
Aerosol Health Impact Source Attribution Studies with the

CMAQ Adjoint Air Quality Model

by

M. D. Turner

B.S., Drexel University, 2009

M.S., Drexel University, 2009

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Mechanical Engineering

2015



This thesis entitled:
Aerosol Health Impact Source Attribution Studies with the CMAQ Adjoint Air Quality

Model
written by M. D. Turner

has been approved for the Department of Mechanical Engineering

Prof. Daven Ker Henze

Prof. Jana Milford

Date

The final copy of this thesis has been examined by the signatories, and we find that both
the content and the form meet acceptable presentation standards of scholarly work in the

above mentioned discipline.



Turner, M. D. (Ph.D., Air Quality Modeling)

Aerosol Health Impact Source Attribution Studies with the CMAQ Adjoint Air Quality

Model

Thesis directed by Prof. Daven Ker Henze

Fine particulate matter (PM2.5) is an air pollutant consisting of a mixture of solid and

liquid particles suspended in the atmosphere. Knowledge of the sources and distributions of

PM2.5 is important for many reasons, two of which are that PM2.5 has an adverse effect on

human health and also an effect on climate change. Recent studies have suggested that health

benefits resulting from a unit decrease in black carbon (BC) are four to nine times larger

than benefits resulting from an equivalent change in PM2.5 mass. The goal of this thesis is to

quantify the role of emissions from different sectors and different locations in governing the

total health impacts, risk, and maximum individual risk of exposure to BC both nationally

and regionally in the US. We develop and use the CMAQ adjoint model to quantify the role

of emissions from all modeled sectors, times, and locations on premature deaths attributed to

exposure to BC. From a national analysis, we find that damages resulting from anthropogenic

emissions of BC are strongly correlated with population and premature death. However, we

find little correlation between damages and emission magnitude, suggesting that controls

on the largest emissions may not be the most efficient means of reducing damages resulting

from BC emissions. Rather, the best proxy for locations with damaging BC emissions is

locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are

the largest contributors to premature deaths attributed to exposure to BC, while onroad

gasoline emissions cause the highest deaths per amount emitted. Additionally, emissions in

fall and winter contribute to more premature deaths (and more per amount emitted) than

emissions in spring and summer. From a regional analysis, we find that emissions from

outside each of six urban areas account for 7% to 27% of the premature deaths attributed



iv

to exposure to BC within the region. Within the region encompassing New York City

and Philadelphia, reductions in emissions from large industrial combustion sources that are

not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per

unit emission of reductions to onroad diesel sectors, and provide similar benefits per unit

of reduced emission to that of onroad gasoline emissions in the region. While a majority

of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows

the most efficient target for stricter controls is actually onroad gasoline emissions. From

an analysis of the health impacts of BC emissions on specific demographic populations, we

find that emissions in the southern half of the US tend to disproportionally affect persons

with a below high school education and persons below 50% of the poverty level. Analysis

of national risk (independent of population and mortality rates) shows that the largest risks

are associated with drier climates, due to the increased atmospheric lifetime resulting from

less wet removal of aerosols. Lastly, analysis of the impacts of BC emissions on maximum

individual risk shows that contributions to maximum individual risk are weakly to strongly

correlated with emissions (R2 ranging from 0.23 in the San Joaquin Valley to 0.93 in the

Dallas region). Overall, this thesis shows the value of high-resolution, adjoint-based source

attribution studies for determining the locations, seasons, and sectors that have the greatest

estimated impact on human health in air quality models.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Fine particulate matter (PM2.5) is an air pollutant consisting of a suspended mixture

of solid and liquid particles that are less than 2.5 µm in diameter. Knowledge of the sources

and distributions of PM2.5 is important for many reasons, two of which are that PM2.5

has an adverse effect on human health (e.g., Krewski et al. [2009]; WHO [2006]; Pope et al.

[2002]; Katanoda et al. [2011]; Lepeule et al. [2012]; Kazuhiko et al. [2011]; Puett et al. [2009];

Gauderman et al. [2002]; Cohen et al. [2004]), and PM2.5 also has an effect on climate change

(e.g., Bauer and Menon [2012]; Bond [2007]; Jacobson [2010]; Bond et al. [2013]; Anenberg

et al. [2012]; Shindell et al. [2012]). Since its inception in 1970, the US Environmental

Protection Agency (EPA) has been tasked with the protection of human health and the

environment. Title I of the Clean Air Act dictates that the EPA is in charge of setting

National Ambient Air Quality Standards (NAAQS) for air pollutants that may endanger

public health or welfare. In addition to the development of NAAQS, the EPA evaluates the

cost and effectiveness of emissions control policies and monitors NAAQS exceedences. One

major aspect of this process is the use of air quality models to estimate current and future

distributions of PM2.5.

Many atmospheric chemical transport models (CTM) can simulate the distribution

and fate of aerosols. However, these models contain considerable uncertainty. There are

several different methods to decrease uncertainty in the models, such as developing a better
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understanding of physical processes, using data assimilation techniques to constrain the

models with observations [Bergamaschi et al., 2009; Kurokawa et al., 2009; Zhu et al., 2013;

Chai et al., 2009; Henze et al., 2009], and using an ensemble of models to obtain robust

results [Mallet and Sportisse, 2006; Stevenson et al., 2006; van Noije et al., 2006; Koch

et al., 2009]. These approaches allow the use of air quality models for understanding source-

receptor relationships. Quantifying the role of emissions from different sectors and different

locations in governing the total health impacts is critical towards developing effective control

strategies.

This project focuses on elucidating the sources of aerosols that have an adverse human

health impact through the development and application of adjoint sensitivity modeling. This

thesis addresses the following research objectives:

(1) Develop the adjoint of aerosol microphysics for the CMAQ adjoint model.

(2) Use adjoint sensitivity analysis to attribute both national and regional-scale health

impacts to emissions from specific locations, seasons, and sectors to facilitate more

effective air quality control strategies.

(3) Investigate potential disparities of health impacts for different population demo-

graphics.

(4) Examine the impacts of emissions on maximum individual risk in the US.

This project results in the first adjoint air quality model that includes an adjoint of

aerosol size distribution, improving the overall utility of the CMAQ model. Accounting

for the particle size distribution is important for both health and climate concerns, as it is

associated with the particles’ origin, their transport in the atmosphere, and the degree to

which they are inhaled into the respiratory system [WHO, 2006].

This project begins with the development of an adjoint model of the CMAQ chemical

transport model, which provides an efficient means of performing sensitivity analysis. As
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opposed to forward sensitivity techniques, where sensitivities of all state variables with re-

spect to a few parameters (inputs) are calculated, adjoint sensitivity analysis calculates the

sensitivity of a single model response metric with respect to all sources [Sandu et al., 2005a].

For example, an adjoint model can provide sensitivities of premature deaths (through the

use of the concentration response functions) with respect to emissions at a highly resolved

spatial, temporal, and sectoral level. This tool can be used to determine the sensitivity of

premature death in a region with respect to emissions throughout the modeled domain.

Here we present the background, model development, and initial applications for this

thesis. Section 1.2 reviews background information on the health and climate effects of

fine particulate matter. In Sections 1.2.7 and 1.2.8, we describe the CMAQ air quality

model, as well as provide an introduction to adjoint models in Section 1.2.9. Exposure to

PM2.5 in ambient air has been shown to be a cause of various adverse health effects, such

as cardiopulmonary disease and lung cancer [Krewski et al., 2009; WHO, 2006; Pope et al.,

2002; Katanoda et al., 2011; Lepeule et al., 2012; Kazuhiko et al., 2011; Puett et al., 2009;

Gauderman et al., 2002; Cohen et al., 2004], leading to an estimated 130,000 premature

deaths in 2005 in the US alone [Fann et al., 2012b]. Some studies have found associations of

increased premature deaths and morbidity to concentrations of black carbon (BC) [Suh and

Zanobetti, 2010; Adar et al., 2007; Peng et al., 2009; WHO, 2012; Power et al., 2011; Wilker

et al., 2013; Grahame et al., 2014]. We thus consider applications of the CMAQ adjoint that

quantify the impact of emissions in each and every grid cell on the health burden attributed

to BC exposure from both national (Chapter 2) and regional (Chapter 3) studies, as well as

the impacts on maximum individual risk and specific subsets of the population (Chapter 4).

Lastly, Chapter 5 discusses some conclusions for the current work.

1.2 Background

In this section we give an overview of particulate matter and its effect on climate and

human health. Section 1.2.1 discusses size distributions of particulate matter in addition to
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some of the major sources of these particles. In section 1.2.2 we present a brief overview

of the climate effects (direct, indirect, and semi-direct) of PM2.5. Sections 1.2.3 and 1.2.4

discuss the short-term and long-term health effects of exposure to PM2.5, in addition to

discussing the national health burden attributed to exposure to PM2.5. Section 1.2.5 contin-

ues the discussion of health effects by considering the monetary damage values for different

PM2.5 precursor emissions. In section 1.2.6, we present information about how emissions are

calculated, in addition to some of the uncertainties in the development of emission invento-

ries.

1.2.1 Particulate Matter

The size distribution of PM is divided into three main modes: coarse, accumulation,

and nucleation. The coarse mode consists of particles with an aerodynamic diameter between

2.5 µm and 10 µm (PM2.5−10). Particles in the coarse mode are mainly produced by the

mechanical break-up of larger particles, have a shorter lifetime in the atmosphere than smaller

particles, and usually settle back to the surface due to gravitational forces within minutes

to hours. Examples of coarse mode particles are dust, sea salt, and plant and insect parts.

The accumulation mode consists of particles with an aerodynamic diameter between

0.1 µm and 2.5 µm (PM0.1−2.5). Particles in the accumulation mode are usually formed

through coagulation from particles in the nucleation mode. Particles in this mode have the

longest lifetime in the atmosphere (days to weeks), and they do not typically coagulate to

the coarse mode.

The nucleation mode consists of particles with an aerodynamic diameter less than 0.1

µm (PM0.1). Particles in the nucleation mode can be directly emitted into the atmosphere,

formed from condensation of vapors, and formed from nucleation of atmospheric species.

Nucleation mode particles do not settle significantly by gravity. However, particles in this

mode are short-lived in the atmosphere and usually coagulate to the accumulation mode.

The combination of particles in the accumulation mode and nucleation mode is often referred
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to as fine PM (PM2.5). Ammonium sulfate and ammonium nitrate combine to account for

about half of the average mass concentration of PM2.5 in the US, with the rest of the mass

concentration coming from carbonaceous aerosols, sodium, chloride, and water [Seinfeld and

Pandis, 2006].

1.2.2 Effects of PM on Climate Change

Aerosols have direct, indirect, and semi-direct effects on radiative forcing. Radiative

forcing is a perturbation in the radiative energy budget of the Earth caused by an external

source [Myhre et al., 2013]. Aerosols have a direct radiative forcing because they both scatter

and absorb solar and infrared radiation in the atmosphere [Myhre et al., 2013]. While aerosols

in general can cause both a “cooling” and a “warming” effect in the atmosphere, the overall

combination of both direct and indirect effects results in the cooling of the atmosphere

[Myhre et al., 2013].

Indirect Effects Indirect radiative forcing from aerosols is caused by changes in

cloud properties. Aerosols alter the efficiency at which liquid water, ice and mixed-phase

clouds form and precipitate, which alters the properties of the clouds [Twomey, 1974]. There

is a set amount of water available for clouds. The water can form large droplets within the

clouds, which causes precipitation (a major removal mechanism for aerosols). The presence of

cloud condensation nuclei in the atmosphere causes the water to condense onto the particles.

This results in more, but smaller droplets in the clouds, which increases the cloud albedo

[Twomey, 1974]. In addition to increasing the albedo, this effect tends to decrease the chance

of precipitation. If precipitation is suppressed, this results in excess water remaining in the

atmosphere [Albrecht, 1989].

Semi-Direct Effects While the indirect effects occur when aerosols alter cloud

microphysics, absorbing aerosols (AA) near clouds have been thought to cause changes in

cloud cover (semi-direct effect) [Hansen et al., 1997]. This is caused by the AA within or

near clouds increasing the temperature around the clouds, promoting cloud evaporation.
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A decrease in cloud cover increases the warming impacts of AA, due to the decrease in the

amount of solar radiation that is reflected upward by the clouds (cloud albedo effect). Similar

studies to Hansen et al. [1997] have shown that this semi-direct effect is enhanced due to a

low-cloud feedback loop [Jacobson, 2002] in which the cloud loss increases the capacity for

AA absorption.

Arctic Climate Effects In addition to the effects of atmospheric aerosol on radia-

tive forcing, AA that is deposited on snow and ice in the arctic has a substantial effect on

climate. The high contrast in albedo between BC and snow or ice on which it has deposited

results in enhanced absorption of sunlight, which heats the Arctic atmosphere and leads to

increased melting of snow and ice [Hansen, 2005]. The global mean surface temperature

warming resulting from the radiative forcing of BC on snow is approximately three times

more than an equal forcing of CO2 [Flanner et al., 2007].

1.2.3 Health Effects of PM2.5

Exposure to PM2.5 in ambient air has been shown to be a cause of various adverse

health effects, both short-term and long-term, as well as premature death. In 2009 the US

EPA released the Integrated Science Assessment for Particulate Matter (PM ISA), which

included a literature review of articles that analyzed the health impacts of exposure to PM

[US EPA, 2009].

Short-Term Exposure In the 2009 PM ISA, articles discussing the effects of short-

term exposure to PM2.5 were analyzed, and a causal determination was made for various

health effects. It was determined that short-term exposure to PM2.5 has a causal relationship

with cardiovascular effects and premature death, while short-term exposure to PM2.5 is likely

to have a causal relationship with respiratory effects.

Increases in PM2.5 and sulfate have been shown to increase mortality in exposed popu-

lations, mainly owing to an increase in cardiovascular premature death. The Health Effects

Institute (HEI) performed an extension of a previous American Cancer Society (ACS) study
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and discovered significant increases in the relative risk of cardiopulmonary and lung cancer

deaths, as well as deaths from all causes resulting from exposure to PM2.5 [WHO, 2006].

Long-Term Exposure Long-term exposure to PM2.5 has been shown to have a

consistent association with an increased risk of cardiovascular premature death. For example,

in an extended analysis of the Harvard Six Cities cohort that included an additional 11 years

of follow-up and PM2.5 data, Lepeule et al. [2012] found that a 10 µg/m3 increase in PM2.5

resulted in a 14% increased risk of all-cause death (95% CI: 7% to 22%), and a 26% increase

in cardiovascular death (95% CI: 14% to 40%). Studies also suggest that long-term exposure

to PM2.5 is most strongly associated with premature death due to ischemic heart disease,

dysrhythmias, heart failure, and cardiac arrest. For these causes of death, an increased PM2.5

exposure of 10 µg/m3 was associated with an 8-18% increase in death [Pope et al., 2004].

Component-Specific Health Effects Some studies have started focusing on species-

specific PM2.5 analyses for health impacts. One such study by Bell et al. [2009] analyzed

source-specific effects of PM species on both CVD and respiratory diseases. The study found

that BC and vanadium concentration increases resulted in the largest increase in health effect

estimates for both CVD and respiratory effects. Bell et al. [2009] showed a 25.8% (95% CI:

4.4 to 47.2) increase in the risk estimate for cardiovascular disease per interquartile range

increase in the fraction of BC to PM2.5 mass. An increase in interquartile range in the frac-

tion of BC to PM2.5 mass was shown to cause a 511% (95% CI: 80.7 to 941) increase in the

risk estimate for respiratory disease. Janssen et al. [2011] performed a review of four cohort

studies that measured exposure to BC. They calculated a pooled effect relative risk value

of 1.007 (95% CI: 1.004 to 1.009) for PM2.5, and 1.05 (95% CI: 1.04 1.09) for BC. Grahame

et al. [2014] performed a review of the health effects of exposure to BC and suggested that

there is a causal relationship between exposure to BC and premature death. Such findings

suggest that consideration of BC-related health impacts may be of importance.
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1.2.4 Health Burden of Pollutant Exposure

As previously mentioned, exposure to ground-level PM2.5 is associated with increased

risk of premature death and morbidity. Many studies have estimated the public health

burden attributed to exposure to PM2.5. Cohen et al. [2005] used economic, meteorologic,

and demographic data, as well as available PM2.5 measurements in 304 cities, to estimate

that 799,000 premature deaths globally were attributed to exposure to urban outdoor air

pollution. Anenberg et al. [2010] used simulated global concentrations of PM2.5 to estimate

the global burden of premature death attributed to exposure to PM2.5 from anthropogenic

emissions. They estimated that anthropogenic PM2.5 was associated with 3,721,000 global

premature deaths annually. Of those premature deaths, 141,000 cardiopulmonary and lung

cancer deaths occurred in North America. Fann et al. [2012b] used the CMAQ model in con-

junction with observed concentration data to create spatially resolved annual mean PM2.5

concentrations over the continental United States. Using this information, as well as the

US EPA’s BenMAP software, they estimated the total public health burden associated with

PM2.5 exposure for various risk estimates. They estimated that 130,000 to 320,000 (depend-

ing on the risk estimate used) premature deaths were attributed to PM2.5 exposure. They

also estimated an array of morbidity impacts, such as 62,000 hospital admissions related to

cardiovascular problems. Caiazzo et al. [2013] used the CMAQ model to assess the health

impacts of emission sectors in the US. They estimated 200,400 premature deaths due to

exposure to PM2.5 in the US in 2005 were attributed to combustion emissions, with EGUs

being the largest contributor (52,200 premature deaths).

A concern with model-based estimates of exposure is model resolution [Li et al., 2015;

Punger and West, 2013; Pisoni et al., 2010]. Punger and West [2013] analyzed the effect of

grid resolution on estimates of the burden of PM2.5 on premature death in the US. They

found that coarse grid resolutions (>250 km) produce premature death estimates that are

30-40% lower than the estimates at 12-km resolution. They also found that simulations
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performed at 36-km resolution resulted in premature death burdens 11% higher than at 12-

km resolution. Additionally, Punger and West [2013] and Li et al. [2015] both showed that

changes in model resolution have different impacts for exposure to different pollutants, with

the greatest effect on health impact estimates related to exposure to BC.

1.2.5 Damages of Pollutant Exposure

When calculating damages associated with pollutant exposure, a value of a statistical

life (VSL) is used to convert from premature deaths to a monetary value. Muller and

Mendelsohn [2007] used an integrated assessment model to estimate the marginal damages

associated with emitting an additional ton of pollution from approximately 10,000 sources

in the US. They estimated that PM2.5 emissions account for $17.4 billion of gross annual

damages (GAD) per year. Muller et al. [2011] again used an integrated assessment model to

estimate the gross damages for each industry in the US. They estimated that a total of $184

billion of gross external damages (GED). For both of these studies a fixed damage value was

used throughout the domain.

Fann et al. [2009] examined how the location and source of an emission reduction in-

fluence the magnitude of the benefit per ton ($/ton) estimate for PM2.5 reductions. Using

a reduced-form air quality model, they modeled emission control strategies for each of nine

urban areas. They showed that the $/ton for some pollutants are much higher than others.

They also showed a large variability in $/ton estimates for the same pollutant across various

sources and locations. Fann et al. [2012a] used the CAMx source apportionment photo-

chemical model to estimate PM2.5 benefit per ton estimates for seventeen sectors across the

continental US. They estimated that the benefit per ton of reducing directly emitted PM2.5

is an order of magnitude larger than reducing precursor emissions.

Additionally, in 2011 the US EPA released a report analyzing the benefits and costs

of the Clean Air Act from 1990 to 2020 [US EPA, 2011]. They estimated that the efforts to

meet the 1990 Clean Air Act Amendment are projected to cost about $65 billion annually.
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However, the value of the improvements resulting from these efforts are estimated to reach

approximately $2 trillion, with a majority of the benefits coming from premature death

reduction (approximately $1.8 trillion of the $2 trillion total benefits). To achieve the highest

benefit to cost ratio, it is necessary to determine the emissions to which stricter control

strategies would yield the largest reduction in premature deaths associated with pollutant

exposure.

1.2.6 Emissions and Uncertainty

When using atmospheric chemical transport models to evaluate air quality and climate

issues, a vast array of input information is required, including emission profiles. However,

emission inventories are subject to substantial levels of uncertainty, which limits the confi-

dence that can be placed in results that are based on them. In the US, the National Emission

Inventory (NEI) is a compilation of emission profiles from state, local, and tribal air agencies,

as well as the emission information from EPA emission programs. NEI emission inventories

include criteria air pollutants (CAPs), pollutants related to the implementation of NAAQS,

as well as hazardous air pollutants (HAPs) that are associated with EPA’s Air Toxics Pro-

gram. CAPs include lead, carbon monoxide, nitrogen oxides, volatile organic compounds,

sulfur dioxide, ammonia, and particulate matter. HAPs include 187 other pollutants, such

as mercury, hydrochloric acid, and heavy metals. The emission sources are divided into

categories: stationary sources are “point” or “nonpoint”, mobile sources are either onroad

(cars and trucks driven on roads) or non-road (locomotives, aircraft, marine, etc.).

Emissions for various sectors at various locations are calculated based on emission

factors. An emission factor is a value that attempts to relate the quantity of a pollutant

released to the activity that releases the pollutant. Emission factors are generally expressed

as a weight of pollutant divided by a unit weight, volume, distance, or duration of the activity

that is emitting the pollutant. In most cases, the emission factors are simply an average of
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all available emission profile data. Emissions are then calculated by

E = A ∗ EF ∗ (1 − ER

100
), (1.1)

where E is the calculated emissions, A is the activity rate, EF is the emission factor, and

ER is the overall emission reduction efficiency.

Power plant emission profiles tend to have very low uncertainty, with uncertainty esti-

mates below 5% [Pouliot et al., 2012]. This is a result of the availability of a large number

of detailed, hourly emission data that are a product of the continuous emissions monitoring

system (CEMS). Mobile source inventories contain significant uncertainties with regard to

the magnitude of CO and NOx emissions, with uncertainty estimates of approximately 30%

[Fujita et al., 2012]. Much of the mobile-source tailpipe emissions data are typically esti-

mated based on procedures that are of a limited duration. The short-term tests may not

accurately represent the emissions over longer time periods. Also, the effects of emission

spikes that result from variability in engine loads are not accurately represented [Hallmark

et al., 2002].

Emissions from nonpoint stationary sources (fugitive emissions, open biomass burning,

etc.) have much larger uncertainties, with uncertainty estimates greater than 100% [He et al.,

2011]. There are many causes for the high level of uncertainty in nonpoint stationary sources.

The individual sources may be small and widely dispersed, or in the case of fugitive emissions,

they may result from unknown sources. Additionally, in cases such as agricultural-related

ammonia, biomass burning, and biogenic emissions, emissions may be from processes that

contain inherent variability. For example, considerable uncertainties remain in determining

the burned area for biomass burning. Also, many fires cannot be observed during the flaming

stage due to obstruction in the satellite view (such as from cloud coverage) [Schroeder et al.,

2008]. The use of observations to constrain emissions is thus an important, developing topic

for aerosol modeling.



12

1.2.7 CMAQ Model

The air quality model currently used by the EPA is the CMAQ modeling system [Appel

et al., 2007]. CMAQ is a three-dimensional Eulerian chemical transport model of gaseous and

aerosol air pollution. CMAQ is developed to have multi-scale capabilities so that separate

models are not required for urban scale and regional scale air quality modeling.

The CMAQ model consists of horizontal advection and diffusion, vertical advection

and diffusion, gas-phase chemistry, aerosol microphysics, and cloud processes (including wet

deposition and aqueous chemistry). In version 4.7.1 of the CMAQ model (the version that

the adjoint is developed from), both the piecewise parabolic method (ppm) and global mass-

conserving (yamo) advection schemes are supported. The yamo method uses the ppm scheme

for horizontal advection and derives a vertical velocity component at each grid cell that

satisfies the continuity equation using the driving meteorology model’s density. This version

of the model uses the ACM2 planetary boundary layer model [Pleim, 2007]. The ACM2

model is able to represent both the supergrid and subgrid-scale components of turbulent

transport in the convective boundary layer.

CMAQ v4.7.1 allows the user to choose either the CB05 chemical mechanism or the

SAPRC99 chemical mechanism. Some of the differences between the CB05 and SAPRC99

mechanisms are that they use a different scheme for condensing the organic chemistry, and

the SAPRC99 mechanism has more detailed organic chemistry than CB05. The cloud process

module includes aqueous chemistry and wet deposition. Wet deposition is calculated for both

subgrid-scale convective clouds, as well as resolved clouds. The CMAQ aerosol module is

detailed in the next section.

1.2.8 CMAQ Aerosol Module

CMAQ version 4.7.1 utilizes a new aerosol module called AERO5. The AERO5 module

employs a modal approach to represent the size distribution of particulate matter [Binkowski
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and Roselle, 2003; Mebust et al., 2003]. The particle size distribution is represented as a

superposition of three lognormal sub-distributions, called modes: Aitken mode, accumulation

mode, and coarse mode. In the default configuration, CMAQ estimates concentrations of

aerosols in each of the three modes (e.g., ASO4I, ASO4J, ASO4K correspond to sulfate

aerosol in the Aitken mode, accumulation mode, and coarse mode, respectively). All three

modes are subject to wet and dry deposition, in addition to condensation.

The AERO5 modules solves the general dynamic equation for aerosols:

∂

∂t
n(v , t) =

1

2

∫ v

0

K(v − q, q)n(v − q, t)n(q, t)dq

− n(v, t)

∫ ∞
0

K(q, v)n(q, t)dq (1.2)

− ∂

∂v
(I(v)n(v, t)) + J0(v)δ(v − vo) + S(v) +R(v)

where the first term on the right hand side corresponds to the formation of particles of

volume v from coagulation, the second term corresponds to the loss of particles of volume v ,

the third term corresponds to condensation and evaporation, the fourth term corresponds to

the formation of particles of volume v by nucleation, S(v) are sources, and R(v) are removals

(deposition). n(v, t) is the particle number distribution, K is the coagulation coefficient, I(v)

is the condensation growth rate, and J0(v) is the nucleation rate. Equilibrium concentrations

of inorganic aerosols are solved using ISORROPIA II [Fountoukis and Nenes, 2007].

While previous versions treated all secondary organic aerosol (SOA) as semi-volatile,

the AERO5 module has the following four additional SOA processes:

(1) SOA formed by in-cloud oxidation from glyoxal and methyglyoxal.

(2) Enhancement of isoprene-derived SOA under acidic conditions.

(3) SOA originating from aromatic oxidation under low-NOx conditions.

(4) Oligomerization of particle-phase semi-volatile organic material.
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Previous versions of CMAQ considered coarse-mode particles to be dry and inert. Addition-

ally, components in the coarse mode could not evaporate or condense. CMAQ version 4.7,

however, allows semi-volatile aerosol components to condense and evaporate from the coarse

mode and non-volatile sulfate to condense on the coarse mode. CMAQ version 4.7 also uses

dynamic mass transfer to simulate the coarse mode. This is because particles in the coarse

mode are often not in equilibrium with the gas-phase.

1.2.9 Adjoint Model

In contrast to forward model sensitivity analysis, adjoint modeling provides receptor-

based sensitivities. The adjoint method has two main advantages: First, the adjoint model

calculates sensitivities with respect to all model parameters simultaneously, requiring signifi-

cantly less run time than forward model sensitivity analysis. Second, the computed gradient

is numerically precise when using the adjoint model, whereas forward model perturbation

methods are more subject to roundoff and truncation errors. While most adjoints of Eulerian

chemical transport models [Sandu et al., 2005a] have been developed and used for inverse

modeling of gas-phase species [Elbern et al., 2000; Martien and Harley, 2006], several stud-

ies have addressed aerosols [Hakami et al., 2005; Henze et al., 2007]. An adjoint of a fixed

size aerosol model has been developed for a global coupled chemistry-aerosol model [Henze

et al., 2007], and a box model adjoint of aerosol dynamics has been studied [Sandu et al.,

2005b; Henze et al., 2004]. Hakami et al. [2005] applied the adjoint of the STEM-2k1 chem-

ical transport model to constrain BC emissions during the Asian Pacific Regional Aerosol

Characterization Experiment. Dubovik et al. [2008] developed the adjoint of the GOCART

aerosol transport model to retrieve global aerosol source emissions from satellite observa-

tions. Huneeus et al. [2009] developed a simplified global aerosol model and its adjoint to

optimize aerosol and aerosol precursor emissions using variational data assimilation. The

new CMAQ aerosol adjoint is detailed in Section 2.7.1.1.
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2.1 Abstract

Recent assessments have analyzed the health impacts of PM2.5 from emissions from

different locations and sectors using simplified or reduced-form air quality models. Here we

present an alternative approach using the adjoint of the Community Multiscale Air Qual-

ity (CMAQ) model, which provides source-receptor relationships at highly-resolved sectoral,

spatial, and temporal scales. While damages resulting from anthropogenic emissions of BC

are strongly correlated with population and premature death, we found little correlation

between damages and emission magnitude, suggesting that controls on the largest emissions

may not be the most efficient means of reducing damages resulting from anthropogenic BC

emissions. Rather, the best proxy for locations with damaging BC emissions is locations

where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest

contributors to premature deaths attributed to exposure to BC, while onroad gasoline emis-

sions cause the highest deaths per amount emitted. Emissions in fall and winter contribute

to more premature deaths (and more per amount emitted) than emissions in spring and

summer. Overall, these results show the value of high-resolution source attribution for de-

termining the locations, seasons, and sectors for which BC emission controls have the most

effective health benefits.
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2.2 Introduction

Exposure to fine particulate matter (PM2.5) in ambient air has been shown to be a

cause of various adverse health effects, such as cardiopulmonary disease and lung cancer

[Krewski et al., 2009; WHO, 2006; Pope et al., 2002; Katanoda et al., 2011; Lepeule et al.,

2012; Kazuhiko et al., 2011; Puett et al., 2009; Gauderman et al., 2002; Cohen et al., 2004],

leading to an estimated 130,000 premature deaths in 2005 in the US alone [Fann et al.,

2012b]. Recent work has focused on species-specific and source-specific analyses of PM2.5

health impacts. Many studies have associated increased premature deaths with proximity to

major roadways [Finkelstein et al., 2004; Finkelstein, 2005; Gehring et al., 2006; Wilker et al.,

2013b]. Other studies have found associations of increased premature deaths and morbidity

to concentrations of black carbon (BC) [Suh and Zanobetti, 2010; Adar et al., 2007; Peng

et al., 2009; WHO, 2012; Power et al., 2011; Wilker et al., 2013a]. Bell et al. [2009] analyzed

source-specific effects of PM2.5 species on both cardiovascular and respiratory diseases and

found that increases in concentrations of BC and Vanadium resulted in the largest increase

in these diseases. Reviews of the health effects of exposure to BC have suggested that

there is a causal relationship between exposure to BC and premature death [Janssen et al.,

2011; Grahame et al., 2014]. There is additional interest in BC owing to potential near-

term climate benefits of reductions of BC emissions [Bauer and Menon, 2012; Bond, 2007;

Jacobson, 2010; Bond et al., 2013; Anenberg et al., 2012; Shindell et al., 2012].

Since studies implicate exposure to ambient PM2.5 in causing a large number of prema-

ture deaths, it is further important to determine which emissions, in terms of both location

and source sectors, have the largest effect on human health. Even if one assumes uniform

toxicity per unit mass of PM2.5, the health effects of emissions can vary greatly between

locations and sectors, due to differences in spatial distributions of emissions and population.

Muller et al. [2011] used a dispersion model to estimate air pollution damages (from both

health and climate effects) associated with emissions of six gaseous or particulate pollutants
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across a wide range of sectors and found that the utility sector contributes to the most air

pollution damages in the US. Fann et al. [2012a] estimated the PM2.5-related health ben-

efits associated with emission reductions for 17 sectors across the US and found that the

largest benefits-per-ton of emission reductions come from reducing directly emitted PM2.5.

Tainio et al. [2010] estimated that traffic accounts for approximately 30% of emissions of

PM2.5, yet exposure to traffic emissions account for approximately 50% of adverse health

effects associated with exposure to PM2.5 in Finland. Human health benefits-per-ton can

also vary substantially across emissions from different locations and source sectors. Using

a reduced-form air quality model to evaluate the benefits-per-ton estimates for the same

pollutant across various sources and 9 urban areas, Fann et al. [2009] estimated benefits-

per-ton estimates ranging from $65,000/ton for carbon electric generating utility (EGU) and

non-EGU emissions in Salt Lake City to $2,500,000/ton for area source carbon emissions in

Phoenix (2006$).

While variability in emission damages across locations and sectors is clearly significant,

incorporating this type of analysis into air quality control strategies is often hindered by the

computational expense of quantifying damages for numerous sources. Previous works have

used simplified, [Muller et al., 2011; Muller and Mendelsohn, 2009] reduced-form, or coarser

models [Fann et al., 2009; Levy et al., 2009; Fann et al., 2012a] and considered a limited

number of sources. An alternative approach is using adjoint modeling, which provides a

means to analyze detailed source-receptor relationships at a highly-resolved sectoral, spatial,

and temporal scale [Hakami et al., 2006; Lapina et al., 2014]. Koo et al. [2013] used adjoint

modeling for evaluating PM2.5 health impacts from the aviation sector in a global model, and

other studies have applied this approach to evaluate PM2.5 health impacts from a range of

sectors at global [Li et al., 2015] and regional scales [Dedoussi and Barrett, 2014]. Pappin and

Hakami [2013b] used adjoint modeling for estimation of premature death due to short-term

exposure to gas-phase pollutants, and this approach has been further applied for estimation

of ozone health impacts [Pappin and Hakami, 2013a; Mesbah et al., 2013; Zhao et al., 2013].
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In this work, we introduce and apply a new CMAQ adjoint model to quantify the individual

role of more than 106 emissions (13 sectors × 97,416 locations × 4 seasons) on premature

deaths attributed to exposure to BC in the US at much lower computational cost than the

more than 106 simulations that would be needed to obtain the same results without this

tool.
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2.3 Materials and Methods

2.3.1 Forward Model

BC concentrations are estimated using the Community Multiscale Air Quality (CMAQ)

model v4.7.1 [Byun and Schere, 2006]. The modeling domain covers the continental US,

northern Mexico, and southern Canada at a 12km × 12km resolution (396 × 246). The

vertical domain consists of 24 terrain-following layers in sigma-pressure coordinates. Meteo-

rological inputs were obtained from version 3.1 of the Weather Research Forecasting model

(WRF) [US EPA, 2011; Skamarock et al., 2005]. Boundary conditions and initial condition

profiles were obtained by running GEOS-Chem version 8.02.03 with a grid resolution of 2.0◦

× 2.5◦ (latitude × longitude) and 47 vertical layers [US EPA, 2012b].

We use anthropogenic emissions from version 2 of the 2008 National Emission Inven-

tory (2008 NEI) [US EPA, 2013], Canada’s 2006 inventory and Mexico’s Phase III 2008

inventory. The 2008 NEI includes five sectors: nonpoint, point, nonroad mobile, onroad

mobile, and fires. Biogenic emissions are obtained from the BEIS3.14 model [Pierce and

Waldruff, 1991]. Wildfire emissions were calculated using the SMARTFIRE2 system [Ewer

et al., 1999]. Sectoral emission profiles were obtained by running the Sparse Matrix Opera-

tor Kernel Emissions (SMOKE) modeling system [Coats and Houyoux, 1996] v3.5.1 for the

following sectors: onroad mobile, nonroad mobile, fire, EGU, non-EGU, commercial marine,

non-US point, dust, rail, non-point, non-US onroad, and non-US nonpoint and nonroad.

The onroad mobile sector was further differentiated by fuel type based on the source clas-

sification code in SMOKE. The nonpoint sector (called “stationary area” in previous NEIs)

includes sources such as residential heating, gas stations, dry cleaning, commercial cooking,

etc. The non-EGU sector includes large industrial combustion sources that are not catego-

rized as EGUs. The “non-US” sectors contain emission sources that are located outside of

the continental US (i.e., Southern Canada and Northern Mexico).

We use CMAQ to estimate national premature deaths from exposure to BC using the



29

following health impact function [Anenberg et al., 2011]:

J =
N∑
i=1

Mi · (1 − e−β·Cav,i ) (2.1)

where Mi is the 2010 gridded annual non-accidental premature deaths in the US for people

age 30 or older, Cav ,i is the gridded annual average BC concentration, i is the grid cell

index, N is the number of grid cells, and β is the concentration response factor. We use a

concentration response factor of 0.005827 (response factor is calculated from the relative risk

estimate presented in Krewski et al. [2009], 1.06 (1.04-1.08)). Mortality rates for 2004-2006

are from the Centers for Disease Control and National Center for Health Statistics [Abt,

2013. Bethesda, MD.]. Our linear approximation of this health impact function yields a

high bias of approximately 15%.

2.3.2 Adjoint Model

In contrast to forward model sensitivity analysis, adjoint modeling provides receptor-

based sensitivities. The adjoint method has two main advantages: First, the adjoint model

calculates sensitivities with respect to all model parameters simultaneously, requiring signifi-

cantly less run time than forward model sensitivity analysis. Second, the computed gradient

is numerically precise when using the adjoint model, whereas forward model perturbation

methods are more subject to roundoff and truncation errors. While most adjoints of Eulerian

chemical transport models [Sandu et al., 2005a] have been developed and used for inverse

modeling of gas-phase species [Elbern et al., 2000; Martien and Harley, 2006], several stud-

ies have addressed aerosols [Hakami et al., 2005; Henze et al., 2007]. An adjoint of a fixed

size aerosol model has been developed for a global coupled chemistry-aerosol model [Henze

et al., 2007], and a box model adjoint of aerosol dynamics has been studied [Sandu et al.,

2005b; Henze et al., 2004]. Hakami et al. [2005] applied the adjoint of the STEM-2k1 chem-

ical transport model to constrain BC emissions during the Asian Pacific Regional Aerosol
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Characterization Experiment. Dubovik et al. [2008] developed the adjoint of the GOCART

aerosol transport model to retrieve global aerosol source emissions from satellite observa-

tions. Huneeus et al. [2009] developed a simplified global aerosol model and its adjoint to

optimize aerosol and aerosol precursor emissions using variational data assimilation.

Inclusion of aerosols in the existing CMAQ-ADJ [Hakami et al., 2007] results in the first

coupled gas-aerosol, regional adjoint model to explicitly describe aerosol mass composition

and size distribution (see Supporting Information for adjoint development details). For

this project, the receptor function of interest is national premature death attributed to BC

exposure (Equation 2.1). The adjoint model calculates the sensitivity of this function with

respect to emissions at highly-resolved scales. The resulting sensitivities quantify the effects

of location, time, and sector of emissions of BC on human health in the US.

Calculation of the health impact function (including checkpointing) and its gradients

takes approximately 3.9 times the computational cost of the health impact function alone

(without checkpointing). The updated CMAQ adjoint model has been validated against

both complex variable [Squire and Trapp, 1998] and finite difference sensitivities. The adjoint

sensitivities are numerically accurate, as shown by the linear regression of adjoint sensitivities

on finite difference sensitivities of BC concentrations with respect to BC emissions (R2 =

0.99, m = 1.01) for simulations that include all processes except horizontal transport (see

Supplemental Information). Tests including horizontal advection indicate that the adjoint

sensitivities can be used at the grid scale to estimate changes in total national premature

deaths to within one death (see Figure 2.11).
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2.4 Results and Discussion

2.4.1 Forward Model Simulations

CMAQ was run from December 21, 2006, to December 31, 2007, to generate gridded

annual average concentrations. The annual average BC concentrations were then used in

the health impact function (Equation 2.1) to estimate the premature deaths attributed to

exposure to BC in 2007. For computational expediency, CMAQ model configurations did not

include gas-phase chemistry, which has a negligible effect on simulated BC concentrations.

We first evaluate simulated annual average BC concentrations via comparison to ob-

servations from the Interagency Monitoring of Protected Visual Environments [Malm et al.,

2004] (IMPROVE) and Chemical Speciation Network [Flanagan et al., 2006] (CSN) moni-

toring networks (Figure 2.1). The IMPROVE and CSN monitoring networks use different

protocols to measure aerosol carbon fraction, therefore we convert the CSN measurements to

IMPROVE-equivalent values using the seasonal conversion factors from Hu et al. [2009] (this

conversion is not necessary for recent years, due to the recent update to the CSN protocol).

While a majority of locations show similar concentrations between model and observations,

some points have substantial differences. Simulated annual average BC concentrations tend

to overestimate the largest concentrations (simulated annual average concentrations > 1.5

µg/m3) when compared to IMPROVE data (mean bias of 0.09 µg/m3, see Table 2.1). How-

ever, at lower concentrations (simulated annual average concentrations < 1 µg/m3) CMAQ

tends to compare well with IMPROVE, as shown by the coefficient of determination of

0.65 and the root mean squared error (RMSE) of 0.14 µg/m3 (mean absolute error of 0.13

µg/m3). Comparisons to the adjusted CSN measurements, on the other hand, tend to be

worse. While CMAQ and CSN concentrations are similar for smaller concentrations, there is

a large amount of scatter in the higher CSN values not captured by the model, likely owing

to sub-grid variability in concentrations near the urban CSN sites. However, as with the

comparison to IMPROVE observations, the RMSE is small (0.45 µg/m3, mean absolute er-
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ror = 0.50 µg/m3) for comparisons between CMAQ and CSN concentrations. Further, while

the coefficient of determination is small when comparing to CSN observations (R2 = 0.19),

the simulated concentrations have a small normalized mean bias of -17% (mean bias of -0.22

µg/m3).

By combining the forward model BC concentrations with gridded baseline mortality

rates in the continental US using Equation 2.1, we estimate approximately 12,600 (8,700 -

16,500, see Supplemental Information for uncertainty calculation details) national premature

deaths attributed to exposure to BC for 2007. This is consistent with previous studies, taking

into account that about 5-10% of PM2.5 mass is BC [US EPA, 2012a]. As one might expect,

a majority of premature deaths attributed to exposure to BC occur around major cities

(Figure 2.13).

2.4.2 Sensitivity of BC Health Effects to Anthropogenic Emissions

A comparison of yearly average BC concentrations to average BC concentrations cal-

culated from 12 weeks (Figure 2.12) shows that results from these 12 weeks provide an

accurate (R2 = 0.88, RMSE = 0.07 µg/m3) representation of the annual average. To reduce

the computational cost of this analysis, adjoint simulations were run (in parallel) for 12

1-week periods from the 1st to the 7th of each month. For each 1-week adjoint simulation,

we used a 4 day spin-up period. Semi-normalized sensitivities ( ∂J
∂E

· E, Figure 2.2a) with

respect to emissions (E) were accumulated throughout the entire week of the adjoint run,

and the resulting sensitivities were summed over the 12 individual simulations and scaled to

represent a yearly value.

We refer to semi-normalized sensitivities as contributions, because they quantify the

contribution of the BC emissions in each grid cell to the model estimate of total national

premature deaths. For example, our analysis estimates that emissions in the grid cell that

contains New York City result in 174 premature deaths associated with exposure to BC in the

continental US. Therefore, emissions in this grid cell have a contribution of 174 premature
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Figure 2.1: Comparison of simulated annual average BC concentrations (µg/m3) to observa-
tions from the IMPROVE network (circles), and CSN network (diamonds). CSN observations
were scaled per Hu et al. [2009]
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Figure 2.2: (a) Semi-normalized sensitivities ( ∂J
∂E

· E) showing the sensitivity of national
premature death to emissions in each grid cell. A maximum of 174 premature deaths are
attributed to BC emitted from New York, NY. (b) Ratio of gridded premature death per-
centage over gridded anthropogenic emission percentage, plotted on a log scale. (c) Ratio of
gridded contribution percentage from anthropogenic emissions over gridded anthropogenic
emission percentage, plotted on a log scale. (d) Ratio of gridded contribution percentage
from anthropogenic emissions over gridded premature death percentage, plotted on a log
scale. For larger versions of each panel, see Figures 2.17-2.20.
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deaths to the national total. The contribution percentage is defined as the percent of the

total continental US deaths owing to BC emissions from a single grid cell. For example,

the contribution percentage of the grid cell that contains New York City is 174/12,200 x

100% = 1.4%. From our analysis, we estimate that anthropogenic emissions of BC account

for 12,200 (8,400 - 16,000) premature deaths (approximately 95% of total premature deaths

from exposure to BC). It has often been assumed that the damages (contribution per unit

emission) of BC emissions are constant, or proportional to the magnitude of emissions across

large domains [Muller et al., 2011]. However, our analysis shows that damages vary greatly

by region (see Figure 2.14), with damage estimates ranging two orders of magnitude and

being largest in urban centers.

We generated plots (Figures 2.2b-d) for various ratios on a log scale. When generating

these ratio plots, only a fraction of the grid cells were included in order to emphasize the

cells with larger values while also omitting cells that might have large ratios but small overall

impacts. Of the ∼97,000 grid cells in the domain, data from only ∼10,000 grid cells were

used. For each ratio plot, the largest values for the numerator and denominator (summing

to approximately 95% for each) are displayed in the plot.

To analyze the spatial differences between the magnitude of emissions and the magni-

tude of exposure on a grid-cell by grid-cell basis, we have plotted the ratio of premature death

percentage to anthropogenic emission percentages (Figure 2.2b). Warm (cool) colors indi-

cate locations with a larger (smaller) premature death percentage than the corresponding

anthropogenic emission percentage. Highly populated urban areas have larger premature

death percentages than anthropogenic emission percentages. In contrast, grid cells along

many interstates in rural areas have larger anthropogenic emission percentages than prema-

ture death percentages. This is expected, as transportation emissions account for a majority

of anthropogenic US BC emissions (∼80% [US EPA, 2012a]), and one would not expect

many premature deaths attributed to BC exposure to occur near interstate highways in ru-

ral areas. However, near highways passing through urban areas (e.g., Highway 99 in Modesto
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and Fresno, CA) there are larger premature death percentages than anthropogenic emission

percentages due to the proximity of populous areas to the highway.

Next, the ratio of contribution percentage to anthropogenic emission percentage (Fig-

ure 2.2c) demonstrates the variability in the difference between the magnitude of emissions

and their marginal damages (the incremental change in damage resulting from an increase or

decrease in emissions). Warm (cool) colors show locations with higher (lower) contribution

percentages than anthropogenic emission percentages. Highly populated urban areas tend to

have larger contribution percentages than anthropogenic emission percentages. However, in

rural areas, such as eastern Texas and Tennessee, some major roadways have larger anthro-

pogenic emission percentages than contribution percentages. The fact that rural roadways

often have higher emission percentages than contribution percentages in many parts of the

country suggests that additional restrictions on vehicle emissions would not be the most effi-

cient means of reducing national premature deaths attributed to exposure to BC. However,

Figure 2.2c does not provide sufficient information to weigh this against the impact of vehicle

emissions near the urban areas. Further analysis of net sectoral impacts is provided in the

Seasonal and Sectoral Trends section.

Given the short lifetime of BC, one might expect that contributions might be reduced

most efficiently through reductions to emissions in highly populated areas. Adjoint sen-

sitivity analysis quantitatively separates the influence of emission location and population

distributions from atmospheric transport, which is shown by the ratio of gridded contribu-

tion percentage over gridded premature death percentage (Figure 2.2d). Warm (cool) colors

show locations with higher (lower) contribution percentage than premature death percentage.

Many of the major roadways have contribution percentages greater than premature death

percentages. However, along some major roadways (such as Interstate-90 in NY), there are

larger premature death percentages than contribution percentages. Areas downwind of ma-

jor emission locations have more premature deaths than accounted for by emissions in the

corresponding grid cells (e.g., Connecticut, Rhode Island, eastern Massachusetts are down-
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wind of emissions from northern New Jersey, and show larger premature death percentages

than contribution percentages). Additionally, many of the areas with higher contribution

percentage than premature death percentage are upwind of highly populated areas (northern

New Jersey, west-southwest of New York City). As with the northeastern US, the California

region shows higher premature death percentages downwind of high emission areas.

We next compare premature death and contribution percentages to population and

anthropogenic emission percentages across the nation to determine national-scale trends

(Figures 2.3 and 2.15). Locations with the highest anthropogenic emissions do not neces-

sarily correspond to the highest contributions for BC premature deaths (see Figure 2.3).

In fact, the second largest anthropogenic emissions considered (0.18%) has a corresponding

contribution percentage of only 0.02%. These values correspond to a grid cell that encom-

passes Gary, IN. As such, the emissions in this grid cell are in and near locations of high

population, and the large discrepancy between emissions and contributions cannot be at-

tributed to large emissions occurring in rural, low-populated areas. Additionally, 21 of the

50 largest emissions are in the lowest 50% of contributions. As one might expect, contribu-

tion is strongly correlated with population (R2 = 0.79) and premature death (R2 = 0.88).

Premature deaths are also highly correlated with population, with a coefficient of determi-

nation of approximately 0.85. This is expected, as population is the most spatially variable

factor in our definition of the impact function (Equation 2.1). It might be expected that

anthropogenic emissions would be highly correlated with population; however, our analysis

shows a coefficient of determination of only 0.41. When comparing anthropogenic emissions

with contribution and premature death, we obtain R2 values of 0.46 and 0.35, respectively.

Regression of premature death on emission shows that 83 of the 200 largest premature deaths

are in the lowest 50% of emissions. The grid-scale contributions calculated with the CMAQ

adjoint identify locations where BC control strategies would have the greatest impact on na-

tional premature deaths. However, it is interesting to also consider the efficiency of strategies

developed without such results. Our analysis shows that the best proxy for identifying lo-
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Figure 2.3: Comparison of contribution percentage from anthropogenic emissions to anthro-
pogenic emission percentage.

cations where BC emissions have the highest contributions (i.e., the most effective locations

to target for reducing health impacts) is areas with the largest premature deaths, rather

than locations with the highest emissions or population. US National Ambient Air Quality

Standards (NAAQS) focus on regions with concentration exceedences. Therefore, the most

effective means of reducing health impacts is being addressed only where high concentrations

coincide with high premature deaths.

2.4.3 Sensitivity of BC Health Effects to Anthropogenic Emissions, Summed

by State

In this section, we aggregate our grid-level sensitivity results on a per-state basis,

following Hakami et al. [2006]. While the results presented here generally emphasize the

importance of transport of BC, this type of analysis, if repeated for health impact functions

focusing on individual states, could be used to quantify interstate transport of BC. All

grid cells were included for these plots, and we consider differences in state-level results (as

opposed to the previous ratio analysis) since values in every state are of the same order of

magnitude. Figure 2.16a shows the contribution percentage on a per-state basis. A majority
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Figure 2.4: State based analysis of adjoint sensitivities. Contribution percentage from an-
thropogenic emissions minus anthropogenic emission percentage.

of contributions are attributed to emissions from California (with approximately 15.8%, or

2,000 premature deaths), followed by Illinois, New York, and Texas (each with approximately

6.7%, or 800 premature deaths).

We next consider which states are experiencing more than their share (when compared

to emissions) of national premature deaths (see Figure 2.16b). There are many states that

have higher anthropogenic emission percentages than premature death percentages, such

as California (by 6.9%) and New York (by 6.3%). However, while the maximum positive

difference is 6.9% (California), a majority of the states with larger anthropogenic emission

percentages than premature death percentages have a negative difference smaller than −1%.

In addition, we compare contribution percentages to anthropogenic emission percent-

ages (Figure 2.4). Figure 2.4 shows that emissions originating in California account for a

smaller percent of national BC emissions than the percent of national premature deaths.

While there are many states with a higher anthropogenic emission percentage than contri-

bution percentage, such as Texas and Louisiana, a majority of these states have a difference

below 1%.

To determine states that have emissions that contribute to more premature deaths

than there are in that state, we analyze the differences between contribution and premature

death percentages for each state (Figure 2.16c). This type of analysis allows us to estimate

which states contribute disproportionately to the national health burden (red) and which
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would benefit the most from national-scale uniform emissions reductions (blue). A majority

of states in the southeastern US have higher premature death percentages than contribution

percentages. Most states west of the Mississippi have higher contribution percentages than

premature death percentages. Emissions originating in California contribute to more pre-

mature deaths than there are premature deaths in California (however, this analysis does

not allow us to specify where the surplus premature deaths occur), while there are more

premature deaths attributed to exposure to BC in New York than can be accounted for

by BC emissions in New York. This suggests that, even for short-lived species, transport

processes influence the distribution of damages from pollutant emissions at national scales.

Still, despite these potentially interesting differences, overall differences across states are

small, particularly compared to the order of magnitude variability in the grid-scale analysis.

Therefore, there is more room for enhancing the effectiveness of BC control strategies within

states or particular sectors (see next section) rather than developing state-specific caps to

BC emissions.

2.4.4 Seasonal and Sectoral Trends

Here we perform an analysis of the seasonal and sectoral trends of emissions and the

corresponding contributions (Figure 2.5). The sectors are sorted by contribution percentage,

with the largest contributions being from onroad diesel emissions. Emissions from the fire

sector have been halved for scale, while contributions from the fire sector are unaltered.

Seasonal trends in emissions do not necessarily correspond to similar seasonal trends

in contributions for most sectors. For example, onroad diesel emissions are largest in the

JJA months, followed by MAM, SON, and DJF, respectively. However, the contributions

from these emissions are largest in the MAM season, followed closely by DJF. While onroad

diesel emissions in the winter months account for the smallest percentage of annual onroad

diesel emissions, their emissions in winter contribute nearly the most of any season to annual

premature deaths. This is most likely attributed to the lower planetary boundary layer in
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Figure 2.5: Seasonal and sectoral analysis of emissions (left), contributions (middle), and
contribution per emission (right).



42

the winter, which results in larger ground-level concentrations per unit emitted.

In addition to seasonal variability in damages, Figure 2.5 shows that the magnitude

of emissions from a sector is not necessarily an accurate predictor of the magnitude of

contributions from those emissions. Fire emissions exemplify this behavior. The percent of

BC emitted by fires is nearly 40% but only 3.2% of contributions come from fire emissions,

which can largely be explained by the rural location of the majority of these emissions.

Onroad gasoline emissions also support our finding that the magnitude of emissions are

not always a good predictor of the magnitude of contributions. Onroad gasoline emissions

account for approximately 2.1% of emissions, yet result in approximately 5% of premature

deaths attributed to exposure to BC. Non-EGU (∼3.1%) and EGU (∼2.9%) sources both

have larger emissions than onroad gasoline, yet the contributions from non-EGU (∼3.3%) and

EGU (∼2.5%) sources are smaller than those from onroad gasoline emissions. However, this

trend does not hold for the largest contributors. Onroad diesel and nonroad mobile sectors are

the two largest contributors (with 38% and 28%, respectively), as well the two largest emitters

(with 19% and 15%, respectively) excluding fire emissions. While the results presented in

Figure 2.2c suggest that additional restrictions on vehicle emissions along some highways

might not be the most efficient means of reducing national premature deaths attributed

to exposure to BC, Figure 2.5 includes sectoral contribution information from the urban

areas and suggests that the transportation sector is indeed an effective target for emissions

controls.

Figure 2.5 also shows that the efficiency of BC emissions to result in premature deaths

(right column) is consistently greater in the winter months. With the exception of fire

emissions and non-US emissions, every sector shows significantly larger contributions per

unit emission in the SON and DJF months than the JJA and MAM months. Additionally,

while there are approximately 8 times more contributions from onroad diesel emissions than

onroad gasoline emissions, onroad gasoline emissions of BC result in more premature deaths

per unit emission than any other sector.
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2.5 Conclusions

While previous source attribution studies of PM2.5 health impacts have used simpli-

fied, reduced-form, or coarser models, we used an alternative approach (using the adjoint of

CMAQ) that provides source-receptor relationships at highly-resolved sectoral, spatial, and

temporal scales. Many previous studies that analyzed damages associated with air pollution

assumed a single damage estimate across multiple locations and sources [Muller et al., 2011];

however, our analysis allows us to identify the damages of emissions for all locations, which

are highly variable. Through adjoint-based analysis, we have shown that highly populated

urban areas have larger premature death percentages than BC emission percentages. Ad-

ditionally, we compared damage percentages (percent of premature deaths resulting from

emissions in a specific location) to premature death, population, and emission percentages.

We found that while damage percentages are highly correlated with premature death and

population percentages, there is little correlation between damage percentages and emission

percentages, suggesting that controls on the largest emitters would not be an efficient means

of reducing damages associated with exposure to BC. In addition to the gridded analysis, we

performed a state-level analysis of the results. However, the overall differences in emission,

damage, and premature death percentage are small at these scales, suggesting that optimal

control strategies for BC need to be developed at a state and sector level. While our analysis

provides source-receptor relationships at high sectoral, spatial, and temporal scales, there are

some drawbacks. Our analysis utilized a single chemical transport model, as opposed to other

studies in the broader field of air quality modeling that have used an ensemble of simulations

to minimize uncertainty owing to any single model [Mallet and Sportisse, 2006; Stevenson

et al., 2006; van Noije et al., 2006; Koch et al., 2009]. There is also uncertainty associated

with the health impact function. We chose to use a concentration response factor that corre-

sponds to the relative risk of exposure to PM2.5, as opposed to using a concentration response

factor specific to exposure to BC. Additionally, our analysis exclusively considered prema-
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ture deaths attributed to pollutant exposure for the entire adult population, as opposed to

focusing on certain demographics that have been shown to be at a higher risk [Flachs et al.,

2013; Wilhelm et al., 2009; Bell and Dominici, 2008; Neidell, 2004]. While our analysis uses

emission profiles from 2007, mobile emissions have been declining in the US[Dallmann and

Harley, 2010]. This decrease in mobile emissions would most likely result in fewer estimated

health impacts. Also, our estimate of health impacts does not include premature deaths in

Canada or Mexico, yet emissions of BC in the US can result in premature deaths in neigh-

boring countries. Furthermore, previous studies have shown that premature death estimates

from forward model studies can vary largely for different horizontal grid resolutions [Punger

and West, 2013; Thompson and Selin, 2012; Li et al., 2015], with premature death estimates

decreasing at coarser grid resolutions. Based on these studies, we estimate that our analysis

(performed at the 12 km resolution) has a low bias relative to higher resolution simulations

(4 km) of only a few percent. However, our estimate would likely present a lower bound for

this bias as neither 12 km nor 4 km simulations are at a fine enough resolution to accurately

resolve near-roadway gradients in BC concentrations. Finally, while this paper’s focus is on

premature deaths in the US associated with exposure to BC, this work could be extended to

analyze the effects of BC emissions on premature death within a specified region, state, or

socio-economic demographic. This work can also be extended to analyze sources contribut-

ing to premature death owing to exposure of total PM2.5, similar to previous studies that

used adjoints sensitivities from coarser models [Dedoussi and Barrett, 2014].
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2.7 Supplemental Information

Table 2.1: Statistical analysis of CMAQ model performance for BC concentrations.

Observation Network R2 MAE Mean Bias RMSE NMB
IMPROVE 0.65 0.13 0.09 0.14 33.6%

CSN 0.19 0.50 -0.22 0.45 -17.8%

2.7.1 CMAQ Adjoint Validation

An adjoint of the entire AERO5 module in CMAQ has been developed. In order to

verify that the adjoint has been correctly derived, one needs to compare the calculated adjoint

sensitivities to another form of sensitivity calculation. The validation performed for this

project compares adjoint sensitivities to first-order finite difference sensitivities, with varying

percentage perturbations. First-order finite difference (FD) sensitivities are calculated by

∂f

∂x
=
f(x+ h) − f(x)

h
(2.2)

where f(x) is the concentration output from the default inputs, h is the perturbation, and

f(x + h) is the concentration output from the perturbed inputs. One problem with the

finite difference approximation is the dependence on the perturbation size. Choosing a

perturbation that is too small can result in errors due to subtractive cancellation. However,

perturbation sizes too large can result in errors due to the nonlinearity of the model.

For certain cases where finite difference calculations do not provide correct sensitivities,

complex variable sensitivities were used in order to confirm that the adjoint is providing

correct results. Complex variable sensitivities are calculated by

∂f

∂x
≈ Im[f(x+ ih)]

h
(2.3)

The complex variable estimate is not subject to subtractive cancellation, since it does

not involve a difference operation. In order to compute complex variable sensitivities for
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the CMAQ model, the entire model (or part of the model that is being validated) must be

modified to perform all calculations with complex numbers, as opposed to real numbers.

Simulations performed with complex arithmetic not only have longer runtimes, but also use

approximately double the memory requirements.

When performing the adjoint validation simulations, gradient data were generated for

the entire U.S. domain at a 36-km resolution. Simulations were run for varying durations

(ranging from 1 timestep simulations to 1-day simulations) using inputs for April 03, 2008.

In an effort provide a more physically-relevant initial condition profile, a spin-up simulation

was performed, running from April 01, 2008 through April 02, 2008. However, for certain

cases it was necessary to replace initial concentrations for some species with larger values.

For example, after the two day spin-up simulation certain species still had concentrations of

1.0E-30 µg
m3 . Applying any percentage perturbation smaller than 100% to a value this small

results in an incorrect sensitivity value of 0, due to the fact that the perturbation is outside

the numerical precision of the computer.

2.7.1.1 Aerosol Module Validation

For Figures 2.6 and 2.7, sensitivities are calculated for the list of species given in Table

2.2.

When performing finite difference sensitivity calculations, we found it best to not in-

clude aerosol thermodynamics (ISORROPIA) in the aerosol module. ISORROPIA is a

highly nonlinear, discontinuous aerosol thermodynamics model, which is subject to substan-

tial cancellation errors when sensitivities are calculated with the finite difference method.

ANISORROPIA (the adjoint of ISORROPIA), however, has been validated by comparing

adjoint sensitivities to complex variable sensitivities [Capps et al., 2011]. Therefore, we can

generate finite difference sensitivities of the aerosol adjoint without ISORROPIA and still

be confident in the accuracy of the full aerosol adjoint.

Series of simulations were run with different forcings (adjoint) and perturbations (finite
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NO2 Nitrogen Dioxide
N2O5 Dinitrogen Pentoxide
HNO3 Nitric Acid
HCL Hydrochloric acid
ASO4J Accumulation mode sulfate aerosol
ASO4I Aitken mode sulfate aerosol
ANH4J Accumulation mode ammonium aerosol
ANH4I Aitken mode ammonium aerosol
ANO3J Accumulation mode nitrate aerosol
ANO3I Aitken mode nitrate aerosol
AECJ Accumulation mode elemental carbon
AECI Aitken mode elemental carbon
AH2OJ Accumulation mode water aerosol
AH2OI Aitken mode water aerosol
ANAJ Accumulation mode sodium aerosol
ACLJ Accuulation mode chlorine aerosol
ACLI Aitken mode chlorine aerosol
NH3 Ammonia

Table 2.2: List of species used in Jacobian sensitivity calculations

(a) (b)

Figure 2.6: Partial Jacobian plots of (a) adjoint sensitivities and (b) FD sensitivities for
aerosol-only simulations without aerosol thermodynamics. Simulations were run for two
timesteps.
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difference) in order to generate partial Jacobian data for aerosol-only simulations without

ISORROPIA. When comparing the adjoint Jacobian (Figure 2.6(a)) to the FD Jacobian

(Figure 2.6(b)) for two timesteps, it is evident that while the sensitivities are comparable

for many relationships, there are some relationships for which the adjoint and FD do not

match. Specifically, instances with accumulation mode sodium (ANAJ) in the denominator

show sensitivities of zero for FD, while the adjoint provides non-zero values. Additionally,

the sensitivity of nitric acid (HNO3) with respect to nitric acid shows a sensitivity of zero in

the FD test, yet shows a value of approximately one in the adjoint.

The differences between adjoint and finite-difference sensitivities are most likely at-

tributable to failure of the finite-difference simulations to accurately calculate the sensitiv-

ities. In order to confirm this, similar tests were performed comparing adjoint sensitivities

(Figure 2.7(a)) to complex variable method (CVM) sensitivities (Figure 2.7(b)), however for

a single timestep. Simulations to generate the CVM partial Jacobian were performed by

Shunliu Zhao at Carleton University.

(a) (b)

Figure 2.7: Partial Jacobian plots of (a) adjoint sensitivities and (b) CVM sensitivities for
aerosol-only simulations that exclude aerosol thermodynamics. Simulation was run for one
timestep.
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From Figure 2.7 it is apparent that the zero sensitivity values with ANAJ in the denom-

inator in the previous figure (Figure 2.6) are attributed to a failure in the FD calculations.

Additionally, for this specific configuration of the aerosol module, it can be determined that

the aerosol module is behaving properly. However, there are still a few instances where the

adjoint and CVM sensitivities do not match; specifically, sensitivities of NH3 with respect to

NH3, and sensitivities of HCL with respect to HCL, where the adjoint provides sensitivities

of one, and the CVM provides sensitivities of zero. However, the finite difference calculations

provide values of one for these relationships. One would expect the sensitivity of a species

to itself to be one for a single timestep, hence the disagreement between adjoint and CVM

sensitivities for these cases is likely owing to an error in the CVM calculation.

2.7.1.2 Emission Sensitivity Validation

By default, the CMAQ adjoint calculates the sensitivity of a given cost function with

respect to concentrations. While sensitivities with respect to concentrations provide vital

information for many studies, there are a large number of applications that require sensitivi-

ties with respect to emissions. As with the development of the aerosol adjoint, the inclusion

of emission sensitivity calculation requires its own validation tests.

As opposed to the validation of the aerosol module, the validation of the emission

sensitivity calculation cannot simply treat the domain as an array of box models. Within

the CMAQ model, the injection of emissions into the model occurs in the vertical diffusion

(VDIFF) module. The VDIFF module transports concentrations vertically between layers.

Because of the transport between layers, validation of the vertical diffusion (VDIFF) and

vertical advection (ZADV) was performed for simulations where the domain was treated as

an array of column models.

For the first-order finite difference sensitivity calculations of BC with respect to BC

emissions, a 0.01% perturbation was applied to concentrations in entire columns. After

allowing the simulations to run for four hours, scaled sensitivity values were calculated by
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(a) (b)

Figure 2.8: Finite Difference ∆Conc
SFemis

vs. Adjoint emission sensitivity (
∂Jlayer
∂emis

∗ emis) for (a)
layer 1, and (b) layer 12. Model configuration included only VDIFF and ZADV.

dividing the change in output concentrations in a single layer by the emissions scaling factor,

or perturbation ( ∆Conc
SFemis

). On the other hand, semi-normalized adjoint sensitivities were

calculated by applying a forcing in a single layer (the same layer for which concentrations

were analyzed in the finite difference calculations) at the end of the four hour simulation

and then looking at output sensitivity values summed over the entire column, scaled by the

emissions (
∂Jlayer
∂emis

∗ emis). Since every layer between layer two and TOA are handled the

same within the vertical transport code, it is only necessary to validate one of these layers

in order to confirm the accuracy of the adjoint code.

Initial emission sensitivity validation was performed for a configuration that included

only vertical diffusion (VDIFF) and vertical advection (ZADV). Since the vertical layer

closest to the surface (layer one) is handled separately from the rest of the vertical layers,

validation tests were performed for two different layers, layer one (Figure 2.8(a)) and layer

twelve (Figure 2.8(b)).

One can see from Figure 2.8 that the adjoint gradients match the finite difference

gradients for both layer one and layer twelve nearly perfectly. For the validation of both
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(a) (b)

Figure 2.9: Finite Difference ∂Conc
SFemis

vs. Adjoint emission sensitivity (
∂Jlayer
∂emis

∗ emis) for (a)
layer 1, and (b) layer 12. Model configuration included VDIFF, ZADV, and AERO5.

layers, we have an R2 value that is nearly one. Additionally, the scatter plots show that

all points lie essentially on the one-to-one line. Because of this, we can conclude that the

calculation of sensitivities with respect to emissions has been properly implemented.

In addition to the above validation tests that were performed with a model configura-

tion that included only VDIFF and ZADV, validation of sensitivity with respect to emissions

were also performed for a configuration that included the aerosol module (AERO5, VDIFF,

ZADV). As in the validation above, validation tests for this configuration were performed

for both layer one (Figure 2.9(a)) and layer twelve (Figure 2.9(b)).

Again, it can be seen from Figure 2.9 that the adjoint gradients match the finite

difference gradients nearly perfectly for both layers. For the configuration that includes the

AERO5 module the agreement between adjoint and FD sensitivities for layer one is slightly

worse, with a few points falling off of the one-to-one line. However, the R2 value is still nearly

one and the points not on the one-to-one line are very close to lying on the line. Based on

these emission sensitivity comparisons with the inclusion of the AERO5 module, it can be

determined that the emissions sensitivity calculation has been implemented correctly. It can
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(a) (b)

Figure 2.10: Finite Difference ∂Conc
SFemis

vs. Adjoint emission sensitivity (
∂Jlayer
∂emis

∗ emis) for (a)
layer 1, and (b) layer 8. Model configuration included VDIFF, ZADV, AERO, and CLOUDS.

also be determined that the aerosol module is correctly coded for sensitivities of BC with

respect to BC.

Working towards a full model validation, another validation test was performed for

a model configuration that included CLOUDS into the previous configuration. For this

configuration validation was again performed for two separate layers. However, validation

tests were performed for layer one (Figure 2.10(a)) and layer eight (Figure 2.10(b)), as

opposed to layer twelve.

It can be determined from Figure 2.10 that, in addition to emissions sensitivity calcu-

lations being properly implemented, the cloud adjoint module is also correctly written for

BC processes. The adjoint and finite difference sensitivities again match nearly perfectly for

both layers, however the first layer scatterplot now contains a few points that are off the

one-to-one line, one of which has a FD sensitivity value that is approximately 165% that of

the adjoint sensitivity (FD ≈ 3.8, ADJ ≈ 2.3). This is most likely caused by nonlinearities in

the model causing the finite difference calculation to result in an incorrect sensitivity value.
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Figure 2.11: Comparison of adjoint and finite difference estimations of the premature deaths
attributed to exposure to BC in the US from both single grid cell emissions, and single sector
emissions.

2.7.1.3 Full Model Validation

We have performed a validation test for a model configuration that included all pro-

cesses except gas-phase chemistry and aqueous chemistry. For this validation, we compare

finite difference and adjoint estimations of premature deaths attributed to exposure to BC

in the US. Validations were performed comparing both single grid cell estimates (for all

sources), as well as single source estimates (for all grid cells). The resultant semi-normalized

sensitivities give an estimate of the number of premature deaths attributed to emissions from

any grid cell or source. Figure 2.11 presents the comparison between FD sensitivities and

adjoint sensitivities, and shows that our results are accurate to within approximately ±1

premature death.

2.7.2 Uncertainty Calculation

Calculation of the uncertainty in the estimate of premature deaths associated with

exposure to BC was performed through propagation of errors (Equation 2.4)
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σT =

√
N∑
i=1

(
∂J
∂β

)2
i
σ2
β +

(
∂J

∂Cav,i

)2
i
σ2
C

N
(2.4)

where J is the cost function, i is the grid cell index, N is the total number of grid cells

for which the cost function is calculated, β is the concentration response factor, Cav,i is

the annual average concentration for grid cell i, σC is the uncertainty in the simulated

concentrations, and σβ is the uncertainty in the concentration response factor. For σC , we

use the mean absolute error when comparing the simulated annual average to the observed

annual average from CSN sites (σC = 0.503). While the mean absolute error for comparing

simulated to observed concentrations for IMPROVE sites is much lower, we chose to use the

mean absolute error from the comparison to CSN sites since a majority of premature deaths

occur in urban areas, and the CSN network has more observation sites in urban areas. We

used a value for σβ of 0.32, which was calculated from the range of relative risks provided in

Krewski et al. [2009].
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Figure 2.12: Comparison of yearly average BC concentrations to 12 week average BC con-
centrations.
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Figure 2.13: Gridded annual premature deaths associated with exposure to BC concentra-
tions.

Figure 2.14: Gridded damage estimates ( ∂J
∂E

) from BC emissions.
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Figure 2.15: Comparison of (a) contribution percentage from anthropogenic emissions to
population percentage, (b) anthropogenic emission percentage to population percentage, (c)
premature death percentage to contribution percentage from anthropogenic emissions, (d)
premature death percentage to population percentage, and (e) premature death percentage
to anthropogenic emission percentage.
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Figure 2.16: State based analysis of adjoint sensitivities. (a) Contribution percentage
from anthropogenic emissions, (b) premature death percentages minus anthropogenic emis-
sion percentage, (c) contribution percentage from anthropogenic emissions minus premature
death percentage.
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3.1 Abstract

Recent studies have shown that exposure to particulate black carbon (BC) has signif-

icant adverse health effects, and may be more detrimental to human health than exposure

to PM2.5 as a whole. BC emission controls have successfully decreased BC emissions from

mobile sources to less than half of what they were 30 years ago, with most mobile source

emission controls applying to diesel emissions. However, additional analysis is required to

quantify the benefits of previous and future emission controls. In this study we use the ad-

joint of the Community Multiscale Air Quality (CMAQ) model to estimate highly-resolved

spatial distributions of benefits related to emission reductions for six urban regions within

the continental US. Emissions from outside each of the six chosen regions account for be-

tween 7% and 27% of the premature deaths attributed to exposure to BC within the region.

While we estimate that nonroad mobile and onroad diesel emissions account for the largest

number of premature deaths attributable to exposure to BC, onroad gasoline is shown to

have more than double the benefit per unit emission than that of nonroad mobile and on-

road diesel. Within the region encompassing New York City and Philadelphia, reductions

in emissions from large industrial combustion sources that are not classified as EGUs (i.e.,

non-EGU) are estimated to have up to triple the benefits per unit emission than reductions

to onroad diesel sectors, and provide similar benefits per unit emission to that of onroad

gasoline emissions in the region. In the San Joaquin Valley, we note that the dis-benefits

per unit of additional emissions are highest along the CA-99 route, which will be subject

to increased nonroad mobile emissions in the near-term owing to construction of new rail

systems, potentially balanced in the long term by reductions in vehicle emissions. While

onroad mobile emissions have been decreasing in the past 30 years and a majority of vehicle

emission controls that regulate PM focus on diesel emissions, our analysis shows the most

efficient target for stricter controls is actually onroad gasoline emissions.
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3.2 Introduction

Epidemiological studies have identified significant relationships between exposure to

ambient fine particulate matter (PM2.5) and an array of adverse health effects, including

premature death [Krewski et al., 2009; WHO, 2006; Pope et al., 2002; Katanoda et al.,

2011; Lepeule et al., 2012; Kazuhiko et al., 2011; Puett et al., 2009; Gauderman et al., 2002;

Cohen et al., 2004b; Beelen et al., 2007; Laden et al., 2006]. Relative risk values from this

literature have been applied to quantify the health burden of exposure to PM2.5 both in the

US and globally [Fann et al., 2013, 2012; Silva et al., 2013; Brauer et al., 2012; Anenberg

et al., 2010; Cohen et al., 2004a]. Recent studies have found a stronger link between adverse

health effects and exposure to black carbon (BC) than exposure to PM2.5 as a whole [Suh

and Zanobetti, 2010; Adar et al., 2007; Peng et al., 2009; WHO, 2012; Power et al., 2011;

Wilker et al., 2013; Qiao et al., 2014]. Janssen et al. [2011] found that reducing a unit of BC

increases life expectancy by four to nine times that of reducing a unit of PM2.5. Grahame

et al. [2014] performed a review of epidemiological and toxicological literature regarding BC

and suggested that exposure to BC is causally linked to premature death.

Fortunately, onroad mobile source emissions of BC have decreased by approximately

66% in the past 30 years [McDonald et al., 2015]; however, a majority of the vehicle emission

controls that regulate PM emissions focus on diesel emissions [US EPA, 2012, 2001]. To

understand the benefits of these controls, there have been numerous investigations of the

human health impacts of BC emission reductions, including the role of varying geographical

locations and emission sources. Fann et al. [2009] used a reduced-form air quality model to

estimate the benefits-per-ton of total carbonaceous aerosol emission reductions for several

US urban regions. They found that benefits-per-ton vary not only by emission source but

also by geographical location, with estimates ranging from $65,000 for EGU and non-EGU

(large industrial combustion sources that are not classified as EGUs) sources of carbonaceous

aerosol in Salt Lake City to $2,500,000 for area sources of carbonaceous aerosol in Phoenix.
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Anenberg et al. [2011] used a global chemical transport model to evaluate the effects of

sectoral BC emission reductions on premature deaths. They found that global emission

reductions in the transportation sector resulted in the highest number of avoided premature

deaths in North America (2,000 - 3,000 avoided deaths), while reductions of global BC

emissions in the residential sector resulted in up to 1000 avoided deaths. Caiazzo et al.

[2013] used the CMAQ model to investigate the health impacts of major emission sectors

in the US and found that onroad vehicles accounted for the largest population-weighted

concentration of BC.

While these studies have shown that the human health benefits of emission reductions

have orders of magnitude variability across different geographical regions and sectors, they

relied on coarser approaches that limited the number or specificity of emissions reductions

for which benefits could be estimated. Other studies have used the adjoint modeling ap-

proach, which can more specifically estimate the benefits of reductions to emissions from

numerous times and locations at less computational cost than forward sensitivity analysis.

Dedoussi and Barrett [2014] used the GEOS-Chem adjoint to attribute premature deaths

from exposure to PM2.5 to emission sectors and locations. Their analysis found that a maxi-

mum number of premature deaths (approximately 8,000) are attributed to road emissions in

California, while road emissions in Georgia result in approximately 1,500 premature deaths.

In Turner et al. [2015], we used the CMAQ adjoint to estimate the BC emission sources that

contribute the most to total premature deaths annually throughout the US. We found that

onroad diesel and nonroad vehicle emissions account for a majority of the premature deaths

in the US associated with exposure to BC. We also analyzed the benefits-per-ton of BC

emission reductions and found that reductions to emissions in the cold seasons resulted in

an average of approximately 15 more premature deaths per sector (per unit emission) than

emissions in the warm seasons. The adjoint approach has also been used to estimate ozone

health impacts [Pappin and Hakami, 2013b,a; Mesbah et al., 2013; Zhao et al., 2013].

While the work of Dedoussi and Barrett [2014], Lee et al. [2015], and Turner et al. [2015]
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utilized adjoint models to perform source attribution studies at high spatial, temporal, and

sectoral resolutions, each study focused on health impacts across a large domain, such as

the entire globe or the entire US. The extent to which emissions from individual locations

and sources cause adverse health effects in specific urban areas has thus yet to be addressed.

Such information is required for determining the extent to which local versus distant sources

impact individual metropolitan regions. For this purpose, here we use the adjoint of the

CMAQ model to quantify the importance of transport of BC from distant emission sources

on premature deaths in six major US urban regions. Additionally, we estimate the spatial

distribution of benefits-per-ton of emission reductions for each of the six areas. The analysis

in this work allows for the determination of sources and locations of BC emissions whose

reduction could most effectively mitigate human health impacts attributed to exposure to

BC, with specific attention paid to comparisons between onroad diesel and onroad gasoline

emissions. Finally, the analysis in this work also estimates the adverse health impacts of

potential future emissions.
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3.3 Materials and Methods

Annual average BC concentrations for 2007 were simulated using the CMAQ model

v4.7.1 [Byun and Schere, 2006]. The resultant concentrations are used to estimate premature

deaths attributed to exposure to BC in six urban regions. Simulated annual average BC

concentrations are evaluated through comparison to measurements from the Interagency

Monitoring of Protected Visual Environments [Malm et al., 2004] (IMPROVE) and Chemical

Speciation Network [Flanagan et al., 2006] (CSN) and are found to be similar to observed

concentrations for both IMPROVE (mean bias = 0.09 µg/m3) and CSN (mean bias = -0.22

µg/m3), with lower accuracy at the largest concentrations. For discussion of the meteorology

inputs, emissions inputs, and further details regarding model performance, see Supporting

Information and Turner et al. [2015]

Estimates of premature deaths attributed to exposure to BC for six regions (Denver,

Dallas, Houston, Phoenix, San Joaquin Valley, and a region that encompasses New York

City and Philadelphia (referred to as NY/PHI), see Figure 3.4) are calculated using the

following health impact function:

J =
N∑
i=1

Mi · (1 − e−β·Cav,i ) (3.1)

where Mi is the gridded annual non-accidental premature deaths in the region of interest for

people age 30 or older, Cav ,i is the gridded annual average BC concentration, i is the grid

cell index, N is the number of grid cells, and β is the concentration response factor. While

previous studies [Krewski et al., 2009; Laden et al., 2006] have shown that β values differ

across different regions, we use a constant β across each region to allow for our results to be

consistent with the value currently used by the US EPA for policy development [US EPA,

2009]. Further details of the forward model simulations, as well as the calculation of the

health impact function can be found in Turner et al. [2015]. When estimating benefits per

unit emission, we used a value of statistical life (VSL) of $6.2 million, consistent with the



77

value from Fann et al. [2009].

We use the CMAQ adjoint to obtain the sensitivities of regional premature deaths

attributed to exposure to BC with respect to emissions for each region. See Turner et al.

[2015] for full details of the development and validation of the CMAQ adjoint model. In

order to reduce the computational cost of this analysis, adjoint simulations were run for the

first week of each month. The resulting 12 week average has been shown to be an accurate

representation of the year as a whole [Turner et al., 2015]. Semi-normalized sensitivities

( ∂J
∂Ei,k,m

· Ei,k,m) represent the contributions of BC emissions in grid cell i, sector k, and

month m, to the number of estimated premature deaths attributed to exposure to BC. The

ratio of these contributions to the emissions Ei,k,m represents the number of premature deaths

per unit emission, which we refer to as efficiency.



78

3.4 Results and Discussion

3.4.1 Sectoral Analysis

In this section, we perform an analysis of the contributions of different emission sectors

to BC health impacts in each of the six regions. Figure 3.1 shows the sectoral contribu-

tions (left) and sectoral efficiencies (right) for each region. For the efficiency plot in Figure

3.1, emissions and contributions were summed over all grid cells within each region. The

sectors are sorted by the magnitudes of contributions from each sector for NY/PHI. The

contributions for NY/PHI are divided by four, for scale; the efficiency values for NY/PHI

are unaltered.

Several interesting similarities and differences in sector-specific health impacts are ev-

ident across these regions. Nonroad mobile emissions are the largest contributor across all

regions (followed closely by onroad diesel), however onroad diesel and nonroad mobile con-

tributions are nearly identical for Denver. For most regions, onroad gasoline emissions are

the third largest contributor by a significant margin (contributions from onroad gasoline

in Phoenix are approximately three times larger than the next largest sector). However,

Denver onroad gasoline contributions are nearly equal to nonpoint emissions. Additionally,

EGU emissions contribute to over 7% of premature deaths due to BC exposure in NY/PHI

yet EGU emissions contribute to a significantly smaller fraction of the premature deaths in

the other regions. Also, contributions from nonroad mobile and onroad diesel sources in

Phoenix are larger than contributions from the same sectors in Houston. However, contribu-

tions from onroad gasoline emissions are nearly twice as large in Houston than in Phoenix.

Finally, while contributions from nonroad mobile sources are larger in the San Joaquin Val-

ley than in Denver, contributions from onroad diesel sources are larger in Denver than in

the San Joaquin Valley. This difference becomes even more pronounced when considering

contributions as a percentage, since the San Joaquin Valley has approximately 30% more

premature deaths attributed to exposure to BC than Denver.
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Figure 3.1: Sectoral comparison of contribution (left) and efficiency of emissions to result
in premature deaths (right) for the NY/PHI, Dallas, Denver, Houston, Phoenix, and San
Joaquin Valley regions. Contributions for NY/PHI region (left) are divided by four for scale,
while contributions are unaltered for efficiency figure (right). PD = Premature Deaths.
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In addition to the total number of premature deaths resulting from emissions in each

sector, it is of interest to compare health effects on a per-unit-emission basis. As shown in

Figure 3.1 (right), the efficiency of emissions to result in premature deaths can vary by up

to two orders of magnitude across sectors in a single region. Nonroad mobile and onroad

diesel sources are the two largest contributors in every region, with both sectors having two

to three times as many contributions than onroad gasoline sources. However, onroad gaso-

line sources have larger efficiencies than both nonroad mobile and onroad diesel sources in

every region, with Houston onroad gasoline sources having an efficiency nearly three times

larger than nonroad mobile sources. Onroad gasoline sourses in Denver contribute to ap-

proximately 4 times less premature deaths than onroad diesel and nonroad mobile sources in

Denver, yet the efficiency of onroad gasoline emissions is nearly equal to both nonroad mo-

bile and onroad diesel (with the efficiency from onroad gasoline being slightly larger). While

onroad gasoline emissions account for very few premature deaths when compared to onroad

diesel and nonroad mobile emissions for each region, onroad gasoline emissions in NY/PHI,

Houston, Phoenix, and San Joaquin Valley result in the largest number of premature deaths

per unit emission (up to 10 times larger than efficiencies of onroad diesel emissions). This

is attributed to the difference in driving patterns for onroad diesel and onroad gasoline ve-

hicles. While many onroad diesel vehicles are used for long-range transport of goods along

interstates, onroad gasoline vehicles are used mainly for personal transportation in popu-

lated areas. In contrast, dust emissions of BC are shown to result in a negligible number of

premature deaths for every region. Still, the efficiency of fugitive dust to result in premature

deaths in NY/PHI and Houston is larger than the efficiencies from EGU and nonpoint BC

emissions. This is attributed to, in these two regions, the largest dust emissions occuring

within the most populous grid cells. The proximity of the dust emissions to high populations

greatly increases the exposure, resulting in a larger efficiency. In the other regions, the dust

emissions are more distributed throughout the region and result in lower efficiencies.

Another potentially important result obtained from Figure 3.1 (right) relates to the
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efficiency of non-EGU emissions. In most regions, the efficiency of non-EGU emissions to

result in premature deaths is rather low when compared to the other sectors, with non-EGU

contributions in Houston being approximately 25% that of nonroad mobile contributions.

However, for NY/PHI and Phoenix, the non-EGU emission efficiency is larger than both

the nonroad mobile and onroad diesel sectors, and is nearly equal to the efficiency of onroad

gasoline emissions. Additionally, the efficiency of commercial railroad emissions to result in

premature deaths is substantial in NY/PHI. This is attributed to the proximity of commercial

railways within the region to the major population centers. Finally, while non-EGU, rail, and

fugitive dust contributions show little variation across regions, these sources have efficiencies

that range between approximately 10 premature deaths per Gg of emission to approximately

160 premature deaths per Gg of emission. Analysis of the spatial distribution of efficiencies

is presented in the Supporting Information. From a spatial analysis of the efficiencies in

the San Joaquin Valley (Figure 3.2), a majority of the significant efficiencies coincidentally

occurring along CA-99. This suggests that, when considering the health impacts of vehicle

emissions, it is preferable for onroad vehicles to travel on I-5 than CA-99. This is significant,

as emissions from the construction and operation of the new California rail system [AECOM

et al., 2013] will be occurring within the locations of highest efficiency. This suggests that,

in the short term, there will be significantly more premature deaths from nonroad mobile

emissions in the region while the rail system is being constructed. However, in the long

term, the reduction in onroad mobile contributions along CA-99 will likely be greater than

the increase in rail contributions from the new rail system.

3.4.2 Spatial Distribution of Contributions

Figure 3.3 shows contour plots of the contributions for each of the six regions summed

across all sectors k and months m. In each of these plots, the contours show the regions in

which emissions of BC in the fewest number of grid cells account for a given percentage of

contributions in the region. For example, the 50% contour in each plot shows the locations
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Figure 3.2: Plot of the efficiency of emissions to result in premature deaths
(
Contribution
Emission

)
from exposure to BC in the San Joaquin Valley region. Data presented as premature deaths
per Gg of BC emitted.

in which emissions account for 50% of the premature deaths attributed to exposure to BC

in the region.

Figure 3.3a shows the contribution contours for premature deaths in NY/PHI. We

estimate that 1,290 (95% CI: 860 - 1720, for details of uncertainty calculation see Supporting

Information) premature deaths were attributed to exposure to BC in the region in 2007, and

78% of these premature deaths are attributed to emissions within the region (see Table

3.1). The largest contributors (the 30% contour) are New York City and northeastern New

Jersey. These are followed closely by Philadelphia and the suburbs surrounding New York

City, making up the 40% contour. The next largest contributors (the 50% and 60% contours)

include other suburbs around the urban centers, as well as the major roadways within the

region. This reinforces the conclusion from Figure 3.1 that mobile sources account for a

majority of the premature deaths in the region attributed to exposure to BC. Additionally,

in order to account for 80% of the premature deaths in the region, emissions from as far

away as Detroit, MI must be included in the analysis. Finally, the background (sensitivities

that create the 90-100% contours, Figure 3.5) includes emissions from as far away as the I-5
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Figure 3.3: Contour plots of contributions for (a) the NY/PHI region, (b) the Dallas region,
(c) the Denver region, (d) the Houston region, (e) the Phoenix region, and (f) the San
Joaquin Valley region.
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Table 3.1: Analysis of annual premature death percentage attributed to exposure to BC
from emission sources inside and outside of each region.

PD (95% CI) % Inside PD Inside PD Outside
NY/PHI 1,290 (860 - 1720) 78% 1013 (678 - 1347) 277 (186 - 368)
Dallas 220 (145 - 295) 83% 185 (124 - 246) 35 (23 - 46)
Denver 100 (65 - 135) 88% 87 (58 - 116) 13 (9 - 17)
Houston 270 (180 - 360) 88% 238 (159 - 317) 32 (21 - 43)
Phoenix 230 (145 - 315) 93% 214 (143 - 285) 16 (11 - 21)
San Joaquin 130 (85 - 175) 73% 95 (64 - 126) 35 (23 - 47)

corridor in northern California, Oregon, and Washington. While the sum of the emissions

from Chicago, IL and Minneapolis, MN are required to reach the 90% contour, contributions

from individual cities themselves are relatively small. For example, emissions from the greater

Chicago area account for only 3 premature deaths (0.23%), and emissions from the greater

Minneapolis area account for only 1 premature death (0.08%) in the NY/PHI region.

For Dallas (Figure 3.3b), we estimate a much smaller number of premature deaths

attributed to exposure to BC (220 premature deaths) than in the NY/PHI region. Of these

220 (95% CI: 145 - 295) premature deaths, 83% come from emissions within the Dallas

region. The largest contributions once again come from the urban centers within the region.

As with NY/PHI, the 40-60% contours include the suburbs around the urban center, as well

as major roadways in the area. However, the contours show that emissions from Houston,

Austin, and San Antonio must be included to account for 80% of the premature deaths in

Dallas. Many of the larger contributions that are not within the region of interest occur

along the major roadways connecting nearby cities.

Figure 3.3c shows the contribution contours for premature deaths in the Denver region.

We estimate 100 (95% CI: 65 - 135) premature deaths were attributed to exposure to BC

in the region, 88% of which result from BC emissions within the region. The largest contri-

butions are from Denver and the suburbs within Denver county, with other less-substantial

contributions coming from Fort Collins and Colorado Springs. In fact, even though Col-
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orado Springs is in close proximity Denver, emissions from Colorado Springs result in few

premature deaths and only show up in the background. As opposed to Figures 3.3a and

3.3b, transport of BC from distant sources does not become important until considering the

background (Figure 3.7). This is a result of the regions in Figures 3.3a and 3.3b having

significant emission sources near to and upwind of the region. However, for Denver there are

no significant nearby or upwind emissions sources.

While the above-background contours for Dallas (Figure 3.3b) clearly showed the con-

tributions from mobile sources (as shown by the 80-90% contours forming a triangle of

highways that connect other major cities), Figure 3.3d shows that a majority of the above-

background contributions for Houston fall within the greater Houston area. Additionally,

the largest contributions are from emissions within the city limits, with smaller contribution

contours encompassing the suburbs surrounding Houston. While we estimate 220 premature

deaths in the Dallas region, we estimate 270 (95% CI: 180 - 360) premature deaths in the

Houston region (88% of which come from emissions in the region). The background in the

contour plot for the Houston region (Figure 3.8) is similar to that of the Dallas region (Figure

3.6), since Houston and Dallas are in close proximity to each other.

Similarly to Denver, the Phoenix contour plot (Figure 3.3e) shows that all of the above-

background contributions occur within the region of interest. The largest contributions

again occur within the city limits, followed closely by the suburbs surrounding the city.

Additionally, transport of BC from distant sources is not important until considering the

background (Figure 3.9). We estimate that 230 (95% CI: 145 - 315) premature deaths are

attributed to exposure to BC in Phoenix, with 93% of the premature deaths being attributed

to BC emissions within the Phoenix region.

Lastly, Figure 3.3f shows the contour plots for the San Joaquin Valley. We estimate that

130 (95% CI: 85 - 175) premature deaths are attributed to exposure to BC in the San Joaquin

Valley, 73% of which are attributed to BC emissions within the region. As with NY/PHI and

Dallas, the San Joaquin Valley analysis suggests that onroad vehicle emissions account for
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Table 3.2: Sectoral benefits-per-ton estimates of emission reductions in each of the six regions.
Results in this table only include information from within the regions.

Area Sources Mobile Sources
EGU and

Non-EGU Sources

NY/PHI $880,000 $2,360,000 $1,150,000

Dallas $260,000 $770,000 $190,000

Denver $270,000 $780,000 $110,000

Houston $440,000 $1,380,000 $85,000

Phoenix $330,000 $1,110,000 $1,340,000

San Joaquin
$180,000 $660,000 $110,000

Valley

a significant percentage of the contributions in the region. The largest contributions within

this region occur near cities along CA-99 (Bakersfield, Fresno, Modesto), supporting the

conclusion in Figure 3.1 that mobile sources are the largest contributors to premature death

in the region associated with exposure to BC. Additionally, a majority of the locations within

the 40-70% contours occur along the highways in the San Joaquin Valley, with additional

contributions from the San Francisco Bay area. While only 73% of the premature deaths are

attributed to emissions in the region, transport of BC from distant sources is only important

when considering the background.

3.4.3 Comparison to Previously-Reported Values

Here we compare the estimates obtained in our analysis to the estimates obtained

with a Response Surface Model by Fann et al.[Fann et al., 2009], and a global chemical

transport model by Anenberg et al.[Anenberg et al., 2011] While there are many differences

between the approach taken in this paper to estimate the benefits-per-ton of BC emission

reductions and these previous studies, a comparison of the estimates is still informative. Our

results are similar to Fann et al. [2009] for mobile sources in Dallas and the San Joaquin

Valley, as well as area sources in Denver. In contrast, other source and region relationships
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provide significantly different estimates (e.g., Fann et al. [2009] estimated a benefit-per-ton

value of $2,500,000 for area sources in Phoenix, while we estimate a benefit-per-ton value of

$330,000 for the same region and sector). However, the results are not directly comparable

for many reasons. First, Fann et al. [2009] used 2001 National Emission Inventory (NEI)

emission profiles and the relative risk estimate from Laden et al. [2006]. In this work, we

use 2007 emission profiles based on the 2008 NEI, and we use the relative risk estimate from

Krewski et al. [2009]. Second, the analysis in Fann et al. [2009] estimated the health effects

(both morbidity and premature death) for all carbonaceous aerosol (BC and organic carbon),

whereas out analysis only estimated premature deaths from BC.

Estimates of premature deaths per Gg of emission in this paper are much larger than

those reported in the Anenberg paper. Anenberg et al. [2011] estimated approximately 10

avoided premature deaths per Gg emission in North America from halving anthropogenic

BC emissions in the region, whereas here (Figure 3.1) we have shown sectoral efficiencies of

up to 240 premature deaths per Gg emission. While we estimate sectoral efficiencies upward

of 240 premature deaths per Gg emission, analysis of the efficiency for total BC emissions

yields results that more closely match the results presented in Anenberg et al. [2011], with

values ranging from approximately 15 to 98 premature deaths per Gg emission. Anenberg

et al. [2011] used a global chemical transport model (1.9◦ × 1.9◦ resolution), while our anal-

ysis uses the adjoint of a regional chemical transport model at 12 km resolution. Coarser

grid resolutions have been shown to provide lower premature death estimates attributed to

exposure to BC (15% lower at 2◦×2.5◦ than 0.5◦×0.66◦ in Li et al. [2015], and 30% lower at

200km resolution than at 12 km relation in Punger and West [2013]). Additionally, Anenberg

et al. [2011] analyzed North America as a whole while our analysis focused on urban regions

where larger efficiencies would be observed because of the greater number of people in close

proximity to the emission sources.

Finally, our estimate of benefits-per-ton for EGUs are larger than those presented in

the NAS report [NAS, 2010], which estimated that directly emitted PM2.5 reductions would
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result in $32,000 per ton emission reduction. However, our analysis estimates benefits-

per-ton ranging between $47,000 for Houston to $196,000 for NY/PHI. The differences in

benefits-per-ton estimates can partially be explained by the different concentration response

functions used. The NAS study used the relative risk estimates from Pope et al. [2002],

while we use the relative risk estimate from Krewski et al. [2009]. Another major difference

is that NAS [NAS, 2010] used emissions from the 2005 NEI, whereas our simulations were

performed using 2007 emission profiles based on the 2008 NEI. Finally, the NAS study

estimated health impact emission reduction benefits for PM2.5 as a whole, while our analysis

focuses specifically on BC emissions.
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3.5 Conclusions

In this study we estimate the extent to which emissions from individual locations and

sources throughout the US result in adverse health effects in six urban areas. While onroad

gasoline emissions account for approximately half of the premature deaths of nonroad mobile

and onroad diesel emissions, reductions to onroad gasoline emissions of BC result in the

greatest benefit per unit emission. Some emission sources, such as fugitive dust emissions,

result in a negligible amount of premature deaths, yet have significant estimates of premature

deaths per unit emission (higher efficiencies than EGU and nonpoint for some regions). The

large dust efficiency in some regions is attributed to the largest dust emissions in those

regions occurring in the same location as the largest populations, whereas other regions

have dust emissions that are more evenly distributed throughout the region. Additionally,

in the NY/PHI and Phoenix regions non-EGU emissions have efficiencies close to that of

onroad gasoline emissions, yet result in a fraction of the premature deaths of onroad gasoline

emissions (approximately 10% for Phoenix, approximately 50% for NY/PHI). As expected

for a short-lived primary pollutant, we find that the largest contributions occur within the

urban centers in the regions of interest. However, contributions from emissions outside of

the region account for between 7% and 27% of the premature deaths within each of the six

regions. Finally, the largest efficiencies in the San Joaquin Valley coincidentally occur along

CA-99, which is also the location along which the new California rail system is to be built.

This suggests that, in the short term, there will be significantly more premature deaths from

nonroad mobile emissions in the region while the rail system is being constructed. However,

in the long term, the reduction in onroad mobile contributions along CA-99 will likely be

greater than the increase in rail contributions from the new rail system.

Recent studies have shown that onroad mobile source emissions of BC have decreased by

approximately 66% in the past 30 years and off road mobile engines are estimated to account

for 37% of mobile emissions of BC in 2010 [McDonald et al., 2015]. Also, a majority of the
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vehicle emission controls that regulate PM emissions focus on diesel emissions [US EPA,

2012, 2001]. However, the greatest benefit per unit emission for reductions of BC emissions

occurs for onroad gasoline sources, suggesting that BC emissions from gasoline sources would

be the ideal target for stricter controls. That being said, several caveats about the present

analysis warrant consideration. First, our approach utilized a single chemical transport

model, while other air quality modeling studies have used an ensemble of simulations to

minimize uncertainty [Mallet and Sportisse, 2006; Stevenson et al., 2006; van Noije et al.,

2006; Koch et al., 2009]. Additionally, our simulations were performed with emission profiles

from 2007, which do not reflect further recent declines in the US [McDonald et al., 2015;

Dallmann and Harley, 2010]. Second, our analysis used a single concentration response

factor that corresponds to the relative risk of exposure to PM2.5 for every region, while BC

might have pronounced toxicity [Bell et al., 2009; Peng et al., 2009; WHO, 2012; Power

et al., 2011; Wilker et al., 2013] and relative risks associated with exposure to pollution may

vary by region [Krewski et al., 2009; Laden et al., 2006]. Third, our analysis only considers

premature deaths attributed to BC exposure for the entire adult population, while certain

demographic groups may be at a higher risk [Flachs et al., 2013; Wilhelm et al., 2009; Bell

and Dominici, 2008; Neidell, 2004; Finkelstein et al., 2003; Su et al., 2009; Mensah et al.,

2005]. Finally, studies have shown that estimates of premature deaths attributed to pollutant

exposure have large variability depending on the horizontal model resolution [Punger and

West, 2013; Thompson and Selin, 2012; Li et al., 2015], with estimates of premature deaths

being greatest at finer resolution. Using the information presented in these studies, we

estimate that our 12 km simulations have a low bias of a few percent, relative to higher

resolution (4 km) simulations. However, neither 12 nor 4 km simulations are sufficient to

accurately resolve near-roadway gradients in BC concentrations.

Overall, this paper shows the utility of the CMAQ adjoint model for analysis of air

quality concerns within a specific city or state. The results not only allow for the determi-

nation of the fraction of premature deaths that are a result of emissions within the city or
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state’s jurisdiction, but also provide information about the emission sectors that offer the

greatest potential benefits for additional emission controls. Additionally, this type of analy-

sis can be extended to other metrics based on pollutant concentrations including analysis of

the climate and health co-benefits of emission reductions.
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3.6 Supplemental Information

3.6.1 Uncertainty Calculation

For each region, a separate uncertainty calculation was performed through propagation

of errors (Equation 3.2), following Turner et al. [2015]

σT =

√
N∑
i=1

(
∂J
∂β

)2
i
σ2
β +

(
∂J

∂Cav,i

)2
i
σ2
C

N
(3.2)

where β is the concentration response factor (calculated from the relative risk value in

Krewski et al. [2009]), Cav,i is the annual average BC concentration for grid cell i, N is the

total number of grid cells in the region, J is the health impact function (Equation 3.1), σC is

the uncertainty in the simulated annual average BC concentrations, and σβ is the uncertainty

in the concentration response factor. The uncertainty in the relative risk value was assumed

to be constant across the regions considered, while the uncertainty in the model estimate

was calculated separately for each region. For each region, contour plots were generated

that show the regions in which emissions of BC in the fewest number of grid cells account

for a given percentage of contributions in the region. Model uncertainty for each region was

estimated by comparing observations within the 100% contour (see Figures 3.5-3.10 for full

contour maps) obtained through the adjoint analysis to corresponding model estimates of

yearly average concentration. We chose to use the 100% contour for the uncertainty estimate,

as opposed to a smaller contour (or the observations within the defined region), due to the

limited number of observations within certain regions. For example, while the 100% contour

for the Phoenix region encompasses 50 observation locations, the 90% contour encompasses

only a single CSN observation location. Additionally, the source attribution results presented

in this study depend on model accuracy throughout the 100% contour region, as opposed to

just the region for which the health impact function is calculated. For σC , we use the mean

absolute error when comparing the simulated annual average to the observed annual average
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from CSN sites within each region’s 100% contour. We used a value for σβ of 0.32, which

was calculated from the range of relative risks provided in Krewski et al. [2009].
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.4: Definition of the cost function regions. (a) NY/PHI, (b) Dallas, (c) Denver, (d)
Houston, (e) Phoenix, (f) San Joaquin Valley.
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3.6.2 Efficiency of Emissions to Cause Premature Deaths

Analysis of the efficiency of emissions to cause premature deaths is important for

determining the impact that the addition of new emissions in each location have on premature

deaths, as well as providing insights toward the most cost-effective locations and sectors for

which to develop stricter controls. A larger value means that more premature deaths occur

on a per-unit-emission basis from emissions of BC. In contrast to contributions (Figure 2),

efficiency estimates are independent of the magnitude of the BC emissions themselves, and

thus show the role of transport and population density. Figure 3.11a shows the efficiency of

BC emissions to result in premature deaths in the NY/PHI region. As expected, emissions

in the urban centers have the highest efficiency values, with emissions in New York City

resulting in over 45 premature deaths per Gg of BC emitted. While Figure 3.5 showed that

emissions from as far west as the I-5 corridor must be considered in order to account for

all of the premature deaths in the region, Figure 3.11a shows that (with a few exceptions)

emissions within the region are the only ones with significant efficiencies. In fact, for every

region emissions within the region are the only ones with significant efficiencies.

While Figure 3.11b also shows that emissions in the urban centers within the region

have the highest efficiency, the highest efficiency for the Dallas region is just over 12 prema-

ture deaths per Gg of BC emitted. Also, while Figure 3.11b shows non-zero efficiencies west

of the region, a majority of the non-zero efficiencies for the Dallas region are confined to an

area north and south of the Dallas region. Figure 3.11c, on the other hand, has non-zero

efficiencies radially outward of the Denver region, as well as west in to Utah. However, again

we see that the largest efficiency values occur in the urban centers within the region, with a

maximum efficiency of approximately 15 premature deaths per Gg of BC emitted.

While Figure 2b and Figure 2d showed very similar contour regions, Figure 3.11d

shows that the spatial coverage of efficiencies of emissions to result in premature deaths in

the Houston region differs significantly from the Dallas region. Figure 3.11b shows that the
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Figure 3.11: Plots of the efficiency of emissions to result in premature deaths (Contribution
Emission

)
from exposure to BC in the (a) NY/PHI region, (b) Dallas region, (c) Denver region, (d)
Houston region, and (e) Phoenix region. Data in all figures presented as premature deaths
per Gg of BC emitted.
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efficiency for the Dallas region is confined to an area north and south of the region, with

very little non-zero efficiencies east and west of the region. For the Houston region, however,

a majority of the non-zero efficiency values come from the east and west of the region, with

very little non-zero efficiencies showing up north and south of the region. Additionally,

the Houston region has a larger maximum efficiency (18 premature deaths per Gg of BC

emitted) than that of Dallas (12 premature deaths per Gg of BC emitted). The Phoenix

region (Figure 3.11e) has a maximum efficiency of 20 premature deaths per Gg of BC emitted,

and the San Joaquin Valley region has a maximum efficiency of 18 premature deaths per Gg

of BC emitted.
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4.1 Abstract

Previous studies have shown that exposure to ambient particulate black carbon (BC)

is associated with adverse health effects, including premature death. In this study we use

the adjoint of the Community Multiscale Air Quality (CMAQ) model to estimate the impact

of emissions in the US in 2007 on three different health-based metrics: premature deaths

for specific demographic groups, premature death rates (average individual risk), and a

metric independent of population and baseline mortality rates (risk modification factor).

We find strong correlations between contribution percentage and population percentage for

each demographic group, with correlation coefficients ranging between 0.77 for persons with

above a high school education to 0.85 for persons below 50% of the poverty level. An inter-

comparison of the contribution and population distributions between demographic groups

shows that there is much less variability in the types of people harmed by BC emissions than

there is in the variability of population demographics themselves. Additionally, we find that

individual emission sectors have small variability (1-3%) in their contributions to premature

deaths for the different demographic groups. Analysis of the effects of BC emissions on

risk modification factor in the US shows that the largest risk modification factors result

from emissions in drier climates, due to the increased atmospheric lifetime of particles being

emitted in these climates. While average individual risk is independent of population, we find

that sensitivities of this risk are strongest within the urban centers due to the significantly

larger emissions within the urban centers than in the surrounding areas. We also find average

individual risks resulting from BC emissions in single grid cells to be upwards of 9.5 in ten

million in 2007 for the NY/PHI region, which is larger than the risk from flying.
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4.2 Introduction

There is strong evidence from epidemiological studies that prolonged exposure to am-

bient fine particulate matter (PM2.5) results in many adverse health effects, including pre-

mature death [Krewski et al., 2009; WHO, 2006; Pope et al., 2002; Katanoda et al., 2011;

Lepeule et al., 2012; Kazuhiko et al., 2011; Puett et al., 2009; Gauderman et al., 2002; Cohen

et al., 2004; Beelen et al., 2007; Laden et al., 2006]. Recent studies have investigated the

possibility that certain species within PM2.5 are more harmful to health than PM2.5 as a

whole, any many have found exposure to black carbon (BC) to be one of the most harmful

[Suh and Zanobetti, 2010; Adar et al., 2007; Peng et al., 2009; WHO, 2012; Power et al.,

2011; Wilker et al., 2013; Qiao et al., 2014]. Janssen et al. [2011] found that by reducing

a unit of BC, life expectancy is extended four to nine times more than a unit reduction of

PM2.5. In a review of the epidemiological and toxicological literature regarding the health

effects of BC, Grahame et al. [2014] suggested that exposure to BC is causally linked to

premature death.

While these previously mentioned studies portray the link between exposure of the gen-

eral population to ambient PM2.5 and premature death, other studies have suggested that

certain population demographics are at higher risk than others [Flachs et al., 2013; Wilhelm

et al., 2009; Neidell, 2004; Finkelstein et al., 2003; Su et al., 2009; Mensah et al., 2005].

Krewski et al. [2009] showed that a decrease in the effect of PM2.5 exposure on premature

death was correlated with an increase in education level. Mensah et al. [2005] used national

surveys to determine risk factors for cardiovascular disease (CVD) by ethnicity, education

level, and socioeconomic status. They found that reported cases of heart disease were in-

versely related to poverty status and education level. Finkelstein et al. [2003] performed an

analysis of the effects of air pollution on premature death rates for an area of southern On-

tario and found that the relative risk of death from all causes for low income households was

up to twice as large as high income households (relative risk for high income, high pollutant



113

level households of 1.33 and relative risk for low income, high pollutant households of 2.62).

When developing air pollution control policies, many different approaches have been

considered to achieve the main objective of protecting the health and welfare of the public.

One such approach is using a health effect analysis (e.g., Fann et al. [2012b,a, 2009]; Anenberg

et al. [2011]; Muller et al. [2011]) in order to evaluate the costs and benefits of air pollution

control policies [Johns et al., 2012; Hubbell, 2012]. However, a concern with using total health

effects as a target for air quality policy is the potential unequal treatment of individuals, with

more weight given to emissions that impact people in the most populous regions [Tietenberg,

1995]. Alternative approaches include a risk-based analysis and an analysis of the average

individual risk (AIR). While previous air quality studies have defined risk-based approaches

to include intake fraction [Xu et al., 2013; Zhou et al., 2010; Levy et al., 2002; Humbert

et al., 2011] or total incidences [Wesson et al., 2010; Fann et al., 2011], these are both

metrics that depend upon the magnitude and spatial distribution of the exposed population.

While previous studies have analyzed spatial and sectoral variability in external damages of

air pollutant emissions (e.g., Fann et al. [2009, 2012a]; Turner et al. [2015b]; Muller et al.

[2011]; Anenberg et al. [2012]), few studies have analyzed the spatial and sectoral variability

of average individual risk.

In this paper, we investigate the influences of population, mortality rates, and relative

risk factors on the different approaches used in health-based analyses for air quality controls.

Using the CMAQ adjoint model, we quantify the number of premature deaths attributed

to exposure to BC for four demographic groups in order to determine locations and sources

that affect certain populations more than others. For risk-based analysis in this study, we

first consider a health impact function that does not include baseline mortality rates and

population. This metric is not marginalized for low populations, however it also does not

include any information about mortality rates. We next consider AIR, which does not include

the population variable. It does, however, includes information about baseline mortality rates

and provides an estimate of the risk of an adverse health effect on a per-person basis. This
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metric is thus similar to the notion of an individual’s risk that is commonplace for hazards

such as developing cancer [Howlader et al., 2014; Ahmad et al., 2015; Feuer et al., 1993]. We

estimate the impact of emissions on both risk and average individual risk throughout the

US and in three specific urban regions.
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4.3 Materials and Methods

Simulated annual average BC concentrations were obtained using the CMAQ model

v4.7.1 [Byun and Schere, 2006] for 2007. Forward model evaluation, as well as discussion of

meteorological and emission inputs can be found in Turner et al. [2015b].

Estimates of premature deaths attributed to exposure to BC for four demographic

groups (persons below 50% of the poverty level, above 200% of the poverty level, with less

than a high school education, and with a bachelors degree or higher) are calculated using

the following health impact function:

Jd =
N∑
i=1

M0 ,i · Pd
i · (1 − e−β

d ·Cav,i ) (4.1)

where M0 is the gridded baseline mortality rate for people age 30 or older (and is constant

across all demographic groups), Pd
i is the population for demographic d, Cav ,i is the gridded

annual average BC concentration, i is the grid cell index, N is the number of grid cells, and βd

is the concentration response factor. We used a constant βd (βT = 0.005827, calculated from

the relative risk estimate presentey6y yyp6y6lluy u7l;yeFinkelstein:2003tz,Mensah:2005ii,Su:2009hh,

these studies analyzed the effects of total suspended particles [Finkelstein et al., 2003], a com-

bination of multiple environmental hazards [Su et al., 2009], or morbidity from specific health

outcomes [Mensah et al., 2005]. ’j’[ l. Our use of a constant β means that the results are

likely biased low for the analysis of persons below 50% of the poverty level, and biased high

for the analysis of persons above 200% of the poverty level. We use a varying βd per Krewski

et al. [2009] for different education levels (βBHS = 0.006204 for below high school education,

and βAHS = 0.004018 for above high school education). Demographic population informa-

tion was obtained from the NASA Socioeconomic Data and Applications Center [Seirup and

Yetman., 2015], and is based on the US Census 2000 TIGER files. While the demographic

population information provided populations for persons with a bachelors degree or higher,

we used the concentration response factor from Krewski et al. [2009] for greater than a high

school education, and refer to this demographic group as persons with above a high school
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education. Therefore, our results are possibly biased low for this demographic group, as

we are not including the full population of people with above a high school education but

without a bachelors degree (e.g., people with an associates degree).

4.3.1 Risk Modification Factor

In addition to simulations that have premature death as the metric of interest, we

have also performed simulations where the metric of interest is defined as the national risk

modification factor, or risk modification factors for specific urban regions (Equation 4.2).

For the regional risk estimate simulations, three regions were considered (New York City

and Philadelphia (NY/PHI), Dallas, and San Joaquin Valley). These specific regions were

chosen from the analysis in Turner et al. [2015a] because NY/PHI showed the largest number

of premature deaths, the San Joaquin Valley showed large per-unit emission damages along a

route where a new rail system is to be build, and the Dallas region showed significant impacts

from outside of the region. For the risk modification factor simulations, the risk modification

factor (the probability of damage to life as a result of a given hazard) is calculated using the

following equation

R =
N∑
i=1

(1 − e−β
T ·Cav,i ) (4.2)

where R is the risk modification factor for the region of interest, βT is the concentration

response factor for all-cause premature deaths for the total population, i is the grid cell

index, N is the number of grid cells in the region, and Cav ,i is the annual average BC

concentration in the region.

4.3.2 Average Individual Risk

Lastly, we perform simulations where the metric of interest is the average individual

risk for both national and regional simulations (Equation 4.3). As with the risk modification

factor simulations, only three regions are considered (NY/PHI, Dallas, and San Joaquin
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Valley). The average individual risk is calculated using the following equation

AIR =
1

N
·

N∑
i=1

M0 ,i · (1 − e−β
T ·Cav,i ) (4.3)

where M0 is the baseline non-accidental mortality rate for grid cell i. We estimate an average

individual risk value (as opposed to a sum) in order to account for the fact that emissions in

any given grid cell might not have an effect on the entire region. For example, an analysis

of the national AIR includes the effects of emissions in both southern California and Maine.

However, emissions from southern California do not have a significant effect on AIR in Maine,

and vice versa. Therefore, we present the average individual risk calculation instead of the

summed individual risk calculation.

4.3.3 Adjoint Sensitivities

We use the CMAQ adjoint to obtain the sensitivities of national premature deaths

attributed to exposure to BC with respect to emissions for each demographic, as well as

sensitivities of risk and average individual risk with respect to emissions for the nation as a

whole and three urban regions. See Turner et al. [2015b] for full details of the development

and validation of the CMAQ adjoint model. In order to reduce the computational cost of

this analysis, adjoint simulations were run for the first week of each month. The resulting

12 week average has been shown to be an accurate representation of the year as a whole

[Turner et al., 2015b]. Semi-normalized health impact sensitivities ( ∂Jd
∂Ei,k,m

·Ei,k,m) represent

the contributions of BC emissions in grid cell i, sector k, and month m to the number of

estimated premature deaths in demographic d attributed to exposure to BC. Semi-normalized

sensitivities for average individual risk ( ∂AIR
∂Ei,k,m

· Ei,k,m) represent the increased risk that an

individual will pass away prematurely as a result of exposure to BC from emissions in grid

cell i, sector k, and month m. Absolute sensitivities of risk modification factor ( ∂R
∂Ei,k,m

)

with respect to emissions represent the increased risk associated with emissions in grid cell

i, sector k, and month m on a per-unit-emission basis. While the other analyses in this



118

paper present semi-normalized sensitivities, we present absolute sensitivities for the risk

modification factor analysis in order to investigate the impact of changes in emissions on

risk on a per-unit emission basis.
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4.4 Results and Discussion

4.4.1 Demographic Analysis - Nationwide
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Figure 4.1: Total number of premature deaths from exposure to BC in 2007 and total US
populations for each demographic.

Figure 4.1 shows the estimate of premature deaths for each demographic group, and

the US population of each demographic group (spatial distributions of each demographic

group are shown in Figure 4.13). While there are significantly more people with less than

a high school education than any other demographic analyzed (almost double that of the

above 200% poverty group, and 10 times that of the below 50% poverty group), there are

less premature deaths attributed to exposure to BC for this group than both of the ‘above’

groups (above 200% poverty level and above high school education). Additionally, the below

high school education group has triple the population of the above high school education

group, yet has 200 less premature deaths. This is due to the fact that the distribution of

the above high school education group is more correlated with high BC concentrations that

occur in and near the urban centers, while the below high school education group is more
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rural, nationally. The above 200% poverty level group has the most premature deaths, with

twice as many premature deaths as the next closest group (above high school education).

This is again owing to the large percentage of people from this demographic living in and

near the urban regions (see Figure 4.13a). Finally, the below 50% poverty level group has

the fewest premature deaths with 600 (420 - 780) and the lowest population.

We first consider the contributions of BC emissions for each demographic group (Figure

4.12). Figure 4.12a shows the number of premature deaths in the above 200% poverty level

demographic resulting from emissions in each grid cell. The largest contributions occur

within the urban centers throughout the US, with smaller contributions as the distance to

urban centers increases. A significant portion of the rural areas in the eastern US are shown

to have fractional contributions (between 0.01 and 1), while a majority of the rural regions

in the western half of the US show no contributions. This is a result of the larger populations

in the rural areas of the eastern US (Figure 4.13a). The below 50% poverty level group has

approximately ten times fewer premature deaths (Figure 4.12b) than the above 200% poverty

level group. Again, we see the largest contributions coming from the urban centers where

populations (Figure 4.13b) and emissions are largest. Contributions from BC emissions to

premature deaths for the above high school education (Figure 4.12c) and below high school

education (Figure 4.12d) groups appear to be nearly identical, with maximums occurring

within the urban centers and fractional contributions from emissions in many of the rural

areas in the eastern US. While the spatial maps of the contributions to above high school

education and below high school education are very similar (Figure 4.12c-d), the respective

population distributions (Figures 4.13c-d) show significantly larger populations in the below

high school education demographic in those rural areas.

It is interesting to evaluate the extent to which differences in the maps of contributions

of BC emissions to premature deaths in these different demographics are driven by differences

in the spatial distribution of these populations. In order to determine this, we next compare

contribution percentages to population percentages for each demographic group (Figures 4.2
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Above 200% Poverty Level Below 50% Poverty Level

Above High School Education Below High School Education

P_Cont / P_Pop, log scale (85%)

(a) (b)

(c) (d)

Figure 4.2: Spatial plot of the ratios of contribution percentage to population percentage for
(a) persons above 200% poverty level, (b) persons below 50% poverty level, (c) persons with
above a high school education, and (d) persons with below a high school education. Data
presented on a log scale.
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and 4.3). Results in Figure 4.2 are presented as a ratio of the contribution percentage to

the population percentage, on a log scale. Similar to the ratio analyses of contributions

in Turner et al. [2015b], in order to emphasize the locations with the largest contributions

for each demographic group we have included only the grid cells that sum to the top 85%

of the numerator and denominator. For example, when plotting the ratio of contributions

for people with an education above high school to population for persons with above a high

school education, we only plot the grid cells that sum to 85% of contributions for persons with

above a high school education and the grid cells that sum to 85% of population for persons

with above a high school education. This filtering prevents some large ratios that correspond

to locations with negligible contributions from being displayed on the plots. Additionally,

we plot ratios of the contribution percentages instead of absolute concentrations in order to

account for differences in total contributions for each demographic group.

Figure 4.2a shows the ratio of contribution percentage to population percentage for per-

sons above 200% of the poverty level, with a maximum ratio of 4.7 in southeastern Louisiana.

A majority of locations that have a larger contribution percentage than population percent-

age occur along interstates in the south central US and in California, due to the significant

disparity between vehicle emissions along rural interstates and populations within the grid

cells that contain the rural interstates. On the other hand, many locations with a larger pop-

ulation percentage than contribution percentage occur on the east coast (with a large number

in the northeast), with a maximum in Florida. Figure 4.2b shows the ratio of contribution

percentage to population percentage for persons below 50% of the poverty level. Compared

to Figure 4.2a, the results for this demographic show more locations with larger contribution

percentages, especially in the northeast where Figure 4.2a shows almost no locations with a

contribution percentage larger than the corresponding population percentage. Major road-

ways again stand out as the locations with a larger contribution percentage than population

percentage, however, there is a region of large ratios upwind of New York City and Chicago.

This is a result of the upwind regions having lower population percentages (Figure 4.13b) for
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the 50% poverty level demographic, yet large population percentages in the urban regions

downwind of the emissions. Figure 4.2c shows the contribution to population ratio for people

with above a high school education. While showing a similar trend to Figure 4.2a, with very

few locations in the northeastern US having larger contribution percentages than population

percentages, we see much fewer rural locations showing up around the urban centers. This is

attributed to the above high school education demographic having a larger percentage of its

population in the urban centers (Figure 4.13c), resulting in fewer grid cells being required to

sum to 85% of the population. Lastly, Figure 4.2d shows the contribution to population ratio

for persons with below a high school education. Similar to Figure 4.2a, many of the locations

with higher contribution percentages than population percentages occur in the south central

US and in California. The northeastern US and Florida again show much larger population

percentages than contribution percentages, resulting from the larger population percentages

in the region (Figure 4.13d).

Figure 4.3 shows scatter plots of the contribution percentages versus population per-

centages for each demographic group. All groups have a strong correlation (correlation

coefficients ranging from 0.77 to 0.85) and R2 values near 0.6 to 0.72. The above 200%

poverty level group (Figure 4.3a) shows a larger slope than the above high school education

group (Figure 4.3c), which is expected since the above high school education group has a

smaller concentration response factor than used for the above 200% poverty level group.

Additionally, the below 50% poverty level group (Figure 4.3b) has a smaller slope than the

below high school education group (Figure 4.3d), which can again be explained by the larger

concentration response factor for the below high school education group.

The above analysis shows that despite effects of transport, there are strong correlations

between emission locations and the locations of the population subgroups harmed by BC

exposure. It is next of interest to evaluate the extent to which emissions may impact a

population subgroup disproportionately compared to other population subgroups. Figure

4.4 shows the ratios of contributions from the various demographic simulations. A trend
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Figure 4.3: Scatter plots of contribution percentages vs. population percentages for (a)
persons above 200% poverty level, (b) persons below 50% poverty level, (c) persons with
above a high school education, and (d) persons with below a high school education.
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that is consistently seen across the various ratios is a difference between contributions in

the northern and southern parts of the US, with emissions in the northern part of the US

contributing to more premature deaths for the wealthier and more educated demographics.

Figure 4.4a shows the ratio of persons with more than a high school education to persons

with less than a high school education. While not as pronounced as some of the other panels,

there are distinct sections of the US where emissions disproportionally effect persons with

different education levels (with a maximum ratio of 1.9 in southeast New Hampshire). On

the other hand, the Los Angeles and San Joaquin Valley regions show significantly more

contributions (on a percentage basis) for less-educated individuals. In contrast, regions such

as Seattle, much of the Northeastern US, and Florida show emissions having a greater impact

on more-educated individuals. In order to determine the extent to which these differences can

be explained by disparities in the underlying population distributions, Figure 4.5a shows a

comparison of the contribution ratios to population ratios. While there are large variations in

the population ratios, we see much smaller variations in the contribution ratios (R2 = 0.18).

Therefore, a majority of the variability in the contribution ratio is driven by other factors,

such as baseline mortality rates and the position of population distributions downwind of

emission sources.

Figure 4.4b shows a ratio of contributions to individuals above 200% of the poverty level

to individuals below 50% of the poverty level, and shows much larger differences than Figure

4.4a, with a maximum ratio of 3.1 (in southeast New Hampshire) and a minimum ratio of

0.2 (at the southern tip of Texas). The ratio of high income to low income individuals also

shows a strong correlation (Figure 4.5b), with higher population ratios resulting in higher

contribution ratios. This strong correlation (correlation coefficient of 0.62) is a result of the

concentration response factor being constant across varying income levels. Therefore, the

population distribution is the most variable input in the analysis. Figure 4.4c shows a ratio

of contributions to individuals below 50% of the poverty level to individuals with less than

a high school education. Unlike Figures 4.4a-b we do not see a distinct split between the
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Figure 4.4: Spatial plot of contribution ratios for (a) individuals with above a high school
education to individuals with below a high school education, (b) individuals above 200% of
the poverty level to individuals below 50% of the poverty level, (c) individuals below 50%
of the poverty level to individuals with below a high school education, (d) individuals below
50% of the poverty level to individuals with above a high school education, (e) individuals
above 200% of the poverty level to individuals with below a high school education, and (f)
individuals above 200% of the poverty level to individuals with above a high school education.
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northern and southern US. For this ratio, most of the US shows larger values for individuals

with less than a high school education. However, there are still a few regions (southeastern

US and the San Joaquin Valley) where individuals below 50% of the poverty level have larger

values.

Figure 4.4d shows the ratio of contributions to individuals below 50% of the poverty

level to individuals with above a high school education. As with the other figures we again

see a distinct split between the northern and southern half of the US, with emissions in the

northern US contributing to more premature deaths per person for the above high school

education group and emissions in the southern US contributing to more premature deaths per

person for the below 50% poverty level group. Figure 4.5d shows the corresponding scatter

plot, and shows that the contribution ratios are skewed toward larger values. This skewing

in the data is explained by the larger concentration response factor for persons below 50% of

the poverty level, which results in a larger number of premature deaths per unit population

for the below 50% poverty level group than the above high school education group. A

comparison of individuals above 200% of the poverty level to individuals with below a high

school education (Figure 4.4e) also shows the trend of emissions in the northern half of the

US contributing to a higher fraction of premature deaths to the higher income demographic,

with a maximum ratio of 1.7 in southeast New Hampshire. Figure 4.5e shows the correlation

between the contribution and population ratios for individuals above 200% of the poverty

level to individuals with below a high school education. As with Figure 4.5b, we see a strong

correlation between contribution ratio and population ratio with a correlation coefficient of

0.69. Lastly, Figure 4.5f shows the comparison of persons above 200% of the poverty level

to persons with above a high school education. Compared to the other panels, this ratio

shows very little variation throughout the region. There are still locations where emissions

have a larger impact on each demographic group (emissions in the southeast US have a

larger impact on persons with above a high school education), however the differences are

very small. Figure 4.5f shows the corresponding scatter plot for this relationship. Similarly
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Figure 4.5: Comparisons of contribution ratios to population ratios for ratios of (a) individ-
uals with above a high school education to individuals with below a high school education,
(b) individuals above 200% of the poverty level to individuals below 50% of the poverty
level, (c) individuals below 50% of the poverty level to individuals with below a high school
education, (d) individuals below 50% of the poverty level to individuals with above a high
school education, (e) individuals above 200% of the poverty level to individuals with below
a high school education, and (f) individuals above 200% of the poverty level to individuals
with above a high school education.
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to the spatial analysis, we see very little variation in the contribution ratio across varying

population ratios. In fact, 0% of the variation in the contribution ratios can be explained by

the variation in the population ratios (R2 = 0.0). This is possibly attributed to the different

concentration response factor between the demographic groups or the strong correlation

between the population distributions of the two demographic groups, however there are likely

other factors which require further investigation to understand fully. Overall, the results in

Figure 4.5 suggest that BC emissions do not preferentially effect certain demographic groups.

While the previous figures present an analysis of the contributions of total emissions,

there is additional interest in identifying potential differences in how certain emission sectors

affect different populations. Therefore, we performed an analysis of the impacts of sectoral

emissions for each demographic group (Figure 4.6). The results are presented as a percentage

of the total contributions in order to more easily determine the relative impacts of each sector.

The variability between demographic groups is small for each sector (1-3% differences) for

both national (Figure 4.6) and a regional (not shown) analyses of the sensitivities.

4.4.2 Sensitivity of Risk Modification Factor

For the risk modification factor simulations, adjoint sensitivities ( ∂R
∂Ei,k,m

) provide an

estimate of the impact of a unit emission in a single grid cell on the nationally summed risk

modification factor or regionally summed risk modification factor attributed to exposure to

BC. The regions of interest used for the regional simulations are shown in Figure 3.4. It is

important to note that the risk modification factor sensitivities do not depend on population

density. The results can be interpreted as the potential increased risk associated with adding

a unit of emission in each grid cell for any single individual, regardless of the underlying

population or mortality rate. Therefore, unlike the sensitivities of premature deaths shown

earlier, the distribution of risk modification factor sensitivities is not biased towards urban

areas. In contrast, these sensitivities show locations where BC emissions have the potential

to most impact any individual’s risk regardless of their location.
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Figure 4.7: Sensitivity of risk modification factor with respect to emissions for national risk
(top) and regional risk (bottom). Regional risk modification factor figure combines results
from three regions (Dallas, San Joaquin Valley, and NY / PHI region) on the same figure.
Results are presented as sensitivity normalized by the number of grid cells within the region
of interest.
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Figure 4.8: Comparison of national risk modification factor estimate (x-axis) to simulated
2007 wet deposition totals for BC (y-axis).

Figure 4.7 (top) shows the sensitivity of national risk modification factor with respect

to emissions, normalized by the number of grid cells in the region of interest (to facilitate

comparisons between national and regional results). Higher risk values are associated with

emissions from drier climates. A majority of the moderate to high sensitivities (warm col-

ors) occur in the southwestern portion of the US, with the highest values occurring in the

Sonoran, Mojave, and Great Basin deserts. This is particularly important, as many individ-

uals who are at a higher risk from exposure to air pollution (such as retirees) tend to live

in these drier locations. The phenomenon of high risk modification factors being associated

with drier climates is most likely attributed to the increased atmospheric lifetime of particles

being emitted in drier climates, resulting from less wet removal of particles from the atmo-

sphere. This is further supported by the comparison of risk modification factors to modeled

wet deposition values (Figure 4.8). A majority of the large risk modification factor values

occur in regions with the lowest 10-20% of wet deposition. Additionally, the grid cells with

the most wet deposition have some of the lowest risk modification factor estimates. The

smallest sensitivities occur over regions where BC would not be efficiently transported into

the national domain, such as most of the oceans and northeastern US.
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In addition to the sensitivity analysis of national risk modification factor estimates,

simulations were also performed to estimate the sensitivity of risk modification factor within

three unique regions (Figure 4.7, bottom). While adjoint simulations were performed sepa-

rately for each region of interest, all of the results have been plotted on the same figure. In

Figure 4.7 (bottom), the results in each region are normalized by the number of grid cells

contained within the region of interest. As expected given the short atmospheric lifetime of

BC, the largest sensitivities occur within the regions of interest.

For NY/PHI, the largest values occur along the Pennsylvania-Delaware border. Larger

sensitivities are observed in Pennsylvania (along the border of the region of interest) than

within New Jersey, which lies completely within the region of interest. This suggests that, in

order to minimize the BC exposure risk modification factor within the region, new emission

sources should be placed within New Jersey (as opposed to Pennsylvania), or existing sources

should be preferentially controlled in Pennsylvania. Outside of the region of interest, non-

zero sensitivities extend mostly to the southeast, with additional impacts occurring along

the coast south of the region.

Of all of the regions analyzed, the largest sensitivity occurs within the Dallas region;

however, there are a greater number of large sensitivities in the San Joaquin Valley than any

other region. The maximum sensitivity being in Dallas is attributed to the drier climate in

the Dallas region. Similar to NY/PHI, a majority of the large sensitivities occur within the

region of interest. For the San Joaquin Valley, a majority of the largest sensitivities also

occur within the region of interest. The largest values occur along the southeastern portion

of the region, with the largest value occurring just east of Bakersfield. Sensitivities outside

of the region of interest show that emissions in the San Francisco Bay area are the only

emissions that have an impact on risk in the region.
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4.4.3 AIR Sensitivity Analysis

While Figure 4.7 presents the absolute sensitivities of risk ( ∂R
∂Ei,k,m

) and are independent

of population and emission values, in this section we present semi-normalized sensitivities

of AIR ( ∂AIR
∂Ei,k,m

·Ei,k,m), which have units of premature deaths per person. Figure 4.9 shows

the contribution of emissions to average individual risk in each of the modeled regions.

The national analysis (Figure 4.9a) shows the contributions of emissions in each grid cell

to the national average AIR. As might be expected for this type of analysis where the metric

of interest is independent of total population, the largest sensitivities occur in the locations

with the largest emissions. Additionally, the further away a grid cell is from the urban centers,

the smaller the sensitivity (with many rural regions such as central Nevada and southern

Utah having sensitivities of 0). The emission with the largest contribution is approximately

4.75 in one hundred million, and occurs in central Idaho where there were significant fires

in 2007. Following central Idaho, the emissions with the next largest sensitivities are in

Baltimore, MD, Lafayette and Baton Rouge, LA, and many of the major metropolitan

areas across the country. Emissions in many of these metropolitan areas (such as Atlanta,

Houston, Washington DC, and Minneapolis) have sensitivities of approximately 1 in one

hundred million. For comparison the annual average AIR from BC in the continental US

is 1.43 in 100,000 people. This is larger than the risk from some common activities, such

as bicycling (1.32 in 100,000 [Consumer Product Safety Commission]), flying (4.52 in one

hundred million [Sivak et al., 1991]), and skydiving (0.8 in 100,000 [Westman and Björnstig,

2005]).
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An analysis of the AIR sensitivities for the San Joaquin Valley (Figure 4.9b) shows

that the sum of contributions of emissions to average AIR in the San Joaquin Valley is 1.35

in 100,000. As in the national analysis, the summed contributions to average AIR in the

San Joaquin Valley results in a risk that is larger than the risk from flying, bicycling, and

skydiving. Many of the emissions with the largest sensitivities occur along CA-99, with

a maximum of 8.7 in 10 million occurring in Bakersfield, CA. Further analysis shows that

emissions from within the region pose a AIR sensitivity of 8.56 in a million, and emissions

from outside of the region pose a AIR of 5.02 in a million. A majority of the large sensitivities

from outside of the region occur within the San Francisco Bay area, which closely borders the

region of interest. While previous studies have shown that a large percentage of premature

deaths in the region are attributed to emissions from within the region (73% in Turner et al.

[2015b]), our analysis shows that the risk of an individual in the region from emissions outside

of the region is half of the risk from emissions within the region. This is a result of the AIR

analysis being independent of population, and only depending on whether or not emissions

in a given location contribute to BC anywhere within the region (not just the populated

areas).

Figure 4.9c shows the sensitivities of average AIR for an individual in NY/PHI. Our

analysis shows that the annual average AIR in the region is 3.55 in 100,000. The annual AIR

for the NY/PHI region is larger than the annual average AIR for the national analysis, due

to the averaging in the AIR analysis; the national analysis includes many grid cells within

the region that have little or no contributions. On the other hand, the NY/PHI region

contains many urban centers, and the resulting average AIR is not diluted by low-emission

areas. The maximum sensitivity occurs within the grid cell that encompasses New York City,

and has a value of 9.47 in 10 million. Additionally, the AIR in the region from emissions

outside of the region is 7.51 in a million while the AIR from emissions inside the region is

2.80 in 100,000. As with the other regions, the largest sensitivities occur within the urban

centers. Sensitivities decrease as the distance from the urban centers increases, however
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larger sensitivities are observed along the heavily trafficked roadways. Outside of the region,

the largest sensitivity occurs within the grid cell that encompasses Baltimore, MD.

Finally, Figure 4.9d shows the AIR sensitivities for the Dallas region, with an annual

average AIR in the region of 2.15 in 100,000. The maximum sensitivity values coincide

with the largest emission sources within the region, and have values of 6 to 8.1 in 10 million.

Analysis of the sensitivities inside and outside of the region shows that emissions from within

the region yield an AIR sensitivity of 1.78 in 100,000, while emissions from outside of the

region yield an AIR sensitivity of 3.64 in a million.
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Since each of the regions show the largest sensitivities in areas that are likely to be

the largest emission sources, we compare AIR sensitivities to baseline mortality rates and

emissions (Figure 4.10) in order to determine which variables have the strongest correlation

to AIR sensitivities. Figures 4.10a-c show the comparisons for the national analysis, while

Figures 4.10d-f show the comparisons for the regional analyses. Figures 4.10a and 4.10d are

both bimodal for the comparison of baseline mortality rates to AIR sensitivities. This is

due to AIR contributions being semi-normalized by the emissions, meaning that large AIR

contributions typically correspond to large emissions. On the other hand, baseline mortality

rates are independent of emissions; many large baseline mortality rates occur in areas with

very low emissions. However, Figure 4.10b shows a similar bimodal distribution of the com-

parison of AIR contributions to emissions for the national analysis. This is a result of the

national analysis including locations where significant emissions occur in areas of low mor-

tality rates (Figure 4.10c). The comparison of baseline mortality rates to AIR contributions

for the regional analysis (Figure 4.10d) shows a coefficient of determination (R2) of 0.0034

for NY/PHI, 0.079 for Dallas, and 0.0052 for the San Joaquin Valley. The greatest correla-

tion is obtained by regressing emissions on AIR contributions (Figure 4.10e) for all regions

(NY/PHI: R2 = 0.65, Dallas: R2 = 0.93, San Joaquin Valley: R2 = 0.23). Similar to the

national analysis, Figure 4.10f shows a bimodal distribution of the comparison of emissions

to baseline mortality rates. However, the regional analyses contain much fewer locations

of large baseline mortality rates where there are insignificant emissions. Additionally, the

maximum emission for all of the regional analyses is approximately ten times smaller than

the maximum emission in the national analysis.

While we have thus far considered the risk associated with total BC emissions, further

information about the type of emissions may also be of use for policy development. As

such, we have performed a sectoral analysis of the AIR sensitivities for each region (Figure

4.11). Similarly to the results in Turner et al. [2015b] for premature deaths attributed to

exposure to BC in the US, the onroad diesel and nonroad mobile sources contribute the most
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to AIR, due to the large emissions of BC from these sources. While fires are a significant

source of BC emissions, the contribution of fire emissions to AIR in each urban region is

small when compared to other sources. However, the contribution of fire emissions to AIR

on a national level is much larger (the fourth largest contributor). In the national analysis,

there are significant fire emissions within the region, yet these fires occur far from the urban

regions that were analyzed and therefore have small contributions to AIR in these particular

urban regions in 2007. Even though there are signifiant more fire emissions than non-point

emissions (nearly twice as much in 2007), there are larger contributions from non-point

emissions due to the fact that most of the fire emissions occur in a small number of grid

cells that are near areas with low baseline mortality rates, while non-point emissions tend

to occur near the larger baseline mortality rates. Additionally, over half of the contributions

in the Dallas region come from onroad diesel emissions; onroad diesel and nonroad mobile

emissions combine to account for over 80% of the contributions to AIR in the Dallas region.

In contrast, sources such as EGU, non-EGU, and onroad gasoline are much more prominent

in NY/PHI; EGU sources in the NY/PHI region have a contribution percentage two to

three times larger than in any other region. This is attributed to the large amount of EGU

emissions in the NY/PHI region, compared to other regions.

Lastly, a comparison of the sector specific AIR contributions to premature death con-

tributions for both national [Turner et al., 2015b] and regional [Turner et al., 2015a] analyses

allows us to quantify the influence of population on health-based analyses. In the national

analysis of Turner et al. [2015b] the percent contributions to premature deaths for both

onroad diesel and nonroad mobile emissions were approximately 6% larger than the AIR

contribution estimates (Figure 4.11). Additionally, while Turner et al. [2015b] estimated

approximately 3% of contributions to premature deaths come from fire emissions, the AIR

contribution analysis estimates that fire emissions account for approximately 12% of the total

contributions. The larger percentage of contributions from fire emissions in the AIR analysis

is caused by the fact that the premature death contribution estimates were marginalized for
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less-populated rural areas, where a majority of fire emissions occur. Comparing the regional

sector-specific AIR contributions to the regional premature death contribution analysis in

Turner et al. [2015a] shows that the contribution percentage of both onroad diesel and non-

road mobile are nearly identical for each region. However, nonpoint emissions account for

approximately 22% of the AIR contributions in the San Joaquin Valley, yet only account for

approximately 5% of the premature death contributions. Additionally, non-EGU and EGU

sectors both have AIR contributions approximately two to three times larger than the cor-

responding premature death contribution percent for each region (EGU AIR contributions

for NY/PHI are approximately 10%, yet EGU premature death contributions for NY/PHI

account for approximately 5%).
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4.5 Conclusions

In this paper we analyze the effects of BC emissions in the US on three different

risk-based metrics: premature deaths attributed to BC exposure, average individual risk

attributed to pollutant exposure, and a metric independent of population and baseline mor-

tality rates (referred to as risk modification factor). The premature death analysis focuses

on specific demographic groups (persons above 200% of the poverty level, persons below

50% of the poverty level, persons with below a high school education, and persons with

above a high school education) in order to analyze potential disparities of health impacts

of emissions from different sectors and locations on certain demographic groups. We find

strong correlations between contribution percentage and population percentage for each de-

mographic group, with correlation coefficients ranging between 0.77 for persons with above

a high school education to 0.85 for persons below 50% of the poverty level. However, there

were less direct relationships between contributions and population subgroups in areas such

as southern Maine, the Florida coasts, and parts of the San Joaquin Valley. Thus, emis-

sions in the southern US contribute to a larger fraction of premature deaths in the groups

that include persons below 50% of the poverty level and persons with below a high school

education since they have a higher percentage of population in the south.

Comparisons of contribution ratios to population ratios between each demographic

group show that there is much less variability in the types of people harmed by BC emissions

than there is in the variability of population demographics themselves. A comparison of

people with above a high school education to people with below a high school education shows

that only 18% of the variability in contribution ratios can be explained by the variability

in population ratios. Therefore, a majority of the variability in the contribution ratio is

driven by other factors, such as baseline mortality rates and the distribution of populations

in areas downwind of emissions. Additionally, a comparison of the contribution ratios to

population ratios for people above 200% of the poverty level to people with above a high
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school education shows that none of the variability in the contribution ratio is explained

by the variability in the population ratio (R2 = 0). Lastly, in terms of national totals, we

found vehicle emissions to contribute to more premature deaths (1-3%) for the above high

school education and above 200% poverty level groups. On the other hand, non-EGU, EGU,

and fire emissions contribute to more premature deaths (1-3%) in the below high school

education and below 50% poverty level groups.

Analysis of the effects of BC emissions on national risk modification factor in the US

shows that the largest risk modification factors result from emissions in drier climates, such as

the Sonoran, Mojave, and Great Basin deserts. This phenomenon of higher risk modification

factors occurring in drier climates is likely attributed to the increased atmospheric lifetime of

particles being emitted in these climates, resulting from less wet removal of aerosols. Lastly,

analysis of the impacts of BC emissions on average individual risk shows that, while the

average individual risk analysis is independent of population, the largest sensitivities occur

within the urban centers. This is attributed to the significantly larger emissions within the

urban centers than in the surrounding areas. We also find average individual risks resulting

from emissions in single grid cells to be upwards of 9.47 in ten million in 2007 for the NY/PHI

region, which is larger than the risk from flying (4.52 in on hundred million). Finally, we

found that non-local emissions have a greater effect on AIR than premature deaths in certain

regions. While Turner et al. [2015a] estimated that 73% of premature death contributions are

from emissions within the San Joaquin Valley region, our AIR analysis estimates that 62%

of the AIR is attributed to emissions within the region. However, both the AIR contribution

analysis and the premature death contribution analysis yield similar percentages for the

NY/PHI region (78% of premature death contributions come from emissions in the region,

79% of AIR contributions come from emissions in the region) and Dallas regions (84% of

premature death contributions come from emissions in the region, 84% of AIR contributions

come from emissions in the region). This is a result of the Dallas and NY/PHI regions

encompassing urban centers, while the San Joaquin Valley region borders the San Francisco
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Bay area. The large emissions from the San Francisco Bay area do not result in a large

percentage of premature death contributions because much of the population in the San

Joaquin Valley region are further south in the region, and are not exposed to the emissions

from the San Francisco Bay area while in the AIR contribution analysis, contributions are

independent of the population.
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4.6 Supplemental Information

Population Above 200% Poverty

Population Above Bachelors Edu.

Population Below 50% Poverty

Population Below HS Edu.

Contribution skewed

(a) (b)

(c) (d)

Figure 4.12: Contributions of emissions to premature death for (a) persons above 200%
poverty level, (b) persons below 50% poverty level, (c) persons with above a high school
education, and (d) persons with below a high school education.
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Figure 4.13: Population distributions for (a) persons above 200% poverty level, (b) persons
below 50% poverty level, (c) persons with above a high school education, and (d) persons
with below a high school education.
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Chapter 5

Conclusions

The adjoint of the Community Multiscale Air Quality (CMAQ) model was developed

to facilitate projects that elucidate the sources of aerosols that contribute the most to adverse

human health impacts and, eventually, to perform inverse modeling to reduce uncertainty in

such sources. After successful development and validation of the adjoint (see section 2.7.1),

the model was used in multiple research studies analyzing the impacts of: (1) seasonal

and sectoral emissions on premature death associated with exposure to BC in the US, (2)

BC emissions on health in multiple urban US regions, (3) disparities in health impacts for

different population demographics, and (4) BC emissions on maximum individual risk in the

US. This dissertation presents the results of each of these research projects.

In Chapter 2 we used the CMAQ adjoint model to quantify source-receptor relation-

ships of emissions to premature deaths associated with national exposure to BC at highly-

resolved sectoral, spatial, and temporal scales. We found that highly populated urban areas

account for a larger percentage of national premature deaths than national emissions. Addi-

tionally, while damages resulting from anthropogenic emissions of BC are strongly correlated

with population and premature death, there is inconsistant correlation between damages and

emission magnitude. This suggests that controls on the largest emissions may not be the most

efficient means of reducing damages resulting from anthropogenic BC emissions. Rather, the

best proxy for locations with damaging BC emissions is locations where premature deaths

occur. We next performed a state-level analysis of contributions to national health impacts.
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However, the overall differences in emission, damage, and premature death percentage are

small at these scales, suggesting that optimal control strategies for BC need to be developed

at a state and sector level, given the relatively short lifetime of this pollutant.

In the study presented in Chapter 3, we estimated the extent to which emissions from

individual locations and sources throughout the US result in adverse health effects in six

urban areas. Onroad gasoline accounts for half as many premature deaths than nonroad

mobile and onroad diesel emissions, yet it has the greatest efficiencies. Fugitive dust results

in negligible premature deaths, but has large efficiency due to the proximity of the largest

dust emissions to the most populous grid cells. Additionally, non-EGU emissions in the

NY/PHI and Phoenix regions have efficiencies close to that of onroad gasoline emissions,

yet result in a fraction of the premature deaths of onroad gasoline emissions (approximately

10% for Phoenix, approximately 50% for NY/PHI). Contributions from emissions outside of

the region account for between 7% and 27% of the premature deaths within each of the six

regions. Interestingly, the largest efficiencies in the San Joaquin Valley occur along CA-99,

which is the location along which the new California rail system is to be built. This suggests

that, in the short term, there will be significantly more premature deaths from nonroad

mobile BC emissions in the region while the rail system is being constructed. However,

in the long term, the reduction in onroad mobile contributions along CA-99 will likely be

greater than the increase in rail contributions from the new rail system. Lastly, recent studies

have shown that onroad mobile source emissions of BC have decreased by approximately

66% in the past 30 years and off road mobile engines are estimated to account for 37% of

mobile emissions of BC in 2010 [McDonald et al., 2015]. Meanwhile, a majority of the vehicle

emission controls that regulate PM emissions focus on diesel emissions [US EPA, 2012, 2001].

However, the greatest benefit per unit emission for reductions of BC emissions occurs for

onroad gasoline sources, suggesting that BC emissions from gasoline sources would be the

ideal target for stricter controls.

In Chapter 4 we analyzed the effects of BC emissions in the US on three different
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risk-based metrics: premature deaths attributed to BC exposure, maximum individual risk

attributed to pollutant exposure, and a metric independent of population and mortality rates

(referred to as risk). The premature death analysis focuses on specific demographic groups

(persons above 200% of the poverty level, persons below 50% of the poverty level, persons

with below a high school education, and persons with above a high school education) in

order to analyze potential disparities of health impacts of emissions from different sectors

and locations on certain demographic groups. We find strong correlations between contri-

bution percentage and population percentage for each demographic group, with correlation

coefficients ranging between 0.77 for persons with above a high school education to 0.85 for

persons below 50% of the poverty level. However, there were less direct relationships be-

tween contributions and population subgroups in areas such as southern Maine, the Florida

coasts, and parts of the San Joaquin Valley. Thus, emissions in the southern US contribute

to a larger fraction of premature deaths in the groups that include persons below 50% of the

poverty level and persons with below a high school education since they mostly live in the

south. Comparisons of contribution ratios to population ratios between each demographic

group show that there is much less variability in the types of people harmed by BC emissions

than there is in the variability of population demographics themselves. Analysis of the ef-

fects of BC emissions on national total risk in the US shows that the largest risks result from

emissions in drier climates, such as the Sonoran, Mojave, and Great Basin deserts. This

phenomenon of higher risks occurring in drier climates is likely attributed to the increased

atmospheric lifetime of particles being emitted in these climates, resulting from less wet re-

moval of aerosols. Lastly, analysis of the impacts of BC emissions on maximum individual

risk shows that, while the maximum individual risk analysis is independent of population,

the largest sensitivities occur within the urban centers. This is attributed to the significantly

larger emissions within the urban centers than in the surrounding areas. We also find maxi-

mum individual risks resulting from emissions in single grid cells to be upwards of 9.5 in ten

million in 2007 for the NY/PHI region, which is larger than the risk from flying (4.52 in one
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hundred million).
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