
Adapting Regularized Low-Rank Models for Parallel Architectures
Derek Driggs∗, Stephen Becker†, Aleksandr Aravkin‡

October 27, 2018

Abstract
We introduce a reformulation of regularized low-rank recovery models to take advantage of GPU,

multiple CPU, and hybridized architectures. Low-rank recovery often involves nuclear-norm minimization
through iterative thresholding of singular values. These models are slow to fit and difficult to parallelize
because of their dependence on computing a singular value decomposition at each iteration. Regularized
low-rank recovery models also incorporate non-smooth terms to separate structured components (e.g.
sparse outliers) from the low-rank component, making these problems more difficult.

Using Burer-Monteiro splitting and marginalization, we develop a smooth, non-convex formulation of
regularized low-rank recovery models that can be fit with first-order solvers. Replacing convex problems
with non-convex programs that can be solved more quickly is a well-studied approach to low-rank re-
covery; here we show that handling the regularization terms carefully allows for greater speedup. Using
robust principal component analysis (RPCA) as an example, we compare our approach to other convex,
non-convex, and communication-avoiding algorithms on the GPU, and show that ours is an order-of-
magnitude faster. We also show that this acceleration allows for new applications of RPCA, including
real-time background subtraction and MRI analysis.

1 Introduction
Low-rank matrix decompositions are an effective tool for large-scale data analytics. Background subtrac-
tion, facial recognition, document indexing, and collaborative filtering all use low-rank matrix recovery
algorithms [12]. However, a low-rank structure is only a part of the story — signals often exhibit additional
structure. Regularized low-rank recovery models seek to decompose a matrix X ∈ Rm×n into the sum of
a low-rank component L ∈ Rm×n and another structured matrix S ∈ Rm×n, where S could be sparse,
clustered, non-negative, or have some other useful attribute (see e.g. [44]).

As a motivating example, consider finding an approximate decomposition of a data-matrix X into a sum
X = L+S, where S is sparse and L low-rank, and we only partially observe X through linear measurements
b = A(L) + S. Searching for the sparsest or lowest-rank representation of this data is a combinatorial
problem:

min
L,S

rank(L) + λ · card(S), subject to: 1
2‖A(L) + S − b‖22 ≤ ε, (1)

where the cardinality function card(·) counts the number of nonzero entries of S, λ is a tuning parameter,
and the parameter ε accounts for noise or model inconsistencies. Problem (1) is NP-hard [34] and intractable
for large problem sizes. However, both terms admit non-smooth convex relaxations. card(·) can be replaced
with the `1-norm, and the rank function can be replaced with the nuclear norm, ‖ · ‖∗, which is equal to the
sum of the singular values of the argument:

min
L,S

‖L‖∗ + λS‖S‖1, subject to: 1
2‖A(L) + S − b‖22 ≤ ε (2)

When the parameter ε is set to zero, (1) is called robust principal component analysis (RPCA) and can
recover the lowest-rank L and the sparsest S under mild conditions. Setting ε > 0 in (1) is more suitable for
∗University of Cambridge, Cambridge CB3 0WA, UK
†University of Colorado, Boulder, CO 80309 USA
‡University of Washington, Seattle, WA 98195 USA

1

most applications, since it allows for noise in the measurements; the problem is then called stable principal
component pursuit (SPCP) [48, 52]. SPCP stably recovers L and S with error bounded by ε [52]. Both
RPCA and SPCP are convex problems, much easier to solve than the original problem (1). While (1) is an
important problem, it is just one example of a regularized low-rank model.

Problem class. We are interested in general regularized low-rank models:

min
L,S

‖L‖∗ + L(A(L) + S − b) + r(S), (3)

where L is a loss function and r is a convex regularizer. L, which can be infinite-valued, measures how well
A(L) + S agrees with measured values of X. In RPCA, L(v) = δb(v) is the indicator function ensuring we
match observed data b, while in SPCP, L is the indicator of the closed Euclidean ball centered at b with
radius ε, and ensures we are close to b. L can also be finite valued — for example, a modified SPCP is given
by solving

min
L,S

λL‖L‖∗ + 1
2‖A(L) + S − b‖22 + λS‖S‖1, (4)

where λL, λS are tuning parameters, and L(·) = 1
2‖ · ‖

2
2.

The regularizer r(S) is a convex penalty that promotes the desired structure of S. The `1 norm r(S) =
‖S‖1 promotes sparsity in S; other important examples include the ordered-weighted `1 norm (OWL norm)
[9, 13, 50], and the elastic net [53], which both enforce sparsely correlated observations (clusters) in S. Other
convex regularizers promote known group-sparse and hierarchical structures in S; see [5] for a survey.

The above formulations implicitly vectorize the matrix S into an m · n-length vector. Following conven-
tional notation, in the case of RPCA and SPCP when A is the identity operator, we write X instead of b,
and let L be the squared Frobenius-norm loss.

Marginalization in S. In addition to assuming the problem structure (1), we also assume that r(S) is
simple enough that we can efficiently minimize (1) in S for a given L. In the motivating SPCP example (1),
we have

min
S

{
λL‖L‖∗ + 1

2‖A(L) + S − b‖22 + λS‖S‖1
}

= λL‖L‖∗ + ρλS
(A(L)− b),

where ρλS
is the Huber function (for a detailed derivation, see e.g. [3]). This motivates the definition

ϕ : L 7→ min
S
{L(A(L) + S − b) + λS · r(S)} , (5)

where ϕ is smooth (see Section 3.2) with value and derivative either explicitly available as in the case of
SPCP, or efficiently computable. After marginalizing out S, (1) becomes

min
L

λL‖L‖∗ + ϕ(L). (6)

Non-convex reformulation. Proximal gradient methods can then solve (1), but require computing the
expensive and communication-heavy singular value decomposition (SVD) at each iteration. This problem
has inspired the development of communication-avoiding algorithms for computing the SVD on parallel
architectures, which we discuss further in Section 6.

To avoid the issues of efficiently computing the SVD, we turn to a non-convex, factorized representation
of the nuclear norm that avoids the SVD entirely. This reformulated program offers more speedup through
parallelization than communication-avoiding approaches, and the introduced non-convexity can be easily
controlled. The smooth structure of ϕ allows a computable optimality certificate for the non-convex case,
which is developed and explored in Section 3.

To avoid the SVD entirely, we use the factorization L = UV T , where U ∈ Rm×k, V ∈ Rn×k, and
k � m,n. This factorization imposes the rank-constraint rank(L) ≤ k. In addition, we can further penalize
rank using the following representation of the nuclear norm (see e.g. [6, 36, 42]):

‖L‖∗ ≡ inf
L=UV T

1
2(‖U‖2F + ‖V ‖2F). (7)

2

Algorithm 1: Split-SPCP meta-algorithm to solve Eq. (1)
Input : Problem data as in Eq. (1): functions L and r; data b ∈ Rq; linear operator A : Rm×n → Rq

1 Determine rank bound k, so U ∈ Rm×k, V ∈ Rn×k /* Choose r = min(m,n) to apply theory of
§3.3, or see §4.1 */

2 Define ϕ as in Eq. (1), and its (sub-)gradient as in Eq. (3.2)
3 Define F (U, V) = λL

2 (‖U‖2F + ‖V ‖2F) + ϕ(UV T)
4 Define ∇UF (U, V) = λLU +∇ϕ(UV T)V
5 Define ∇V F (U, V) = λLV +∇ϕ(UV T)TU
6 Solve minU,V F (U, V) (Eq. (1)) via an unconstrained optimization algorithm such as L-BFGS

This equivalence only holds if the ranks of U and V are large enough, and makes it possible to maintain a
low-rank L = UV T without requiring SVDs. The non-convex analogue to (1) is then given by

arg min
U,V

λL
2 (‖U‖2F + ‖V ‖2F) + ϕ(UV T). (8)

Our main contribution. The main contribution of this paper is showing that the transformation given
by (1) provides a general framework for accelerating general low-rank recovery models. At a high-level, our
algorithm consists of (1) marginalizing to get (1) and then (2) using the change-of-variables L = UV T , which
turns the non-smooth and possibly constrained convex problem (1) into a smooth unconstrained non-convex
problem. Once it is in this new form, the low-rank model can be fit using any first-order solver, which is
much faster than fitting the original model using proximal methods, especially on the GPU, since calculating
gradients (matrix multiplication) is cheap on the GPU, as opposed to communication-heavy algorithms like
the SVD that are relatively slow on the GPU. Algorithm 1 provides an overview of the framework. Applying
this framework to SPCP, we develop the program “Split-SPCP,” which can be solved using any first-order
algorithm. We have found using L-BFGS to fit Split-SPCP is particularly fast (see Section 5 for more details).
Split-SPCP’s speed allows us to apply SPCP to new problems, including real-time background subtraction
and MRI analysis.

Roadmap. We provide a survey of related work in Section 2. We consider theoretical issues related
to the smooth reformulation (1) in Section 3. These include issues include the influence of non-optimal
stationary points, the implicit rank-bound in the factorized problem, and the convexity of the marginalized
function, ϕ. In Section 4, we study heuristic initialization methods, which are important for non-convex
programs. We present detailed numerical studies, comparing our non-convex method with other convex
and non-convex alternatives in Section 5. In this section, we also demonstrate the effectiveness of our non-
convex formulation of low-rank recovery models for real-time video processing. In Section 6, we compare our
approach to communication-avoiding alternatives. Our numerical experiments illustrate that our non-convex
program is able to solve regularized low-rank recovery problems faster than existing solvers — in many cases,
by an order of magnitude — without sacrificing accuracy in the solution. We end with final thoughts in
Section 7.

2 Prior Work and Contributions
Replacing convex problems with a faster-to-solve non-convex problem is a well-studied technique in opti-
mization, particularly in the study of semidefinite programs. As nuclear-norm minimization can be cast as a
semidefinite program, several authors have studied non-convex, factorized matrix completion models, often
solving them using alternating minimization [18, 21, 23, 24, 25, 26]. Matrix completion models are a special
class of (1) when no regularizer is present (i.e., r(S) ≡ 0). This line of research is supported by the existence
of conditions that guarantee fast convergence to a globally optimal solution [18, 21, 25, 26], sometimes at a
linear rate [23, 44].

3

In [44], the authors review the use of alternating minimization to solve regularized PCA problems of the
following form:

min
U,V

L
(
vec(UV T)− b

)
+ r(U) + r̃(V). (9)

Matrix completion models and RPCA can adopt the split-form in (2), but SPCP with a general sampling
operator cannot. Our analysis applies to a more general class of models and offers an approach using
first-order solvers rather than alternating minimization.

The authors of [40] develop a split RPCA program and solve it using alternating minimization as well.
While their technique can be an order of magnitude faster than competitive convex solvers, its performance
suffers when the magnitude of the sparse component is large compared to the magnitude of the low-rank
component.

The algorithm developed in [49] is the approach most closely related to ours. In [49], the authors
investigate a non-convex formulation of robust PCA that can be solved with gradient descent. When the
rank of the low-rank component is small, their algorithm achieves provable convergence with a runtime that
is nearly linear in the dimension of the problem. While this is the fastest known runtime for any RPCA
algorithm, these results are specific to RPCA, and cannot be easily extended to the general models we
consider. Also, as we demonstrate in Section 5, our approach can be significantly faster in practice. The
paper [8] employs ideas similar to [49] to develop a first-order method for specific semidefinite programs, but
the problems we consider are still more general.

A different non-convex approach to RPCA is considered in [35]. In contrast to the research discussed
previously, their method does not use a low-rank factorization of L. Instead, these authors develop an algo-
rithm of alternating projections, where each iteration sequentially projects L onto a set of low-rank matrices
and thresholds the entries of S. Their technique also comes with recovery and performance guarantees.

Compared to existing work, our approach to accelerating low-rank recovery algorithms is more general
and more effective. We develop a non-convex formulation of regularized low-rank recovery models that can be
solved using first-order optimization algorithms, and show that marginalizing the regularizers offers further
performance guarantees. We address problems associated with local minima and spurious stationary points
that accompany non-convexity by showing that all local minima of our model are global minima provided
the dimensions of U, V in Eq. (1) are large enough, and by providing a certificate to prove that a given point
is a local minimum (and not a spurious stationary point). We also show that our method is particularly
well-suited for the GPU.

3 Theoretical Considerations
We discuss three issues related to the approach (1). First, we study the convexity and differentiability of the
marginal function (1) in Sections 3.1 and 3.2. Next, moving from (1) to (1) by factoring L, we transform a
convex problem into a non-convex one. This creates two issues: an implicit rank constraint rank(L) ≤ k that
is not present in (1), and the potential for local minima and spurious stationary points in the non-convex
variant that do not correspond to a solution of the convex problem. We address these issues in Section 3.3.

Section 3.4 introduces a computable certificate that can be used to check whether the non-convex model
has converged to a global solution. Using the smoothness of ϕ, we derive a simple optimality certificate that
can be tracked while optimizing (1) to identify either when the implicit rank of the factors is too small or
when we have converged to a minimizer of (1).

3.1 Convexity of ϕ

The convexity of the marginal function (1) is a well-known result in convex analysis, see e.g. [37, Proposition
2.22]. We include a short proof of this fact in Appendix B for completeness.

3.2 Smoothness of ϕ

In the special case where L is the least-squares error, Lipschitz differentiability of ϕ is immediate from the
strong convexity of L. Support for this claim is given, for example, in [7], where the relevant proposition is
as follows:

4

Proposition [7, Prop. 12.29]: Let r be a proper lower-semicontinuous convex function, and let µr(A(L)+
S−b) = infS r(S)+ 1

2µ‖A(L)+S−b‖22 be the Moreau envelope of f with parameter µ. Then µr is differentiable
and its gradient is µ−1-Lipschitz continuous.

In the general case, ϕ(L) is differentiable as long as the objective in (1) has a unique minimizer (e.g., if
it is strictly convex in S) and L is convex and smooth. By [37, Thm. 10.58], the subdifferential of ϕ is

∂ϕ(L) = conv{A∗∇L (A(L) + S? − b) | S? ∈ arg min
S

1
2‖A(L) + S − b‖22 + r(S)}. (10)

The subdifferential is a singleton if and only if the minimizing S? is unique.
Using SPCP as an example (r(S) = λS‖S‖1), we have

ϕ(L) = min
S

{
1
2‖A(L) + S − b‖22 + λS‖S‖1

}
.

The objective is strongly convex in S, and has the unique minimizer

S? = proxλS‖·‖1(A(L)− b).

Therefore, ϕ is differentiable and ∇ϕ is firmly non-expansive, with

∇ϕ(L) = A∗ (A(L) + S? − b) .

We used (3.2) rather than the parametric form of ϕ(L) to obtain its value and gradient. Using (1) to replace
the nuclear norm and ϕ to eliminate the non-smooth regularizer, we now have a smooth optimization problem
amenable to first-order methods.

For minimizing smooth objectives, quasi-Newton methods are often faster than algorithms that require
only first-order smoothness, such as gradient-descent. The convergence rates of quasi-Newton methods
depend on second-order smoothness, which does not hold in problems such as SPCP, since e.g., the Huber
function is only C1. Although convergence of this quasi-Newton method cannot be expected in general, there
are special cases for which convergence results could be established [28, 29], and more recently [19], and
empirically justified good numerical performance has been observed for decades [27].

3.3 Rank and Local Minima
The factorized problem (1) is not equivalent to (1) because of the implicit rank constraint. However, we can
show that (1) is equivalent to the rank-constrained problem

min
L

λL‖L‖∗ + ϕ(L) subject to: rank(L) ≤ k.

This follows immediately from (1). In order for the split problem to recover the solution to (1), it must be
initialized with a k larger than the rank of the minimizing L. However, a larger k slows computation, so it
must be chosen with care. This issue is considered in more depth in Section 4.

We want to be sure that any local minimum of (1) corresponds to a (global) minimum of (1). The
following theorem combines ideas from [11] and [4] to show this holds provided that k is larger than the rank
of the minimizer for (1).

Theorem 1. Consider an optimization problem of the following form:

min
X�0

f(X), such that rank(X) ≤ k, (11)

where X ∈ Rn×n is a positive semidefinite real matrix, and f is a lower semi-continuous function mapping
to [−∞,∞] and has a non-empty domain over the set of positive semi-definite matrices. Using the change
of variable X = PPT , take P ∈ Rn×k, and consider the problem

min
P

g(P) def= f(PPT). (12)

Let X̄ = P̄ P̄T , where X̄ is feasible for (1). Then X̄ is a local minimizer of (1) if and only if P̄ is a local
minimizer of (1).

5

The proof of Theorem 1 is deferred to Appendix A. Using the SDP formulation of the nuclear norm
presented in [15], our problem can be recast as a semi-definite program so that we can apply Theorem 1.
Define

Z =
[
U
V

] [
U
V

]T
=
[
UUT L
LT V V T

]
.

The matrix Z is positive semi-definite, and has form Z = PPT , with P =
[
U
V

]
. Let R(·) be the function

that extracts the upper-right block of a matrix (so that R(Z) = L), and let

f(Z) = λL
2 trace(Z) + ϕ(R(Z)).

We now see that the rank-constrained problem is equivalent to

min
Z�0

f(Z), such that rank(Z) ≤ k.

Applying Theorem 1, we can be assured that P is a local minimizer to the split program if and only if Z is
local minimizer of the original problem. This is equivalent to the statement that the point (U, V) is a local
minimizer of the split problem if and only if L = U V

T is a local minimizer of the original, rank-constrained
program.

3.4 Certificate of Convergence
Although Theorem 1 asserts that the split problem and the rank-constrained problem have the same local
minima, the rank-constrained problem is itself non-convex, so we have not guaranteed that every stationary
point of the split problem solves the convex program. Using an approach that builds on [44], we develop a
certificate to check whether a recovered solution to (1) corresponds to a spurious stationary point when ϕ is
convex (in particular when L and r are convex). This technique can also be used on the convex formulation
as a method to check the distance to optimality.

We base our certificate on the following analysis. Let F be any proper convex function, then Fermat’s
rule states that the set of minimizers of F are points L such that 0 ∈ ∂F (L), where ∂(·) denotes the
subdifferential. One could take a candidate point L, construct ∂F (L), and if it contains 0, conclude that L
is the minimizer, but this is not realistic for large-scale problems. Instead, we find

E ∈ ∂F (L)

where E is small. Let L? denote any minimizer of F , then from the definition of a subgradient, F (L?) ≥
F (L) + 〈E , L? − L〉. Then

F (L)− F (L?) ≤ 〈E , L− L?〉 ≤ ‖E‖p · ‖L− L?‖d (13)

for any pair of primal and dual norms ‖ · ‖p and ‖ · ‖d. We discuss bounding ‖E‖p and ‖L−L?‖d in the next
two subsections.

Finding an approximate zero E The key to the certificate is analyzing the marginalized problem (1)
in terms of L, rather than the problem (1) in terms of (L, S). The point L = UV T is the optimal solution
of (1) if and only if

0 ∈ ∂
(
‖L‖∗ + ϕ(L)

)
.

We have set λL = 1 for convenience, or alternatively one can absorb λ−1
L into ϕ. Since both the nuclear norm

and ϕ are proper lower semi-continuous and the intersection of the interior of their domains is non-empty
(in particular they are finite valued), then by [7, Cor. 16.38], we have that

0 ∈ ∂
(
‖L‖∗ + ϕ(L)

)
⇔ 0 ∈

(
∂‖L‖∗

)
+
(
∂ϕ(L)

)
.

6

Both of these subdifferentials are computable. Let

L = ŨΣṼ T =
[
U1 U2

] [Σ1 0
0 0

] [
V T1
V T2

]
be the (full) SVD of L, where U1 ∈ Rm×r and V1 ∈ Rn×r. The subdifferentials of the nuclear norm at L
comprises matrices of the form X = U1V

T
1 +W , where U1, V1 contain the left and right singular vectors of

L that correspond to non-zero singular values,1 and W satisfies the conditions UT1 W = 0, WV1 = 0 and
‖W‖2 ≤ 1. Equivalently,

X ∈ ∂‖L‖∗ if and only if ∃W ′ ∈ Rm−r×n−r s.t. ŨTXṼ =
[
I 0
0 W ′

]
, ‖W ′‖ ≤ 1. (14)

We can find an explicit matrix D ∈ ∂ϕ(L) using (3.2), and it is unique under the smoothness conditions
described in Section 3.2.

Altogether, we can guarantee a point E ∈ ∂‖L‖∗ + ∂ϕ(L) such that

‖E‖2F = min
X∈∂‖L‖∗

‖X +D‖2F

= min
X∈∂‖L‖∗

‖ŨT (X +D) Ṽ ‖2F

= min
‖W ′‖≤1

∥∥∥∥[I 0
0 W ′

]
+ ŨTDṼ

∥∥∥∥2

F

= ‖I − UT1 DV1‖2F + ‖UT1 DV2‖2F + ‖UT2 DV1‖2F + min
‖W ′‖≤1

‖UT2 DV2 −W ′‖2F .

In the first equation, the minimum is achieved since the squared-norm is continuous and the set is compact,
and (3.4) is used in the third equation. Each term of the fourth equation can be calculated explicitly, with
the last term obtained via projection onto the unit spectral-norm ball, which requires the SVD of the small
matrix UT2 DV2. This bound on ‖E‖F can then be used in (3.4).

Most terms above can be computed efficiently, in the sense that U2 and V2 never need to be explicitly
computed (which is most important when r is small, since then U2 and V2 have m − r and n − r columns,
respectively), and therefore the computation consists only of matrix products, thin-QR factorizations, and
an r × r SVD, leading to a complexity of O(rmn+ r2 · (m+ n) + r3). For example, we compute

‖UT1 DV2‖2F = ‖UT1 D‖2F − ‖UT1 DV1‖2F

and ‖UT2 DV1‖2F is computed analogously. The final term requires an unavoidable (m − r) × (n − r) SVD
factorization, so for large m,n the certificate may be computed as a final check rather than at each iterate.

Bounding the distance to the feasible set We seek a bound on ‖L − L?‖d in an appropriate norm,
which together with (3.4) gives us a bound on the objective function difference F (L) − F (L?). Since the
bound on E is in the Frobenius norm, ideally we set ‖ · ‖d = ‖ · ‖F , but bounds in any norm will work using
‖L‖F ≤

√
rank(L)‖L‖ and ‖L‖F ≤ ‖L‖∗.

Letting F (L) = ‖L‖∗ + ϕ(L), we first bound F (L?) by computing F (L) for explicit choices of L. To be
concrete, in this section we assume r(S) = ‖S‖1 with λS = 1, and L(·) = 1

2‖ · ‖
2. Choosing L such that

A(L) = b means that S = 0 in the definition of ϕ (1), and hence F (L) = ‖L‖∗. Choosing L = 0 and S = 0
gives the bound F (L) ≤ 1

2‖b‖
2. A third choice is to explicitly compute F (L) at all iterates in the algorithm

and record the best.
Denoting F ? = minL F (L) and using F ? ≤ Fbound, non-negativity of ϕ immediately implies ‖L?‖∗ ≤

Fbound. Hence ‖L − L?‖F ≤ ‖L‖F + ‖L?‖F ≤ ‖L‖F + ‖L?‖∗ ≤ ‖L‖F + Fbound, and ‖L‖F is explicitly
computable.

1The orthogonal matrices U1 and V1 should not be confused with the variables U and V that are used as a factorization of
L, as U and V are not necessarily orthogonal. In fact, U1 and V1 can be efficiently computed from the factorization L = UV T

by taking the QR-decompositions U = QU RU and V = QV RV so L = QU (RU RT
V)QT

V . Perform a SVD on the small inner
matrix to write (RU RT

V) = URΣV T
R , and hence Σ are the nonzero singular values of L and U1 = QU UR and V1 = QV VR are

the corresponding left and right singular vectors.

7

Time (Seconds)
0 20 40 60D

is
ta

n
c
e
 t
o
 O

p
ti
m

a
l
S

u
b
g
ra

d
ie

n
t

10
-4

10
-2

10
0

10
2

LagQN

Split-SPCP: Rank 80

Split-SPCP: Rank 30

Time (Seconds)
0 20 40 60

D
is

ta
n

c
e

 f
ro

m
 M

in
im

u
m

10
2

10
4

10
6

10
8

10
10

LagQN: Bound

LagQN: Actual

Split-SPCP: Bound

Split-SPCP: Actual

Figure 1: (Left): Distance from the optimal subgradient for the convex solver LagQN (defined in Section
5) and the non-convex Split-SPCP with different rank bounds. The rank of the optimal L is 58. (Right):
Bounded distance from minimal objective value, as given by ‖E‖F (‖L‖F + Fbound), with Fbound given by
the objective value at the current iterate. The actual distance from the minimal objective value is shown for
comparison. The rank bound for the Split-SPCP test is 80, and we fit Split-SPCP using L-BFGS.

Results Figure 1 shows how the distance to the optimal subgradient decreases over time for the convex
solver LagQN (see Section 5 for a description), the non-convex Split-SPCP with a rank bound that is too
strict, and Split-SPCP with a rank bound large enough to reach the global optimum. When the rank bound
is too restrictive, Split-SPCP cannot recover the optimal L. Measuring the distance to the optimal L reveals
this. Figure 1 shows that the distance plateaus far from zero when the rank of L is bounded above by 30,
and the rank of the optimizing L is 58. In practice, this measure can be used to indicate that the rank bound
should be increased.

4 Initialization
The non-convex formulation (1) is sensitive to the initial point, and requires a bound on the rank of L. In this
section, we present heuristics for choosing a good initial point and determining an appropriate rank-bound.

4.1 Dynamically Increasing k

Figure 2 demonstrates the sensitivity of the Split-SPCP program to the factor rank k. These tests were
performed on the surveillance video data described in Section 5, where the rank of the low-rank component
in our reference solution is 58. We see that when k ≤ rank(L), Split-SPCP does not converge to the
correct solution, but if k is much larger than the rank of the minimizing L, then the computation is slowed
significantly.

Because our solver is oblivious to the individual dimensions of U and V , columns can be added to both
matrices on the fly. Dynamically updating the rank bound can help when (1) is initialized with a k that
is too small. Suppose a solver reaches some convergence criterion at iteration i. To see if this is a solution
to (1), we add a single column to U and V :[

Ui u
] [

Vi v
]T = Li + uvT ,

and observe whether this rank-one allows for a lower objective value or certificate value. Dynamically
increasing k, even aggressively, is more efficient than overestimating k from the start.

4.2 Choosing U0 and V0

Choosing an initialization point (U0, V0) has received considerable attention in factorized low-rank recovery
problems. Most of this work has centered around matrix completion using alternating minimization, see, for

8

Time (s)
0 2 4 6 8 10 12

E
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

Rank 30
Rank 60
Rank 100
Rank 200

Figure 2: Varying the rank bound k in Split-SPCP affects computation time and the accuracy of the final
solution. Error is measured as the normalized distance from the objective value at the reference solution.
One marker represents 10 iterations.

example, [21, 23, 25, 26, 44]. Provably good choices for U0 and V0 are U0 = UΣ 1
2 and V0 = V Σ 1

2 , where U
and V come from the SVD of A∗(X) (where A∗ is the adjoint of A). [21] showed that these initial points
lie in the basin of attraction of globally optimal minima, yielding fast convergence to an optimal solution.

As mentioned in [44], it is sometimes not necessary to perform a full SVD to form U0, V0. Once k is
chosen, only a partial SVD is necessary to calculate the first k singular values and vectors, which can be
done efficiently using the randomized SVD (rSVD) [20]. Although using the rSVD is significantly faster
than a full SVD, the values and vectors it returns are not always accurate, especially when singular values
of the underlying data do not decay rapidly. As a general rule, the quality of the initialization is directly
proportional to how well the product UV T approximates A∗(X).

Time (s)
0 20 40 60 80 100 120

E
rr

o
r

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

rSVD
Full SVD
Random
Random

Figure 3: The performance of Split-SPCP with various initial points. All tests were run on a 5,000 × 5,000
matrix X = L + S, where rank(L) = 1000 and sparsity(S) = 9.43%. Error is measured as the normalized
distance from the objective value of the reference solution. The rank bound was k = 1,050. One marker
represents 50 iterations.

Figure 3 shows the performance of Split-SPCP using various initial points. The tests were performed
on a 5,000 × 5,000 matrix X = L + S, where rank(L) = 1000 and sparsity(S) = 9.43%. The rank bound
was k = 1,050. All 5,000 singular value and vector triples of X were calculated for the SVD test, and U0
and V0 were formed from the first k = 1,050 triples. For the rSVD test, only the first 1,050 triples were
approximated, U0 and V0 were formed from these.

Figure 3 shows that initializing U0 and V0 with the first 1,050 singular value and vector triples returned
by the full SVD yields the smallest initial error, but the extra computational cost is not worth the better

9

start. The rSVD allows quicker convergence to a similar solution. The two random initializations converge
to a stationary point that is not globally optimal.

5 Numerical Experiments
In this section, we present numerical experiments that illustrate the speed of Split-SPCP. Recall that the
Split-SPCP program is given by

min
U,V

λL
2 (‖U‖2F + ‖V ‖2F) + ϕ(UV T),

where
ϕ(UV T) = min

S

1
2‖UV

T + S −X‖2F + λS‖S‖1.

Since the objective of Split-SPCP is smooth, any first-order method can be used to solve it. Also, because
the communication-heavy SVD step is no longer a limitation, we are motivated to choose a solver and an
implementation that are most suited for the GPU.

5.1 Implementation Details
To find a solver that fits our Split-SPCP program well, we compare the performance of several first-order
methods as they solve a logistic regression problem on the GPU. Each of the solvers we use in this test are
modified from [39], using MATLAB’s Parallel Computing Toolbox, which in turn uses MAGMA libraries
[43] to run on the GPU. For all GPU computation, we use a Tesla K40c GPU card with thread block sizes
[1024, 1024, 64], grid sizes [2.15 × 109, 6.6 × 104, 6.6 × 104], a clock rate of 745 MHz, and 12.0 GB of total
memory. For all of the tests run on the CPU in this section, we compute on an Intel Xeon CPU E5-2630
version 3, using a 64-bit architecture and a clock rate of 2.40GHz. Our version of MATLAB is R2016b.

The time it takes for various solvers to minimize a logistic loss with a Tikhonov regularization term for
104 labels is shown in Table 1 below. We measure performance in “computation time,” the time it takes for
each solver to come within 10−8 of the optimal objective value.

Solver Normalized Computation Time
Cyclic Steepest Descent 3.46

Barzilai-Borwein 1.24
Conjugate Gradient 1.44

Scaled Conjugate Gradient 1.53
Preconditioned Conjugate Gradient 3.20

L-BFGS (10 iterations in memory) 1
L-BFGS (50 iterations in memory) 1.82

BFGS 2.39
Hessian-Free Newton’s Method 3.05

Table 1: First-order methods solving logistic loss program with 104 labels on the GPU. All times are reported
as a ratio with respect to the fastest solver (L-BFGS with 10 iterations in memory). Time is recorded when
the solution is within 10−8 of the optimal value.

We see from our analysis that the L-BFGS solver, storing a small number of iterations in memory, yields
the best performance. Of course, the relative performance of different solvers on the GPU depends on the
stopping tolerance as well as the specific problem, but there is further evidence in the literature supporting
L-BFGS as a competitively efficient solver [47].

10

0 5 10 15 20 25 30

Time (s)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
rr

o
r

Split-SPCP
RPCA-GD
LagQN
MaxQN
FPCP
GoDec
IALM
LMaFit

Figure 4: Comparing SPCP solvers for background
subtraction. One marker corresponds to 40 itera-
tions, except for RPCA-GD, where every fifth iterate
is labeled.

Algorithm Reference

Split-SPCP This Work
RPCA-Gradient Descent

(RPCA-GD)
[49]

Lagrangian Quasi-Newton (LagQN) [2]
Max Quasi-Newton (MaxQN) [2]

Fast PCP (FPCP) [38]
Go Decomposition (GoDec) [51]

Inexact ALM (IALM) [31]
LMaFit (LaMaFit) [46]

Table 2: References for the algorithms used in test-
ing. Among these are the fastest models for back-
ground subtraction, as determined in [10] and [41].

5.2 SPCP for Background Subtraction
In [10] and [41], the authors provide a review of the fastest algorithms in the family of robust PCA and
principal component pursuit for background subtraction. We choose some of the fastest of these to compare
to our Split-SPCP algorithm. Each of these methods runs faster on the GPU than the CPU, so we run all of
them on the GPU for our comparisons (using MATLAB’s Parallel Computing Toolbox). We find that our
non-convex solver is particularly well-suited for the GPU, and outperforms all other solvers in almost
every case.

We have included convex and non-convex algorithms in our comparisons. The two non-convex algorithms,
RPCA-GD and LMaFit in Figure 4, are of particular interest because they both employ a factorization of the
low-rank component L = UV >, which is similar to our model. Also, as discussed in Section 2, RPCA-GD
has the fastest known runtime for any RPCA algorithm.

For our background subtraction tests, we use the escalator surveillance video provided by [30]. We want
to identify the people in the video while ignoring the moving escalators and the stationary background. This
problem is particularly difficult for many low-rank recovery algorithms, such as PCA, because the motion of
the escalator is a confounder. SPCP is less sensitive to outliers, so it can overcome this challenge.

To find a reference solution, we hand-tune the parameters λL and λS in the (convex) quasi-Newton
Lagrangian SPCP algorithm (LagQN) until we find a qualitatively accurate decomposition. This process
produces a reference low-rank component Lref and sparse component Sref. The Lref we choose has rank
58, and Sref is 58.03% sparse. The optimal parameters for both Split-SPCP and LagQN are λL = 115 and
λS = 0.825. We tune the parameters in the other solvers to recover this solution as closely as possible.

Throughout this section, we measure error as the normalized difference between the objective and the
objective at the reference solution. Since the solvers minimize different objectives, we calculate the Split-
SPCP objective value at each iteration for every algorithm, and we do not include these calculations in
our time measurements. To initialize Split-SPCP, we use the first 100 singular values and vectors from the
randomized SVD of the data-matrix.

Several of the algorithms in Figure 4 do not converge to the same solution, despite considerable effort
in parameter tuning. These algorithms were designed to quickly find approximate solutions to the SPCP
problem, and might suffer from the large amount of noise present in the data. The approximate solutions
recovered by these algorithms are qualitatively different from the Split-SPCP solution, see Figure 5. We also
find that a lower objective value generally corresponds to a qualitatively superior solution.

To quantitatively measure the quality of the solutions, we use the Corrected Akaike Information Criterion,
or AICc. The AICc measures the fit of a statistical model to a certain data set. Given a model with p
parameters and a log-likelihood function `, the value of the AICc is

AICc = 2(p− log(`max)) + 2p(p+ 1)
m · n− p− 1 ,

where m · n is the size of the data set and `max is the maximum of `. The preferred statistical model is the

11

(a) X,L, and S matrices found by (from top to bottom)
Split-SPCP, LagQN, and GoDec.

(b) X,L, and S matrices found by (from top to bottom)
FPCP, IALM, and LMaFit.

Figure 5: Background subtraction using various SPCP solvers on surveillance video data from [30] (frame 10
is shown). We see that Split-SPCP, LagQN, and IALM best locate the people while ignoring the escalators.

Solver AICc (×106)
Oracle 7 .37

Split-SPCP 7.64
GoDec 10.95
LagQN 11.30
MaxQN 11.64
FPCP 15.70
IALM 2.43× 107

LMaFit 3.99× 109

Table 3: Degrees of freedom in the solutions shown in Figure 5.

one that minimizes the AICc. The AICc favors models that maximize the likelihood function and penalizes
complex models with many parameters, guarding against overfitting. Using AICc as a measure of quality
avoids both overemphasis of objective values and the inherent ambiguity of visual comparisons.

To compute the AICc value, we must formulate SPCP as a statistical model. It is well-known that the
least-squares loss term is the log-likelihood of a Gaussian distributed random variable, i.e., we assume that
the data are of the form X = L + S + Z, where the entries of Z are i.i.d. Gaussian random variables with
µ = 0 and variance estimated using the sample variance, σ̂2 = ‖X‖2

F

m·n . Similarly, the `1-regularizer assumes
that the entries of S are drawn iid from the Laplace distribution with mean 0 and variance estimated as
b̂ = ‖S‖1

m·n . The nuclear norm of L is the `1-norm of its singular values, so its corresponding prior assumes
that the singular values of L follow the Laplace distribution. The log-likelihood function is then

`(L, S,X) = −
(m · n

2

)
log(2πσ2)− ‖L+ S −X‖2F

2σ2 − (m · n) log(2b)− ‖S‖12b − rank(L) log(2b∗)−
‖L‖∗
2b∗

,

where σ2, b and b∗ are computed according to their respective estimator. We must also define the number of
parameters of this model, which is equal to its degrees of freedom. Each term in SPCP provides the following
degrees of freedom:

rank(L) = k → k(m+ n− k) degrees of freedom,
‖S‖1 → nnz(S) degrees of freedom,

1
2‖L+ S −X‖2F →

(
‖L+S−X‖2

F

‖X‖2
F

)
(m · n) degrees of freedom.

12

0 0.5 1 1.5 2 2.5 3 3.5

Time (s)

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

Split-SPCP
RPCA-GD
LagQN
IALM
FPCP
GoDec
LMaFit

Figure 6: Performance of SPCP solvers on the synthetic data described in Section 5.3, on the GPU. Error is
measured as normalized difference from the solution’s objective value. One marker represents six iterations.

Time (s)
0 5 10 15 20 25 30

E
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

SplitGPU
SplitCPU
LagCPU
LagGPU

Figure 7: Comparing the performance of Split-SPCP and LagQN on the CPU and the GPU. Although Split-
SPCP is slower than the similar convex solver on the CPU, it sees more acceleration on the GPU because it
avoids QR and SVD computations. Tests were performed on the synthetic data described in Section 5.3

Here, nnz(S) counts the number of non-zero entries in S. Finding the degrees of freedom in a rank-k matrix
or a sparse matrix are both standard calculations. For the loss term, we use the residual effective degrees of
freedom as an estimate of the flexibility that it introduces. This is detailed further in [32]. The number of
parameters p is equal to the total degrees of freedom.

The AICc values for the solutions shown in Figure 5 are listed in Table 3. The AICc value for the
reference solution is listed under “oracle.” The reference solution was found using the LagQN solver with a
tight tolerance. All the other values in the table correspond to solutions that meet comparable tolerances.
Also, since the IALM model does not use an `1-norm regularizer, many of the values in the returned S matrix
were small but not exactly zero. To make accurate comparisons, we applied the shrinkage operator to the S
matrix returned by IALM to set small values equal to zero before calculating the degrees of freedom. The
values for IALM and LMaFit are high because these solvers are not generally robust to large amounts of
noise. With the AICc metric as well, we see that Split-SPCP discovers the best solution, and in a much
shorter time compared to the other algorithms.

5.3 Synthetic Data
Split-SPCP demonstrates similar performance on synthetic data. For our synthetic-data test, we create
two 1,000 × 150 random matrices with each entry drawn from independently from the univariate normal

13

0 0.5 1 1.5 2 2.5 3

Time (s)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

E
rr

o
r

Split-SPCP
LagQN
RPCA-GD

Figure 8: Performance of SPCP solvers on the synthetic data imputation task described in Section 5.4.
Error is measured as the normalized distance from the reference low-rank component: ‖L−Lref‖F

‖Lref‖F
. One

marker represents six iterations.

distribution, and define our low-rank reference matrix, Lref, as the product of these two matrices. To form
the sparse reference matrix, Sref, we fill 50% of a 1,000 × 1,000 matrix with numbers drawn independently
from the univariate normal distribution, and the other entries we set equal to zero. X is then the sum
Lref + Sref with added white Gaussian noise, so that ‖Lref+Sref−X‖F

‖X‖F
= 8.12 × 10−5. Matrices with these

characteristics are often encountered in video processing applications.
We initialize Split-SPCP with the first 200 singular value and vector triples of X, so that k is larger than

the rank of L. These triples are found using the rSVD. The tuning parameters are set to λL = 2.95 and
λS = 0.1. As before, we measure performance based on the normalized difference from the true Split-SPCP
objective value. The results are shown in Figure 6.

We see that FPCP and GoDec discover approximate solutions quickly, but the approximations are not
within 10−2 of the true objective. LMaFit exhibits poor performance. This could be due to the fact that
S is about 50% sparse, and LMaFit struggles with problems that have a large sparse component [46].
Split-SPCP significantly outperforms all solvers in speed, and outperforms all solvers except for LagQN in
accuracy. LagQN and Split-SPCP converge to solutions with the same objective value, albeit Split-SPCP
converges much more quickly.

Split-SPCP has an advantage because it parallelizes well on GPU architectures. This is due to the relative
simplicity of the L-BFGS algorithm, which avoids complex linear algebraic decompositions that require heavy
communication, such as the QR and SVD (see also [16]). Figure 7 shows that although Split-SPCP on the
CPU is slower than LagQN on the CPU, Split-SPCP enjoys enormous speedup when it is implemented on
the GPU.

5.4 Data Imputation
To demonstrate the flexibility of our framework, we also test Split-SPCP on a synthetic data imputation
task. We consider the problem of imputing entries of a low-rank matrix from partial observations in the
presence of noise and sparse corruptions. Our model takes the form

min
L,S

λL‖L‖∗ + 1
2‖PΩ(L+ S − b)‖2F + λS‖S‖1. (15)

where Ω is a support set containing observed indices, and PΩ is a “masking operator.” Ignoring vectorization,
the action of PΩ is as follows:

(PΩX)i,j =
{
Xi,j (i, j) ∈ Ω
0 (i, j) 6∈ Ω.

14

This is a regularized low-rank model since by observation, minimizing 1
2‖PΩ(L + S − b)‖2F + λS‖S‖1 in S

gives the same set of solutions as minimizing 1
2‖PΩ(L) + S − PΩ(b))‖2F + λS‖S‖1 in S.

To create our test, we form Lref, Sref andX as described in the previous section, but with rank(Lref) = 100,
Sref with 10% sparsity, and ‖Lref+Sref−X‖F

‖X‖F
= 4.92× 10−3. Our masking operator hides 50% of the entries of

X, chosen uniformly at random. We use the parameter values λL = 1.23 and λS = 0.01.
Not all of the algorithms we have tested previously can be easily extended to solve (5.4); we perform

tests with all of the algorithms that can: Split-SPCP, LagQN, and RPCA-GD. Because we are interested
specifically in the recovery of the low-rank component, our error is measured as the normalized distance from
the reference low-rank component: ‖L−Lref‖F

‖Lref‖F
. As before, all algorithms were run on the GPU. The results

are shown in Figure 8. Split-SPCP finds a solution of similar quality to LagQN and RPCA-GD, but does so
much faster: in under 0.5 seconds, compared to 1.1 seconds for LagQN and 2.1 seconds for RPCA-GD.

5.5 Dimensional Scaling and Real-Time Video Processing
Background subtraction in video processing is a standard application for low-rank recovery algorithms,
but these algorithms are generally unable to perform real-time background subtraction due to their slow
implementation. The experiments in Section 5.2 show that Split-SPCP is faster and more accurate than the
methods reviewed in [10] and [41] for background subtraction, and in this section, we use Split-SPCP for the
real-time processing of high-resolution videos with standard frame rates. We also explore how Split-SPCP
scales as the resolution and frame rate increases.

To measure the performance of Split-SPCP on more diverse video datasets, we use videos from the
Background Model Challenge [45]. The experiments shown in Figure 9 consider a video with 240 × 320
pixels per frame and 32,964 frames, which is substantially larger than the low-resolution escalator video of
Section 5.2 with 130 × 160 pixels per frame and only 200 frames. We unfold the three-dimensional video
data into a matrix with each column containing one frame, and we partition the matrix columnwise into
blocks comprising a fixed number of frames. We find that a rank-bound near 60 is large enough to capture
the low-rank background. With the rank bound fixed at 60, we record the computation time required to
perform 200 iterations of Split-SPCP on one block as a function of the block size. Larger block sizes yield
better solutions, but they also require more time for SPCP to converge. We find that after 200 iterations,
Split-SPCP converges to within 10−3 of the optimal objective value for all block sizes, and the solution is
qualitatively similar to the optimal solution.

Figure 9 shows how Split-SPCP scales as the video resolution and the number of frames per block
increase. These two quantities correspond to the number of rows and the number of columns of each block.
We increase the resolution by rescaling each frame so that the aspect ratio stays close to constant, and we
use interpolation to impute the missing pixel values. It is easy to discern the O(n) scaling as the number of
frames (columns) is increased. Increasing the resolution affects the computation time linearly, but beyond a
“critical resolution” of 332× 446 pixels per frame, the slope of the linear scaling undergoes a shift in regime.
This linear scaling is expected because the bottleneck of Split-SPCP is the matrix-matrix multiply UV T ,
which requires O(mnk) operations, so with k fixed, the computation time of Split-SPCP grows linearly with
the number of data points. The results of the background subtraction are shown in Figure 10.

These experiments suggest conditions under which Split-SPCP can decompose a video in real-time.
Assuming a resolution of 240 × 320 pixels per frame and a frame rate of 24 frames-per-second, which is
standard in many applications of video processing, the video must be partitioned blocks of about 600 frames
or more. With this partitioning, the algorithm will have finished decomposing the given block before the
next block is recorded. This number increases linearly with resolution, following the trend line given in the
rightmost plot of Figure 9. Following these guidelines, Split-SPCP can decompose the videos from [45] in
real-time without sacrificing quality. An example is shown in Figure 10.

6 A Comparison with Accelerated-SVD Algorithms
There are several algorithms for low-rank matrix recovery that preserve convexity and focus on accelerating
the SVD step. In this section, we explore two such approaches: a communication-avoiding rSVD and Frank-
Wolfe with marginalization. We compare both to our SVD-free approach. Both of these methods preserve

15

Number of Frames
100 200 300 400 500 600 700

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

12

14

16

18

20

22

24

26

28

Slope: 2.2× 10−2

Pixels per Frame ×10
5

1 2 3 4 5
10

20

30

40

50

60

70

80

90

Slope: 1× 10−4

Slope: 2× 10−4

Figure 9: The scaling of Split-SPCP as the number of columns (or frames) increases (left) and as the number
of rows (or pixels per frame) increases (right). Each point is the average of twenty trials. For the column-
scaling tests, the resolution is fixed at 240× 320 pixels per frame, and for the row-scaling tests, the number
of frames in a block is fixed at 100. The tuning parameters are set to λL = 200, λS = 5.

Figure 10: Real-time background subtraction using Split-SPCP. Split-SPCP correctly identifies (left) a car
in the middle-ground, (center) a person in the foreground, and (right) a person in the background. The
resolution is 240 × 320 pixels per frame, 600 frames were decomposed at one time, and only 200 iterations
were allowed.

16

convexity, but numerical experiments suggest that our non-convex formulation is superior.

6.1 Communication-Avoiding rSVD
Many problems in data analysis involve matrices that are “tall-skinny”. For example, the surveillance video
we consider in Section 5 has dimensions 20,800×200, and the psychometric data shown in Figure 12 produces
a matrix with 230-times more rows than columns. The prevalence of this tall-skinny structure is due in part
to the fact that multi-dimensional data sets must be “unwrapped” into a two-dimensional matrix before
matrix-based algorithms can analyze the data, and the canonical unwrapping of a square data set with
more than two dimensions leads to a highly rectangular matrix. Tall-skinny matrices pose a challenge for
matrix decompositions, especially on computational architectures where communication is costly (such as a
GPU) [14].

The rSVD is often used to accelerate low-rank recovery models by projecting a data-matrix of size m×n
onto a low-dimensional subspace, and performing computations with the resulting smaller matrix of size
m× k, with k � n.2 The rSVD offers improved performance on the CPU, but it exacerbates the tall-skinny
problem, making parallelization difficult even when the input matrix is square.

The effect of this increased communication is notable: on the CPU, the rSVD step in LagQN accounts
for about 55% of the algorithm’s total running time, but when this solver is run on the GPU, the rSVD
accounts for about 90% of SPCP’s total running time, as shown in Figure 11. The TSQR algorithm of
[14] can provide a convex option for accelerating low-rank recovery models. While TSQR has been used to
accelerate the SVD step in RPCA for tall-skinny matrices [1], we extend this idea to the rSVD algorithm on
general matrices, and we compare this communication-avoiding approach to Split-SPCP for analyzing fMRI
brain scan data.

For the experiments in this section, we implement the TSQR algorithm on a single GPU card as well as
multiple CPUs. The GPU card and CPUs are the same models described in Section 5.1. We use 32 CPU
cores: two sockets, eight cores per socket, and two threads per core. To run QR decompositions in parallel
on the GPU, we use the batched QR algorithm of MAGMA version 1.7.0 [43], compiled as a MEX file using
GCC for Red Hat version 4.8.5-11. We wrote our own implementation of TSQR on multiple CPUs using
MATLAB’s Parallel Computing Toolbox. The initial number of blocks in our TSQR implementation is 32,
corresponding to the 32 CPU cores we have available. Specific details on the TSQR algorithm can be found
in [14].

fMRI brain scan data sets are inherently four-dimensional, so unwrapping the dataset into a two-
dimensional array creates a tall-skinny matrix with hundreds of times more rows than columns. The enormity
of these data sets makes low-rank recovery models intractable without parallelization. Figure 11 shows the
total time spent performing SPCP on one of these data sets, as well as the total time spent performing
rSVDs, performing the QR step of the rSVD, and moving data (labeled as the “overhead” cost). The results
of this test are included in Figures 12 and 13.

The datasets used for testing were taken from a study of the human brain’s response to uncomfortable
stimuli, specifically, the feeling of submerging a hand in hot or cold water. Analyzing these scans to find
common neurological responses to these stimuli is difficult due to the enormous amount of error in the
data. There is uniformly distributed noise due to constant ancillary physiological activity, and there are also
sparsely distributed groups representing neurological structures that should all exhibit the same behavior.
The ventricles, for example, are filled with cerebrospinal fluid (CSF), which does not contribute to neuro-
logical communication, so they should not be active. All signals observed in the ventricles should be treated
as sparsely structured outliers. SPCP removes the uniform noise and, most remarkably, correctly identifies
signals in the brain’s ventricles as outliers. In Figure 12, the largest ventricles are the two structures in the
center of the brain. The rightmost image shows that the majority of the noise contained in S is from these
ventricles.

The other two major components of the brain are white and gray matter. The activity we are hoping to
observe takes place in the gray matter, so ideally SPCP would remove most signals from the white matter
regions. However, the regions of white matter are more difficult to distinguish than the regions of CSF, and
SPCP removes about equal amounts of noise from the white matter as it does from the gray. If we let Sgm
be the gray-matter component of S, and define Swm and Scsf similarly, Figure 13 shows the average BOLD

2Further details of the rSVD algorithms can be found in [20]

17

CPU-No TSQR GPU-No TSQR TSQR-CPU TSQR-GPU

T
im

e
 (

s
)

0

20

40

60

80

100

120

140

160

180
SPCP
rSVD
QR
Overhead

Figure 11: The time spent performing subprocesses of the SPCP algorithm on fMRI brain scan data.
Lower blocks are subprocesses of upper blocks, so the times are cumulative. The test “TSQR-CPU” uses a
hybridized architecture, running TSQR on multiple CPU’s but running the rest of SPCP on the GPU. Both
tests “GPU-No TSQR” and “TSQR-GPU” were run entirely on the GPU. “Overhead” refers to time moving
data between the CPU and GPU.

Figure 12: The results of SPCP on fMRI brain scan data. Activity is measured in Blood-oxygen-level
dependent (BOLD) signal. (From left to right: original image, low-rank image recovered by SPCP, and
sparse image recovered by SPCP.)

signal in Sgm, Swm, and Scsf for each frame in time. These data were normalized by the average original
signal in the corresponding regions.

It is clear that Scsf contains more signal than the other two regions. For Sgm, SPCP detects noise in only
the first 100 time slices. The removed signal from the white matter is more distributed over time, and the
total amount of noise in Sgm and Swm is comparable. These results suggest that SPCP correctly identifies
outliers in the fMRI data, especially within the regions of CSF.

Although using TSQR to reduce communication costs provides noticeable speedup, the non-convex ap-
proach is faster. In Figure 14, we compare our non-convex Split-SPCP algorithm to a convex solver using
TSQR for the rSVD step. Both solvers were decomposing the same 106,496 × 462 brain-scan data-matrix
used in section 6.4, and both were run on the GPU.

As with previous tests, a reference solution (Lref, Sref) was found by solving LagQN to high accuracy, and
the error is measured as the normalized distance from the reference objective value. The rank of Lref was
423, and Split-SPCP was initialized with the rank bound k = 462. Since X had 462 columns, this was the
largest possible rank bound, and Split-SPCP still greatly outperformed the convex solvers. Both solvers also
found solutions of similar quality. At an error of 5 × 10−4, the low-rank component found by LagQN had
rank 427, and the low-rank component found by Split-SPCP had rank 425. Similarly, the sparse component
of LagQN had sparsity 58.5%, and the sparse component of Split-SPCP had sparsity 58.3%, while Sref was

18

Time Frame
0 100 200 300 400

A
v
e

ra
g

e
 B

O
L

D
 S

ig
n

a
l

0

1

2

3

4

5

6

7

Sgm

Time Frame
0 100 200 300 400

0

1

2

3

4

5

6

7

Swm

Time Frame
0 100 200 300 400

0

1

2

3

4

5

6

7

Scsf

Figure 13: The average BOLD signal in different regions of S. The averages were normalized by the average
original signal in the corresponding regions.

Time (s)
0 100 200 300 400 500 600 700

E
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

Split-SPCP
LagQN
LagQN with TSQR

Figure 14: Comparing Split-SPCP to LagQN using TSQR on the GPU and without using TSQR. Split-
SPCP was initialized with the rank bound k = 462, the maximum possible rank of the low-rank component.
One marker represents 35 iterations.

58.5% sparse. Split-SPCP recovered nearly the same solution as the parallelized convex algorithm at a much
smaller cost.

6.2 Frank-Wolfe with Marginalization
Our approach to accelerating low-rank recovery models is closely connected to the one presented in [33] to
accelerate the Frank-Wolfe method for RPCA. The Frank-Wolfe method, first proposed in [17], has recently
gained attention for its ability to yield scalable algorithms for optimization problems involving structure-
encouraging regularizers [22, 33]. Frank-Wolfe methods optimize a Lipschitz-differentiable function over a
convex set by solving a sequence of linear subproblems. For example, if f is Lipschitz-differentiable and C is
a convex set, Frank-Wolfe solves the problem

min
x∈C

f(x)

by linearizing f about each iteration xk: f(y) ≈ f(xk) +
〈
∇f(x), y − x

〉
, minimizing the linear problem to

find a decent direction yk−xk, and then stepping in this direction with a step size η: xk+1 = xk+η(yk−xk).
Traditionally, η = 2

k+2 is fixed for convergence guarantees, but better performance can be achieved with
adjustable step sizes [33].

For optimization problems involving the nuclear norm, the set C is a scaled nuclear norm ball, and
the linear subproblem becomes a search for the leading singular tuple of Lk. This is much cheaper than

19

Algorithm 2: Frank-Wolfe Method with Marginalization
Input : L0, λL, λS , t0 = 0, U0 = 1

2λL
‖PΩ(L0 + S0 −X)‖2F

1 while Not Converged do
2 Sk ← shrink(X− Lk, λS)
3 Yk ← arg min

‖Y‖∗≤1

〈
PΩ(Lk + Sk −X),Y

〉
4 if λL ≥ −

〈
PΩ(Lk + Sk −X),Yk

〉
then

5 Vk ← 0
6 Vtk ← 0
7 else
8 Vk ← UkYk
9 Vtk ← Uk

10 η? ← arg min
η∈(0,1)

1
2‖PΩ((1− η)Lk + ηVk + Sk −X)‖2F + (1− η)λLtk + ηλLtk

11 Lk+1 ← (1− η?)Lk + η?Vk
12 tk+1 ← (1− η?)tk + η?Vtk
13 Uk+1 ← 1

2λL
‖PΩ(L0 + S0 −X)‖2F + tk

computing the full SVD at each iteration, which is required by proximal methods.
In contrast to nuclear norm minimization problems, it is often difficult to scale the Frank-Wolfe method

for problems involving `1 regularization. For these problems, each Frank-Wolfe iteration updates iterate Sk
with only a single non-zero element [33]. This makes Frank-Wolfe infeasible when the sparse component of
the data-matrix has several thousand non-zero elements or more. The authors of [33] adapt the Frank-Wolfe
method to solve SPCP, using the traditional Frank-Wolfe update for the low-rank component and using a
projected gradient update for the sparse component. Their adaptations allow for significant speedup and
better convergence compared to the traditional Frank-Wolfe.

The techniques used in [33] can be seen as a special case of the marginalization we present in this
work. With the sparsely structured component marginalized, the program depends only upon the low-
rank component, so the benefits of the Frank-Wolfe scheme are preserved and its drawbacks are negated.
Algorithm 2 shows how marginalization can be used to extend the adaptations presented in Algorithms 5
and 6 of [33]. Algorithm 2 solves the following program, which is equivalent to SPCP:

min
‖L‖∗≤t

λLt+ min
S

1
2‖PΩ(L+ S −X)‖2F + λS‖S‖1.

With the S variable marginalized, it does not affect the linear subproblems arising in the Frank-Wolfe scheme,
making this approach much more scalable. Each iteration of Algorithm 2 updates the low-rank component
and the nuclear norm bound, t, while the sparse component remains only implicitly defined. More details
on this approach can be found in [33].

While Algorithm 2 is similar to the methodology in [33], fully marginalizing the sparse component elim-
inates the linear subproblem required in [33] to update the iterate Sk. We show the performance of this
adapted Frank-Wolfe scheme on SPCP in Figure 15. Although its performance is better than the traditional
Frank-Wolfe (see [33]), it is still much slower than solving Split-SPCP with L-BFGS.

7 Conclusion
In this manuscript, we present a general framework for accelerating regularized low-rank recovery models on
parallel architectures. Factorizing the low-rank component L = UV T and optimizing over the factors U and
V induces a low-rank constraint on L while eliminating the iterative SVDs often required for nuclear norm
minimization. Although this factorization sacrifices the convexity of the program, we develop a certificate
to determine whether our model has converged to a minimum or to a spurious stationary point, showing

20

Time (s)
0 5 10 15 20 25

E
rr

o
r

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Split-SPCP
LagQN
MaxQN
FPCP
GoDec
IALM
LMaFit
MargFW
FW

Figure 15: Comparing Frank-Wolfe with marginalization (denoted “MargFW”), as well as another Frank-
Wolfe scheme adapted for RPCA [33] (denoted “FW”), with other SPCP solvers for background subtraction
on the escalator video of [30]. One marker corresponds to 40 iterations.

empirically and theoretically that spurious stationary points do not pose a serious problem for our non-convex
model. We also show that marginalizing the regularized S variable creates an objective that is Lipschitz-
differentiable when the loss function is strongly convex. The smooth objective allows the use of first-order
solvers, which exhibit faster convergence and better parallelization.

We demonstrate the effectiveness of our framework on SPCP, showing that Split-SPCP runs an order of
magnitude faster on the GPU than existing solvers. There are other regularized low-rank recovery processes
that decrease the cost of the SVD step for improved efficiency, including communication-avoiding and Frank-
Wolfe-type algorithms. To compare to Split-SPCP, we propose an improved algorithm in both classes, and
show that our SVD-free approach offers greater speedup.

With the acceleration our framework provides, regularized low-rank recovery models can be applied to
new solve new problems. Split-SPCP can process video streams in real-time and decompose extremely large
data sets, such as fMRI brain scans, whose analysis with low-rank recovery models would otherwise be
infeasible.

8 Acknowledgments
We would like to thank Tor Wager and Stephan Geuter from the Neuroscience department of the University
of Colorado-Boulder for the fMRI data and advice. The work of Aleksandr Aravkin was supported by the
Washington Research Foundation Data Science Professorship.

References
[1] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer. Communication-avoiding QR decomposition for

GPUs. In GPU technology conference, 2010.

[2] A. Aravkin, S. Becker, V. Cevher, and P. Olsen. A variational approach to stable principal component
pursuit. In Uncertainty in Artificial Intelligence, Quebec City, 2014.

[3] A. Aravkin, J. Burke, D. Drusvyatskiy, M. Friedlander, and S. Roy. Level-set methods for convex
optimization. arXiv preprint, 2016.

[4] A. Aravkin, R. Kumar, H. Mansour, B. Recht, and F. J. Herrmann. Fast methods for denoising matrix
completion formulations, with applications to robust seismic data interpolation. SIAM Journal of
Scientific Computing, 36(5):S237—-S266, 2014.

21

[5] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties.
Found. Trends Mach. Learn., 4(1):1–106, Jan. 2012.

[6] F. Bach, J. Mairal, and J. Ponce. Convex sparse matrix factorizations. Technical report, preprint
arXiv:0812.1869, 2008.

[7] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer-Verlag, New York, 2011.

[8] S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi. Dropping convexity for faster semi-definite optimization.
In Conference on Learning Theory, pages 530–582, 2016.

[9] M. Bogdan, E. van den Berg, C. Sabatti, W. Su, and E. Candès. SLOPE-adaptive variable selection
via convex optimization. The Annals of Applied Statistics, 9(3):1103–1140, 2015.

[10] T. Bouwmans and E. Zahzah. Robust PCA via principal component pursuit: A review for a comparative
evaluation in video surveillance. Computer Vision and Image Understanding, 2014.

[11] S. Burer and R. Monteiro. Local minima and convergence in low-rank semidefinite programming. Math.
Prog. (series A), 103(3):427–444, 2005.

[12] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of ACM,
58(1):1–37, 2011.

[13] D. Davis. An O(n log(n)) algorithm for projecting onto the ordered weighted `1 norm ball. Technical
Report CAM 15-32, University of California, Los Angeles, 2015.

[14] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-optimal parallel and sequential
QR and LU factorizations. SIAM J. Sci. Comput., 34:A206—-A239, 2012.

[15] M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum order
system approximation. In American Control Conference, 2001. Proceedings of the 2001, volume 6, pages
4734–4739. IEEE, 2001.

[16] Y. Fei, G. Rong, B. Wang, and W. Wang. Parallel L-BFGS-B algorithm on GPU. Computers &
Graphics, 40:1–9, 2014.

[17] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly,
3(1):95––110, 1956.

[18] S. Gunasekar, A. Acharya, N. Gaur, and J. Ghosh. Noisy matrix completion using alternating min-
imization. In Machine Learning and Knowledge Discovery in Databases, pages 194—-209. Springer,
2013.

[19] J. Guo and A. Lewis. Nonsmooth variants of powell’s BFGS convergence theorem. SIAM J. Optimiza-
tion, 28(2):1301–1311, 2018.

[20] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288, 2011.

[21] M. Hardt. Understanding alternating minimization for matrix completion. In 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science (FOCS), pages 651–660, 2014.

[22] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In International Con-
ference on Machine Learning, 2013.

[23] P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using alternating minimization. In
Proceedings of the 45th annual ACM Symposium on the Theory of Computing, pages 665—-674. ACM,
2013.

[24] R. Keshavan. Efficient algorithms for collaborative filtering. PhD thesis, Stanford University, 2012.

22

[25] R. Keshavan and A. Montanari. Regularization for matrix completion. In IEEE International Sympo-
sium on Information Theory Proceedings (ISIT), pages 1503—-1507, 2010.

[26] R. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries. In Advances in Neural
Information Processing Systems, pages 952—-960, 2009.

[27] C. Lemarechal. Numerical experiments in nonsmooth optimization. In Progress in Nondifferentiable
Optimization, pages 61–84, 1982.

[28] A. Lewis and M. Overton. Nonsmooth optimization via quasi-newton methods. Mathematical Program-
ming, 141(2):135–163, 2013.

[29] A. Lewis and S. Zhang. Nonsmoothness and a variable metric method. Journal of Optimization Theory
and Applications, 165(1):151–171, 2015.

[30] L. Li, W. Huang, I. Gu, and Q. Trian. Statistical modeling of complex backgrounds for foreground
object detection. IEEE Transaction on Image Processing, 2004.

[31] Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adaptive penalty for low-rank
representation. In Advances in Neural Information Processing Systems, 2011.

[32] C. Loader. Local Regression and Likelihood. Springer, 1999.

[33] C. Mu, Y. Zhang, J. Wright, and D. Goldfarb. Scalable robust matrix recovery: Frank-Wolfe meets
proximal methods. SIAM Journal on Scientific Computing, 2016.

[34] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal of Computing, 24:227—
-234, 1995.

[35] P. Netrapalli, U. N. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain. Non-convex robust PCA. In
Advances in Neural Information Processing Systems (NIPS), 2014.

[36] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum rank solutions of matrix equations via nuclear
norm minimization. SIAM Review, 52(3):471–501, 2010.

[37] R. Rockafellar and R. Wets. Variational Analysis. Springer Berlin Heidelberg, 2009.

[38] P. Rodrígues and B. Wohlberg. Fast principal component pursuit via alternating minimization. In
Proceedings of IEEE international conference on image processing (ICIP), pages 69–73, 2013.

[39] M. Schmidt. minFunc: unconstrained differentiable multivariate optimization in Matlab, 2005. https:
//www.cs.ubc.ca/~schmidtm/Software/minFunc.html.

[40] Y. Shen, Z. Wen, and Y. Zhang. Augmented Lagrangian alternating direction method for matrix
separation based on low-rank factorization. Optimization Methods and Software, 2012.

[41] A. Sobral and A. Vacavant. A comprehensive review of background subtraction algorithms evaluated
with synthetic and real videos. Computer Vision and Image Understanding, 122:4–21, 2014.

[42] N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In Advances in Neural
Information Processing Systems (NIPS), 2005.

[43] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid GPU accelerated
manycore systems. Parallel Computing, 36(5-6):232–240, June 2010.

[44] M. Udell, C. Horn, R. Zadeh, and S. Boyd. Generalized low rank models. Foundations and Trends in
Machine Learning, 9(1):1–118, 2015.

[45] A. Vacavant, T. Chateau, A. Wilhelm, and L. Lequiévre. A benchmark dataset for fore-
ground/background extraction. In ACCV 2012, Workshop: Background Models Challenge, pages 291–
300, 2012.

23

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

[46] Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix completion by a
nonlinear successive over-relaxation algorithm. Mathematical Programming Computation, pages 1–29,
2010.

[47] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1997.

[48] Y. Wright, A. Ganesh, S. Rao, and Y. Ma. Robust principal component analysis: Exact recovery of
corrupted low-rank matrices by convex optimization. In Advances in Neural Information Processing
Systems (NIPS), 2009.

[49] X. Yi, D. Park, Y. Chen, and C. Caramanis. Fast algorithms for robust PCA via gradient descent. In
Advances in neural network information processing systems (NIPS), 2016.

[50] X. Zeng and M. A. T. Figueiredo. The ordered weighted `1 norm: Atomic formulation, dual norm, and
projections. arXiv, 2014.

[51] T. Zhou and D. Tao. Godec: Randomized low-rank & sparse matrix decomposition in noisy case. In
International Conference on Machine Learning (ICML), 2011.

[52] Z. Zhou, X. Li, J. Wright, E. J. Candès, and Y. Ma. Stable principal component pursuit. In IEEE
International Symposium on Information Theory (ISIT), 2010.

[53] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society (B), 67:301–320, 2005.

24

Appendix A: Factorization Theorem Details
Both problems share the same set of local minimizers. This was first observed in the case of SDP in [11] and
later generalized in [4].

Our variant of the theorem:

Theorem 2. Consider an optimization problem of the following form

min
X�0

f(X), such that rank(X) ≤ k (16)

where X ∈ Rn×n is a positive semidefinite real matrix, and f is a lower semi-continuous (lsc) function
mapping to [−∞,∞] and has a non-empty domain over the positive semi-definite matrices. Using the change
of variable X = PPT , take P ∈ Rn×k, and consider the problem

min
P

g(P) def= f(PPT) (17)

Let X̄ = P̄ P̄T , where X̄ is feasible for (2). Then X̄ is a local minimizer of (2) if and only if P̄ is a local
minimizer of (2).

Proof. We follow ideas from both [11] and [4]. From Lemma 2.1 in [11], if both P and K are n× k matrices,
then PPT = KKT if and only if P = QK for some orthogonal matrix Q ∈ Rk×k. The objective in (2)
depends only on PPT , so it is clear that P is a local minimizer of (2) if and only if PQ is a local minimizer
for all orthogonal Q.

Note that g defined by P 7→ f(PPT) is also lsc since it is the composition of f with the continuous function
P 7→ PPT . We require the functions to be lsc so that the notion of “local minimizer” is well-defined.

Suppose X̄ is a local minimizer of (2), i.e., for some ε > 0 there is no better feasible point, and factor it
as X̄ = P̄ P̄T for some n× k matrix P̄ . Then we claim P̄ is a local minimizer of (2). If it is not, then there
exists a sequence Pn → P̄ with g(Pn) < g(P̄) for all n. By continuity of the map P 7→ PPT , there is some n
large enough such that Xn

def= PnP
T
n is within ε of X̄, with f(Xn) < f(X̄), contradicting the local optimality

of X̄.
We prove the other direction using contrapositive. Suppose X̄ is not a local minimizer of (2), so there is

a sequence Xn → X̄ with f(Xn) < f(X̄). Factor each Xn as Xn = PnP
T
n , and observe that it is not true

that Pn converges. However, (Xn) converges and hence is bounded, thus (Pn) is bounded as well (for the
spectral norm, ‖Xn‖ = ‖Pn‖2, and over the space of matrices, all norms are equivalent). Since Pn are in a
finite dimensional space, the Bolzano-Weierstrass theorem guarantees that there is a sub-sequence of (Pn)
that converges. Let the limit of the sub-sequence be P̄ = limk→∞ Pnk

, and note P̄ P̄T = X̄ since Xnk
→ X̄.

Then g(Pnk
) = f(Xnk

) < f(X̄) = g(P̄), so P̄ is not a local solution. It also follows from the first paragraph
of the proof that there can not be another local solution P̃ that also satisfies P̃ P̃T = X̄.

Remark 1. We recover the settings of both [4, Thm. 4.1] and [11], since allowing f to be extended valued
and lsc encompasses constraints.

Remark 2. [4, Cor. 4.2] can be clarified to state that the two problems listed there are “equivalent” in
the sense that they share the same local minimizers (as well as global), using similar continuity arguments
on the mapping R and its adjoint. Furthermore, since the constraints are compact, solutions exist in both
formulations.

25

Appendix B: Convexity of ϕ

Lemma 1. Let f : Rm×n × Rm×n → R be a convex function, and define g(L) = minS∈Rm×n f(L, S) for
L ∈ Rm×n. The function g is convex.

Proof. For all L1, L2, S1, S2 ∈ Rm×n and t ∈ (0, 1),

g(tL1 + (1− t)L2) = min
S∈Rm×n

f(tL1 + (1− t)L2, S)

≤ f(tL1 + (1− t)L2, tS1 + (1− t)S2)
≤ tf(L1, S1) + (1− t)f(L2, S2).

As this inequality holds for arbitrary S1 and S2, it holds for any minimizing S?:

g(tL1 + (1− t)L2) ≤ tf(L1, S
?) + (1− t)f(L2, S

?)
= tg(L1) + (1− t)g(L2).

It follows immediately that ϕ as defined in (1) is convex when L and r are convex.

26

	Introduction
	Prior Work and Contributions
	Theoretical Considerations
	Convexity of
	Smoothness of
	Rank and Local Minima
	Certificate of Convergence

	Initialization
	Dynamically Increasing k
	Choosing U0 and V0

	Numerical Experiments
	Implementation Details
	SPCP for Background Subtraction
	Synthetic Data
	Data Imputation
	Dimensional Scaling and Real-Time Video Processing

	A Comparison with Accelerated-SVD Algorithms
	Communication-Avoiding rSVD
	Frank-Wolfe with Marginalization

	Conclusion
	Acknowledgments

