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Abstract

The propagation of guided waves along a metal grating lying on a
grounded dielectric substrate is studied. Hitherto, investigation of the
properties of such waves has been restricted to directions of propagation
perpendicular to or nearly parallel to the strips of grating. Averaged
boundary conditions for the fields at the grating are used here to simplify
the analysis, and are expected to yield accurate results for grating periods
that are sufficiently small compared to a wavelength. Comparisons made
with more exact computations in the literature are shown to be good.
The results have potential application for microwave and millimeter wave
waveguides, slotted microstrip antennas and circuit elements.

1 Introduction

Guided waves propagating over an anisotropic structure (a periodically grated
or corrugated surface, for example) have been of interest for many years in the
study of leaky-waves and traveling-wave antennas, traveling-wave amplifiers,
bandpass filters and transmission lines at microwave and millimeter wave fre-
quencies. A large literature exists for such structures, of which we cite here only
a representative sample [1]-[31]. A general theoretical study of the existence,
uniqueness and spectral properties of such waves has recently appeared [32].

We will study the properties of guided waves propagating along a metal
grating on the surface of a grounded dielectric slab as shown in Fig. 1. This
structure has been analyzed under various assumptions by a number of authors
(19]-[31]. All this work has been restricted in terms of directions of propagation
(perpendicular to or nearly parallel to the strips of the grating), and some have
made additional restrictive assumptions about the parameters. In this report, a
new method using equivalent boundary conditions to describe the effect of the
strip grating is used to address the problem of propagation of guided waves in
an arbitrary direction.

Many authors, beginning apparently with Kontorovich [33], have investi-
gated the use of such approximate boundary conditions to model wire gratings
of various types. For an array of parallel strips, Sakurai [34], and later Sivov
[35] and Vainshtein [36] as consequences of a more general analysis, derived the
equivalent boundary conditions for the average electromagnetic field when the
permittivity and permeability on both sides of the grating are the same. This
was later generalized [37] to the case where the material parameters on both sides
of the grating are different. This general condition has been recently rederived
using the homogenization method, which shows it to be a first-order approxi-
mation whose error is of order (kop)?, where kq is the free-space wavenumber
and p is the period of the grating [38]. A number of other papers have derived
equivalent boundary conditions or equivalent circuits for this structure, going
all the way back to the work of Lamb [39]-[53]. However, these are all restricted
either by allowing no field variation along the direction of the strips [39]-[41],



[44]-[46], [49]-[53], or limiting validity to narrow strips [42] or narrow slots [48],
by not permitting different media on opposite sides of the grating [43], [47],
[48] or in some other way (in [47] and [52]-[53], however, the model is valid
for higher frequencies than any of the other models cited here, including the
Sakurai-Vainshtein-Sivov condition that will be used in this report).

2 Definitions and Assumptions

In this report, we are interested in a structure (see Fig. 1) consisting of a one
dimensional periodic array of identical, equally spaced, thin metallic strips on a
grounded dielectric substrate. As illustrated there, we choose z to be parallel to
the axes of the strips, we take z upward perpendicular to the substrate surface,
and y horizontal and transverse to the strips. The grounded lower surface of
the substrate is taken to be the yz-plane. The thickness of the dielectric slab is
d and the ground plane is located at z = 0.

An exact analysis of the electromagnetic field near this structure would be
based on Floquet (or Bloch) waves of the form

E:/[Zanfn(z,y;y)e}tp[—j(ﬂnz+7y)] dy (1)

n

and similarly for ﬁ, where &, for each n is periodic in y with period p and 8, (7)
is the propagation constant in the z-direction for a Floquet wave corresponding
to a given value of the spectral variable . If kp < 1, then ]fn| — 0 rapidly as 2
moves away from the plane of the strips (a distance more than O(p)), for all but
one value of n , which corresponds to the fundamental Floquet mode. The use
of average boundary conditions means we are explicitly constructing only that
part of the field corresponding to this lowest Floquet mode. Qur treatment of
the problem is based on several important hypotheses:

1. The grating period p is small in comparison with the wavelength A of
the incident wave in such a way that the dimensionless parameter kp
(k = 2r/X) is small. This assumption implies that the grating can be
represented as a semitransparent, infinitely thin film which both reflects
and transmits the energy of the incident waves. Under this assumption,
only the fundamental Floquet mode (the fundamental mode is defined
to be the mode which propagates over the complete frequency range; in
other words, there is no cutoff frequency) exists some distance away from
the grating. These distances are such that fields of plane waves can be
formed and they are greater than the order of a period p. The other
higher-order Floquet waves are attenuated rapidly with distance from the
grating. Based on these assumptions, the average currents and charges
induced on the grating are governed by the average field of the main wave
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Figure 1: Metal grating on a grounded dielectric slab: (a) cross-section; (b) top
view.



and they are respectively proportional to the tangential components of
the magnetic and the normal components of the electric field.

2. The thickness of the substrate is electrically small (kod < 1, where ko =
2nf\/poco, f is the frequency, € is the free space permittivity and pq
is the free space permeability). Although this assumption is somewhat
restrictive, it is true for a number of practical designs.

3. Both the ground plane and the strips are assumed to be perfectly con-
ducting metal.

4. The thickness of the strips is assumed to be infinitesimal. This assumption
is used for most theories applicable to microstrip antennas.

5. The substrate and the ground plane are assumed to be of infinite ex-
tent. The characteristics of a structure of finite extent (such as resonant
frequency, input impedance, radiation pattern, etc.) are essentially de-
pendent on the shape and dimensions of the finite structure. However,
the properties of the guided waves that exist on infinite structures can
give us crucial insight and semi-quantitative models for the behavior of
finite structures through the use of approximate transverse resonance tech-
niques.

Our theory includes the case where the dielectric is lossy (the permittivity is
taken to be g€, (1—jtan §) where ¢, is the relative permittivity, and tan 6 is the
loss tangent). It also includes the possibility of a lossy magnetic substrate. In
most practical applications, the substrate is nonmagnetic and free of magnetic
losses; therefore, in this report the permeability will be taken to be that of the
free space.

In MKS units and time dependence ¢/“*, the generalized Sakurai-Vainshtein-
Sivov boundary conditions for the average fields (i. e., the average fields of
the fundamental Floquet mode) at a strip grating lying in the plane interface
between two different materials are [38] that Ey, and E, (hence also B;) are
continuous, while:

_ le . 2pipy 0
E, = ) [] i+ ps (H yl) + 1+ 6 6Z(C2E:v2 - 6lE:zl)] (2)
_ €1+€2 K1+ p2, 0B,
Hz2 Hzl - 21h[ ]w( )Ey +( 2#1“2 ) 82 ] (3)
where
Iy = —elnsecw—b
7r 2p
4 ra
= = In csc 5 (4)
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and a is the width of a slot in the grating while b is the width of one of the
strips. In the next section, we make use of (2) and (3) to study the properties
of guided waves propagating along a metal grating on the surface of a grounded
dielectric slab.

3 Derivation of the Eigenvalue Equation for
the Guided Waves’ Propagation Constants

The dielectric slab covered by a periodically slotted conducting plane supports
guided modes. In this section, we will derive the eigenvalue equation for these
modes using the equivalent boundary conditions presented in the previous sec-
tion. From the eigenvalue equation, the normalized propagation constant (with
respect to the free space propagation constant k) can be determined as a func-
tion of the direction of propagation of the mode. This same method has been
used previously to obtain the eigenvalue equation for a rectangular metallic
waveguide filled with a layered dielectric on top of which lies a periodic metallic
grating [17]. It can be verified that if metallic side walls perpendicular to the y-
axis are inserted into our structure, and a transverse resonance method applied
in the y direction, the eigenvalue equation of [17] is reproduced for this case, as
must happen since the same methods have been used in the analysis.

In our derivation, a spatial dependence of e~7(F2+7¥) will be understood to
multiply all field quantities: E(z,y,z) = £(z)e~#(P#+7¥) etc., where 3 and 7
are respectively the propagation constants in the z-direction (along the strips)
and y-direction (transverse to the strips). We introduce the quantity kr as the
propagation constant of a mode propagating at an angle § with respect to the
strips; # and v are related to kp as follows:

B = krcosb (6)
¥ = krsinf (7

so that
kp =7+ (8)
The mode fields satisfy the source-free version of Maxwell’s equations, namely
VxE = —jwuH (9)
VxH = jwekE (10)

in both regions I and I7 which are respectively the dielectric slab and the half
space above the slab. The parameters of I are €; = ¢;1¢¢ and ug and those of



II are €3 = €p€,2 and pg. From the y and z dependences assumed above, we
have

8E =
i —J7E
8H -
rri —JjvH
OF o=
0H o
2

From (9)-(10) and (11) we observe that all field components can be expressed
in terms of &; and H, only. The fields tangential to the yz-plane, &7 and Hrp,
are given by:

=~ 1 - - . - - dga:
E&r = H {wﬂ(')'az - ﬂay)Hx - .7(7‘13/ + ﬁaz)ﬁ}
7 1 - - . - - de‘
A = g {meon - pae - joa, 002l ay
T , z
where &, and M, satisfy
d2 2 ‘ g:c
(dx'~’+h)<7'{x> = 0 (13)

in region I (0 < z < d), and

d? &
(da}Q—qz)(Hi ) =0 (14)
in region I (z > d), where

R = wpoe; — k%
¢ = k}—wlnoe (15)
In general, ¢ and h can be taken to be complex; ¢ must have positive real part
to correspond to a proper guided mode.

The forms of the solutions for Egs. (13)-(14) are:

' cos hz
& Ycos hd
sin hz

e Vsin hd (16)



in region I, and

() = (&) &

in region II. We have already taken into account that the solutions we look
for are guided modes, and required the fields to decay exponentially in the z-
direction.! We have also enforced the condition that at z = 0 (on the ground
plane), the tangential electric field components must be equal to zero:

E =0

Now, since at £ = d, the tangential electric field component must be contin-
uous, we get from (12), (16) and (17) that

= iq, .. - k
&|  =2L(pa, +a,)E, - —°Z°(ﬂ — @:)Hy =
Jh . . 0770 . -
k—z(ﬂaz + vdy)E; tan hd — (ﬂ —~ad,)H; (18)

where 7o = (uo/€0)/? is the free space wave 1mpedance Taking the dot product
of (18) respectively with pa, + ydy and Bd, — v@,, we get

hE tanhd = qFE, (19)
H, = H, (20)
From the equivalent boundary condition (2) on &, at z = d, one obtains
l . 2 /3
& = Slikono(Hyz = Hy1) - o (eb—ab)] (21)
Substituting for £, and H, from (12), one gets
ykono Jqﬁ I P P 1 koera Jhy
rZ kT = 3 [Jkoﬂo[ ) Hy + —— k20 Es + k2
koer1 B 258
- - Ery—FE 22
k310 Bl €1+ 62(62 2= akh) (22)
From (19), (20), and (22) one gets
l
konoyHy[1 + -Qﬁ(q + hcot hd)] =
2
—JjBE; tan hd[h + E(kc,2 —2k———)(erl cot hd — 6,2h)] (23)
2 €r1 + €r2 q

! Improper modes—ones for which ¢ has a negative real part—may exist under certain con-
ditions. In some circumstances, such modes may be leaky waves, and contribute a significant
amount to the total field of a source-excited structure. To find such modes, we will simply
reverse the sign of ¢ wherever it appears in our final result.



Finally, using the equivalent boundary condition (3) on H, at « = d,

Hz2 - Hzl = 21}1 [ kO (M) gy - ]ﬂHI:I (24)
Tlo 2

and substituting for H, and &, from (12), one, obtains

51{2— k06r27E2+ ,Bchothd+k°6”7El -

k310 k310
ko (€1t e (JhY kono B .
2[5 ( . ) ( S B tan hd — 55 ) — i) (25)

From (19), (20), and (25), one gets

knLEl tan hd[e,; cot hd — 6,--7}; (e + €er2)h] =
0

—j,@Hl{q+hCOthd+1h[2k% — kg(c,-l -{-6,2)]} (26)

Eliminating H, and E, tan hd from (23) and (26), and using (6) and (7), we
get

o gLt hcot hd + 1, [2k2 — kZ(e,1 + €2)] _
1+ (g + hcot hd)
¢r1 cot hd — €22 — Iy (€r1 + €02)h

2k32
h+ % (k — 2= )(er1 cothd — ¢,22)

k2sin? @ (27)

‘which when solved will yield the allowed values of propagation constant k7 for
the guided waves of the structure. Let the normalized propagation constant
with respect to the free space propagation constant be denoted by y:

X = kr/ko (28)
Let also ¢, = 1 and €. = ¢,, and

h

E, = & —x2=— (29)

ko
B, = JiP-1=2% (30)

ko
The eigenvalue equation then becomes
0526 Fre(x)+ kolh(QX — ¢ — 1) tan(E ko d)

tan(E,kod) + MFTE(x)

4sin?8 FTM( ) koIhEs(Er + 1) tan(E' kod) 0 (31)

E, tan(E,kod) + 5= (1 — 25 Fry(x)



where
Fre(x) = FE;tan(Ekod)+ E, (32)
& — E, tan( Eskod) (33)
E,

Il

Fry(x)

are functions whose zeroes are the normalized propagation constants for the TE
and TM modes respectively of the grounded slab with no grating present.

3.1 Limiting Cases
Equation (31) can be rewritten as
0 = [cos® 0 Prp(x)Es + sin? 6 Frpr(x)] tan(E, kod)
+ (1 - QXTi:%zg) [%FTE(X)FTM(X) = kolnEs(er + 1) tan®(Eskod))]

k2l
2

2¢2 \?
X [cosze(l— X ) FTM(x)+E,FTE(x)sin29
€+ 1

(7 + 1) tan(E kod) (34)

In this form we can examine the limiting cases in which either the strips vanish
or the slots close up. If the slots close up (a — 0), then I, — o0, I, — 0, and
Il — 0, so that (34) reduces to

tan(Eskod) = 0 (35)

whose solutions are the well-known ones for the perfectly conducting parallel-
plate waveguide. If the strips disappear (b — 0), then I, — 0, [, — oo and
Ipl. — 0, and (34) shows that we must have either

Fria(x) = 0

which is the well-known equation for the TM-mode surface wave guided by a
dielectric slab on a perfectly conducting slab on a perfectly conducting ground
plane, or

Fre(x) = 0

which is the equation for an TE-mode surface wave on the same grounded
dielectric slab. The solutions of these equations are well known, and discussed,
for example, in Walter [5].

Another limiting case of interest is when the period of the grating goes to zero
while its density remains fixed: p — 0 while a/p (# 0 or 1) remains constant.
In this limit, l. and I; both go to zero in the averaged boundary conditions (2)



and (3), and we reduce to the traditional unidirectional conductor boundary
conditions [54], [55] used, e. g., in [7]-[9], [12] in the analysis of various guided
wave structures. The eigenvalue equation (34) in this limit becomes then

0 = [cos? 0Frp(x)E; + sin? 0Frar(x)] (36)

If e, — 1, (36) reduces to a result given in [12], as well as a limiting case of
the result of [8] (which contains many misprints in the relevant equations). For
6 — 90°, a special case of the result of [9] is duplicated, while for d — oo, then
the result of [7] is obtained.

Finally, the cases when 6 becomes 0° (propagation parallel to the strips) or
90° (propagation perpendicular to the strips) will be of particular interest later
on. In both cases, our solutions become either pure TE or TM modes with
respect to the direction of propagation (that is, Ey or H, respectively goes to
zero). The relevant limits of (34) are:

Fre(x)+ koln(2x* — ¢, — )tan E,kgd = 0 ; 6=0°, TE (37)

kol 2x? o
E, tanE,lcod—i-—é-— 1- 1 Fru(x) = 0 ; 6=0° TM (38)
€r

tan Esk,d + E—%FTE(X) = 0 ; 6=90° TE (39)
Fry(x) — koln(er + 1)E,tan Eyk,d = 0 =90°, TM(40)

We note that when ¢, = 1 and a < p, (39) and (40) reduce to results previously
obtained by Li and Oliner [6] for leaky waves on a slotted parallel plate wave-
guide. Eqn. (39) for ¢, = 1 but without the restriction on a/p had also been
found earlier by Honey [3], and is found in the form given here for €, # 1 in
Walter’s book ([5], pp. 246-250). Walter ([5], pp. 250-253) also gives the result
(37), which is attributed to Honey in an unpublished report. Sigelmann and
Ishimaru [20], [22] obtained an approximate version of (40) valid if In(p/a) > 1
(we let kop < 1 in their results to compare with ours). These authors detected
“improper” (on a “wrong” Riemann sheet of the complex kr-plane) roots of this
equation for sufficiently high frequencies, but their locations were such that they
would not be true leaky waves, as they would never contribute to the steepest
descent evaluation of the far field of the structure. Nevertheless, we are led
to anticipate that in at least some parameter ranges there will be leaky wave
solutions to our eigenvalue equation as well.

4 Numerical Results

In the first part of this section, numerical results are presented and discussed.
In the succeeding subsections, comparison is made to the results obtained by
other authors.
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In our numerical search for roots of the eigenvalue equation, we always found
two proper modes when the electrical substrate thickness kod was small enough.
One has a normalized propagation constant k7 /ko that is near Ve at 6 = 0°
and increases without bound as § — 90°.2 The fields of such a mode become
highly localized to the neighborhood of the grating when kr/kq exceeds /€, by
a large enough margin. We thus denote this mode as a “grating” mode. The
other mode has kr /ko between 1 and /€, and shares many of the characteristics
of an ordinary surface wave on a dielectric slab, so we will call it by that name.

In Figures 2 and 3, we show the dependences of the normalized propagation
constants on 6 for several values of the parameters a/p and p/d, at the relatively
small electrical substrate thickness of kod = 0.2. We see that the surface wave
is very weakly bound to the substrate, as k7 is quite close to ky. Neither mode
1s much dependent on a/p or p/d at this low frequency. This implies that they
would be well described by the unidirectionally conducting limit (36) of the
eigenvalue equation.

Figure 4 shows a case with a thicker substrate where leaky modes are present
(i e., the real part of ¢ is negative and the real part of kr/ko is less than 1).
We recall that leaky waves are not proper modes, but represent the cumulative
effect of a collection of continuous spectrum modes, which gradually shed energy
by radiation into the space above the grating [5]. This energy loss accounts for
the imaginary part of the propagation constant.

4.1 Comparison with Weiss’s Method

Weiss [26] and Crampagne et al. [28] investigated the microstrip meander line
structure to estimate the performance of a vacuum-tube crossed-field amplifier
(CFA): power distribution, coupling between RF and an electron beam, interac-
tion impedance, etc. The basis of their work was an analysis of the propagating
waves of the grating structure studied in this report, but with consideration
limited to the case when the direction of propagation is nearly parallel to the
strips. Their method is quite different than ours but as will be seen below, good
agreement is found. They assumed that frequency is low enough that waves
may be taken to have a quasi-TEM character relative to the axes of the strips.
In accordance with usual practice, the propagation constant in these conditions
1s denoted by k, = koy/Kcss, where K.;; is the effective dielectric constant of
the mode of propagation being considered and kg is the propagation constant
of the waves in free space. The velocity of propagation v is related to these

20ur results based on the averaged boundary conditions predict that kr/ko — oo as
6 — 90°. This, however, would contradict the assumptions underlying the derivation of (2)
and (3), namely that the average fields vary slowly over distances of order p in the y-direction:
vp = krpsind € 1. We can reasonably expect that some mode will exist for § near 90° with
k1 /ko merely very large, but not necessarily accurately predicted by our theory.

11
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Figure 2: Normalized dispersion curves for the grating mode (kod = 0.2, €, =
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rameters and legend as in Fig. 2).

13



1.0
T ————]
\

0.8
k.
¥ oe

- - - -
0.4 — -
0.2
0.0 0.1 0.2 0.3 0.4 0.5
6/m

Figure 4: Real (—————) and imaginary ( — — — —) parts of kr/ko for

a leaky wave mode (kod = 0.7, a/p = 0.1, p/d = 1.0, €, = 2.2).
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quantities by

c . 'k,
== oft = == 41
" Kegy %o (41)

where ¢ is the velocity of light in free space (approximately 3 x 108 m/s); the
ratio in (41) is the normalized propagation constant parallel to the strips. This
quasi-TEM approximation, together with a Green’s function method, allows the
normal modes of propagation parallel to the strips to be determined.

In [26] and [28], the periodic structure is broken up into unit cells containing
two strips each; between successive cells there is assumed to be a given phase
shift of , but within each cell (for each value of ) the voltage on the two strips
can be either identical or 180° out of phase. Thus there can exist two linearly
independent modes, one even and the other one odd. When comparing their
results with ours, we are only interested in the even mode. This is so because
the odd mode will have a severe phase change from one conductor to the next,
that would correspond to zero average field, and the use of an average boundary
condition at the grid such as that upon which our results are based precludes a
mode like that from appearing.

To compare our results with those of Weiss and Crampagne et al., we must
first relate their expressions to ours. Their quasi-TEM mode is our grating mode
for @ close to 0°. From eqn. (6), in our notation:

k. = krcosf ky=kpsind (42)

where kr is the propagation constant of the surface wave in the strip plane and
0 is the angle with respect to z-direction at which the surface waves propa-
gate. Because of the quasi-TEM assumption (and this applies to the results of
[19] as well), 6 is restricted to values very close to zero; otherwise substantial
components of E or B would appear in the z-direction.

Now, eqn. (41) can be rewritten as

S ["e
kr  \/Reps (43)

ko~ cosf

On the other hand, the phase shift ¢ per distance 2p in the y-direction must be
k
o= 2k,p= (2k0p)-k—T sin 6 (44)
0

But the quasistatic and quasi-TEM assumptions underlying the analysis of
Weiss imply that both kop and sin@ are small, so that it is appropriate to
take ¢ = 0. Thus, we have

_kl -V "k’ef.fI‘P:O (45)

ko cos 0
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We can thus read values of K.s; at ¢ = 0 from the data for the even mode in
[26] or [28], choose a small value of kgp, and obtain the corresponding value of
kr/ko from (45) for comparison with our theory.

Weiss, apparently the first one to use the Green’s function method with the
quasi-TEM approximation in solving the normal modes of propagation along
an infinite array of parallel strips, considers in his analysis a shielded grounded
dielectric substrate. He took the upper ground plane position to be

4,

T 2.6 (46)

where H; and H; are, respectively, the heights of the substrate surface and
the upper shield plane above the bottom ground plane. It turns out when
comparison is carried out for the parameters in his paper (¢, = 6.5, kod =
0.030637, a/d = 0.912, a/p; = 0.279412), agreement with our results is only
fair, presumably because the upper shield plane has a considerable effect on the
grating mode near # = 0°. Crampagne et al., who later used the same analysis
as Weiss, consider the upper ground plane position to be

H
H,

The upper shield plane is so far from the bottom ground plane that it has almost
no effect. We compared our results with these for the following parameters:
(er = 9.6, kod = 0.05376, kop1 = 0.05, a/d = 0.13, a/p) = 0.068893). We
found that the equivalent boundary condition method and the Green’s function
methods are in good agreement as illustrated in Fig. 5 as long as the direction
of propagation is along the strips or makes a small angle with the z-direction
(the z-direction is the direction of the strips).

100 (47)

4.2 Comparison with Zlunitsyna’s Work

Zlunitsyna [23] analyzed a structure consisting of a metallic grid embedded
in a screened dielectric, treated as a transmission line. The grid is formed
of a one dimensional periodic array of identical, equally spaced thin metallic
strips on a grounded dielectric substrate. The strips as well as the ground
plane are assumed to be perfect conductors. Since propagation is here assumed
perpendicular to the strip axes, it is sufficient to consider separately the cases of
E-polarization and H-polarization. In both cases, the solutions are analogous,
and as a result of the principle of duality, either one of these cases reduces to
the other if the strips and the slots are interchanged. In her work, she analyzed
the TM,, modes (m € N) of the structure. Her method is again quite different
from ours but a good agreement is found considering that the long wavelength
approximation (p < A, where p is the grating period and X is the wavelength
of the incident field) inherent in our analysis is not satisfied in the results she
presents.

16
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Figure 5: Comparison between Green’s function method (Crampagne) and
equivalent boundary conditions method (§ — 0°).
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Figure 6: Comparison between Zlunitsyna’s work and equivalent boundary con-
dition method (6 = 909).

The periodicity of the structure enables her to write the required fields (in
our notation, the z-component of E) in the form of a Fourier series expansion,
which corresponds to its representation in the form of an infinite set of spatial
harmonics. Applying the boundary conditions for the slots and the strips (the
tangential components of the electric field are zero at the strips, but at the
slots the tangential electric and magnetic fields are continuous), she ended up
with an infinite set of linear homogeneous algebraic equations. This set, after
some transformations, can be reduced to a Riemann-Hilbert problem. The
determinant of the reduced set of equations gives the dispersion equation for
T M,, modes.

Comparison between our method and hers is carried out for the following
parameters: a lossy dielectric of relative permittivity 2+ j4 x 1074, kop = 0.307
and p/d = 1. This value of kop is certainly not small compared to 1, and
yet a comparison of our results with hers (plotted in Fig. 6) shows very good
agreement for the lowest order surface wave mode.
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Figure 7: Comparison between Sigelmann’s work and equivalent boundary con-
dition method: ——————, surface wave mode (present method); — — —
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4.3 Comparison with Sigelmann’s Work

Finally, we compare our results with those of Sigelmann [22] for the surface wave
mode as well as some improper modes when 6 = 90° (Fig. 7). For this case, we
take ¢, = 2.5, a/p = 0.3, and p/d = 2.0. The normalized substrate thickness
runs from kod = 0.0 to 1.5, and clearly p will not be small with respect to either
d or A in this case. Nevertheless, we see very good agreement up to perhaps
kop = 1.5 for the surface wave mode. Moreover, we also predict the existence
of a set of improper modes, which are leaky for some values of frequency. Al-
though Sigelmann did not find any improper modes with complex propagation
constants, he did find a pair of improper modes with real ky/kq, which bifur-
cate from a common value at about kod = 0.94, one of which exists up until
kod = 1.0 and the other until somewhat higher frequencies. Qur method, while

19



not producing results that are numerically close to these, does predict the same
qualitative behavior of bifurcation at a higher frequency, with normalized prop-
agation constants of comparable magnitude, as seen in Fig. 7. Below the bifur-
cation frequency, a leaky wave behavior is exhibited, which should be expected
to be quantitatively accurate below about kod = 0.75 if we may judge from
the agreement for the surface wave mode. We-might note that near kod = 1.0,
the results of Sigelmann are approaching a stopband type behavior typical of
Bloch waves on periodic structures when the period becomes comparable to a
wavelength. Homogenization methods do not reproduce this behavior well, as
is evident from this comparison. We can get an idea not only of the limitations
of our approximation from this, but also of the qualitative behavior we may
expect when our approximations no longer hold.

5 Conclusion

The method of equivalent boundary conditions has been used to study the
properties of guided waves propagating along a metal grating on the surface of
a grounded dielectric slab. Unlike previous analyses, this model can be used to
analyze the propagation of surface waves in an arbitrary direction with respect
to the axis of the grating. Comparisons of this model’s results with a quasi-
TEM Green’s function method, with Zlunitsyna’s work and with Sigelmann’s
work show the accuracy of the approach as well as its limitations for directions
of propagation along or normal to the grating.

Two basic kinds of proper modes exist—a grating mode and a surface wave
mode. The grating mode becomes a slow wave mode as the direction of propaga-
tion deviates from that of the slot axes. Other guided wave structures involving
such gratings have previously been shown to possess similar slow-wave char-
acteristics [11], [13], [15]-[16]). The structure has also been shown to support
improper leaky wave modes when the substrate is electrically thick enough.

Future work will entail the use of the average boundary conditions employed
here to model finite grated conducting structures (finely slotted microstrip patch
antennas or resonant circuit elements for use in filter applications, for example)
on a grounded substrate. There is some indication that unusual behavior can
be expected as frequency is varied, and work is in progress to explore this more
fully. It is possible that each slot or strip of the grating will tend to resonate
at a slightly different frequency and that this staggering of nearby resonances
could yield a wider intrinsic bandwidth for the patch compared to conventional
unslotted ones. If this so, then the finely slotted microstrip patch antenna
would be a new configuration to remedy the problem of narrow bandwidth from
which most microstrip patch antennas suffer. This will be reported in future
publications.
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