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Modelocked lasers combined with phase-locking techniques have revolutionized optical clocks

and precision measurements. The basic but powerful technique that has driven these advances is

feedback control, which rids a laser’s output of phase or timing fluctuations. Ideally the ultimate

noise level is determined by the coherence of external references. In practice, the effectiveness of

this active stabilization relies on the available loop gain and bandwidth, both of which not only

depend on the properties of the actuator but also on the complex dynamics of pulse evolution,

gain-photon coupling, and cross-talk between actuators. In this Thesis, both the pulse dynamics

and the actuator aspects of achieving low-noise level are discussed. In particular, a new type of

high-bandwidth cavity loss modulator based on graphene is described. A record low-noise fiber

frequency comb laser enabled by this new actuator technology is demonstrated with the graphene

modulator. The pulse dynamics is analyzed in low-noise settings, which is low intracavity dispersion

and nonlinearity. Specifically, an intrinsic power oscillation, arising from the interaction between

a solitary pulse and continuum, is studied theoretically and experimentally, and its impact on the

noise transfer properties of the laser is studied.
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Chapter 1

Introduction

Modelocked lasers, which are lasers that generate many highly coherent teeth in the fre-

quency domain and at the same time extremely short pulses in the time domain, have been an

indispensable tool for not only fundamental science [1–4] but also for industrial applications [5–7].

Its high coherence between frequency modes descends from the inner workings of pulse formation

and dynamics [8, 9]. Armed with radio-frequency phase locking techniques, modelocked lasers can

further transform into a powerful tool known as the optical frequency comb, which acts as a gearbox

that links a radio-frequency oscillator to an optical one. [10–15].

The noise that is centrally concerned with in a frequency comb is the phase or frequency

jitter in its mode spacing (pulse repetition rate) and offset frequency (field repetition rate). Noise

in intensity or power may be of concern as well for some applications [16, 17]. The noise sources

can be categorized by their origin: classical and quantum. Classical noise sources, such as acoustic

and vibrational interference or thermal drift, tend to dominate at low frequencies, while quantum

fluctuations, arising from spontaneous emission and cavity loss, can be revealed at high frequencies.

The free-running noise, either classical or quantum, can be actively suppressed with feedback

control. This basic but powerful technique works as the following. First, the output of a mode-

locked laser is compared to a stable reference such as a narrow-linewidth laser or a low-noise

microwave oscillator. Next, the comparison is transformed into an error signal and then filtered

and amplified, after which it is sent to the driver for the control knobs of a mode-locked laser.

The control knobs are parameters such as the pump power, the length of the laser cavity, or the
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tilt of a laser cavity mirror. These macroscopic knobs are used to suppress the noise, provided

that the closed loop gain is high enough. Very effective noise suppression has been shown for

continuous-wave lasers [18,19].

The success of the seemingly simple feedback control depends on a number of aspects. Firstly,

the free-running state of a laser is predominantly determined by how it is designed and constructed.

For low-noise purposes, low cavity loss, short pulses, and high intracavity pulse energy are the top

priorities if one wants to reduce the quantum noise. Meanwhile, passive isolation of the laser from

the environment is crucial to the reduction of classical noise. These two conditions often cannot

be met at the same time. One therefore has to strike a balance between a laser design aimed for

low quantum noise, which is typically free-space, bulky, and only survive in a well-maintained lab

environment; and a laser design aimed for low classical noise, which is usually compact but may

exhibit a high level of quantum noise [20,21].

Secondly, before closing the feedback loop, it is important to understand where the noise

comes from and how it propagates from the origin to the output of the laser, which can be described

by transfer functions. Typically, the control knobs are also where technical noises can easily enter,

such as changes in pump power, cavity length, or cavity alignment. The knowledge of laser’s

transfer functions allows one to estimate the influences of a certain noise source or the effect of a

control knob. Although the control knobs one possesses may have broad control bandwidth, the

actual response of the laser can in some cases be limited due to a long characteristic relaxation

time (gain lifetime or cavity photon lifetime). Quantitatively, the knowledge of the spectrum of a

noise source can be fed to the transfer function, so noise in the output can be predicted. While

transfer functions can be experimentally measured, the interpretation could be challenging due to

the complex pulse dynamics and the fact that transfer functions only give a linearized picture. To

be able to directly compare the model (analytically and numericallly) to the measured results will

be a further step towards the better use of the control knobs.

The other aspect of successful noise suppression is the physical limits of the control knobs.

The knobs mentioned above have fairly limited bandwidth, and this forbids high loop gain at low
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frequencies, due to the onset of loop instability arising from time lag at high frequencies. The

bandwidth limitation originates from two factors: the first is laser dynamics, which is given by the

transfer function mentioned above; the second factor is the control knobs, also known as actuators.

Actuators can have limited bandwidth simply because of their physical constraints. For example,

acousto-optic modulators are used commonly for frequency shifting and loss modulation of a laser.

Its modulation speed is limited by the acoustic propagation speed. Bandwidth beyond 1 MHz is

not possible with the current acousto-optic technology. Another example is the control of cavity

length. This is typically achieved with a cavity end mirror mounted on a voltage-controlled piezo

actuator. The bandwidth of this mechanical system is limited by the intrinsic resonance in the

piezo actuator and the finite mass of the mirror. Thus one needs to resort to very small mirrors

and bulky mounts in order to push the resonant frequency to beyond 100 kHz. It is clear that there

exists a fundamental limitation for these traditional actuators in achieving high bandwidth. New

actuators based on a different operating principle can be attractive to use if they can be integrated

with the laser without compromise in the modelocking performance.

In this Thesis, I will touch on all three aspects of reaching low-noise level for a mode-locked

laser. Chapter 2 is a brief review of modelocking theory and noise model, which leads to the

discussion of requirements for low quantum-limited-noise lasers. Chapter 3 discusses a new type

of fast saturable absorber based on graphene. Characterization of the saturable absorption and

carrier relaxation dynamics are shown. Modelocking a free-space solid state laser using graphene

is also shown. Chapter 4 describes the working principle, design, fabrication, and characterization

of an electro-optic modulator based on graphene, which can serve as a low-loss optical element

in a laser cavity for fast, pure amplitude modulation. In Chapter 5, the use of a graphene-based

loss modulator for stabilizing a fiber frequency comb is shown. With the aid of the graphene

modulator, a noise level comparable to the state-of-the-art free-space combs is achieved. The

fundamental difference between the traditional pump power control and the new cavity loss control

is also discussed. Chapter 6 discusses a resonance in the output power of modelocked lasers in low

nonlinearity and low dispersion settings. For low-noise applications, this resonance is of concern
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since it affects the laser’s transfer function substantially. A complete discussion of its physical

origin, which relates to the coupling between soliton and continuum, is given. A good agreement

is found between the theory and experiment.



Chapter 2

Basics of modelocking and noise

In diving into the study of noise in mode-locked lasers, it is crucial to first understand the

mechanism of pulse formation and the delicate balance between the energy of the pulse and the

energy stored in the gain medium as well as the effects of dispersion, nonlinearity, gain bandwidth,

and saturable absorption. Modelocking refers to the state in which the laser is emitting, in the

frequency domain, multiple narrow lines, each corresponding to the adjacent longitudinal modes

of the laser cavity, and the relative phase between these modes are fixed. This occurs when an

intensity-dependent loss is introduced into the cavity so that the laser tends to emit pulses instead of

continuous waves. The intensity-dependent loss, also known as saturable absorption (either real or

artificial), should decrease at high intensities for pulsing to occur, which leads to positive-feedback

instability (Q-switching) in the laser. In some circumstances this Q-switching instability cannot be

fully damped by the gain medium alone (gain saturation) due to the extreme ratio of upper state

lifetime of the gain medium (10−6−10−3 s) to typical cavity roundtrip times (10−10−10−8 s). What

further makes the laser prone to Q-switching instability is the small gain cross section (10−20 cm2)

of solid state ion-doped gain media and the resulting high saturation energy, which requires high

pulse energies for reasonable gain saturation. For low-noise applications, a constant pulse energy

(cw modelocking) is desired, so a fast clamping effect has to exist in the laser to stabilize the

pulse energy. This can be realized with a finite gain bandwidth, inverse saturable absorption [22],

or active feedback [23]. Other physical effects involved in the pulse dynamics include chromatic

dispersion, resonant gain phase and higher order effects such as Raman frequency shifting or self
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steepening [24–26]. These additional effects are what make the dynamics of modelocked lasers so

rich, while at the same time, they restrict the parameters of a laser to a very narrow range if

Q-switching-free and low-noise operation is desired. This is the reason why the design, dynamics,

and active control of a laser are closely coupled together, and why one should take all the three

aspects into consideration to reach a low-noise level.

This Chapter serves as a brief review of modelocking and quantitative ways of describing

modelocking (Haus model). The basic laser theory is first introduced mainly for the purpose

of defining notations, which will be used throughout this Thesis. Then the master equation for

modelocking, known as the Haus equation, is reviewed, which paves the way to the introduction of

soliton perturbation theory. Noise in a soliton modelocked laser is discussed and a linearized noise

transfer model is shown, after which a low-noise criterion for a modelocked laser is presented.

2.1 Rate equations: coupling between gain and photon

To describe a laser, the two most fundamental dynamic quantities are the degree of population

inversion (or gain) and the number of photons. Consider the case of a continuous-wave laser, where

cavity loss is constant over time. We define the gain of the electric field amplitude per roundtrip

(TR) as g and the loss without any pump as α, which is zero for a four-level system but positive

for a three-level one. The power gain per roundtrip is therefore 2g, given that g is small, which

is valid in most low-gain solid state lasers. The use of amplitude gain rather than power gain will

make the later transition to the Haus equation easier (Section 2.5). We also define the intracavity

optical power as P , gain lifetime as τL, saturation energy as Esat,L, pump power as Ppump, and

conversion efficiency from pump to signal light as η. The saturation energy can be expressed by

Esat,L = hνAeff,L/σL. Here h is the Plank constant, ν is the center optical frequency of the laser,

Aeff,L is the effective mode area of the laser beam in the gain medium, and σL is the effective

cross section of the gain medium. Then the conventional rate equations can be formulated in the
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following two equations.

∂g

∂t
= −(α+ g)

τL
− gP

Esat,L
+
ηPpump

2Esat,L
, (2.1)

The three terms on the right side are, first the gain relaxation, second the gain saturation, and

third the energy supplied from the pump light (a factor of 2 appears in the denominator due to

the use of amplitude gain g instead of power gain). The pulse energy, denoted by W or Ep (used

interchangeably in this Thesis), is simply equal to P · TR. The equation describing the intracavity

power P is

∂P

∂t
=

(
2g − 2l

TR

)
· P (2.2)

Here the change of optical power is directly proportional to the gain and loss l (also defined for

amplitude, not power).

At the steady state, (∂g/∂t) = 0 and (∂P/∂t) = 0, of a laser with constant cavity loss l,

several fundamental textbook results can be obtained with the coupled Eq. 2.1 and 2.2. One result

is that, above the laser threshold, the saturated gain g should be equal to loss l. Another result

is that the optical power also reaches a steady state value Pss, if the pump power is over a certain

threshold P th
pump. By setting (∂g/∂t) = 0, we obtain

Pss = −
(
α+ l

l

)
Esat,L

τL
+
η

2l
Ppump (2.3)

The pump threshold is obtained by setting Pss = 0:

P th
pump = 2

(
l + α

η

)
Esat,L

τL
(2.4)

Therefore, when above threshold, the intracavity steady state power is

Pss =
η

2l
(Ppump − P th

pump), (2.5)

Here it is clear that the slope efficiency between intracavity power and pump power is η/2l.

2.2 Linearized model and relaxation oscillation

The discussion so far considers that the cavity loss l does not change with time, which holds

true for most continuous-wave lasers. However, intensity dynamics occurs even in cw lasers right
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after the laser is turned on. This is the well-known relaxation oscillation, which is closely related

to the Q-switching instability in a modelocked laser. The quantitative description can be easily

understood by linearizing Eq. 2.1 and Eq. 2.2 around their steady states discussed above. Let us

introduce g = ḡ + ∆g and P = P̄ + ∆P , where ḡ = l and P̄ = Pss are steady state values, and

∆g and ∆P are perturbations from the steady-state values. We then obtain the following equation

from Eq. 2.1 and 2.2:

∂

∂t

∆g

∆P

 = A

∆g

∆P

 , (2.6)

where A is the transfer matrix, which is equal to

A =

−1/TG −ḡ/Esat,L

2P̄ /TR 0

 , (2.7)

where TG can be defined as the stimulated gain lifetime by the relation 1/TG = 1/τL + P̄ /Esat,L.

The stimulated gain lifetime, which takes the stimulated emission into account, is always shorter

than τL when lasing. From Eq. 2.4, one can show that the stimulated gain lifetime in a four level

laser (α = 0) is given by

TG = τL · (Ppump/P
th
pump)−1 = τL · (1 + P/Psat,L)−1, (2.8)

where Psat,L = Esat,L/τL is defined as the saturation power of the gain medium.

The well-known relaxation oscillation frequency can be reproduced here by finding the eigen-

values of matrix A, which gives the characteristic frequencies of the gain-photon coupling. With

some straightforward algebra, the relaxation oscillation frequency for lasers well above threshold

can be found:

f ≈ 1

2π

√
2ḡP̄

Esat,LTR
(2.9)

Note that the approximation made here is based on the fact that almost all solid state lasers that

are relevant to the discussion here have a stimulated gain lifetime (TG) much longer than the cavity

roundtrip time (TR).
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2.3 Pulse formation: introducing time-dependent loss

To generate pulses, a time-dependent loss must exist and provide some positive feedback to

the pulse energy. We now modify the constant cavity loss l to l + q, where q is a time-varying

amplitude loss that depends on the intracavity power P . An overview of the actual devices (sat-

urable absorbers) which introduce such a saturable loss will be given in Section 3.1. Here we only

consider a simple two level model in which the absorption is saturated when ground and excited

state populations are equal. An equation similar to the laser gain can be applied to the saturable

loss q:

∂q

∂t
=
q0 − q
τA

− q · I(t)

Fsat,A
, (2.10)

where q is the saturable loss, q0 is the insertion loss (when incident power P = 0, q = q0), τA

is the relaxation time of the absorber, and Fsat,A = Esat,A/Aeff,A is the saturation fluence of the

absorber (Esat,A is the saturation energy, and Aeff,A is the effective mode area on the absorber).

The saturation energy is given by Esat,A = hνAeff,A/σA, where σA is the absorption cross section of

the saturable absorber. Here we use the variable I(t) = P (t)/Aeff,A instead of P (t) since physically

the saturable absorption is proportional to the intensity of light.

It is helpful to obtain an approximate formula from Eq. 2.10 when one makes assumptions

about the relaxation time of the absorber τA. For τA much shorter than the pulse width (fast ab-

sorber approximation), the saturable loss is slaved to the pulse’s intensity. With the definitions of in-

tensity for the absorber I = P/Aeff,A and saturation intensity of the absorber Isat,A = Psat,A/Aeff,A,

one can derive the following relation [27]:

q(t) = q0 · (1 + I(t)/Isat,A)−1, (2.11)

which is a function of time t. For the following discussion of modelocking stability, it is more

convenient to express the saturable loss q as a function of incident power or pulse energy. The
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function q(W ) can be obtained by integrating the loss over the period of pulse:

q̃(W ) =

∫ +∞

−∞
q(t) · |A(t)|2dt (2.12)

For a sech2-shaped pulse, which will be relevant to the discussion of noise in the following sections,

reflecting from a fast absorber, the total amplitude loss q̃ is

q̃(S) =
q0√

S(1 + S)
tanh−1

(√
S

1 + S

)
, (2.13)

where qs is the saturable loss, qns is the non-saturable loss, and S is the ratio of the pulse peak

intensity to the saturation intensity Isat,A.

In the other limit where τA is much longer than the pulse width (slow absorber approxima-

tion), the saturable loss is slaved to the pulse energy, independent of the pulse shape:

q̃(W ) = q0
1− e−W/Esat,A

W/Esat,A
(2.14)

2.4 Modelocking: Stability

After introducing time-varying loss in the laser, we can now rewrite Eq. 2.2 with the addition

of saturable absorption:

∂W

∂t
=

2 [g − l − q(W )]

TR
·W, (2.15)

where l is now the part of cavity loss that is invariant, such as an output coupler, residual reflection

from a Brewster angle gain medium, and non-saturable loss from the saturable absorber. Here q(W )

represents the amplitude saturable loss and changes the incident pulse energy. For the discussions

from now on, q is treated as a function of W only. Note that we have just reduced the complexity

of three coupled equations to the two (Eq. 2.1 and 2.15) by integrating Eq. 2.10.

The system (Eq. 2.1 and 2.15) can now be linearized near their steady state values:

∂

∂t

 ∆g

∆W

 = A

 ∆g

∆W

 , (2.16)
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where A is the transfer matrix equal to

A =

−1/TG −ḡ/Esat,L

2W̄/TR −2W̄ (∂q/∂W )/TR

 . (2.17)

For this coupled system to be stable, the eigenvalues of matrix A have to lie on the left side of the

complex plane, which is equivalent to having the trace of A be negative. Note that the laser could

have either two real eigenvalues (overdamped) or one pair of conjugate eigenvalues (underdamped).

We now have the condition for the laser to be stable against Q-switching instability:

− 2W̄ (
∂q

∂W
) <

TR

TG
(2.18)

Since saturable absorption implies that (∂q/∂W ) < 0 (positive feedback to pulse energy),

the left hand side of the condition is positive and nearly always exceed TR/TG in solid state lasers

due to their long upper-state lifetime and small gain cross section. Note that as long as the slope

(∂q/∂W ) < 0 is reversed, which can be achieved by using two-photon absorption, free carrier

absorption, or excited state absorption in the saturable absorber [22], the stability condition will

always be met. In fact, inverse saturable absorption can also be provided by the finite bandwidth

of the gain medium. With the variable P , it is not straightforward to describe effects such as

finite gain bandwidth. In the following Section, we replace the variable in Eq. 2.15 by the electric

field amplitude A. The use of field amplitude is necessary if effects such as finite gain bandwidth,

chromatic dispersion, or a nonlinear index of refraction are to be included. We normalize the unit

of A such that

P (t) = |A(t)|2, (2.19)

and the pulse energy W is

W =

∫ TR/2

−TR/2
|A(t)|2dt. (2.20)

2.5 Modelocking: Haus master equation

To fully account for finite gain bandwidth, chromatic dispersion, and self phase modulation,

the pulse energy W or power P , used in conventional rate equations, is no longer suitable. H. Haus
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developed a master equation for describing modelocking with the electric field amplitude as the

independent variable [28,29]:

TR
∂A

∂T
=

[
−iD∂

2A

∂t2
+ iδ|A|2A

]
+ RA, (2.21)

where A = A(T, t) is the slowly-varying field envelope, with T and t being the time variables at a

time scale of the roundtrip time (TR) and pulse duration respectively. The first term in the bracket

is group velocity dispersion (GVD), where D is the total group delay dispersion experienced by the

pulse per roundtrip. The second term in the bracket is self phase modulation, where δ is the SPM

coefficient given by 2πn2`L/λ0Aeff,L. Here n2 is the intensity-dependent refractive index, `L and

Aeff,L are the effective path length and mode area, and λ0 is the center wavelength. R represents

all the other effects including, but not restricted to, gain bandwidth, mirror bandwidth, linear gain,

linear loss, and saturable loss. The effects of GVD and SPM are isolated from other ones for the

convenience of discussing soliton perturbation theory in later Sections. Now we can explicitly write

R out for a typical modelocked solid state laser:

R =

[
g − l +

g

Ω2
g

∂2

∂t2
− q − ΓTPA|A|2

] ∞∑
m=−∞

δ(T −mTR), (2.22)

where g, l, and q are the amplitude gain, loss, and saturable loss per roundtrip, Ωg is the half-width

half-maximum of the gain bandwidth, and ΓTPA = βTPA`TPA/Aeff,A is the TPA coefficient that has

taken the TPA coefficient (βTPA), effective layer thickness (`TPA), and mode area into account

(Aeff,A). Here the sum of delta functions represent the effect of periodic perturbations of pulses,

which can be ignored if only stable solutions are concerned. The effect of periodic perturbation is

crucial for understanding continuum generation, which will be discussed in Chapter 6. Note that

when R = 0, the equation becomes the nonlinear Schrödinger’s equation (NSE).

General analytic solutions cannot be obtained from the master equation. As in the discussion

of Haus and Mecozzi [8], we focus on the unchirped solution due to its simplicity in theoretical

treatment. This is also an important regime to study for compact low-noise solid state lasers

because of its ease of applicability to the generation of sub-picosecond pulses in a high-repetition-
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rate laser. The unchirped steady-state closed form solution to Eq. 2.21 and 2.22 is soliton, which

can be expressed as the following [30,31]:

As(T, t) = A0sech(x)eiθ, (2.23)

x =
1

τ

(
t− 2|D|p0

T

TR
− t0)

)
, (2.24)

θ = p0(t− t0) + |D|( 1

τ2
− p2

0)
T

TR
+ θ0 (2.25)

which is the fundamental soliton. Here p0 is the frequency offset introduced deliberately into the

solution to account for center frequency shift of the soliton. For p0 6= 0, the soliton simply acquires

a group delay (Eq. 2.24) and an optical phase shift (Eq.2.24) due to the presence of GVD. Note that

τ here is the soliton pulse width, which is related to the FWHM pulse width by τFWHM = τ ∗1.7627.

The nonlinear phase Φ0, which a soliton gains per roundtrip time, can be expressed by

Φ0 =
1

2
δA2

0 =
|D|
τ2

, (2.26)

Note that this phase is uniform across the whole soliton spectrum, not contradicting to the p0

dependence in Eq.2.25. Another important property is the area theorem:

W =

∫ ∞
−∞
|As|2dt = 2A2

0τ =
4|D|
δτ

, (2.27)

which states the the product of the pulse energy W and the pulse width τ is a constant that depends

only on GVD and SPM. We can already see that the four parameters for describing the soliton pulses

are pulse energy W , pulse timing t0, optical phase θ, and center frequency p. In the classic paper of

Haus and Mecozzi, the noise in these four parameters arising from the quantum fluctuations (both

from the spontaneous emission and cavity loss) are discussed with the use of soliton perturbation

theory. In the next Section, soliton perturbation theory is briefly reviewed.

2.6 Modelocking: Soliton perturbation theory

The noise, which is typically smaller than the solitary pulse amplitude, can be treated as

perturbations to the soliton solution (Eq. 2.23). We assume that the deviation of the pulse shape
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from Eq. 2.23 is small when we include R. That is, we allow small changes in the four fundamental

quantities of a soliton: they are pulse energy (W ), timing (t), center frequency (p), and optical

phase (θ). A component (ac) that is orthogonal in the linearized NSE to the soliton, which is

dubbed continuum, is also included here. Note that the change of W is hidden in the variable A,

which is the time-varying amplitude of the soliton field.

A(T, t) = (A sech(x) + ac(T, t)) e
iθ (2.28)

By inserting this ansatz into the master equation, a linearized set of equations of motion can be

derived. Here we denote the changes in A(T, t), including the changes in soliton and continuum.

TR
∂

∂T
|∆A〉 = Q̂|∆A〉+ S (2.29)

The operator Q̂ stands for the linearized effects including GVD, SPM and other effects included in

R. Note that in Haus and Mecozzi’s paper [8], the whole master equation is linearized, whereas in

some situations [30,31], where continuum-induced instability rather than noise is the main concern,

only the GVD and SPM actions are linearized, but R is kept as a perturbation. This latter approach

is useful for discussing periodic perturbation of soliton, and is mathematically compatible with the

original soliton perturbation theory. The latter approach will be adopted in Chapter 6.

Here we continue following Haus’s approach. The S term represents noise sources; in par-

ticular, the quantum mechanical fluctuations from spontaneous emission will be discussed. The

use of vector form in |∆A〉 = (∆A,∆A∗)T and also in A and S here is to keep track of both the

amplitude change ∆A and its complex conjugate ∆A∗ since they are coupled together in NSE due

to Kerr nonlinearity.

From the linearized master equation (Eq. 2.29), one can derive the following equations of

motion for the pulse energy W [8, 31]:

TR
∂W

∂T
=

[
2g − 2l +− 2g

3Ω2
gτ

2
− 2q − 4ΓTPA|A0|2

3

]
W + 〈f (+)

W |S〉 (2.30)

This equation describes the change of pulse energy per roundtrip TR(∂W/∂T ). The right-hand-

side terms in the bracket are linear gain, linear loss, gain filtering, saturable loss, and two-photon
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absorption. The coupling of continuum ac back to the soliton and the noise term is grouped in the

last inner product. Here langle 〈f (+)
W | is the adjoint function of the derivative of the soliton solution

(Eq. 2.23) with respect to the pulse energy, which allows the projection of soliton parameters

changes.

For the timing (t) equation of motion, we take the inner product of Eq. 2.29 with the adjoint

function 〈f (+)
t |:

TR
∂∆t

∂T
= −2|D|∆p+ 〈f (+)

t |S〉. (2.31)

The first term arises from the coupling between center frequency and timing of a soliton, which is

the origin of the Gordon-Haus timing jitter.

For center frequency, the restoring force comes from the finite bandwidth of the gain:

TR
∂∆p

∂T
= − 4g

3Ω2
gτ

2
∆p+ 〈f (+)

p |S〉. (2.32)

The optical phase is affected by the pulse energy change through SPM:

TR
∂∆θ

∂T
=

2Φ∆W

W
+ 〈f (+)

θ |S〉. (2.33)

2.7 Noise in modelocked lasers: Haus-Mecozzi model

With the four equations of motion for soliton parameters, we can calculate the noise in these

parameters caused by the intrinsic noise source of the laser, which is spontaneous emission. For

this discussion, we assume ac is negligible and only consider the noise source term S.

Spontaneous emission fluctuations can be treated as white noise with the following autocor-

relation, which can be verified to show that spontaneous emission contributes one noise photon per

Hz bandwidth.

〈S(T, t)S∗(T ′, t′)〉 = θ
2g

TR
hνδ(T − T ′)δ(t− t′), (2.34)

where θ is the noise enhancement factor (θ = 1 + lreabs./g, where lreabs. is the reabsorption loss

when lasing; thus, θ is close to 1 in a four-level laser but greater than 1 in a three-level laser), g is

the saturated gain, and ν is the center optical frequency.
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The noise in the timing (t) and optical phase (θ) of the soliton are directly related to the pulse

repetition frequency (frep) and carrier-envelope offset frequency (fceo), since the optical frequency

of one mode is as follows:

foptical = nfrep + fceo, (2.35)

where n is the mode number. Therefore, the discussion here is focused on the power spectral density

(PSD) of the timing and optical phase noise. For the timing noise, the direct contribution from

spontaneous emission is from the projected term 〈f (+)
t |S〉. The one-sided (defined from frequency

0 to ∞) PSD of the noise is [8, 24,25]:

S∆t(f) =

(
1

2πf

)2

·
(

2gθhν

TR

)
·
(
π2τ2

6W

)
, (2.36)

where the first factor arises from the random walk nature of spontaneous emission, the second factor

is the power contributed by spontaneous emission, and the last factor is a projection coefficient

derived from 〈f (+)
t |S〉. Remember that g represents the amplitude gain, not intensity gain.

The indirect contribution of spontaneous emission to the timing error is from the combined

effects of center frequency jitter and non-zero intracavity chromatic dispersion. Note that the center

frequency error ∆p is naturally damped by the finite gain bandwidth (Eq. 2.32), and its associated

one-sided PSD is given by

S∆p(f) =

[
1

(2πf)2 + (4g/3Ω2
gτ

2)2

]
·
(

2gθhν

TR

)
·
(

2

3Wτ2

)
. (2.37)

It can be seen that finite gain bandwidth provides damping to the frequency jitter at low frequencies.

With the center frequency jitter PSD, one can derive the indirect timing jitter caused by intracavity

dispersion, which is known as Gordon-Haus jitter:

SGH
∆t (f) =

(
4|D|2

T 2
R

)
· S∆p(f) (2.38)

For the optical phase fluctuations, we assume a known noise PSD of the relative intensity fluctuation

(RIN) (S∆W (f)), which is experimentally measurable. Then the noise in the optical phase ∆θ is

directly related to RIN through the Kerr effect (self-phase modulation):

S∆θ(f) =

(
4Φ2

T 2
R

)
· S∆W (f) (2.39)
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Note that RIN is typically dominated by the pump’s RIN, which is much higher than the quantum

noise contribution; at high frequencies, the intensity fluctuation is strongly filtered by a second-

order low-pass filter due to the coupling between gain and photon.

Figure 2.1: Diagram of the noise transfer pathways from the input to the output of a modelocked
laser. Noise mostly enters through changes in pump power, cavity loss, or cavity length, shown on
the top. The propagating pathways are indicated by arrows with the physical mechanism indicated.
GVD: group velocity dispersion; TOD: third-order dispersion; SPM: self-phase modulation. Note
that for a soliton laser, the three pulse parameters (pulse energy, spectral bandwidth, and peak
power) are closely related through SPM and GVD. Spontaneous emission directly affects the four
soliton parameters: pulse energy, center frequency, pulse timing, and optical phase.

In Fig. 2.1, all major contributions to the noise in the output of a modelocked laser are

shown. Quantum noise, resulting from spontaneous emission, contributes directly to the pulse

energy, optical phase, pulse timing, and center frequency; while classical noise, resulting from

technical reasons, enters the laser through control knobs such as pump power, cavity loss, or cavity

length. To minimize the free-running noise of a modelocked laser at its quantum limit, one has

to reduce the power of spontaneous emission and its effect on the pulse at all costs, which implies

reducing cavity loss (thus saturated gain), shortening the pulse width, and increasing the pulse
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energy. Furthermore, one can soften the link from the noise source to the output, which implies

reducing intracavity dispersion (Gordon-Haus) and nonlinearity (AM-PM through SPM). At low

frequencies, the laser is typically swamped by classical noise, which should be isolated from the

laser.



Chapter 3

Graphene as a saturable absorber for modelocking

In Chapter 2, the fundamentals of modelocking and noise in modelocked lasers are reviewed.

The quantum limit of noise in free-running modelocked lasers can be revealed when technical noise

sources in the environment are damped or well isolated from the laser. This quantum-limited noise

level, in the case where it is dominated by direct ASE contribution, can be made intrinsically low in

lasers that have the following qualities: short pulses, high intracavity power, and low cavity loss [8].

On the one hand, isolating the laser from the environment is relatively easy to achieve using a more

compact cavity design, which implies a high repetition rate (> 1 GHz). On the other hand, having a

low quantum-limit noise level in high repetition rate lasers can be challenging mainly due to the T−2
R

scaling as shown in Eq. 2.38 and 2.39. One of the difficulties is the lack of a reliable modelocking

mechanism that allows the generation of short pulses (∼ 100 fs) in a high repetition rate laser.

Effective absorbers, such as those based on a nonlinear lens (Kerr lens), excel at generating short

pulses, of which a low-noise level can still be maintained at high repetition rates [32, 33]. This

benefit comes at the cost of some coupling between the saturable absorption and cavity alignment,

which prevents its use in hands-free, long-term applications. In fiber-based lasers, an artificial

saturable absorber can be obtained by the dependence of polarization on peak intensity (nonlinear

polarization rotation) [34,35] or by interference of pulses between two counterpropagating pulses in a

fiber loop (nonlinear loop mirror or nonlinear amplifier loop mirror) [36,37]. Despite the intrinsically

closed, compact nature of waveguides, these artificial absorbers can still have drifting parameters

due to temperature changes. Another disadvantage in fiber systems is the high free-running noise
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due to their high-loss-high-gain and high non-linearity/dispersion operation. Nevertheless, free-

running noise can be removed with active feedback control, which will be discussed in Chapter 5.

Here the discussion is focused on suitable real saturable absorbers for low-gain free-space solid-state

lasers.

This Chapter discusses the use of graphene as a saturable absorber. First, an overview of

current saturable absorber technologies is given, which is followed by a brief summary of motiva-

tion to investigate graphene’s use as a saturable absorber in solid state lasers. Then a review of

graphene’s physical and optical properties will be given, with the focus on its band structure and

optical absorption. After that, a study of the saturable optical absorption of graphene is described

in detail: a model, characterization methods, and results are given. The other essential property

of a saturable absorber–carrier dynamics–is also characterized. The result of modelocking a free

space Er:Yb:glass laser with graphene is shown. Finally, a conclusion is drawn on graphene’s pros

and cons as a saturable absorber.

3.1 Overview of saturable absorbers

A saturable absorber is an optical element that absorbs less light when the light intensity

is high, or an artificial mechanism that achieves the same effect. The discussion here focuses on

the former–real saturable absorbers. Real saturable absorbers are advantageous for their decoupled

saturable absorption from the design or alignment of the laser cavity, which generally allows for more

stable, long-term operation of the laser compared to their artificial counterparts. The disadvantages

that accompany this benefit are the long recovery time, narrow absorption spectral width, and

optical damage at high pulse fluences.

The most commonly used saturable absorbers for modelocking solid state lasers today are

semiconductor saturable absorbers. Initially, they were too lossy to be used directly as a reflecting

mirror in a cavity therefore special cavity designs had to be applied. (Historical development can

be found in [38]). Minimizing cavity loss is particularly important for solid state lasers because

of their small gain emission cross section (∼ 10−20cm2). The first practical low-loss versions of
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semiconductor saturable absorber mirrors were demonstrated with a Bragg reflector that was in-

tegrated with a thin semiconductor layer with a bandgap matching the desired absorption optical

band. This structure hvae been referred to as saturable Bragg reflectors (SBR) [39–41] or as semi-

conductor saturable absorbers mirrors (SESAM) [38,42]. Both the linear and nonlinear absorption

in SESAM can be engineered. Some variable parameters of a SESAM design are the position

of the thin semiconductor layer, anti-reflective coating, and non-quarter-wave stack for dispersion

compensation [43].

The design freedom of SESAM is valuable for modelocking solid state lasers without the

onset of Q-switching instability since one can tailor the saturation fluence and modulation depth

by the SESAM layer structure [44,45], or by using two-photon absorption in the top few layers [22].

For compact lasers with a high repetition rate, it is still challenging to use SESAM for stable cw

modelocking and sub-picosecond pulse generation at the same time due to the limit imposed by

both the laser dynamics and semiconductor materials. A simple criterion for cw modelocking can

be expressed as the the following [46] (derived from Eq. 2.18):

E2
p > Esat,L · Esat,A ·∆R,

where Ep is the pulse energy, Esat,L and Esat,A are the saturation energy of the gain medium and

saturable absorber, respectively, and ∆R is the modulation depth of the saturable absorber. For

generating sub-picosecond pulses, high ∆R and short recovery time is favored in the case where

saturable absorber is the main pulse shaping mechanism. However, the above criterion is hard

to achieve since Ep is limited due to a high repetition rate, unless the average power can also

be raised. A short recovery time is often obtained with the sacrifice of an increase in the non-

saturable loss [38, 44], which further makes power scaling difficult. The long recovery time can be

overcome by modelocking in the soliton regime, where group velocity dispersion (GVD) and self

phase modulation (SPM) combined dominate in the pulse shaping process. The generated solitary

pulses can be 10 to 20 times shorter than the recovery time of the saturable absorber [27,30]. The

existing few demonstrations of SESAM-modelocked solid state lasers at GHz repetition rates and
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sub-picosecond pulses (including fiber lasers) have all been realized in this regime [47–50].

Consequently, real saturable absorbers with short recovery time and low saturation fluence

(or energy) are attractive for modelocking high repetition rate lasers. Carbon nanotubes emerged

as an new optical material that has sub-picosecond recovery time and reasonably low saturation

fluence [51–54], despite their high nonsaturable to saturable loss ratio and optical damage by

high peak power [55]. The demonstration of the carbon nanotube/polymer has paved the way to

fabricating saturable absorbers with ease on almost any optical substrate [55], fiber ends, or tapered

fibers [56], which is rather difficult, if not impossible, with SESAM’s epitaxy growth technology.

3.2 Why use graphene?

As a close carbon family member of carbon nanotubes, graphene also exhibits saturable

absorption. Due to its unique band structure, its optical absorption and therefore saturable ab-

sorption is extremely broadband and featureless (mid-IR to visible wavelength). This potentially

makes graphene a one-material-for-all-lasers candidate. Also, the recovery time in graphene is fa-

vorable because of its very fast carrier-carrier scattering and carrier-phonon scattering (< 100 fs),

which is followed by a ∼ 1 ps electron-hole recombination. The fast recovery component makes

graphene a fast absorber for creating an ultrashort temporal loss window while the slow time

component helps to self-start the modelocking. Compared to the growth of SESAM, the method

for fabricating large area graphene requires a much simpler setup, accessible to non-experts. A

graphene saturable absorber can be transferred from its growth substrate to almost any optical

substrate. The first report of using graphene (a few layers in this case) as a saturable absorber also

showed a low saturation intensity of graphene at ∼ 1 MW/cm2 [57], which would be ideal for cw

modelocking of GHz-repetition-rate lasers due to the low pulse energy.

3.3 Band structure of graphene

Graphene’s unique physical properties result primarily from two important characteristics:

(1) Carriers are confined in a two-dimensional plane; (2) The lattice is a honeycomb structure,
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which consists of two identical sublattices, as shown in Fig.3.1(a). Although electrons moving in

such a lattice do not approach the speed of light at all, their motion at low energy is “relativistic”

and simply resembles a massless particle, which has a linear relation between the energy and the

momentum. In essence, the motion can be described by Dirac equation, but with the speed of light

replaced by a 300 times smaller value, which is the Fermi velocity of electrons in graphene (vF).

Figure 3.1: (a)Carbon lattice of graphene in real space. Black and gray circles represent two
sublattices in the honeycomb structure. Note that one unit cell contains one black and gray atoms.
The spacing between the nearest neighbor atom is a, which is around 1.42Å. (b) Reciprocal lattice
of graphene in the first Brillouin zone.The K and K ′ points, also referred to as Dirac points, are
where the electrons behave like massless particles.

The band structure of graphene was first studied by Wallace [58]. With the tight-binding

approximation that includes the nearest neighbor hopping term, one can show that the energy-

momentum relation is the following: [58,59]

E(k) ≈ ±En,n · [3 + 2 cos(
√

3kya) + 4 cos(
√

3kya/2) cos(3kxa/2))]1/2,

where En,n = 2.8 eV is the nearest neighbor hopping energy, k = kx x̂ + ky ŷ is the wavevector

of the crystal momentum (p), and a is the distance between two nearest neighbor carbon atoms.

Expanding Eq. 3.3 around the Dirac points (K or K ′), one obtains

E(k) = ±En,n ·
3a

2
|k− kDirac| = ±~vF|k− kDirac|.

Notice that this is a linear energy-momentum dispersion similar to what photons have, except here

the speed of light is replaced by the Fermi velocity (vF), which is equal to En,n ·1.5·a/~ ≈ 9×105m/s.
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Figure 3.2: (a) Energy bands of graphene near the first Brillouin zone. The vertical axis is energy
in eV. Note that two energy bands are plotted here. The band below the six Dirac points (K and
K ′), which is the valence band, is fully filled in undoped graphene. The upper energy band is the
conduction band. (b) Zoomed-in energy bands near one of the Dirac points. The slope of the cone
is defined by the Fermi velocity (vF).

The density of states is linear in energy, which can be seen in the following relation:

dN

dE
=

dN

d|k′|
d|k′|
dE

=
|k′|
π
· 1

(~vF)
· 2 =

2E

π(~vF)2
.

Here N is the number of states per unit area and |k′| = |k − kDirac| is relative wavevector with

respect to K and K ′ points. Note that a factor of 2 is multiplied in because there are two Dirac

cones in the first Brillouin zone.

In pristine graphene, the Fermi level lies exactly at the Dirac point because each carbon

atom contributes one bonding electron and there are two atoms per unit cell so that the lowest

band is exactly filled (spin degeneracy is two), making graphene a semimetal. When the Fermi

level is above the Dirac point, the conductivity is dominated by electrons (n-doping); and when

the Fermi level is below the Dirac point, the conductivity is dominated by holes (p-doping). The

carrier density per unit area can be obtained by integrating Eq. 3.3:

n =

∫ EF

0

2E

π(~vF)2
dE =

E2
F

π(~vF)2
.
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3.4 Linear absorption in graphene

3.4.1 Theoretical background

The optical interband absorbance of undoped graphene is characterized by a product of

fundamental constants, which is πα = 2.3%, where α is the fine structure constant, over a broad

optical bandwidth. This universality absorption arises from the perfect cancellation of energy

dependence in Fermi’s golden rule and density of states:

Absorbed power

Incident power
∝ |〈ψf |H1|ψi〉|2 · (DoS) · (~ω)

|E0|2
, (3.1)

where the first term is the transition matrix element, H1 represents the electron-photon interaction

Hamiltonian in first order perturbation theory, and ψf and ψi are the final and initial states.

The product of the transition matrix element and the density of states (DoS) gives the transition

probability per unit time. |E0| is the electric field of the incident light.

For graphene, because of its massless Hamiltonian (H = vFp), the interaction perturbation

is given by H1 = (vFe/c) ·A, where A is the vector potential and its magnitude is given by |E0|/ω.

By inserting these relations into Eq. 3.1 above, it can be found that the linear energy dependence

in the density of states of graphene (Eq.3.3) cancels with an inverse square proportionality in the

squared transition matrix element and the photon energy. Therefore the absorption is a constant

over a broad bandwidth. In fact, this universal absorption does not only hold true for massless

electrons in graphene but also for electrons in many conventional two-dimensional semiconductors

(quantum wells) [60]. Note that in a textbook 3D semiconductor, the interaction Hamiltonian is

instead given by H1 = (e/c)p ·A, which results in an absorbance that is directly proportional to the

density of states for massive electrons (H = |p|2/2m∗), where m∗ is the effective mass of electrons

moving in a lattice.

The discussion thus far has only concerned pristine graphene, where the valance band is fully

filled and the Fermi level is exactly at the Dirac point. There are changes in the optical absorption

as the Fermi level (equivalently chemical potential) changes. This can be seen qualitatively in
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Figure 3.3: Red: conduction band; blue: valence band; Light blue: vacant states (hole-doping);
arrows represent interband absorption of a photon. Note that at finite temperature, Fermi-Dirac
statistics introduced some fuzziness to the interface between occupied (blue) and vacant states
(light blue) (a) Absorption in undoped, pristine graphene is 2.3%. (b) Absorption at low photon
energy is reduced due to hole doping. (c) With strong doping, the absorption is totally blocked.

Fig. 3.3, which shows the band structure of graphene near the Dirac cones and the transition

probability of an interband absorption. In undoped graphene (Fermi level at Dirac point, shown in

(a)), the absorption is given by πα, and as the doping goes below the Dirac point (hole doping or

p-doping), the absorption at low photon energies (precisely speaking, below twice the Fermi level)

is more or less blocked due to the vacancies of initial states, shown in (b). As the doping is further

increased, the blocked spectral region widens.

These doping induced changes in the optical absorption can be quantitatively predicted by

considering the optical conductivity (σ) of graphene as a function of optical frequency(ω), chemical

potential(µ), and temperature(T ) [61]:

σ = σ0

[
1

2
+

1

72

(~ω)2

t2

](
tanh

~ω + 2µ

4kBT
+ tanh

~ω − 2µ

4kBT

)
, (3.2)

where σ0 is the optical conductivity of undoped graphene (µ = 0), t is the hopping parameter

connecting first nearest neighbors in the tight-binding model for graphene, kB is the Boltzmann

constant, e is the electron charge, ~ is the reduced Plank constant, and T is the temperature of the

sample. For the following discussion, we neglect the term (~ω/t)2 since 1/72×(~ω/t)2 < 3×10−3 �

1/2 for the photon energies we work with (< 1.2 eV).
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Figure 3.4: A scanning electron microscope image of graphene domains and boundaries. Inset:
disconnected graphene domains that are grown without a second step of high methane flow rates.
The domain sizes (100-400 µm2) are much larger than the laser beam size in our experiments and
are sufficient for most laser applications.

3.4.2 Sample preparation and characterization

The graphene samples used in the experiment and throughout this thesis were grown on

copper foils (Alfa Aesar #13382, 25µm) by chemical vapor deposition (CVD) [62]. The CVD setup

is described in detail in Appendix A. The total pressure in our CVD process was maintained at

a level of 10 mTorr in order to obtain large domains of graphene [63]. The CVD process began

with the annealing of the copper foils at 1000◦C with 5 sccm H2 flow for 30 minutes. While the

copper foils were maintained at 1000◦C, graphene was grown with 1 sccm H2 and 1 sccm CH4

for 30 minutes, followed by a 5-minute phase of 1 sccm H2 and 10 sccm CH4 to fill gaps between

domains [63]. Fig. 3.4 shows the domain sizes and boundaries of our CVD graphene. After the

growth, the graphene on copper foils was spin-coated with polymethyl methacrylate (PMMA) for

mechanical support during the wet-transfer processes, in which the copper foils were etched by ferric

chloride (0.5M) solution, and the graphene was washed in deionized water several times before being

transferred onto a microscope slide (VWR #48300-025).

The transferred graphene was baked in a tube furnace at 300◦C for an hour with 50 sccm Ar

flow, 5 sccm H2 flow (pressure ≈ 30 mTorr), reducing the doping that could result from adsorbates
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such water molecules or other contaminants [64, 65]. Moreover, we found that this heat treatment

can prevent the delamination of the graphene from the substrates in the following doping step,

which we hypothesized to be caused by the removal of water molecules between the graphene layer

and the substrate. Here we use nitric acid of low concentration (≤0.8 wt%) to p-doped graphene [66]

The acid was drop-cast on the graphene surface and, after five minutes, blown dry by nitrogen.

Various doping levels were achieved by nitric acid of concentrations from 0.1 to 0.8 wt%.

The linear absorption determines the maximum nonlinear modulation depth (or saturable

loss) that graphene has. Since the linear absorption is reduced with a non-zero doping level, as pre-

dicted by the optical conductivity in Eq. 3.2, it is crucial that the doping level and linear absorption

are characterized before the nonlinear absorption is studied. It should be noted that Fermi levels

in graphene are often estimated from the gate voltage needed for obtaining the minimum electrical

conductivity [67]. This method, however, brings complications of gate electrode implementation in

transmissive samples.

We quantified the Fermi levels by graphene’s infrared transmission spectra from 3000 nm to

900 nm with a spectrophotometer (Varian, Cary 500). The beam was 3 mm in diameter and at

near-normal incidence to the graphene-substrate interface. A large beam size was used in order to

average the spatial-dependent doping caused by the substrate and possibly by the dopants. The

calibration of the transmission spectra was done by subtracting the spectrum of a blank microscope

slide from all measurements.

The expected transmission loss of such samples can be predicted as the following. At normal

incidence, the transmittance T of graphene at the interface of air (n = 1) and glass (n ≈ 1.5) is

the following:

T =
4n1n2

(n1 + n2 + σ/cε0)2 ≈ T0

[
1− 2σ

cε0 (n1 + n2)

]
, (3.3)

where c is the speed of light in vacuum, ε0 is the vacuum permittivity, and T0 = 4n1n2 (n1 + n2)−2 =

0.96 is the transmittance at the same interface without graphene. The change of transmittance due
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to the presence of graphene, including the two interfaces of a substrate, is then

∆Ttotal =
∣∣T T0 − T 2

0

∣∣ =
2σT 2

0

cε0 (n1 + n2)
. (3.4)

Figure 3.5: Transmission spectra of doped graphene as a function of photon energy. The doping
level can be controlled by nitric acid of different concentrations. Gray line: measurement; black
line: fit. From top to bottom, the curves represent (S00) baked graphene, (S01) baked and doped
by 0.1wt% acid, (S02) baked and doped by 0.2wt% acid, (S04) baked and doped by 0.4wt% acid,
(S08) baked and doped by 0.8wt% acid. Linear optical absorption at low photon energy decreases
as the p-doping level increases. Note that chemical doping does not cause defects in graphene, as
verified with Raman spectroscopy, shown in Appendix B.

Figure 3.5 shows the transmission spectra of graphene samples that are chemically p-doped

to different levels. Due to spatial variations in the doping resulting from substrates and dopants,

the curves in Fig. 3.5 possess a slow transition from occupied states to vacant states in the valence

band, as shown in Fig. 3.3. Assuming that the distribution of these spatial variations follows a

normal distribution, which has a mean value of µ and a spread of ∆µ, we can fit the data in Fig. 3.5

by averaging the optical conductivity σ (Eq. 3.2) over this distribution. The chemical potentials
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found are shown next to the curves in Fig. 3.5. The deviations ∆µ’s were found to be less than

0.09 eV, which could be further reduced with a smaller beam size and/or atomically flat substrate

surfaces.

We have reproducibly observed that, as the concentration of nitric acid dopants increases,

graphene becomes more p-doped. Furthermore, the optical absorption at low photon energies is

reduced due to lack of electron population in the valence band. The baked sample (S00) shows

nearly universal absorption at photon energies as low as 0.4 eV, which is limited by the spectral

range of the spectrophotometer. It should be noted that the chemical doping process adopted here

does not cause defects in graphene, as verified with Raman spectroscopy, shown in Appendix B.

3.5 Saturable absorption of graphene

The understanding of saturable absorber parameters is critical to the success of stable mode-

locking and generation of short pulses. Besides the relaxation time scales of the saturable absorber,

it is equally important to characterize how the absorption (equivalently reflection or transmission

of the sample) changes as a function of pulse fluence or intensity over 2 to 3 decades. Due to the

low saturable loss (typically less than 5%) of the saturable absorbers used for modelocking free

space solid state lasers, it can be challenging to keep the non-linearity of the experimental setup to

below this value. This is especially true for graphene since it possesses only ∼ 2% absorption when

placed on a transparent glass. The characterization methods for both transmissive and reflective

samples are discussed below.

3.5.1 Experimental setup: differential transmission and pump probe

The experimental setup for measuring saturable absorption in this thesis is shown in Fig. 3.6,

which is dubbed differential transmission (a) or reflectivity (b) depending on the sample preparation.

For graphene placed on a glass slide, the method shown in (a) is suitable since it compares the

transmitted power through the graphene sample with a reference beam. The signal is obtained

by detecting the differential power with a balanced photodetector, and the intensity can be varied
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with a dual-polarizer attenuator. For characterizing reflective samples such as graphene placed on

a laser mirror or traditional SESAMs, the setup shown in (b) can be adopted, which was originally

demonstrated in [68]. This method avoids the use of two photodiodes, which could add systematic

errors. Instead, the detection is performed by one photodiode and a special chopping technique

such that both the sample and reference beams can be sampled at almost the same time. The

processing is done numerically after digitally sampling the step-function-like signals. Details can

be found in [68]. For graphene samples on glass, we adopted the first method shown in (a).

Figure 3.6: Differential transmission setup for characterizing the saturable absorption of graphene.
Isolator: optical Faraday isolator; PBS: polarization beam splitter cube, two used as a power
attenuator; BS: beam splitter; PD1 and PD2: identical photodiodes for balanced detection; L1 and
L2: focusing lenses; Sample: graphene on a microscope slide; Chopper: mechanical chopper used
with lock-in amplifier to reject part of the laser noise.

We used a soliton mode-locked Er:Yb:glass laser with a center wavelength of 1.56 µm, pulse

width 210 fs, and 86 MHz repetition rate. The beam diameter on the sample was (4.4 ± 0.6) µm.

For each measurement, the peak intensity of the pulse was varied logarithmically from 3 to over

3000 MW/cm2, and the change of transmittance was recorded. Each sample was characterized at

ten independent locations, and the fit parameters of all spots were averaged. Fig. 3.8(a) shows one

of these measurements.

We also measured the relaxation time of photo-excited carriers in undoped graphene by a

degenerate pump-probe setup with the aforementioned laser. As can be seen in Fig. 3.7(a), the

pump and probe beams were counter-propagating, polarized 90◦ with respect to each other, and
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Figure 3.7: Degenerate pump probe setup for measuring carrier dynamics in graphene on a trans-
parent substrate. Isolator: optical Faraday isolator; PBS: polarization beam splitter cube, two used
as a power attenuator; BS: beam splitter; PD1 and PD2: identical photodiodes for balanced detec-
tion; L1 and L2: focusing lenses; Sample: graphene on a microscope slide; Chopper: mechanical
chopper used with lock-in amplifier to reject part of the laser noise.

mechanically chopped at two different frequencies around 1 kHz. The change of probe power due

to the pump was measured by a lock-in amplifier at a frequency equal to the sum of the two

chopping frequencies.One variation of the setup is also shown in Fig. 3.7(b), where an acousto-

optic modulator is used to shift the frequency of the probe beam to avoid the white-light type

linear interference between the pump and probe in the photodetector, which could be an issue in

the setup in (a) if polarization filtering is not sufficient. Alternatively, a Fourier transform and filter

can be applied to the data containing the fast oscillating interference fringes and extract only the

slow component, which contains desired carrier relaxation information. The original measurement

was performed with the setup depicted in (a), the observed transmission transient of graphene is

shown in Fig. 3.8(b).

3.5.2 Results and discussion

In graphene, photo-excited carriers relax within ∼200 fs via carrier-carrier scattering and

carrier-phonon scattering [69–72]. Our pump-probe measurements also showed that the fast re-



33

Figure 3.8: (a) The change of transmittance caused by as-transferred graphene as a function of
pulse peak intensity. The gray curves are ten individual measurements at different locations on
the same sample; the black solid line is the resulting curve from the average of ten individual fits
through the data. (b) Transmission transient of graphene. The slow component of the relaxation
time is 1.1 ps; the fast component is not resolved due to the long pulse duration (∼210 fs).

laxation in graphene contributes significantly to the saturable absorption (Fig. 3.8(b)). To find

the macroscopic parameters of a graphene absorber (saturation intensity or fluence, saturable loss,

and non-saturable loss), care needs to be taken in fitting a correct theoretical model to experimen-

tal saturable absorption curves. The saturation of an absorber can be described by the following

equation (Eq. 2.10):

d q(t)

d t
=
q0 − q(t)

τA
− q(t)I(t)

Fsat,A
, (3.5)

where q(t) is the saturable loss, q0 is the insertion loss, τA is the relaxation time of the absorber,

I(t) is the intensity of light, and Fsat,A is the saturation fluence of the absorber. For simplicity, we

first regard graphene as a fast saturable absorber (pulse width� τA). Given sech2-shaped pulses,

the loss of absorber can be written as (Eq. 2.13)

q(S) =
qs√

S(1 + S)
tanh−1

(√
S

1 + S

)
+ qns, (3.6)

where qs is the saturable loss, qns is the non-saturable loss, and S is the ratio of the pulse peak

intensity to the saturation intensity of the graphene absorber. Fig. 3.8(a) shows the nonlinear

absorption curve of as-transferred and baked samples. Fitting Eq. 3.6 to the data, we found the
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saturation intensity to be (250 ± 80) MW/cm2, the insertion loss (1.85 ± 0.08)%, the saturable loss

(0.85 ± 0.04)%. It should be noted that the insertion loss here refers to the change of transmittance

due to the presence of graphene on the air-glass interface, and it is lower than the optical absorption

of free-standing graphene (πα = 2.3%). The insertion loss was comparable to the calculated change

of transmittance ∆Ttotal = 1.7% in Eq. 3.4. The extra loss could be attributed to the light scattering

from graphene or non-graphitic carbon produced incidentally by the CVD process [73].

From a full numerical solution to Eq. 3.5, assuming τA = 200 fs, sech2-shaped pulses with

210 fs (FWHM), we found that the saturation intensity was lower by a factor of 0.7 (Isat = 175

MW/cm2, Fsat = 35 µJ/cm2), although in this regime, neither the saturation intensity nor fluence

is a good macroscopic quantity of the absorber. One simply needs to refer to the pulse duration

and the relaxation time of the absorber.

The saturation intensity we measured can be directly compared with the theoretical value

calculated by Vasko [74]. For photon energies near 0.8 eV, the theoretical value is approximately

60 MW/cm2, and our measured value of (250 ± 80)MW/cm2 agrees roughly within a factor of 4.

The discrepancy between our measurement and the theoretical value could be due to the reduced

carrier relaxation time (Fig. 3.8(b)) caused by the lattice defects around domain boundaries or by

the interaction with the substrate, which could add additional relaxation pathways. Note that none

of these effects can lower the measured saturation intensity.

Our result also agrees very well with Sun et al. [75], who measured the saturation intensity for

1.55 µm light to be 266 MW/cm2 for monolayer and bilayer graphene flakes dispersed in polymers,

but we found a large discrepancy between our results and the values reported by Bao et al. [57,76,77],

Tan et al. [78], and Zhang et al. [79–81], who found a saturation intensity value of 0.6-0.7 MW/cm2.

Even though their measured saturation intensity seemingly agrees with the model they suggested

[57], their model merely accounted for the carrier recombination in direct band-gap semiconductors

such as gallium arsenide, but is likely not adequate to describe zero-bandgap graphene.

It may be argued that the saturation intensity depends on the pulse duration used for char-

acterization, but from a full numerical solution to Eq. 3.5, we found that as the pulse duration
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increases from 200 fs to 10 ps, the saturation intensity decreases by a factor of at most 10, which

could not explain this discrepancy.

According to Vasko’s calculation, the saturation intensity strongly increases with the photon

energy due to the proportionality between the relaxation rate and the density of states to which

carriers are excited. Several experiments have also shown that the saturation intensity for 800 nm

light is above 1 GW/cm2: Dawlaty et al. observed saturable loss but could not reach the saturation

intensity even at pulse peak intensities higher than 1 GW/cm2 (85 fs pulse duration) [69]; Xing

et al. showed by z-scan measurements that the saturation intensity was near 4 GW/cm2 [72]; and

Breusing et al. did not observe any saturation with pulse fluence as high as 0.7 mJ/cm2 (7 fs pulse

duration) [71].

3.5.3 Saturable absorption in chemically-doped graphene

The transmission spectra of undoped and doped graphene are shown in Fig. 3.5. As the

Fermi level was varied from close to the Dirac point to 0.4 eV below the Dirac point, the linear

absorption at low photon energies decreased due to state blocking. The corresponding saturation

of optical absorption at 1.55 µm wavelength (0.8 eV) is shown in Fig. 3.9. As the doping level

increased, the insertion loss of graphene decreased dramatically from 1.8% to 1%, which matched

well with the measured linear absorption.

The non-saturable loss, however, did not increase with the doping level, suggesting that dop-

ing with nitric acid does not cause more defects or introduce more scattering loss to the graphene.

The saturation intensity also remained roughly the same in doped graphene, which could be un-

derstood from the fact that the density of states and carrier relaxation time are not modified by

hole-doping.

This flexibility in designing the saturable absorbers is essential to successful continuous-wave

mode-locking in solid-state lasers [82]. Given the parameters of a specific laser, suitable parameters

of the saturable absorber can be chosen to prevent Q-switching. SESAMs have been used widely

in solid-state laser mode-locking because of their design freedom. For graphene absorbers, one
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Figure 3.9: Transmission loss of doped graphene as a function of pulse peak intensity. For each
doping level, one curve (dashed line) obtained by averaging the fit parameters of ten independent
spots is shown. From top to bottom, the curves represent (S00) baked graphene, (S01) baked and
doped by 0.1wt% acid, (S02) baked and doped by 0.2wt% acid, (S04) baked and doped by 0.4wt%
acid, (S08) baked and doped by 0.8wt% acid. The three cones show the band structure of graphene
at different doping levels. Upper cone: conduction band; Dark lower cone: electron-filled valence
band; and light-colored area: hole-occupied states.

can exploit the doping effect to tailor the modulation depth in monolayer graphene, and if higher

insertion loss is desired, stacked multilayer graphene can be used.

Even though the parameters of a saturable absorber can be tailored to specific values in order

to prevent Q-switching, the allowed range of parameters is often quite limited, and the parameters

of the laser such as gain cross section and pump power also need to be taken into account. In

certain situations, using active feedback to suppress Q-switching can be favorable compared to

designing absorbers. It has been demonstrated that the laser output power can be directly used

to feedback-control the intracavity loss or gain [83, 84]. For graphene absorbers, it is possible to

implement an external electric field to modulate the carrier density [62,85], or essentially the Fermi

level, so that the insertion loss can be controlled by electronics. The relation between the carrier

density(n) and Fermi level(EF ) in graphene is given by

n =
1

π

(
EF
~vF

)2

, (3.7)

where vF is the Fermi velocity (∼106 m/s). To achieve the maximal modulation of insertion loss

in a laser with a center wavelength of 1.55 µm, the desired Fermi level is 0.4 eV below the Dirac
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point, corresponding to a carrier (hole) density of approximately 1013 cm−2. To achieve this level

of carrier density in a normal electrical-gating configuration with 100 nm dielectric of ε ≈ 4, one

has to apply nearly 100 Volts. Doping graphene with chemicals prior to applying electric fields

can thus avoid the use of strong field and avoid dielectric breakdown. This pre-doping would be

particularly important for applications in lasers with wavelengths in the near-infrared and visible

regions, where the state-blocking is not trivial to achieve solely by electric-field gating.

3.6 Optical damage of graphene

The modulation depth and the saturation intensity of graphene are comparable to those of

SESAMs [38]. However, the full modulation depth could not be exploited due to the onset of

permanent damage for pulse peak intensities higher than 2 GW/cm2. We found that the damage

resulted from the high peak power of the laser rather than from the heat due to the average

power. This was confirmed by observing the damage with the laser under two conditions: (1)

cw mode-locking regime and (2) continuous-wave regime. While the average power was the same

in both regimes, the peak power was 50,000-times higher in the mode-locked regime. Despite

having the same average power as in the cw modelocked regime, no damage was observed when the

laser was operated in the continuous-wave regime. To further investigate the damage mechanism,

the graphene sample was purged with argon, excluding the possibility of oxygen interacting with

graphene under high pulse intensity. It was found that the damage threshold did not increase in

this oxygen-free environment. We thus assume that the damage could have originated from the

interaction of the high electric fields with graphene and possibly its residual surface contaminants

or non-graphitic carbon left over from growth and transfer [73].

3.7 Modelocking of an Er:Yb:glass laser with graphene

Modelocking a low gain solid state laser was achieved with a CVD graphene sample trans-

ferred to a laser broadband mirror. The CVD growth process is similar to the one described in

Section 3.4.2. The only difference is that graphene was directly transferred onto a broadband laser
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mirror. Fig. 3.10(a) shows a photo of transferred graphene on a broadband, dielectric-coated mir-

ror. Fig. 3.10(b) shows a microscopic picture of the transferred graphene, and it can be seen that

graphene is uniform over most of the region. Only a few dark spots exist possibly due to multi-

layer graphene or copper etchant residue. The uniformity of this large-area graphene reduces the

non-saturable scattering loss of laser light. Also, focused laser light can be aligned on the sample

easily without using a microscope, which is important for applications in solid-state bulk lasers.

Figure 3.10: (a) Graphene saturable absorber mirror: Directly transferred graphene on a broadband
laser mirror with 1/2 inch diameter. The contrast of the picture is enhanced for clarity. (b) Optical
microscopic view of single-layer graphene on a laser mirror showing good uniformity.

We built a laser based on Er:Yb:glass (Kigre Inc.: QX/Er, 1%Er, 20%Yb, 1.6 mm plate under

Brewster angle). The laser glass was directly diode pumped by a pigtailed single transversal mode

and single wavelength 980 nm laser diode. The cavity was an astigmatically compensated, X-fold

cavity with an additional focus on one of the end mirrors, which was replaced by the graphene-based

saturable absorber mirror (Graphene-SAM), as shown in Fig. 3.11(a). The chromatic dispersion of

the cavity was dominated by the anomalous second-order dispersion of the laser glass. All cavity

mirrors were commercial, low-dispersion broadband mirrors. The pulse repetition rate was 88 MHz.

At an output coupling ratio of 0.4% and a pump power of about 130 mW stable mode-locking

at 4.5 mW output power (∼1.1W intracavity power) at a center wavelength of around 1550 nm

was obtained. The mode-locked spectrum is shown in Fig. 3.11(b). From an autocorrelation

measurement, we inferred a pulse duration of 260 fs, assuming a Gaussian pulse shape. The beam

diameter on the saturable absorber was ∼30 µm, resulting in a maximum peak-intensity of ∼6
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GW/cm2.

Figure 3.11: (a) Diode-pumped Er:Yb:glass laser cavity configuration. R1, R2, and R3 are concave
broadband laser mirrors with ROC = 100 mm, 100 mm, and 50 mm, respectively. (b) Output
optical spectrum. Spectral width ∼ 17 nm at a center wavelength of around 1550 nm. Resolution
bandwidth: 0.5 nm.

3.8 Conclusion

In this Chapter, we reviewed the basic optical properties of graphene. Graphene has a linear

energy to momentum relaxation for its carriers, which can be either holes or electrons (ambipolar),

depending on the Fermi level. Both its linear and nonlinear optical absorption can be modified by

changing the doping level, which was demonstrated here with a chemical mean but an electrical

gating method will be the topic of Chapter 4.

Graphene as a saturable absorber exhibits a saturation intensity of (250 ± 80) MW/cm2 for

1.5µm light, which is comparable to some reported values but a large discrepancy (two orders of

magnitude) exists still to date between this result and the results reported by the first graphene

modelocking result. Due to the onset of optical damage at above 2 GW/cm2, the operating intensity

range for graphene is rather tight, and long term operation with graphene could not be achieved in

our Er:Yb:glass laser. At mid-IR wavelengths, graphene may serve as a better saturable absorber

than at near-IR wavelengths because of its lower saturation intensity, which scales with the photon

energy in a nonlinear fashion due to the lower density of states and higher photon flux per unit
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optical power at long wavelengths.

Graphene may not rival, at least for now, the well-established SESAM technology at near-IR

wavelengths due to its high saturation intensity and susceptibility to optical damage, despite its

very short relaxation time and ease of fabrication. In the next Chapter, the use of graphene as

an active device will be discussed. Based on its tunable linear optical absorption, coupled with

its high saturation intensity (suitable for high peak power applications), graphene could serve as a

fast electro-optic loss modulator for laser applications with extremely broad optical and electrical

bandwidths.



Chapter 4

Graphene as an electro-optic modulator

4.1 Motivation

As discussed in Chapter 3, graphene is a single sheet of carbon atoms arranged in a honeycomb

structure. A unique property of this two-dimensional lattice structure is that the electrons are

nearly massless due to their linear dispersion relation between energy and crystal momentum [86].

Moreover, free-standing graphene absorbs electromagnetic radiation ranging from THz waves to

visible light, with a wavelength-independent rage of: πα = 2.3% , where α is the fine structure

constant [87].

An very important consequence of its band structure is that the density of states around

the Dirac point, where the conduction and valence bands in graphene meet, is close to zero. This

property makes the optical absorption of graphene at low photon energies very sensitive to the

occupation of electronic states near the Dirac point, which is mostly subject to finite temperature-

induced broadening and/or substrate-induced doping [88]. Since the carrier-density in graphene can

also be actively controlled by an external electric field in a field-effect-transistor-like structure [67],

one can utilize the doping-dependent optical absorption to gain active control over the linear optical

properties of graphene at mid-IR wavelengths [85,89].

To exploit this tunable absorption in graphene for electro-optic modulation in the near-IR

or visible portion of the spectrum, one needs to substantially increase the carrier density and/or

the interaction between the light and the graphene. Efforts have been made to evanescently couple

light in a silicon waveguide to graphene [90]. Despite its high modulation speed (∼ 1 GHz), a
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waveguide-type modulator limits the range of applications. In particular free-space applications

that require low insertion loss, such as amplitude modulation in a high-Q laser cavity or in an

active interferometer, would suffer from the inevitable coupling loss to the optical waveguide.

In this Chapter, we show the fabrication and characterization of a new type of graphene-

based electro-optic modulators with low insertion loss, high modulation speeds, and large active

areas for free-space laser applications, particularly for intracavity use in low loss solid state lasers.

Because of the ultra-thin character of graphene, new types of electro-optic modulators can be

realized using graphene as a loss-tunable layer embedded inside a multilayer structure. With the

advantage of the large design freedom that multilayer coatings offer, parameters of these graphene-

based modulators, such as their insertion loss and modulation depth, can be optimized to meet the

requirements of the application at hand.

The electro-optic modulators that we demonstrate here are, to the best of our knowledge, the

first graphene-based modulators that are fabricated in a planar, reflective-type structure that can

be readily deployed in lasers or active interferometers to gain direct control over their intra-cavity

dynamics. This could enable active mode-locking, carrier-envelope phase control, or suppression of

noise and Q-switching instabilities [23,91]. These novel graphene devices are not only advantageous

due to their compactness, but also due to their polarization insensitivity, ultra-low phase distortion,

and their low drive-voltage requirements compared to established LiNbO3-based modulators. Since

these devices can be made with a large active area with uniform modulation, they enable scaling

for high-power applications.

4.2 Physics of electro-absorption modulation in graphene

The absorption of graphene is determined by its optical conductivity [61]. This has been

discussed in Section 3.4:

σ = σ0
1

2

(
tanh

~ω + 2µ

4kBT
+ tanh

~ω − 2µ

4kBT

)
, (4.1)
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where σ0 = e2/4~ is the optical conductivity of undoped graphene (i.e. with a Fermi-energy

EF = 0), kB is the Boltzmann constant, e is the electron charge, ~ is the reduced Plank constant,

T is the effective carrier temperature, and ω is optical frequency. The absorbed optical power in

graphene is approximately proportional to its optical conductivity. A change in graphenes Fermi

level therefore changes the optical absorption at certain optical frequencies [85,90].

Figure 4.1: Tuning of the optical absorption of graphene by electric field-gating. Left: Graphene
on a gated dielectric with thickness d and dielectric constant ε. Right: Excitation of electrons from
the valence band (blue cones) to the conduction band (red cones) through absorption of a photon.
The absorption is blocked when graphene is strongly doped (either n- or p-doped; only p-doping is
shown here). For a given voltage higher or lower d result in larger tuning of EF. ‘const’ refers to
the negative value of the charge-neutrality voltage of the device.

The charge density of electric-field-gated graphene (see Fig. 4.1, left) scales linearly with the

applied voltage (V ) and the dielectric constant (ε), and it is inversely proportional to the thickness

(d) of the dielectric (parallel-plate capacitor model). The charge density relates to the Fermi energy

(EF) of graphene and further to the applied voltage by

EF ∝
√
|n+ n0| ∝

√
ε

d
|V + V0|,

where n0 is the doping concentration present in graphene due to the graphene-substrate interaction.

To simplify the understanding of the voltage-dependence of the device, one could think of this

doping concentration n0 as being caused by an auxiliary voltage V0. As the magnitude of the Fermi

energy approaches half the photon energy ~ω, the optical conductivity in graphene changes from
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σ0 (corresponding to the aforementioned 2.3% optical absorption) to σ0/2. For |EF| > ~ω the

conductivity and the optical absorption approach zero (see Fig.4.1, right).

Graphene on dielectric substrates is typically only shallowly p-doped (∼ 100−200 meV) [88].

Therefore, fairly high voltages are required for shifting the Fermi energy beyond the desired half

of the photon energy (~ω ∼ 400 meV for telecommunications wavelengths). For example, 200 meV

pre-doped graphene on a 100 nm silicon dioxide layer (ε = 3.9) requires ∼ 55 V to reach an EF ∼

400 meV. The use of high-k dielectrics such as Ta2O5 (ε = 22) can thus substantially decrease the

required drive voltage (< 10V in the example above).

4.3 Device implementation

4.3.1 Design

Fig. 4.2(a) shows the structure of a graphene electro-optic modulator. A sapphire substrate

was first coated with a 20-nm titanium adhesion layer and a 100-nm silver film by thermal evapo-

ration. A 20-nm layer of silicon nitride was coated readily after the deposition of the silver in order

to prevent oxidization. The resulting silver film provides high reflectivity (> 98%) for infrared light

at normal incidence and also functions as a back gate electrode. Tantalum pentoxide (Ta2O5) was

deposited on the silver mirror as the gate insulator by dc reactive magnetron sputtering with a

tantalum target.

The thickness of this Ta2O5 layer is one of the design degrees of freedom that can be used to

tailor the optical properties of the device to the required specifications. By placing the graphene

at the appropriate location in the standing wave that is formed between the incident light and the

light that was reflected from the silver back-gate electrode, one can tailor the insertion loss and

achievable modulation strength of the device. Hence, a careful adjustment of the thickness of the

Ta2O5 layer can alter the graphene absorption from essentially zero (if the optical thickness of the

Ta2O5 layer is chosen to be λ/2) to approximately 8% (for λ/4).

For any multilayer structure with embedded graphene, modified Fresnel transfer matrices can
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be used to calculate the insertion loss of the structure and the effective optical absorption of the

graphene. The transmission and reflection coefficients at normal incidence of a planar dielectric

interface (initial and final medium with index n1 and n2, respectively) with undoped graphene

are [61]

t12 =
2n1

(n1 + n2 + πα)
,

r12 =
(n2 − n1 + πα)

(n2 + n1 + πα)
.

(4.2)

For the whole device structure shown in Fig. 4.2, the relevant refractive indices are: 2.1 for the

225 nm thick Ta2O5 layer; 1.8 for the 20 nm thick SiNx layer; and n = 0.51 + 10.8i for silver

at 1.55 m wavelength. Using the Fresnel transfer-matrix method we find that the total insertion

loss (including graphene absorption) of the modulator shown in Fig.4.2(b) is 5.1% and the electric

field-induced modulation depth is 2.1%; assuming the graphene could be fully bleached.

The maximum reflectivity of this simple design is limited by the reflectivity of silver mirror.

If further reduction of the insertion loss is required, for example for applications inside a high-

quality-factor optical cavity, one could add a top reflector formed by a stack of dielectric quarter

wave layers. For instance, by adding a single layer of quarter-wave thickness (TiO2, n = 2.5) on

the graphene would reduce insertion loss down to less than 3.0%, and more than half of this loss

could still be actively controlled.

4.3.2 Fabrication

We used monolayer synthetic graphene of large, connected single-crystal domains with sizes

20 m grown by low-pressure chemical vapor deposition (CVD) on a copper foils [92]. A large

sheet of graphene (∼ 1cm2) was subsequently wet transferred from the copper foil onto the Ta2O5

layer with the mechanical support of spin-coated polymethyl methacrylate (PMMA) film. After

the transfer and removal of the PMMA film the device was baked in a N2 (90%) and H2(10%)

atmosphere at ambient pressure and 200 ◦C. for an hour. This baking removed the residual PMMA

and water from the wet-transfer process. The use of CVD-grown graphene enables the fabrication
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Figure 4.2: (a) Electric-field-square distribution (blue line) in the multilayer structure for 1.55 µm
wavelength light at normal incidence. (|E|2 was normalized to 1 for the travelling incoming wave).
The black curve represents the refractive index of each layer. Here, the layer thickness of SiNx is
20 nm; Ta2O5 is 225 nm, and |E|2 on graphene is 0.94, yielding a maximum loss of 5.1%, of which
2.1% are absorbed by the undoped graphene. (b) Sketch of the device structure. Silver functions
as the back gate and mirror. A 225-nm-thick Ta2O5 layer serves as the gate insulator and the
substrate for the graphene. The top contact on the graphene is formed by a ring-shaped Ti/Al
electrode. Graphene outside the top contact annulus was removed by oxygen plasma to minimize
the device capacitance.

of graphene modulators with large active areas; something that would likely be impossible with

exfoliated graphene. Even though CVD-grown graphene has domain sizes around 20 µm, and the

domain boundaries substantially increase the electrical sheet resistance, we show in the following

sections that the modulation effect from these modulators exhibit good uniformity over the whole

active area.

To electrically contact the graphene we used a lift-off process to deposit a metal-annulus

consisting of a 20 nm titanium wetting layer and a 200 nm aluminum conductive layer. The contact

resistance between these top electrodes and the graphene was measured to be 200-500 Ohms, which

is believed to limit the current speed of the device due to the resulting RC time constant. The

top contacts were chosen in the depicted ring-shape (Fig. 4.2(b)), as this shape provides a good

compromise between the low-pass effects caused by the contact and sheet resistance, yet it does

not substantially add to the capacitance of the device. With this top-contact geometry, the device
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capacitance scales approximately linearly with the device active area, and hence, we expect that

larger devices will likely exhibit a slower electrical response. After the top electrode deposition,

excess graphene outside of the ring electrodes were removed by oxygen plasma to minimize the

parasitic parallel capacitor that would otherwise be generated by the excess graphene outside

the top-contact annulus. All the following characterization was done at ambient conditions with

graphene exposed to air.

4.3.3 Characterization

We characterized the modulation depth of our graphene modulators by a continuous-wave

laser at 1.55 µm wavelength. The modulation effect over the whole area of the device is characterized

with two linear motorized stages arranged in an orthogonal x-y configuration. The laser beam was

focused onto the device with a spot size ∼5 µm diameter. The reflected beam beam was sent

into a photodiode, and the amplitude modulation and phase changes were extracted with a lock-in

amplifier while the stages were scanning in discrete steps (step size 2 µm) Fig. 3. In addition to

these 2D scans, we also measured the frequency response of the modulator at a fixed location inside

the active area with two lock-in amplifiers (Stanford Research SR830 for measurements from 0.1

Hz to 100 kHz, and a Stanford Research SR844 for measurements from 25 kHz to 100MHz; Fig.

4a). During all these measurements the light intensity on the device was kept low (< 5kW/cm2),

such that no nonlinear optical absorption could occur in the graphene sample.

Fig. 4.3 shows the two-dimensional scans for various modulation frequencies. It can be seen

that the whole active area with a diameter of 100 m has high spatial uniformity, especially when con-

sidering that the used CVD-graphene has domain sizes of 20 m, and that several photolithographic

and wet fabrication processes were performed on the graphene surface. The two-dimensional maps

also show that the performance of the device remains essentially the same over the whole tested

frequency range from 100 kHz up to 50 MHz, despite the slightly increased RF background above

10MHz.

The measured insertion loss of the modulator was found to be 7%, of which 2% were from
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Figure 4.3: (Left) Optical microscope image of the modulator. (Right) Modulation depth mea-
sured by two-dimensional scans over the active area of the graphene modulator at various driving
frequencies. The modulation depth is calibrated to the incident laser power; the driving voltage
was 1Vpp (square wave).

the absorption of graphene. This slightly higher insertion loss compared to the calculated value

based on the aforementioned transfer-matrix method could be attributed to the scattering loss from

graphene and small thickness errors in the deposition steps. Nearly 50% of the insertion loss of the

graphene could be modulated with only 5 Vrms.

To verify the aforementioned design freedom we fabricated a second device with a quarter-

wave layer of Ta2O5. For that device the insertion loss was found to be 15% with 7% modulation

depth, which is in excellent agreement with the calculated values above. In this device the modula-

tion was an astonishing 1% (or 0.1dB) per 1 Vrms. This is particularly impressive when considering

that this strong modulation occurs within the single atomic layer graphene. Since the full modu-

lation effect occurs in the one atomic layer, one can expect that this constitutes a pure amplitude

modulator, i.e. an amplitude modulator with negligible parasitic phase modulation.

The frequency response of the modulator is shown in Fig. 4.4. The modulator has an esti-

mated capacitance around 7 pF and contact resistance of the order of 200 Ohm, which corresponds

to a theoretical -3dB corner of 114 MHz. The -3dB corner was indeed not observed for frequen-
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cies up to 100 MHz. Frequency measurements above 100 MHz were hindered by RF coupling and

impedance mismatch. It should be noted that we observed a slight roll-off of in the modulator

response at frequencies below 1Hz. We hypothesize that this decrease could be attributed to a

hysteresis caused by the substrate or the water molecules in the substrate, as observed previously

in graphene transistors [13].

Figure 4.4: (a) Frequency response of the graphene modulator with 225-nm Ta2O5 dielectric (blue:
experimental, orange: fit). The 3dB corner was found to be 154 MHz. The small fluctuations of
the modulation amplitude near the frequency corner were found to be caused by RF background
coupling. An amplitude roll-off at frequencies lower than 1 Hz was observed and believed to be
related to the hysteresis effects caused by the underlying oxide layer [13]. (b) Modulation depth as
a function of the RMS amplitude of the 100 kHz driving sine wave. The driving voltage was 1Vpp
(square wave).

4.4 Integration with a III-V semiconductor saturable absorber mirror

4.4.1 Motivation

Modelocking-based frequency combs have been evolving rapidly in the last two decades

from the classic Ti:sapphire bulk lasers to compact fiber-based lasers. This decades long effort

in miniaturizing combs has reached a point where portable and fieldable applications are possi-

ble [93,94]. When one considers the available modelocking techniques that are feasible for turn-key,

polarization-maintaining, and self-starting operation, the use of semiconductor saturable absorber

mirrors (SESAMs) is favored in many cases. While the use of SESAM allows straightforward mod-
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elocking of a compact laser, two fast actuators are needed to suppress the noise in both the pulse

repetition frequency (frep) and the carrier envelope offset frequency (fceo). For metrological, long-

term (> 1s) applications, slow actuators are often sufficient. However, when short-term stability

(1 µs–1 s) is of concern, high bandwidth is required, for instance in the generation of ultralow-noise

microwaves by direct frequency division, or in the generation of high-order harmonics with an en-

hancement cavity. To stabilize frep, one can use a fast piezo or a lithium-niobate-based modulator

that controls the cavity length, with up to ∼300 kHz bandwidth. Stabilize fceo by the traditional

method of pump power modulation has fairly limited bandwidth due to the long stimulated gain

lifetime. A number of high-bandwidth approaches have been shown, including extra-cavity error

correction with an acoustic-optic modulator (f-3dB ∼250 kHz) [95], intracavity loss modulation with

a graphene modulator (f-3dB ∼1 MHz) [96](Chapter 5), and opto-optical modulation with a SESAM

(f-3dB ∼100 kHz) [97]. We demonstrate a new generation of graphene electro-optic modulators that

are integrated with a SESAM. This monolithic device provides electro-optic loss modulation from

graphene as well as nonlinear saturable loss from an erbium-doped InGaAs quantum well. We envi-

sion the use of this novel device in compact, fieldable frequency combs where ultralow (< 100 mrad)

integrated phase noise level is required, such as a portable low-noise microwave generator.

4.4.2 Fabrication and characterization

The structure of the device is shown in Fig. 4.5. The device consists of 24 pairs of GaAs/AlAs

λ/4 layers that form a highly reflective mirror, a low temperature grown 10-nm-thick InGaAs:Er

quantum well, a cap GaAs layer, and a graphene modulator. The quantum well absorber was

designed for modelocking at the center wavelength of 1560 nm, and ultrafast recombination cen-

ters were introduced in the absorber by erbium doping during the molecular-beam epitaxy for fast

recovery time. With a 1560 nm, 80 fs, 88 MHz modelocked laser and a pump-probe setup, the

recovery time was found to be bi-exponential, with time constants around 1 ps and 5 ps, while

the saturable and non-saturable loss ratio was found to be 0.88% and 0.42%, respectively, which

is favorable for modelocking ultra-low-loss bulk lasers. We have successfully used this SESAM in
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Er:Yb:glass lasers for sub-100 fs pulse generation, with repetition rates ranging from 80 MHz to

500 MHz. The cap layer, 110 nm of GaAs, is slightly doped during the growth, and the doping

concentration is estimated to be around 1015 cm−3. This layer serves as a transparent electrode for

the graphene modulator. The graphene modulator has a 50-nm-thick Ta2O5 as the gate insulator,

100-nm top gold contact, and monolayer graphene transferred from a chemical-vapor-deposition-

grown sample. Note that one can choose the thickness of the high-k dielectric to tailor the insertion

loss contributed by graphene and the corresponding modulation depth. In this particular device,

Figure 4.5: (a) Schematic of the device structure. The electric field is calculated for 1560 nm
wavelength of light. (b) Reflectivity of the as-grown semiconductor saturable absorber as a function
of incident pulse fluence. Saturable loss and non-saturable loss is 0.88% and 0.42%, respectively,
and the saturation fluence is 62 µJ/cm2. The laser used for characterization emits 80 fs pulses at
88 MHz repetition rate. (c) Pump probe characterization of the carrier relaxation dynamics in the
absorber. The relaxation times are found to be ∼1 ps and ∼5 ps with a bi-exponential fit.

high uniformity of modulation depth ( 0.04% with 5 Vrms amplitude applied) was observed across

an aperture of ∼120 µm, shown in Fig. 4.6(b), which was characterized by raster scanning a tightly

focused low-power continuous-wave laser centered at 1550 nm while recording the percentage of

modulation in the reflected optical power. Fig. 4.6(c) shows the high reflectivity of the device. The

added loss from graphene was estimated to be 0.7%, and the total insertion loss of the device is 2%,

with 1.3% contributed from the SESAM (Fig. 4.6(c)). For this demonstration, the doping concen-

tration in the cap GaAs layer was originally not designed for high conductivity, and consequently

the modulation bandwidth, which is RC-limited, is around 2 kHz due to the large sheet resistance

(∼1 MΩ/�) of the GaAs layer. It should be straightforward to increase the doping concentration
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in our future epitaxy growth such that megahertz bandwidth can be realized for frequency comb

stabilization.

Figure 4.6: (a) Photo of the fabricated graphene modulators on SESAM. (b) A 2-d heat map of
the modulation depth for one modulator with 5 Vrms ac signal applied to the device at around
1.4 kHz. The diameter of the modulator is around 120 m. (c) A 2-d heat map of the reflectivity
for the same modulator. The active area has a reflectivity of around 98%, of which 1.3% loss is
from the absorber and 0.7% loss from the graphene modulator.

4.5 Conclusion

In this Chapter, an electro-optic (or in a more precise term: electroabsorption) modulator

based on monolayer graphene is shown. It operation is based on the change of optical conductivity

due to changes in the carrier density or equivalently Fermi level or doping level. This effect can be

achieved by applying an electric field through an insulator, which acts as a gate dielectric, as what

is done similarly in a field-effect transistor. The charge densities in graphene cannot be changed

dramatically due to the onset of dielectric breakdown at high field strength; however, since the

density of states of graphene at low photon energies are low, its optical absorption is reasonably

sensitive to the field-induced charges. Obviously, this effect is more pronounced for long wavelength

of light, unless one can dope graphene prior to applying an electric field, such as using chemical

means or substrate-induced effects, which might be realized in the near future.

The device is realized with the use of chemical vapor deposition graphene, which provides a
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large area for optical applications. The resulting device has an electrical bandwidth over 100 MHz

and broad optical bandwidth, although in this experiement only a few wavelenghts were tested.

The design freedom arising from the choice of dielectric thickness allows one to tailor the insertion

loss and modulation depth of the modulator for a particular application.

Due to the limited modulation depth one can obtain in this thin film structure, the device is

clearly not suitable for optics communication applications. However, its low loss, low dispersion,

and pure amplitude modulation with negligible parasitic phase modulation makes it well suited for

modulating the power in a laser cavity, with the device acting as a reflecting mirror. This will be

the topic of the next Chapter.



Chapter 5

Stabilization of frequency comb with a graphene modulator

Optical frequency combs have become an essential tool in metrology and spectroscopy [14,15].

For applications that require a fully stabilized comb, both the repetition rate (frep) and the carrier-

envelope-offset frequency (fceo) need to stabilized [10,11]. The traditional way of stabilizing fceo is

feeding back the phase error signal to the pump power of the laser. The achievable bandwidth of

this method is, however, limited by the coupling between gain and pulse energy of the laser, which

is governed by the stimulated lifetime of the gain medium. Fast corrections to fceo can be done

with an extracavity, feed-forward acoustic-optic modulator [98,99]. Sub-MHz loop bandwidth was

documented, which was limited by the propagation delay of the acoustic waves in the modulator

crystal. Despite the fact that this method could add spatial dispersion and limit the output power,

it was proven to be well suited for generating slip-free few-cycle pulses from low-noise Ti:sapphire

lasers.

High locking bandwidths of fceo can be reached without resorting to extracavity techniques,

as has been pointed out theoretically [26]. Cavity loss modulation, unlike pump power modulation,

leads to an immediate change in pulse energy; therefore, its bandwidth is not limited by the

stimulated gain lifetime but rather by the cavity roundtrip time, as can be seen from Fig. 2.1.

There has been no realization of this loss modulation scheme for stabilizing fceo due to the lack of

high-speed electro-optic modulators (EOMs) that are suitable for intracavity, pure loss modulation.

Traditional lithium-niobate EOMs act only as a phase modulator in fiber lasers for frep stabilization

[100–102]. Intracavity acousto-optic modulator (AOM) may be suitable in some situations; however,
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as discussed above, the bandwidth is fairly limited due to the finite propagation speed of acoustic

waves.

In this Chapter, we demonstrate the effectiveness of an ultra-thin, graphene-based electro-

optic loss modulator [103] that enables record high fceo locking bandwidths (>1 MHz) without

adverse effects on the laser performance. We also report an excellent residual in-loop phase noise

of 144 mrads (0.3 Hz-3.5 MHz) in a Tm-doped fiber oscillator owing to the large bandwidth of

intracavity loss modulation. This new scheme is particularly useful for fiber lasers, which usually

exhibit much higher levels of phase noise than solid-state lasers due to their high cavity loss, large

intracavity net-dispersion, and large optical nonlinearity.

5.1 Theoretical background: Transfer functions

In mode-locked lasers, the high bandwidth of cavity loss modulation can be understood by

considering the equations of motion that govern the coupling between gain and pulse energy. The

response of a laser to external perturbations can be found by linearizing the equations of motion.

With this knowledge, one can analyze how a change in gain and pulse energy lead to a change in

frep and fceo [26].

We derive here the transfer functions of pump and loss modulations to a laser’s output

power and show their difference in bandwidths. The following two coupled equations describe the

dynamics of gain and pulse energy, which are linearized about their steady-state values (see Eq. 2.1

and Eq. 2.15):

TR
∂

∂t

∆Ep

∆gP
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∆Ep
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Here A and B are given by
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−Ep 0

0
ηTR
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where TR is the cavity roundtrip time, gP and lP are the roundtrip power gain and loss (note

that gP = 2g and lP = 2l), qP = 2q is the nonlinear power loss as a function of the pulse energy
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(Ep), Esat,L is the gain saturation energy, τL is the spontaneous gain relaxation time, η is the

conversion efficiency from pump power to signal power, and Ppump is the pump power. Note that

A22 = −TR/TG, where TG is the stimulated gain liftime. For simplicity, we assume η is independent

of gP. By Laplace transforms, one readily get the following transfer functions. For pump power

modulation:

∆Ep(s)

∆Ppump(s)
=

A11B22

s2T 2
R − sTr(A)TR + det(A)

, (5.3)

and for loss modulation:

∆Ep(s)

∆l(s)
=

B11(sTR −A22)

s2T 2
R − sTr(A)TR + det(A)

, (5.4)

where s is the Laplace complex variable.

Both transfer functions have the same poles. For typical high-gain, high-loss fiber lasers

in the condition where relaxation oscillation is overdamped by the saturation of self-amplitude

modulation, the poles are approximately at frequencies

ω1 ≈ T−1
G (

∂qP

∂Ep
Ep)−1 (5.5)

and

ω2 ≈ T−1
R (

∂qP

∂Ep
Ep) (5.6)

The bandwidth of pump modulation is limited by the two poles, which arise from the damped

relaxation oscillation. Beyond the frequencies of these two poles, the transfer function is similar to

a second-order low pass filter. The transfer function of cavity loss modulation has an frequency zero

located at ω0 = T−1
G , which pushes the bandwidth to the higher frequency pole ω2. This limit is

scalable with the repetition rate. A bulk Ti:sapphire laser with 10 GHz repetition rate, for example,

responds to cavity loss modulation up to ∼100 MHz. Note also that cavity loss modulation behaves

like a first-order low pass filter at high frequencies, with its phase lag approaching π/2 instead of

π as in the case of pump modulation. This is the fundamental advantage of using the cavity loss

as a control knob.

Despite the high bandwidth and low phase delay provided by the method of cavity loss

modulation, it cannot be achieved with electro-optic crystals due to their strong coupling to frep. We
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apply here the graphene electro-optic modulator, described in Chapter 4, which utilizes graphene

as an absorbing layer. The loss is controlled by an external voltage that changes the carrier type

and concentration in graphene [103]. Owing to its ultra-thin structure, the modulator provides

high reflectivity and negligible phase distortion.

5.2 Experimental setup: Tm:fiber laser

Figure 5.1: Experimental setup. WDM: wavelength-division multiplexer; TDF: thulium-doped
fiber; DCF: dispersion compensating fiber; PZT: piezo electric actuator for repetition rate stabi-
lization; QWP: quarter-wave plate; PBS: polarization beam-splitter; SA: saturable absorber mirror,
HNLF: highly nonlinear fiber; PPLN: periodically poled lithium niobate. The top right picture is
an optical microscope image of the modulator (diameter: 280 µm).

The experimental setup is shown in Fig. 5.1. We used a Fabry-Perot type Tm-fiber similariton

oscillator [104], which was pumped by an Er-fiber amplified single frequency diode laser centered

at 1564 nm with a pump power of up to 1.3 W. Additionally up to 10 mW of pump power was

provided by a second single-frequency diode laser, which allowed fast pump-modulation. The intra-

cavity dispersion was set to net positive and close to zero, allowing mode-locking in the similariton

regime. Stable mode-locked operation was achieved by a saturable-absorber mirror which was used

as a cavity end-mirror. An output-coupling ratio of 20% provided 20 mW of average output power

centered at 1950 nm with 60 nm bandwidth and 100 MHz repetition rate. A graphene electro-optic

modulator with <5% insertion loss and ∼2% modulation depth served as the second end mirror.

The mode-field diameter on the graphene modulator was set to ∼150 µm. The modulator did

not have an adverse effect on mode-locked operation and it increased the pump threshold only
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minimally (<1%).

5.3 Experimental results: phase locking of carrier-envelope-offset frequency

The frequency responses of output power to pump and loss modulations were measured with

an HP89441A vector signal analyzer, shown in Fig. 5.2. Pump power modulation had a 3 dB

corner at 89 kHz, whereas the loss modulation from the graphene modulator had a higher corner

at 600 kHz and slower roll-off. By fitting Eq. (5.3) and (5.4) to the data, the laser parameters were

found (see Fig. 5.2 caption) and are close to the experimental values. Note that the absolute phase

variation in loss modulation scheme (±90 degrees) can be fully compensated by lag/lead circuits,

whereas in pump modulation scheme (0 to -180 degrees), the phase cannot be fully compensated.

Figure 5.2: (Top) The frequency responses of output power to pump power and loss modulation.
Thin lines are measured traces and thick lines are fitted transfer functions calculated from Eq. (3)
and (4). The following laser parameters are used in fitting the Tm:fiber data: Ep=1.1nJ; TR=10ns;

Ppump=1W; η=15%; Esat,L=8.5µJ; τL=535µs; Ep( ∂q
∂Ep

)=0.04. (Bottom) Calculated phase response
of the same fitted model shown in the top figure. Negative values represent phase lag. Loss
modulation has a gain of -1 at low freqencies.

We detected fceo by an in-line f-2f interferometer at∼1100 nm after amplifying the power from

the oscillator to ∼200 mW. Phase error detection was performed using an analog phase detector

(Minicircuits ZRPD-1), followed by a 10 MHz low-pass filter. We phase-locked the fceo beat to a
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stable RF synthesizer with a low time-delay loop filter. The stabilization was performed both with

and without a division-by-4 pre-scaler.

Figure 5.3: (Top) In-loop RF spectra of phase-locked fceo beats recorded when locked with pump
current modulation and with the graphene modulator. Inset: free-running fceo and repetition rate
at 100 MHz. (Bottom) Residual phase noise spectral density (Graphene modulator (2)). The
integrated phase noise is 144 mrad over the full span.

The results of the fceo stabilization are shown in Fig. 5.3. The free-running linewidth of the

fceo beat was estimated to be around 50 kHz (Fig. 5.3, inset). With the traditional pump power

modulation alone, we achieved stable phase-locking of the fceo. After optimization of the feedback-

loop we were able to concentrate 95.1% of the RF power in the coherent carrier, corresponding

to 224 mrad integrated phase noise. The RF power in the carrier and the phase noise is related

by [105]

Fractional power in the carrier = e−∆φ2rms . (5.7)

in the case of small phase modulation.

Due to the aforementioned limitation in the pump-modulation scheme, even with a good

loop-filter design the servo bump could not be pushed much beyond 400 kHz. By feeding back to

the graphene modulator, we achieved much larger modulation bandwidths. Initially, we observed

a servo bump at ∼1 MHz (curve “Graphene modulator (1)”), with optimized loop filter settings

, we found ∼98% of the RF power in the coherent carrier and the complete absence of any servo

bumps (curve “Graphene modulator(2)”). In this optimized setting, we measured a record low

integrated residual phase noise of 144 mrad (0.3 Hz-3.5 MHz). Note that this value represents
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the in-loop performance and may underestimate the actual out-of-loop phase noise. We found the

laser-dynamics-limited crosstalk (∆frep/∆fceo) to be < 7 × 10−7, which was smaller than that of

pump power modulation and allowed for tighter simultaneous locking of frep and fceo. Due to the

limited DC response (<1 Hz) of the current modulator, we still required a slow feedback to the

pump power of the laser for long-term operation. Alternatively, the long-term stability could be

guaranteed by a thermal feedback to an intra-cavity fiber grating [106]. Currently the performance

is limited by the locking electronics and the intracavity frequency response of the modulator. With

an improved design of the laser parameters, even better phase noise performance may be achieved.

Working towards a compact frequency comb, we have also applied the graphene modulator for

high bandwidth stabilization of a 500 MHz Tm:fiber laser, reaching an integrated phase noise of

∼ 400 mrads in the carrier-envelope-offset frequency [107]. An all polarization-maintaining Er:fiber

frequency comb was also demonstrated recently using the graphene modulator [108].

5.4 Conclusion

To the best of our knowledge, this work presents the first successful fceo stabilization of an

optical frequency comb by means of a pure intra-cavity loss modulator. The phase noise of the

stabilized fceo beat frequency was 144 mrad, a record low value for a fiber-laser frequency comb.

This was enabled by a novel low-insertion loss graphene electro-optic modulator, allowing feedback

bandwidths far beyond the current limit imposed by the stimulated gain-lifetime. Due to their

low insertion loss and their ultra-compact design, these modulators could empower a new breed of

monolithic, phase-locked combs with GHz fundamental pulse repetition rates. We also envision the

use of the hybrid SESAM/Graphene device, shown in Section 4.4, in a portable frequency comb

where polarization-maintaining, self-starting, and long-term-stable operation is required [94].



Chapter 6

Laser dynamics: backaction of continuum on soliton and its implications on the

transfer function of a modelocked laser

6.1 Motivation

Mode-locked lasers combined with phase-locking techniques have revolutionized optical clocks

and precision measurements [13,109–111]. The basic but powerful technique that has driven these

advances in fundamental science is indeed active feedback control, which rids a laser’s output

of phase or timing fluctuations. Ideally the ultimate noise level is determined by the coherence

of external references, such as a narrow-linewidth laser or a low-noise microwave oscillator. In

practice, the effectiveness of this active stabilization relies strongly on the available in-loop gain

and bandwidth, both of which not only depend on the properties of the actuator (such as controlling

the pump power or cavity length) but also on the complex dynamics of pulse evolution, gain-photon

coupling, and cross-talk between actuators. The latter often sets the upper bound of the bandwidth,

even though the former may still function beyond that limit. A complete understanding of laser

dynamics is therefore indispensable if one wants to tackle the noise, either technical (pump power,

acoustic, and vibrational noises) or quantum mechanical (amplified spontaneous emission or ASE),

which nearly always have contributions beyond the limit of servo bandwidth set by laser dynamics.

It is worth noting that although mode-locked lasers serve as an extremely quiet optical flywheel

at short time scales [112], there exists a frequency region (∼100kHz-10MHz) where technical or

ASE-driven noise is present but feedback performance can be limited by either the laser dynamics

or the actuators.
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We study here an intrinsic resonance at radio frequencies(RF) in a mode-locked laser’s transfer

function, which lies in the aforementioned frequency range of interest and may be of concern if

quantum-limited noise is desired from DC to the Nyquist frequency. This phenomenon exists in

lasers where solitary pulse formation [30, 113–115] plays a non-negligible, if not dominant, role

in the pulse-shaping process. We focus our discussion on cases where solitary pulse formation is

stronger than self-amplitude modulation, but in cases where the latter dominates such as in a Kerr-

lens mode-locked Ti:sapphire laser, this RF resonance also exists due to the presence of self-phase

modulation(SPM) and anomalous group velocity dispersion(GVD). It should be noted that soliton

mode-locking is nowadays the most adopted method to build compact frequency combs owing to its

two main advantages: allowing a simple and compact cavity and able to generate sub-picosecond

pulses with near-zero chirp [116–119].

6.2 Theoretical background

The generation and propagation of soliton and the dispersive waves (or continuum) can be

described by the soliton perturbation theory based on the Haus master equation [120]. In Haus’s and

many of the followers’ work, the generation and back-action of the continuum is assumed negligible.

However, under certain circumstances, the existence of continuum cannot be neglected and is

indeed crucial for understanding laser dynamics. A well-known example is the Kelly sidebands,

which appear in the optical spectrum of a laser [121]. While Kelly sidebands occur when the

pulse acquires a large amount of nonlinear phase per roundtrip, the RF resonance we describe here

requires little such phase. For best noise performance, this is an important regime to study because

of the reduced nonlinear coupling from amplitude to phase noise.

To the best of our knowledge, this RF resonance was first discussed by Katz et al. [122],

who found an energy oscillation by numerically simulating the pulse propagation in the context

of statistical light mode theory. The characteristic frequency was found to be determined by the

evolving phase difference between the soliton and the continuum. Experimentally it was first

observed by Hartl et al. [123] in a soliton fiber laser, and its characteristic frequency was confirmed.
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However, it has not been discussed so far what effects in the Haus master equation cause this

oscillation. The fact that the electric fields of the soliton and the continuum are evolving and

interacting does not imply energy variations, and indeed we find that it is critical to have reverse

saturable absorption such as gain filtering(GF) or two-photon absorption(TPA), which provide

intensity-dependent energy dissipation. These two effects are ubiquitous in mode-locked lasers,

thus this continuum-induced oscillation is unavoidable. Moreover, an oscillation in the pulse energy

implies that there exists an energy exchange between the pulse and the gain medium, similar to

a laser’s relaxation oscillation. Therefore, full consideration of the gain dynamics is required for

a better agreement between theory and experiment than if one assumes that energy flows only

between the soliton and the continuum, as adopted in [122]. In the following discussion, we derive

analytically the effect of this resonance on the laser’s transfer function, based on a model extended

from soliton perturbation theory. Then we compare the analytic results to numerical simulations

and experiments.

6.3 Analytic approach

For most mode-locked lasers, the pulse shaping mechanism can be described by the master

equation developed by Haus, if the pulse change per roundtrip is small. That is,

TR
∂A

∂T
=

[
−iD∂

2A

∂t2
+ iδ|A|2A

]
+ RA, (6.1)

where A = A(T, t) is the slowly-varying field envelope, with T and t being the time variables

at a time scale of the roundtrip time (TR) and pulse duration respectively. The terms in the

bracket are GVD and SPM that lead to the formation of solitary pulses, where D is the total

group delay dispersion per roundtrip and δ is the SPM coefficient. R represents perturbations that

shed energy into the continuum. With R = 0, the equation becomes the nonlinear Schrödinger’s

equation(NLSE), and its simplest closed-form solution is

As(T, t) = A0 sech(t/τ)e
iΦ T

TR , (6.2)
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where A0 is the amplitude, τ is the soliton pulse width. After every roundtrip, the soliton acquires

a phase shift Φ, given by |D|/τ2. To consider perturbations, we express the the field as

A(T, t) = [A0 sech(t/τ) + ac] e
iΦ T

TR , (6.3)

where ac is the continuum field. Assuming ac is small, Eq. 6.1 can then be linearized by plugging

in Eq. 6.3.

Following the definitions and notations used in the soliton perturbation theory in [?], the

continuum field |ac〉 can be written as

|ac〉 =

∫ ∞
−∞

dk
[
gc(k) |fk〉+ ḡc(k)

∣∣f̄k〉] , (6.4)

where k = ωτ , and ω is the offset from soliton’s center frequency. |fk〉 and
∣∣f̄k〉 are the solutions

to the linearized NLSE. To first order in ac, the spectral components gc(k) are dictated by the

following equation of motion:

TR
∂gc(k)

∂T
= γ(k) · gc(k) + 〈f (+)

k |RA0 sech(t/τ)〉, (6.5)

where γ(k) determines how the continuum propagates over time and is given by [−iΦ(1 + k2)− lc(k)].

Here lc(k) is the net amplitude loss per roundtrip of the continuum. The second term on the right

side denotes the excitation of continuum by R. We are utilizing the orthogonality between the

solutions to NLSE and its adjoint counterpart f
(+)
k to project out the amplitudes [31, 120, 124].

The inner product 〈u(t)|v(t)〉 is defined as 1
2τ

∫∞
−∞ u(t)v(t)dt.

Given the perturbation R, we can find the corresponding spectral components gc(k). Here

we consider periodic perturbations from lumped cavity elements, which include linear gain/loss,

gain filtering, and a saturable absorber containing a TPA layer. That is,

R =

[
g − l +

g

Ω2
g

∂2

∂t2
− q − ΓTPA|A|2

] ∞∑
m=−∞

δ(T −mTR), (6.6)

where g, l, and q are the amplitude gain, loss, and saturable loss per roundtrip, Ωg is the half-

width half-maximum of the gain bandwidth, and ΓTPA is the TPA coefficient that has taken the

absorption coefficient, effective layer thickness, and mode area into account.
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By integrating Eq. 6.5, we obtain

gc(k) =
1

TR

[
A0g

6Ω2
gτ

2
+
A3

0ΓTPA

12

]
sech

(
kπ

2

)
e
γ(k) T

TR

1− eγ(k)
, (6.7)

which is periodic in time T and is defined here for 0 ≤ T < TR. The total field, shown in Eq.6.3,

oscillates and its amplitude and phase evolution is completely determined by γ(k). The amplitude

decay is dictated by lc(k), which results mainly from the loss of the absorber, and the phase evolution

is dictated by the nonlinear phase shift Φ. This oscillation is intrinsic in a soliton mode-locked laser

with periodic perturbation from lumped optical elements. So far no external perturbation such as

pump power change has been introduced into the system. Note also that we ignore the effect of

the saturable loss because the absorber is typically used at a highly saturated regime, therefore

contributing negligible amount to the continuum. Eq. 6.7 summarizes how the generated continuum

depends on the strength of GF and TPA.

Since we are concerned with the changes in intracavity power, we use the projection trick

again to find 〈f (+)
w |Rfk〉, which is the action of the generated continuum onto the pulse energy.

Here f
(+)
w is the adjoint of the derivative of As with respect to pulse energy, which is defined by

Ws =
∫ TR/2
−TR/2 |As(T, t)|

2 dt. The linear gain and loss terms in R cause no changes in Ws because

|f (+)
w 〉 and |fk〉 are mutually orthogonal. Therefore, the only terms that can lead to any back-action

on the soliton are GF and TPA. For GF only,

〈f (+)
w |Rfk〉 =

[
−g(1 + k2)2π

2Ω2
gτ

]
A0 sech

(
kπ

2

)
, (6.8)

and for TPA only,

〈f (+)
w |Rfk〉 =

[
−ΓTPA(1 + k2)2τπ

4

]
A3

0 sech

(
kπ

2

)
. (6.9)

Combining Eq. 6.7, 6.8, and 6.9, we can obtain the total effect of the steady-state continuum

on the soliton pulse energy, which is

〈f (+)
w |Rac〉 =

∫ ∞
−∞

dk 〈f (+)
w |Rfk〉 · 2Re[g(k)]. (6.10)

This adds an RF oscillatory term that is characteristic of the propagation constant γ(k) of the

continuum. Since the integrand of Eq. 6.10 is peaked at k = 0, the RF power oscillation peak
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frequency is given by the imaginary part of γ(0):

fres =
1

TR

Φ

2π
=

|D|
2πTRτ2

, (6.11)

which is the beat frequency between soliton and continuum due to their different phase accumulation

rate. The off-center spectral components of continuum oscillate at higher frequencies than Eq. 6.11,

forming a single-sided tail of the RF resonance (Fig. 6.1). It should be noted that Eq. 6.10 contains

all the spectral information (k-axis) and thus allows one to derive the lineshape of the RF resonance,

not only the resonant frequency as shown previously in [122,123].

To perform the lineshape calculation, we consider this oscillatory term in the picture of

energy-gain coupling and transfer properties from pump to the output power. That is, we consider

the equation of motion for the total energy with this added back-action. Note that the total

intracavity energy, denoted here by W , equals
[
Ws +

∫ TR/2
−TR/2 |ac|2 dt

]
because the cross interference

term vanishes due to the orthogonality between soliton and continuum.

TR
∂W

∂T
= 〈f (+)

w |RA0sech (t/τ)〉+ 〈f (+)
w |Rac〉, (6.12)

where 〈f (+)
w |RA0sech (t/τ)〉 can be calculated to be (2g − 2l − 2g

3Ω2
gτ

2 − 2q − 4
3A

2ΓTPA)W . Also, the

equation of motion for the gain is

TR
∂g

∂T
= (−α− g)

TR

τL
− g W

Esat,L
+
ηPpumpTR

Esat,L
, (6.13)

where α is the loss without pump (non-zero for three-level systems), τL is the upper state lifetime,

Esat.L is the saturation energy of the gain medium, η is the pump-to-signal light conversion efficiency,

and Ppump is the pump power. We now linearize Eq. 6.12 and 6.13 around their steady state values,

allowing only small perturbations in Ppump. The response of the laser is then found by Laplace

transforming the linearized coupled equations. We obtain

∆W (s)

∆Ppump(s)
=
[
(s TR)2 − (s TR)Tr(A) + det(A)

]−1
, (6.14)
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where s is the Laplace frequency and A is a 2x2 matrix with elements being

A11 = − ∂q

∂W
W − 4g

3Ω2
gτ

2
− 2

3

W

τ
ΓTPA − L{〈f (+)

w |Rac〉}/W,

A12 = W,

A21 = −g/Esat,L,

A22 = −TR/τL −W/Esat,L,

(6.15)

where L denotes Laplace transform. Eq. 6.14 summarizes the effect of the continuum’s back-action

by its manifestation as a resonance peak in the transfer function. It should be emphasized that

this power oscillation can be excited not only by an external force, such as pump power modulation

as shown here, but also by the laser’s internal noise, such as ASE. Latter case is similar to the

discussion in [122]. Our idealized, noiseless model ignores ASE, and therefore, at this non-physically

quiet steady state, the RF oscillation would not be observable in the power spectrum, since the

continuum generation is assumed small and cannot compete with the strong damping from the laser

gain. However, the transfer functions obtained in this noiseless approach are useful for predicting

the physically correct noise behavior of the laser’s output when combined with the noise spectral

distribution at the input (for example the pump’s relative intensity noise).

6.4 Numerical simulation

To examine the applicability of the analytic theory, we performed both numerical simulations

and experiments. We used a split-step Fourier transform method to simulate the evolution of

solitons based on Haus master equation (Eq. 6.1). The transfer function, as derived in Eq. 6.14,

was obtained by recording the pulse energy over time after perturbing the pump power with a

one-pixel impulse function. The transient response in pulse energy was then Fourier transformed

to obtain both the amplitude and phase response. We compare, for clarity here, the analytic theory

and the numerical simulation in the cases where either GF or TPA is dominant in stabilizing the

laser against Q-switching.

In Fig. 6.1, the transfer functions obtained from the analytic theory and numerical simulations
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Figure 6.1: Transfer functions of pump power modulation to output power in the case of (a)-(c)
GF and (d)-(f) TPA. Figure (g) and (h) show the distinct behavior of the continuum-induced peak
in the case of GF and TPA respectively. Parameters of the laser are the following: |D| = 200 fs2,
δ = 1.7× 10−7 rad/Watt, Ωg/2π = 3.5 THz in (a)-(c) and 70.7 THz in (d)-(f), ΓTPA = 0 Watt−1

in (a)-(c) and 1.3 × 10−8 Watt−1 in (d)-(f), TR = 10 ns, τL = 8 ms, Esat,L = 382 µJ, l = 1 %,
q0 = 0.25 %, and Isat = 100 MW/cm2. The pump power is decreased from (a) to (c) and from
(d) to (f), and the corresponding soliton parameters (W,Φ) are (a) 72 nJ, 43.7 mrad; (b) 53 nJ,
24.5 mrad; (c) 43 nJ, 16.0 mrad; (d) 63 nJ, 35.0 mrad; (e) 52 nJ, 23.6 mrad; (f) 37 nJ, 12.0 mrad.
Figure (g) and (h) use the same parameters as (a) and (d) respectively, except cavity loss l is varied
from 0.5 % to 1.5 %, while W and Φ are maintained by changing Ppump.

are shown. The parameters used in the theory and simulation are all the same, and there are no

fitting parameters. It can be seen that the resonance frequency predicted by Eq. 6.11 indeed agrees

well with the simulation. Moreover, as the pump power is reduced from (a) to (c) in both GF and

TPA, the magnitude of this resonance decreases because of the longer pulse duration and therefore

less affected by GF or TPA. For the same reason, the relaxation oscillation peak has a reverse trend.

It is also evident that the applicability of the soliton perturbation theory decreases as the nonlinear

phase shift per roundtrip decreases with the pump power. In the weak soliton pulse shaping regime,

one should instead treat SPM and GVD as perturbations to an absorber-shaped solution.

Fig 6.1(g) and (h) shows the change in the continuum-induced peak with the cavity loss,

or equivalently the saturated gain in the case of GF and TPA, respectively. While GF sheds

more energy into continuum and allows stronger back-action to the pulse energy as the cavity loss
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increases, TPA is totally independent of this, as can also be seen from Eq. 7, 8, and 9.

Even though the magnitude of the continuum-induced peak is rather insignificant, the phase

response has a large jump that could pose a restriction on one’s ability to feedback control the

laser’s output. For good noise performance, one desires the highest power and shortest pulse

duration possible, which are cases shown in Fig. 6.1(a) and (d). In this regime, however, the

continuum-induced peak is rather large.

Figure 6.2: Experimental and simulated transfer functions of pump power modulation to output
power. Laser parameters used in the simulation are the following: |D| = 79 fs2, TOD = 2052 fs3,
δ = 3.2× 10−7 rad/Watt, Ωg/2π = 4.3 THz(Lorentzian), ΓTPA = 2.7× 10−8 Watt−1, TR = 4 ns,
τL = 7.8 ms, Esat,L = 584 µJ, l = 0.96 %, q0 = 0.20 %, Isat = 400 MW/cm2, W = 8.8 nJ, and
Φ = 6.4 mrad. A pole at around 1 kHz is present due to Föster transfer from ytterbium to er-
bium [125].

6.5 Experiemental results

The same physics was experimentally observed in a free-space Er:Yb:glass laser with a center

wavelength of 1560 nm. The laser was built with a X-folded linear cavity configuration with the

gain medium placed at its Brewster angle and pumped by a single-mode laser diode at 980 nm

wavelength. The mode-locking was started and stabilized by a semiconductor saturable absorber.

The intracavity dispersion was around −80fs2, mainly from the gain medium, which allowed soliton

mode-locking. When mode-locked, the laser emitted 200fs (FWHM) pulses at a repetition rate of
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250 MHz. The nonlinear phase Φ gained by the solitary pulse was around 10 mrads. The pump

transfer function was measured with a network analyzer, and calibration against the pump diode

response was performed. As shown in Fig. 6.2, excellent agreement was found between the ex-

periment and numerical simulation. The parameters used for the simulation were obtained from

direct measurements (W , τ , TR, l, q, center wavelength, and mirror dispersion), from references

(Er:Yb:glass), and from a best effort of estimation (Ωg, beam cross section, gain medium disper-

sion). The best-effort estimates were then adjusted within their known bounds to approximate

the measured quantities. We found that transfer functions with the continuum-induced peak set

stringent restrictions on the fitting parameters, which may be useful for estimating intracavity dis-

persion up to the third order. Due to the appreciable amount of third-order dispersion, we could

not directly apply the analytic results. Numerical approach is more appropriate and less obscure

in this case, as has been discussed in [126].

6.6 Conclusion

In conclusion, an intrinsic power oscillation emerges in soliton mode-locked lasers. The os-

cillation occurs as a result of (1) the field oscillation caused by the back-action of the continuum

on the soliton and (2) dissipative effects such as GF and TPA. The oscillation frequency is deter-

mined by the evolving phase difference between the soliton and the continuum. We have presented

an analytic theory based on an extended soliton perturbation theory that fully accounts for this

phenomenon; meanwhile, excellent agreement was found between our analytic/numerical models

and experiment. The physics presented here applies to most femtosecond sources, although the

resonance’s contribution to the total noise may be small due to the strong damping from the gain

medium. It is nevertheless crucial to keep the back-action of continuum in check especially when

technical noise suppression over the full RF spectrum is desired. We believe that with the improved

understanding of laser dynamics we presented here will not only advance the research of light sources

with record-low noise performance, such as required for low-noise microwave generation, but also

help the realization of robust, field-able frequency combs in the near future.
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[22] T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, “Suppression of Q-switched
mode locking and break-up into multiple pulses by inverse saturable absorption,” Electrical
Engineering 49, 41–49 (2000).
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Appendix A

Chemical vapor deposition of graphene

Monolayer graphene was first shown to stably exist in ambient environment by Noveselov

et al. [86]. It was isolated from graphite by mechanical exfoliation. Although close to pristine

quality can be achieved in exfoliated samples, it is nearly impossible to fabricate useful optical

devices due to the small area of exfoliated sample (typically limited to ∼ 1000µm2). Large-area

graphene can be obtained by thermal decomposition of SiC at an elevated temperature [127, 128].

While devices can be directly fabricated on SiC wafers, transferring graphene to suitable optical

substrates has been difficult, if not impossible. On metals such as nickel, it has been demonstrated

that carbon originally dissolved in the metal at high temperature can precipitate on the surface

and form graphene when cooled. This process usually yields multilayer unless special attention is

paid to the cooling process. [129,130].

It was demonstrated by Li et al. [92] that monolayer graphene can be deposited by chemical

vapor deposition (CVD) as in the case of nickel. However, the growth on copper foil results in a

large coverage (more than 95% of the area) of monolayer graphene, likely due to the low solubility

of carbon in copper. The grown graphene can then be easily transferred (also demonstrated in [92])

to almost any substrates that have proper adhesion to graphene such as glass or silicon wafers.

Adhesion can be further improved by annealing the sample at raised temperature under vacuum

or inert gas.

A conceptual diagram of CVD setup used in this Thesis is shown in Fig. A.1. High-purity

gases (99.999%) are regulated independently and fed into a quartz (1 inch diameter) tube, which
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is placed in a tube furnace. The pipelines are all stainless steel, and the gas regulators are metal

sealed in order to avoid any hydrocarbon contamination in the upper stream. The downstream of

the quartz tube is connected to a two-stage pump (turbo and dry scroll, base pressure < 1µTorr).

All regulators are controlled by a programmed microcontroller. A motor that pulls the furnace

away from the sample’s location allows an automated quick cooling process. Both the motor and

the vacuum pump are also controlled by the microcontroller, which received growth parameter from

the PC. Copper foil samples are loaded on an inner tube, which has a slightly smaller diameter

than 1 inch and can slide into the outer tube.

Figure A.1: Chemical vapor deposition system for growing monolayer graphene. AR: argon, HY:
hydrogen, ME: methane, REG: gas regulator, µC: microcontroller, PC: personal computer for recipe
entering and saving, M: motor for pulling furnace to cool the sample after growth, PUMP: vacuum
pump, consisting of a turbo pump backed with a oil-free membrane pump.

A typical CVD growth process used in this Thesis is described in detail in the following.

(1) Prepare a piece of copper foil (Alfa Aesar #13382, 25µm thick) that fits in the inner

growth tube: To make the wet transfer process after growth less susceptible to failure, the

foil should be reasonably flat and free of wrinkles. The copper foil should also be free of

any protective coatings.

(2) Heat up and anneal the copper foil under low flow of hydrogen: This step removes the

copper oxide efficiently. Heating up to 1000 ◦C usually takes about 70 minutes in our

furnace. The pressure is typically in the 10 mTorr range (5 sccm of hydrogen). After the

furance reaches 1000 ◦C, the copper foil is annealed for another 30 minutes. This generally

increases the copper domain size.
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(3) Start the growth by flowing methane: to achieve large crystalline domains, a 1:1 ratio of

hydrogen to methane flow (1 sccm) is employed. This results in low density of nucleation

sites. Hydrogen also etches the boundary of graphene, causing the shape of graphene

to approach hexagons, which is regarded as a sign for single-crystalline domains [131].

Depending on the gas flow rate and temperature, the time it takes to obtain full coverage

of copper foil with graphene can vary substantially (1 minute to 4 hours). A second growth

step with a higher methane flow (10 sccm) can be employed to speed up the nucleation

rate after large domains are obtained [63].

(4) Cooling the sample: due to carbon’s low solubility in the copper foil, cooling rate does not

seem to have effects on the precipitation of carbon on the copper surface, which may form

multilayer graphene as in the case of nickel. We typically move the tube furnace out right

after the growth is finished. The sample can be cooled down to room temperature in about

an hour.

The CVD growth process mentioned above is performed using a vacuum pump, which can

reach a base pressure of less than 1µTorr. Typical pressure during growth and anneal phase is

around 10 mTorr, depending on the gas flow rate. CVD can also be performed under ambient

pressure, removing the need of a vacuum pump, but usually a high hydrogen flow or buffer gas

such as argon is required [132,133].



Appendix B

Raman spectra of graphene

In addition to optical absorption measurements, we examined the number of layers and

defects of our graphene samples by their Raman spectra, which has been extensively studied and

an invaluable tool in graphene research since the first isolation of monolayer graphene from graphite

[134]. In the chemical doping experiment described in Chapter 3, we used Raman spectroscopy to

confirm that chemical doping of graphene by nitric acid did not introduce defects. The interested

reader may refer to [135–137] for detailed reviews in the field of Raman spectroscopy of graphene.

Here a brief summary of graphene’s Raman spectum is provided in Figure B.1.

Our measurements were performed on a home-built Raman microscope in epi-illumination

and detection geometry, with excitation provided by a 633 nm HeNe laser (spot size ≈ 1 µm, peak

power < 1 kW/cm2). The Raman scattered light is spectrally filtered with a 160 cm−1 cut-off

filter (Semrock, LP02-633RU-25) and detected with a spectrometer with a 1200 g/mm (Newport,

53-*-220H) grating for single-peak measurements or a 600 g/mm grating (Newport, 53-*-350R) for

measurements spanning the full relevant spectrum of graphene, and a liquid-nitrogen-cooled CCD

camera(Princeton Instruments, Spec-10 2KB/LN).

The Raman spectrum of each sample was taken at five random locations. Peak positions and

relative intensities were then extracted by fitting each peak to a Lorentzian distribution. We took

the average of these values, combined with the statistical uncertainty of our spectrometer (< 2 nm)

to attain mean peak positions and relative intensities and uncertainties. The statistical uncertainty

is likely due to the spatial variation in doping concentration.
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Figure B.1: (a) G peak (1582 cm−1), originating from the vibration of one of the sublattices
against the other one. This is the only first-order Raman process. (b) D peak, which is a second-
order process and most importantly a signature of lattice defects. This occurs when the electron
undergoes an elastic scattering due to a lattice defect (from K to K ′) followed by the emission
of a phonon. (c) D’ peak, similar to D but much weaker. The transition occurs within the same
Dirac cone.(d) Double degenerate G’ (or 2D) peak. This occurs by emitting two phonons. Thus,
the frequency is about twice the frequency of D peak. (e) Triple degenerate G’ (or 2D) peak. In
monolayer graphehe, this process is especially pronounced, even though it is a second-order process,
because of its linear energy-momentum relation. Figure adapted from [135].

The peak power was kept low so as not to damage the sample or remove dopants with thermal

effects [138]. To confirm that our measurements were non-intrusive, an short measurement (< 10

seconds) was made before and after the longer (60–300 seconds), higher SNR, measurements to

confirm no change in the spectrum.

Fig. B.2 shows the Raman spectra of our graphene samples. The undoped, only baked sample

showed low I(D)/I(G) ratio (< 0.1) and single Lorenztian 2D peak with a FWHM of 35 ± 3.5 cm−1.

This suggests that our CVD-grown graphene is mostly defect-free and monolayer [134]. Our nitric-

acid-doped graphene showed an upshift in the G band of 5 ± 3 cm−1 and the 2D band of 4 ± 2 cm−1,

a peak narrowing in the FWHM of the G band of between 2 and 5 cm−1, and a decrease in the

ratio I(2D)/I(G) from 2 ± 0.1 to about 1.6 ± 0.3 (from sample-a to sample-b). This agrees

qualitatively with Raman measurements made on electrostatically doped graphene [139, 140] and

graphene doped by organic molecules [141], although the G peak narrowing has not always been

observed in chemically doped graphene.

As we increased level of p-doping to -400 meV (sample-c), the G and 2D bands down-shifted
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Figure B.2: (a) Representative Raman spectra of graphene samples used in the experiments.
Sample-a: baked sample, EF < 200 meV; sample-b: doped sample, EF ≈ 200 meV; sample-c:
doped, EF ≈ 400 meV; sample-d: baked after doped to EF ≈ 400 meV. No significant changes
of I(2D)/I(G) and I(D)/I(G) ratios were observed in samples-b,c,d, implying that nitric acid did
not attack graphene and was removed by baking without damaging graphene. (b) All samples
have small I(D)/I(G) ratios, which implies nearly defect-free graphene. (c) All samples have a
I(2D)/I(G) ratio of about 2.

about halfway towards their original positions, which, to our knowledge, has not been observed in

chemically doped graphene. However, doping graphene with nitric acid has not before been carefully

studied, and the I(2D)/I(G) ratio, suggested to be an important measure of doping level, continued

to decrease to about 1.5 as expected. We found no correlation between doping concentration and

the I(D)/I(G) ratio, which is indicative of defects in graphene. We never found a mean I(D)/I(G)

peak ratio above 0.12, and it should be noted that I(D) was intentionally over-estimated because

of the background noise. When we later baked our samples at 100◦C for 1 hour to remove the

adsorbants (sample-d), we found that the peak positions fully recovered and, in fact, downshifted

by an additional 2 ± 2 cm−1 for the 2D band and an additional 1.3 ± 0.7 cm−1 for the G band.

Furthermore, the I(2D)/I(G) peak ratio increased to about 2.6 ± 0.3. All of these changes after

baking imply pristine graphene. It is likely that baking after doping removed the adsorbates that

had accumulated on the graphene sheet in the time between initial sample preparation of the
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undoped sample and its measurement in Raman. This would account for the seeming increase in

purity after doping and baking.


