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Abstract.

Efficient algorithms for network problems that work by scaling the numeric
parameters are given. Scaling takes advantage of efficient nonnumeric algo-
rithms such as the Hoperoft-Karp matching algorithm. Let n, m and N denote
the number of vertices, number of edges, and largest numeric parameter of the
network, respectively; assume all numeric parameters are integers. A scaling

algorithm for maximum weight matching on a bipartite graph runs in

3 ,
0{n*m log N) time. This can improve the traditional Hungarian method which

runs in 0(n m log n) time. This result gives similar improvements for the fol-
lowing problems: single-source shortest paths for arbitrary edge lengths
(Bellman’s algorithm); maximum weight degree-constrained subgraph; minimum
cost flow on a 0-1 network (Edmonds and Karp). Scaling also gi‘}es simple algo-
rithms that match the best time bounds (when log N = 0{log n.)) for shortest
paths on a directed graph with nonnegative lengths (Dijkstra’s algorithm) and

maximum value network flow (Sleator and Tarjan).

1. Introduction.

A network is a graph with numeric parameters such as edge lengths, capa-

cities, costs or weights. Throughout this paper, n, m and N denote the number

" This research was supported in part by the National Science Foundation under Grant MCS-
8302848.
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of vertices, number of edges, and largest numeric parameter of the network,

respectively.

For optimization problems on networks, one important technique is
efficient priority queues. Often they allow the numeric network problem to be
solved by the same approach, and to within a log n factor in time, as the non-
numeric graph analog of the problem. An example is the shortest path problem,
solved by Dijkstra’s algorithm on networks and breadth-first search on graphs.

Unfortunately this is not always so. For example a maximum cardinality match-

-

ing can be found in 0(n ?m) time (Hopcroft and Karp, 1973; Micali and Vazirani,
1980) whereas the best bound for weighted matching is 0{(n m log n) (Papadimi-
triou and Steiglitz, 1982; Galil, et.al., 1982). The complexity gap here and else-
where results from the fact that the nonnumeric algorithm finds objects simul-
taneously; conversely, numeric parametsrs force searches to be done sequen-
tially.

This paper explores the scaling approach to network problems. Scaling can
sometimes be used as an alternative to efficient priority queues. More impor-
tantly it can achieve simultaneity in numeric problems. Edmonds and Karp
(1972) used scaling for the minimum cost network flow problem. However since

then the method has been largely ignored.

Scaling works as follows. Given a network problem, divide all numbers by
two (i.e., a number { becomes lé—{) and solve this scaled-down problem recur-
sively. Double the solution to get‘a near-optimum solution on the original net-

work. Then transform the near-optimum solution to optimurm.

This method can be stated iteratively. View each number as its ! bit binary
expansion b; '+ b, where | = ltg N| + 1. First solve the problem on the net-

work where all parameters are 0. Then fors =0, .., -1, transform the solution



for the network with parameters b, - b; to a solution for parameters

by by

Scaling relies on two assumptions. /nfegrality assures the applicability of
the method. It requires that all given numbers be integers. This permits an
easy transition from near-optimum solution to optimum. If the given numbers
are rational they must be scaled up to integers before the method is applicable.
Incommensurable real-valued inputs cannot be handled directly by this method,
although this is not a limitation in practice. In the absence of integrality scaling
gives an approximation scheme: Assume all parameters are normalized to be in
[0.1), and view them as binary numbers, 0.b,bz - - - . Scaling sucéessively com-
putes solutions to the network with parameters 0, .5, .b b3, etc. The accuracy
of each solution can be bounded. So scaling can find a solution with any desired

accuracy. !

The second assumption, similarity, concerns the efficiency of the method.
It requires that the numbers of the problem be polynomially bounded, ie., if N
is the largest number and 7 is the number of vertices, then N = 0{n*) for some
constant k. Scaling time bounds typically have a factor log N, due to Ig N scal-
ings of the problem. Similarity implies log N = 0{log m). This allows us to com-
pare scaling bounds to previous ones. The assumption is for comparative pur-
poses only, and we explicitly state when it is used. In the absence of similarity

scaling algorithms can still be superior. For example for matching scaling is fas-

3
ter for N = no(n?),

We suspect that similarity holds in most practical cases: N is not many
orders of magnitude above m. Actually if similarity does not hold, then tradi-
tional algorithms must use a word size of lg N bits rather than {g n in order for

the traditional time bound to be valid (see Section 2.1.) This opens the door for

1 This approach is due to Dr. Robert E. Tarjan.



new approaches, e.g., if N = 2" then bit vector types of algorithms are possible

(e.g.. on a bit vector machine with words of n bits, the Hoperoft-Karp algorithm

3 L
used in the scaling approach is 0(n?log n+m) rather than 0(n?®m) (Gabow,

1984a).)

Figure 1 lists a number of network problems, the time for the best known

algorithm 2 and the time for the scaling algorithm. The first two entries for scal-
ing result from the fact that » integers can be radix sorted in 0(n log, N) time.
(Note that radix sorting itself works by scaling.) Under similarity, scaling is fas-

ter in both problems.

The remaining entries in the table are covered in this paper. The next two
entries are presented in Section 2. They are instances where scaling takes the
place of efficient priority queues and other data structures. For the shortest
path problem on directed graphs with nonnegative edge lengths, Dijkstra’s algo-
rithm depends on the proper choice of priority queue for its efficiency. For max-
imum value flow in a network, Sleator and Tarjan's algorithm depends on the
dynamic tree data structure. In both cases scaling achieves the same

efficiency, under similarity.

The main results of this paper are algorithms where scaling takes advan-
tage of simultaneity in efficient nonnumeric algorithms. Weighted bipartite
matching is discussed in Section 3. Scaling is superior to the traditional Hun-
garian method, under similarity. Its efficiency results from combining the Hun-
garian method with the cardinality matching algorithm of Hopcroft and Karp.
. Scaling works for all variants of matching, subh as maximum weight matching,
completé matching, cardinality-k matching, and maximum weight maximum

cardinality matching. Section 3 also gives nonscaling algorithms for matching,

2 Fredman and Tarjen (1884) have recently developed the F-heap data structure, which im-
porves the logarithmic terms in most of these bounds.



3 .
when N = 0(1). These algorithms run in 0(n*m) time for maximum complete

L
matching and 0(n 2m) time for maximum weight matching; they work for nonbi-

partite graphs.

The algorithms in the rest of the paper work by reducing the problem to
matching. This is done for conceptual simplicity. Direct approaches can be

given and would be preferable in practice.

Section 4 presents an algorithm for the next entry, single-source shortest
paths on a directed graph with possibly negative edge lengths. Similarity
immplies scaling is superior.

Section 5 presents an algorithm for the degree-constrained subgraph prob-
lem on bipartite multigraphs. The two time bounds of Figure 1 both apply to
graphs; only the first applies if there are multiple edges. The best traditional
algorithm works by treating the problem as a minimum cost network flow. Simi-
larity implies scaling is superior.

Section 6 uses the results of Section 5 to solve the minimum cost flow prob-
lem on 0-1 networks. These networks were studied by Even and Tarjan (1975) for
the maximum value flow problem. The scaling bounds for the cost problem are
analogous to their bounds for the value problem. Scaling is superior to the trad-
itional algorithm, under similarity. The scaling algorithm works even ’in the pres-

ence of negative cycles.

2. Emulating efficient data structures.

This section describes instances where the efficiency of priority queues and
dynamic trees can be achieved by simple applications of scaling. It also indi-

cates how in some models, the assumption of similarity is unnecessary.
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2.1. Shortest paths with nonnegative lengths.

Consider a directed graph G with source vertex s and nonnegative integral
edge lengths ;. The shortest path problem is to find d;, the minimum length of
a path from s to i, for each vertex i. This section sketches an algorithm that

runs in 0{m log%m_N) time.
n

The algorithm is based on a procedure that converts a "near-optimum”
solution to optimum. It uses ideas due to Edmonds and Karp (1972), and also
Dial (1989) and Wagner (1975). A "near-optimum' solution is a function d; such
that (i) d; dominates the edge lengths, Le., for any edge ij, d;y+L; =d;; (i)
each vertex 1 has a path from s of length between d; and d;+m. The algorithm
computes new edge lengths l'y = d;+{;;—d;. These edge lengths do not change
the shortest paths. The algorithm computes shortest paths for these lengths
using Dijkstra's algorithm. The priority queue of Dijkstra’s algorithm is imple-
mented by an array @(k),0 <k <m, where &(k) contains all vertices whose ten-
tative distance from s is k. {Condition (i) implies that all final distances from s

are at most m). It is easy to see the total time for the algorithm is 0(m.).
The given shortest path problem is solved by scaling, as follows. If the given
lengths are bounded by %the above procedure is used directly (with all input

d, = 0). Otherwise scale the graph G to G, a graph with the same vertices and

edges as G and edge lengths Léi—i Calculate d;, the distances from s in G,

recursively. The values 2d; are near-optimum for &. So the above procedure
finds the correct shortest paths. The total time is O(m. log N), since there are

lg N scaled graphs G.

The scaling algorithm can be refined to achieve a bound similar to

Johnson's {1877), 0(m Log2+m~N). To do this construct G by dividing lengths by
n



m . —
s =2+—le, l; =
n

It is an interesting exercise to see why this algorithm fails in graphs with

negative lengths (but no negative cycles)!

We close this section by noting that in models that account for the cost of
arithmetic (e.g., when N is so large that multiprecision arithmetic must be
used) the time bounds for Johnson's algorithm and scaling are identical. This
results from the fact that the scaling algorithm can be modified so it always
works on integers no larger than 2n. Hence on a machine with words of lgn
bits, each arithmetic operation in the scaling algorithm is 0(1) and the time

bound remains 0(m logg+m_N). However in Johnson’s algorithm distances can be
n

up to nN, so an arithmetic operation is 0{log, N). This makes the time bound
identical to scaling. Similar results hold for the logarithmic cost model {Aho

et.al., 1974).

The scaling algorithm that uses size n numbers works as follows. Consider
the iterative version of scaling, i.e., there are [ = ltg Nl+1 scales corresponding

to successive bits in the binary numbers b, - - - b,. (Scaling by two is discussed
for simplicity; scaling by 2+ %is similar). In scale 1 view numbers as their lead-

ing bit b, and compute distances d! for each vertex i. In general scale s com-
putes distances df. To derive the scale s+1 problem, first replace the current
edge lengths [;; by Zi'j = dit+l;—df; delete edges with lz-'j =n; finally scale lengths
up to 2Lj+bs,, where by, is the s+1% bit of the (given) length of edge ij. The
scale | shortest path tree is a shortest path tree for the original graph. (This

follows from the inductive assertion that in scale s, an edge ij with original

s—1
length &, - b, has length b, - be+ 25 Y (d{~d}). This implies that the
¢=1

3
deleted edges are irrelevant. Further, the quantities ZZSﬂ:d,f are valid dis-
t=1



tances for the edge lengths b, - - - b, , and the algorithm is correct.) Each dis-
tance df is less than n (by the edge length transformation). Here the algorithm

always works with numbers 2n or smaller.

Similar transformations can be done for the other scaling algorithms of this

paper but are omitted.

2.2. Maximum value network flow.

Consider a directed graph G with source vertex s, sink vertex f, and
integral edge capacities ¢y;. The maximum value nelwork flow problem is to
find a flow of maximum value from s to £. This section sketches an algorithm

with run time 0(n m log N).

Again the algorithm is based on a procedure to convert a near-optimum
solution to optimum. A near-optimum soclution is a flow function f whose value
is within m of the maximum value. To find the maximum, construct the residual
network G’ for f, i.e., edge ij has capacity ¢y —fi;+f; (Tarjan, 1983). A max-
imum flow on G°, when added to f, gives a maximum flow on G; hence the value
of a maximum flow on G° is at most m.. Find a maximum flow on G using Dinic’s
algorithrﬁ (1970). The time is O{nm.). (Dinic's algorithm has n phases. Each
phase requires time O(m +an), where a is the number of augmenting paths

found. Since all a‘s sum to at most m the bound follows).
The given network flow problem is solved by scaling. If all capacities are

bounded by %—- use the above procedure directly (start with f = 0). Otherwise

scale G to G, the same graph with capacities

Cyj —
?;]—J. Find a maximum flow f on &

recursively. The flow 2f is near-optimum for &, by the max flow-min cut
theorem. So the above procedure finds the maximum flow on &. The total time

for the algorithm is O{(n m log N). The relative simplicity of this scaling algo-



rithm should make it perform well in practice.

3. Weighted matching.

Consider an undirected bipartite graph with integral edge weights w;;. A
matching is a set of edges that has at most one edge incident to any vertex. A
free vertex is not incident to any matched edge. A complele mafching has no
free vertices. The mazimum weight matching problem is to find a matching
whose edges have largest possible total weight; the mazximum complete malch-

ing problem is defined similarly with respect to complete matchings. This sec-

3
tion presents algorithms for these problems that run in 0(n*m log N) time.

Modifications of the algorithm, that also apply to nonbipartite graphs, are given

for the case of "small" edge weights (e.g., N = 0{1)).

Consider first maximum complete matching. For convenience assume that
the input graph has a complete matching. Also assume that the edge weights
wy; are nonnegative integers. For if the given weights are in the interval [a,b],
adding —a to all weights puts them in [0,b —a], and does not change the max-
imum complete matching. Our time bound for complete matching is oriented
toward the case of nonnegative weights in [0,N]; for weights in [@,b] replace N
by & —a.

The algorithm is based on the Hungarian method for weighted matching
(Kuhn, 1955, 1956). We begin by sketching a variant of this method that works
with arbitrary given dual values. Our treatment concentrates on the aspects of
the method that are relevant to the scaling algorithm. Complete developments

are in (Lawler, 1976; Papadimitriou and Steiglitz, 1982).

The Hungarian algorithm is a primal-dual algorithm in the sense of linear

programming (Dantzig, 1963). Each vertex 1 has a real-valued dual variable y;.
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The dual variables are dominating if for every edge i7,
Yi + Yy =Wy

An edge 1ij is tight if it satisfles this inequality with equality. The dual variables

are tight if every matched edge 17 is tight.

If a complete matching ¥ has a set of dual variables that are dominating

and tight then M’ has maximum weight. For tightness and completeness imply

w(M’) = 3 . (1)

eV
and dominance implies that any complete matching weighs at most this quan-
tity.
The Hungarian algorithm has input consisting of a bipartite graph and a
dominating set of dual variables. The output is a complete matching plus dual

variables that are dominating and tight. Hence the output is a maximum com-

plete matching.

The Hungarian algorithm starts with the given dual variables and the emptly
matching, and repeatedly adjusts the dual variables and augments the match-
ing. More precisely the algorithm is organized as a sequence of searches. Each
search (i) adjusts the dual variables (zerc or more times) and (ii) eventually
finds a (weighted) augmenting path (wap). Each dual variable adjustment starts
by computing a quantity d. Then the dual variables of all free vertices are
decreased by §. In addition for some matched edges 17, one dual variable y; is
increased by ¢ while the other y; is decreased by §. These adjustments are done
so the dual variables are always dominating and tight. Eventually the search
finds a wap. The wap is used to augment the matching. Then the next search is
done. After a number of searches the matching is complete and the algorithm

halts.
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The timing analysis of the scaling algorithm depends on an integrality pro-

perty of the Hungarian method: If all edge weights and all given dual values are
integers, then at any point in the algorithm any dual is a half-integer %— Yy <€Z

(Papadimitriou and Steiglitz, 1982, p. 287, ex.2). An alternate formulation, use-
ful in an actual implementation of the scaling algorithm, is thbat if all edge
weights are even and all given duals are integers of the same parity, ’then at any
point any dual is integral. (Both properties follow easily from the observation
that in a search, the dual values of all vertices in search trees have the same
parity. Other versions of the Hungarian method (e.g., Lawler, 1976) have a

stronger integrality property, but lead to more complicated scaling algorithms.)

Another point in the analysis of the scaling algorithm is the magnitude of
the dual variables. "I’he Hungarian methed, and indeed any dual variable
method, can produce dual values of size {n N). To see this consider the graph
of Figure 2, a path of n = 2k vertices with weights alternately 0 and N. The
unique complete matching is shown. If y; (as shown) is any éorresponding set of
dual variables, the dominating and tightness conditions Imply iy >y + N.

Hence y, >y, + (k—1)N. This gives the desired bound.

The scaling algorithm is based on the fact that the Hungarian method does
not make many dual variable adjustments if it starts with good initial values.

More precisely, let

D= Y yi—w(H)
tev
where y; are the input dual variables and #° is a maximum complete matching.
(D=0 by dominance.) At any given point in the Hungarian algorithm, let the
current matching have f free vertices; let A be the total of the quantities § in all

dual variable adjustments up to this point.

Lemma 3.1. fA< D,
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Proof. Consider the sum 2 y; as dual variables are adjusted. A dual variable
teV

adjustment of § decreases the sum by gé, where g is the number of free ver-
tices when the adjustment is made. (Each free vertex decreases »by é, and the
net change for two matched vertices is zero.) Every augment decreases g by
two, so every value of g is at least f. Thus the total decrease (up to the given

point in the algorithm) is at least f A. On the other hand the total decrease is at

most D, since (1) holds when the Hungarian algorithm halts. ®

Scaling achieves a small value of D: It first solves the matching problem on
a graph whose weights are half the original ones. This solution gives a set of dual

variables that are near-optimum, i.e., D is small, on the original graph.

The recursive procedure S below implements this strategy. S has input G,
a bipartite graph with vertex sets V;, Va. It returns with a maximum complete

matching ¥ and corresponding dual variables. It works by scaling &, with

weights wy;, to G, with weights %’—-; (G and G have the same vertices and

edges.) Note that Step 3.2 (below) uses cardinality matching algorithm of Hop-
croft and Karp {1973). This algorithm can be viewed as transforming an arbi-

trary input matching ¥ to a maximum cardinality matching.

Procedure S{G).

Step 0. 1f all weights wy; are 0, return any complete matching M and all dual

variables y; = 0.

Step 1. Construct the graph G. Recursively call S(&) to find a maximum com-

plete matching and corresponding dual variables ;.

Step 2 let M be the empty matching on G. TFor each vertex 1 € V), set

Yi«<2y; + 1; for eachj € Vp, set y;«2y;.
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Step 3. Repeat the following steps until # is complete:
Step 3.1. Do a Hungarian search to find a wap.

Step 3.2. Let T be the subgraph of G containing all edges that are tight for the
current dual variables. Use the Hopcroft-Karp cardinality matching algorithm

to transform M to a maximum cardinality matching on 7.

Step 4. Return the complete matching M and the dual variables ¥;.

lemma 3.2. Procedure S returns a maximum complete matching and

corresponding dual variables.

Proof. The recursive call of Step 1 returns dual variables that dominate in G,

i.e., for every edge 17, '%"‘1—1 <y; +y;. Hence Step 2 computes dual variables

i

that dominate in G

Step 3 then simulates the Hungarian algorithm: Step 3.1 adjusts dual vari-
ables so an augment is possible. Step 3.2 achieves the effect of augmenting the
matching while preserving the dominating and tightness conditions. Lventually

a complete matching is found. =

To estimate the time, observe two properties of the number of iterations of

Step 3 (in one recursive call). Recall the quantities f and D from Lemma 3.1.

e

(i) Step 3.1 is executed less than 2 n? times.
L 3
(ii) Step 3.1is executed at most n* times with f =n*.
To show these properties first note that Step 2 assigns dual variables y; so

that
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n
Dsz.

For if #° is a maximum complete matching, the matching of Step 1 shows that

. n
wM)= Yy - EE
iey
To show property (i), count the number of executions of Step 3.1 with

1

1 L L
? and the number with S <n® If £ 2n? then Lemma 3.1 shows that

f=n
L
D _n? . .
A< —=< — Every execution of Step 3.1 adjusts the dual variables by some

oz

positive 6 (since after any execution of Step 3.2 no augmenting path consists

entirely of tight edges). Since § is a half-integer (by the integrality property of

the Hungarian method), 6 > %—- Thus the number of executions with F=n?is

1

1 1 5
L L 2
at most n?. The number with f <n? is less than -nz—(since each execution

matches two or more free vertices).

1

3 4
Property (i4) is similar: If J=n*thenA< 1@-5 —7}2—- (i) follows.

Now compute the total time for Step 3 (in one recursive call). Step 3.1 can

be implemented in 0(m.) time. (The data structures are essentially the same as

1
for Dijkstra’s algorithm, Section 2.1.). The total time in Step 3.1 is 0(n.?m) by

(i).

—

Step 3.2 uses the Hoperoft-Karp algorithm and so requires 0(min (nhg—,a)m)
time. Here a is the number of augmenting paths found (the 0(am) bound fol-

lows from inspecting the Hopcroft-Karp algorithm). The time for all executions

3 1

of Step 3.2 with f >nt s O(n‘*-nénm) = O(nrm) by (ii). The executions with

1
o]

3
3 ry 3

f <n* find less than nz—augmenting paths and so use O(n j‘f—'m) time.
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=3

3 1
Thus Step 3 is 0(n*m). Step 2 is 0(n), and Step 0 is 0(n?®m). Since the

3
number of recursive calls is [lg Nl + 2, the total time is O(n *mlogN). The fol-

lowing result summarizes the discussion.

Theorem 3.1. A maximum complete matching on a bipartite graph can be found

4]

in O(nrm log N) time and 0{m.) space. ®

The above derivation implicitly assumes that the dual values y; do not grow

inordinately large. Now we show this is true: the dual values are o{nN) in mag-

nitude.
One execution of Step 3.1 changes a dual value y; by at most t-z- (y;
changes by at most +A, by the Hungarian algorithm. A< —[2-)-5 %— since any exe-

cution of Step 3.1 has f =2.) Soif g; is the largest magnitude of a dual value

after the i** (recursive) execution of procedure S, then ag =0 and

Qi) < 20 + 1—}—+ 1, for 0<1i < |lg Nl. It follows that a dual value is at most
(oW M+I—1)(1~L—-+1) < N(—;L—%-E). as desired.

As noted previously, any dual variable method (including the Hungarian
method) needs dual values of size ({nN), on some graphs. So a word size of
lg N +lgn + 0(1) bits is necessary and suflicient. This is not unreasonable
since the problem description needs max (lg N,lg n) bits. Thus at worst the

algorithm uses double-word integers for the dual variables.

The last part of the analysis of the scaling algorithm is to show that the

3
bound of 0(n *m) for one scale is tight. Specifically there are graphs of any den-
sity (i.e., any value of m between n and n®) where in the last scale (i.e., the last

1
time Step 3 is executed in §), there are O(n*) iterations; further, each
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execution of the Hopcroft-Karp algorithm works on a graph of O(m) edges and

L
finds ®(n?) augmenting paths. The examples are reminiscent of (Even and Tar-

jan, 1975).

The family of graphs is 4,. A contains S, a bipartite graph on 2k* vertices
that has a complete matching and any desired number of additional edges.
Further for each integer 1 = 1, ..., k, A contains k? copies of a path on 41 ver-
tices, with edge weights alternately 0 and 1; the last vertex (in Vp) is joined by
one edge to a V; vertex of S (see Figure 3(a)). For 4., n = 4k*+2k3 and
3kt+2k3 < m < kB+2k*+2k3, Initially (after Step 2 and the first execution of
Step 3.1) the matching and duals are as in Figure 3(b). For i =1, .., k, the ith
Hungarian search makes a dual variable adjustment with § = 1. An augmenting
path is found on the paths with 4i vertices; the matching and duals on paths

with more than 44 vertices are shown in Figure 3(c). The number of iterations is

1 L
k = ®(n*). Fach execution of the Hopcroft-Karp algorithm finds k° = An?)

augmenting paths. The number of tight edges is always at least —Tg;

In a real implementation some changes should be made to procedure S.
The recursion should be replaced by iteration. A different scaling regime is
preferable: In scale s, instead of considering an edge weight with binary expan-
sion b, - - - b, to be b, - - - by, it is considered to be b, - - - b,0. Step 2 scales up
all dual values by the assignment y; < 2y;+1. Hence all edge weights are even
and all duals are odd. This ensures that throughout the algorithm all duals are

integers, by the integrality property of the Hungarian method.

The scaling algorithm extends to variants of the matching problern, includ-
ing maximum weight matching, maximum weight maximum cardinality match-
ing, and maximum weight cardinality-k matching. Now we discuss maximum

weight matching (other variants are in Section 5). Even if a graph has a com-
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plete matching and all weights are positive, a maximum weight complete match-
ing need not be a maximum weight matching. Maximum weight matching

reduces to maximum complete matching as follows.

Let G be the graph for maximum weight matching. Construct a graph G

from two copies of G, say G,, Gg; each vertex i in G, with copies i, 1z in Gy, Gp,
has an edge i, ig in & with weight 0. G is bipartite if G is. A maximum complete

matching on G gives a maximum weight matching on G; = G. So the call S(&

computes a maximum weight matching.

Corollary 3.1. A maximum weight matching on a bipartite graph can be found in

3
0(n*m log N) time and 0(m.) space. ®

For maximum weight matching all negative edges can be deleted from the
graph. So in the above time bound N refers to the largest positive weight. (Ir
the given weights are in an interval [a,b] then N = b; N cannot be reduced to

b—a as in complete matching.)

The time bound for maximum weight matching can be refined to

O('ni%m log N), where n, = |V;| <|Vy|. (This bound is used in Section 5.) To
achieve this modify the algorithm as follows: In Step 2, the dual variables y; for
i in either copy of Vi (i.e., i € V{{G)UVi(Gz)) are increased by an extra unit,
y;<2y; + 1; the duals for 1 in either copy of Vp are doubled, ¥ « 2y;. (Note that
V(G U Vi(Gy) is not a bipartition set of ). Step 3 (and Step 0) always maintain
the same matching and dual variables on ; and Gy.

The timing analysis is similar to the one above. There are two key points.

First, D < 2n,. (This follows from the modified Step 2). Second, the Hopcroft-

&

Karp algorithm is O(n{ m). (This follows from an analysis similar to (Hopecroft
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and Karp, 1973). The key observation is'that a set of augmenting paths contains
mostly edges of G. More precisely, a matching M that is identical on G, and Gp
has a set A of disjoint augmenting paths such that #®A4 is a maximum cardinal-
ity matching and further, each path in 4 has at most one edge 1, iz that joins G,
to Gp.) |

Scaling handles "small” edge weights efliciently. If the weights are
extremely small, especially N = 0(1), scaling can be dispensed with. This case is
useful in practice, especially N = 1 or 2. Now we sketch algorithms for this case,

for maximum complete matching and maximum weight matching.

The algorithm for complete matching is: Start with # empty and all dual

variables ¥; set to N; then execute Step 3 of procedure S. This gives the desired

. L8
matching. An analysis similar to Theorem 3.1 shows the time is O(N%n*m).

This bound is inferior to Theorem 3.1, except when N = 0(1); in this case the
simplicity of this approach makes it preferable. More importantly, this algo-

rithm works on nonbipartite graphs; further details are in {Gabow, 1984b).

The algorithm for maximum weight matching is: Start with M empty and
all dual variables y; set to N; then execute Step 3 of procedure S, terminating
when either a complete matching has been found, or the dual values of all free
vertices are 0. (Note that at any point of the algorithm all free vertices have the

same dual value.)

The correctness of this method follows from the fact that a matching with
dual variables that are tight, dominating, and consistent {i.e., all free vertices
have dual value 0, and all matched vertices have nonnegative dual values) has
maximum weight. This can be proved by the argument at the beginning of this
section, or alternatively see (Lawler, 1978).

18 1
The time bound is O(min(N?n*, Nn?)m). The first term of the bound is
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derived as above. The second term results from the fact that Steps 3.1-3.2 are

executed at most N times.

As before, the method works on nonbipartite graphs.

Corollary 8.2. If N =0(1), a maximum complete matching can be found in

4]
-

O(nzm) time, and a maximum weight matching can be found in 0{n 2m) time;

both algorithms use 0{m.) space. Both bounds hold on nonbipartite graphs. ®

4. Shortest paths with arbitrary lengths.

This section shows that in a directed graph where edge lengths are arbi-

trary positive or negative integers, the shortest path problem can be solved in

3
0(n%m log N) time.

The approach is based on Edmonds and Karp's idea (1972) of transforming
the lengths to make them nonnegative. (Also see Tarjan, 1983.) As in Section
2.1 this amounts to finding a function d; that dominates the edge lengths, i.e.,
for any edge i, d; +l;; = d;. A dominating function is derived from the matching

dual variables as follows.

Given a directed graph G, construct a corresponding bipartite graph G°. A
vertex i of G corresponds to two vertices 1, iz in G°. An edge ij of G
corresponds to an edge ;5 of G* with weight —;;. In addition G’ has an edge

1,1z of weight O for each 1.

Without loss of generality assume that every vertex in G is reachable from
the source s. The shortest path problem on G has a solution if and only if G has
no negative cycles. The latter holds if and only if G* has a maximum complete
matching of weight 0. To see this first note that the complete matching {iiz2]1 a

vertex of G} has weight 0. Next consider any complete matching on G°. 1t parti-
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tions the vertices of G into cycles. (Specifically a set of matched edges of the
form iijz jikg, ..., T1Sg, Sip corresponds to the cycle 1,7,k, ....7,5,1. As a spe-
cial case the matched edge 1, iy corresponds to the cycle i.) Thus G' has a posi-
tive weight complete matching if and only if G has a negative cycle.

So suppose a maximum complete matching has weight 0. In a correspond-
ing set of dual variables, y; = —¥;, for evéry vertex 1 of G. This is clear if 1yiy is
matched. If 4,12 is unmatched there is an alternating cycle of the form
1192, J2i1 Jaka. ..., 525, 511, 1215, Since the cycle has weight 0, dominance and
tightness imply ¥;, = —%,.

Now for each vertex i of G let d; =1, For any edge 4 of G,
d;—d; = Vi, Y Y= —L;. Thus the function d; dominates.

This implies that the following algorithm finds shortest paths: Construct G*
and find a maximum complete matching. (If the weight is positive, stop - the

problem is ill-defined.) Use the dual values to transform weights on & so they

are nonnegative. Then run Dijkstra’s algorithm on the transformed graph G.

Theorem 4.1. In a directed graph with arbitrary integral edge lengths, the shor-

7]

test psth problem can be solved in O(R’_{m log N) time and 0(m ) space. %

8
This algorithm solves the shortest path problem for 0(n*) sources in the

same time.

5. Degrece-constrained subgraphs.

Consider a multigraph where each vertex i has two associated integers
I, u;. A degree-constrained subgraph (DCS)is a subgraph in which each vertex

has degree d;, I; < d; < u;. In a complete DCS each degree achieves its upper
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bound, d; = 1 This section presents algorithms for the maximum complete DCS

and maximum weight DCS problems. (These problems generalize matching and

3
are defined analogously.) The time is O{U*m log N) on multigraphs; it is also

P
0(U?n3%m log N) on graphs. Here U = ) u;, and m counts each edge accord-
iEV
ing to its multiplicity. (The time bounds are oriented toward graphs of small
multiplicity).
We reduce the complete DCS problem to matching, following (Gabow, 1983):
Let G be the given multigraph. Define a graph &' as follows. A vertex i in &

corresponds to a vertex substitute K4 in G'. Here d is the degree of i in G; A
is the desired deficiency of i, i.e., if i has {upper) degree bound u=u,; then

A=d-u; K4 is a complete bipartite graph consisting of A internal vertices in
one vertex set and d external vertices in the other. An edge ij in G corresponds
to an edge joining an external vertex in i's substitute to one in j’s; each exter-
nal vertex of each substitute in G' is on exactly one copy of an edge of G. In &'
copies of edges of ¢ have the same weight as in G. An edge in any substitute
Kpg4 has weight N* = 2leM+1_1 A maximum complete DCS on & corresponds to

a maximum complete matching on &'. Hence DCS reduces to matching.

In general (' can have Q(nm) edges. So for efficiency we do not work
directly on G’ to find the desired matching: We simulate the scaling algorithm S
on G'. The simulation uses "sparse substitutes” to get a graph with 0(m.) edges,

as follows.

Given a matching on &', the sparse substitute for a vertex i of ¢ is illus-
trated in Figure 4. This figure assumes that in ', w < u external vertices in the
substitute for 7 are matched on edges of G. Of the remaining d —w external ver-
tices, u—w vertices (chosen arbitrarﬂy) are unmatched, and each of the other A

external vertices is matched to a vertex in the sparse substitute. The sparse
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substitute contains two more vertices b, ¢ joined by a matched edge. The other
edges of the sparse substitute are as illustrated (each edge of Figure 4, except
for bc, stands for w, u—w, or A edges of the sparse substitute). Each edge in
the sparse substitute has weight N°®. G, denctes the graph G' with sparse substi-

tutes.

Assume (as will be the case) that the matching on &' covers every internal

vertex of every vertex substitute. Then (G has these properties:
(i) G has 0(m.) edges.

(ii) Augmenting paths in G;, and augmenting paths in ' that pass through

each substitute at most once, correspond.

(i%) Dual variables that are dominating and tight on &' give similar vari-

ables on G, and vice versa.

Property (i) holds because a sparse substitute has u+2A+1 < 2d+1 edges.
Property (ii) follows from Figure 4. (The term "augmenting path” is topological
and ignores edge weights, as contrasted with wap. Observe that the edge be
allows an augmenting path in G to pass ;:hrough a substitute at most once.

However an augmenting path in G' need only pass through a substitute once.)

Property (i) is proved as follows. The precise statement is that for a given
substitute, the dual values of the external vertices can be taken the same in &'
and Gg; the remaining dual values are then implied. Given dual values on &,
there is a corresponding set of dual values on (, since every edge in the sparse
substitute has a corresponding edge in the vertex substitute. (Edge bc
corresponds to any matched edge of the vertex substitute). Conversely assume
dual values on Ge. In a given sparse substitute let b and ¢ have dual values y
and N° -y, respectively. Without loss of generality the A other matched edges of
the substitute have dual values y (for the internal vertex) and N°—y (for the

external vertex). (Dominance implies that the internal vertex is at least ¥y, so



o &

23

the external vertex is at most N°—y; but increasing the external vertex to
exactly N'—y preserves dominance on the external edge.) Hence in the
corresponding vertex substitute of ' all external vertices can be assigned their

dual values in G and all internal vertices can be assigned the dual value y.

Now we show how to simulate Steps 3.1-2 of procedure S on the graph G'.
Step 3.1 does a Hungarian search on G'. To simulate it assign dual variables to
Ge (by property (#ii)) and search on Ge. Property (i) shows that an augmenting
path will be found if the current matching is not complete. The search gives new
dual variables on G' thét have a tight wap (by (ii)-(iii)). Thus the Hungarian

search on &' is simulated using G.

Step 3.2 finds a maximum cardinality matching on T, the graph of tight
edges of G'. (This matching must also cover all internal substitute vertices, so
that properties (i1)-(#ii) hold). T can contain {nm) edges because of vertex
substitutes. However consider a substitute K, 4. Each of the A internal vertices
has the same dual value y. (This follows from tightness and dominance, or alter-
natively from the proof of (#ii).) So the subgraph of K4 that is included in T is
a complete graph Ky 5 where A< § < d. Transform T to a graph 7' as follows. In
each vertex substitute of &' contract the tight subgraph K5, and give the
resulting vertex a degree constraint of d—A; also contract the remaining d -0
external vertices and give the resulting vertex a degree constraint of d-4.
Observe that 7' has 2n vertices, at most m edges, and U value unchanged from

G. To simulate Step 3.2 find a maximum cardinality DCS on 7.

To summarize, the following scaling algorithm finds a maximum complete
DCS on a bipartite multigraph . Construct the graph G' {without explicitly con-
structing the vertex substitutes K, 4). Then simulate S(G'): In Step 0 find the
complete matching by solving the complete DCS cardinality problem on G; con-

vert this to a matching on G'. In Step 3.1 construct the sparse substitute graph
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G. and do the Hungarian search on it. In Step 3.2 construct the graph T
(defined above) and find a maximum cardinality DCS on it. Convert this to a

matching on G'. Then continue to iterate Step 3.

As in Section 3, the timing analysis of this algorithm is based on an estimate

of the number of iterations of Step 3. Lemma 3.1 shows fA< D, where these

quantities are calculated on G'. Observe that D < -g— (A complete matching on

G' consists of -g—-edges of G and plus edges in vertex substitutes. The substitute

edges are tight after Step 2 by the definition of N*. So they contribute zero to

2 3
D.) As in Section 3 at most U* iterations of Step 3 have f = U* and less than
3
ry 3 L
5 augments are done with f < U*. Since Step 3.2 is 0(min{U?,a) m) (Even

3
and Tarjan, 1975), the total time is 0{U*m log N).

A possibly better bound holds if G has no parallel edges. In this case Step

iterations have

1
2 z
3.2 is 0(n3m) (Even and Tarjan, 1975). Since at most ——

nd

1

,.-

1
3

!.—-

L
f =U?n? and less than

l\)‘v—-

the total

augments are done with f < U*n

,4

3
time is O(Uz'n m log N). This improves the first bound when U = ({n?).

Theorem 5.1. A maximum complete DCS on a bipartite multigraph can be found

s —
in O(U*m log N) time. The time is also 0 U n.3m log N) for graphs. The space

e

isO(m). =

Other time bounds can be derived for multigraphs (and are sometimes

superior). For instance if Step 3.2 is implemented with Karzanov's algorithm

Nlr-‘

(1974) the time is O(n{U n m)?*log N).
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This result implies that a maximum weight cardinality-k matching can be

3
found in O(n *m log N) time. (The matching problem reduces to complete DCS).

Similarity for maximum weight maximum cardinality matching.

Next consider the maximum weight DCS problem. Let G be a bipartite mul-

tigraph with lower bounds ; and upper bounds . Construct & by making two

copies of G, G, and Gg; for each vertex i, with copies i, and iy, add u; —l; copies
of edge i,iz with weight 0. A maximum complete DCS on G gives a maximum

weight DCS on G. So executing the complete DCS algorithm on & gives an algo-
rithm for maximum weight DCS that has the multigraph time bound of Theorem
5.1.

The graph time bound of Theorem 5.1 can also be derived. This depends on

]

the fact that the bound of 0(n é‘m) for maximum cardinality DCS on a graph
extends to multigraphs with "limited parallelism". Recall that the cardinality
DCS algorithm works by finding shortest length augmenting path (saps). The

argument of (Even and Tarjan, 1975) generalizes as follows.

Principle 5.1. Let the maximum cardinality DCS algorithm be executed on a
bipartite multigraph. Suppose that for any k, when the algorithm finds saps of

length k there are Q(k) levels where no two saps contain parallel edges. Then

2
the algorithm runs in 0(n 3m) time. =

Now we show that Step 3.2 of the scaling algorithm finds a maximum cardi-

LR , .
nality DCS in 0(n3m) time. This implies the graph bound of Theorem 5.1.

Assume (without loss of generality) that the scaling algorithm maintains the

same matching and dual variables on G, and Gy, the two isomorphic halves of G

So 7", the DCS multigraph of Step 3.2, is composed of T and T, two isomorphic
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graphs, joined by a number of multiedges 7,7;. An sap contains at most one
"joining" edge 1,15 further, all saps contain their joining edge at the same level.

So Principle 5.1 implies the desired bound.

Corollary 5.1. A maximum weight DCS on a bipartite multigraph can be found in

3 , RN
O(U*m log N) time. The time is also 0(U?n3m log N) for graphs. The space is

o(m). =
The above analysis remains valid if we take U = min { ¥, w, 2, ), (This
ieV, teV,
depends on the analogous fact for maximum weight matching shown in Section
3.) So for instance if all vertices in V|, have degree constraint one, the time

bound for maximum weight DCS becomes that of matching.

For very small weights Corollary 3.2 has the following analog.

Corollary 5.2. If N = 0(1), a maximum weight DCS on a bipartite multigraph can

1 —
be found in 0(U?m) time. The time is also O(n®m) on a graph. The space is

o]

olm). =

8. 0-1 network flow.

Consider a directed graph G with source vertex s, sink £, nonnegative
integral edge capacities ¢;; and integral costs a;;. The minimum cost flow prob-

lern is to find a minimum cost flow with a given value v.

A 01 network has all capacities one. Parallel edges are allowed (and need
not have equal cost.) Following (Even and Tarjan, 1975) we also consider some
important special cases: A type I network has no parallel edges, except for

edges directed from s or to £. A type 1+ network has no parallel edges at all. -
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The mindegree of a vertex is the minimum of its indegree and its outdegree. Ina
type 2 network each vertex (other than s or f) has mindegree exactly one.
("Type 1" of Even and Tarjan (1975) corresponds to type 1+ above. Type 1 above
is more general, but the results of (Even and Tarjan, 1975) still apply by Princi-
ple 5.1. Type 1 and Type 1+ above are both natural classes of networks: Type 1
corresponds to DCS problems. Type 1 networks have flow value at most m. Type

1+ networks have value at most n.)

The 0-1 minimum cost flow problem reduces to maximum complete DCS, as
follows. Given a network G, construct a bipartite multigraph G (similar to Sec-
tion 4): A vertex i of G corresponds to two vertices 1;, iz of G": G’ has an edge
iip of weight 0 and multiplicity mindegree(i). Further an edge jk of G
corresponds to an edge j 1k of G* of weight —a;. Finally the degree constraints
on e are Uy = Uy, = mindegree (i) for i #8,t;

uy, = mindegree (s ), U, = Us,+v, Uy = mindegree (£), w, = wy +u.

A flow of value ¥ on G corresponds to a complete DCS on G*; minimum cost
corresponds to maximum weight. So the flow problem can be solved using the
algorithm of Section 5 on G°. Note that a 0-1 network G has U = 0(m.); for type
2, U = 0{(n). Also, even though G* is a multigraph the graph bound of Theorem

5.1 applies if G is type 1 (by Principle 5.1).

z
Theorem 6.1. A minimum cost flow on a 0-1 network can be found in 0(m *log N)

L 3 a3
time. The time is also 0(n ¥m. ?log N) for type 1 networks and 0{n*m log N) for

type 2. The space is O(m.). =

The bounds of Theorem 8.1 apply to finding a minimum cost flow of max-
imum value, since the desired value v can be found using Dinic's algorithm

(Even and Tarjan, 1975).
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The Edmonds-Karp algorithm (1972) can be superior to the scaling algo-

rithm on type 1+ networks with no negative cycles. It runs in O(n m Iogmﬂ_n)
n

4

time on such networks (Tarjan, 1983), and if m = Q(n?) this is faster than
Theorem 8.1. However scaling can emulate this method: An approach similar to

Dijkstra’s algorithm (Section 2.1) achieves 0(n m log,, mN) time.
n

7. Conclusion

Scaling leads to efficient algorithms for network problems. Under the
assumption of similarity these algorithms are asymptotically faster than previ-
ous ones. In practice scaling algorithms perform well because of their simpli-
city. (This has been borne out by experiments on a PASCAL implementation of

the matching algorithm).

Scaling is a general method. Applications to computational geometry are
given in {Gabow et.al, 1984). Network problems on nonbipartite graphs are dis-

cussed in (Gabow, 1984b).
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Best Known Algorithm Scaling Algorithm
(see also, Tarjan, 1983)

minimum spanning lree

O(m log 10g2+!._n) O(m (logn N +a{m ,n)))

n
(Yao, 1975; Cheriton and
Tarjan, 1976)

bottleneck shortest path

o(m log,,, m) O(m logn N)
n
(Edmonds and Karp, 1972)

shortest path.
(nonnegative lengths)
o(m log2+%_n) o(m 10g2+ :,‘__‘_N)

(Dijkstra, 1959;
Johnson, 1977)

mazimum value
netwark flow

O(min(n m log n, n3)) O(n m log N)

(Sleator and Tarjan, 1983;
Karzanov, 1974)

mazimum weight matching
(bipartite graph)
3
o(n m log2+_,,1_n) O(n*m log N)

n
(Kuhn, 1955, 1956)

shortest path
(arbitrary lengths)

<4

O(nm) O(n*m log N)
{Bellman, 1958)



v &

degree-constrained
subgraph (bipartite graph)

3
o(Um log2+ﬂ_n) O(U*m log N), multigraph
n

R
(Edmonds and Karp, 1972) 0(U?n3m log N), graph

minimum cost network flow
{unit capacity)

7
0(m210g2 mm) O(m.*log N)
n 13
(Edmonds and Karp, 1972) O(n:malog N), type 1

O(frzzm log N), type 2
Figure 1.
Algorithms for network problems.

n = number of vertices, m = number of edges; N = largest network parame-
ter; U = sum of upper bounds (U £ m).
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Figure 3.

Worst-case graph for matching.
(a) Schematic representation of Ak
(b) Initial matching and duals.

(c) Matching and duals after i—{-:—}l search.
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Sparse substitute for <.



