable	software-defined	networks,"	2013.	
13	Li	Dawei,	Xiaoyan	Hong,	and	Jason	Bowman,	"Evaluation	of	Security	Vulnerabilities	by	Using	ProtoGENI	

as	a	Launchpad,"	2011	IEEE	Global	Telecommunications	Conference	-	GLOBECOM	2011,	2011.	
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tracks the location of hosts across the network, and the Link Discovery Service, which discovers 

links between switches. The former can result in the hijacking of the location of important 

network devices, like a server, and the latter can result in the creation of false links between 

switches that, in turn, can lead to a MitM or DoS attack. 14,15 

Hong et al. propose TopoGuard to combat the poisoning of the Host Tracking and Link 

Discovery Services by verifying the packets associated with them. Dhawan et al. propose 

SPHINX, which uses flow graphs to both approximate the actual network topology and validate 

all network updates. SPHINX first monitors all controller communication to identify the packets 

that are required to build a comprehensive network topology, including incoming OpenFlow 

packet headers, outgoing flow path setup directives, and actual flow traffic measurements over 

network links. SPHINX then constructs and verifies flow graphs to prevent the poisoning of the 

network topology. 

A third example is the possibility of an attacker overwhelming the data plane. When a 

switch receives a new flow that does not have a match in its flow table, it must send the packet to 

a controller to resolve the query, which can cause high bandwidth utilization between the switch 

and controller, store the packet in memory until the flow table entry is returned, which can 

overflow switch memory, and store the resulting flow table entry in its flow table, which can 

become overloaded with entries. An attacker can therefore cause a DoS by producing a series of 

unique flow requests, perhaps through the use of distributed botclients, to saturate the data plane 

by either 1) causing congestion in the link between the switch and the controller, 2) causing an 

overflow in the switch’s memory, or 3) causing an overflow in the switch’s flow 

																																																								
14	Sungmin	Hong	et	al.,	"Poisoning	Network	Visibility	in	Software-Defined	Networks:	New	Attacks	and	

Countermeasures,"	Proceedings	2015	Network	and	Distributed	System	Security	Symposium,	2015.	
doi:10.14722/ndss.2015.23283.	

15	Mohan	Dhawan	et	al.,	"SPHINX:	Detecting	Security	Attacks	in	Software-Defined	Networks,"	Proceedings	
2015	Network	and	Distributed	System	Security	Symposium,	2015.	doi:10.14722/ndss.2015.23064.	
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table.16,17,18,19,20,21  

Shin et al. propose a data plane extension called connection migration that can reduce the 

amount of interactions between the data and control plane.22 Their solution allows the data plane 

to initiate a Transmission Control Protocol (TCP) handshake with a host and only proceed to 

send flow requests to the control plane once the handshake is completed. Benton et al. observe 

that although Transport Layer Security (TLS) would effectively protect against the threats of 

DoS and MitM attacks, the administrative overhead of implementing it has so far proven 

prohibitive.23 They observe that this overhead results from the fact that TLS requires the 

generation of a sitewide certificate, controller certificates, switch certificates, the signing of 

certificates with the site-wide private key, and the installation of the correct keys and certificates 

on all devices. In contrast, the only configuration requirement without TLS is the controller's 

address. Additionally, many switch and controller vendors have either not fully implemented or 

skipped the TLS specification completely, further increasing the difficulty of adopting it. 

 

B. Control Plane Threats 

																																																								
16	Sezer,	"Are	we	ready	for	SDN?	Implementation	challenges	for	software-defined	networks,"	2013.	
17	Seungwon	Shin	and	Guofei	Gu,	"Attacking	software-defined	networks:	A	first	feasibility	study,"	

Proceedings	of	the	second	ACM	SIGCOMM	workshop	on	Hot	topics	in	software	defined	networking	-	HotSDN	'13,	
2013.	

18	Qai	Yan	and	F.	Richard	Yu,	"Distributed	denial	of	service	attacks	in	software-defined	networking	with	
cloud	computing,"	IEEE	Communications	Magazine	53,	(2015):	52–59.	

19	Qiao	Yan,	F.	Richard	Yu,	Qingxiang	Gong,	Jianqiang	Li,	"Software-defined	networking	(SDN)	and	
distributed	denial	of	service	(DDoS)	attacks	in	cloud	computing	environments:	A	survey,	some	research	issues,	and	
challenges,"	IEEE	Communications	Surveys	and	Tutorials,	2015.	

20	Rowan	Kloti,	Vasileios	Kotronis,	and	Paul	Smith,	"OpenFlow:	A	security	analysis,"	2013	21st	IEEE	
International	Conference	on	Network	Protocols	(ICNP),	2013.	

21	Sandra	Scott-Hayward,	Sriram	Natarajan,	and	Sakir	Sezer,	"A	survey	of	security	in	software	defined	
networks,"	IEEE	Communication	Surveys	and	Tutorials,	2015.	

22	Seungwon	Shin	et	al.,	"Avant-Guard,"	Proceedings	of	the	2013	ACM	SIGSAC	conference	on	Computer	
and	communications	security	-	CCS	'13,	2013.	

23	Kevin	Benton,	L.	Jean	Camp,	and	Chris	Small,	"OpenFlow	vulnerability	assessment,"	Proceedings	of	the	
second	ACM	SIGCOMM	workshop	on	Hot	topics	in	software	defined	networking	-	HotSDN	'13,	2013.	
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 One of the more concerning threats to the control plane is the possibility of an attacker 

exploiting a vulnerability in the controller's software that allows for arbitrary code execution, 

which would give an attacker a large amount of control over the network. 24 Although there is a 

notable lack of research examining solutions to such threats, Shalimov et al. present an initial 

method to evaluate the security of controllers.25 They send both malformed headers and 

malformed payloads in OpenFlow packets to several controllers and evaluate how those packets 

are handled through hcprobe, a custom implementation of a controller benchmarker called 

cbench. For malformed headers, they manipulate the length, version, and type fields. For 

malformed payloads, they limit their testing to two particular OpenFlow packet types: PacketIn 

and PortStatus. For PacketIn packets, they indicate that the packet encapsulates an ARP packet 

when it actually encapsulates an IP packet. For PortStatus packets, they do not terminate the 

name field in the port description with a null byte, as is required. Shalimov et al. were able to 

crash several controllers with these techniques and their results show that sending malformed 

packets to the controller can be an effective method for discovering vulnerabilities. 

 

C. Application Plane Threats 

An example of an application plane threat is the possibility of an attacker exploiting a 

vulnerability in an application's software that allows for arbitrary code execution. As the SDN 

ecosystem expands it is likely that a market for SDN applications will evolve, similar to the 

mobile application stores for iOS and Android devices. If this is the case, it is likely that the SDN 

application market will have many vulnerable applications just like the iOS and Android 

																																																								
24	Kreutz,	"Towards	secure	and	dependable	software-defined	networks,"	2013.	
25	Alexander	Shalimov	et	al.,	"Advanced	study	of	SDN/OpenFlow	controllers,"	Proceedings	of	the	9th	

Central	&	Eastern	European	Software	Engineering	Conference	in	Russia	on	-	CEE-SECR	'13,	2013.	
doi:10.1145/2556610.2556621.	
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application markets, which, according to a 2015 study, contained a combined average of 9.041 

vulnerabilities per application.26 

Another example is the possibility that a malicious application masquerading as a 

legitimate one is installed in the application plane. There is currently no standardized way for the 

controller to discern trusted applications from untrusted ones and it is therefore possible for 

untrusted applications to make their way into the application plane. A particular concern is the 

ability for malicious applications to write flow rules that violate existing network security policy. 

For example, a malicious application disguised as a security application could try to write flow 

rules that allow packets from previously blacklisted domains. Such behavior would be difficult to 

detect with traditional methods as it is conceivable for a security application to have such 

privileges in the network. 

A large portion of previous research in SDN security focuses on solutions to application 

plane threats and the majority of this research suggests that the best solution is to improve and 

enforce network security policy. We summarize these solutions below, including VeriFlow, 

FLOWGUARD, FLOVER, NICE, FortNOX, FlowChecker, FlowVisor, and Flow Security 

Language (FSL). VeriFlow, FortNOX, FLOWGUARD, and FLOVER mainly check for 

violations in security policy through the verification of flow rules. VeriFlow does this by first 

intercepting flow rules between the control and data planes, before they can be installed.27 It then 

finds the set of network elements whose operation can be altered by a flow rule. Next, it builds 

forwarding graphs for every element using the current network state. Finally, it traverses the 

graphs to determine how the flow rule affects the status of one or more network components and 

																																																								
26	"The	State	of	Mobile	Application	Security	2014-2015,"	Checkmarx	and	AppSec	Labs,	accessed		

April	1,	2017,	https://www.checkmarx.com/wp-content/uploads/2015/11/The-State-of-Mobile-Application-
Security-2014-20151.pdf.	

27	Ahmed	Khurshid	et	al.,	"Veriflow,"	ACM	SIGCOMM	Computer	Communication	Review	42,	no.	4	(2012):	
467.	
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if the flow rule causes a violation in security policy. 

FortNOX is an extension for the NOX and it addresses flow rules that may result in 

security policy violations by first assigning each application a privilege level. 28 Every flow rule 

that an application attempts to install must be accompanied by a digital signature that enables 

FortNOX to identify the application and its privilege level. Flow rules that have no digital 

signature are assigned the lowest privilege level. FortNOX then intercepts new flow rules and 

detects if they conflict with any existing flow rules through the use of a custom algorithm. New 

flow rules that conflict with existing flow rules are only installed if they supersede the privilege 

levels of the existing flow rules. 

Hu et al. note that detecting flow rules that violate security policy is difficult because 

flow rules support wildcards and because flows can be dynamically modified as they traverse the 

network. 29 Both these facts make it unclear which flow rules actually violate security policy. 

FLOWGUARD addresses these two problems by checking for security policy violations at the 

ingress switch of each flow and then tracks the flow path through the network to identify both 

the original source and final destination of each flow. Hu et al. also note that resolving policy 

violations is difficult because a flow rule may only partially violate policy and because deleting a 

flow rule may impact other flow rules. Both these facts make it difficult to remove flow rules. 

FLOWGUARD addresses these two problems by incorporating a network-wide view of flow 

rules to systematically resolve policy violations. 

FLOVER addresses flow rules that may result in security policy violations by first 

translating flow rules and security policy to into an assertion set, or a series of true or false 

																																																								
28	Philip	Porras	et	al.,	"A	security	enforcement	kernel	for	OpenFlow	networks,"	Proceedings	of	the	first	

workshop	on	Hot	topics	in	software	defined	networks	-	HotSDN	'12,	2012.	
29	Hongxin	Hu	et	al.,	“FLOWGUARD:	Building	robust	firewalls	for	software-defined	networks,”	Proceedings	

of	the	third	ACM	SIGCOMM	workshop	on	Hot	topics	in	software	defined	networking	-	HotSDN	’14,	(2014):	97–102.	
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statements. 30 This assertion set can then be processed and verified by a Satisfiability Modulo 

Theories (SMT) solver, which is a program that can solve large systems of true and false 

equations. The results of the SMT solver help to verify if security policy is violated by the flow 

rules in questions. 

NICE and FlowChecker mainly check for violations in security policy through model 

checking, which is the process of determining whether a given model meets a given 

specification. NICE uses model checking in combination symbolic execution to discover security 

policy violations.31 Symbolic execution is the process of determining which inputs exercise 

different code paths within the application in question. Canini et al. model the network through a 

custom algorithm, which enumerates all the possible states of the network and all the possible 

transitions between these states, including the transitions that cause security policy violations. 

They then use model checking and symbolic execution to enumerate all the possible code paths 

within a particular application and determine if a particular code path causes a state transition 

that, in turn, causes a security policy violation. In contrast to NICE, FlowChecker models the 

network by encoding OpenFlow configuration information using Binary Decision Diagrams, 

which are data structures used to represent boolean functions. 32 It then uses model checking to 

identify security policy violations in the network. 

Sherwood et al. propose FlowVisor, which acts as a proxy between switches and multiple 

controllers.33 It segments the network by re-writing flow rules so that they only affect their own 

																																																								
30	Sooel	Son	et	al.,	"Model	checking	invariant	security	properties	in	OpenFlow,"	2013	IEEE	International	

Conference	on	Communications	(ICC),	2013.	
31	Marco	Canini	et	al.,	"A	NICE	way	to	test	OpenFlow	applications,"	Proceedings	of	the	9th	USENIX	

conference	on	Networked	Systems	Design	and	Implementation,	2012.	
32	Ehab	Al-Shaer	and	Saeed	Al-Haj,	"FlowChecker,"	Proceedings	of	the	3rd	ACM	workshop	on	Assurable	

and	usable	security	configuration	-	SafeConfig	'10,	2010.	
33	Rob	Sherwood,	Glen	Gibb,	Kok-Kiong	Yap,	Guido	Appenzeller,	Martin	Casado,	Nick	McKeown,	and	Guru	

Parulkar,	"Flowvisor:	A	network	virtualization	layer,"	OpenFlow	Switch	Consortium,	2009.	
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segment. This enables multiple controllers to share a single network, making it easier to enforce 

security policy. Finally, Hinrichs et al. propose Flow Security Language (FSL), which serves as a 

replacement to Access Control Lists (ACLs), firewalls, Network Address Translators (NATs) 

and Virtual Local Area Networks (VLANs) in the SDN environment.34 FSL allows for basic 

network access controls, directionality in communication establishment (similar to NAT), 

network isolation (similar to VLANs), communication paths, and rate limits. 

 

D. Extending the BoK 

While the majority of previous research has focused on the data and application planes, 

we have outlined it in order to illustrate how our research can contribute to the field; research 

into securing the controller is important not only because it is fundamental to the security of the 

entire SDN infrastructure, but also because it can inform previous research that aims to secure 

other aspects of the SDN infrastructure. It can help us narrow in on potential vulnerabilities in 

switches and applications, prevent us from exposing the controller to additional vulnerabilities 

when we implement solutions to other security problems, and inform applications that check for 

the correctness of flow table rules and the network structure. Discovering vulnerabilities in the 

controller software may even lead to important insights about the vulnerability discovery process 

in other software; certain methods of static analysis or fuzzing may be uniquely suited to 

discovering vulnerabilities in large, complex software in general. With the help of this research 

and previous research, we can stop implementing security haphazardly within the SDN 

environment and start implementing it by design, leading to a more robust and secure system as a 

whole. 

																																																								
34	Timothy	Hinrichs	et	al.,	"Expressing	and	enforcing	flow-based	network	security	policies,"	University	of	

Chicago,	2008.	
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II. Fuzzing 

Fuzzing is the process of sending specific data to a program that accepts input in an effort 

to cause it to behave unexpectedly.35 The idea is that if a program behaves unexpectedly, the 

portion of code responsible for the abnormal behavior will likely contain an exploitable 

vulnerability. An effective fuzzer will create input that is valid enough so that it is not rejected at 

a shallow level within a program but invalid enough to trigger unexpected behavior within the 

program.36 Fuzzers can be categorized in three main ways.37 A fuzzer can be 1) mutation-based 

or generation-based depending on whether inputs are generated from scratch or by modifying 

existing inputs, 2) dumb or smart depending on whether it is aware of input structure, and 3) 

blackbox or whitebox depending on whether it is aware of program structure. These differences 

are summarized in Table 3. 

 
Term Definition 

Mutation-based Generation of input based on sample input 

Generation-based Generation of input based on a specific model, 
without requiring any sample input 

Dumb fuzzing Sending input to target program without 
regard to structure 

Smart fuzzing Sending input to target program within the 
constraints of a particular structure, such as 
base-64 encoding and checksums 

Blackbox fuzzing Sending input to target program without any 
measurement of code coverage 

																																																								
35	Oehlert,	"Violating	Assumptions	with	Fuzzing,"	2005.	
36	Christian	Holler,	Kim	Herzig,	and	Andreas	Zeller,	"Fuzzing	with	code	fragments,"	Proceedings	of	the	21st	

USENIX	Security	Symposium,	2012.	
37	John	Neystadt,	"Automated	Penetration	Testing	with	White-Box	Fuzzing,"	Microsoft	Developer	

Network,	accessed	April	1,	2017,	https://msdn.microsoft.com/en-us/library/cc162782.aspx.	
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Whitebox fuzzing Sending of input to target program, measuring 
the code coverage of input, and using that 
information to intelligently form new input 

Table 3: Categories of Fuzzers. 

 

A. Mutation-based Fuzzing 

 Mutation-based fuzzing begins with a valid sample input, which is then modified 

according to various strategies, like flipping, substituting, moving, or deleting random chunks of 

data. The input produced in mutation-based fuzzing is limited by the original valid input. For 

example, if an input can have up to three fields but the initial sample input only has two fields, a 

mutation-based fuzzer algorithm will never produce input that has all three fields. 

 

B. Generation-based Fuzzing 

Generation-based fuzzing begins with a model, which is a general outline of the input 

that the target program should accept. A generation-based fuzzer uses such an outline to produce 

fuzzed input for the target program. In general, the effectiveness of generation-based fuzzing 

relies on the accuracy of the initial model. If the model implies certain inputs should be accepted 

by the application when they actually are not, then the fuzzing process will be inefficient. 

However, if the model is well defined, the fuzzing process can be effective in producing novel 

inputs that are effective in causing exceptions. 

 

C. Dumb Fuzzing 

 A dumb fuzzer is unaware of the structure of program input. It must therefore resort to 

either sending completely randomly generated input to the program or starting with a sample 

input and then apply fuzzing strategies to that sample input in order to produce new input. Since 
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the former is usually inefficient and unlikely to yield results, dumb fuzzers are usually mutation-

based. 

 

D. Smart Fuzzing 

 A smart fuzzer is aware of the structure of program input. They usually use a formal user-

supplied model to identify the structure of input and then use various fuzzing strategies to 

produce new input. Since input is usually generated from a model, smart fuzzers are usually 

generation-based. 

 

E. Blackbox Fuzzing 

 A blackbox fuzzer is unaware of program structure. It simply sends input to the target 

program and receives no feedback as to the amount of code coverage a particular input is able to 

produce. Blackbox fuzzing has the advantage of being relatively simple to implement. Although 

there has been plenty of research on whitebox fuzzing techniques, it is not readily apparent how 

to apply successful techniques to arbitrary target programs. Blackbox fuzzing can therefore be 

useful for revealing easy-to-find vulnerabilities as well as establishing a foundation for the 

application of more advanced whitebox fuzzing techniques. 

 

F. Whitebox Fuzzing 

There are two main problems with blackbox fuzzing that whitebox fuzzing helps to solve. 

First, the probability that a blackbox fuzzer will reveal a software vulnerability is small because 

there is no guarantee that the input generated by the dumb fuzzer will reach all parts of the target 

program. Figure 3 shows a sample program. 
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x = raw_input(‘Enter a number between 1 and 100: ’) 
if x == 50: 
 sys.exit(1) 
else: 
 print x 

Figure 3: Shortcomings of Blackbox Fuzzing. 

 

Sending random input to the program only has a 1 percent chance of reaching the part of the 

code that causes an error. 38,39 While this example is simplified, it is useful in demonstrating why 

blackbox fuzzers inevitably fall short. The more complex a software system, the more code 

branches it will likely have and the less likely that random input will hit new branches in the 

program. This means that a dumb fuzzer is unlikely to cover a sufficient amount of the target 

program’s code base to reveal a vulnerability. There is therefore a need for whitebox fuzzers, 

fuzzers that can intelligently choose input to send to the target program so as to increase the code 

covered by that input and therefore increase the likelihood of finding a vulnerability. 

 Second, blackbox fuzzers have no way of reducing the input space, which can cause 

problems in trying to scale the fuzzer. The Eddington Number, which is 1080 or the number of 

protons in the known universe, serves as a useful upper bound on any fuzzing process; even if we 

assume we have access to an infinitely powerful computer, it is not possible to store more inputs 

to the target application than 1080. 40 There are therefore two options: 1) store fewer than 1080 

inputs or 2) discard unsuccessful or uninteresting inputs. For example, a target application that 

accepts a High-definition (HD) picture as input. A HD picture consists of 1920 x 1080 pixels. 

Each pixel is represented by three bytes which can take on a total of 2563 different values. 
																																																								

38	Patrice	Godefroid,	"Random	testing	for	security,"	Proceedings	of	the	2nd	international	workshop	on	
Random	testing	co-located	with	the	22nd	IEEE/ACM	International	Conference	on	Automated	Software	Engineering	
(ASE	2007)	-	RT	'07,	2007.	

39	Owen	W.	Redwood,	"Lecture	8:	Fuzzing	Lecture	1,"	Florida	State	University,	accessed	April	1,	2017,	
http://www.cs.fsu.edu/~redwood/OffensiveComputerSecurity/lectures.html.	

40	Ibid.	
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Therefore, the total possible HD picture that can be sent to the application are 2563 x 1920 x 1080 

which greatly exceeds 1080. Therefore, in this case and many cases in general, it is unfeasible to 

completely exhaust the input space, as blackbox fuzzers are designed to do. 

 Whitebox fuzzers aim to reduce the input space through two main methods: dynamic 

taint analysis and forward symbolic execution. Dynamic taint analysis executes a program to 

observe which portions of code are affected by tainted sources like user input.41 The idea is that 

the potions of code affected by user input are more likely to contain software vulnerabilities. 

computations There are two kinds of dynamic taint analysis: data flow dependencies and control 

flow dependencies. Data flow dependencies are when variables are tainted simply because they 

are derived from input. Figure 4 shows an example of a data flow dependency, where the 

variable z is tainted because it is derived from x. 

 
x = raw_input('Enter an integer:	') 
y = 1 
z = x + y 

Figure 4: Data Flow Dependency. 

 

Control flow dependencies are when variables are tainted because they are part of control flow 

that is influenced by input. Figure 5 shows an example of a control flow dependency, where the 

variable z is tainted because its value depends on a conditional influenced by x. 

 
x = raw_input('Enter an integer:	') 
if x >= 0: 
 z = 1 
else: 
 z = 2 

Figure 5: Control Flow Dependency. 

																																																								
41	Schwartz,	Edward	J.,	Thanassis	Avgerinos,	and	David	Brumley.	"All	You	Ever	Wanted	to	Know	about	

Dynamic	Taint	Analysis	and	Forward	Symbolic	Execution	(but	Might	Have	Been	Afraid	to	Ask)."	2010	IEEE	
Symposium	on	Security	and	Privacy,	2010.	
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Forward symbolic execution builds a logical formula that describes the execution path of 

the target program in order to determine which inputs results in different execution.42 The 

forward symbolic execution process is as follows. First, a program’s logic is represented in 

symbols, which allows for a special focus on branches in the program. Next, all of the constraints 

that are required to produce a specific code path are recorded. This is repeated until all the 

different ways to reach all the different paths are enumerated. A constraint solver is then used in 

order to determine the constraints that need to be placed on program input in order to reach 

different code paths in the program. After enumerating all the different constraints on input, the 

fuzzing process can then be started with a much smaller input space, allowing for more effective 

fuzzing and increasing the likelihood of discovering vulnerabilities in the target program. 

Research in the whitebox fuzzing domain often combines the use of dynamic taint 

analysis and forward symbolic execution in order to build logical formulas for those parts of a 

target program that depend upon tainted values.43 In doing so, it is possible to not only determine 

which portions of code are influenced by tainted sources and are therefore likely to contain 

vulnerabilities, but also what input can be constructed to reach those potions of code. We 

summarize whitebox fuzzers presented by previous research below, including TaintCheck, 

SAGE, BuzzFuzz, TaintScope, and MAYHEM. 

TaintCheck uses dynamic taint analysis with the help of Valgrind, an emulator that can 

help trace a program as it is runs.44 Whenever the target program reaches a new block of code, 

																																																								
42	Schwartz,	"All	You	Ever	Wanted	to	Know	about	Dynamic	Taint	Analysis	and	Forward	Symbolic	Execution	

(but	Might	Have	Been	Afraid	to	Ask),"	2010.	
43	Ibid.	
44	James	Newsome	and	Dawn	Song,	"Dynamic	taint	analysis	for	automatic	detection,	analysis,	and	

signature	generation	of	exploits	on	commodity	software,"	Proceedings	of	the	12th	Network	and	Distributed	
System	Security	Symposium	(NDSS’05),	2005.	
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Valgrind translates and passes the block to TaintCheck, which traces the block to incorporate it 

in its dynamic taint analysis. TaintCheck then passes the block back to Valgrind, which translates 

the block back so that it may be executed. In order to make it flexible and extensible for future 

use, TaintCheck is broken down into three distinct parts: TaintSeed, TaintTracker, and 

TaintAssert. TaintSeed determines what inputs should be tainted, TaintTracker determines how 

the taint attribute should propagate, and TaintAssert determines the usage of tainted data should 

be interpreted as an exploit. TaintCheck was able to detect exploits on vulnerable versions of the 

ATPhttpd, cfingerd, and wu-ftpd programs. 

SAGE (Scalable, Automated, Guided Execution) uses forward symbolic execution to 

improve the code coverage of the inputs it generates and a custom algorithm designed to find 

bugs in large search spaces.45,46 SAGE has found 30 new Windows application bugs. Godefroid 

et al. extend SAGE by introducing a grammar, which is a set of rules that limit how input is 

crafted observe that the effectiveness. 47 They do this because programs that only accept highly-

structured input usually reject a large number of inputs at shallow levels of code because they do 

not meet the basic requirements for input the program accepts. In an effort to increase the 

effectiveness of whitebox fuzzing with such programs, they present a method to generate 

grammars directly from forward symbolic execution to ensure that inputs reach beyond shallow 

parts of. Evaluating their algorithm against a regular whitebox fuzzing with the JavaScript 

interpreter of Internet Explorer 7, they are able to increase code coverage from 53% to 81% 

while using three times fewer tests. 

BuzzFuzz uses dynamic taint analysis to identifies parts of a well-formed input that 

																																																								
45	Patrice	Godefroid,	"Random	testing	for	security,"	2007.	
46	Patrice	Godefroid,	Michael	Y.	Levin,	and	David	Molnar,	"SAGE:	Whitebox	Fuzzing	for	Security	Testing,"	

Queue	10,	no.	1	(2012):	20.	
47	Patrice	Godefroid,	Adam	Kiezun,	and	Michael	Y.	Levin,	"Grammar-based	whitebox	fuzzing,"	Proceedings	

of	the	2008	ACM	SIGPLAN	conference	on	Programming	language	design	and	implementation	-	PLDI	'08,	2008.	
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influence variables at key points in the target program.48 BuzzFuzz automatically generates new 

inputs by modifying these identified parts of well-formed input. Because these new inputs 

typically preserve the underlying syntactic structure of the well-formed input, they tend to make 

it past the initial input parsing components of the program and reach code deep within the 

program. BuzzFuzz has found errors in two open-source applications: Swfdec, an Adobe Flash 

player, and MuPDF, a PDF viewer. 

TaintScope also seeks to improve the effectiveness of whitebox fuzzing with programs 

that only accept highly-structured inputs. 49 It does this by using dynamic taint analysis to 

identify identify checksum-based checks on input and forward symbolic execution to bypass 

those checks. Additionally, it uses dynamic taint analysis to identify which parts of input are 

used in security-sensitive operations, such as invoking system or library calls, and then focuses 

on modifying those parts.  

 Cha et al. distinguish between an offline symbolic executor, which symbolically executes 

a single code path in a single run, with an online symbolic executor, which tries to execute all 

possible code paths in a single run.50 They observe that offline executors are able to make 

progress for arbitrarily long times because each run involves executing a new code path. Offline 

executors are also able to use the results of previous runs for future runs as each run is executed 

independently. However, they repeat a lot of work because a lot of the same code needs to be 

executed for each run. In contrast, online symbolic executors are able to avoid re-executing the 

same code because they fork at branch points. However, they are unable to make progress for 

																																																								
48	Vijay	Ganesh,	Tim	Leek,	and	Martin	Rinard,	"Taint-based	directed	whitebox	fuzzing,"	2009	IEEE	31st	

International	Conference	on	Software	Engineering,	2009.	
49	Tielei	Wang	et	al.,	"TaintScope:	A	Checksum-Aware	Directed	Fuzzing	Tool	for	Automatic	Software	

Vulnerability	Detection,"	2010	IEEE	Symposium	on	Security	and	Privacy,	2010.	
	 50	Sang	Kil	Cha	et	al.,	"Unleashing	Mayhem	on	Binary	Code,"	2012	IEEE	Symposium	on	Security	and	
Privacy,	2012.	doi:10.1109/sp.2012.31.	
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arbitrarily long times because forking at branch points usually results in an exponential increase 

in code paths. They are also unable to use of the results of previous runs for future runs because 

they are not run multiple times. Cha et al. present Mayhem, which combines offline and online 

symbolic execution by alternating between online and offline symbolic execution runs. Mayhem 

has found 29 exploitable vulnerabilities in both Linux and Windows programs. 

 

G. Practical Fuzzing Tools 

While research into fuzzing has yielded some effective tools, it is not certain that these 

tools are applicable to a range of different software systems. Therefore, it is important to 

consider tools that have not necessarily been developed in an academic setting but have been 

proven practically effective nonetheless. Two particularly effective fuzzers are Peach and 

American Fuzzy Lop (AFL). 

 

i. Peach 

Peach is a smart, generation-based, blackbox fuzzer, which generates fuzzed input 

through XML configuration files called Peach Pits.51 A Peach Pit consists of a Data Model, 

which tells Peach what format of input to expect, a State Model, which tells Peach how that input 

format changes as the program goes through different phases, and a Test, which brings the Data 

and State Models together. By decoupling the Data Model, State Model, and fuzzing engine, 

Peach allow the creation of custom fuzzers without having to write each fuzzer from scratch. 

The Data Model tells Peach what format of input to expect. For example, to fuzz a 

webserver Peach would have to send one or more Hypertext Transfer Protocol (HTTP) requests 

																																																								
51	"Peach	Introduction,"	Deja	vu	Security,	accessed	April	1,	2017,	

http://community.peachfuzzer.com/Introduction.html.	
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and receive one or more HTTP responses, so both HTTP requests and responses would have to 

be defined in separate Data Models. The State Model tells Peach how that input format changes 

as the program goes through different phases. It consists of one or more States, which describe 

phases in the fuzzing process, and each State consists one or more Actions, which describes the 

steps to be taken in each phase. For example, to fuzz a webserver Peach would have to send a 

TCP SYN packet, receive a TCP SYN-ACK packet, send a TCP ACK packet, send one or more 

HTTP requests, and then receive one or more HTTP responses. Each one of these steps represent 

a State and its associated Actions in the State. The Test is the portion of the Peach Pit that 

describes how different Data and State Models interact during the length of a complete fuzzing 

run. It also defines a Publisher, which specifies how to send input to and received output from 

the target program during a fuzzing run. For example, to fuzz a webserver Peach would have to 

send input to the target program on TCP port 80 and receive output from the target program on a 

TCP user port. 

 

ii. American Fuzzy Lop (AFL) 

AFL is a dumb, whitebox, mutation-based fuzzer that has proven to be particularly 

effective at finding vulnerabilities. AFL was not constructed with the intention of being a proof 

of concept for any academic theory. Instead, the only governing principles are "speed, reliability, 

and ease of use."52 The basic algorithm can be described in a few steps. The target program first 

has to be compiled with a special utility that allows AFL to conduct taint analysis. AFL then 

takes a valid sample input, executes the target program, and traces the execution path. It then 

attempts to reduce the size of the sample input until it no longer produces the same trace. Next, 

																																																								
52	Michał	Zalewski,	"Technical	"whitepaper"	for	afl-fuzz,"	accessed	April	1,	2017,	

http://lcamtuf.coredump.cx/afl/technical_details.txt.	
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AFL applies various mutation-based fuzzing strategies to modify this reduced input, executing 

and tracing the execution path each time. For each modified input that results in a new execution 

trace, AFL repeats the process of reducing the size of that input until the reduced input no longer 

produces the same execution trace. If any of the inputs causes the target program to crash, that 

input is saved for later inspection. 

 AFL is particularly effective because it avoids global-scale comparisons of complete 

execution traces, which are particularly costly and can slow down the fuzzing process 

substantially. To achieve this, AFL first compiles each line of code so that it records the tuple: 

[ID of current code location], [ID of previously-executed code location]. Then AFL records both 

previously-unseen tuples in order to detect subtle changes in the control flow and the hit rate for 

every tuple in order to determine the code coverage of particular inputs. This ensures that both 

explicit conditional branches, and indirect variations in the behavior of the target program are 

recorded. Therefore, even if the mutations that AFL do not produce any unusual behavior, it is 

still a particularly useful tool in producing a set of inputs that collectively produce a substantial 

amount of code coverage. This set could then be utilized with other fuzzers in an effort to 

produce more interesting behavior from the target program. 

 

III. OpenDaylight 

The OpenDaylight controller is a framework to connect Southbound plugins, which 

generally communicate with network devices, to Northbound plugins, which generally 

communicate with applications that configure those same network devices. 53 The controller does 

this through a Service Abstraction Layer (SAL). Southbound plugins register themselves with 

																																																								
53	Jan	Medved	et	al.,	"OpenDaylight:	towards	a	model-driven	SDN	controller	architecture,"	IEEE	15th	

international	symposium	on	a	world	of	wireless,	mobile	and	multimedia	networks	(WoWMoM),	2014.	
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the SAL and the SAL then alerts Northbound plugins to the various Southbound plugins that are 

available. This approach resembles the way the Hardware Abstraction Layer (HAL) operates in 

Linux-based Operating Systems. In these systems, the HAL allows applications to use hardware 

connected to the system independent of the underlying hardware. With the SAL, the 

OpenDaylight controller allows Northbound plugins to interact with Southbound plugins, 

regardless of the specifics of the underlying network devices. 

The Boron release of OpenDaylight uses a special SAL called a Model-driven Service 

Abstraction Layer (MD-SAL). MD-SAL uses YANG, which is a data modeling language used to 

model network device configuration so that the configuration of any network device can be 

abstracted out to provide extensibility and flexibility to Northbound protocols.54 Once a YANG 

model is defined, the controller uses it to automatically create an interface via the RESTCONF 

plugin. This interface allows the consumers of the YANG model, or Southbound plugins, to be 

configured by producers of the YANG model, or Northbound plugins. 

Take the example of an application adding a flow to an OpenFlow-enabled switch. When 

the controller starts up, both the Flow Programmer Service and the OpenFlow Plugin register 

themselves with the MD-SAL. When an application adds a flow through the controller’s 

RESTCONF plugin, the add flow request is deserialized and a new flow is created in the Flow 

Service data tree. The Flow Programmer Service then receives a notification that a flow has been 

added as it is registered to receive updates for changes in the Flow Service data tree. Next, the 

Flow Programmer Service then uses the OpenFlow (OF) Plugin to generate a Remote Procedure 

Call (RPC), or a procedure that is executed remotely but coded as if it were executed locally, to 

add the flow in the appropriate switch. This RPC is then routed through the OF Plugin to the 

																																																								
54	Martin	Bjorklund,	"RFC	6020	-	YANG	-	A	data	modeling	language	for	NETCONF,"	IETF	Tools,	accessed	

April	1,	2017,	https://tools.ietf.org/html/rfc6020.	
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correct switch. Figure 6 illustrates this process.55 

 

 

Figure 6: Adding a Flow in the OpenDaylight Controller 
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55	"OpenDaylight	Controller:MD-SAL:FAQ,"	OpenDaylight	Project,	accessed	April	1,	2017,	

https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:FAQ.	
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METHODOLOGY 

Our fuzzing framework utilizes a Virtual Machine (VM) running on VirtualBox 5.1.18 

r114002 (Qt5.6.2). The specifications of the VM were chosen in accordance with benchmarks set 

by the OpenDaylight Project and are summarized in Table 4.56 

 
Component Specification 

Operating System (OS) Ubuntu 16.04 LTS 

Memory 3.9GiB 

CPU Intel Core i7-3740QM CPU @ 2.70GHz 

OS type 64-bit 

Disk 14.6 GB 

Table 4: VM Specifications. 

 

First, we downloaded and extracted OpenDaylight within the VM. Figure 7 illustrates this 

process. 

 
$ wget 
https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendayl
ight/integration/distribution-karaf/0.5.2-Boron-SR2/distribution-karaf-0.5.2-Boron-
SR2.tar.gz 
$ tar -xzf distribution-karaf-0.5.2-Boron-SR2.tar.gz 

Figure 7: Downloading and Extracting the OpenDaylight Controller. 

 

Next, we increased the maximum size of the log file, karaf.log, so that it is not rotated before log 

output can be recorded later on during the fuzzing process. Figure 8 illustrates this process. 

 
$ sed -i s/maxFileSize=1MB/maxFileSize=500MB/ distribution-karaf-0.5.2-Boron-
SR2/etc/org.ops4j.pax.logging.cfg 

																																																								
56	"CrossProject:Integration	Group:Performance	Test:Results,"	OpenDaylight	Project,	accessed	April	1,	

2017,	https://wiki.opendaylight.org/view/CrossProject:Integration_Group:Performance_Test:Results.	
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Figure 8 Changing the Maximum File Size of karaf.log. 

 

Finally, we set the JAVA_HOME variable and ran the controller process. Figure 9 illustrates this 

process. 

 
$ export JAVA_HOME=/usr/lib/jvm/default-java 
$ distribution-karaf-0.5.2-Boron-SR2/bin/karaf 

Figure 9: Setting the JAVA_HOME Variable and Starting the OpenDaylight Controller.. 

 

We chose to use Python modules to construct a smart, generation-based, blackbox fuzzer 

to fuzz the OpenDaylight controller. This fuzzing framework is available on GitHub.57 We chose 

this methodology because, although we outlined several fuzzing frameworks in Chapter I, 

including ones that have been particularly successful in finding vulnerabilities in other programs, 

it is uncertain whether those frameworks are as applicable to a large and complex software 

system such as the OpenDaylight controller. By developing a basic fuzzing framework with 

Python modules, our hope is to provide a foundation for future efforts to develop more advanced 

frameworks. We chose to use this approach to fuzz two OpenDaylight features that form a large 

part of the core controller functionality: the controller’s odl-l2switch-all and odl-restconf-all 

features. For each feature, we followed the guidelines of the Microsoft Security Development 

Lifecycle for network fuzzing and repeated the fuzzing process for one hundred thousand 

iterations.58 

 

I. OpenFlow Plugin (odl-l2switch-all) 

																																																								
57	Walid	Sharif,	"wsharif/thesis,"	accessed	April	1,	2017,	https://github.com/wsharif/thesis.	
58	"SDL	Process	-	Phase	4:	Verification,"	Microsoft	Developer	Network,	accessed	April	1,	2017,	
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The odl-l2switch-all feature in the OpenDaylight controller implements OpenFlow 

Version 4 (v4). Figure 10 illustrates how we installed the feature. 

 
feature:install odl-l2switch-switch 

Figure 10: Installing odl-restconf-all. 

 

The OpenFlow protocol allows controllers and switches to communicate for the purposes of 

forwarding packets. OpenFlow v4 has a total of thirty different packet types, which facilitate this 

basic purpose. Our methodology for fuzzing the OpenFlow feature of the controller includes four 

main steps: 1) construct each of the thirty OpenFlow packet types within the constraints of the 

OpenFlow v4 specification, 2) generate an OpenFlow packet randomly chosen from the thirty 

packet types, 3) establish a connection with the controller, 3) send the generated OpenFlow 

packet, and 4) record CPU usage, memory usage, and log output. 

We first constructed each of the thirty OpenFlow packet types. According to the 

OpenFlow specification, each packet consists of several fields, some of which are constrained to 

certain values and some of which are not.59 Our approach was to adhere to the general structure 

of the packet and only vary fields within their constraints. Our hope is that this fine-grained 

approach will have a greater likelihood of reaching code deeper within the controller’s 

OpenFlow feature and that packets are not rejected as malformed by shallow, parsing portions of 

the feature. This will increase the likelihood that the generated packets will cause the controller 

to exhibit unexpected behavior. We used the os module to generate packet fields that have no 

constraints. Figure 11 shows how one byte of random data can be constructed with the os 

module. 
																																																								

59	"OpenFlow	Switch	Specification,"	Open	Networking	Foundation,	accessed	April	1,	2017,	
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.3.pdf. 
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from os import urandom 
field = urandom(1) 

Figure 11: Constructing One Byte of Random Data with the os Module. 

 

Figure 12 shows how one byte of random data can also be constructed with the random and 

struct modules. 

 
from random import randint 
from struct import Struct  
field = Struct(‘! B’).pack(randint(0, 255)) 

Figure 12: Constructing One Byte of Random Data with the random and struct Modules. 

 

We favored using the os module to construct unconstrained fields because this approach is about 

33% faster, as illustrated by figure 13, and this helps to speed up the fuzzing process. 

 
>>> timeit.Timer("os.urandom(1)", "import os, random, struct").timeit(1) / 
timeit.Timer("struct.Struct('! H').pack(random.randint(0, 255))", "import os, random, 
struct").timeit(1) 
0.6666666666666666 
Figure 13: Comparing the Time to Construct One Byte of Random Data with the os Module and 

the random and struct Modules. 

 

For packet fields that are constrained to particular values, we used the random and struct 

modules in tandem. Figure 14 shows how a one byte field that can only take on values between 

zero and ten can be constructed. 

 
from random import randint 
from struct import Struct  
field = Struct(‘! B’).pack(randint(0, 10)) 

Figure 14: Constructing a One Byte Field that Can Only Take on the Value between Zero and 

Ten. 
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We packed data in network byte order, represented by the ‘!’ argument passed to the Struct 

function, because that data eventually has to be sent to the controller over the network. 

Each OpenFlow packet consists of a header, which is basically the same for each packet 

type, and a payload, which varies from packet type to packet type. Figure 15 illustrates this 

structure.60 

 

 

Figure 15: OpenFlow Packet Structure. 

 

The header for each OpenFlow packet has four fields: version, type, length, and xid. Only the 

type field varies amongst the thirty different packet types. The Appendix describes each part of 

the header, its constraints, and how it can be generated by a Python expression. The version field 

is the value of the OpenFlow protocol version, which is 4, packed into a one-byte unsigned 

integer in big-endian. Figure 16 shows how the version field can be expressed in Python. 

 
version = Struct(‘! B’).pack(4) 

Figure 16: Constructing the Version Field. 
																																																								

60	"Message	Layer,"	Flowgrammable,	accessed	April	1,	2017,	
http://flowgrammable.org/sdn/openflow/message-layer/.	
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The type field is the value of the OpenFlow packet type packed into a one-byte unsigned integer 

in big-endian. Figure 17 shows how the type field can be expressed in Python. 

 
type = Struct(‘! B’).pack(packetType) 

Figure 17: Constructing the Type Field. 

 

The length field is equal to the combined length of the OpenFlow packet header and payload 

packed into a two-byte unsigned integer in big-endian. Thus, the maximum length of any given 

OpenFlow packet is 65535 bytes as this is the maximum value of a two-byte unsigned integer. 

The length of the header for any OpenFlow packet will always be eight bytes. However, the 

length of the payload for an OpenFlow packet varies, depending on the packet type. Figure 18 

shows how the length field can be expressed in Python. 

 
length = Struct(‘! H’).pack(8 + len(payload)) 

Figure 18: Constructing the Length Field. 

 

The xid, or transaction ID, field is a 4-byte field that does not have any constraints. Figure 19 

shows how the version field can be expressed in Python. 

 
xid = urandom(4) 

Figure 19: Constructing the Xid Field. 

 

The payload of an OpenFlow packet varies quite drastically in both content and length 

depending on the packet type. The Appendix lists these payloads, their field constraints, and the 

Python expressions that we used to generate them. The ofptHello, ofptBarrierReq, 

ofptBarrierRes, ofptFeatureReq, ofptGetAsyncReq, and ofptGetConfigReq packets do not have 



	34	

payloads. Many of payloads of the remaining twenty-four packet types can be constructed with 

simple use of the os, random, and struct modules. However, there are thirteen packet types that 

have more complicated payloads: ofptEchoReq, ofptEchoRes, ofptError, ofptExperimenter, 

ofptFlowMod, ofptFlowRemoved, ofptGroupMod, ofptMeterMod, ofptMultipartReq, 

ofptMultipartRes, ofptPacketIn, ofptPacketOut, and ofptQueueGetConfigRes. The payloads for 

these packets are complicated to construct because they have one or more fields that are variable 

in length. 

For the ofptEchoReq, ofptEchoRes, ofptError, and ofptExperimenter payloads, the 

process is not too difficult because the fields that are variable in length are not constrained in 

terms of content. For these payloads we used the os module to generate a field with random data 

of random length. For example, the payload for the ofptEchoReq packet consists of a data field 

that is variable in length but is not constrained in terms of content. Figure 20 shows how we 

constructed the payload for this packet with the os module. 

 
data = urandom(randint(0, maxLength - 8)) 

Figure 20: Constructing Random Data of Variable Length. 

 

For the remaining nine packet types, the process is slightly more difficult because the 

fields that are variable in length are sometimes constrained in terms of content. This poses a 

problem because we had to generate the content for these fields and do so for a randomly 

assigned length. Some of these fields have subfields that are of variable length as well, further 

complicating the process. In order to effectively construct these payloads, we defined several 

helper functions: generateActions, generateBuckets, generateGroupDescriptions, 

generateGroupStats, generateInstructions, generateMatch, generateMeterBands, 

generateMeterConfigs, generateMeterStats, generateOxm, generateQueues, generatePorts, and 
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generateTableFeatures. 

All the helper functions have the same basic structure. First, they are passed an integer 

which represents the maximum length of the string they return. They then declare a list, which 

holds the generated strings. Next, they enter a while loop and strings are generated according to 

their constraints under the OpenFlow v4 specifications. Each generated string is added to the 

declared list if its addition does not make the combined length of the list’s entries larger than the 

maximum length the function was passed. If the generated string is added to the list and the 

current combined length of all the strings in the list plus the maximum possible length of a 

generated string is less than the maximum length, the while loop is executed for an additional 

iteration. If not, the while loop is exited. A random number of list elements are then combined 

and returned as a string. 

Take, for example, the generateActions function. The function is passed a maximum 

length as an argument and declares a list of actions. The function then enters a while loop and a 

single action is generated according to the action constraints under the OpenFlow v4 

specifications.61 The generated action is added to the list if its addition does not make the 

combined length of the list’s entries larger than the maximum length the function was passed. If 

the generated action is added to the list and the combined length of the list’s entries plus sixteen 

is greater than the maximum length the function was passed, the while loop is exited. Sixteen 

represents the largest possible action that can be generated by the while loop and ensures that it 

is possible for any of the actions to be added to the list if randomly selected when the while loop 

is executed for an additional iteration. A random number of list elements are then combined 

together and returned. 

 After constructing all thirty packet types, we established a connection with the controller 
																																																								

61	"Actions,"	Flowgrammable,	accessed	April	1,	2017,	http://flowgrammable.org/sdn/openflow/actions/.	
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before sending it a generated packet. This is a required step because the controller will simply 

drop the sent packet unless a connection is established first. To establish a connection, the 

controller first sends a ofptHello packet to a switch it has not seen before, or vice versa, in order 

to negotiate the version of OpenFlow they will use to communicate. Next, either the switch or 

controller sends a ofptHello packet in response, depending on whether the controller or switch 

sent the original ofptHello packet. Then, the controller sends a ofptFeaturesReq packet in order 

to determine what features the switch it is communicating with supports. The switch replies with 

a ofptFeaturesRes packet to describes the features it supports. When this process is finished, the 

controller and switch can proceed with further communication. Figure 21 illustrates the initial 

negotiation process.62 

 

																																																								
62	"State	Machine,"	Flowgrammable,	accessed	April	1,	2017,	

http://flowgrammable.org/sdn/openflow/state-machine/.	
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Figure 21: Controller-Switch Connection Process. 

 

We established a connection with the controller by sending an ofptHello and ofptFeatureRes 

packet and used the time module to wait half a second each time for the controller to respond 

with acknowledgements. We then generated a packet at random and sent it to the controller, 

waiting another half a second for an acknowledgement. We then wrote the packet that was sent 

to a file for later reference , checked the CPU and memory usage of the controller process, and 

recorded any log output. We obtained the CPU and memory usage of the controller process by 

running and getting the output of the ps command as a subprocess. We obtained any log 

information written to the controller log file, karaf.log, by running and obtaining the output of 

the wc and tail commands as subprocesses. 
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II. RESTCONF Plugin (odl-restconf-all) 

 The odl-restconf-all feature in OpenDaylight implements the RESTCONF protocol. 

Figure 22 illustrates how we installed the feature. 

 
feature:install odl-restconf-all 

Figure 22: Installing odl-restconf-all. 

 

After installation of the feature, a REST interface is created that listens on port 8181 and can be 

accessed through HTTP requests. Our methodology for fuzzing the OpenFlow feature of the 

controller follows four main steps: 1) enumerate all valid HTTP requests that can be sent to the 

RESTCONF feature, 2) generate a fuzzy request chosen randomly from the list of valid requests, 

3) send the request, and 4) record CPU usage, memory usage, and log output. 

We first enumerated all valid HTTP requests that could be sent to the RESTCONF 

feature. Unlike with the OpenFlow feature, there is no standardized list of HTTP requests that all 

RESTCONF implementations must support. RESTCONF implementations have different 

purposes and so the exact HTTP requests accepted by any given implementation varies. 

Additionally, there does not seem to be a comprehensive list of valid requests within the 

OpenDaylight documentation. However, there is an OpenDaylight feature, known as the apidocs 

explorer, that provides such a list. Its purpose is to document the Application Programming 

Interfaces (APIs) provided by the RESTCONF feature. Figure 23 illustrates how we installed the 

feature. 

 
feature:install odl-mdsal-apidocs 

Figure 23: Installing odl-mdsal-apidocs. 
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After we installed the apidocs explorer, we accessed a complete list of valid HTTP requests 

accepted by the RESTCONF feature at http://127.0.0.1:8181/apidoc/explorer/index.html with the 

default username and password of ‘admin’ and ‘admin’ respectively. This apidocs explorer is 

illustrated by Figure 24. 

 

 

Figure 24: Apidocs Explorer. 

 

We used the apidocs explorer to enumerate a list of valid requests through the use of the 

Python modules selenium, a web browsing automation module, and bs4, a HTML parsing 

module. The apidocs explorer is mainly rendered through JavaScript and so simply passing the 

loaded page to the bs4 module did not allow us to enumerate all the HTTP requests. Instead, we 

used the selenium module to automate the loading of all dynamically rendered JavaScript content 
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before passing the HTML document to the bs4 module. 

First, we downloaded a webdriver that the selenium module could use. We chose to use 

the FireFox webdriver. Figure 25 shows how we downloaded and installed the FireFox 

webdriver. 

 
$ wget https://github.com/mozilla/geckodriver/releases/download/v0.15.0/geckodriver-
v0.15.0-linux64.tar.gz 
$ tar -xzf geckodriver-v0.15.0-linux64.tar.gz 
$ sudo mv geckodriver /usr/bin 

Figure 25: Downloading and Installing the FireFox webdriver. 

 

Next, we started the web browser and passed it the URL of the apidocs explorer as an argument. 

We included the username and password in the URL to avoid having to instruct the selenium 

module to enter the credentials through additional actions. We then dismissed the popup dialog 

that resulted. This popup dialog is illustrated by figure 26. 

 

 

Figure 26: FireFox Popup Dialog. 

 

Next, we waited until the page was fully. In particular, we waited until a specific HTML 

element, the ‘Show/Hide’ link, was loaded because clicking this element exposes the HTML 

content that corresponds to the HTTP requests we wished to enumerate. We used the FireFox 

Inspector feature to manually inspect the page and find the HTML tag associated with the 
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‘Show/Hide’ link. Figure 27 shows the FireFox Inspector with a ‘Show/Hide’ HTML element 

highlighted. 

 

 

Figure 27: FireFox Inspector. 

 

After identifying the tag that belongs to the ‘Show/Hide’ link, we used the selenium module to 

wait until those HTML elements were clickable. If they took more than thirty seconds to load, 

we assumed there was an error loading the page and restarted our program. We then used the 

selenium module to click on all of the 'Show/Hide' links and passed the rendered page to the bs4 

module. Figure 28 shows the apidocs explorer with all of the 'Show/Hide' links clicked. 

 



	42	

 

Figure 28: Apidocs Explorer with All HTTP Requests Listed. 

 

Finally, we parsed the rendered page for all the listed HTTP requests and saved them to a file. In 

particular, we saved the HTTP method, URL, and any accompanying payload. 

After enumerating all valid HTTP requests, we used those requests to generate fuzzy 

requests. Again, our approach was to adhere to the general structure of the requests and only vary 

fields within their constraints and we hope is that this approach will have a greater likelihood of 

reaching code deeper within the controller’s RESTCONF feature. First, we modified the request 

that contained variable fields, which were demarcated by '{' and '}'. These variable fields are 

meant to represent specific instances within MD-SAL. We modified these fields while ensuring 

that 1) the maximum URL length was not exceeded and 2) the URL did not contain any invalid 

characters. We verified the maximum length of a URL that the RESTCONF feature accepts is 
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5909 bytes. We verified this length with the program shown in Figure 29. 

 
from requests import post, get, put, delete 
from requests.auth import HTTPBasicAuth 
 
requests = [post, get, put, delete] 
maxLength = [] 
 
for i in requests: 
 url = '/restconf/' 
 while True: 
  response = i('http://127.0.0.1:8181' + url, auth = 
HTTPBasicAuth('admin', 'admin'), headers = {'Content-Type': 'application/json'}) 
  if response.status_code == 413: 
    maxLength.append(len(url)) 
    break 
  else: 
   url += 'a' 
 
print min(maxLength) 

Figure 29: Program to Verify the Maximum Length of a URL in a HTTP Request to the 

RESTCONF Feature. 

 

The RESTCONF feature accepts all characters specified by RFC 3986 except the ‘%’, ‘[‘, and ‘]’ 

characters.63 We verified this with the program shown in Figure 30. 

 
from string import letters, digits, punctuation 
from requests import get 
from requests.auth import HTTPBasicAuth 
 
urlCharacters = [i for i in letters + digits + punctuation] + ['%' + 
hex(i)[2:].zfill(2) for i in range(256)] 
 
for i in urlCharacters: 
 response = get('http://127.0.0.1:8181/restconf/' + i, auth = 
HTTPBasicAuth('admin', 'admin')) 
 if response.status_code not in (204, 404): 
  print i 

Figure 30: Program to Verify the URL Characters Accepted in the URL in a HTTP Request to 

the RESTCONF Feature. 

																																																								
63	Tim	Berners-Lee,	Roy	Fielding,	Larry	Masinter,	"RFC	3986	-	Uniform	Resource	Identifier	(URI):	Generic	

Syntax,"	IETF	Tools,	accessed	April	1,2017,	https://tools.ietf.org/html/rfc3986.	
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After we verified these two constraints, we modified the URLs of requests that contained 

variable fields with the modifyUrl function, which reserves a minimum length for each field that 

must be generated, generates a random combination of valid URL characters of random length, 

and then inserts those characters into the URL. 

Next, we modified the request payloads that had variable fields, which were demarcated 

by the placeholder strings "string", "integer", "number", "boolean", and "object". We replaced 

these placeholder strings with randomly generated data within specific constraints.64,65 These 

constraints are specified by JavaScript Object Notation (JSON), which states that a string can be 

any unicode string, an integer can be any integer that is less than nineteen digits, a number can 

either be integer less than nineteen digits or a float, a boolean can be any boolean, and an object 

can be any dictionary where all the keys are strings and all values are either be strings, integers, 

numbers, or booleans.66 We generated random data for each type with the generateString, 

generateInteger, generateNumber, generateBoolean, and generateObject functions respectively. 

These functions return strings because the generated request iseventually converted to a string by 

the requests module before it is sent over the network to the RESTCONF feature. 

The functions basically operate in the same way; they choose a random length for the 

string that is returned and then generate a string of that length one iteration at a time. For 

example, the generateString function chooses a random length between six, which is the 

																																																								
64	The	RESTCONF	feature	accepts	payloads	in	both	JSON	and	Extensible	Markup	Language	(XML)	format.	

While	the	apidocs	explorer	provide	outlines	for	the	structure	of	JSON	payloads,	it	provides	no	such	outlines	for	the	
structure	of	the	same	payloads	in	XML.	Given	this	difficulty	and	the	fact	that	the	documentation	suggests	that	
JSON	and	XML	payloads	get	processed	in	identical	fashion,	we	have	chosen	to	only	generate	payloads	in	JSON.	

65	"Overview	for	programmers,"	OpenDaylight	Project,	accessed	April	1,	2017,	
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Restconf:Overview_for_programmers.	

66	We	exclude	generating	objects	that	include	objects	because	of	the	difficulties	associated	with	doing	so	
randomly.	
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minimum length of a valid unicode string, and the maximum length it is passed. It then generates 

a unicode string of that chosen length one iteration at a time. 

We then replaced the placeholders in the payload with the generated data and saved the 

modified requests to a text file for later inspection so that if a certain request is observed to cause 

unexpected behavior, there is a way to reference that particular request. Next, we randomly 

selected a request and sent it to the RESTCONF feature by reading from the 

modifiedRequests.txt file and sending the request through either the post, get, put, or delete 

functions of the requests module as necessary. Finally, we recorded CPU usage, memory usage, 

and log output after each request was sent. We obtained the CPU and memory usage of the 

controller process by running and getting the output of the ps command as a subprocess. We 

obtained any log information written to the controller log file, karaf.log, by running and 

obtaining the output of the wc and tail commands as subprocesses. We then recorded the 

response status code and requests error, if any, through the requests module. 

 

 

 

 

 

 

 

 

 

 



	46	

CHAPTER III 

RESULTS 

I. OpenFlow Plugin (odl-l2switch-all) 

Figures 31 and 32 illustrate CPU and memory usage throughout the fuzzing run for the 

OpenFlow plugin of the OpenDaylight controller. 

 

 

Figure 31: OpenFlow CPU Usage Results. 
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Figure 32: OpenFlow Memory Usage Results. 

 

This single run of the fuzzing process took about seven hours to complete as illustrated by Figure 

33. 

 
$ time openFlowFuzzer.py distribution-karaf-0.5.2-Boron-SR2/bin/karaf 
 
real 414m57.283s 
user 90m59.552s 
sys 45m53.476s 

Figure 33: Time to Complete OpenFlow Fuzzing Run. 

 

The variance in CPU usage is not particularly interesting; there seems to be a general downward 

trend in usage with no significant spikes. There does, however, seem to be several spikes in 
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memory usage throughout the fuzzing run. The four spikes that occur before the twenty-

thousandth packet is sent are particularly interesting because they run opposed to the more 

gradual increases in memory usage of 0.1 percentage point increments. Inspecting the results.csv 

file reveals that these readings were taken after packets 2995, 5216, 6781, and 8717 were sent. 

We can reference these packets in the packets.txt file with the code shown in Figure 34, where x 

is the packet number referenced. 

 
with open(‘packets.txt’, ‘r’) as f: 
 data = f.read().split(‘#packet’)[1:] 
print data[x] 

Figure 34: Code to Reference Requests with OpenFlow Plugin. 

 

Referencing these packets in the packets.txt file allows us to determine that packets 2995, 

5216, 6781, 8716 are ofptSetAsync, ofptGetConfigReq, ofptGroupMod, and ofptMultipartRes 

packets respectively. Table 5 summarizes these packets. 

 
Packet number Packet type Bytes 

2995 ofptSetAsync 32 

5216 ofptGetConfigReq 8 

6781 ofptGroupMod 26552 

8716 ofptMultipartRes 58008 
Table 5: Packets that Caused Spikes in CPU Usage. 

 

Further inspection of the packets does not provide any compelling evidence as to why they 

would cause such sudden spikes in memory usage. The log output for the packets does not seem 

to give any clues either. However, we believe repeating the fuzzing process multiple times 

exclusively using the packets in question may reveal patterns that can help to answer this 
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question. 

 

II. RESTCONF Plugin (odl-restconf-all) 

Figures 35 and 36 illustrate CPU and memory usage throughout the fuzzing run for the 

RESTCONF plugin of the OpenDaylight controller. 

 

 

Figure 35: RESTCONF CPU Usage Results. 
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Figure 36: RESTCONF Memory Usage Results. 

 

This single run of the fuzzing process took about an hour and fifteen minutes to complete as 

illustrated by Figure 37. 

 
$ time restconfFuzzer.py distribution-karaf-0.5.2-Boron-SR2/bin/karaf 
 
real 74m57.786s 
user 35m30.912s 
sys 23m14.260s 

Figure 37: Time to Complete RESTCONF Fuzzing Run. 

 

The trends in CPU and memory usage for the RESTCONF fuzzing run are quite similar to those 

of the OpenFlow fuzzing run; the variance in CPU usage is not particularly interesting but there 
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are three spikes in memory usage that occur before the twenty-thousandth request is sent. 

Inspecting the results.csv file reveals that these readings were taken after requests 3347, 5126, 

and 7431. We can reference these requests in the modifiedRequests.txt file with the code shown 

in Figure 38, where x is the request number referenced. 

 
with open(‘modifiedRequests.txt’, ‘r’) as f: 
 data = f.read().split(‘#request’)[1:] 
print data[x] 

Figure 38: Code to Reference Requests with RESTCONF Plugin. 

 

Referencing these requests in the modifiedRequests.txt file allows us to determine that requests 

3347, 5216, and 7431 are GET, POST, and DELETE requests respectively. Table 6 summarizes 

these requests. 

 
Request number Request method Bytes 

3347 GET 3304 

5126 POST 59563 

7431 DELETE 916 

Table 6: Requests that Caused Spikes in Memory Usage. 

 

Like with the OpenFlow fuzzing run, further inspection of the requests does not provide any 

compelling evidence as to why they would cause spikes in memory usage but we believe 

repeating the fuzzing process exclusively with the requests in question may be able to help 

answer this question. 
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CHAPTER IV 

CONCLUSION 

I. Summary 

Our goal with this project was to provide a practical framework for finding vulnerabilities 

in SDN controllers. We successfully achieved this objective by developing a fuzzing tool with 

standard Python modules to fuzz the OpenFlow and RESTCONF plugins of the OpenDaylight 

controller. To develop this framework, we chose to use the OpenDaylight controller, because it is 

well-documented, and fuzzing, because it is an effective method for finding vulnerabilities in 

large software systems. We chose two controller features, odl-l2switch-all, a Southbound plugin 

and odl-restconf-all, a Northbound plugin, to fuzz with a smart, generation-based, blackbox 

fuzzing approach. This approach consisted of determining the structure of valid packets or 

requests to the controller, determining the fields within those packets or requests that could be 

varied, and varying those fields randomly. 

Our hypothesis was that fuzzing these two OpenDaylight plugins would cause 

unexpected behavior within the controller that could be measured through careful observation of 

CPU usage, memory usage, and log output. There is some evidence to suggest that this was the 

case; we observed spikes in memory usage while testing both the odl-l2switch-all and odl-

restconf-all features. It is not immediately clear why the packets or requests in question caused 

the observed spikes in memory usage. However, we believe the next step is to conduct multiple 

fuzzing runs exclusively with the packets or requests that caused spikes in memory usage as it 

may reveal patterns that can help to explain the spikes in memory usage. 

 

II. Future Research 
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As mentioned, repeating the fuzzing process multiple times exclusively with the packets 

or requests that caused spikes in memory usage is a promising place to start for future research. 

Besides this, though, we believe our framework provides a good foundation for future research 

because it can be both extended and expanded. First, our methodology can be extended to more 

OpenDaylight features and more SDN controllers. There are a total of forty features listed by the 

OpenDaylight Wiki.67 These features can be fuzzed in a similar manner to our methodology by 

determining the normal structure of input sent to those features, determining what parts of that 

input can be varied, and varying those parts randomly. Similarly, other SDN controllers such as 

Floodlight, OpenContrail, ONOS, and RYU, have their own implementations of Northbound and 

Southbound plugins, similar to OpenDaylight’s OpenFlow and RESTCONF features, that may 

reveal vulnerabilities when subjected to the fuzzing framework outlined in our methodology. 

Second, our methodology can be expanded to incorporate more advanced fuzzing tools, 

like Peach or AFL. Our modeled OpenFlow packets and RESTCONF requests can be leveraged 

to create Peach Pits that model those packets and requests in a similar way. Figure 39 and figure 

40 illustrate Peach Pits that model an OpenFlow packet and a RESTCONF HTTP request 

respectively. 

 

<?xml version="1.0" encoding="utf-8"?> 
<Peach xmlns="http://peachfuzzer.com/2012/Peach" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://peachfuzzer.com/2012/Peach ../peach.xsd"> 
 
  <DataModel name="DataModel"> 
    <Number name="version" size="8" value="4" endian="big" mutable="false"/> 
    <Number name="type" size="8" value="0" endian="big" mutable="false"/> 
    <Number name="length" size="16" value="64" endian="big" mutable="false"/> 
    <Number name="xid" size="32" endian="big"/> 
  </DataModel> 

																																																								
67	"OpenDaylight	Features	List,"	OpenDaylight	Project,	accessed	April	1,	2017,	

https://www.opendaylight.org/opendaylight-features-list.	
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  <StateModel name="StateModel" initialState="InitialState"> 
    <State name="InitialState"> 
      <Action type="output"><DataModel ref="DataModel"/></Action> 
    </State> 
  </StateModel> 
 
  <Test name="Default"> 
    <StateModel ref="StateModel"/> 
    <Publisher class="TcpClient"> 
      <Param name="Host" value="127.0.0.1"/> 
      <Param name="Port" value="6653"/> 
    </Publisher> 
  </Test> 
 
</Peach> 

Figure 39: Peach Pit for a OpenFlow Packet. 

 

<?xml version="1.0" encoding="utf-8"?> 
<Peach xmlns="http://peachfuzzer.com/2012/Peach" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://peachfuzzer.com/2012/Peach ../peach.xsd"> 
 
  <DataModel name="DataModel"> 
    <String value="POST /restconf/config/ HTTP/1.1\r\n" mutable="false"/> 
    <String value="Host: 127.0.0.1:8181\r\n" mutable="false"/> 
    <String value="Connection: keep-alive\r\n" mutable="false"/> 
    <String value="Accept-Encoding: gzip, deflate\r\n" mutable="false"/> 
    <String value="Accept: */*\r\n" mutable="false"/> 
    <String value="User-Agent: python-requests/2.13.0\r\n" mutable="false"/> 
    <String value="Content-Type: application/json\r\n" mutable="false"/> 
    <String value="Content-Length: " mutable="false"/> 
    <String> 
      <Relation type="size" of="Payload"/> 
    </String> 
    <String value="\r\n" mutable="false"/> 
    <String value="Authorization: Basic YWRtaW46YWRtaW4=\r\n" mutable="false"/> 
    <Block name="Payload"> 
      <String value='{"address-tracker-config":{"observe-addresses-from":"' 
mutable="false"/> 
      <String/> 
      <String value='","timestamp-update-interval":"' mutable="false"/> 
      <Number name="timestamp-update-interval" size="64"/> 
      <String value='"}}' mutable="false"/> 
    </Block> 
  </DataModel> 
 
  <StateModel name="StateModel" initialState="InitialState"> 
    <State name="InitialState"> 
      <Action type="output"> 
        <DataModel ref="DataModel"/> 
      </Action> 
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    </State> 
  </StateModel> 
 
  <Test name="Default"> 
    <StateModel ref="StateModel"/> 
    <Publisher class="TcpClient"> 
      <Param name="Host" value="127.0.0.1" /> 
      <Param name="Port" value="8181" /> 
    </Publisher> 
  </Test> 
 
</Peach> 

Figure 41: Peach Pit for a RESTCONF HTTP Request. 

 

Although AFL is generally better suited to binary programs, it may be possible to 

incorporate AFL into our fuzzing process. Figure 41 is a simple Java class, figure 42 is a 

makefile to compile that Java class, and figure 43 is a set of commands to start the fuzzing 

process with AFL. Collectively they demonstrate how AFL can be used to fuzz a simple Java 

class. 68 

 

import java.io.BufferedReader; 
import java.io.InputStreamReader; 
import java.io.IOException; 
public class Testcase{ 
    public native void nativeCrash(); 
    public static void main(String args[]){ 
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); 
        try{ 
            String s = in.readLine(); 
            if(s == null || s.length() == 0){ 
                System.out.println("Hum?"); 
                System.exit(1); 
            } 
            if(s.charAt(0) == '0'){ 
                System.out.println("Looks like a zero to me!"); 
            //System.exit(134); //Doesn't work, although it looks "the same" 
in a bash $?, it's not the same, therefore:  
                 new Testcase().nativeCrash(); 
            } 
            else{ 
                System.out.println("A non-zero value? How quaint!"); 

																																																								
68	Floyd-fuh,	"Floyd-fuh/AFL_GCJ_Fuzzing_Simple,"	GitHub,	December	05,	2016,	accessed	April	1,	2017,	

https://github.com/floyd-fuh/AFL_GCJ_Fuzzing_Simple.	
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            } 
            System.exit(0); 
        } 
        catch(IOException ioe){ 
            System.out.println("Hum?"); 
            System.exit(1); 
        } 
    } 
} 

Figure 40: A Simple Java Class. 

 

Testcase:  Testcase.o crash.o  
 afl-gcj -o Testcase \ 
  Testcase.o crash.o -lstdc++ --main=Testcase 
 
Testcase.o:  Testcase.class 
 afl-gcj -c Testcase.class 
 
Testcase.class: Testcase.java 
 afl-gcj -C Testcase.java 
 
Testcase.h: Testcase.class 
 gcjh -cp . Testcase 
 
crash.o: Testcase.h crash.cc 
 g++ -c crash.cc 
 
clean: 
 rm -f Testcase Testcase.o crash.o Testcase.class Testcase.h 

Figure 41: A Makefile to Compile the Java Class. 

 

set -x 
mkdir input 
echo "AAA" > input/A 
export AFL_DONT_OPTIMIZE=TRUE 
make clean 
make 
./Testcase < input/A 
echo "last command exit code: $?" 
afl-fuzz -i input/ -o output -m 100 ./Testcase 

Figure 42: Commands to Start AFL Fuzzing Process. 

 

Two major challenges need to be overcome to incorporate AFL into our fuzzing process. The 

first challenge is to compile the OpenDaylight controller code with the GNU Compiler for Java 
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(GCJ). The second challenge is to redirect the OpenDaylight controller to read input from files 

instead of network sockets. Both challenges may be difficult to overcome because of the 

complexity of the controller code. If they are overcome, our modeled OpenFlow packets and 

RESTCONF requests can be leveraged to construct sample input for AFL. AFL can then use 

these as starting sample inputs to fuzz the OpenDaylight controller. 
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APPENDIX 

OPENFLOW HEADER 

Field Bytes Constraints Python expression 

Version 1 4 Struct(‘! 
B’).pack(4) 

Type 1 0-29 Struct(‘! 
B’).pack(type) 

Length 2 ≥ 8 Struct(‘! 
H’).pack(8 + 
len(payload)) 

Xid 4 None urandom(4) 

 

OPENFLOW PAYLOADS 

I. ofptHello: No payload 

II. ofptError 

Field Bytes Constraints Python expression 

errorType 2 0-13 Struct(‘! 
H’).pack(randint(0,
13)) 

errorCode 2 Depends on 
errorType 

Struct(‘! 
H’).pack(errorCode) 

data 8 ≤ data ≤ Maximum 
length of packet - 8 -4 

None urandom(randint(8, 
maxLength - 8 - 4)) 

 

III. ofptEchoReq and ofptEchoRes 

Field Bytes Constraints Python expression 

data (optional) ≤ Maximum length of 
packet - 8 

None urandom(randint(0, 
maxLength - 8)) 
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IV. ofptExperimenter 

Field Bytes Constraints Python expression 

experimenterId 4 None urandom(4) 

experimenterType 4 None urandom(4) 

data (optional) ≤ Maximum length of 
packet - 8 - 8 

None urandom(randint(0, 
maxLength - 8 - 8)) 

 

V. ofptFeatureReq: No payload 

VI. ofptFeatureRes 

Field Bytes Constraints Python expression 

dataPathId 8 None urandom(8) 

nBuffers 4 None urandom(4) 

nTables 1 None urandom(1) 

auxiliaryId 1 None urandom(1) 

pad 2 None urandom(2) 

capabilities 4 Only bits 0, 1, 2, 3, 5, 
6, and 8 are variable 

Struct('! 
I').pack(generateBi
tFlags([0, 1, 2, 3, 
5, 6, 8])) 

reserved 4 None urandom(4) 

 

VII. ofptGetConfigRes and ofptSetConfig 

Field Bytes Constraints Python expression 

flags 2 0-3 Struct('! 
H').pack(randint(0, 
3)) 

missSendLen 2 None urandom(2) 
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VIII. ofptPacketIn 

Field Bytes Constraints Python expression 

bufferId 4 None urandom(4) 

totalLen 2 None urandom(2) 

reason 1 0-2 Struct('! 
B').pack(randint(0, 
2)) 

tableId 1 None urandom(1) 

cookie 8 None urandom(8) 

pad 2 None urandom(2) 

match ≤ Maximum length of 
payload - 18 

Match constraints generateMatch(paylo
adLength - 18) 

data (optional) 14 ≤ data ≤ 
Maximum length of 
payload - 18 

None urandom(randint(14, 
payloadLength - 18 
- len(match))) 

 

IX. ofptFlowRemoved 

Field Bytes Constraints Python expression 

cookie 8 None urandom(8) 

priority 2 None urandom(2) 

reason 1 0-3 Struct('! 
B').pack(randint(0, 
3)) 

tableId 1 None urandom(1) 

durationSec 4 None urandom(4) 

durationNSec 4 None urandom(4) 

idleTimeout 2 None urandom(2) 

hardTimeout 2 None urandom(2) 

packetCount 8 None urandom(8) 
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byteCount 8 None urandom(8) 

match ≤ Maximum length of 
payload - 40 

Match constraints generateMatch(paylo
adLength - 40) 

 

X. ofptPortStatus 

Field Bytes Constraints Python expression 

reason 1 0-2 Struct('! 
B').pack(randint(0, 
2)) 

pad 7 None urandom(7) 

portID 4 4294967040, 
4294967288-
4294967295 

Struct('! 
I').pack(choice([42
94967040] + 
range(4294967288, 
4294967296))) 

pad2 4 None urandom(4) 

hwAddr 6 None urandom(6) 

pad3 2 None urandom(2) 

name 16 None urandom(16) 

config 4 Only bits 0, 2, 5, and 
6 are variable 

Struct('! 
I').pack(generateBi
tFlags([0, 2, 5, 
6])) 

state 4 0-15 Struct('! 
I').pack(randint(0, 
15)) 

current 4 0-65535 Struct('! 
I').pack(randint(0, 
65535)) 

advertised 4 0-65535 Struct('! 
I').pack(randint(0, 
65535)) 

supported 4 0-65535 Struct('! 
I').pack(randint(0, 
65535)) 
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peer 4 0-65535 Struct('! 
I').pack(randint(0, 
65535)) 

curSpeed 4 None urandom(4) 

maxSpeed 4 None urandom(4) 

 

XI. ofptPacketOut 

Field Bytes Constraints Python expression 

bufferID 4 None urandom(4) 

inPort 4 0-4294967040 Struct('! 
I').pack(randint(0, 
4294967040)) 

pad 6 None urandom(6) 

actionsLen 2 Length of actions 
field 

Struct('! 
H').pack(len(action
s)) 

actions (optional) ≤ Maximum length of 
payload - 16 

Action contraints generateActions(pay
loadLength - 16 ) 

data (optional) 14 ≤ data ≤ 
Maximum length of 
payload - 16 - length 
of actions 

None urandom(randint(14, 
payloadLength - 16 
- len(actions))) 

 

XII. ofptFlowMod 

Field Bytes Constraints Python expression 

cookie 8 0-
18446744073709551
614 (the max value of 
a long long) 

Struct('! 
Q').pack(randint(0, 
1844674407370955161
4)) 

cookieMask 8 None urandom(8) 

tableId 1 0-254 Struct('! 
B').pack(randint(0, 
254)) 
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command 1 0-4 Struct('! 
B').pack(randint(0, 
4)) 

idleTimeout 2 None urandom(2) 

hardTimeout 2 None urandom(2) 

priority 2 None urandom(2) 

bufferID 4 None urandom(4) 

outPort 4 None urandom(4) 

outGroup 4 None urandom(4) 

flags 2 0-31  Struct('! 
H').pack(randint(0, 
31)) 

pad 2 None urandom(2) 

match  ≤ Maximum length 
of payload - 40 

Match constraints generateMatch(paylo
adLength - 40) 

instructions (optional) ≤ Maximum length of 
payload - 40 - length 
of match 

Instruction constraints generateInstruction
s(payloadLength - 
40 - len(match)) 

 

XIII. ofptGroupMod 

Field Bytes Constraints Python expression 

command 2 0 - 2 Struct('! 
H').pack(randint(0, 
2)) 

type 1 0-3 Struct('! 
B').pack(randint(0, 
3)) 

pad 1 None urandom(1) 

groupId 4 None urandom(4) 

buckets (optional) ≤ Maximum length of 
payload - 8 

Bucket constraints generateBuckets(pay
loadLength - 8) 
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XIV. ofptPortMod 

Field Bytes Constraints Python expression 

port 4 None urandom(4) 

pad 4 None urandom(4) 

hwAddr 6 None urandom(6) 

pad2 2 None urandom(2) 

config 4 Only bits 0, 2, 5, and 
6 are variable 

Struct('! 
I').pack(generateBi
tFlags([0, 2, 5, 
6])) 

mask 4 Only bits 0, 2, 5, and 
6 are variable 

Struct('! 
I').pack(generateBi
tFlags([0, 2, 5, 
6])) 

advertise 4 0-65535 Struct('! 
I').pack(randint(0, 
65535)) 

pad3 4 None urandom(4) 

 

XV. ofptTableMod 

Field Bytes Constraints Python expression 

tableId 1 0-254 Struct('! 
B').pack(randint(0, 
254)) 

pad 3 None urandom(3) 

config 4 3 Struct('! 
I').pack(3) 

 

XVI. ofptMultipartReq 

Types 0, 3, 7, 8, 11, and 13 only consist of type, flags, and pad fields. 

Field Bytes Constraints Python expression 
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type 2 0-13, 65535 Struct('! 
B').pack(choice(ran
ge(14) + [65535])) 

flags 2 0-1 Struct('! 

H').pack(randint(0, 

1)) 

pad 4 None urandom(4) 

 

A. Type = 1, 2 

Field Bytes Constraints Python expression 

tableId 1 None urandom(1) 

pad 3 None urandom(3) 

outPort 4 0-4294967279 Struct('! 
I').pack(randint(0, 
4294967279)) 

outGroup 4 None urandom(4) 

pad2 4 None urandom(4) 

cookie 8 None urandom(8) 

cookieMask 8 None urandom(8) 

match ≤ Maximum length of 
payload - 8 - 32 

Match constraints generateMatch(paylo
adLength - 8 - 32) 

 

B. Type = 4 

Field Bytes Constraints Python expression 

portNumber 4 0-4294967279 Struct('! 
I').pack(randint(0, 
4294967279)) 

pad 4 None urandom(4) 
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C. Type = 5 

Field Bytes Constraints Python expression 

portNumber 4 0 - 4294967279 Struct('! 
I').pack(randint(0, 
4294967279)) 

queueId 4 None urandom(4) 

 

D. Type = 6 

Field Bytes Constraints Python expression 

groupId 4 None urandom(4) 

pad 4 None urandom(4) 

 

E. Type = 9, 10 

Field Bytes Constraints Python expression 

meterId 4 None urandom(4) 

pad 4 None urandom(4) 

 

F. Type = 12 

Field Bytes Constraints Python expression 

tableFeatures 
(optional) 

≤ Maximum length of 
payload - 8 

Table Feature 
constraints 

generateTableFeatur
es(payloadLength - 
8) 

 

G. Type = 65535 

Field Bytes Constraints Python expression 

experimenterId 4 None urandom(4) 

experimenterType 4 None urandom(4) 
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XVII. ofptMultipartRes 

Field Bytes Constraints Python expression 

type 2 0-13, 65535 Struct('! 
B').pack(choice(ran
ge(14) + [65535])) 

flags 2 0-1 Struct('! 

H').pack(randint(0, 

1)) 

pad 4 None urandom(4) 

 

A. Type = 0 

Field Bytes Constraints Python expression 

mfrDesc 256 None urandom(256) 

hwDesc 256 None urandom(256) 

swDesc 256 None urandom(256) 

serialNum 32 None urandom(32) 

dpDesc 256 None urandom(256) 

 

B. Type = 1 

Field Bytes Constraints Python expression 

tableId 1 None urandom(1) 

pad 1 None urandom(1) 

durationSec 4 None urandom(4) 

durationNSec 4 None urandom(4) 
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priority 2 None urandom(2) 

idleTimeout 2 None urandom(2) 

hardTimeout 2 None urandom(2) 

pad2 6 None urandom(6) 

cookie 8 None urandom(8) 

packetCount 8 None urandom(8) 

byteCount 8 None urandom(8) 

match ≤ Maximum length of 
payload - 8 - 48 

Match constraints generateMatch(paylo
adLength - 8 - 48) 

instructions (optional) ≤ Maximum length of 
payload - 8 - 48 - 
length of match 

Instruction constraints generateInstruction
s(payloadLength - 8 
- 48 - len(match)) 

 

C. Type = 2 

Field Bytes Constraints Python expression 

packetCount 8 None urandom(8) 

byteCount 8 None urandom(8) 

flowCount 4 None urandom(4) 

 

D. Type = 3 

Field Bytes Constraints Python expression 

tableId 1 None urandom(1) 

pad 3 None urandom(3) 

activeCount 4 None urandom(4) 

lookupCount 8 None urandom(8) 

matchedCount 8 None urandom(8) 
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E. Type = 4 

Field Bytes Constraints Python expression 

portNumber 4 0-4294967279 Struct('! 
I').pack(randint(0, 
4294967279)) 

pad 4 None urandom(8) 

rxPackets 8 None urandom(8) 

txPackets 8 None urandom(8) 

rxBytes 8 None urandom(8) 

txBytes 8 None urandom(8) 

rxDropped 8 None urandom(8) 

txDropped 8 None urandom(8) 

rxErrors 8 None urandom(8) 

txErrors 8 None urandom(8) 

rxFrameErr 8 None urandom(8) 

rxOverErr 8 None urandom(8) 

rxCrcErr 8 None urandom(8) 

collisions 8 None urandom(8) 

durationSec 4 None urandom(4) 

durationNSec 4 None urandom(4) 

 

F. Type = 5 

Field Bytes Constraints Python expression 

portNumber 4 0-4294967279 Struct('! 
I').pack(randint(0, 
4294967279)) 

queueId 4 None urandom(4) 
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txBytes 8 None urandom(8) 

txPackets 8 None urandom(8) 

txErrors 8 None urandom(8) 

durationSec 4 None urandom(4) 

durationNSec 4 None urandom(4) 

 

G. Type = 6 

Field Bytes Constraints Python expression 

groupStats (optional) ≤ Maximum length of 
payload - 8 

Group Stats 
constraints 

generateGroupStats(
payloadLength - 8) 

 

H. Type = 7 

Field Bytes Constraints Python expression 

groupDescriptions 
(optional) 

≤ Maximum length of 
payload - 8 

Group Descriptions 
constraints 

generateGroupDescri
ptions(payloadLengt
h - 8) 

 

I. Type = 8 

Field Bytes Constraints Python expression 

types 4 0-15 Struct('! 
I').pack(randint(0, 
15)) 

capabilities 4 0-15 Struct('! 
I').pack(randint(0, 
15)) 

maxGroups 4 None  urandom(4) 

maxGroups2 4 None  urandom(4) 

maxGroups3 4 None  urandom(4) 

maxGroups4 4 None  urandom(4) 
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actions 4 Only bits 0, 11, 12, 
and 15-28 are 
variable 

Struct('! 
I').pack(generateBi
tFlags([0, 11, 12] 
+ range(15, 28))) 

actions2 4 Only bits 0, 11, 12, 
and 15-28 are 
variable 

Struct('! 
I').pack(generateBi
tFlags([0, 11, 12] 
+ range(15, 28))) 

actions3 4 Only bits 0, 11, 12, 
and 15-28 are 
variable 

Struct('! 
I').pack(generateBi
tFlags([0, 11, 12] 
+ range(15, 28))) 

actions4 4 Only bits 0, 11, 12, 
and 15-28 are 
variable 

Struct('! 
I').pack(generateBi
tFlags([0, 11, 12] 
+ range(15, 28))) 

 

J. Type = 9 

Field Bytes Constraints Python expression 

meterStats (optional) ≤ Maximum length of 
payload - 8 

Meter Stats 
constraints 

generateMeterStats(
payloadLength - 8) 

 

K. Type = 10 

Field Bytes Constraints Python expression 

meterConfigs 
(optional) 

≤ Maximum length of 
payload - 8 

Meter Config 
constraints 

generateMeterConfig
s(payloadLength - 
8) 

 

L. Type = 11 

Field Bytes Constraints Python expression 

maxMeter 4 None urandom(4) 

bandType 4 None urandom(4) 

capabilities 4 None urandom(4) 
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maxBands 1 None urandom(1) 

maxColor 1 None urandom(1) 

pad 2 None urandom(2) 

 

M. Type = 12 

Field Bytes Constraints Python expression 

tableFeatures 
(optional) 

≤ Maximum length of 
payload - 8 

Table Features 
Constraints 

generateTableFeatur
es(payloadLength - 
8) 

 

N. Type = 13 

Field Bytes Constraints Python expression 

ports (optional) ≤ Maximum length of 
payload - 8 

Port constraints generatePorts(paylo
adLength - 8) 

 

O. Type = 65535 

Field Bytes Constraints Python expression 

experimenterId 4 None urandom(4) 

experimenterType 4 None urandom(4) 

 

XVIII. ofptBarrierReq and ofptBarrierReq: No payload 

XIX. ofptQueueGetConfigReq 

Field Bytes Constraints Python expression 

port 4 0-4294967039 Struct('! 
I').pack(randint(0, 
4294967039)) 

pad 4 None urandom(4) 
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XX. ofptQueueGetConfigRes 

Field Bytes Constraints Python expression 

port 4 0-4294967039 Struct('! 
I').pack(randint(0, 
4294967039)) 

pad 4 None urandom(4) 

queues (optional) ≤ Maximum length of 
payload - 8 

Queue constraints generateQueues(payl
oadLength - 8) 

 

XXI. ofptRoleReq and ofptRoleRes 

Field Bytes Constraints Python expression 

role 4 0-3 Struct('! 
I').pack(randint(0, 
3)) 

pad 4 None urandom(4) 

generationId 8 None urandom(8) 

 

XXII. ofptGetAsyncReq: No payload 

XXIII. ofptGetAsyncRes and ofptSetAsync 

Field Bytes Constraints Python expression 

packetInMask 4 0-7 Struct('! 
I').pack(randint(0, 
7)) 

packetInMask 4 0-7 Struct('! 
I').pack(randint(0, 
7)) 

packetStatusMask 4 0-7 Struct('! 
I').pack(randint(0, 
7)) 

packetStatusMask2 4 0-7 Struct('! 
I').pack(randint(0, 
7)) 
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flowRemovedMask 4 0-15 Struct('! 
I').pack(randint(0, 
15)) 

flowRemovedMask2 4 0-15 Struct('! 
I').pack(randint(0, 
15)) 

 

XXIV. ofptMeterMod 

Field Bytes Constraints Python expression 

command 2 0-2 Struct('! 
H').pack(randint(0, 
2)) 

flags 2 0-15 Struct('! 
H').pack(randint(0, 
15)) 

meterId 4 0, 4294901760, 
4294967293-
4294967295 

Struct('! 
I').pack(choice([0, 
4294901760] + 
range(4294967293, 
4294967296))) 

meterBands 
(optional) 

≤ Maximum length of 
payload - 8 

Meter band 
constraints 

generateMeterBands(
payloadLength - 8) 

 

 


