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There has been an increasing interest in and need for the application of 

climate information to address societal issues. Partially arising from the 
increasing confidence in anthropogenic climate change (Stocker et al. 2013) and 
partially from increasingly complex and resource-limited conditions, climate 
impacts are now considered in fields as diverse as natural hazards, public health, 

and agriculture. This research looks to show the utility of existing data analysis 
and statistical tools in providing actionable information to decision makers. 

Though this information is relevant in a wide variety of locations and conditions, 

the focus of this research has been on producing information for applications in 
the developing world. Climate variability at multiple timescales can have an 

outsized impact in the developing world given the often limited infrastructure, 

and weaker social and economic institutions (Field et al. 2014). There is a need 
for tools and analyses that translate climate information at coarse space and time 

scales to local scales where decisions of resource management are made. Through 

climate diagnostics, precipitation associated with the West African and East 
African monsoons show variations both subseasonally and  interseasonally over 
the 20th and early 21st centuries. While prominent events including a wet period 
in the middle of the 20th century and a drought in the late 20th century have been 
well documented, this research highlights how this interseasonal variability can 
be linked to changes in large-scale teleconnections. In examining these 
teleconnections this research also notes that these teleconnections have entered 
into a new epoch. Tools that translate this information to address local issues 
have been developed. In West Africa, a stochastic weather generator can simulate 
the weather variables required to assess livestock heat stress and offer a means 
of forecasting and spatial modeling. This information can provide pastoralists 
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better information during their seasonal migration. In East Africa, an 
understanding of precipitation variability and its coupling with the Madden-
Julian Oscillation can be used to improve the sub-seasonal to seasonal forecasts 
of precipitation which can be used to improve water management. 
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1 INTRODUCTION AND BACKGROUND 

1.1 INTRODUCTION 
There has been an increasing interest in and need for the application of 

climate information to address societal issues. Partially arising from the increasing 
confidence in anthropogenic climate change (Stocker et al. 2013) and partially from 
increasingly complex and resource-limited conditions, climate impacts are now 
considered in fields as diverse as natural hazards, public health, and agriculture. 
The research community has begun to address the practical concerns associated 

with this interdisciplinary work, standardizing methodologies, developing new 
tools, and investigating the repurposing of existing tools (Thornton et al. 2009; 

Nardone et al. 2010; Rosenzweig et al. 2013). This research looks to show the utility 

of existing data analysis and statistical tools in providing actionable information to 
decision makers. Though this information is relevant in a wide variety of locations 

and conditions, the focus of this research has been on producing information for 

applications in the developing world. The international community has made the 
impacts of climate change on the developing world a focus in the recently released 

Sustainable Development Goals (SDG) (United Nations General Assembly 2015). 

The SDG highlight a need for local, targeted information for evaluating the impacts 
of climate change, identifying potential solutions, and providing information that 

allows for mitigation of climate change impacts. Of the 17 high-level goals, three are 

directly related to this research. These include:  
 

“2.4: By 2030, ensure sustainable food production systems and implement resilient 
agricultural practices that increase productivity and production, that help maintain 

ecosystems, that strengthen capacity for adaptation to climate change, extreme 
weather, drought, flooding and other disasters” 
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“13.2: Integrate climate change measures into national policies, strategies and 
planning” 
 
“13b: Promote mechanisms for raising capacity for effective climate change-related 

planning and management” 
 

Climate variability at multiple timescales can have an outsized impact in the 
developing world given the often limited infrastructure, and weaker social and 
economic institutions (Field et al. 2014). There is a need for tools and analyses that 
translate climate information at coarse space and time scales to local scales where 
decisions of resource management are made. Development of these tools requires an 

understanding of the spatial and temporal variability of the underlying climate 

variables affecting the processes of interest. This research presents two case studies 
that follow the following methodology: 

 

a) examine and quantify the seasonal and interseasonal variability of the 
climate variables of interest 

b) identify links between these climate variables and large-scale drivers 

including local phenomena and teleconnections 
c) select a measure that quantifies the impact of interest, and examine how it 
is affected by climate variability   

d) use the understanding of climate variability and the impact measure to 
develop current conditions, forecasts, or other products targeted at planners 

and decision-makers 
 

The two case studies are located within the monsoon regions of Africa, one in West 

Africa and one in East Africa (Figure 1-1). The application of the tools and 
information produced are targeted at local issues – livestock heat stress in West 
Africa where agriculture is a major livelihood, and water resources in East Africa 

where there has been large-scale and ongoing development of hydropower projects. 
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The West and East African monsoons, WAM and EAM, respectively, dominate the 
local climate during the monsoon season of June through September, both have 
demonstrated connections to large-scale climate features, and both have exhibited 
large interannual variability.  
 

 
Figure 1-1: West African Monsoon (left) and East African Monsoon (right) Study Regions 

(shown in red boxes) 

 

1.1.1 WEST AFRICA 
The focus for the first case study is the Sahelo-Sudanian region of West 

Africa, where agricultural production in aggregate supports 60% of the active 
population and is responsible for 40% of the gross national product (Battisti and 
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Naylor 2009). Understanding the variability and forecasting of measures related to 
livestock health and production can improve livestock management, and have a 
large impact on one of the primary livelihoods in this region. Driven by the seasonal 
migration of rainfall and productive grassland, as well as the seasonal cycle of 
livestock disease, a pastoral transhumance system has developed. Livestock herders 
migrate north and south throughout the year: north during the monsoon period to 
take advantage of seasonal grasslands, and escape the higher risk of livestock 
disease in the south, and south following the start of the dry season in the north. 
The seasonal climate of the region is controlled by the West African Monsoon 
(WAM), a low-level southwesterly flow existing during the boreal summer. The 
WAM is largely driven by a pressure gradient existing between two centers of 

action, the South Atlantic High, and the West African Heat Low (WAHL). The 

relative strength of these centers determines the strength of monsoon winds, and 
indirectly controls moisture advection onshore. Seasonal strength of the WAM 

impacts both the magnitude and location of summer rainfall, and also influences 

seasonal humidity and temperature. The WAM transition periods, termed 'monsoon 
onset' and 'monsoon retreat' can be identified by the seasonal migration of the 

Intertropical Convergence Zone (ITCZ) and the Intertropical Front (ITF), the later 

the interface between monsoon and Harmattan winds. The timing of onset and 
retreat also have a large influence on seasonal rainfall, humidity, and temperature. 
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Figure 1-2: West Africa monthly surface temperature climatology (left) and 

precipitation climatology (right) for each observation location in the region (from the 

HadISD dataset) 
 

Figure 1-2 shows the monthly climatology of temperature and rainfall at 
observation locations across the region. The inland Sahelo-Sudanian region of West 

Africa receives majority of the annual total precipitation during the June through 

September summer season. This precipitation has experienced large interannual 
variability over the 20th century – a wet period in the 1950s and 1960s proceeded by 

the 1970s-2000 Sahel drought (Dai et al. 2004; Nicholson 2005; Lebel and Ali 2009; 

Dieppois et al. 2014). Variability has been linked to a variety of causes, but is 
dominated by SST teleconnections including the Gulf of Guinea, the tropical 

Atlantic Ocean, the Indian Ocean, and the tropical Pacific Ocean (ENSO) (Losada et 
al. 2012). These SST teleconnections influence precipitation through two primary 
mechanisms: moisture transport into the region, and dynamical connections that 
promote convection Nicholson, 2013]. Quantifying the variability of these 
teleconnections as well as the subseasonal variability can be leveraged to improve 
forecasting. This can also illuminate how modern-day SST warming has impacted 
these teleconnections and ultimatly precipitation dynamics. Changes in local 

precipitation directly impact the local population in a number of ways including 
heat stress expericenced by livestock. As a case study for this region, we investigate 
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livestock heat stress and tools that can use this improved understanding of 
subseasonal and interannual climate variability to provide better information for 
decision-makers. 
 

1.1.2 LIVESTOCK HEAT STRESS 
The focus of our first case study (West Africa) is on livestock heat stress. 

Livestock heat stress is the physiological response to direct environmental exposure 
and manifests as an increase in an animal’s core temperature, leading to decreases 
in metabolism, decreases in production, and in severe cases, death. It can also 
impact an animal’s ability to successfully reproduce. Quantifying heat stress burden 

and risk in the developing world has been limited, with little understanding of the 

susceptibility of native breeds to heat stress. This lack of knowledge has been 
highlighted by the International Livestock Research Institute (ILRI), who state: 

“the impacts of increased frequencies of extreme heat stress on existing livestock 

breeds are not known, nor do we know if there are critical thresholds in the 
relationship between heat stress and physiological impacts” Easterling and Apps 

(2005) state: “Confidence in the ability of livestock producers to adapt their herds to 

the physiological stresses of climate change is difficult to judge. The absence of 
physiologically based animal models with well-developed climate components 

suggests a major methodological void.” Additional complexity is introduced when 

considering a broad region such as sub-Saharan Africa where there is a large 
heterogeneity in livestock systems in terms of breeds, methodology, and adaptive 
capacity. Adaptation and selective breeding have produced cattle breeds with 
greater resistance to local conditions including climate and disease. The resilience of 
these breeds to heat stress has not been well quantified; with the threshold values 
commonly used with heat stress indices developed for intensively managed cattle in 
the developed world. The lack of complete, long-term climate data has affected the 
ability to establish baseline heat stress burden and evaluate changes.  
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Figure 1-3: Conceptual livestock heat stress model showing the external and 
internal components (figure from Finch 1986). 
 

Heat stress is a function of temperature, humidity, solar radiation, and windspeed 
directly, and rainfall indirectly. Both index-based and physiological-model based 

approaches have been taken to quantify heat stress and are described in detail in 

Chapter 3. These approaches all require daily weather sequences, which are 
conditioned by the monsoon variability. This work demonstrates the utility of a 

stochastic weather generator (SWG) incorporating large-scale climate information 
to produce statistically consistent daily weather sequences. Consequently, heat 
stress indices are generated, for livestock health management. The SWG offers a 
flexible tool to generate daily weather sequences at seasonal and multi-year time 
scales. The use of a SWG for simulating heat stress attributes is unique and one of 
the first applications to this field.  
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1.1.3 EAST AFRICA 

The focus for the second case study is on the northern East Africa. The 
Kiremt season, June through September, is the primary precipitation season for 
East Africa north of about 7ºN. This region is the headwaters of two major rivers, 
the Blue Nile, and the Omo Gibe, as well as a major agricultural region. Decreases 
in precipitation occurred in concert with decreases in the West African Sahel during 
the 1970s and 1980s, however, while there has been a ‘recovery’ in the Sahel, 
precipitation has continued to decrease in the recent 1990-present period (Williams 
et al. 2012). Variability in the influence of large-scale teleconnections on Sahel 
precipitation over the past century have been noted in Broman et al., submitted. 
Similar to West Africa, precipitation variability in this region can be broadly linked 

to two mechanisms: moisture transport into the region, and the behavior of local 

dynamical features promoting convection. Local circulation features are controlled 
by the East African Monsoon (EAM) which establishes itself in the boreal spring 

and extends through the summer. At a seasonal timescale, remote teleconnections 

with ENSO, the tropical Indian Ocean, and the tropical Atlantic Ocean influence 
moisture transport, the behavior of the EAM, and thus precipitation variability. At 

subseasonal scales, precipitation variability has been linked to the Madden-Julian 

Oscillation (MJO). This variability, both interannually, and interseasonally, has 
impacts on local water resource management and agriculture. An understanding of 
this variability, connections to large-scale teleconnections, connections to the MJO, 

and how these connections have varied over time provide a basis for improving 
forecasts. Training statistical forecast models understanding the variability in the 

covariates, or post-processing numerical weather prediction models (NWP) offer two 
ways of incorporating in this information. The next section describes an approach 

for post-processing NWP forecasts at the subseasonal to seasonal (S2S) timescale, 0-

60 days to improve forecast skill. 
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1.1.4 PRECIPITATION FORECASTING 

The focus of our second case study is on improving S2S precipitation forecasts 
targeting water management and agriculture. Improvements in forecasts have the 
potential to improve management decisions in the developing world (Webster 2013). 
The S2S timescale has seen increased interest in recent years given the timescales 
of decisions (Robertson et al. 2015). 

There have been several attempts to develop skillful seasonal precipitation 
forecasts for the Kiremt season. Statistical regression approaches have 
demonstrated spatially-dependent skill at short lead times using large-scale ocean 
and atmospheric features. (Gissila et al. 2004; Korecha and Barnston 2007; Block 
and Rajagopalan 2007; Diro et al. 2011; Nicholson 2014). Predictability was strongly 

linked to the summer ENSO state, as well as discerning intensifying versus 

decaying behavior in the spring. Skillful forecasts were limited to a two month lead 
time by the ‘predictability barrier’ of ENSO (Torrence and Webster 1998), rapid 

changes in circulation during the March-May season, and the sensitive of the 

tropical Pacific and Indian Ocean to perturbations. Seasonal skill in numerical 
weather prediction (NWP) forecasts is limited deterministic skill beyond a two-

month lead time (Kirtman et al. 2014). Combining NWP forecasts at the S2S 

timescale, with post-processing approaches that can incorporate in information 
about teleconnections (e.g. ENSO) and subseasonal controls (e.g. MJO) offer the 
ability to improve forecast skill.   

1.1.5 DISSERTATION STRUCTURE 

The structure of this proposal is as follows. Chapter 2 presents an overview of 
the large-scale climate features controlling precipitation variability in the West 

African Sahel. Variability in large-scale teleconnections over the past century is 

investigated using composite analysis and Bayesian dynamical linear models 
(BDLM). These analyses offer insights into internannual and interseasonal 

precipitation variability. Chapter 3 demonstrates the utility of a stochastic weather 
generator to produce statistically consistent weather sequences for use in 
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evaluating climate-related impacts. Given the social and economic importance of 
livestock, and the limited investigation, we use the weather generator to examine 
livestock heat stress impacts in West Africa. We show the ability to improve 
weather generator output to match observed statistics when conditioned with large-
scale climate. Spatial modeling of both weather generator-derived heat stress 
estimates as well as estimates obtained directly from observations allow point 
measurements to be extended over the entire study region. When coupled with the 
monsoon diagnostic information from Chapter 2, seasonal predictive tools can be 
developed to provide planners and decision-makers information to mitigate the 
impacts of potential heat stress events. Chapter 4 repeats the same analysis as 
Chapter 2 except for East Africa. In addition to large-scale teleconnections, we also 

examine the influence of the MJO on precipitation variability at the subseasonal 

timescale. Chapter 5 evaluates the skill of the CFSv2 precipitation forecasts for the 
summer monsoon season in East Africa. We examine the impact of quantile 

regression (QR) post-processing directly and QR incorporating in covariates. 

Finally, Chapter 6 provides a review of the findings from Chapters 2-5.  
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2 SPATIAL AND TEMPORAL VARIABILITY OF SAHELIAN WEST AFRICA 
PRECIPITATION AND LARGE-SCALE TELECONNECTIONS 

2.1 INTRODUCTION 

The late 20th century Sahel drought, lasting from the 1970s through the 1990s 
(Dai et al. 2004; Nicholson 2005; Lebel and Ali 2009; Dieppois et al. 2014) and the 
wet period preceding present a clear illustration of the variability of precipitation in 
the inland Sahelo-Sudanian region of West Africa. These two ‘epochs’ along with a 
modern period epoch beginning at the turn of the 21st century represent distinct 
shifts in the underlying drivers of precipitation in the region. This epochal 
variability has been attributed to a variety of causes including changes to the land 

surface producing an albedo feedback loop (Charney 1975; Nicholson 2000), and 

changes to sea-surface temperature (SST) driven teleconnections (Folland et al. 
1986; Palmer 1986; Fontaine and Janicot 1998; Giannini et al. 2003; Lu and T.L. 

2005; Koster et al. 2004; Xue et al. 2016). Via their effect on the main dynamical 

features controlling precipitation variability – the occurrence of Mesoscale 
Convective Systems (MCSs), and moisture availability (Nicholson 2013) – 

variability in these teleconnections are now thought to be the dominant driver of 

summer precipitation variability (Losada et al. 2012). MCSs are responsible for 
large-scale precipitation in the region, upwards of 90% of the seasonal total (Lebel 

et al. 2003; Nesbitt et al. 2003; Mohr and Thorncroft 2006). SST teleconnections 

influence MCSs indirectly through the strength and location of the mid-level 
African Easterly Jet (AEJ) and high-level Tropical Easterly Jet (TEJ). MCSs are 

organized in part by African Easterly Waves whose strength and propagation are in 
turn controlled by the AEJ and TEJ (Jackson et al. 2009). Through this chain, 

northward shifts in the center of the AEJ have been observed in wet years, 

extending as far north as 20º in some years. Conversely, a more southerly AEJ has 
been observed in some dry years. A similar correspondence is seen with the strength 

of the TEJ: a stronger TEJ is associated with increases in precipitation, and a 
weaker TEJ associated with decreases in precipitation (Hulme and Tosdevin 1989; 
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Nicholson and Grist 2001; Nicholson 2013). SST teleconnections have been linked to 
variability in these two jets; the effect of different SST regions are discussed in 
detail below. Moisture availability is drive by the West African Monsoon (WAM), a 
low-level flow that advects moisture inland from the Gulf of Guinea and Atlantic 
Ocean. The strength of the cross-equator pressure gradient driving this flow affects 
the availability of moisture in the Sahelo-Sudanian region, and is also controlled by 
SSTs, both directly, and through teleconnections.  

Four SST regions have been linked through the above two dynamical features 
to precipitation variability – the tropical Pacific Ocean, the tropical Indian Ocean, 
the tropical Atlantic Ocean, and the Gulf of Guinea. The tropical Pacific influences 
precipitation through the El Nino Southern Oscillation (ENSO). A more northerly 

AEJ is seen during La Nina, and a more southerly AEJ during El Nino. A 

weakening of the TEJ is also observed during El Nino conditions (Chen and van 
Loon 1987; Nicholson 2013). There is some debate about the influence of the tropical 

Indian Ocean. A modeling study (Hagos and Cook 2008) indicated that a warming 

Indian Ocean could have produced a region of subsidence over the Sahelo-Sudanian 
region, blocking monsoon moisture transport, and contributing to the decreases in 

precipitation seen in the 1980s and 1990s. The same modeling study suggest that 

continued warming would have shifted this subsidence westward over the Atlantic, 
and could explain the ‘recovery’ of precipitation in the early 21st century. A similar 

modeling study shows a more local influence of the Indian Ocean focused on the 
western Sahel (Bader and Latif 2003). Conversely, statistical analyses of observed 
precipitation indicate a relative minor influence of the Indian Ocean (Janicot et al. 
2009). This study describes an atmospheric teleconnection between the Indian 
Monsoon and West Africa that increase low-level westerlies and moisture transport, 
but whose influence is muted compared to the influence of other SST regions. In the 
Atlantic, the relative difference in temperatures between the northern and southern 
tropical regions (tropical Atlantic dipole) affects the pressure gradient that drives 
monsoon moisture transport. The Gulf of Guinea plays a similar role, where 

increases in SSTs weaken this pressure gradient and therefore moisture transport 
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(Vizy and Cook 2002; Fontaine and Louvet 2006; Caniaux et al. 2011). Historically 
there has been a prominent dipole pattern between precipitation in the Guinea 
Coast region and precipitation in the Sahelo-Sudanian region (Nicholson et al. 1998; 
Nicholson 2013; Losada et al. 2012). This pattern appears to have weakened or 
disappeared since the start of the Sahel drought in the 1970s (Nicholson 2013; 
Losada et al. 2012) suggesting changes in the relationship between precipitation 
variability, the Gulf of Guinea, and the tropical Atlantic dipole.  

Global SSTs appear to be the dominant driver of interannual and 
interdecadal variability of precipitation in this region. However, there does not 
appear to be a single clear mechanism. Rather, it is the combined behavior of all 
four regions that control variability. Similarly, from work on the Indian Monsoon 

teleconnections appear to influence precipitation unevenly at subseasonal 

timescales [Gill et al. 2015]. Examining this behavior in other monsoon regions 
could suggest broader physical link between the Indian and West African monsoons, 

or dynamical controls responsible for this uneven behavior broadly across monsoon 

regions. 
To date, there has not been any comprehensive study of the variability of 

these teleconnections at either seasonal or subseasonal time scales. These gaps 

motivate this research. In this paper, we seek to quantify the relative strengths of 
SST teleconnections over the 20th and early 21st centuries as well as investigate 

their subseasonal variability. Using composite analysis and Bayesian Dynamical 
Linear modeling (BLDM), we investigate the space-time variability of West African 
summer monsoon precipitation and associated SST teleconnections.  

To connect this analysis with the existing understanding of precipitation 
variability we consider the full period (1901-2014), and three precipitation epochs 
separately. The paper is organized as follows: a description of the datasets, regional 
climatology and methods used are first presented, results from the analysis of the 
full period that describe the long-term variations in precipitation and SST 
teleconnections are next presented, followed by the results from epochal analysis 
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examining the dynamics of this variability during the different periods; concluding 
with summary and discussion of the results.  

 

2.2 DATA AND METHODS 
Gridded precipitation data were obtained from the CRU TS3.23 dataset 

which provides monthly coverage for a 114-year period from 1901 to 2014 at a 
0.5°x0.5° resolution (Harris et al. 2014). Summer season (June-September) average 
and subseasonal average – June (early season); July-August (peak season) and 
September (late season) – precipitation values were computed from this dataset. 
Global climate fields – winds, geopotential heights, sea level pressure, and 

precipitable water – were obtained from the NCEP/NCAR Reanalysis 1 (NNR) 

(Kalnay et al. 1996). Four SST index timeseries are used – Nino 3,4, Indian Ocean 
Dipole Mode Index (IOD-DMI), the Tropical Atlantic Index (TAI), and Gulf of 

Guinea Index (GGI) – and provide timeseries of standardized SST anomalies over 

their respective regions. Nino 3,4 index, bounded by 120°W-170°W and 5°S- 5°N 
(Trenberth 1997) was obtained from NOAA Earth Systems Research Laboratory 

(ESRL) (esrl.noaa.gov). The remaining indices were computed from the Hadley-OI 

merged SST dataset (Hurrell et al. 2008) as follows: the IOD-DMI as the 
temperature gradient between the East (90°E-110°E and 10°S-Equator) and West 

(50°E-70°E and 10°S-10°N) Indian Ocean (Saji et al. 1999), the Tropical Atlantic 

Index (TAI) as the temperature gradient between the TSA, bounded by 5.5°N-
23.5°N and 57.5°W-15°W, and TNA bounded by 5.5°N-23.5°N and 57.5°W-15°W 
(Enfield et al. 1999), and the GGI bounded by 12ºW and 10ºE and 5ºS to 8ºN.  
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Figure 2-1 West Africa precipitation clusters, using a k-Means clustering approach 
on annual climatology and the CRU TS3.23 precipitation dataset 
 

To identify coherent precipitation regions, a K-means cluster analysis (Scott and 

Knott 1974) was performed on the annual climatology of precipitation. Three 
distinct clusters emerged and are shown in Figure 2-1. These are referred to as 

South’, ‘Middle’, and ‘North’, with the Middle and North cluster areas largely 

corresponding to the Sahel region. Therefore, we focus on these two cluster areas. 
For each of these two cluster areas, anomalous precipitation years were identified 

using a cluster-average standardized anomaly timeseries (1950-1999 climatology) 

with low years <= -1 and high years >= 1. Anomalous years were identified based on 
the seasonal and the three subseasonal average precipitation timeseries separately. 

Patterns of large-scale climate fields is investigated through composite analysis – 
average of each field in low and high years. We performed composite analysis of 

SST anomalies, low-level geopotential height (GPH) (850hPa), low (925hPa), mid 
(600hPa), and high (200hPa) level winds, and total-column precipitable water 
(precipitable water).  

To examine the changes in strength of large-scale climate features, a 
Bayesian Dynamical Linear Model (BDLM) was used. In traditional linear 
regression, models the coefficients are static, while in BDLM they vary as a function 
time thus enabling to capture changing relationships, i.e., nonstationarity, BDLM 

(West and Harrison 1997; Petris 2009). This has been applied in modeling temporal 
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variability of teleconnection of Indian summer monsoon and SSTs from Pacfic and 
Indian Ocean (Maity and Nagesh Kumar 2006; Krishnaswamy et al. 2015), and 
similarly with rainfall over Indonesia [Yanto et al. 2016]. Its use led to interesting 
insights and better performance than the traditional regression methods, showing 
for the Indian case a strengthening influence of Indian Ocean SSTs on the summer 
monsoon and extreme precipitation events in recent decades and the weakening 
influence of ENSO. In the case of Indonesia, it documented the temporal variability 
of the relationship between ENSO and precipitation. Recently, this has also been 
applied to model the variability of sea level in Northern Atlantic (Kennigson et al., 
2018). 

In this method, the regression coefficients vary with time, unlike traditional 
regression where the coefficients remain fixed. In BDLM the time series is 

considered as the output of a dynamical system perturbed by random disturbances 
(i.e., noise) – thus, considered a nonstationary evolution. The general form of the 

model is represented as: 

 
 yt=Ft xt+vt vt~Ν(0,Vt ) 

 xt=Gt x_(t-1)+wt wt~Ν(0,Wt ) 

 
where yt is a dependent variable (e.g. the leading PC), xt is a vector of independent 

variables (e.g., Nino 3,4, TAI, etc.), t denotes time, Ft is an observation operator that 
transforms the model states into observations (e.g. regression coefficient) and Gt is 
the linear system operator (that models states of the independent variables). Both 
observation and system equations can have additive Gaussian errors with 
covariance matrices Vt and Wt. 

The posterior predictive distribution of model coefficients θt at each time t is 

computed from the prior distribution of coefficients at time step t-1. Using Bayes 

theorem, the probability of the data yt conditional on the model parameters at time 
t is defined as: 
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 P(θt |yt )∝ P(y yt | θt)P(θt |yt-1)  

  
The model coefficients θ consist of PCs, Nino 3,4, PDO, the regression coefficients 
and the variances of the Gaussian errors in the above equations. In the initial step, 
traditional linear regression is applied to compute regression coefficient with 
normally distributed mean and variance – i.e. θ0≈Ν(m0,C0 ) where m_0 and C0 are 
the mean vector and the variance – covariance matrix of the regression parameters. 
Using a Kalman filtering approach together with Markov Chain Monte Carlo 
simulation approach, posterior distributions are estimated at any time t. The 
posterior distribution is then employed to generate the Bayesian confidence 

intervals (Petris 2009). 

The BDLM returns transient regression coefficients for each covariate 
included, in this case the four SST indices, Nino 3,4, the TAI, the DMI, and the 

GGI. These time-varying coefficients can be compared to a fixed regression 
coefficient and its 5-95% confidence bounds (CI), to identify epochal shifts. We used 

these shifts to define three epochs and repeat the above composite analysis.  

 

2.3 RESULTS 

As mentioned we focus on the Sahelian region – i.e., northern cluster. Results 
from the composite analysis to understand the seasonal and subseasonal 

teleconnections with large-scale climate variables are first presented followed by the 
BDLM analysis for the temporal variability.  

 

2.3.1 SEASONAL AND SUBSEASONAL COMPOSITE ANALYSIS 
Composites of precipitation of high (i.e. wet) and low (i.e. dry) years for the full 
season and the three subseasonal periods are shown in Figure 2-2.  As expected, the 

northern cluster – Sahelian West Africa – is uniformly wet and dry during the 
respective years (top row) and they are consistent across the subseasons. This wet / 

dry anomaly pattern can be seen outside the Sahel, in northern East Africa, and 
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into the Indian subcontinent, especially during late season. During peak season the 
positive and negative anomalies clearly extend through to East Africa, and weakly 
during the early and late seasons.  This indicates subseasonal heterogeneity in the 
spatial variability of precipitation and potentially teleconnections that would not be 
apparent from a seasonal analysis.  
 

 
Figure 2-2 Composites of average precipitation corresponding to high (left column) 
and low (right column) precipitation years in the northern cluster based on the full 
record (1901-2012). Top row shows the composites for full season, June-September, 
2nd row the early season, June, 3rd row peak season, July-August, and bottom row, 
late season, September. 
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In order to identify the large-scale climate features accompanying these 
precipitation regimes composites of SSTs, 925hPa, 600hPa, and 200hPa level winds, 
precipitable water, and 850hPa GPH were created for the full season and sub-
seasons.  
 

 
Figure 2-3 Same as Figure 2-2 but composites of SST anomalies. Statistically 
significant regions are stippled.   
 

The SST anomaly composites for the high and low years of the northern cluster are 
shown in Figure 2-3.  The statistically significant regions are in the tropics of 
Atlantic, Pacific and Indian Ocean basins and they are consistent across the sub-
seasons. The Atlantic dipole behavior, with a cool southern tropical Atlantic and 
warm northern tropical Atlantic during high precipitation years and the converse 
during low precipitation years, over the entire season is evident (Figure 2-3, top 

row). The southern tropical Atlantic region shows stronger SST anomalies 
compared to the northern tropical Atlantic and is the case during the sub-periods. 

Furthermore, the cooler SST anomalies in southern tropical Atlantic, especially 

closer to the African coast, during wet years are stronger compared to the warmer 
SST anomalies during the low years (top row). This is also consistent during all the 
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subseasonal periods. This asymmetry is noteworthy. Wetter years are accompanied 
by cooler central and eastern tropical Pacific, reminiscent of La Nina conditions, 
vice-versa for drier years, reminiscent of El Nino conditions (Hulme and Tosdevin 
1989; Nicholson and Grist 2001; Nicholson 2013). The signal in the Indian Ocean is 
weaker in comparison. 

Composites of anomalies of 925hPa winds, precipitable water, and 850hPa 
GPH are shown in Figure 2-4. The 925hPa winds correspond to the monsoonal jet in 
the region (Nicholson 2013) and the 850hPa heights are selected to avoid surface 
friction. During high years the low-level southwesterly monsoon winds from the 
Atlantic are strong. This is also accompanied by strong northeasterlies coming from 
the Arabian Peninsula and northern Africa, consistent with anomalous low pressure 

over the region (Figure 2-4 contours). There are positive precipitable water 

anomalies (Figure 2-4, green colors) over central and western Africa (centered over 
Chad and Niger) during high precipitation years.  
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Figure 2-4 Same as Figure 2-2, but for average 925hPa winds (arrows), pressure 
(contours) and precipitable water (colors). 
 

This feature is seen for the full season and all three subseasonal periods, being most 
pronounced during the June early season and the July-August peak season. During 

the September late season, the convergence of winds and moisture is relatively 

weaker (Figure 2-4, bottom panel). However, notice that the Indian monsoon jet, 
extending over Arabian Sea and on to Indian subcontinent, is strong in low years 

(bottom-left panel), which corresponds with the late season of the Indian summer 
monsoon. This was noticed in Gill et al., 2015b during La Nina years. Thus, during 
wet years, tropical Atlantic and Pacific are anomalously cooler, with a strong low 
pressure center formed over the Sahelian region, enabling convergence of low-level 
winds and moisture from the southwest and northeast. Furthermore, the 
atmospheric teleconnections are stronger during early and peak season.  In low 
precipitation years the low-level south easterlies are virtually absent, and the 
tropical Oceans are warmer with El Nino conditions in the Pacific (Chen and van 
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Loon 1987; Nicholson 2013). These anomalies are also consistent across the sub-
seasons.  
 

2.3.2 TEMPORAL VARIABILITY OF TELECONNECTIONS 
The BLDM was fitted to the summer season precipitation in the north cluster 

with the contemporaneous large-scale SST teleconnection indices and time varying 
coefficients for the intercept, Nino 3,4 TAI, DMI, and GGI are shown in Figure 2-5. 
Coefficients from a stationary or static (i.e. standard linear regression) regression 
and their 90% confidence intervals are shown as horizon lines in these figures. 
Periods where the BLDM time-varying regression coefficient deviate outside the 

confidence bounds indicate it is significantly different and can be interpreted as 

changes in the teleconnection strength. 
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Figure 2-5 Time varying regression coefficients – intercept (top panel), Nino 3,4 (2nd panel), TAI 

(3rd panel), DMI (4th panel), and GGI (bottom panel) – from BDLM for north cluster 

precipitation (blue lines). Coefficients from stationary linear regression are shown in black with 

95% confidence intervals (dashed lines). Red lines show the boundaries of the defined epochs – 

wet period (1945-1968), drought (1969-2000), and modern period (2001-2014). 

 

The intercept, which can be viewed as the mean value of precipitation anomaly, 
shows an increasing trend through 1960s and then a significant decline through 
mid-1990s, before increasing. This is consistent with the Sahelian precipitation 
variability reported in literature (Dai et al. 2004; Nicholson 2005; Lebel and Ali 
2009; Dieppois et al. 2014). The coefficient of Nino 3,4 has remained negative over 
the entire 114 years, it weakened (i.e. value moving towards zero) starting in the 
1930s before returning to the static regression value in the 1970s. Around 2000 this 
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relationship has again begun to weaken as seen during the mid-century. This 
epochal variability with Nino 3,4 is consistent with the epochal variations of Indian 
Monsoon-ENSO teleconnections which has been shown to weaken in recent decades 
(Kumar et al. 1999). The TNA has exhibited a positive relationship with 
precipitation, and the transient regressions have tended to remain within the 
confidence intervals of the static regression values. However, it has weakened 
during 1900 through 1940s and increasing since mid-1990s. Interestingly, this 
appears to be opposite to that of what was seen with Nino 3,4, in that, when the 
strength of ENSO teleconnections is weakening, the Atlantic teleconnections appear 
to be strengthening (Losada et al. 2012) 

The static regression indicates a positive relationship with IOD-DMI, while 

the BDLM which shows weakening around 1950, before strengthening around the 

mid-1970s, and declining in recent times. However, it remains near the static 
regression value throughout. This epochal variability in Indian Ocean 

teleconnections has also been seen with Indian monsoon (Krishnaswamy et al. 

2015) in that in recent decades the strength of Indian Ocean teleconnection with the 
Indian monsoon is stronger when the ENSO teleconnection is weakening, which is 

consistent here. The Gulf of Guinea SSTs show no relationship through mid-century 

when it exhibited negative relationship and since the late 1990s there is a shift to a 
positive relationship.  
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Figure 2-6 Standardized precipitation and SST index (black line) and smoothed 
values (blue line) for north cluster precipitation (top panel), Nino 3,4 (2nd panel), 
TAI (3rd panel), DMI (4th panel), and GGI (bottom panel). Red lines show the 
boundaries of the defined epochs: wet period (1945-1968), drought (1969-2000), and 
modern period (2001-2014). 
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Timeseries of the indices and standardized precipitation are shown in Figure 2-6. 
The top panel shows an anomalous wet period in Sahel during the middle part of 
the 20th century starting in the early to mid-1940s and lasting until the late 1960s, 
followed by the Sahel drought lasting until the end of the century. The Nino 3,4 
shows the well-reviewed multidecadal pattern of cooler during the middle part of 
the 20th century and warmer subsequently with a cooling in the early 21st century. 
The TAI also shows a multi-decadal pattern, and interestingly has been increasing 
from the 1990s to the present. The GGI shows a similar increasing trend since 1975. 
The IOD-DMI has a slight positive trend from the 1990s to the present along with 
increasing variability, with larger and more frequent year-to-year changes. The 
epochal shifts in precipitation correspond to shifts in the strengths of the SST 

teleconnections as seen in the BDLM regression coefficients (Figure 2-5) and also 

the temporal variability of the indices in  Figure 2-6. 
 

2.4 EPOCHAL COMPOSITES 

For the epochal composites, we have lowered the threshold for identifying low and 

high precipitation years to 0.4 for wet years and -0.4 for dry years in order to 

identify low years during the mid-century wet period and high years during the 
Sahel drought. The composites of SSTs for the three epochs and for the season and 

sub-season periods are shown in the following figures. During the mid-century wet 

period, the tropical Pacific is anomalously cooler for wet years (Figure 2-7) during 
all parts of the season, while the dry years show much weaker warming compared 

to the composites for the entire period (Figure 2-3). 
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Figure 2-7 Same as Figure 2-3, but for the wet period (1945-1968)  
 

 
Figure 2-8 Same as Figure 4, but for the wet period (1945-1968)  
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The Atlantic dipole is not as evident, and the Indian Ocean cool/wet, warm/dry 
correspondence is also absent compared to the full period analysis (Figure 2-3). This 
is consistent with BDLM analysis which showed a weakening in the ENSO 
relationship, a weak Atlantic dipole (Figure 2-5). The full season and September 
late season also show anomalous behavior in the western Gulf of Guinea, with 
cooler conditions during wet years, and warmer conditions during dry years. The 
same anomalous precipitable water and onshore low-level winds seen in the full 
record are seen in high years, and even in low years (Figure 2-9). Upper level wind 
anomalies exhibit the same behavior, with anomalies in high years corresponding to 
the full period, and these same easterly wind anomalies still present in low years.  

 

 
Figure 2-9 Same as Figure 2-3, but for the drought period (1969-2000)  
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Figure 2-10 Same as Figure 4, but for the drought period (1969-2000)  
 
The SST composites during the Sahel drought epoch (Figure 2-10) shows the return 

of an ENSO pattern in the Tropical Pacific with a cooler eastern Pacific during wet 

years and a warmer eastern Pacific during dry years. While the Atlantic dipole is 
not strong, warmer conditions are observed in the Gulf of Guinea during wet years 
and cooler (though still positive anomalies but weaker) conditions are observed in 

dry years. The positive precipitable water anomaly present in the full record high 
precipitation year composites is replaced by a negative precipitation anomaly, 

strongest during the June early period. In addition, there are also anomalous low-

level winds from the north and east extending to the Guinea and Atlantic coasts. 
The same negative precipitable water anomaly and low-level wind anomalies are 

seen in dry years, with the precipitable water anomaly persisting through the peak 
and late periods (Figure 2-11). Upper level wind anomalies during dry years are 
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very similar to the full record anomalies, but during dry years, the positive easterly 
anomalies are replaced by weak westerly anomalies.  
 

 
Figure 2-11 Same as Figure 3 but for the modern period (2000-2014).  
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Figure 2-12 Same as Figure 4, but for the modern period (2000-2014)  
 
The SST anomaly composites for the modern period (Figure 2-12) show an increase 

in temperatures throughout, for both wet and dry years. A consequence of this 

increase in warming has been the increase in strength of more local SST regions, 
namely the Gulf of Guinea, and a decrease in the strength of ENSO as seen in the 
BDLM results. Also, the TAI is increasing to the levels seen in the pluvial wet 

period, but the precipitation is lower than this earlier wet period. This suggests that 
the warming in Indian Ocean and Gulf of Guinea could be acting negatively on the 

precipitation. This has been seen with Indian monsoon precipitation, where La Nina 
like conditions in the Pacific that historically produced heavy rains are barely 

producing above normal rains in recent decades (with 2016 as a prime example) 

(Krishnaswamy et al. 2015; Gill et al. 2015a). Warming in Indian Ocean as a result 
of anthropogenic planetary wide warming inhibits the strengthening of the 
circulation that is important for moisture convergence.  
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2.5 SUMMARY AND DISCUSSION 

In this paper, we performed a systematic analysis of 112-year-long (1901-2012) 
and investigated the variability of Sahelian summer monsoon precipitation and the 
strength of its teleconnections at multidecadal, seasonal and subseasonal time 
scales.  The wet / dry precipitation anomalies extend beyond the Sahel in to 
northern East Africa, and over India, which suggests coherent large-scale 
variability of precipitation influenced by large-scale teleconnections from SST 
forcings. The coherence is strong with East Africa during the peak season and in the 
late season with India. Similar relationships are seen from composites of anomalous 
precipitation during La Nina and El Nino years. As with the Indian monsoon, wet 
years strongly correspond with La Nina conditions in the tropical Pacific and dry 

years with in El Nino conditions, albeit weakly.  Through the BDLM we showed 

that there is multi-decadal variability in the relationship between precipitation and 
large-scale SST teleconnections. Over the last century the relative strengths of the 

tropical Pacific, the Indian Ocean, the tropical Atlantic, and the Gulf of Guinea have 

varied, with changes corresponding to epochal shifts in precipitation. During the 
mid-century wet period, Nino 3,4, the TAI, and the IOD-DMI are all relatively 

weak, with the GGI exhibiting a negative relationship. The subsequent Sahel 

drought sees a continued weak TAI and IOD-DMI, with Nino 3,4 strengthening and 
the GGI weakening before going positive. In the modern period, Nino 3,4 has again 

weakened, the TAI and IOD-DMI have returned to the average strength values, and 
the GGI has continued to increase in strength in the positive direction. This show 
that during epochal shifts, there are changes in the relative strengths of multiple 
SST teleconnections rather than a change in a single dominant SST teleconnection. 
Circulation field anomalies for the full record clearly showed the large-scale 
dynamics of precipitation in this region, namely low-level moisture transport inland 
from the Atlantic and Gulf of Guinea, and the strength and location of the upper-
level TEJ. For both the wet period and dry years these features correspond as 
expected and persist in the opposite years. Onshore low-level wind anomalies and 

easterly upper level wind anomalies are also present in low years during the wet 
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period while northeasterly low-level wind anomalies and westerly upper level winds 
are present in high years during the drought. Increases in global SSTs in modern 
times has led to a new epoch in summer monsoon precipitation, where the 
relationships with the Gulf of Guinea and Indian Ocean have strengthened and the 
relationships with ENSO and the Tropical Atlantic have weakened.  

This study offers insights into the rich variability of Sahel rainfall at multiple 
time scales. The asymmetry of ENSO teleconnections during wet and dry years 
subseasonal is quite interesting. Similarly, the temporal variability of the 
teleconnections. Also interesting is the similarity of variability and teleconnections 
exhibited by the Indian monsoon rainfall. All of these argue for a coherent space-
time variation of rainfall over Africa and India that is hitherto not fully recognized. 

The insights uncovered from this study, offer exciting prospects to improve the skill 

in seasonal forecasting, especially to develop statistical models conditioned on the 
state of the large-scale SST drivers. These can be used in statistical post-processing 

of dynamical forecasts. Furthermore, these can be used to develop robust 

multidecadal projection precipitation using wavelet and Hidden Markov Models 
(HMM) e.g., (Erkyihun et al., 2016; Erkyihun et al., 2017) – wherein the large-scale 

SST indices are modeled as wavelets of HMM and the precipitation simulated 

conditionally. In addition several interesting scientific questions for inquiry emerge 
from this study – How does the strength of teleconnections vary in a warmer 
climate?; Are the variations in SST drivers related? If so how? Are there space-time 

variability of precipitation in the Africa – India region part of a global tropics-wide 
precipitation variation? Probing climate model simulations and idealized model 

experiments can help provide insights into these questions.      
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3 FORECASTING AND EVALUATING LIVESTOCK HEAT STRESS USING A 
STOCHASTIC WEATHER GENERATOR 

3.1 INTRODUCTION 

Few studies have investigated the impact of heat stress on livestock within 
smallholder systems, which directly support 600 million people in the developing 
world (Thornton et al. 2006). These studies have, at least in part, been limited by a 
lack of accurate and reliable data on both environmental conditions and livestock 
health. Heat stress, the physiological response to direct environmental exposure, 
manifests as an increase in an animal's core temperature, leading to decreases in 
metabolism, production, and in severe cases, death. Heat stress burden and risk 

have been historically determined using index-based measures, with empirically 

derived thresholds for severity. The most widely adopted measure is the thermal-
humidity index (THI) (Thom 1959; NOAA 1976). The advantages of the THI are 

that it requires only temperature and humidity as inputs, two commonly measured 

climate variables, is easily calculated, and has risk levels that can easily be 
communicated to practitioners. In proposing replacements, studies have highlighted 

the shortcomings of the THI: it fails to account for the influence of additional 

climate variables including winds, solar radiation, and access to shade, it is a point 
measure of heat stress in time and does not account for cumulative effects, and the 

thresholds required to determine impacts are dependent on animal breed and 

physical characteristics (Gaughan 2006; Hahn et al. 2009; Mader et al. 2010; 
Thompson et al. 2013). Two of the approaches that have been taken to address these 
shortcomings are: alternative index-based measures that incorporate additional 
climate variables, and energy-balance approaches that explicitly model the animal's 
heat budget. Index-based measures include the Heat Load Index (HLI) (Gaughan et 
al. 2008), Comprehensive Climate Index (CCI) (Mader et al. 2010), and the 
Livestock Weather Safety Index (LWSI) (Eigenberg et al. 2005; Brown-Brandl et al. 
2006; Eigenberg et al. 2007). These three measures provide point estimates of heat 

stress. To account for the cumulative effects of heat stress, the Accumulated Heat 
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Load (AHL) index uses the HLI with fixed rates of increase or decrease when above 
or below critical thresholds (Gaughan et al. 2008; Mader et al. 2010). Energy 
balance approaches explicitly model the cattle heat budget, building on conceptual 
models laid out in Finch 1986 and Monteith and Unsworth 2014. These energy 
balance models take in external inputs including environmental temperature, 
winds, and solar radiation (direct exposure to the sun), and combine them with heat 
cattle produce internally through digestion and reproduction. This approach 
addresses several issues found with using an index-based measure, implicitly 
incorporating cumulative effects, and removing the need for breed and location-
based, empirically derived thresholds. It does however introduce the need for 
accurate physiological cattle data. Either approach requires complete weather 

sequences as forcings, which can be difficult to obtain for many study regions. 

Stochastic weather generators (SWGs) present an attractive method for producing a 
rich variety of forcing data. Additionally, the inclusion of covariates in SWGs 

provide a flexible tool for generating weather sequences for use in short-term and 

seasonal projections conditioned on seasonal climate forecasts, for use in livestock 
planning and management decisions. 

In the developing world, often in locations where livestock are a major 

livelihood, research into livestock heat stress burden has been limited by a lack of 
weather data. Although accurate physiological cattle data are needed to define 
critical thresholds for use with the index-based methods, or for inclusion in heat-

budget models, quantifying the variability of historical and future heat stress 
burden from variability in weather can still provide useful information about 

potential impacts using current best-estimate values. The use of a SWG provides a 
means of quantifying this variability and providing an initial assessment of heat 

stress burden in these regions. SWGs also provide a means of obtaining the climate 

variables required for more calculating more complex measures of heat stress which 
is potentially more reflective of actual on-the-ground conditions.  

While weather generators have found acceptance in the agricultural 

community, they have primarily been used to examine crop production. Applications 
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to livestock related issues have been limited to one study, Parsons et al. 2001b,a, 
who used stochastic weather output to examine the impact of changing climate on 
livestock production across Britain using several process models. Our research here 
marks the first application of SWGs for livestock health. In this paper, we 
demonstrate the utility of a SWG in quantifying livestock heat stress risk in data-
scarce regions. We highlight the ability to incorporate in a wide variety of covariates 
which can be used to produce current-condition estimates of heat stress, 
subseasonal to seasonal forecasts, and future climate projections. This flexibility 
provides a robust tool that can offer actionable information to both decision makers 
and planners. 

The chapter is organized as follows. A review of SWGs is first presented, 

followed by a description of the data and study region. The SWG model used is next 

presented, followed by results from conditional and unconditional simulations, with 
a discussion and future extensions to conclude the paper.  

 

3.2 STOCHASTIC WEATHER GENERATOR OVERVIEW 

Stochastic Weather Generators produce synthetic weather sequences that are 

statistically consistent with the historical record. The original single-site weather 
generator of Richardson 1981 and Richardson and Wright 1984 model precipitation 

occurrence as a chain-dependent process (Katz 1977) and amount using probability 

distributions. This two-step approach allows the generator to capture the length 
and frequency and magnitude of wet and dry spells. Temperature is modeled using 

linear time series models. This approach well captures historical climatology, but is 
poor at capturing extreme events. Incorporating in appropriate covariates to 

condition the weather generator runs in a particular season offers a way of 

improving a weather generator's performance. Examples of appropriate covariates 
include ENSO phase (Trenberth 1997) and other climate teleconnections (Grondona 

et al. 2000; Andrés Ferreyra et al. 2001; Katz 2002; Wilby et al. 2002; Meza 2005). 
Extensions to this approach have provided methods for perturbing parameters, 
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applying seasonal correction factors, adjusting input data, and spectral bias 
corrections (Hansen and Mavromatis 2001; Caron et al. 2008; Kilsby et al. 2007; 
Qian et al. 2010). In addition, weather generator parameters can be interpolated in 
space using locally-weighted regression to produce simulations of weather at 
arbitrary locations (Wilks 2008). The development of non-parametric weather 
generators has offered improvements in capturing nonlinearities between variables 
and sites. Non-parametric approaches include k-nearest neighbor (k-NN) bootstrap 
resampling (Brandsma and Buishand 1998; Rajagopalan and Lall 1999; Buishand 
and Brandsma 2001; Beersma and Adri Buishand 2003; Yates 2003; Sharif and 
Burn 2007) and kernel density based estimators (Rajagopalan et al. 1997; Harrold 
2003). Further modifications have been made to improve performance. Initially 

applying a clustering algorithm to identify regions of similar climatology (Caraway 

et al. 2014) has improved simulations in complex terrain. Using a semi-parametric 
approach with Markov chain modeling has improved the ability to capture the 

duration of wet and dry spells, and including the ability to incorporate in seasonal 

forecasts (Apipattanavis et al. 2010) or multi-decadal projections (Podestá et al. 
2009) enables weather generators to be used in forecasting applications. Despite 

these developments, the primary limitations of this class of weather generators is 

that it is difficult to produce values outside the range of historically observed 
weather and difficult to produce simulations at locations lacking historically 
observed weather.   

Stochastic weather generators using generalized linear models (GLM) offer 
several advantages over traditional approaches. GLMs are a variation on 

traditional linear regression models which allow an appropriate model to be used 
for each climate variable, for example normal distribution for temperature or 

gamma distribution for precipitation amount which cannot be less than zero. Each 

model is constructed by specifying the appropriate link functions. This form of 
weather generator was first demonstrated by Stern and Coe 1984 and improved by 
Yang et al. 2005. The GLM structure is flexible in that it can incorporate the 

appropriate set of covariates, such as short-term or seasonal forecasts, or multi-
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decadal projections. In Kim et al. 2012 seasonal precipitation was used as a 
covariate to generate weather sequences at a single site and in Verdin et al. 2014 a 
space-time GLM weather generator was used to generate daily weather ensembles 
over a sub-basin in Argentina, consistent with seasonal climate forecasts and future 
climate projections. The utility of this approach was demonstrated by applying it to 
agricultural management in the Argentinian Pampas.  

Numerical weather prediction models, seasonal climate forecasts, and future 
climate projections can all be used to obtain these covariates, leveraging their 
forecast skill and the ability to produce many realizations. Projections of future 
climate from global climate models (GCMs) are mostly at coarse spatial scales, 
while resource management decisions require information at the local scale. 

Covariates from GCMs at the coarse spatial scale can be used with SWGs to 

generate ensembles of daily weather at the fine scales required for decision making 
(e.g. Verdin et al. 2018). These can be used to drive process models, such as 

agricultural or hydrologic models to relate daily weather to measures relevant for 

local decision making. Thus, SWGs have been used as a downscaling approach. In 
particular, for livestock management, stochastic weather ensembles can provide 

seasonal projections of heat stress which will enable efficient decision making by 

livestock owners, including purchase and sale of cattle, fodder, investment in 
shelters, and identify locations with the best conditions for seasonal migrations. 
They can also serve as the basis for insurance programs which can offer herders and 

farmers a financial buffer against uncertain future conditions and climate change. 
These index and climate based insurance programs are becoming increasingly 

popular and effective tools in addressing the impacts of climate in the developing 
world (Greatrex et al. 2015; Surminski et al. 2016). 

 

3.3 STUDY REGION 

The focus for this study is the Sahelo-Sudanian region of West Africa (Figure 
4-1), where agricultural production in aggregate supports 60% of the active 
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population and is responsible for 40% of the gross national product (Battisti and 
Naylor 2009).  
 

 
Figure 4-1 Study region showing the 26 weather observations stations used (black 
dots). 
 
Quantifying heat stress burden and livestock risk in the developing world, 

especially in this region, has been limited, with little understanding of the 

susceptibility of native breeds to heat stress. This lack of knowledge has been 
highlighted by the International Livestock Research Institute (ILRI), who states 

“the impacts of increased frequencies of extreme heat stress on existing livestock 
breeds are not known, nor do we know if there are critical thresholds in the 

relationship between heat stress and physiological impacts.'' Easterling and Apps 
2005 state: “Confidence in the ability of livestock producers to adapt their herds to 
the physiological stresses of climate change is difficult to judge. The absence of 

physiologically based animal models with well-developed climate components 
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suggests a major methodological void.'' Additional complexity is introduced when 
considering a broad region such as sub-Saharan Africa where there is a large 
heterogeneity in livestock systems in terms of breeds, methodology, and adaptive 
capacity. Adaptation and selective breeding have produced cattle breeds with 
greater resistance to local conditions including climate and disease. The resilience of 
these breeds to heat stress has not been well quantified, with the threshold values 
commonly used with heat stress indices developed for intensively managed cattle in 
the developed world. In addition, there has been limited effort in developing 
accurate energy budget models for these breeds. Application of a SWG to livestock 
heat stress in this region can offer baseline heat stress burden, and the ability to 
forecast heat stress burden at multiple time scales. In this paper, we demonstrate 

the utility of a SWG in quantifying livestock heat stress risk in data scarce regions. 

We highlight the ability to incorporate in a wide variety of covariates which can be 
used to produce current-condition estimates of heat stress, subseasonal to seasonal 

forecasts, and future climate projections. This flexibility provides a robust tool that 

can offer actionable information to both decision makers and planners.  
 

3.4 DATA 

Daily weather data were obtained from the HadISD dataset, a quality-

controlled version of the NOAA Integrated Surface Dataset (ISD) from the UK Met 

Office. These data are collected from over 100 sources and provide 3-hourly 
observations at each location (Dunn et al. 2012). Daily minimum, maximum, and 

mean values were calculated for temperature, relative humidity, and wind speed 
along with daily precipitation totals. Stations were filtered by the percent of missing 

data in the study period 1973-2012 and those with at least 90% coverage were 

retained. Stations with gaps in the data longer than a month were removed from 
this subset. The 26 stations meeting these criteria are shown in (Figure 4-1). The 

NCEP-NCAR reanalysis (Kalnay et al. 1996) provided 3-hourly surface solar 
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radiation data by selecting the values from the closest grid box for each observation 
station location. Daily mean solar radiation was calculated from these data.  
 

3.5 MODELING FRAMEWORK 

3.5.1 HEAT STRESS MEASURES 

To demonstrate the utility of a SWG in quantifying heat stress burden, two of 
the heat stress measures, THI and HLI, are used to quantify livestock heat stress 
burden. While the limitations of THI are understood, using only temperature and 
humidity, it remains a widely used heat stress measure. The HLI, which includes 

winds and solar radiation in addition to temperature and humidity, shows the 

ability of a SWG to accurately model these additional climate variables. The SWG 
used in this paper produces the climate variables required to calculate other index-

based heat stress measures and energy-balance based measures as well, but for 

clarity we chose to present results for just THI and HLI.  
 

THI = 0.8T𝑎𝑎��� +
𝑅𝑅𝑅𝑅
100

× (T𝑎𝑎��� − 14.4) + 46.4 

 

HLI is more robust as it includes solar radiation and wind speed in addition to 
temperature and humidity. It is calculated using: 
 

BgT = �1.33T𝑎𝑎 − 2.65�T𝑎𝑎 + 3.21 log 𝑆𝑆𝑟𝑟 + 1� + 3.5 

S. BgT = 1/ �1.33T𝑎𝑎 + 𝑒𝑒
−BgT−25

2.25 � + 3.5 

HLI. lo = 1.3BgT + 0.28(RH − WS) + 10.66 

HLI. hi = 1.55BgT + 0.38(RH − 0.5WS) + 𝑒𝑒(2.5−WS) + 8.62 

HLI = S. BgT × HLI. hi + �1 − S. BgT� × HLI. lo 
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where BgT is a calculated black globe temperature. S.BgT is a blending function 
used with HLI.lo and HLI.hi  to ensure a smooth function. 

The seasonal climate of the region is largely controlled by the West African 
Monsoon (WAM), a low-level southwesterly flow existing during the boreal summer. 
This flow advects moisture onshore, and the strength of the WAM impacts both the 
magnitude and location of summer rainfall. The WAM also affects seasonal 
humidity and temperature. This can be seen during monsoon onset and retreat (in 
the spring and fall respectively), with changes in the timing of these transition 

periods affecting local climate conditions directly, and livestock heat stress  

indirectly. 
 

 
Figure 4-2. Median climatology for individual stations in the study region. Line 
indicate commonly-used thresholds for mild (yellow) and moderate (orange) heat 
stress. 
 



    43 

 From the climatology of THI at all weather observation stations (Figure 4-2) the 
values peak in the spring, with a dip in values through the summer, and a second 
peak in early fall - monsoon rainfall is responsible for this dip in summer values. 
Timing of monsoon onset and retreat can shift the spring and fall peaks earlier or 
later in the season. In addition to THI (or other heat stress measure) magnitude, 
additional insights into heat stress related risk can be provided by the number of 
exceedances above critical thresholds, and the duration of exceedance, or number of 
consecutive days above the threshold provide additional insights into the heat 
stress related risk. These three measures of heat stress - magnitude, exceedance 
counts, and consecutive days of exceedance, can be used to quantify the severity of 
heat stress. Ensembles of daily weather sequences can be used to provides a rich 

variety of heat stress measures to capture the risk to livestock health. This 

understanding of the severity of heat stress can serve the smallholder livestock 
community at large, and especially the pastoralists who migrate throughout the 

year. Current decision making about when and where to migrate are based on past 

experience, and available reports about pastureland conditions and water access. 
Associated information about heat stress could provide an additional factor to 

consider in this decision making. There have also been efforts to develop index-

based insurance programs that rely on local conditions to assess risk and issue 
payouts when conditions reach a certain threshold. Measures of heat stress could 
also be incorporated into these programs to more accurately represent conditions on 

the ground (Greatrex et al. 2015).  
 

3.5.2 STOCHASTIC WEATHER GENERATOR 

A stochastic weather generator as described in Furrer and Katz (2007, 2008) 

and implemented in Kim et al. 2012; extended to space-time generation of 
precipitation and temperature (Kleiber et al. 2012, 2013), and integrated into a 

robust space-time weather generator in (Verdin et al. 2014) is employed to 
investigate the statistical variability of and to model minimum and maximum 
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temperature, minimum and maximum relative humidity, minimum and maximum 
wind speed, precipitation occurrence and intensity, and mean solar radiation, 
climate variables required to calculate heat stress measures. In this research, 
extension of the SWG to relative humidity and winds is an important contribution. 
Each climate variable is modeled using a Generalized Linear Model (GLM) 
(McCullagh and Nelder 1989) with an appropriate ‘link function’. The GLM 
framework provides a method of linking the response variable to a set of covariates. 
The response variable is assumed to be a realization from any distribution in the 
exponential family with a set of parameters. A smooth and invertible link function 
transforms the conditional expectation of Y to the set of covariates, X with model 

parameters β and variance of error ε, which is assumed to be normally distributed 
with mean zero and variance σ2. 

 
G(E(Y)) = η = f (X) + ε = XβT+ ε 

 

An iterated weighted least squares method is employed to estimate the model 

parameters, β. An appropriate link function, G(.), is selected based on the assumed 
distribution of Y. All statistical analysis and modeling is performed using R (R 

Foundation for Statistical Computing).  Details for each model can be found in 

Appendix A. The structure of these models for precipitation occurrence, 
precipitation intensity, and temperature follow on past SWGs. Relative humidity, 
wind speed, and solar radiation were added to calculate heat stress measures, but 

are also applicable to other measures in agriculture and public health. With relative 
humidity, logistic regression approach was taken, using a logit link function in the 

GLM to ensure values between 0 and 100. Day-of year variance for all variables is 

modeled using harmonic terms to capture the changing seasonal variance following 
the form: 
 

ln�𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑� = 𝜇𝜇 + 𝛽𝛽𝑖𝑖,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑖𝑖,2𝑆𝑆𝑡𝑡 
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where ln�𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑� is the log of the day-of-year mean variance and Ct and St are the 

harmonic terms as before. When simulating, the error is sampled from Normal 
distribution with the estimated variance from the above model on the day-of-year of 
interest. This addition greatly improves the weather generator's ability to capture 
processes with a seasonally changing variance. The structure of these models with 
the addition of covariates can also be found in Appendix A. Seasonal covariates: 
mean temperature, mean relative humidity, and total precipitation can be obtained 
using forecasts providing a way of generating daily weather for an upcoming 
season. The International Research Institute for Climate and Society (IRI) at 

Columbia University produces seasonal tercile forecasts of precipitation giving the 
probability of being above average, average, or below average. These probabilities 

can be used to conditionally sample historical observations and obtain seasonal 

covariates. For a given year, the probabilities of precipitation above average, 
average, or below average precipitation are obtained from IRI seasonal forecasts. 

Historical seasonal precipitation totals are also classified as above average, average, 

or below average, and the desired number of years are sampled using the 
probabilities as weights, The seasonal temperature, relative humidity, and 

precipitation from the sampled years are then used in the weather generator as 
covariates. The daily values for the start of the season for each sampled year are 

used as initial conditions.  

 

3.6 RESULTS 

3.6.1 CONDITIONAL SIMULATION 
An ANOVA table showing the statistical significance for all model coefficients 

can be found in Appendix B. It can be seen that all the model covariates are 
statistically significant at 90% confidence level and higher. We generated daily 

weather sequences at Ouagadougou, Burkina Faso, conditioned with 

contemporaneous covariates: monthly or seasonal total precipitation, mean, 
minimum, and maximum temperature, and mean, minimum, and maximum 
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relative humidity, which we call, conditioned simulation, and for comparison we 
generated from a model without the covariates, which we call, unconditioned 
simulation.  

 

3.6.2 HISTORICAL SIMULATION 
We simulated daily weather in unconditional and conditional modes. Each 

simulation was of the same length as the historical data (i.e., 40 years) and 200 
simulations were made. For the conditional simulations, monthly covariates were 
used. Basic monthly statistics of the variables, mean, variance, etc., are generally 
well captured (Furrer and Katz 2007; Verdin et al. 2014)  therefore, here we show 

the probability density function of the variables from the simulations and compare 

it with that of the historical data. Figure 4-3 shows the PDF of simulations (in gray) 
and that of the historical data (solid line) for each season and for the nine variables.  

The PDFs were computed nonparametrically using kernel density estimators 

(Silverman 1986).   
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Figure 4-3. Unconditioned and conditioned seasonal weather generator variables for 
Ouagadougou, Burkina Faso for January - March. From left to right, top to bottom: 
precipitation intensity (mm/day), precipitation occurrence (0: no rain, 1: rain), 
minimum temperature (ºC), maximum temperature (ºC), minimum relative 
humidity (%), maximum relative humidity (%), minimum windspeed (m/s), 
maximum windspeed (m/s), and solar radiation (W/m2/d). 
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There is an overestimation of the number of rainy days in all cases, with even 
slightly higher overestimates with conditioning. The conditioned runs do a better 
job at capturing low-magnitude rain events that are largely missed by the 
unconditioned runs. Low minimum temperatures are better captured by the 
conditioned runs, but still fail to capture the peak in temperatures between 23 and 
25ºC. Conversely, maximum temperature is overestimated between 32 and 35ºC, 
with conditioning shifting the distribution to the right towards higher 
temperatures. There is still an overestimation of lower maximum temperatures and 
an underestimation of higher maximum temperatures, but conditioning provides 
some improvement over the unconditioned runs. The greatest impact of conditioning 
can be seen with relative humidity, in both the minimum and maximum cases. The 

unconditioned runs are not able to capture the bimodal behavior, while there is 

marked improvement in the conditioned runs. Wind speed and solar radiation were 
not directly conditioned for any simulation, but as they are dependent on 

precipitation, temperature, and relative humidity, there is some improvement in 

skill imparted when conditioning these variables. The distributions of minimum 
and maximum wind speed are rough given measurements only at discrete intervals, 

however, the weather generator is able to capture the underlying smooth 

distribution quite well. The distribution of solar radiation is also well captured.  
 

3.6.3 HEAT STRESS 
The heat stress index THI was computed and the PDFs from the 

unconditional simulations for the four seasons are shown in Figure 4-4. It can be 
seen that the simulation PDFs are wider in that they generate lower and higher 

values of the index.  
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Figure 4-4. Unconditioned and conditioned seasonal thermal-humidity index for 
Ouagadougou, Burkina Faso. From left to right, top to bottom the panels show the 
distribution of daily THI for: January - March, April - June, July - September, and 
October - December. The black line shows the THI calculated from observations, 
and the gray lines show the THI calculated from weather generator runs. 
 
There is also a tendency for simulating lower THI values as the simulated PDFs are 

shifted slightly to the left relative to the observed.  The distributions of heat stress 
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indices are well captured with conditioning Figure 4-4 (bottom panel) as compared 
to the unconditioned (top panel). In January - March (top panel top left and bottom 
panel top left) conditioning better captures THI values between 75 and 80. While 
conditioning well captures values at the low end of the distribution, there remains a 
low bias in the peak as compared with the observed. In addition, while THI values 
at the high end of the distribution were overestimated without conditioning they are 
underestimated with conditioning. In April-June (top panel top right and bottom 
panel top right) conditioning greatly improves the fit, matching the peak seen in the 
observed, capturing well the low side of the distribution, and reducing the 
overestimation on the high side of the distribution. June - September (top panel 
bottom left and bottom panel bottom left) doesn't see much change between the 

unconditioned and conditioned distributions aside from slight improvements on the 

low end. Similarly, October - December (top panel bottom right and bottom panel 
bottom right) show slight improvements with conditioning better capturing the dual 

peak seen in the observed. The effect of conditioning can best be seen when 

examining individual years rather than multiple years in aggregate. 
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Figure 4-5. January - March THI for low, normal, and high years showing observed, 
unconditioned, and seasonally conditioned PDFs. The top panel shows the 
distribution of daily THI from January - March observations for a low year (red), an 
average year (green), and a high year (blue). The second panel shows the 
distribution of daily THI from January - March in a low year from observations 
(black line), unconditioned weather generator runs (small dashed line), and 
conditioned weather generator runs (large dashed line). The third panel shows the 
same as the second but for an average year. The fourth panel shows the same as the 
second, but for a high year.  
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Figure 4-5 shows the PDFs of THI for 1989 (low year), 2004 (average year), and 
2005 (high year) for the January - March season. The top panel shows the 
distribution of daily THI from January - March observations for a low year (red), an 
average year (green), and a high year (blue). The second panel shows the 
distribution of daily THI from January - March in a low year from observations 
(black line), unconditioned weather generator runs (small dashed line), and 
conditioned weather generator runs (large dashed line). The third panel shows the 
same as the second but for an average year, and the fourth panel shows the same as 
the second, but for a high year. In the low THI year (second panel) the peak of the 
PDF from the conditional simulation is closer to that of the PDF of the historical 

THI in this year and they both are shifted to the lower side. The unconditional 

simulations suggest higher values of THI with the peak of PDF shifted to the right. 
Similarly, in the high THI year of 2009 (bottom panel) the conditional simulation 

shows two peaks with the peak at higher value consistent with that of the 

historical. The unconditional PDF has a single peak at the lower end. These clearly 
demonstrate the effect of conditioning in effectively capturing the distribution of 

heat index.     
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Table 4-1. Observed and simulated THI exceedances for January - March. The table 
shows the number of days exceeding THI thresholds during this season for low, 
normal, and high years. Min. THI is the minimum number of exceedances from the 
200 weather generator simulations and Max. THI is the maximum number of 
exceedances from the 200 weather generator simulations. 

Year Year Type Dataset THI >= 72 THI >=79 

1989 Low Observed 0.303 0.026 

1989 Low Unconditioned 0.433 0.067 

1989 Low Seasonal Conditioning 0.322 0.000 

2004 Normal Observed 0.484 0.077 

2004 Normal Unconditioned 0.440 0.065 

2004 Normal Seasonal Conditioning 0.418 0.000 

2005 High Observed 0.625 0.091 

2005 High Unconditioned 0.433 0.067 

2005 High Seasonal Conditioning 0.478 0.000 

 
 

Table 4-1 shows the median probability of exceedance for two THI threshold levels 

for a low year, average year, and high year. This represents the number of days in a 
season exceeding the threshold. For THI > 72 exceedance probabilities more closely 

match the observed with conditioning. The probabilities are adjusted lower as 

compared to the unconditioned case in low years and adjusted high as compared to 
the unconditioned case in high years.  

 

3.6.4 SIMULATIONS CONDITIONED ON SEASONAL CLIMATE FORECASTS 

Conditioning covariates can be obtained from seasonal climate forecasts. 

These forecasts typically issue categorical probabilities – for example the 
probabilities of being above average, average, and below average. We demonstrate 

the utility of the conditional simulation approach in conjunction with seasonal 
climate forecast to help with planning decisions.  
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Figure 4-6. Examples of IRI seasonal forecasts for Africa. The left panel shows a 
forecast for a cool year and the right panel shows a forecast for a warm year. Bars 
show the probability of temperate being low, normal, or high. 
 

The International Research Institute for Climate and Society (IRI; 
www.iri.columbia.edu) provides seasonal (three-month) probabilistic forecasts at 

one to four month lead-times. The forecasts are in the form of A:N:B likelihoods, 

where A is above-normal, N is near-normal, and B is below-normal. The categories 
are equal and defined with respect to climatological terciles (e.g., 33rd and 67th 

percentiles). The skill of these forecasts tends to be better at short lead-time. Figure 

4-7 shows the seasonal forecast of temperature for the January - March season for 
2011, a cool year, (left) and 2013, a warm year (right). First ensembles of seasonal 
historical temperatures are sampled with replacement based on the categorical 
forecasts. This is accomplished by categorizing the historical weather as above-, 
near-, or below-normal based on the empirical terciles, and then assigning the 
categorical forecasts as probabilities (or weights) to the historical values in each 
category and resampling with these assigned weights as the probability metric. We 
generated 100 ensembles of seasonal temperatures which were used as covariates to 

drive the weather generator 100 separate times. The output of these 100 
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independent runs is essentially a downscaled ensemble of weather patterns 
consistent with the seasonal climate forecasts. To investigate the sensitivity of THI 
to forecast skill we selected a below-normal (low) and an above-normal (high) year 
and assigned different probabilities of selecting a low or high year in the 
resampling. Results are shown in Figure 4-7 for a 60% certainty and an 80% 
certainty that an upcoming season will be either below-normal or above-normal. 
 

 
Figure 4-7. January - March THI low year (red), average year (green), and high year 
(blue) seasonally conditioned PDFs using a 60% certainty seasonal forecast (top) 
and 80% certainty seasonal forecast (bottom). 
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While the shifts in the THI PDFs are not as pronounced as seen in the observed 
data due to the introduced uncertainty it does move in the appropriate direction 
suggesting that using seasonal forecasts to condition the weather generator can 
improve the forecasting of THI. 
 

3.7 DISCUSSION 

Heat stress can have a large impact on livestock wellbeing, affecting their 
growth rate, milk production, and reproduction. It is especially relevant in regions 
where there is little control over the environmental exposure experienced by 
livestock. While heat stress is an animal-specific phenomenon, dependent on health, 

age, hide color, and access to fodder and water, a general understanding of the 

impact of different environmental conditions on heat stress can be found using heat 
indices and empirically derived threshold levels. Stochastic weather generators 

provide a method of producing complete weather sequences for evaluating heat 

stress indices. The incorporation of external covariates greatly improves the SWGs 
ability to capture the distributions of both the raw weather variables and the heat 

indices. They also offer the ability to provide seasonal forecasts or future projections 

when used with leading values or climate model output. In this paper, we only 
considered IRI seasonal forecasts and our synthetically generated forecasts which 

resampled the historical observations. Even greater improvements in skill would 

probably be realized when using more accurate seasonal temperature forecasts. 
These could be obtained from numerical weather prediction models, from statistical 
models that exploit persistence in large-scale climate, or a combination of the two. 
While it is possible to also use these forecasts to directly calculate heat stress 
measures such as the THI and HLI, incorporating them into a stochastic weather 
generator offers a way to obtain a daily time-series, as well as produce many 
realizations which can then be used to calculate probabilities of occurrence or 
probability of exceedance above a critical threshold. The space-time weather 

generator of Verdin et al. (2014) can be used to generate ensembles of heat stress 
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indices and consequently the health risks to livestock and enable effective 
mitigation strategies. The stochastic weather ensembles can also be coupled with 
physical models of livestock heat stress and simulate the indices. The 
demonstration of SWG for livestock heat stress application and also the extension to 
wind and relative humidity are unique contributions of this research.    
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4 SPATIAL AND TEMPORAL VARIABILITY OF EAST AFRICAN KIREMT 
PRECIPITATION AND LARGE-SCALE TELECONNECTIONS 

4.1 INTRODUCTION 

Ethiopia, north of about 7ºN experiences one primary precipitation season, 
with a peak during the boreal summer, June to September. This season, termed the 
Kiremt, is responsible for 50%–80% of the annual precipitation over its agricultural 
regions and a majority annual precipitation falling in the headwaters of the Blue 
Nile and Omo Gibe rivers. Broadly, Kiremt season precipitation can be linked to two 
primary causes: the availability of moisture, and the behavior of local dynamical 
features promoting convection. There have been several studies investigating the 

sources and availability of moisture. One source identified is moisture transported 

from the Atlantic Ocean, Gulf of Guinea, and the Congo Basin by cross-continental 
low-level winds and delivered to the west side of the Ethiopian highlands (Flohn 

1987). The strength of these low-level winds can be enhanced by a strong northeast 

directed pressure gradient between the Gulf of Guinea and the Arabian Peninsula. 
Segele et al. 2009a and Nicholson 2014 have found increases in Kiremnt 

precipitation associated with strenghtened low-level winds. Dry low-level easterly 

winds have also been shown to supress local convection which in turn depresses 
westerly moisture transport (Williams et al. 2012). Local circulation, which 

promotes convection can be largely linked to the East African Monsoon (EAM). The 

EAM is a low-level feature which establishes itself in the boreal spring and extends 
through the summer. The EAM is responsible for the development of the Tropical 
Easterly Jet (TEJ) and the low-level Somali Jet. Through increasing atmospheric 
instability, a strengthened TEJ is associated with increased precipitation, and a 
weakened TEJ is associated with decreased precipitation (Segele and Lamb 2005; 
Segele et al. 2009a,b; Diro et al. 2011; Williams et al. 2012). A strengthened low-
level Somali jet is also associated with increases in precipitation (Nicholson 2014).  

Sea surface temperature (SST) driven teleconnections have been linked to 

interannual variability of Kiremt season precipitation. At seasonal timescales, 
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teleconnections with El Nino Southern Oscillation (ENSO), the tropical Indian 
Ocean, and the tropical Atlantic Ocean influence moisture transport to this region 
the variability of the EAM, and thus Kiremt precipitation variability. The ENSO 
has been identified as a primary driver of interannual precipitation variability 
(Korecha and Barnston 2007). With El Nino conditions (warm central and eastern 
tropical Pacific) corresponding to periods of low precipitation and La Nina 
conditions (cooler central and eastern tropical Pacific) corresponding to periods of 
high precipitation (Nicholson and Kim 1997; Moran and Ward 1998; Seleshi and 
Zanke 2004; Diro et al. 2011). A weakening of the TEJ corresponds with El Nino 
conditions in the tropical Pacific (Chen and van Loon 1987; Nicholson 2013). 
Warmer conditions in the central and eastern tropical Pacific have been linked to an 

earlier monsoon onset, but a shorter season (Gissila et al. 2004; Block and 

Rajagopalan 2007; Korecha and Barnston 2007). In addition to ENSO, the Atlantic 
Ocean, and the Indian Ocean also influence Kiremt precipitation variability 

(Korecha and Barnston 2007; Nicholson 2014), with a warmer Indian Ocean and 

Arabian Sea seen to  delay monsoon retreat and extend the precipitation season 
(Segele and Lamb 2005). At subseasonal scales, precipitation variability has been 

linked to the Madden-Julian Oscillation (MJO) via (1) the direct influence of the 

MJO core, (2) synoptic effects of the MJO core, and (3) influences on remote 
teleconnections via Rossby and Kelvin wave propagation (Zaitchik 2017). Direct 
MJO influences on East African long (March-May) and short (October-December) 

season precipitation have been noted. While there are subseasonal and spatial 
differences, these influences are the result of increasing westerly low-level moisture 

transport, weakened, but warmer and more moist low-level easterly winds, 
increases in low-level convergence, reduced stability, and increases in tropospheric 

air temperatures (Berhane and Zaitchik 2014). In addition to direct influences, 

there is an interplay between MJO and remote teleconnections including the Indian 
Ocean Dipole (IOD) and ENSO. There are findings that suggests MJO events 
preclude El Nino and have been linked to conditions important for its development. 

The MJO events during El Nino have been seen to have shorter lifecycles, though 
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they propagate further into the Pacific. While this influence has been seen to be 
strongest during the winter (Shimizu and Ambrizzi 2016),  the influence during 
summer is not well understood. Enhanced MJO convection has been associated with 
the negative phase of the IOD with positive SST anomalies in the eastern Indian 
Ocean relative to the western Indian Ocean, and suppressed MJO convection has 
been associated with the positive phase of the IOD (Shinoda and Han 2005; Kug et 
al. 2009; Wilson et al. 2013; Benedict et al. 2015; Zaitchik 2017). Decreases in 
Kiremt precipitation occurred in concert with decreases in the West African Sahel 
during the 1970s and 1980s, however, while there has been a ‘recovery’ in the Sahel, 
precipitation in East Africa has continued to decrease in the recent 1990-present 
period (Williams et al. 2012). Furthermore, the teleconnections that drive Sahel 

rainfall show multidecadal variability (Chapter 3) and we suspect similar behavior 

with East African rainfall. 
There have been several attempts to develop skillful seasonal precipitation 

forecasts for the Kiremt season using these teleconnections. Statistical regression 

approaches have demonstrated spatially-dependent skill at short lead times using 
large-scale ocean and atmospheric features. (Gissila et al. 2004; Korecha and 

Barnston 2007; Block and Rajagopalan 2007; Diro et al. 2011; Nicholson 2014). 

Predictability was strongly linked to the summer ENSO state, as well as discerning 
intensifying vs. decaying behavior in the spring. Skillful forecasts were limited to a 
two month lead time by the ‘predictability barrier’ of ENSO (Torrence and Webster 

1998), rapid changes in circulation during the March-May season, and the 
sensitivity of the tropical Pacific and Indian Ocean to perturbations.  

It is clear that to improve forecast skill of Kiremt season precipitation, 
understanding of the seasonal, subseasonal variability and potential predictability 

over time is crucial. Motivated by this need, in this paper, we perform analyses to 

quantify the temporal evolution of large-scale teleconnection on Kiremt 
precipitation. We also investigate connections with the MJO. Description of the data 
and methods are first presented followed by results and discussion.   
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4.2 DATA AND METHODS 

Gridded precipitation data were obtained from the CRU TS3.23 dataset 
which provides monthly coverage for 114-year period of 1901-2014 at a 0.5°x0.5° 
resolution (Harris et al. 2014). Summer season (June-September) average 
precipitation along with subseasonal June (early season), July-August (peak season) 
and September (late season) average precipitation were computed. This dataset was 
selected for its relatively fine spatial resolution and length of record. We obtained 
daily precipitation from the Climate Hazards group Infrared Precipitation with 
Stations (CHIRPS) (Funk et al. 2015) dataset which offers a 0.05°×0.05° resolution 
from 1981-present. Global climate fields – winds, geopotential heights, sea level 
pressure, and precipitable water – were obtained from the NCEP/NCAR Reanalysis 

1 (NNR) (Kalnay et al. 1996). The Nino 3,4 index was obtained from NOAA Earth 

Systems Research Laboratory (ESRL). Indian Ocean Dipole Mode Index (IOD-DMI), 
the Tropical North Atlantic Index (TNA), and the Tropical South Atlantic Index 

(TSA provides a timeseries of standardized SST anomalies over their respective 

regions and were calculated using the Hadley-OI merged SST dataset (Hurrell et al. 
2008). The Nino 3,4 index bounded by 120°W-170°W and 5°S- 5°N (Trenberth 1997), 

IOD-DMI is defined as the temperature gradient between the East (90°E-110°E and 

10°S-Equator) and West (50°E-70°E and 10°S-10°N) Indian Oceans (Saji et al. 
1999). The TNA region is defined as 5.5°N-23.5°N and 57.5°W-15°W, and the TSA 
region is defined as 20°S-Equator and 30°W-10°E (Enfield et al. 1999). We 

constructed the Tropical Atlantic Index (TAI) as the difference between the TSA 
and TNA in order to capture the Atlantic dipole behavior.  
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Figure 5-1. East Africa precipitation clusters, using a k-Means clustering approach 
on annual climatology and the CRU TS3.23 precipitation dataset 
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To identify regions of coherent rainfall regions, a K-means cluster analysis (Scott 
and Knott 1974) was performed on the annual climatology and the three-month 
periods of maximum precipitation at the stations. The climatology clusters the 
region into six distinct areas (Figure 5-1) shown in six different colors. The ‘North’ 
and ‘Northwest’ clusters have their primary rainfall season from June to 
September, i.e., Kiremt. The northern region in particular, contains the headwaters 
of several major rivers including, the Blue Nile and the Omo Gibe, and thus is the 
focus for this analysis. For the cluster, anomalous precipitation years are identified 
using a cluster-average standardized anomaly time series (1950-1999 climatology) 
with low (or dry) years corresponding to values <= -1 and high (or wet) years >= 1 
for the full 114-year record. Composites of large scale climate fields for low and high 

years were produced for the full season as well as the subseasonal periods (early, 

peak, and late) as defined earlier. The fields selected are SSTs, low-level 
geopotential height (GPH) (850hPa), low (925hPa), mid (600hPa), and high 

(200hPa) level winds, and total-column precipitable water (precipitable water).  

To examine the changes in strength of large-scale climate features, a 
Bayesian Dynamical Linear Model (BDLM) was employed. Traditional linear 

regression methods are incapable of capturing the changing relationship, i.e., 

nonstationarity, the BDLM, on the other hand, provides an attractive alternative to 
modeling and understanding the nonstationarity in the relationships (West and 
Harrison 1997; Petris 2009). BDLM has been applied to modeling Indian summer 

monsoon rainfall variability (Maity and Nagesh Kumar 2006; Krishnaswamy et al. 
2015) and found interesting insights and better performance than the traditional 

regression methods showing the strengthening influence of IOD on Indian Monsoon 
and extreme rainfall events in recent decades while the influence of ENSO is 

weakening. Yanto et al. (2016) applied this to study the temporal variability of 

teleconnections of Indonesian rainfall with ENSO. In this method, the regression 
coefficients vary with time, unlike traditional regression where the coefficients 
remain fixed. A brief description is provided here for the benefit of the readers, for 

details see West and Harrison, 1997; Petris, 2009. 
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In BDLM the time series is considered as the output of a dynamical system 
perturbed by random disturbances (i.e., noise) – thus, considered a nonstationary 
evolution. The general form of the model is represented as: 
 
 yt=Ft xt+vt vt~Ν(0,Vt ) 
 xt=Gt x_(t-1)+wt wt~Ν(0,Wt ) 
 
where yt is a dependent variable (e.g. the leading PC), xt is a vector of independent 
variables (e.g., Nino 3,4, TAI, etc.), t denotes time, Ft is an observation operator that 
transforms the model states into observations (e.g. regression coefficient) and Gt is 
the linear system operator (that models states of the independent variables). Both 

observation and system equations can have additive Gaussian errors with 

covariance matrices Vt and Wt. 
The posterior predictive distribution of model coefficients θt at each time t is 

computed from the prior distribution of coefficients at time step t-1. Using Bayes 

theorem, the probability of the data yt conditional on the model parameters at time 
t is defined as: 

 

 P(θt |yt )∝ P(y yt | θt)P(θt |yt-1)  

  
The model coefficients θ consist of PCs, Nino 3,4, PDO, the regression coefficients 
and the variances of the Gaussian errors in the above equations. In the initial step, 

traditional linear regression is applied to compute regression coefficient with 
normally distributed mean and variance – i.e. θ0≈Ν(m0,C0 ) where m_0 and C0 are 
the mean vector and the variance – covariance matrix of the regression parameters. 

Using a Kalman filtering approach together with Markov Chain Monte Carlo 
simulation approach, posterior distributions are estimated at any time t. The 
posterior distribution is then employed to generate the Bayesian confidence 
intervals (Petris 2009). 
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The BDLM returns transient regression coefficients for each covariate 
included, in this case the four SST indices, Nino 3,4, the TAI, and the DMI. These 
time-evolving coefficients can be compared to a fixed regression coefficient and its 5-
95% confidence bounds (CI). Comparing the time evolution of these covariates and 
the changes in the standardized precipitation anomalies we were able to identify 
shifts in behavior. We used these shifts to define three epochs and repeat the above 
composite analysis.  
 

4.3 RESULTS 

Results focus on Kiremt season rainfall over the northern cluster (Figure 1) 

and are presented by analysis. Results are presented first for the seasonal and 

subseasonal composite analysis followed by the temporal variability of 
teleconnections analysis using BDLM, epochal composite results, and MJO 

composite results.  

 

4.3.1 SEASONAL AND SUBSEASONAL COMPOSITE ANALYSIS 

Composites of precipitation in high (i.e. wet) and low (i.e. dry) years are 
shown in Figure 5-2. Over the study region there are some notable subseasonal 

differences in precipitation anomalies. While the full season precipitation anomalies 

are uniformly wet and dry during the respective years (top row), early season drying 
(second row, right) is centered over east-central Ethiopia and northern Ethiopia, 
and there are slight positive rainfall anomalies seen in western Ethiopia. A similar 
pattern is seen during the peak season (third row, right). The late season drying 
pattern is more uniform, centered on central Ethiopia (bottom row, right). Wet 
patterns during the early season (second row, left) are more uniform, but the 
greatest increases shift north and east during the peak period (third panel, left). 
This wet/dry anomaly pattern can also be seen in the Sahel during the full season, 

with the clearest signal (homogenous spatial pattern) for both the wet and dry 
composites seen in the peak season (third panel). Similar wet/dry patterns can also 
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be seen in India (Gill et al. 2015a), with the most coherent pattern seen during the 
late season (bottom panel). These composite maps indicate that during wet and dry 
years there exists a coherent signal through tropical Africa and into India, 
indicative of global scale teleconnections. 
 

 
Figure 5-2. Composites of average precipitation corresponding to high (left column) 
and low (right column) precipitation years in the northern cluster based on the full 
record (1901-2014). Top row shows the composites for full season, June-September, 
2nd row the early season, June, 3rd row peak season, July-August, and bottom row, 
late season, September. 
 
In order to identify large-scale climate features existing during different 

precipitation regimes we first created composites of SSTs, low, mid, and upper level 
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winds, precipitable water, and low level GPH. These composites were created for 
the full season and for the early, peak, and late subseasonal periods for low and 
high precipitation years.  

The SST composites for the high and low years and for the seasonal and 
subseasonal periods are shown in Figure 5-3. There are statistically significant 
differences between wet and dry years in the tropical Pacific, while these differences 
are not as pronounced in the tropical Atlantic. The tropical Pacific pattern, with 
cooler temperatures present in high precipitation years, and warmer temperatures 
present in low precipitation years is evident in all subseasonal periods. The Atlantic 
pattern, with cooler temperatures present in high precipitation years, and warmer 
temperatures present in low precipitation years is most apparent in the late season.  

 

 
Figure 5-3. Same as Figure 2 but composites of SST anomalies. Statistically 
significant regions are stippled. 
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Figure 5-4. Same as Figure 2, but for average 925hPa winds (arrows), pressure 
(contours) and precipitable water (colors). 
 

Composite anomalies of 925hPa winds, precipitable water, and 850hPa GPH are 
shown in Figure 5-4. The 925hPa winds correspond to the low-level monsoon winds 

that transport moisture into the region, and the 850hPa heights are selected to 

avoid surface friction. During high precipitation years, the cross-continental wind 
anomalies, originating in the Gulf of Guinea and passing over the Congo Basin are 

enhanced. These wind anomalies are most prevalent during the early and peak 
season, and relatively weaker during the late season. There are also wind anomalies 
extending from the southern Indian Ocean into Kenya and southern Ethiopia. 
These wind anomalies are consistent with the low-pressure anomaly over north 
central Africa, and the Arabian Peninsula. Conversely, during low precipitation 
years the cross-continental wind anomalies are absent, as are the southern Indian 
Ocean wind anomalies. This corresponds to a large region of high pressure 
anomalies extending across northern Africa and the Arabian Peninsula.  
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4.3.2 TEMPORAL VARIABILITY OF TELECONNECTIONS 
The BLDM was applied to the summer season climate indices – TAI, IOD and 

Nino 3,4 and the summer seasonal average rainfall over the northern cluster. The 
time varying regression coefficients and the intercept are shown in Figure 5-5. All of 
the SST indices are known to influence precipitation during this season. 
Coefficients from the static (i.e. standard linear regression) regression and their 
90% confidence intervals are shown as horizontal lines in these figures. Periods 
where the BLDM time-varying regression coefficients deviate outside the confidence 
bounds indicate it is significantly different and can be interpreted as changes in 

teleconnection strength.   

 
 

 

 
 



    70 

 
Figure 5-5. Time varying regression coefficients – intercept (top panel), IOD-DMI 
(2nd panel), Nino 3,4 (3rd panel), and TAI (bottom panel) – from BDLM for north 
cluster precipitation (blue lines). Coefficients from stationary linear regression are 
shown in black with 95% confidence intervals (dashed lines). Red lines show the 
boundaries of the defined epochs – wet period (1945-1968), drought (1969-2000), 
and modern period (2001-2014). 
 
The intercept, which can be viewed as the mean value of the precipitation anomaly, 
shows positive values for most of the first half of the 20th century. From 1969 to 
2000 precipitation anomalies were negative, reaching their lowest point in the 
1980s, before returning to 0 in the modern period. This indicates weaker rainfall 
during the latter part of 20th century with modest recovery in recent years – 
consistent with the feature seen with Sahel rainfall (Broman et al., in review). The 

relationship with IOD-DMI shows no temporal variability and the values are within 

the interval from the static regression. In the recent decade, this relationship has 
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weakened (headed toward 0). The coefficient of Nino 3,4 has remained negative over 
the entire 114 years (negative relationship with ENSO), and also remained 
relatively constant.  In recent decade, this relationship has also weakened, 
significantly in the last 10 years. The relationship with TAI is similar, in that a 
positive relationship has existed consistently over the whole record, though has 
begun to weaken in recent years. This analysis suggests that the teleconnections 
have remained fairly stable however, in recent years they are weakening. This is of 
concern in that it also suggests that the predictability might also be weakening. 

Timeseries of the indices and standardized precipitation are shown in Figure 
5-6. The top panel shows an anomalous wet period in East Africa through the late 
1960s, followed by the dry epoch until the end of the century. The Nino 3,4 shows 

the well-reviewed multidecadal pattern of cooler during the middle part of the 20th 

century and warmer subsequently with a cooling in the early 21st century. The TAI 
also shows a multi-decadal pattern, and interestingly has been increasing from the 

1990s to the present. The IOD-DMI is fairly constant through the entire period. The 

epochal shifts in precipitation correspond to shifts in the strengths of the SST 
teleconnections as seen in the BDLM regression coefficients (Figure 5-5) and also 

the temporal variability of the indices in Figure 5-6. 
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Figure 5-6. Standardized precipitation and SST index (black line) and smoothed 
values (blue line) for north cluster precipitation (top panel), IOD-DMI (2nd panel), 
Nino 3,4 (3rd panel), and TAI (4th panel). Red lines show the boundaries of the 
defined epochs: wet period (1945-1968), drought (1969-2000), and modern period 
(2001-2014). 
 

4.3.3 EPOCHAL COMPOSITES 

For the epochal composites, we have lowered the threshold for identifying low 
and high precipitation years to +/- 0.4 in order to identify low years during the mid-
century wet period and high years during the late-century drought.  

During the mid-century wet period (Figure 5-7), there are significant 
differences between  
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Figure 5-7. Same as Figure 3, but for the wet period (1945-1968) 

 

the high and low precipitation years in the Atlantic and Pacific. These anomalies 

are clearly seen in the full season (Figure 5-7, top row) where in, during high years 
the entire tropical oceans (Atlantic, Pacific and Indian) are cooler and during low 

years, they are warmer but less coherent. Subseasonally they appear at the peak 

and late seasons (Figure 5-7, 3rd row and bottom row). There is a reduced influence 
of the Pacific, where negative anomalies (La Nina-like features) are seen during 

high precipitation years, but the corresponding positive anomalies are weaker 
during low precipitation years.   

The decline in precipitation in East Africa in the late-20th century 
corresponded to similar declines in precipitation over the West African Sahel. SST 
composites for low and high precipitation years during this epoch (Figure 5-8) show 
a clear ENSO signal, but warmer in Atlantic and Indian Oceans during both high 
and low years. In the tropical Pacific, La Nina conditions are present during wet 
years and El Nino conditions are present during dry years. This ENSO signal is 
seen for the full season and for all three subseasonal periods. There are no 

statistically significant differences between SST anomalies in the Atlantic or Indian 
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Oceans. Interestingly, these ocean regions have negative anomalies for the full 
1901-2014 period (Figure 3).  

 
Figure 5-8. Same as Figure 8, but for the drought period (1969-2000)  

 
SST anomalies in the modern period (Figure 5-9) show an increase throughout for 

both wet and dry years. A consequence of this warming has been a decrease in the 

strength of remote teleconnections, including ENSO, the Indian Ocean, and the 
Atlantic Ocean.  
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Figure 5-9. Same as Figure 8 but for the modern period (2000-2014).  

 

 

 
Figure 5-10. Composites of June-September average precipitation anomalies (using 
CHIRPS) corresponding each phase of the MJO. Periods with no MJO activity are 
not shown.  
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4.3.4 MADDEN-JULIAN OSCILLATION COMPOSITES 

To examine the influence of the MJO on June-September precipitation, a 
similar composite analysis was performed using MJO phase. Figure 10 shows 
composites for June-September precipitation during each phase of MJO. Weak 
increases in precipitation are seen during the ‘West Maritime Continent’ phase and 
more strongly during the ‘East Maritime Continent’ phase. The strongest influence 
appears during the ‘East Pacific Ocean’ phase where there are negative 
precipitation anomalies across a majority of Ethiopia. While these anomalies are 
not as strong or coherent as seen in the spring or fall precipitation seasons (Berhane 
and Zaitchik 2014; Zaitchik 2017), they do indicate an MJO influence on 
precipitation during the summer season.  

 

4.4 DISCUSSION 

In this chapter, we investigated the interdecadal and intraseasonal behavior 

of East African summer monsoon precipitation and the corresponding variability in 
SST teleconnections and large-scale dynamical fields. Over the past century the wet 

and dry precipitation anomaly pattern seen in East Africa corresponds with 

anomalous conditions in the Sahel and in India. This suggests that variability in 
the large-scale teleconnections influencing precipitation can influence tropical 

precipitation on a large scale. The subseasonal signature of this correspondence is 

strongest in the peak season for the Sahel and in the late season for India. Similar 
relationships can be seen when looking at composites of precipitation during La 

Nina and El Nino years. As with the Indian monsoon, there is an anomalous 
influence with the increases in precipitation seen in La Nina years showing a much 

stronger and spatially homogenous signal as compared to the decreases in 

precipitation seen in El Nino years.  
The strength in the relationship between these large-scale teleconnections 

and precipitation has varied over the past century as shown from the BDLM 
results.  Over the last century the relative strengths of the tropical Pacific, the 
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Indian Ocean, and the tropical Atlantic have varied slightly, with ENSO 
strengthening during the mid-century wet period, and the Indian Ocean 
strengthening during the second half of the late-century drought. In the modern 
period, increases in global SSTs have further altered this relationship, with the 
Indian Ocean, ENSO, and the tropical Atlantic all weakening. Circulation feature 
anomalies clearly show the large-scale dynamics in the region including the low-
level cross-continental moisture transport.   

At shorter timescales we have shown that MJO activity can influence 
precipitation, with the most coherent signal being drying during the ‘East Pacific 
Ocean’ phase. Past studies have shown strong connections between the MJO and 
precipitation in the spring and fall seasons. Here we show that, while weaker, the 

MJO also influences precipitation during the summer season.  

Collectively these analyses indicate that large-scale teleconnections influence 
precipitation during the summer season, however, there has been a weakening of 

the relationship in the early 21st century. Results focused on northern Ethiopia, the 

headwaters region for several major rivers including the Omo Gibe and Blue Nile. 
This region receives a majority of its precipitation during the Kiremt season, and 

being this headwaters region, an understanding of precipitation variability and 

development of skillful forecasts is important in water management. These 
teleconnections have been used in past studies to develop seasonal precipitation 

forecasts, however with the understanding that there has been a shift in these 

relationships in recent decades, care should be taken when developing future 
forecasts. Identifying the MJO as influencing precipitation during this season now 

offers the possibility of incorporating it into new forecasting techniques. Chapter 6 
discusses the development of new statistically-based forecasts, and post-processing 

of dynamical forecasts using the findings presented in this chapter. 
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5 S2S PRECIPITAITON FORECASTING FOR WATER MANAGEMENT IN 
ETHIOPIA 

5.1.1 INTRODUCTION 

The highlands of Ethiopia, north of about 7ºN, experience one primary 
precipitation season termed the “Kiremt” (June through August). In this region, 50-
80% of the annual total precipitation over agricultural regions fall during this 
season. A majority of the headwaters precipitation for the Omo Gibe and Blue Nile 
rivers also fall during this season. Skillful forecasts of precipitation during the 
subseasonal to seasonal timescale (S2S), typically, two weeks to two months, would 
fill the current gap between currently available short-term weather forecasts and 

longer-term seasonal forecasts. Skillful S2S forecasts offer the water management 

community the ability to anticipate longer-term water supply demands and adjust 
water management operations accordingly, including setting reservoir levels, 

setting reservoir releases, and optimizing hydropower production. The uncertainty 

of future conditions can also be quantified when properly-calibrated ensembles of 
these forecasts are produced, allowing water managers to make operational 

decisions based on a desired risk tolerance (Sankarasubramanian et al. 2009; 

Webster 2013; Friend et al. 2014).  
On the seasonal timescale, there have been several attempts to develop 

skillful precipitation forecasts for the Kiremt season which can offer insights when 

developing a new forecasting approach at the S2S timescale. Statistical regression 
approaches have demonstrated spatially-dependent skill at short lead times using 
large-scale ocean and atmospheric features. (Gissila et al. 2004; Korecha and 
Barnston 2007; Block and Rajagopalan 2007; Diro et al. 2011; Nicholson 2014). 
Predictability was strongly linked to the summer ENSO state, as well as discerning 
its intensifying versus decaying behavior in the spring. Skill in forecasts were 
limited to a two month lead time by the ‘predictability barrier’ of ENSO (Torrence 
and Webster 1998), rapid changes in global circulation patterns during the March-

May season, and the sensitivity of the tropical Pacific and Indian Ocean to 
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perturbations. Shukla et al. 2016 investigated the seasonal predictive skill in 
numerical weather prediction (NWP) forecasts using the North American 
Multimodal Ensemble (NMME) (Kirtman et al. 2014) and found limited 
deterministic skill beyond a two-month lead time. Rank probability skill score 
(RPSS) was higher in active ENSO years (El Nino or La Nina), which corresponds 
well with the strong Kiremt precipitation-ENSO teleconnection discussed in 
Chapter 4 and in the statistical forecasting attempts discussed above.  

The S2S timescale has been given increased interest in recent years for its 
ability to provide information at timescales critical for decision making (Robertson 
et al. 2015). A suite of post-processing approaches that have been applied to other 
forecasting applications (Sankarasubramanian and Lall 2003; Hopson and Webster 

2010a; Towler et al. 2010; Webster et al. 2010) were applied to raw S2S forecasts for 

basin-wide precipitation in Ethiopia. As discussed in Chapter 4, the Madden-Julian 
Oscillation (MJO) has been shown to have influence on seasonal precipitation. In 

the analysis we preset in this chapter we use the MJO in post-processing to 

condition the forecasts. The influence of the post-processing approaches along with 
the influence of incorporating in the MJO on S2S forecast skill will be evaluated 

and presented below.  

5.2 DATA AND METHODS 

Precipitation forecast data were obtained from the National Center for 

Environmental Prediction (NCEP) Climate Forecast System (CFSv2) (Saha et al. 
2014) which has a grid resolution of roughly 100km (T126) and is available for the 

period 2011-2016. Four ensemble members are available each day extending out 
120 days; the 0-60 day forecasts were retained for this analysis. Reference 

precipitation data against which we evaluate the forecasts were obtained from the 

Climate Hazards group Infrared Precipitation with Stations (CHIRPS) (Funk et al. 
2015) dataset which blends satellite precipitation estimates with observation 

stations at a 0.05°×0.05° grid resolution and for the period 1981-present. The MJO 
can be quantified by its anomaly and phase (Wheeler and Hendon 2004); MJO index 
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data were downloaded through the IRI data library (http://iridl.ldeo.columbia.edu/) 
and originated from the Australian Bureau of Meteorology dataset.  

Forecasted precipitation and reference precipitation were basin-averaged to 
calculate timeseries of daily precipitation over each of the twelve river basins shown 
in Figure 6-1.  

 

 
Figure 6-1 River basins used for precipitation forecasting. Mean precipitation rates 
were calculated for each basin from both the CFSv2 forecast data and the CHIRPS 
gridded data. 

 
These basin-average precipitation timeseries were then aggregated to different 

accumulation periods – 24hr, 5day, 10day, 15day, 20day accumulations. This was 
done to examine the dependence of forecast skill on temporal integration length. 

http://iridl.ldeo.columbia.edu/)
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Finally, to focus only on the precipitation season, months with less than 5% of the 
average annual precipitation for each river basin were removed. The basin-average 
forecasted precipitation timeseries are termed the ‘raw dynamical’ forecasts. A 
second set of dynamical forecasts was obtained by applying a quantile mapping (Q-
Q) bias-correction approach and quantile regression (QR) post-processing. A final 
set of dynamical forecasts was obtained by applying the same bias-correction and 
post-processing approaches, but using the MJO anomaly and phase to condition the 
forecasts. Thus, we have three sets of dynamical forecasts for each river basin and 
for each accumulation period: 

a) raw forecasts 
b) bias-corrected and post-processed forecasts 

c) bias-corrected and post-processed forecasts conditioned on the MJO    anomaly 

and phase 
The bias-correction and post-processing approaches are described in detail below.  

 

5.2.1 BIAS-CORRECTION AND POST-PROCESSING 

The raw dynamical CFSv2 forecasts were first bias-corrected to the CHRIPS 

basin-averaged precipitation using a Q-Q approach which adjusts the entire 
empirical PDF of the forecasts to match the empirical PDF of the CHIRPS (Hopson 

and Webster 2010b). Following Q-Q bias-correction, QR post-processing was then 

applied. QR has been used to post-process precipitation forecasts including in 
studies by Bjørnar Bremnes 2004, Hopson and Webster 2010, and Towler et al. 

2010. QR is a type of regression that seeks to conditionally fit quantiles of a 
regressand’s distribution while making no assumption of the underlying 

distribution of the regressand or error.  

After bias-correction, QR was applied to the forecasts. In applying QR to 
ensemble forecasts, the number of quantiles is determined by the desired number of 

ensemble members, with the minimum and maximum quantiles assigned to the 
lowest and highest ensemble members. For example, with an evenly-spaced three-
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member ensemble, the lowest member would represent the 25th percentile, and the 
highest member would represent the 75th percentile, and the middle member would 
represent the 50th percentile, however the actual percentiles chosen can be arbitrary 
The QR approach is as follows. Assume {yi} is a set of observations of the regressand 
y, and {xi} is an associated set of predictors.  Just as in standard linear regression, a 

linear function of x can be used to estimate a specific quantile qθ of y: 

  

with residual  and , wherein β is a vector of unknown 

coefficients.  However, instead of minimizing the squared residuals, as done with 
standard linear regression, in QR a weighted iterative minimization of {ri} is 

performed over β:  

  

with weighting function 

  

 
In applying QR to the CFSv2 precipitation forecasts, the ensemble mean, ensemble 

quantile timeseries, and persistence forecasts were used as predictors in the initial 
set. The ensemble median was calculated as the 50th percentile forecast from the 
multiple forecast ensemble members. Ensemble quantile timeseries forecasts were 
calculated at evenly spaced quantiles as described above by interpolating between 

the ranked forecast ensemble members. Finally, persistence forecast were 
assembled by using the current reference precipitation value at the initialization 

date as the forecast of precipitation at the desired lead-time. These approaches were 

used to develop the second set of dynamical forecasts after applying cross-validation 
in the selection of the final regressor set.  
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In developing the third set of dynamical forecasts, we added to the set of 
regressors in QR timeseries developed using a forecast developed from using the 
MJO. The MJO anomaly and phase can be used to develop statistically-based naïve 
precipitation forecasts (described below). From these forecasts timeseries of 
precipitation anomaly and precipitation standard deviation can be obtained and 
these are added to the CFSv2 ensemble mean, CFSv2 ensemble quantile timeseries, 
and persistence forecast in QR. Development of this naïve MJO forecast is described 
below. 
 

5.2.2 NAÏVE MJO FORECAST 

As discussed in Chapter 4, the MJO has been shown to influence 

precipitation in East Africa on the months to seasonal timescale. This suggests that 
including a measure of the MJO in the post-processing of dynamical precipitation 

forecasts could improve forecasts at the S2S timescale by shifting the ensemble 

higher during MJO phases that correspond with wetter conditions and shifting the 
ensemble down during MJO phases that correspond with drier conditions. The MJO 

is not always active, but follows a predictable pattern when it is active. To take 

advantage of this predictability we developed a ‘naïve MJO forecast’ as the MJO 
measure used to post-process dynamical precipitation forecasts. We term it a ‘naïve’ 

forecast as it relies solely on the historical behavior of precipitation during a 
particular MJO phase and is not informed by any other measure of local conditions. 
The thought behind this naïve forecast is MJO influence on precipitation when the 
MJO is active is fairly consistent, and while it may not be able to provide detailed 
S2S precipitation forecasts, it can provide reasonable information on the sign and 
magnitude of change. When used as a regressor in QR this information can adjust 

the forecast ensembles in the correct direction and improve forecast skill. Exploiting 
the ideas that the MJO follows a predictable pattern when active and that its 

influence on precipitation under different MJO phases is consistent, we developed 

the naïve MJO forecast as the mean precipitation total over a given accumulation 
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period using historical observations, given the current MJO phase. This is to say if 
we wish to issue a forecast today for week 4 of the month and the MJO is in phase 
3, using observation, we find all of weeks where three weeks previously the MJO 
was also in phase 3, and take the mean of accumulated precipitation from all of the 
identified weeks. One further step is take to refine this mean accumulated 
precipitation and arrive at the naïve MJO forecast – we remove the climatological 
mean accumulated precipitation which leaves precipitation anomalies, the signal of 
MJO influence on precipitation. This mean accumulated precipitation anomaly is 
our naïve MJO forecast and assumes that whenever the MJO is in phase 3, in three 
weeks’ time, because it is predictable, will be in a consistent phase, and that when 
the MJO is in that phase, it influences precipitation in a consistent manner. In 

order to account for seasonal differences in how the MJO influences precipitation, 

when identifying the set of weeks to average, only weeks within the same season 
are considered. For each basin, seasons were defined using the daily climatology – 

season definitions try and capture the main precipitation period. In some basins, 

there were multiple precipitation seasons; for these a season is defined for each 
period. Season definitions for the Abbay (left) and the Omo Gibe (right) are shown 

in Figure 6-2.  
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Figure 6-2 Average Precipitation Daily Climatology using CHIRPS for the Abbay 
river basin (left) and the Omo Gibe river basin (right). Red lines show the season 
bounds.  

 
The Abbay basin being further north experiences one primary precipitation 

season, with peak precipitation occurring in the summer. For this basin, two 

seasons were defined, a dry season from November to April, and a wet season from 
May to October. The Omo Gibe basin, by contrast, straddles the summer-dominant 

precipitation region, and the spring-fall dominant precipitation region. To account 

for potential differences in precipitation dynamics, two primary precipitation 
seasons were defined: one from March to June, and a second from July to 
November, along with a dry season from December to February. Naïve MJO 
forecasts were constructed separately for each precipitation season; one forecast 
was constructed for the Abbay basin for the May to October season, and two 
forecasts were constructed for the Omo Gibe basin: one for the March to June 

season and another for the July to November season. One final piece of information 
can be teased out from this approach – as multiple historical periods go into 

calculating the mean accumulated precipitation, we can use the same historical 
observations to calculate the standard deviation of accumulated precipitation. This 
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quantifies the uncertainty in the influence of the MJO on precipitation and can also 
be used in QR post-processing. Precipitation anomaly and precipitation standard 
deviation from the naïve MJO forecasts were incorporated as covariates and used to 
develop the third set of dynamical forecasts within the QR post-processing step, as 
explained above. 

An initial assessment of the CFSv2 forecasts was performed by comparing the 
daily mean climatology of the forecasts against the daily mean climatology of the 
CHIRPS basin-average precipitation. This shows how well the NWP forecast model 
represents the large-scale dynamics and seasonal climatology of this region. 
Forecast skill was then evaluated as follows: Raw CFSv2 forecasts were correlated 
with the CHIRPS basin-average precipitation and monthly-average correlations for 

different forecast lead times were calculated. Each set of dynamical forecasts, raw, 

bias-corrected and post-processed, and bias-corrected and post-processed 
conditioned on the MJO were then compared against climatology and persistence in 

their ability to forecast precipitation. The CHIRPS basin-average precipitation were 

used as the reference or observed precipitation. Briar Skill Scores (BSS) were 
calculated for each set of dynamical forecasts and for each accumulation period, 

24hr, 5days, 10days, 15day, and 20days, with forecasts evaluated over the period 0 

to 60 days. Results are presented for the Omo Gibe and Abbay River basins and 
provide an assessment of the skill of the CFSv2 at the S2S timescale as well as the 
improvements gained from bias-correction and post-processing. Forecast 

improvements incorporating in the MJO into the QR post-processing are also shown 
in the figure, discussed below.   

 

5.3 RESULTS 

To first examine the skill of the NWP forecast model in representing the large-scale 
dynamics of Ethiopia, daily climatologies of the CFSv2 forecasts and CHIRPS 

reference precipitation were compared. Figure 6-3 shows the observed and 
forecasted daily climatologies for 5-day accumulations. The CFSv2 forecasts match 
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the seasonal climatology of reference precipitation well, capturing the single 
precipitation peak seen in the Abbay basin and the double peak seen in the Omo 
Gibe basin.  

 
Figure 6-3 Daily Climatology of 5-day accumulated precipitation for observed (blue) 
and CFSv2 forecasts (red). 
 

The CFSv2 also captures the magnitude of precipitation, corresponding well to the 

CHIRPS precipitation.  
An initial assessment of forecast skill was provided by correlating the raw 

CFSv2 forecasts with CHIRPS precipitation. Figure 6-4 shows the monthly average 

correlations for a 5-day accumulation period, and forecasts at lead times of 0 to 60 
days.  
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Figure 6-4 Correlation between 5-day accumulated CFSv2 forecasts and 5-day 
accumulated observed precipitation for forecast lead-times of 0-60 days. Months 
with less than 5% of the annual total precipitation have been masked out. 
 
In the Abbay basin, correlations are highest in the shoulder months, May and 

October, at short lead-times, and remain strong for approximately 10 days. 

Correlations even at short leads during the peak season of June-September are 
marginal. The Omo Gibe basin shows similar behavior where the March and 

November shoulder months have strong correlations at short lead times that 
weaken around 10 days, and poor correlation skill during the April-October peak 
season. These low correlations at longer lead times and during peak precipitation 
seasons suggest that the dynamical model does not well represent the large-scale 

features like MJO that influence precipitation at the S2S timescale during these 
periods. We first explore how bias-correction and QR using the ensemble mean, 

ensemble quantile timeseries, and persistence forecasts can improve raw forecast 

skill at longer lead-times at during peak precipitation seasons. We then show the 
how including a measure of MJO in QR can further increase skill. 
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Figure 6-5 Brier Skill Scores (80th percentile exceedance) for the Abbay (left) and 
Omo Gibe (right) 5-day accumulated precipitation forecasts for the June-August 
Kiremt season using persistence as the reference forecasts. Green dashed line 
shows the skill of the persistence reference forecast, black line shows the CFSv2 QR 
without the naïve MJO forecast, and the green solid line shows the CFSv2 QR with 
the naïve MJO forecast.  
 

The Briar Skill Score (BSS) is a metric to assess the forecast skill in capturing 
precipitation above a selected threshold. BSS evaluates a forecast relative to a 

reference forecast where the larger the score (up to a value of one, the better the 

forecast. A value of zero indicates no improvement over the reference forecast 
(Wilks 2001). Exceedance BSS indicate forecast skill in capturing precipitation 

above a selected threshold. For our evaluation, we used “persistence” as a reference 
forecast, assuming conditions at the initialization date will remain constant over 

the forecast period, and selected 80th percentile exceedance. 80th percentile 

exceedance represents larger precipitation events that could present natural hazard 
risks through flooding, and pose water management challenges. Figure 6-5 shows 

the 80th percentile exceedance BSS for the CFSv2 QR 5-day accumulated 

precipitation forecast for the June-August Kiremt season as compared to the 
persistence forecast (black line). The Abbay basin has a BSS above 0.05 for 
approximately 10 days while the Omo Gibe basin has a BSS above 0.05 for 

approximately 20 days. While marginal, this indicates that the bias-corrected and 
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post-processed forecasts have some skill above persistence. When the MJO is used 
to condition the forecasts in post-processing (Figure 6-5, green line) additional skill 
over persistence is evident. Forecast skill as measured by BSS remains consistent 
at lead times from 0 days out to 40 days for both the Abbay and Omo Gibe basins. 
At a 0-day lead time the Abbay basin has a BSS of 0.18 and the Omo Gibe a BSS of 
0.3 and the BSS remains the same out to a 40-day lead time. We attribute this 
consistent skill to the predictable behavior of the MJO once active and its consistent 
and predictable influence on precipitation anomalies during the Kiremt season 
(Chapter 4).  
 

5.4 DISCUSSION 

Existing dynamical-model based precipitation forecasts at the S2S timescale 
suffer from a lack of skill during peak precipitation periods for watersheds in 

Ethiopia. This includes the June-August Kiremt season which is the peak 

precipitation season for the Abbay River basin and a major precipitation season for 
the Omo Gibe River basin. In both basins there has been recent and continued 

development of water management infrastructure including dams, hydropower 

production and water diversion for agricultural purposes. The S2S timescale, from 
two weeks to two months, represents a key decision-making period for water 

managers and rely heavily on skillful forecasts if precipitation. We have 

demonstrated through bias-correction and QR, significant improvements in forecast 
skill at these timescales can be obtained. Even increased improvements in forecast 

skill are seen when leveraging the predictable behavior of and predictable influence 
on precipitation of the MJO. While prior studies have shown that the MJO 

influences precipitation during the spring and fall in East Africa, this study is the 

first to also show it also influences Kiremt season precipitation. The technique for 
leveraging these influences in improving forecast skill is novel and represents a step 

towards improving the skill of S2S forecasts in this region. The naïve MJO forecast 
approach provides a parsimonious way of quantifying the MJO influence on 
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precipitation during the Kiremt season, and when used in QR demonstrates notable 
utility in improving S2S forecast skill. The QR approach is flexible and the 
approach described in this study clearly improved S2S forecasts of precipitation. 
Additional refinement of this approach including investigating methods for 
quantifying the influence of other dynamical features on precipitation like the El 
Nino Southern Oscillation and incorporating them into QR could show what 
additional improvements in skill are possible.  
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6 FINAL DISCUSSION 
The four chapters presented examine how the strength of the West African 

and East African monsoons have varied both subseasonally and  interseasonally 
over the 20th and early 21st centuries. While prominent events including a wet 
period in the middle of the 20th century and a drought in the late 20th century have 
been well documented, this research highlights how this interseasonal variability 
can be linked to changes in large-scale teleconnections. In examining these 
teleconnections this research also notes that these teleconnections have entered into 
a new epoch. In West Africa, local features, namely the Gulf of Guinea and to a 
lesser extent the Tropical Atlantic, have strengthened their connections with 
monsoon precipitation while more remote teleconnections, the Indian Ocean, and 

ENSO, have weakened. In East Africa, teleconnections with the tropical Atlantic, 

the tropical Indian Ocean, and the tropical Pacific have all weakened since 2000. 
While the dynamical shifts associated with this new teleconnection behavior have 

not yet fully been investigated, this understanding can be used to inform the 

development of tools used by decision makers, including forecasting models, where 
assumptions about past behavior, statistical relationships, or the use of analog 

years should consider these changes. Changes to these teleconnections and 

precipitation in both West and East Africa can be explained in part by the fact that 
both regions are influenced by the same teleconnections and even share some 
dynamical features, including Tropical Easterly Jet (TEJ). In addition to the 

interseasonal variability, this research investigated subseasonal behavior in the two 
monsoon regions, examining the early, middle, and late subseasons. Anomaly 

patterns during these three subseasons is not consistent, with a much more mixed 
signal during the early season, and more consistent wet or dry signals during the 

middle and late seasons. This behavior was noted in both West and East Africa and 

has also be documented with the Indian Monsoon. While the dynamical 
explanations for this behavior were not investigated directly, it is suspected that in 
all three regions, sea-surface teleconnections that largely influence monsoon 

strength and precipitation variability have much less of an influence relative to 
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local processes in the early subseason, during the establishment of the monsoon. 
Once the monsoon has been established, these teleconnections begin to dominate 
and explain the stronger and more homogenous anomaly patterns seen in 
precipitation during the middle and late subseasons. A final contribution from 
examining monsoon dynamics is showing the influence of the Madden-Julian 
Oscillation (MJO) on Kiremt season (June-September) precipitation in East Africa. 
The MJO has been shown to influence spring and fall season precipitation, but this 
is first study that shows this influence also exists during the summer, in northern 
East Africa, where the East African Monsoon is active. Through two case studies 
this examination of monsoon dynamics was extended to developing locally-targeted 
information, highlighting the development of tools and methods. 

Developing regions stand to benefit immensely from improved climate-based 

information. Often existing information including weather forecasts and climate 
projections are not provided at spatial and temporal scales relevant for decision-

making. The West and East African case studies highlight two approaches, 

stochastic weather generators, and post-processing numerical weather prediction 
forecasts, to address these limitations and produce actionable information at scales 

relevant for addressing local issues. Weather generators have used in a range of 

applications, however they have seen limited use by the livestock community. 
Especially in a region like West Africa where livestock herding is a major livelihood, 
and there are limited means for coping with the impacts of climate change, 

information about risk and forecasts can be immensely useful. The weather 
generator developed was modified to specifically allow the modeling of weather 

variables needed to quantify livestock heat stress and was developed to produce 
current-condition estimates, seasonal forecasts, and long-term projections. The 

seasonal forecasts were shown to have skill, and could offer benefits to the livestock 

herding community by allowing them to make better informed decisions on where 
and when to migrate. This forecast information could also be used by governmental 
agencies or others to develop forecast-based insurance programs which provide for a 

payout if conditions lead to a loss of livestock. These programs have been used with 
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success by the agricultural community in insuring against crop loss, and with a tool 
for forecasting livestock heat stress, could be developed for the livestock community 
as well.  

  Subseasonal to seasonal timescales (S2S; two weeks out to two months) have 
been a focus for developing improved forecasts. In this period, water managers are 
often evaluating possible operational decisions to meet monthly or seasonal 
requirements, however, often have to rely on forecasts with limited skill. Numerical 
weather prediction skill begins to fall in the S2S period, however can be improved 
when longer-term signals can be incorporated into the forecasts. In East Africa, the 
MJO influences precipitation variability when active, and this research shows how 
incorporating in the MJO into post-processing of NWP forecasts can improve 

predictability of precipitation in the S2S period.  

The monsoon dynamics examined in this dissertation highlight several areas 
for future investigation including examining the dynamical causes of teleconnection 

variability over the last century and a better understanding of early subseason 

precipitation anomalies. The tools developed to produce local, issue-specific 
information have demonstrated skill in producing actionable information, however 

interaction with the user communities is needed to ensure that the information is 

relevant and disseminated in an effective way. These tools, the stochastic weather 
generator, and post-processing on NWP forecasts, have broad applicability, and 
while this research focused on specific case studies, it is hoped that by 

demonstrating their use in these case studies, along with their flexibility, other user 
communities will also see their utility.  
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8 APPENDIX - STOCHASTIC WEATHER GENERATOR DETAIL 

Equations describing the construction of the stochastic weather generator 
without covariates are shown below. 

8.1 STOCHASTIC WEATHER GENERATOR WITHOUT COVARIATES 

8.1.1 PRECIPITATION OCCURRENCE  

Precipitation occurrence is assumed to have a binomial (or Bernoulli) 
distribution with a no rain day represented by Jt = 0 and a rain day represented by 
Jt = 1. A binomial link function is used and precipitation occurrence is conditioned 
on the occurrence or non-occurrence of precipitation the previous day.  

 

ln �
𝑝𝑝𝑑𝑑

1 − 𝑝𝑝𝑑𝑑
� = 𝜇𝜇 + 𝛼𝛼𝐽𝐽𝑡𝑡−1 + 𝛽𝛽𝑑𝑑,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑑𝑑,2𝑆𝑆𝑡𝑡 + 𝛾𝛾1𝐶𝐶𝑡𝑡𝐽𝐽𝑡𝑡−1 + 𝛾𝛾2𝑆𝑆𝑡𝑡𝐽𝐽𝑡𝑡−1 

 
Above Ct and St are sine and cosine harmonic terms, calculated as cos(𝑅𝑅 × 2𝜋𝜋𝜋𝜋/

𝑛𝑛)and sin(𝑅𝑅 × 2𝜋𝜋𝜋𝜋/𝑛𝑛) respectively. t is the number of days since January 1, n is the 

number of days om the year, and R is an integer. R values of 1-5 are used to capture 

the seasonal behavior. The model returns a value between 0 and 1, which is then 

transformed, to binary 0,1 using: 
 

f(𝑥𝑥) �
1, if 

exp𝑝𝑝𝑑𝑑

1 + exp𝑝𝑝𝑑𝑑
< 𝛿𝛿

0, otherwise    
 

 

where δ is a random number between 0 and 1.  

8.1.2 PRECIPITATION INTENSITY 

Precipitation intensity is assumed to follow a Gamma distribution with an 
inverse link function.  
 

ln(𝑝𝑝𝑖𝑖) = 𝜇𝜇 + 𝛽𝛽𝑖𝑖,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑖𝑖,2𝑆𝑆𝑡𝑡 
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This model, as with occurrence, contains the cosine and sine harmonic terms.  

8.1.3 TEMPERATURE  
Temperature is modeled as a Gaussian with an identity link function. The 

previous day’s minimum and maximum temperatures, along with precipitation 
occurrence, and harmonic terms are included in the model.  

 
𝜋𝜋𝑛𝑛,𝑡𝑡 = 𝜇𝜇𝑛𝑛,0 + 𝜇𝜇𝑛𝑛,1 + 𝛾𝛾𝑡𝑡𝑛𝑛𝜋𝜋𝑛𝑛,𝑡𝑡−1 + 𝜁𝜁𝑡𝑡𝑡𝑡𝜋𝜋𝑡𝑡,𝑡𝑡−1+𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑡𝑡𝑛𝑛,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑡𝑡𝑛𝑛,2𝑆𝑆𝑡𝑡 + 𝜂𝜂𝑡𝑡,𝑡𝑡𝑃𝑃𝑑𝑑,𝑡𝑡 + 𝜀𝜀𝑡𝑡𝑛𝑛 

 
𝜋𝜋𝑡𝑡,𝑡𝑡 = 𝜇𝜇𝑡𝑡,0 + 𝜇𝜇𝑡𝑡,1 + 𝛾𝛾𝑡𝑡𝑛𝑛𝜋𝜋𝑡𝑡,𝑡𝑡−1 + 𝜁𝜁𝑡𝑡𝑡𝑡𝜋𝜋𝑡𝑡,𝑡𝑡−1+𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑡𝑡𝑡𝑡,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑡𝑡𝑡𝑡,2𝑆𝑆𝑡𝑡 + 𝜂𝜂𝑡𝑡,𝑡𝑡𝑃𝑃𝑑𝑑,𝑡𝑡 + 𝜀𝜀𝑡𝑡𝑡𝑡 

8.1.4 RELATIVE HUMIDITY  

 Let Jn,t be the minimum relative humidity at time t, and Jx,t be the maximum 

relative humidity at time with 0 ≤ Jn,t, Jx,t ≤ 1. Relative humidity is modeled using a 

binomial link function and is conditioned on the value of relative humidity from the 

previous day, as well as the modeled minimum relative humidity for the current 
day in the case of maximum relative humidity.  

 

ln
ℎ𝑛𝑛

1 − ℎ𝑛𝑛
= 𝜇𝜇 + 𝛼𝛼1𝐽𝐽𝑛𝑛,𝑡𝑡−1 + 𝛼𝛼2𝐽𝐽𝑡𝑡,𝑡𝑡−1 + 𝛽𝛽ℎ𝑛𝑛,1𝐶𝐶𝑡𝑡 + 𝛽𝛽ℎ𝑛𝑛,2𝑆𝑆𝑡𝑡 + 𝛾𝛾1𝑃𝑃0,𝑡𝑡 + 𝜁𝜁1𝜋𝜋𝑛𝑛,𝑡𝑡−1 + 𝜁𝜁2𝜋𝜋𝑡𝑡,𝑡𝑡−1

+ 𝜂𝜂1𝜋𝜋𝑛𝑛,𝑡𝑡 + 𝜂𝜂2𝜋𝜋𝑡𝑡,𝑡𝑡 

 

ln
ℎ𝑡𝑡

1 − ℎ𝑡𝑡
= 𝜇𝜇 + 𝛼𝛼1𝐽𝐽𝑛𝑛,𝑡𝑡−1 + 𝛼𝛼2𝐽𝐽𝑡𝑡,𝑡𝑡−1 + 𝛽𝛽ℎ𝑛𝑛,1𝐶𝐶𝑡𝑡 + 𝛽𝛽ℎ𝑛𝑛,2𝑆𝑆𝑡𝑡 + 𝛾𝛾1𝑃𝑃0,𝑡𝑡 + 𝜁𝜁1𝜋𝜋𝑛𝑛,𝑡𝑡−1 + 𝜁𝜁2𝜋𝜋𝑡𝑡,𝑡𝑡−1

+ 𝜂𝜂1𝜋𝜋𝑛𝑛,𝑡𝑡 + 𝜂𝜂2𝜋𝜋𝑡𝑡,𝑡𝑡 + 𝜈𝜈ℎ𝑛𝑛 

 
Relative humidity is also dependent on the previous day?s minimum and maximum 

temperature, the concurrent day minimum and maximum temperature, and the 
concurrent occurrence of precipitation. Taking the inverse logit of the modeled value 

and multiplying by 100 gives a value 0 ≤ RH ≤ 100.  

 



    110 

RH = exp(ℎ𝑛𝑛, ℎ𝑡𝑡)/�1 + exp(ℎ𝑛𝑛, ℎ𝑡𝑡)� × 100 

8.1.5 WIND SPEED  
Wind Speed is modeled as a Gaussian with an identity link function: 
 
WS = µ + 𝛽𝛽𝑖𝑖,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑖𝑖,2𝑆𝑆𝑡𝑡 + +𝛾𝛾1𝑃𝑃𝑑𝑑,𝑡𝑡 + 𝜁𝜁1𝜋𝜋𝑛𝑛,𝑡𝑡−1 + 𝜁𝜁2𝜋𝜋𝑡𝑡,𝑡𝑡−1 + 𝜈𝜈1𝜋𝜋𝑛𝑛,𝑡𝑡 + 𝜈𝜈2𝜋𝜋𝑡𝑡,𝑡𝑡 

 

8.1.6 SOLAR RADIATION 
Solar radiation is also modeled as a Gaussian with an identity link function: 
 
R𝑠𝑠 = µ + 𝛽𝛽𝑖𝑖,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑖𝑖,2𝑆𝑆𝑡𝑡 + +𝛾𝛾1𝑃𝑃𝑑𝑑,𝑡𝑡 + 𝜁𝜁1𝜋𝜋𝑛𝑛,𝑡𝑡−1 + 𝜁𝜁2𝜋𝜋𝑡𝑡,𝑡𝑡−1 + 𝜈𝜈1𝜋𝜋𝑛𝑛,𝑡𝑡 + 𝜈𝜈2𝜋𝜋𝑡𝑡,𝑡𝑡 

 

8.2 STOCHASTIC WEATHER GENERATOR WITH COVARIATES 

With covariates, the above equations for precipitation occurrence, precipitation 

intensity, minimum and maximum temperature, and minimum and maximum 

relative humidity become: 

8.2.1 PRECIPITATION OCCURRENCE  

 

ln �
𝑝𝑝𝑑𝑑

1 − 𝑝𝑝𝑑𝑑
� = 𝜇𝜇 + 𝛼𝛼𝐽𝐽𝑡𝑡−1 + 𝛽𝛽𝑑𝑑,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑑𝑑,2𝑆𝑆𝑡𝑡 + 𝛾𝛾1𝐶𝐶𝑡𝑡𝐽𝐽𝑡𝑡−1 + 𝛾𝛾2𝑆𝑆𝑡𝑡𝐽𝐽𝑡𝑡−1 + 𝜍𝜍𝑈𝑈𝑑𝑑 

8.2.2 PRECIPITATION INTENSITY 

 
ln(𝑝𝑝𝑖𝑖) = 𝜇𝜇 + 𝛽𝛽𝑖𝑖,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑖𝑖,2𝑆𝑆𝑡𝑡 + +𝜍𝜍𝑈𝑈𝑖𝑖 

 

8.2.3 TEMPERATURE 
 

𝜋𝜋𝑛𝑛,𝑡𝑡 = 𝜇𝜇𝑛𝑛,0 + 𝜇𝜇𝑛𝑛,1 + 𝛾𝛾𝑡𝑡𝑛𝑛𝜋𝜋𝑛𝑛,𝑡𝑡−1 + 𝜁𝜁𝑡𝑡𝑡𝑡𝜋𝜋𝑡𝑡,𝑡𝑡−1+𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑡𝑡𝑛𝑛,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑡𝑡𝑛𝑛,2𝑆𝑆𝑡𝑡 + 𝜂𝜂𝑡𝑡,𝑡𝑡𝑃𝑃𝑑𝑑,𝑡𝑡 + 𝜀𝜀𝑡𝑡𝑛𝑛 + 𝜍𝜍𝑈𝑈𝑡𝑡𝑛𝑛 

 



    111 

𝜋𝜋𝑡𝑡,𝑡𝑡 = 𝜇𝜇𝑡𝑡,0 + 𝜇𝜇𝑡𝑡,1 + 𝛾𝛾𝑡𝑡𝑛𝑛𝜋𝜋𝑡𝑡,𝑡𝑡−1 + 𝜁𝜁𝑡𝑡𝑡𝑡𝜋𝜋𝑡𝑡,𝑡𝑡−1+𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑡𝑡𝑡𝑡,1𝐶𝐶𝑡𝑡 + 𝛽𝛽𝑡𝑡𝑡𝑡,2𝑆𝑆𝑡𝑡 + 𝜂𝜂𝑡𝑡,𝑡𝑡𝑃𝑃𝑑𝑑,𝑡𝑡 + 𝜀𝜀𝑡𝑡𝑡𝑡 + 𝜍𝜍𝑈𝑈𝑡𝑡𝑡𝑡 

8.2.4 RELATIVE HUMIDITY 
 

ln
ℎ𝑛𝑛

1 − ℎ𝑛𝑛
= 𝜇𝜇 + 𝛼𝛼1𝐽𝐽𝑛𝑛,𝑡𝑡−1 + 𝛼𝛼2𝐽𝐽𝑡𝑡,𝑡𝑡−1 + 𝛽𝛽ℎ𝑛𝑛,1𝐶𝐶𝑡𝑡 + 𝛽𝛽ℎ𝑛𝑛,2𝑆𝑆𝑡𝑡 + 𝛾𝛾1𝑃𝑃0,𝑡𝑡 + 𝜁𝜁1𝜋𝜋𝑛𝑛,𝑡𝑡−1 + 𝜁𝜁2𝜋𝜋𝑡𝑡,𝑡𝑡−1

+ 𝜂𝜂1𝜋𝜋𝑛𝑛,𝑡𝑡 + 𝜂𝜂2𝜋𝜋𝑡𝑡,𝑡𝑡 + 𝜍𝜍𝑈𝑈ℎ𝑛𝑛 

 

ln
ℎ𝑡𝑡

1 − ℎ𝑡𝑡
= 𝜇𝜇 + 𝛼𝛼1𝐽𝐽𝑛𝑛,𝑡𝑡−1 + 𝛼𝛼2𝐽𝐽𝑡𝑡,𝑡𝑡−1 + 𝛽𝛽ℎ𝑛𝑛,1𝐶𝐶𝑡𝑡 + 𝛽𝛽ℎ𝑛𝑛,2𝑆𝑆𝑡𝑡 + 𝛾𝛾1𝑃𝑃0,𝑡𝑡 + 𝜁𝜁1𝜋𝜋𝑛𝑛,𝑡𝑡−1 + 𝜁𝜁2𝜋𝜋𝑡𝑡,𝑡𝑡−1

+ 𝜂𝜂1𝜋𝜋𝑛𝑛,𝑡𝑡 + 𝜂𝜂2𝜋𝜋𝑡𝑡,𝑡𝑡 + 𝜈𝜈ℎ𝑛𝑛 + 𝜍𝜍𝑈𝑈ℎ𝑡𝑡 

 

For the equations shown in A-1.2.1 to A-1.2.4, U is the set of covariates used with 
each variable, and 𝜍𝜍 is the associated set of model parameters.  

 

 
 

 

 
 

 

 
 
 
 
 
 

 
 

 
 


