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The unprecedented availability of whole-genome data in recent years has allowed researchers

to ask new questions regarding the genetic underpinnings of human traits while simultaneously in-

troducing numerous theoretical and computational challenges. The vast majority of commonly

studied phenotypes have revealed themselves to be complex traits—outcomes influenced by numer-

ous genetic and non-genetic factors, the former of which remain largely unknown. Large samples of

high-dimensional data are required to effectively study the genetic architectures of such traits and

the development of new theory and methods for effectively analyzing such data have become essen-

tial. The present dissertation investigates several topics in this emerging area in the context of three

studies. In the first study, Falsification of candidate gene hypotheses for major depression, we apply

genome-wide methods and probabilistic arguments to the critical interrogation of previous “candi-

date gene” hypotheses regarding the genetics of major depression. We demonstrate that modern,

well-powered samples provide little evidence supporting these pre-whole genome era hypotheses

and that these discrepancies cannot be explained by measurement error or non-additive effects,

concluding that the majority of published findings in this area represent false positives. In the

second study, Stochastic Lanczos residual maximum likelihood algorithms, we introduce two novel

algorithms for residual maximum likelihood (REML) estimation of genomic variance components

in the context of linear mixed-effects models. The principle of Krylov subspace shift-invariance

is applied to exploit problem structure and speed computation beyond existing methods, which

we demonstrate via theoretical argument and numerical experiments. In the final study, Assorta-

tive mating and whole-genome heritability estimation, we present on-going work characterizing the

effects of assortative mating on commonly used heritability estimation procedures. We provide ana-

lytic and simulation-based arguments demonstrating that three widely used estimators demonstrate

substantial bias when assumptions regarding independence of causal variants are violated.
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1

Forward

Complex traits—phenotypes reflecting numerous heritable and non-heritable influences—

have been the subject of genetics research for over a century. In contrast, the availability of

genome-wide data—measured genotypes at millions of loci across the genome—is a relatively re-

cent phenomenon, and samples large enough to effectively investigate the genetic architectures of

complex traits are largely limited to the previous decade. Despite this short timeline, the efforts

of international consortia and research initiatives (e.g., [1, 2, 3]) have resulted in numerous large

samples of individuals with measured genotypic and phenotypic data. The large scale of these

data sets, comprised of the genotypes of hundreds of thousands of individuals at millions of loci,

has provided researchers with unprecedented resources while simultaneously introducing numerous

theoretical, numerical, and computational challenges. This dissertation focuses on a subset of these

emerging topics in statistical genetics.

Chapter 1 applies whole-genome era methods to the examination of historical hypotheses

regarding the genetic underpinnings of major depression1. Through a diverse array of analytic

methods, we demonstrate that early theories, some of which continue to generate considerable

research interest, were incorrect and that the discrepancies between the so-called“candidate gene”

and genome-wide literatures cannot be explained by non-additive genetic effects or measurement

error. Next, in Chapter 2, we introduce two novel stochastic algorithms for the estimation of

genomic variance components using residual maximum likelihood (REML)2. By exploiting problem

structure through the principle of Krylov subspace shift-invariance, our novel algorithms speed

computation beyond existing methods; we demonstrate these improvements theoretically and via
1Originally published in the American Journal of Psychiatry as No support for historical candidate gene or

candidate gene-by-interaction hypotheses for major depression across multiple large samples with coauthors E.C.
Johnson, L.M. Evans, A. Smolen, N. Berley, P.F. Sullivan, and M.C. Keller [4]. Reprinted with permission from the
American Journal of Psychiatry, (Copyright 2019). American Psychiatric Association.

2Originally published in BMC Bioinformatics as Stochastic Lanczos estimation of genomic variance components
for linear mixed-effects models with coauthor S. Becker [5]. Copyright retained by the author of this dissertation.
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numerical experiment. Finally, in Chapter 3, we present ongoing work characterizing the behavior of

commonly used methods for estimating heritability from whole-genome data in populations subject

to assortative mating (AM). Employing theory- and simulation-based arguments, we demonstrate

that three widely-used procedures generate biased estimates of the equilibrium heritability under

Fisher’s classical AM framework.
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Chapter 1

Falsification of candidate gene hypotheses for major depression

1.1 Introduction

Major Depressive Disorder (hereafter referred to as “depression”) is moderately heritable

(twin-based heritability ≈ 37% [6]), but its genetic architecture is complex, and identifying spe-

cific polymorphisms underlying depression susceptibility has been challenging. With the ability

to genotype particular genetic variants and optimism about the potential public health impact of

identifying reliable biomarkers for depression [7], early research focused on the effects of specific

candidate polymorphisms in genes hypothesized to underlie depression liability. These genes were

chosen based on hypotheses regarding the biological underpinnings of depression. The 5-HTTLPR

variable number tandem repeat (VNTR) polymorphism in the promoter region of the serotonin

transporter gene SLC6A4, the most commonly studied polymorphism in relation to depression

(Figure 1.1, Table S1.11), serves as a prototypical example: given the theorized importance of the

serotonergic system in the etiology of depression, a logical target for early association studies was

a common, large (and hence relatively easy to genotype), and potentially functional repeat poly-

morphism in a serotonergic gene [8–10]. Early investigations, though focused on a small number

of variants by necessity (low cost genome-wide arrays were not yet available), reported promising

positive associations. However, replication attempts led to inconsistent results [11–13]).

To critics of candidate gene findings, replication failures suggested that initial reports were

artifactual [14–16]. However, at least two alternative explanations could account for inabilities to

replicate early reports and inconsistent results across studies. First, in the early 2000s, Caspi et

al. posited that previous inconsistencies might reflect the effects of candidate polymorphisms that

were dependent on environment exposures (gene-by-environment interaction [G × E] effects) [17]. In

what would become one of the most highly-cited (> 8000 citations as of July, 2018) and influential
1Tables and Figures prefixed with “S” are available in the online supplement to the published version of this

chapter [4]
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papers in psychiatric genetics, Caspi et al. reported that the impact of the 5-HTTLPR repeat

polymorphism in SLC6A4 on depression was moderated by exposure to stressful life events, such

that the positive association between stressful life events and depression was stronger in individuals

carrying the “short” allele [18]. This early work led many researchers to shift their attention to G ×
E hypotheses, focusing on the same polymorphisms first investigated for main effects [13]. Second, in

an alternative but complementary line of reasoning, other researchers suggested that polymorphisms

other than those studied previously in the same candidate genes were likely to explain depression

risk, given the genes’ putative biological relevance [19]. All three lines of inquiry are well represented

in the published literature of the past twenty-five years: thousands of investigations of depression or

depression endophenotypes have examined the direct effects of 1., the most studied polymorphisms

within candidate genes, 2., the moderation of their effects by environmental stressors, or 3., the

effects of alternative polymorphisms within the same candidate genes. The popularity of these lines

of inquiry has not diminished over time (Figure 1.1, supplement sections S1.4, S1.5), with many

studies reporting statistically significant associations.

Perhaps surprisingly given the continued interest in studying these historic depression can-

didate genes and the large number of associations documented in the candidate gene literature,

many researchers have expressed extreme skepticism about the validity of such findings [16, 20–

22]. There are several reasons for this. First, genome-wide association studies (GWAS), which

agnostically examine associations at millions of common single nucleotide polymorphisms (SNPs)

across the genome in large samples, have consistently found that individual SNPs exert small ef-

fects on genetically-complex traits such as depression [2, 3, 23]. For example, in the most recent

GWAS of depression, which utilized a sample of 135,458 cases and 344,901 controls, the strongest

individual signal detected (rs12552; odds ratio = 1.044; p = 6.07e-19) would require a sample of

approximately 34,100 individuals to be detected with 80% power at 𝛼 = .05, assuming a balanced

case-control design [3]. In contrast, the median study sample size in a review of 103 candidate G

× E studies published during 2000-2009 was 345, with 65% of studies reporting positive results

[20]. Thus, given the small sample sizes typically employed, candidate gene research has likely

been severely underpowered [24, 25]. This, in turn, may suggest that the false discovery rate for

the many positive reports in the candidate gene literature is high. Consistent with this possibility,

targeted, well-powered genetic association studies of depression and other psychiatric phenotypes
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in large samples have not supported candidate gene hypotheses [2, 26–29]. For example, a prereg-

istered, collaborative meta-analysis of the stressful life event × 5-HTTLPR interaction in a sample

of 38,802 individuals failed to support the original finding of Caspi et al. [30], though we note that

this variant and several other candidate VNTRs have not been previously examined in a GWAS

context [31, 32]. The absence of previous large-sample investigations of VNTR hypotheses is note-

worthy as VNTRs comprise several of the earliest candidate polymorphisms to be examined in

the context behavioral research; concerns about variability in VNTR genotyping procedures and

analysis methods over time have further complicated the interpretation of the existing literature

[33]. Additionally, a number of researchers have suggested that incorrect analytic methods and

inadequate control for population stratification characterize the majority of published candidate

gene studies [24, 34–36], and other researchers have questioned the clinical utility of focusing on

individual polymorphisms or polymorphism-by-environment interactions [37]. Finally, there is evi-

dence of systematic publication bias in the candidate gene literature; in the aforementioned review

of all candidate G × E studies published between 2000 and 2009, 96% percent of novel findings

were significant compared to only 27% of replication attempts, and replication attempts reporting

null findings had larger sample sizes than those presenting positive findings [20]. In response to

such skepticism, candidate gene proponents have argued that lack of replication of candidate gene

associations in large sample studies may reflect poor or limited phenotyping [38–40], exclusion of

non-SNP polymorphisms such as VNTRs [19, 32], the “multiple-testing burden” associated with

genome-wide scans [38], and failure to account for environmental moderators [38, 39, 41].

The current study is the most comprehensive and well-powered investigation of historic

candidate polymorphism and candidate gene hypotheses in depression to date. We focus on three

lines of inquiry concerning how historic candidate genes may impact depression liability:

1. main effects of the most commonly studied candidate polymorphisms;

2. moderation of the effects of these polymorphisms by environmental exposures;

3. main effects of common SNPs across each of the candidate genes.

We first empirically identified 18 commonly studied candidate genes represented in at least ten

peer-reviewed depression-focused journal articles between 1991 and 2016 from the body of publica-

tions indexed in the PubMed database [42]. Within these candidate genes, we identified the most
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commonly studied polymorphisms, as well as their canonical risk alleles, at which point our primary

analysis plan was preregistered. Using multiple large samples (n ranging from 62,138 to 443,264

across subsamples; total N = 621,214 individuals), we examined multiple measures of depression

(e.g., lifetime diagnostic status, symptom severity among individuals reporting mood disturbances,

lifetime number of depressive episodes; Table 1.1), employing multiple statistical frameworks (e.g.,

main effects of polymorphisms and genes, interaction effects on both the additive and multiplica-

tive scales) and, in G × E analyses, considering multiple indices of environmental exposure (e.g.,

traumatic events in childhood or adulthood,). Previous large sample studies of depression have

largely focused on genetic main effects on depression diagnosis in the context of SNP data across

the genome. In contrast, we examined several alternative depression phenotypes, analyzed both

main effects and interactions with multiple potential moderators, included the most studied poly-

morphisms, including VNTRs (Figure 1), and employed a liberal significance threshold. Further,

we quantified the extent to which phenotypic measurement error may have biased our results. The

unifying question underlying this "multiverse" analytic approach [43] was the following: do the large

datasets of the whole-genome data era support any previous depression candidate gene hypotheses?

1.2 Materials and methods

1.2.1 Identification of genes and polymorphisms

We identified eighteen candidate genes studied for their associations with depression phe-

notypes at least ten times from within the body of peer-reviewed biomedical literature indexed

in the PubMed database [42] using the Biopython bioinformatics package [44]. We used regular

expressions to find articles potentially corresponding to each gene and hand-verified the number of

correctly classified articles for each gene in order to estimate hypergeometric confidence intervals

for the true number of correctly classified studies. We identified single polymorphisms compris-

ing a large proportion of study foci for 16 of the 18 candidate genes. Figure 1.1 shows the most

studied candidate genes and polymorphisms within them, as well as probabilistic estimates of the

minimum number of times each has been studied with respect to depression and the number of

studies-per-gene-per-year (confidence intervals presented in Table S1.1).



7

Figure 1.1: Popularity of candidate genes over time
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Table 1.1: Depression and environmental moderator phenotypes
Depression phenotypes   

Phenotype Description Sample size
Estimated 
lifetime 
depression 
diagnosis

Binary  indicator  of  lifetime  DSM-V depression  diagnosis  assessed  in  UKBB online  mental  health
follow-up questionnaire. To meet criteria, participants had to endorse at  least four of eight DSM-V
depression  symptoms (motor  agitation/retardation  symptom was  not  assessed),  as  well  as  duration,
frequency, and impairment criteria.

n = 115,458
85,513: controls 
29,945 cases

Current 
depression 
severity

Sum score of all nine DSM-V depression symptom severities (using four point Likert scale to index
severity of each symptom) over the two weeks leading up to assessment. Assessed in UKBB online
mental health follow-up questionnaire.

n = 115,463

x = 2.502

sx = 3.347

Conditional 
lifetime  
symptom count

Sum  of  symptom  indicators  for  eight  of  nine  lifetime  DSM-V  depression  symptoms  (motor
agitation/retardation symptom was not assessed) among individuals endorsing lifetime incidence of a
two+  week  period  characterized  by  anhedonia  and/or  depressed  mood (questionnaire  skip  patterns
necessitated this precondition). Assessed in the UKBB online mental health follow-up questionnaire.

n = 62,138

x = 4.746

sx = 1.745

Lifetime episode 
count

Ordinal  measure of incidence/recurrence of  a two+ week period characterized by anhedonia  and/or
depressed mood indicating zero episodes, a single episode, or recurrent episodes. Assessed in UKBB
online mental health follow-up questionnaire.

n = 115,457 
55,388: zero
30,724: single
26,345: recurrent

Touchscreen 
probable lifetime
diagnosis, 
ordinal 
classification

Ordinal measure of depression diagnostic status based on a selection items of items from the Patient
Health Questionnaire, the Structured Clinical Interview for DSM-IV Axis I Disorders-Research Version,
and  items  assessing  treatment  seeking  behavior  specific  to  the  UKBB  touchscreen  interview,  as
described in Smith et al., 2013. Categories included no depression, single depressive episode, recurrent
episodes (moderate), and recurrent episodes (severe), in that order. Assessed as part of the UKBB initial
touchscreen interview.

n = 91,121
66,605: controls
6,209: 1 episode
11,634: ≥ 2 
moderate
6,633: ≥ 2 severe

Touchscreen 
probable lifetime
diagnosis

Dichotomized coding of the touchscreen probable life diagnosis ordinal classification, contrasting no
depression with the three diagnosis categories.

n = 91,121
66,605: controls
84,516: cases

Severe recurrent 
depression

Binary  indicator  of  case/control  status  for  depression  excluding  cases  and  controls  with  mild  to
moderate depression symptoms. Controls were individuals who failed to endorse incidence of a two+
week period characterized by anhedonia and/or depressed mood. Cases were individuals met criteria for
estimated lifetime depression diagnosis, endorsed at least five of the eight measured DSM-V symptoms,
and  experienced  recurrent  depressive  episodes.  Assessed  in  UKBB online  mental  health  follow-up
questionnaire.

n = 64,432
53,218: controls
14,214: cases

PGC lifetime 
depression 
diagnosis

Binary indicator of lifetime depression diagnosis as measured in the PGC2 depression GWAS. The
current investigation utilized data from the full expanded cohort meta-analysis, excepting UK-based
cohorts (UKBB and Generation Scotland).

n = 443,264
323,063: controls
120,201: cases

Moderator phenotypes
Phenotype Description Sample size
Childhood 
trauma

Binary indicator of sexual and or physical abuse during childhood. Assessed in the UKBB online mental
health follow-up questionnaire.

n = 157,146
118,800: unexposed
38,346: exposed

Adult trauma Binary indicator of any of the following traumatic events during adulthood: physical assault, sexual
assault,  witness  to  sudden/violent  death,  diagnosis  with life  threatening illness,  involvement  in  life
threatening accident, and exposure to combat or war-zone conditions. Assessed in the UKBB online
mental health follow-up questionnaire.

n = 157,223
64,286: unexposed
92,937: exposed

Recent trauma Binary indicator of whether any of the above events occurred in the year leading up to assessment. n = 157,220
142,008: unexposed
15,212: exposed

Stressor-induced
depression

Binary indicator of whether period of depressed mood or anhedonia was a possible consequence of a
traumatic event among individuals endorsing lifetime incidence of a two+ week period characterized by
anhedonia and/or depressed mood (questionnaire skip patterns necessitated this precondition). Assessed
in the UKBB online mental health follow-up questionnaire.

n = 88,585
23,746: unrelated to
stressor
64,839: stressor-
induced

Townsend 
deprivation 
index (TDI)

Measure of socioeconomic adversity  with higher values indicating greater adversity. Standardized to
have zero mean and unit standard deviation. Assessed during the UKBB initial touchscreen interview.

n = 187,094
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1.2.2 Samples

1.2.2.1 UK Biobank samples

A large portion of the data used in the present study was collected by the UK Biobank

(UKBB), a population sample of 502,682 individuals collected at 22 centers across the United

Kingdom between 2006 and 2010 [1]. Within this group, we analyzed several depression phe-

notypes and moderators among 177,950 unrelated (pairwise genome-wide relatedness, ̂𝜋 < .05)

European ancestry individuals for whom relevant depression measures were collected. We ana-

lyzed two partially overlapping subsets of these individuals: 91,121 individuals for whom selected

items from the initial touchscreen interview were available and 115,458 individuals who completed

a series of online mental health questionnaires, 62,138 of whom endorsed a two-week period char-

acterized by anhedonia or depressed mood at some point during their lives. DNA was extracted

from whole blood and genotyped using the Affymetrix UK Biobank Axiom array or the Affymetrix

UK BiLEVE Axiom array and imputed to the Haplotype Reference Consortium by the UKBB

[45]. Further details on genotyping and sampling procedures are available in S2. Because VNTRs

were not genotyped in the UKBB dataset, we used two independent whole-genome SNP datasets

(the Family Transition Project [46] and the Genetics of Antisocial Drug Dependence [47, 48]) that

also measured these repeat polymorphisms as reference panels in order to impute highly studied

VNTRs within DRD4, MAOA, SLC6A3, and SLC6A4 in the UKBB. The estimated out-of-sample

imputed genotype match rates were ≥ 0.919 for all four VNTRs (complete details are provided in

[49]).

1.2.2.2 Psychiatric Genetics Consortium sample

To investigate candidate gene polymorphism main effect hypotheses, we also used data from

the most recent GWAS on depression conducted by the Major Depressive Disorder Working Group

of the Psychiatric Genetics Consortium (PGC), which is described in detail in [3]. Lack of access

to raw genotypes for a large number of the PGC cohorts precluded imputation of VNTRs in the

PGC sample. To minimize sample overlap with UKBB, UK-based cohorts were excluded from the

PGC dataset, resulting in GWAS summary statistics for a total of 443,264 individuals (120,201

cases; 323,063 controls); see S2 for further details.
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1.2.3 Phenotypes

Table 1.1 describes all phenotypes examined in the present investigation, with additional

information provided in S3. Correlations between depression outcomes and Cohen’s 𝜅 estimates

for diagnosis phenotypes are presented in Tables S3.1 and S3.2, respectively. Marker-based her-

itabilities of, and genetic correlations between, depression outcomes were estimated via LD score

regression [50] and are presented in Tables S3.3-S3.4 and Figure S3.3 (see S4.4 for further details).

1.3 Analyses

All analyses were preregistered through the Open Science Framework [51] and are available

at (https://osf.io/akgvz/). Statistical models are described in detail in S4 and departures from the

preregistered analyses are documented in S5.

1.3.1 Polymorphism-wise analyses

We analyzed associations between outcomes and each of the top 16 candidate polymor-

phisms using a generalized linear model framework (link functions listed in Table S4.1). For two of

the genes, TPH2 and DTNBP1, no particular polymorphism was investigated in a preponderance

of studies, and so these genes were not included in the polymorphism-wide analyses. Covariates

included genotyping batch, testing center, sex, age, age2, and the first ten European ancestry prin-

cipal components. Sixteen polymorphism × environment effects were tested on both the additive

and multiplicative scales for each of the 16 polymorphisms; each model tested is listed in Table

S4.1. For interaction tests, we included all covariate × polymorphism and covariate × moderator

terms to control for the potential confounding influences of covariates on the interaction [35]. We

also tested interaction models only controlling for covariate main effects, which is incorrect but

common in the candidate gene literature [34]. Across all outcomes we employed a preregistered

significance threshold of 𝛼poly = .05/16 = 3.13e-03, corresponding to a Bonferroni correction across

the top 16 candidate polymorphisms. This threshold is liberal because it does not account for the

multiple ways each polymorphisms was analyzed or the multiple outcomes it was assessed with

respect to. Further details are provided in S4.1.

https://osf.io/akgvz/
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1.3.2 Gene-wise and gene-set analyses

We used the NCBI Build 37 gene locations to annotate SNPs to genes, allowing SNPs

within a 25kb window of the gene start and end points to be mapped to each gene. We used

MAGMA software version 1.05b [52] to perform gene-wise and gene-set analyses for the top eighteen

candidate genes separately in the UKBB and PGC datasets. Gene-wise tests summarize the degree

of association between a phenotype and polymorphisms within a given gene; in contrast, gene-set

tests examine the association between a phenotype and a set of genes rather than individual genes.

We conducted gene-wise association analyses for each gene and outcome using the MAGMA

default gene-level association statistic (sum -log p-based statistics or principal components regres-

sion, for tests based on summary statistics or individual-level genotypes, respectively) and using a

liberal significance threshold of 𝛼gene = .05/18 = 2.78e-03 to correct for multiple tests across the

18 candidate genes. We used summary statistics from the PGC2 depression GWAS [3] (excluding

UK-based cohorts) as input for the PGC analyses, whereas individual-level genotypes were avail-

able for the UKBB. The gene-level association statistics were in turn used to perform “competitive”

gene-set tests that compared enrichment of depression phenotype-associated-loci between our set of

18 candidate genes and all other genes not in the gene set, controlling for potentially confounding

gene characteristics. Further analyses, which compared the 18 candidate genes to negative control

sets of genes involved in type 2 diabetes, height, or synaptic processes, are described in S4.2 and

reported in S11.

1.4 Results

1.4.1 Polymorphism-level analyses

Table 1.2 shows the most significant result for each of the most-studied candidate gene

polymorphisms for the main effect across the eight outcomes investigated (eight main effect tests

per polymorphism; first column) and the interaction effect across five moderators measured in the

UKBB (32 interaction tests per polymorphism [Table S4.6]; second column). Given the number of

tests conducted, there was little evidence that any effect was larger than what would be expected by

chance under the null hypothesis. Only for COMT rs4680 on current depression severity was there

was evidence of a small main effect that surpassed our liberal threshold of significance, such that
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Figure 1.2: Main effects and G × E effects of 16 candidate polymorphisms on estimated lifetime
depression diagnosis and current depression severity in the UK Biobank.
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the rate of current depression severity scores decreased by a factor of 0.983 per copy of the G allele

(odds ratio CI: 0.967-0.999; p = .002; Figure 2). Detecting an effect of this size (genomic relative risk
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= 0.986) at 𝛼 = .05 with 80% power would require a sample of approximately 214,350 individuals

assuming a balanced case-control study (S4.3). Similarly, across all polymorphisms, outcomes, and

exposures, on both the additive and multiplicative scales, no polymorphism-by-exposure moderation

effects attained significance at 𝛼poly. Failing to include all covariate × polymorphism and covariate

× moderator terms as covariates, as is common in the published G × E literature [35], inflated

product term test statistics on average but did not result in any additional significant effects (S10).

Complete results for all outcomes are provided in S7-S10.

Despite the lack of evidence for G × E effects, all moderators exhibited large significant

effects on all outcomes in the expected directions (S6). For example, experiencing childhood trauma

increased odds for estimated lifetime depression diagnosis by a factor of 1.655 (z = 32.048, p =

2.33e-225) and experiencing a traumatic event in the past two years increased incidence rate of

current depression severity index by a factor of 1.431 (z = 27.004, p = 1.32e-160).

1.4.2 Gene-level analyses

Across all candidate genes and outcomes, only DRD2 showed a significant gene-wise effect

(𝛼gene =.05/18=2.78e-03) and only on PGC lifetime depression diagnosis using both the sum –log

p statistic (p = 5.14e-07) as well as using the minimum p-value statistic (p = 2.74e-03; see Tables

S11.1 and S11.2 for full results and section S4.2 for comparison of methods). The former estimate,

based on the sum -log p statistic, was also significant at the more stringent genome-wide level

(𝛼GW = .05/19,165 = 2.61e-6). DRD2 did not exhibit a significant effect on any of the UKBB

outcomes despite its high genetic correlations with the UKBB depression phenotypes (Table S3.3,

Figure S3.3). Investigating the effects of the 18 genes together as a set revealed no associations

with depression above what would be expected by chance under the null; the set of 18 depression

candidate genes did not show stronger associations with any depression phenotype compared to all

other genes at 𝛼 = .05 (S11.2.1).

1.4.3 Attempted replication of top 16 loci implicated by PGC GWAS results

In order to contextualize the lack of replication of the of 16 candidate genetic polymor-

phisms, we sought to replicate the top 16 independent genome-wide significant loci implicated for

PGC lifetime diagnosis by examining their associations with estimated lifetime diagnosis in the
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Figure 1.3: Gene-wise statistics for effects of 18 candidate genes on primary depression outcomes
in the UK Biobank
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Gene-wise p-values across the genome, highlighting the 18 candidate polymorphisms’ effects on
estimated depression diagnosis (filled points) and past two-week depression symptom severity
(hollow points) from the online mental health follow-up assessment in the UKBB sample (n =
115,257). Detailed descriptions of the variables, and of the association and power analysis models
are provided in S3 and S4, respectively.

independent UKBB sample (see S4.5 for details). Three loci attained significance at 𝛼poly = .05/16

(rs12552, rs12658032, rs11135349; S12), which is consistent with the low power to detect small

associations; median power for the 16 loci was 0.143 and the 95% CI for number of replications

we’d expect given power estimates was 2 – 7 (Figure S4.6).

1.4.4 Sensitivity of results to measurement error

One reason why candidate gene polymorphism associations detected in small samples are not

replicated in large GWAS datasets is the potentially worse phenotyping and higher measurement

error in predictor or outcome variables in the GWAS datasets. To investigate this possibility,

we used a Monte Carlo procedure to quantify the extent to which measurement error may have

impacted statistical power of our tests. As a lower bound on a candidate gene polymorphism study

effect sizes, we used the minimally detectable log odds ratio for both main and interaction effects
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that had 50% power at 𝛼 = .05 in a balanced case/control study of 1000 individuals and where

the risk allele frequency was 0.5 (e.g., for main effects, genomic relative risk = 1.16). Simulations

demonstrated that we had ≈100% power to detect such effects under multiple severe measurement

error scenarios in a sample of size typical of that in our UKBB analyses (≈ 30,000 cases and ≈
85,000 controls; see S4.3.3). This was true even in the extreme scenario wherein half of diagnoses

and half of traumatic exposures were determined via coin toss (Figure S4.5).

1.5 Discussion

The present study examined multiple types of associations between 18 highly studied can-

didate genes for depression and multiple depression phenotypes. The study was very well powered

compared to previous candidate gene studies, with n ranging from 62,138 to 443,264 across sub-

samples. Despite the high statistical power, none of the most highly studied polymorphisms within

these genes demonstrated substantial contributions to depression liability. Furthermore, we found

no evidence to support moderation of polymorphism effects by exposure to traumatic events or

socioeconomic adversity. We also found little evidence to support contributions of other common

polymorphisms within these genes to depression liability excepting DRD2, which showed a genome-

wide significant gene-wise effect on depression diagnosis in the PGC sample, though not on any

outcomes in the UKBB sample. Reasons for the failure of DRD2 to replicate in the UKBB are

unclear, but could be due to sampling variability, lower statistical power in the UKBB, or false pos-

itive or negative findings. Phenotypic heterogeneity, however, is an unlikely explanation as genetic

correlation estimates between depression phenotypes across samples were high (Table S3.3, Figure

S3.3)—for example, PGC lifetime depression diagnosis was strongly associated with estimated life-

time depression diagnosis from the UKBB online follow-up questionnaire (ℎ̂2
LDSC = 0.085[0.004],

ℎ̂2
LDSC = 0.057[0.007], respectively; ̂𝑟𝑔 = 0.885[0.054], 𝑝 = 2.08e-57), which was in turn strongly

associated with probable lifetime diagnosis from the UKBB initial touchscreen interview (ℎ̂2
LDSC =

0.090[0.008], ̂𝑟𝑔 = 0.939[0.082], 𝑝 = 2.83e-30). Finally, as a set, depression candidate genes were

no more related to depression phenotypes than non-candidate genes. Our results stand in stark

contrast to the published candidate gene literature, where large, statistically significant effects are

commonly reported for the specific polymorphisms in the 18 candidate genes we investigated here.

There are several features of the current investigation that set it apart from previous candi-
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date gene replication attempts, meta-analyses of candidate gene studies, and genome-wide studies

that failed to support roles for depression candidate polymorphisms. First, this is the only study to

have imputed and examined the effects of several highly-studied VNTR polymorphisms in a large

GWAS dataset, including 5-HTTLPR in SLC6A4, which was examined in 38.14% of the depres-

sion candidate gene studies we identified (see [49] for imputation details). Second, we thoroughly

examined several distinct depression phenotypes (e.g., diagnosis, depressive episode recurrence,

symptom count among depressed individuals) to ensure that our results did not reflect a single

operationalization of depression. Some researchers have attributed the poor replicability of candi-

date gene findings to specificity of effects with respect to particular types of depression or stressors

(e.g., prior versus subsequent depression onset with respect to stress exposure [40], recurrent versus

single episode depression [53], financial versus other stress exposure [54]). As such, we examined

all available depression and exposure phenotypes reflecting constructs of interest in the candidate

gene literature. Results for all measures and modeling choices (e.g., multiplicative versus additive

interactions), presented in detail in the supplement (S7-S11), were consistently null with respect to

candidate gene hypotheses. Third, we employed exceedingly liberal significance thresholds (e.g., for

polymorphism-wise analyses 𝛼poly = 3.13e-03 as opposed to the standard 𝛼gwas = 5e-08 utilized in

GWAS) across all outcomes to ensure no possible effect was missed, correcting only for the number

of polymorphisms we examined. As such, our results suggest that the zero or near-zero effect sizes

of these candidate polymorphisms, rather than the multiple-testing burden induced by genome-

wide scans, account for the previous failures of large GWAS to detect candidate polymorphisms

effects. Finally, and perhaps most importantly, unlike meta-analyses that use previously published

candidate gene findings, our results cannot be affected by selective publication or reporting prac-

tices that can inflate type-I errors and lead to biased representations of evidence for candidate gene

hypotheses.

There are several limitations to the present investigation. First, it is possible that we failed

to identify a small number of candidate gene publications and that these failures resulted in the

omission of some depression candidate genes examined in ten or more publications. Nevertheless,

the top nine of the eighteen identified genes accounted for 86.59% of the estimated number of

studies, and it is unlikely that we omitted any depression candidate genes with popularity ap-

proaching that of, for example, SLC6A4 or COMT. Second, a subset of the UKBB sample were
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ascertained for smoking behaviors (the BiLEVE study [55]), and controlling for genotyping batch

(which differentiates the two subsamples) has the potential to induce collider bias [56]. However,

only one of the sixteen candidate gene polymorphisms demonstrated allele frequency differences

across these two subsamples (rs6311; =12.558, p = .002; MAF = .402 in the BiLEVE sample,

MAF = .405 otherwise) and it is unlikely that ascertainment in the BiLEVE subsample unduly

influenced association statistics. However, the potential influence of ascertainment in the BiLEVE

subsample on interaction effect estimates, as well as other possible sources of selection-induced

bias, remains unclear. Third, whereas some of phenotypes we examined closely matched stan-

dard diagnostic instruments (e.g., current depression severity was based on the widely used PHQ-9

questionnaire [57]), others were of undetermined reliability. For example, one of the nine DSM-V

depression symptoms (motor agitation/retardation) was omitted from the UKBB online mental

health follow-up questionnaire, and our estimated lifetime depression diagnosis phenotype required

≥ 4 of 8 symptoms rather than the standard ≥ 5 of 9 symptoms (in addition to episode duration

and impairment criteria; S3.1). However, enforcing stricter case/control criteria (i.e., comparing

individuals who endorsed no two-week period of either anhedonia or depressed mood throughout

their lifetimes to individuals reporting recurrent episodes, endorsing ≥ 5 of 8 symptoms, and meet-

ing duration and impairment criteria) failed to alter results (S7, S8, S9), despite the fact that even

this diminished sample size (n = 67,304) was much larger than any previous candidate gene study

we are aware of. Fourth, some of the phenotypes we examined were possibly measured with greater

error than is typical in smaller candidate gene studies, an issue for which large studies are often

criticized. For example, the prevalence of our measure of traumatic exposure in adulthood was

uncommonly high (59.11%) and most of our retrospective measurements were likely corrupted by

recall bias. However, as demonstrated in S4.3.3, even extreme measurement error cannot explain

our failure to detect the relatively large effects necessary for detection in smaller samples. Further,

follow-up analyses demonstrated strong effects of all environmental moderators across all outcomes

(S6), suggesting that both moderators and depression phenotypes were measured with sufficient

accuracy to detect known environmental effects. It is exceedingly difficult to construct a plausible

measurement error model that could, for example, comfortably reconcile the large effect estimate

of childhood trauma on estimated lifetime diagnosis (odds ratio = 1.655, p = 2.96e-225) and the

negligible estimate for the 5-HTTLPR × childhood trauma interaction effect (odds ratio = 0.988,
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p = .914) with the existence of a substantial G × E interaction effect.

The genetic underpinnings of common complex traits such as depression appear to be far

more complicated than originally hoped [58, 59], and large collaborative efforts have not supported

the existence of common genetic variants with large effects on depression liability [3]. In the

context of our understanding of psychiatric genetics in the 1990s and early 2000s, the most studied

candidate genes and the polymorphisms within them were defensible targets for association studies.

However, our results demonstrate that historic depression candidate gene polymorphisms do not

have detectable effects on depression phenotypes. Further, the candidate genes themselves (with the

possible exception of DRD2) were no more associated with depression phenotypes than genes chosen

at random. The present study had ≥ 99.99% power at 𝛼gwas = 5e-08 to detect a main effect of the

magnitude commonly reported in candidate gene studies, even allowing for extreme measurement

error in both outcome and moderator phenotypes (S4.3). Thus, it is extremely unlikely that we

failed to detect any true associations between depression phenotypes and these candidate genes. The

implication of our study, therefore, is that previous positive main effect or interaction effect findings

for these 18 candidate genes with respect to depression were false positives. Our results mirror those

of well-powered investigations of candidate gene hypotheses for other complex traits including those

of schizophrenia [21] and white matter microstructure [60]. The potential for self-correction is an

essential strength of the scientific enterprise; it is with this mechanism in mind that we present

these findings. In agreement with the recent recommendations of the National Institute of Mental

Health Council Workgroup on Genomics [61], we conclude that it is time for depression research to

abandon historic candidate gene and candidate gene-by-environment interaction hypotheses.
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Chapter 2

Stochastic Lanczos residual maximum likelihood algorithms

2.1 Background

Linear mixed-effects modeling (LMM) is a leading methodology employed in genome-wide

association studies (GWAS) of complex traits in humans, offering the dual benefits of controlling

for population stratification while permitting the inclusion of data from related individuals [62].

However, the implementation of LMM comes at the cost of increased computational burden rela-

tive to ordinary least-squares regression, particularly in performing residual maximum likelihood

(REML) estimation of genomic variance components. Conventional REML algorithms require

multiple 𝒪(𝑛3) or 𝒪(𝑚𝑛2) matrix operations, where 𝑚 and 𝑛 are the numbers of markers and indi-

viduals, respectively, rendering them infeasible for large biobank scale data sets. Further, common

numerical methods for REML estimation rely on sparse matrix methods suitable for traditional

LMM applications (e.g., pedigree data or experiments with repeated measures [63]) that are in-

applicable to genomics variance components models since these models involve dense relatedness

matrices. As a result, the problem of increasing the computational efficiency of REML estimation

of genomic variance components has generated considerable research activity [64–69].

In the case of the standard two variance component model (2.2.1), the estimation of which

is the focus of the current research, previous efforts toward increasing computational efficiency fit

into two primary categories: 1., reducing the number of cubic time complexity matrix operations

needed to achieve convergence; and 2., substituting stochastic and iterative matrix operations for

deterministic, direct methods to obtain procedures with quadratic time complexity. The first ap-

proach is embodied by the methods implemented in the FaST-LMM and GEMMA packages [64,

66, 67], which take advantage of the fact that the genetic relatedness matrix (GRM) and identity

matrix comprising the covariance structure are simultaneously diagonalizable. As a result, after

performing a single spectral decomposition of the GRM and a small number of matrix-vector mul-

tiplications, the REML criterion (2.2.3) and its gradient and Hessian can be repeatedly evaluated
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using only vector operations. The second approach is exemplified by the popular BOLT-LMM soft-

ware [68, 69], which avoids all cubic operations by solving linear systems via the method of conjugate

gradients (CG) and employing stochastic trace estimators in place of deterministic computations.

In the current research, we propose two algorithms, stochastic Lanczos derivative-free resid-

ual maximum likelihood (SLDF_REML; algorithm 3) and Lanczos first-order Monte Carlo residual

maximum likelihood (L_FOMC_REML; algorithm 4), that combine features of both approaches (fig-

ure 2.1). Here, we translate the simultaneous diagonalizability of the heritable and non-heritable

components of the covariance structure to stochastic and iterative methods via the principle of

Krylov subspace shift-invariance. As a result, we only need to compute the costliest portions of

the objective function once (via stochastic/iterative methods), computing all subsequent iterations

of the REML optimization problem only using vector operations. We develop the theory underly-

ing these methods and demonstrate their performance relative to previous methods via numerical

experiment.

Figure 2.1: Time complexity analogies with respect to existing and proposed methods.

Näıve
Newton–Raphson
O(n3 · neval)

BOLT LMM

O(n2 · neval)

Spectral
Newton–Raphson
O(n3 + n · neval)

SLDF REML,
L FOMC REML

O(n2 + n · neval)

O(1/n)

O(1/neval)

O(1/neval)

O(1/n)

Dominating

operations

performed at

each iteration

Dominating

operations

performed

only once

Deterministic / direct matrix computations

Stochastic / iterative matrix computations

Heuristically, the novel algorithms (bottom right) are to the stochastic, iterative algorithm imple-
mented in the BOLT-LMM software [68, 69] (bottom left) as the direct methods exploiting the
shifted structure of the the two component genomic variance component model 2.2.1 (e.g., FaST-
LMM and GEMMA [64, 66] (top right) are to standard direct methods (top left). For simplicity, we
assume here that the number of markers is equal to the number of observations and omit low-order
terms related to the spectral conditioning of the covariance structure and the number of random
vectors generated by the stochastic methods; further details are provided in Table 2.1. 𝑛𝑒𝑣𝑎𝑙 denotes
the number of objective function evaluations needed to achieve convergence.
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2.2 Method

We consider the two component genomic variance components model commonly employed

in LMM association studies [62], which is of the form

𝑦 = 𝑋𝛽 + 1√𝑚𝑍𝑢 + 𝑒,

𝑢 𝑖.𝑖.𝑑.∼ 𝒩(0, 𝜎2
𝑔), 𝑒 𝑖.𝑖.𝑑.∼ 𝒩(0, 𝜎2

𝑒), (2.2.1)

where 𝑦 is a measured phenotype, the 𝑐 ≪ 𝑛 columns of 𝑋 ∈ ℝ𝑛×𝑐 are covariates (including

an intercept term) with corresponding fixed effects 𝛽, and 𝑍 ∈ ℝ𝑛×𝑚 is a matrix of 𝑛 indi-

viduals’ standardized genotypes at 𝑚 loci. Without loss of generality, we assume that 𝑋 has

full column rank; in the case of numerical rank deficiency we can simply replace 𝑋 by the op-

timal full rank approximation generated by its economy singular value decomposition or rank

revealing QR decomposition. The latent genetic effects 𝑢 ∈ ℝ𝑚 and residuals 𝑒 ∈ ℝ𝑛 are ran-

dom variables with distributions parametrized by the heritable and non-heritable variance com-

ponents, 𝜎2
𝑔 and 𝜎2

𝑒 , respectively. The REML criterion corresponds to the marginal likelihood of

𝜎2
𝑔, 𝜎2

𝑒 |𝐾𝑇 𝑦 , where 𝐾𝑇 projects to an (𝑛 − 𝑐)-dimensional subspace orthogonal to the covariate

vectors such that the null space of 𝐾𝑇 is exactly the column space of 𝑋 [70]. In other words

𝐾𝑇 ∶ ℝ𝑛 → 𝒮 ⊂ ℝ𝑛−𝑐 such that ℝ𝑛 = 𝒮 ⊕ col 𝑋 . The transformed random variable 𝐾𝑇 𝑦 has

the marginal distribution 𝐾𝑇 𝑦 ∼ ℳ𝒱𝒩(0, 𝜎2
𝑔

1
𝑚𝐾𝑇 𝑍𝑍𝑇 𝐾 + 𝜎2

𝑒𝐾𝐾𝑇 ), which we reparametrize as

𝐾𝑇 𝑦 ∼ ℳ𝒱𝒩(0, 𝜎2
𝑔𝐾𝑇 𝐻𝜏𝐾), where

𝐻𝜏 = 1
𝑚𝑍𝑍𝑇 + 𝜏𝐼𝑛, 𝜏 = 𝜎2

𝑒/𝜎2
𝑔. (2.2.2)

Here, 1
𝑚𝑍𝑍𝑇 , which indicates the average covariance between individuals’ standardized genotypes,

is often referred to as the genomic relatedness matrix (GRM). The REML criterion, or marginal

log likelihood, can be expressed as a function of 𝜏 :

ℓ(𝜏|𝐾𝑇 𝑦) ∝ − (𝑛 − 𝑐) ln(�̂�2
𝑔(𝜏)) − �̂�2

𝑒(𝜏)−1𝑦𝑇 𝑃𝜏𝑦

− ln(det(𝐾𝑇 𝐻𝜏𝐾)), (2.2.3)
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where 𝑃𝜏 = 𝐾(𝐾𝑇 𝐻𝜏𝐾)−1𝐾𝑇 , and, as implied by the REML first-order (stationarity) conditions,

�̂�2
𝑒(𝜏) is the expected residual variance component given 𝜏 and �̂�2

𝑔(𝜏) = �̂�2
𝑒(𝜏)/𝜏 [70, 71]. In practice,

𝐾 is never explicitly formed.

Naïve procedures for maximizing the REML criterion require evaluating (2.2.3) or its deriva-

tives at each iteration of the optimization procedure. Previous methods either reduce the number

of necessary cubic time complexity operations to one by exploiting problem structure, or substi-

tute quadratic time complexity iterative and stochastic matrix operations for direct computations

(Figure 2.1). Here, we unify these approaches via the principle of Krylov subspace shift invariance

to achieve methods that only require a single iteration of quadratic time complexity operations.

In what follows, we first present a brief survey of the Lanczos process, its applications to

families of shifted linear systems, and its use in constructing Gaussian quadratures for spectral

matrix functions. We assume familiarity with the method of conjugate gradients, an iterative pro-

cedure for approximating solutions to symmetric positive definite linear systems, and Gaussian

quadrature, a method for approximating the integral of a given function by a well chosen weighted

sum of its values; if not, see [72] and [73], respectively. We present these methods toward the goal

of efficiently evaluating the quadratic form and log-determinant terms appearing in the REML cri-

terion (2.2.3). We then present the details of the SLDF_REML and L_FOMC_REML algorithms, both of

which exploit problem structure via Lanczos process-based methods in order to speed computation.

Finally, we derive expressions for the computational complexity of the present algorithms, which

we confirm via numerical experiment.

2.2.1 Preliminaries

The notation in this section is self-contained. Our presentation borrows from the literature

extensively; further details on the (block) Lanczos procedure [72, 74], conjugate gradients for shifted

linear systems [75, 76], stochastic trace estimation [77, 78], and stochastic Lanczos quadrature [79–

81] are suggested in the bibliography.

2.2.1.1 Krylov subspaces

Consider a symmetric positive-definite matrix 𝐴 and nonzero vector 𝑏. Define the 𝑚𝑡ℎ

Krylov subspace by the span of the first 𝑚 − 1 monomials in 𝐴 applied to 𝑏; that is, 𝒦𝑚(𝐴, 𝑏) =
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span {𝐴𝑘𝑏 ∶ 𝑘 = 0, … , 𝑚 − 1}. Krylov subspaces are shift invariant—i.e., for real numbers 𝜎, we

have 𝒦𝑚(𝐴, 𝑏) = 𝒦𝑚(𝐴 + 𝜎𝐼, 𝑏).

2.2.1.2 The Lanczos procedure

The Lanczos procedure generates the decomposition 𝐴𝑈𝑚 = 𝑈𝑚𝑇𝑚, where the columns

𝑢1, … , 𝑢𝑚 of 𝑈𝑚 form an orthonormal basis for 𝒦𝑚(𝐴, 𝑏) and the Jacobi matrices 𝑇𝑚 ∈ ℝ𝑚×𝑚

are symmetric tridiagonal. Choosing 𝑢1 = 𝑏/‖𝑏‖, successive columns are uniquely determined by

the sequence of Lanczos polynomials {𝑝𝑘}𝑚−1
𝑘=1 such that each 𝑢𝑘 = 𝑝𝑘−1(𝐴)𝑢1 and each 𝑝𝑘 is the

characteristic polynomial of Jacobi matrix 𝑇𝑘 consisting of the first 𝑘 rows and columns of 𝑇𝑚.

The Lanczos procedure is equivalent to the well-known method of conjugate gradients (CG) for

solving the linear system 𝐴𝑥 = 𝑏 in that the 𝑚𝑡ℎ step CG approximate solution 𝑥(𝑚) is obtained

from the above decomposition using only vector operations (see algorithm 1). The number of steps

𝑚 prior to termination corresponds to the number of CG iterations need to bound the norm of

the residual below a specified tolerance: ‖𝐴𝑥(𝑚) − 𝑏‖ < 𝜖. The rate of convergence depends on

the spectral properties of 𝐴 and can be controlled in terms of the spectral condition number 𝜅(𝐴).
In the present application, the fact that all complex traits of interest generally have a non-trivial

non-heritable component results in well-conditioned systems [68, 82].

2.2.1.3 Solving families of shifted linear systems

Having applied the Lanczos process to the seed system 𝐴𝑥 = 𝑏, shift-invariance can be

exploited to obtain the 𝑚𝑡ℎ step CG approximate solution 𝑥(𝑚)
𝜎 to the shifted linear system 𝐴𝜎𝑥𝜎 =

(𝐴 + 𝜎𝐼)𝑥𝜎 = 𝑏, only using vector operations [75]. It can be shown that any positive shift by 𝜎 ≥ 0
improves the rate of convergence such that ‖𝐴𝜎𝑥(𝑚)

𝜎 − 𝑏‖ = 𝛿𝑚
𝛿𝑚+𝜎‖𝐴𝑥(𝑚) − 𝑏‖, where 𝛿𝑚 > 0 is the

𝑚𝑡ℎ diagonal element of the Lanczos Jacobi matrix corresponding to 𝒦𝑚(𝐴, 𝑏).

2.2.1.4 Lanczos polynomials and Gaussian quadrature

Additionally, the Lanczos polynomials comprise a sequence of orthogonal polynomials with

respect to the spectral measure

𝜇𝐴,𝑣(𝑡) =
ℓ∶𝜆ℓ≤𝑡
∑
𝑗=1

(𝑄𝑇 𝑣)2
𝑗 ,
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Algorithm 1: Lanczos conjugate gradients solver for shifted systems (L_Solve)
input : shift 𝜎 ≥ 0, right hand sides 𝐵 = {𝑏𝑗 ∈ ℝ𝑛}𝑐

𝑗=1 and their Lanczos decompositions
𝑈𝑗 ∈ ℝ𝑛×𝑚, 𝑇𝑗 ∈ ℝ𝑚×𝑚 where col 𝑈𝑗 = 𝒦𝑚(𝐴, 𝑏𝑗).

output: Approximate solution 𝑋(𝑚)
𝜎 ≈ (𝐴 + 𝜎𝐼)−1𝐵.

begin
for 𝑗 = 1, … , 𝑐 do // iterate over RHSs

// initialize coefficients:
𝛿1∶𝑚 ← {(𝑇𝑗)𝑖,𝑖}𝑚

𝑖=1 + 𝜎 ⃗1𝑚; // recycle Jacobi
𝛽2∶𝑚 ← {(𝑇𝑗)𝑖,𝑖−1}𝑚

𝑖=2; // coefficients
𝜔0 ← 0 𝛾0 ← 1 𝜌1 ← ‖𝑏𝑗‖ // initialize vectors:
𝑥𝑗 ← ⃗0𝑛; // CG approx solutions
𝑟𝑗 ← 𝑏𝑗; // CG residuals
𝑝𝑗 ← 𝑏𝑗; // search directions
// main loop:
for 𝑘 = 1, … , 𝑚 do

// update coefficients
𝛾𝑘 ← (𝛿𝑘 − 𝜔𝑘−1/𝛾𝑘−1)−1 𝜔𝑘 ← (𝛽𝑘+1𝛾𝑘)2 𝜌𝑘+1 ← −𝛽𝑘+1𝛾𝑘𝜌𝑘 // update CG soln,

residual, search dir
𝑥𝑗 ← 𝑥𝑗 + 𝛾𝑘𝑝𝑗 𝑟𝑗 ← 𝜌𝑘+1({𝑈𝑗}𝑘+1); // recycle basis
𝑝𝑗 ← 𝑟𝑗 + 𝜔𝑘𝑝𝑗

end
end
return 𝑋(𝑚)

𝜎 = [𝑥1| ⋯ |𝑥𝑐]
end

where 𝐴 = 𝑄Λ𝑄𝑇 is the spectral decomposition [79, 80]. Quadratic forms 𝑣𝑇 𝑓(𝐴)𝑣 involving spec-

tral functions 𝑓(𝐴) = 𝑄𝑓(Λ)𝑄𝑇 , e.g., for the matrix logarithm, 𝑣𝑇 (log 𝐴)𝑣 = ∑𝑛
𝑖=1[ln(𝜆𝑖)(𝑄𝑇 𝑣)2

𝑖 ],
can be written as Riemann–Stieltjes integrals of the form

𝑣𝑇 𝑄𝑓(Λ)𝑄𝑇 𝑣 = ∫
𝜆𝑛

𝜆1

𝑓(𝑡)𝑑𝜇𝐴,𝑣(𝑡). (2.2.4)

The Lanczos decomposition 𝐴𝑈𝑚 = 𝑈𝑚𝑇𝑚 generates the weights and nodes for an 𝑚-point Gaussian

quadrature approximating the above integral. Denoting the spectral decomposition of the 𝑗𝑡ℎ Jacobi

matrix 𝑇𝑗 = 𝑊𝑗𝐷𝑗𝑊 𝑇
𝑗 for 𝑗 = 1, … , 𝑚, we approximate (2.2.4) as

∫
𝜆𝑛

𝜆1

𝑓(𝑡)𝑑𝜇𝐴,𝑣(𝑡) ≈
𝑚

∑
ℓ=1

𝜔𝑗,ℓ𝑓(𝜃𝑗,ℓ),
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where 𝜃𝑗,ℓ = {𝐷𝑗}ℓ,ℓ and 𝜔𝑗,ℓ = {𝑒𝑇
1 𝑊𝑗}ℓ. As 𝑚 here corresponds to the number of CG iterations

needed to ensure that ‖𝐴𝑥(𝑚) − 𝑣‖ is smaller than a specified tolerance, the tridiagonal Jacobi

matrices are small and calculating their spectral decompositions is computationally trivial.

2.2.1.5 Stochastic Lanczos quadrature

Stochastic Lanczos quadrature (SLQ) combines the above quadrature formulation with

Hutchinson-type stochastic trace estimators [79]. Such estimators approximate the trace of a ma-

trix 𝐻 ∈ ℝ𝑛×𝑛 by a weighted sum of quadratic forms tr (𝐻) ≈ 𝑛
𝑛rand

∑𝑛rand
𝑘=1 𝑣𝑇

𝑘 𝐻𝑣𝑘 for normalized,

suitably distributed i.i.d. random probing vectors {𝑣𝑗}𝑛rand
𝑗=1 [77]. The SLQ approximate trace of a

spectral function of a matrix, tr (𝑓(𝐴)), is then

tr (𝑓(𝐴)) ≈ 𝑛
𝑛rand

𝑛rand

∑
𝑘=1

𝑣𝑇
𝑘 𝑄𝑓(𝐴)𝑄𝑇 𝑣𝑘

= 𝑛
𝑛rand

𝑛rand

∑
𝑘=1

∫
𝜆𝑛

𝜆1

𝑓(𝑡)𝑑𝜇𝐴,𝑣𝑘
(𝑡)

≈ 𝑛
𝑛rand

𝑛rand

∑
𝑘=1

𝑚𝜅

∑
ℓ=1

𝜔𝑘,ℓ𝑓(𝜃𝑘,ℓ). (2.2.5)

Whereas the number of probing vectors 𝑛rand is chosen a priori, the number quadrature nodes 𝑚𝜅

corresponds to the number of conjugate gradient iterations needed to ensure ‖𝐴𝜎𝑥(𝑚𝜅)
𝑗𝜎 − 𝑣𝑗‖ is less

than a specified tolerance for each 𝑗 = 1, … , 𝑛rand.

2.2.1.6 SLQ and shift invariance

For a fixed probing vector 𝑣𝑖, we can exploit the shift invariance of 𝒦𝑚(𝐴, 𝑣𝑖) to efficiently

update Gaussian quadrature generated by the corresponding Lanczos decomposition 𝐴𝑈𝑚 = 𝑈𝑚𝑇𝑚.

Again denoting the spectral decomposition of the Jacobi matrix 𝑇𝑖 = 𝑊𝑖𝐷𝑖𝑊 𝑇
𝑖 , the Lanczos

decomposition of the shifted system is simply 𝐴𝜎𝑈𝑚 = 𝑈𝑚𝑊𝑚(𝐷𝑚 + 𝜎𝐼𝑚)𝑊 𝑇
𝑚. Thus, given the

approximation (2.2.5) for tr (𝑓(𝐴)), we can efficiently compute an approximation of tr (𝑓(𝐴𝜎))
for any 𝜎 > 0. In algorithm 2 we implement a method for estimating tr (log(𝐴𝜎)) in 𝒪(()𝑛rand)
operations given the spectral decompositions of the Jacobi matrices corresponding to 𝒦𝑚(𝐴, 𝑣𝑗)
for probing vectors {𝑣𝑗}𝑛rand

𝑗=1 .c
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Algorithm 2: Stochastic Lanczos quadrature approximate log determinant of shifted systems
(SLQ_LDet)
input : shift 𝜎 ≥ 0, eigenvectors and eigenvalues 𝑊𝑉𝑗

∈ ℝ𝑚×𝑚, 𝐷𝑉𝑗
∈ ℝ𝑚 of Jacobi matrices

corresponding to 𝒦(𝐴, 𝑣𝑗) for each probing vector, 𝑗 = 1, … , 𝑛rand
output: approximate log determinant soln ≈ log(det(𝐴 + 𝜎𝐼))
begin

soln = 0
for 𝑗 = 1, … , 𝑛rand do

for 𝑖 = 1, … , 𝑚 do
soln ← soln + (𝑊𝑉𝑗

)2
𝑖,1 ln((𝐷𝑉𝑗

)𝑖 + 𝜎)
end

end
return (𝑛/𝑛rand)soln

end

2.2.1.7 Block methods

For multiple right hand sides 𝐵 = [𝑏1| ⋯ |𝑏𝑐], the Lanczos procedure can be generalized

to the block Krylov subspace 𝒦𝑚(𝐴, 𝐵) = ⨂𝑐
𝑗=1 𝒦𝑚(𝐴, 𝑏𝑗), resulting in a collection of Lanczos

decompositions 𝐴𝑈𝑗 = 𝑈𝑗𝑇𝑗 such that {𝑈𝑗}1 = 𝑏𝑗/‖𝑏𝑗‖ for 𝑗 = 1, … , 𝑐. This process is equivalent

to block CG methods in that the Jacobi matrices can again be used to generate an approximate

solution 𝑋(𝑚) to the matrix equation 𝐴𝑋(𝑚) = 𝐵. We provide an implementation of the block

Lanczos procedure in L_Seed [82], employing a conservative convergence criterion defined in terms

of the magnitude of the (1, 2) operator norm of the residual ‖𝐴𝐵 − 𝑋(𝑚)‖1→2 = max𝑗 ‖𝐴𝑏𝑗 − 𝑥(𝑚)
𝑗 ‖2.

Compared to performing 𝑐 separate Lanczos procedures with respect to {𝒦𝑚(𝐴, 𝑏𝑗)}𝑐
𝑗=1, block

Lanczos with respect to 𝒦𝑚(𝐴, 𝐵), with 𝐵 = [𝑏1| ⋯ |𝑏𝑐], produces the same result (for a fixed

number of steps). However, block Lanczos employs BLAS-3 operations and is thus more performant,

especially when implemented on top of parallelized linear algebra subroutines.

2.2.2 A derivative-free REML algorithm

We propose the stochastic Lanczos derivative-free residual maximum likelihood algorithm

(SLDF_REML; algorithm 3), a method for efficiently and repeatedly evaluating the REML criterion,

which is then subject to a zeroth-order optimization scheme. To achieve this goal, we first identify

the parameter space of interest with a family of shifted linear systems. We then develop a scheme

for evaluating the quadratic form 𝑦𝑇 𝑃𝜏𝑦 and log determinant ln(det(𝐾𝑇 𝐻𝜏𝐾)) terms in the REML
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criterion (2.2.3) that use the previously discussed Lanczos methods to exploit this shifted structure.

Specifically, after obtaining a collection of Lanczos decompositions, we can repeatedly solve the

linear systems involved in the quadratic form term via Lanczos conjugate gradients and approximate

the log determinant term via stochastic Lanczos quadrature.

Algorithm 3: Stochastic Lanczos derivative-free residual maximum likelihood (SLDF-REML)
input : standardized genotype matrix 𝑍 ∈ ℝ𝑛×𝑚 or genomic relatedness matrix 𝑍𝑍𝑇 ∈ ℝ𝑛×𝑛,

phenotype vector 𝑦 ∈ ℝ𝑛 covariate matrix 𝑋 ∈ ℝ𝑛×𝑐 with 𝑐 ≪ 𝑛, range of values to
consider for standardized genomic variance component Θ = [ℎ2

min, ℎ2
max], number of

probing vectors for trace estimator 𝑛rand, scalar optimization routine over search
interval optimize(𝑓 ∶ Θ → ℝ, 𝑎, 𝑏)

output: estimated variance components �̂�2
𝑔, �̂�2

𝑒
define : qr: economy QR decomposition, Rademacher: generates Rademacher random

samples, L_Seed: block Lanczos procedure as implemented in [82],
eigh_tridiagonal: spectral decomposition of Hermitian tridiagonal matrix

begin
𝜏0 ← (1 − ℎ2

max)/ℎ2
max ; // minimum value of 𝜏

𝜏max ← (1 − ℎ2
min)/ℎ2

min ; // maximal value of 𝜏
𝑄, 𝑅 ← qr(𝑋); // economy QR decomp. of 𝑋
𝐻0 ∶ 𝑢 ↦ 1

𝑚𝑍𝑍𝑇 𝑢 + 𝜏0𝑢; // LHS of seed system
𝑆 ∶ 𝑢 ↦ 𝑢 − 𝑄𝑄𝑇 𝑢; // projection to (col 𝑋)⟂

for 𝑗 = 1, … , 𝑛rand do // draw random probes
𝑉𝑗 ← Rademacher(n) 𝑉𝑗 ← 𝑉𝑗/‖𝑉𝑗‖

end
// Lanczosdecompositions of seed systems:
𝑈𝑦, 𝑇𝑦 ← L_Seed(𝑆𝐻0𝑆, 𝑆𝑦); // proj. pheno.
for 𝑗 = 1, … , 𝑐 do

𝑈𝑋𝑗
, 𝑇𝑋𝑗

← L_Seed(𝐻0, 𝑋𝑗); // covariates
end
for 𝑗 = 1, … , 𝑛rand do

𝑈𝑉𝑗
, 𝑇𝑉𝑗

← L_Seed(𝐻0, 𝑉𝑗); // probes
// decompose Jacobi matrices for SLQ:
𝑊𝑉𝑗

, 𝐷𝑉𝑗
= eigh_tridiagonal (𝑇𝑉𝑗

)
end
// construct REML criterion function:
def REML_criterion (ℎ2 ≤ ℎ2

max ):
global �̂�2

𝑔, �̂�2
𝑒 𝜏 = (1 − ℎ2)/ℎ2 𝜎 ← 𝜏 − 𝜏0 𝛾 ← (1 + 𝜏)−1

ldet ← 𝑋𝑇 (L_Solve(𝜎, {𝑈𝑋𝑗
, 𝑇𝑋𝑗

}𝑐
𝑗=1)) ldet ←ldet +SLQ_LDet(𝜎, {𝑊𝑉𝑗

, 𝐷𝑉𝑗
}𝑛rand

𝑗=1 )
qform ← 𝑦𝑇 𝑆(L_Solve(𝜎, 𝑈𝑦, 𝑇𝑦)) �̂�2

𝑒 ← qform/(𝑛 − 𝑐) �̂�2
𝑔 ← �̂�2

𝑒/𝜏 return
(𝑛 − 𝑐) ln(�̂�2

𝑔) − ldet − qform/�̂�2
𝑒

// apply zeroth-order optimization routine:
optimize(REML_criterion,ℎ2

min , ℎ2
max ) return �̂�2

𝑔, �̂�2
𝑒

end
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2.2.2.1 The parameter space as shifted linear systems

Given a range of possible values of the standardized genetic variance component, or heri-

tability,

ℎ2 = 𝜎2
𝑔/(𝜎2

𝑔 + 𝜎2
𝑒), ℎ2 ∈ [ℎ2

min , ℎ2
max ], (2.2.6)

we set 𝜏0 = (1 − ℎ2
max )/ℎ2

max and define 𝐻0 = 𝐻𝜏0
, noting that for all 𝜏 ∈ Θ = {(1 − ℎ2)/ℎ2 ∶

ℎ2 ∈ [ℎ2
min , ℎ2

max ]}, the spectral condition number of 𝐻𝜏 will be less than that of 𝐻0 as the identity

component of 𝐻𝜏 will only increase. Further, we have now identified elements of our parameter

space 𝜏 ∈ Θ with the family of shifted linear systems

ℋ𝜏0
= {𝐻𝜎 = 𝐻𝜏 = 𝐻0 + 𝜎𝐼𝑛 ∶ 𝜎 = 𝜏 − 𝜏0}.

For any vector 𝑣 for which we have computed the Lanczos decomposition 𝐻0𝑈 = 𝑈𝑇 with the

first column of 𝑈 equal to 𝑣/‖𝑣‖, we can use algorithm 1 to obtain the CG approximate solution

𝑥𝜎 ≈ 𝐻−1
𝜎 𝑣 for all 𝜎 ≥ 0 in 𝑂(𝑛) operations.

2.2.2.2 The quadratic form

Directly evaluating the quadratic form

𝑦𝑇 𝑃𝜏𝑦 = 𝑦𝑇 𝐾(𝐾𝑇 𝐻𝜏𝐾)−1𝐾𝑇 𝑦 (2.2.7)

is computationally demanding and is typically avoided in direct estimation methods [70, 71]. Writ-

ing the complete QR decomposition of the covariate matrix 𝑋 = [𝑄𝑋|𝑄𝑋⟂ ]𝑅 allows us to define

𝐾𝑇 = 𝑄𝑇
𝑋⟂ , noting that substituting 𝑄𝑋⟂𝑄𝑇

𝑋⟂ for 𝐾𝑇 preserves the value of (2.2.7). 𝑄𝑋⟂𝑄𝑇
𝑋⟂

is equivalent to the orthogonal projection operator 𝑆 ∶ 𝑣 ↦ 𝑣 − 𝑄𝑋𝑄𝑇
𝑋𝑣, which admits an ef-

ficient implicit construction and is computed in 𝑂(𝑛𝑐2) operations via the economy QR decom-

position 𝑋 = 𝑄𝑋𝑅𝑋. Then, reexpressing (2.2.7) as 𝑦𝑇 𝑆(𝑆𝐻𝜏𝑆)†𝑆𝑦, we can use the Lanczos

process to construct an orthonormal basis and corresponding Jacobi matrix for the Krylov sub-

space 𝒦(𝑆𝐻0𝑆, 𝑆𝑦). We can then obtain the CG approximation of 𝑦𝑇 𝑆(𝑆𝐻𝜎𝑆)−1𝑆𝑦 using vector

operations as, for any shift 𝜎, we have 𝑦𝑇 𝑆(𝑆𝐻𝜎𝑆)†𝑆𝑦 = 𝑦𝑇 𝑆(𝑆𝐻0𝑆 + 𝜎𝐼𝑛)−1𝑆𝑦 (see Lemma 1 in

Additional File 1 for proof).
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2.2.2.3 The log determinant

We use an equivalent formulation [70, 83] of the term ln(det(𝐾𝑇 𝐻𝜏𝐾)), rewriting it as

ln(det(𝐻𝜏)) + ln(det(𝑋𝑇 𝐻−1
𝜏 𝑋)) − ln(det(𝑋𝑇 𝑋)).

The det(𝑋𝑇 𝑋) term is constant with respect to 𝜏 and can be disregarded. For 𝑐 ≪ 𝑛,

det(𝑋𝑇 𝐻−1
𝜏 𝑋) is computationally trivial via direct methods given 𝐻−1

𝜏 𝑋, which we can com-

pute for all parameter values of interest in 𝑂(𝑛) operations having first applied the block Lanczos

process with respect to 𝒦(𝐻0, 𝑋). Computing the block Lanczos decomposition corresponding to

𝒦(𝐻0, 𝑋), which is only performed once, unfortunately scales with the number of covariates 𝑐, a

disadvantage not shared by our second algorithm (algorithm 4). The remaining term, ln(det(𝐻𝜏)),
is approximated by applying SLQ (algorithm 2) to a special case of (2.2.5): We rewrite the log

determinant as the trace of the matrix logarithm

ln(det(𝐻𝜏)) = tr (log(𝐻𝜏))

= tr 𝑄[ln(𝜆1 + 𝜎)| ⋯ | ln(𝜆𝑛 + 𝜎)]𝑄𝑇 ,

where we have spectrally decomposed 𝐻0 = 𝑄Λ𝑄𝑇 for some 𝜏0 ≤ 𝜏 with 𝜎 = 𝜏 −𝜏0. We draw 𝑛rand

𝑖.𝑖.𝑑. normalized Rademacher random vectors 𝑣1, … , 𝑣𝑛rand
, where each element of each vector 𝑣𝑖

takes values of either 1/‖𝑣𝑖‖ or −1/‖𝑣𝑖‖ with equal probability. The SLQ approximate of the log

determinant for the seed system is

ln(det(𝐻𝜎)) ≈ 𝑛
𝑛rand

𝑛rand

∑
𝑖=1

𝑚𝑖

∑
ℓ=1

𝜔𝑖,ℓ ln(𝜃𝑖,ℓ + 𝜎),

where the weights 𝑤𝑖,ℓ and nodes 𝜃𝑖,ℓ are respectively derived by using the Lanczos pro-

cess to construct orthonormal bases for 𝒦(𝐻0, 𝑣𝑖) (in practice, we apply block Lanczos to

𝒦(𝐻0, (𝑣1, … , 𝑣𝑛rand
)) [79, 80].



31

2.2.2.4 The SLDF_REML algorithm

Stochastic Lanczos derivative-free residual maximum likelihood (SLDF_REML; algorithm 3),

conceptually similar to the derivative-free algorithm of Graser and colleagues [71], applies the pre-

viously introduced Lanczos methods to approximate the above reparametrization of the REML

criterion. Shift-invariance is then exploited such that, with the exception of the initial Lanczos de-

compositions, the REML log likelihood can be repeatedly evaluated using only vector operations.

SLDF_REML takes a phenotype vector 𝑦 ∈ ℝ𝑛, a covariate matrix 𝑋 ∈ ℝ𝑛×𝑐, either the genetic

relatedness matrix 𝑍𝑍𝑇 ∈ ℝ𝑛×𝑛 or the standardized genotype matrix 𝑍 ∈ ℝ𝑛×𝑚 (in which case the

action of the GRM as a linear operator is coded implicitly as 𝑣 ↦ 𝑍(𝑍𝑇 𝑣)), and a range of possible

standardized genomic variance component values Θ = [ℎ2
min, ℎ2

max ] as arguments and generates a

function REML_criterion∶ Θ → ℝ that efficiently computes the log-likelihood of 𝜏|𝐾𝑇 𝑦. This func-

tion is then subject to scalar optimization via Brent’s method, which is feasible given the low cost of

evaluation and low dimension of Θ. Hyperparameters include the number of probing vectors to be

used for the SLQ approximation of the log determinant 𝑛rand, as well as tolerances corresponding to

the REML criterion, parameter estimates, and the Lanczos residual norms. Convergence to a given

tolerance on a sensible scale is ensured by optimizing with respect to the heritability ℎ2 ∈ Θ ⊆ [0, 1]
and evaluating the REML criterion at 𝜏 = (1 − ℎ2)/ℎ2. The REML criterion can be repeatedly

evaluated in 𝒪(()𝑛) operations, making high accuracy computationally feasible.

2.2.3 A first-order Monte Carlo REML algorithm

We additionally propose the Lanczos first-order Monte Carlo residual maximum likelihood

algorithm (L_FOMC_REML; algorithm 4), which also takes advantage of the shifted structure of

the standard genomic variance components model to speed computation. We first present the

related first-order algorithm implemented in the efficient and widely-used BOLT-LMM software

[68, 69], which we refer to as BOLT_LMM and of which the proposed L_FOMC_REML algorithm is a

straightforward extension.
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2.2.3.1 BOLT_LMM (First-order Monte Carlo REML)

The BOLT_LMM algorithm is based on the observation that at stationary points of the REML

criterion (2.2.3), the first-order REML conditions (i.e., ∇ℓ = 0) imply that

𝔼[�̃�𝑇 �̃�|𝑦] = �̃�𝑇 �̃�, 𝔼[ ̃𝑒𝑇 ̃𝑒|𝑦] = ̃𝑒𝑇 ̃𝑒, (2.2.8)

where �̃� and ̃𝑒 are the best linear unbiased predictions (BLUPs) of the latent genetic effects and

residuals, respectively [84]. The BLUPs are functions of 𝜏 given by

�̃�(𝜏) = 𝑚−1/2𝑍𝑇 𝑆�́�−1
𝜏 𝑆𝑦,

̃𝑒(𝜏) = 𝜏�́�−1
𝜏 𝑆𝑦, (2.2.9)

where we have defined �́�𝜏 = 1
𝑚𝑆𝑍𝑍𝑇 𝑆 + 𝜏𝐼𝑛. The expectations (2.2.8) are approximated via the

following stochastic procedure: Monte Carlo samples of the latent variables, �̌�𝑘
𝑖.𝑖.𝑑.∼ ℳ𝒱𝒩(0, 𝐼𝑚),

̌𝑒𝑘
𝑖.𝑖.𝑑.∼ ℳ𝒱𝒩(0, 𝑆) are used to generate samples of the projected phenotype vector

̌𝑦𝑘 = 𝑚−1/2𝑆𝑍�̌�𝑘 + ̌𝑒𝑘, 𝑘 = 1, … 𝑛rand.

BLUPs are then computed as in (2.2.9), yielding the approximations

𝔼
MC

[�̃�𝑇 �̃�|𝑦] = 𝑛−1
rand√𝑚

𝑛rand

∑
𝑘=1

∥𝑍𝑇 𝑆�́�−1
𝜏 𝑆 ̌𝑦𝑘∥2 ,

𝔼
MC

[ ̃𝑒𝑇 ̃𝑒|𝑦] = 𝑛−1
rand

𝑛rand

∑
𝑘=1

∥𝜏�́�−1
𝜏 𝑆 ̌𝑦𝑘∥2 .

Using the above expressions, Loh et al. [68, 69] apply a zeroth-order root-finding algorithm to the

quantity

𝑓𝑟(𝜏) = ln [�̃�𝑇 �̃�
̃𝑒𝑇 ̃𝑒 ] − ln [𝔼MC[�̃�𝑇 �̃�|𝑦]

𝔼MC[ ̃𝑒𝑇 ̃𝑒|𝑦] ] ,

noting that 𝑓𝑟 = 0 is a necessary condition (and, in practice, a sufficient condition) for (2.2.8).

Using CG to approximate solutions to the linear systems involved in BLUP computations results

in an efficient REML estimation procedure involving 𝑂(𝑛⋅𝑚⋅𝑛rand) operations for well-conditioned
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covariance structures (i.e., for nontrivial non-heritable variance component values). As noted in

[69], implicit preconditioning of 𝐻0 can be achieved by including the first few right singular vectors

of the genotype matrix (or eigenvectors of the GRM) as columns of the covariate matrix 𝑋.

Algorithm 4: Lanczos first-order Monte Carlo residual maximum likelihood (L_FOMC_REML)
input : standardized genotype matrix 𝑍 ∈ ℝ𝑛×𝑚, phenotype vector 𝑦 ∈ ℝ𝑛, covariate matrix

𝑋 ∈ ℝ𝑛×𝑐 with 𝑐 ≪ 𝑛, range of values to consider for standardized genomic variance
component Θ = [ℎ2

min, ℎ2
max], number of Monte Carlo samples 𝑛rand, zeroth order

scalar root finding routine root(𝑓 ∶ Θ → ℝ, ℎ2
min , ℎ2

max )
output: estimated value of heritable variance component �̂�2

𝑔
define : qr: economy QR decomposition, Gaussian: generates standard normal random

samples, L_Seed: block Lanczos procedure as implemented in [82]
begin

𝜏0 ← (1 − 𝜎2
𝑔max)/𝜎2

𝑔 max ; // minimum value of 𝜏
𝜏max ← (1 − 𝜎2

𝑔 min)/𝜎2
𝑔 min ; // maximal value of 𝜏

𝑄, 𝑅 ← qr(𝑋); // economy QR decomp. of 𝑋
𝑆 ∶ 𝑢 ↦ 𝑢 − 𝑄𝑄𝑇 𝑢; // projection to (col 𝑋)⟂

�́�0 ∶ 𝑢 ↦ 1
𝑚𝑆𝑍𝑍𝑇 𝑆𝑢 + 𝜏0𝑢; // LHS of seed system

for 𝑘 = 1, … , 𝑛rand do // sample latent variables
�̌�𝑘 ← Gaussian(m) ̌𝑒𝑘 ← Gaussian(n) ̌𝑒𝑘 ← 𝑆 ̌𝑒𝑘; // latent residual

̌𝑔𝑘 ← 𝑚−1/2𝑆𝑍�̌�𝑘; // latent genetic value
end
𝑈𝑦, 𝑇𝑦 ← L_Seed(�́�0, 𝑆𝑦); // Lanczos decompositions of seed systems
for 𝑘 = 1, … , 𝑛rand do // can use block Lanczos

𝑈 ̌𝑒𝑘
, 𝑇 ̌𝑒𝑘

← L_Seed(𝐻0, ̌𝑒𝑘) 𝑈 ̌𝑔𝑘
, 𝑇 ̌𝑔𝑘

← L_Seed(𝐻0, ̌𝑔𝑘)
end
def f_reml (ℎ2 ≤ ℎ2

max ):
global �̂�2

𝑒 ; // construct objective for root finding
𝜏 = (1 − ℎ2)/ℎ2 𝜎 ← 𝜏 − 𝜏0 soln ← L_Solve(𝜎, 𝑈𝑦, 𝑇𝑦) ; // compute BLUPs
�̃� ← 𝑚−1/2𝑍𝑇 𝑆(soln) ̃𝑒 ← √𝜏(soln) for 𝑘 = 1, … , 𝑛rand do // MC samples

soln_u[k] ← L_Solve(𝜎, 𝑈�̌�𝑘
, 𝑇�̌�𝑘

) soln_e[k] ← L_Solve(𝜎, 𝑈 ̌𝑒𝑘
, 𝑇 ̌𝑒𝑘

)
̌�̃�𝑘 ← 𝑚−1/2𝑍𝑇 𝑆(soln_u[k] + √𝜏soln_e[k]) ̌̃𝑒𝑘 ← √𝜏(soln_u[k]+√𝜏soln_e[k])

end
E[�̃�𝑇 �̃�] ← 𝑛−1

rand ∑𝑛rand
𝑘=1 ‖ ̌�̃�𝑘‖2 E[ ̃𝑒𝑇 ̃𝑒] ← 𝑛−1

rand ∑𝑛rand
𝑘=1 ‖ ̌̃𝑒𝑘‖2 �̂�2

𝑒 ← ̃𝑒𝑇 ̃𝑒/(𝑛 − 𝑐) return
ln(�̃�𝑇 �̃�/ ̃𝑒𝑇 ̃𝑒) − ln(�̃�𝑇 �̃�/E[ ̃𝑒𝑇 ̃𝑒])

ℎ̂2 ← root(f_reml,ℎ2
min , ℎ2

max ); // apply zeroth-order root finding routine
�̂�2

𝑔 ← �̂�2
𝑒(ℎ̂2/(1 − ℎ̂2)) return �̂�2

𝑔, �̂�2
𝑒

end
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2.2.3.2 The L_FOMC_REML algorithm

The BOLT_LMM algorithm described above involves solving 𝑛rand + 1 linear systems

�́�−1
𝜏ℓ

𝑆 ̌𝑦, �́�−1
𝜏ℓ

𝑆 ̌𝑦1, … , �́�−1
𝜏ℓ

𝑆 ̌𝑦𝑛rand
,

at each iteration of the optimization scheme in order to compute BLUPs of the latent variables

for the observed phenotype vector and each of the Monte Carlo samples. However, each iteration

involves spectral shifts of the left hand side of the form

�́�−1
𝜏ℓ+1

= (�́�𝜏ℓ
+ 𝜎𝐼𝑛)−1, 𝜎 = (𝜏ℓ+1 − 𝜏ℓ).

As in the SLDF_REML algorithm, the underlying block Krylov subspace is invariant to these shifts

(i.e., 𝒦𝑚(�́�𝜏 , 𝑌 ) = 𝒦𝑚(�́�𝜏 + 𝜎𝐼, 𝑌 ), where 𝑌 = [𝑦| ̌𝑦1| ⋯ | ̌𝑦𝑛rand
]). Thus, having performed the

Lanczos process for an initial parameter value 𝜏0, we can use L_Solve (algorithm 1) to obtain

the block CG approximate solution 𝑋(𝑚)
𝜎 ≈ �́�−1

𝜏+𝜎𝑌 in 𝑂(𝑛 ⋅ 𝑛rand) operations. We are thus able

to avoid solving linear systems in all subsequent iterations, though the relatively small number of

matrix-vector products involved in computing BLUPs for the latent genetic effects at each step

are unavoidable. The requirement of the genotype matrix for computing (2.2.9) prevents both

L_FOMC_REML and BOLT_LMM from efficiently exploiting precomputed GRMs.

2.2.4 Comparison of methods

We compare theoretical and empirical properties of our proposed algorithms, SLDF_REML

and L_FOMC_REML, to those of BOLT_LMM.

2.2.4.1 Computational complexity

In contrast to BOLT_LMM, the Lanczos-decomposition based algorithms we have proposed

only need to perform the computationally demanding operations necessary to evaluate the REML

criterion once. As such, we differentiate between overhead computations, which occur once and do

not depend on the number of iterations needed to achieve convergence, and per-iteration compu-

tations, which are repeated until convergence of the optimization process (table 2.1,figure 2.4).
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The overhead computations of SLDF_REML are dominated by the need to construct bases for

the 𝑛rand +𝑐+1 subspaces 𝒦(𝐻0, [ ̌𝑣1, … , ̌𝑣𝑛rand
, 𝑥1, … , 𝑥𝑐, 𝑦]), and are thus 𝒪(𝑛2(𝑛rand +𝑐)𝑛𝜅) when

a precomputed GRM is available and 𝒪(2𝑚⋅𝑛(𝑛rand+𝑐)𝑛𝜅) otherwise. Here, 𝑛𝜅 denotes the number

of Lanczos iterations needed to achieve convergence at a pre-specified tolerance and increases with

ℎ2
max . Subsequent iterations are dominated by the cost of solving 𝑐 + 1 shifted linear systems via

L_Solve and are thus 𝒪(𝑛 ⋅ 𝑐 ⋅ 𝑛𝜅). The overhead computations in L_FOMC_REML are dominated

by the Lanczos decompositions corresponding to the 2𝑛rand + 1 seed systems, where the GRM is

implicitly represented in terms of the standardized genotype matrix, and is thus 𝒪(4𝑚⋅𝑛⋅𝑛rand ⋅𝑛𝜅).
Operations of equivalent complexity are needed at every iteration of BOLT_LMM.

2.2.4.2 Numerical experiments

We compared wall clock times for genomic variance component estimation for height in

nested random subsets of 16,000, 32,000, 64,000, 128,000, and 256,000 unrelated ( ̂𝜋 < .05) European

ancestry individuals from the widely used UK Biobank data set [1]. All analyses included 24

covariates consisting of age, sex, and testing center and used hard-called genotypes from 330,723

array SNPs remaining after enforcing a 1% minor allele frequency cutoff. We compared SLDF_REML,

with and without a precomputed GRM, to L_FOMC_REML which requires the genotype matrix. For

the novel algorithms, absolute tolerances for the Lanczos iterations and the REML optimization

procedure were set to 5e-5 and 1e-5, respectively. Additionally, we compared our interpreted Python

3.6 code to BOLT-LMM versions 2.1 and 2.3.3 (C++ code compiled against the Intel MKL and

Boost libraries) [68, 69, 86, 87]. We ran each algorithm twenty times per condition, trimming away

the two most extreme timings in each condition. Mirroring the default settings of the BOLT-LMM

software packages, we set 𝑛rand = 15 across both of our proposed methods.

Novel algorithms were implemented in the Python v3.6.5 computing environment [82], using

NumPy v1.14.3 and SciPy v1.1.0 compiled against the Intel Math Kernel Library v2018.0.2 [87–89].

Optimization was performed using SciPy’s implementation of Brent’s method, with convergence

determined via absolute tolerance of the standardized genomic variance component ℎ̂2. Timing

results (table 2.2, figure 2.3, figure 2.5). do not include time required to read genotypes into

memory, or, when applicable, to compute GRMs, and reflect total running time on an Intel(R)

Xeon(R) Gold 6130 CPU @ 2.10GHz with 32 physical cores and 1 terabyte of RAM. Timing
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experiments excluded methods with cubic time complexity, including GCTA, FaST-LMM, and

GEMMA. Accuracy was assessed by comparing heritability estimates generated by the stochastic

algorithms to those estimated via the direct, deterministic average-information Newton–Raphson

algorithm as implemented in the GCTA software package v1.92.0b2 [65] (figure 2.2, figure 2.5).

2.3 Results

Across 20 replications per condition for random subsamples of 𝑛=16,000 to 256,000 un-

related European-ancestry individuals, both SLDF_REML and L_FOMC_REML produced heritability

estimates for height consistent with those generated by the GCTA software package (figure 2.2,

figure 2.5). For large samples, the novel algorithms achieved greater accuracy than either version

of BOLT-LMM (e.g., for 𝑛=250,000, mean-squared error was 1.74×10−6 for BOLT-LMM v2.3.2

versus 1.24×10−7 for L_FOMC_REML). Particularly, the time required per additional iteration after

initial overhead computations was low for the novel algorithms (e.g., 𝑡=20.07 minutes for BOLT-

LMM v2.3.2 versus 2.06 minutes for SLDF_REML; table 2.2), enabling increased precision at minor

cost. With respect to total timings, SLDF_REML dramatically outperformed all other methods when

the precomputed GRM was available (figure 2.3, figure 2.3), which we expect whenever the num-

ber of markers exceeds the sample size. Examining methods taking genotype matrices as inputs,

SLDF_REML and L_FOMC_REML performed similarly, whereas BOLT-LMM v2.3.2 converged more

quickly than either in smaller samples (figure 2.3), though the differences for 𝑛=256,000 were rela-

tively minor (e.g., 𝑡=91.09 minutes for BOLT-LMM v2.3.2 versus 102.21 minutes for SLDF_REML; ta-

ble 2.2). The older version of BOLT-LMM, v2.1, performed significantly more slowly than any of the

other implementations examined (e.g., average wall clock time was 177.95 minutes at 𝑛=256,000),

demonstrating the importance of implementation optimization.

As the computations needed to compute the Lanczos decompositions in L_FOMC_REML and

BOLT-LMM v2.3.2 are equivalent in time and memory complexity, we expect that an optimized

compiled-language implementation of L_FOMC_REML would reduce the overhead computation time

by a significant linear factor (≈3 for 𝑛=256,000, comparing the sum of the overhead time and sin-

gle objective function evaluation time for BOLT-LMM v2.3.2 to its total running time; figure 2.3).

Consistent with theory, the wall clock times per objective function evaluation for the novel algo-

rithms were trivial given the Lanczos decompositions (e.g., for 𝑛=256,000, 𝑡 = 2.06 versus 20.07
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minutes for L_FOMC_REML and BOLT-LMM v2.3.2, respectively; table 2.2, figure 2.4).

2.4 Discussion

We have proposed stochastic algorithms for estimating the two variance component model

(2.2.1), both of which theoretically offer substantial time savings relative to existing methods. Our

methods capitalize on the principle of Krylov subspace shift invariance to reduce the number of

steps involving 𝑛2) or 𝒪(𝑚𝑛) computations to one, whereas existing methods perform equivalent

computations at each iteration of the REML optimization procedure. For large samples, when tak-

ing genotype matrices as inputs, our interpreted-language implementations of L_FOMC_REML and

SLDF_REML [82] produced more accurate variance component estimates than the highly-optimized,

compiled BOLT-LMM implementations, while taking similar amounts of time. Thus, we expect

comparably-optimized implementations of the novel algorithms to compute high accuracy REML

estimates in close to the time required by BOLT-LMM v2.3.2 for a single objective function eval-

uation. Further, in contrast to the BOLT_LMM algorithm, which requires the genotype matrix,

SLDF_REML can exploit precomputed GRMs to reduce operation count by an 𝒪(2𝑚/𝑛) factor (ta-

ble 2.1), which yields dramatic time savings when the number of markers greatly exceeds the

number of individuals (figure 2.3). While GRM precomputation is itself 𝒪(𝑚𝑛2), it can be ef-

fectively and asynchronously parallellized across multiple compute nodes, substantially mitigating

computational burden (though we note that serial input/output constraints can interfere with effi-

cient parallelization). However, as the L_FOMC_REML algorithm involves the computation of BLUPs

of SNP effects, L_FOMC_REML is preferable to SLDF_REML when BLUP estimates are desired for

prediction (as in [90]).

There are several limitations to the proposed approaches. First, SLDF_REML, which benefits

from the ability to take GRMs as input, depends linearly on the number of included covariates,

which might grow prohibitive in samples spanning numerous genotyping batches and ascertain-

ment locations. However, as in BOLT_LMM, L_FOMC_REML requires 𝒪(𝑚𝑛) matrix multiplications for

BLUP computation at each step of the REML optimization procedure, whereas SLDF_REML requires

only vector operations. Thus, though the options provided by the two novel algorithms increase

researchers’ flexibility overall, the choice of whether to employ SLDF_REML versus L_FOMC_REML

is problem-specific and necessitates greater researcher attention to resource allocation. For exam-
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ple, even when a precomputed GRM is available, it might be preferable to use L_FOMC_REML if

BLUPs of latent SNP effects are desired. On the other hand, if a researcher intends to sequentially

analyze a large number of phenotypes in a relatively small sample of individuals, it might prove

most efficient to compute a GRM, despite the involved computational burden, in order to speed

subsequent computations by supplying the GRM to the SLDF_REML algorithm. Second, neither

algorithm mitigates the substantial 𝒪(𝑚𝑛) or 𝒪(𝑛2) memory complexity common to all algorithms

for REML estimation of genomic variance components, requiring that researchers have access to

high-memory compute nodes to work with large samples (though we note that neither of the novel

algorithms substantial increases this burden either). Finally, for the same reasons that the spec-

tral decomposition-based direct methods implemented in the FaST-LMM and GEMMA packages

[64, 66, 67] are restricted to the simple two component model (2.2.1) (i.e., whereas the GRM and

identity matrix are simultaneously diagonalizable, the same doesn’t hold for arbitrary collections

of three or more symmetric positive semidefinite matrices), the shift-invariance property exploited

by the proposed methods does not extend to multiple genomic variance components. Given that

the two component model is insufficient for precise heritability estimation for many complex traits

[91], our novel algorithms apply to the particular, though common, tasks of variance component

and BLUP estimation for LMM in association studies.

Despite these limitations, the proposed algorithms have clear advantages over existing meth-

ods in terms of flexibility, accuracy, and speed of computation. We provide both pseudocode and

heavily annotated Python 3 implementations [82] to facilitate their incorporation into existing soft-

ware packages. Further, though our algorithms are restricted to the two variance component model,

they can be used to generate the inputs necessary for estimation of more complex models, such

as the mixture model estimated via variational approximation implemented in [68], and thus have

applications to non-infinitesimal models. Finally, we suggest that the methods presented in our the-

oretical development, in particular stochastic trace estimation and stochastic Lanczos quadrature,

are likely to find uses in REML estimation of other models of interest to researchers in genomics.

In particular, we suggest the development of models that exploit Krylov subspace shift-invariance

to speed up variance/covariance component estimation for the case of multivariate phenotypes as

a target for future research. Such models necessarily involve the computation or approximation of

Hessian matrices, thereby introducing additional complexity in comparison to the univariate case
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considered above. However, the extension of fast cubic complexity methods based on the spectral

decomposition of the covariance matrix [64, 66] to the multivariate case [67] suggests the potential

for multivariate analogues of the algorithms presented here.

2.5 Conclusions

The proposed algorithms, SLDF_REML and L_FOMC_REML, unify previous approaches to esti-

mating the two variance component model (2.2.1) by exploiting the simultaneous diagonalizability

of the covariance structure components while avoiding matrix operations with cubic time com-

plexity. As a result, the most expensive operations only need to be performed once, as with the

spectral decomposition performed in the FaST-LMM and GEMMA software packages [64, 66, 67],

but these operations consist only of matrix-vector products, as in the BOLT-LMM software package

[68, 69]. All but one iteration of the REML optimization procedure requires only vector operations,

yielding increased speed and numerical precision relative to existing methods. Furthermore, the

unique strengths of the two methods lead to a flexible approach depending on researcher goals:

SLDF_REML is capable of operating on precomputed GRMs when available, whereas L_FOMC_REML

can generate BLUPs of latent SNP effects without added computational burden. We recommend

these algorithms for incorporation into GWAS LMM implementations.
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Figure 2.2: Accuracy results
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Comparison of heritability estimates for height generated by BOLT-LMM versions 2.1 and 2.3.2,
SLDF_REML, and L_FOMC_REML versus those generated by the deterministic algorithm implemented
in the GCTA software package [65], for varying sub-samples of 16,000 to 256,000 unrelated
European-ancestry UK Biobank participants. Data are comprised of twenty independent replica-
tions per condition. Red dashed lines indicate standard errors of GCTA estimate. Points represent
individual observations whereas boxes indicate the 95% confidence intervals for the trimmed mean
estimate after a Bonferroni correction for 25 comparisons. The bias evidenced by the BOLT-LMM
estimators is likely due to the combination of performing a small number of secant iterations with
fixed start values and loose tolerances for determining convergence. ∗For 𝑛=256,000, memory re-
quirements prohibited the use of GCTA, so we instead averaged ten estimates generated by the
high-accuracy stochastic estimator implemented in BOLT-REML [85] (standard errors were 6.32e-5
and 2.45e-7 for the mean REML heritability estimate and its standard error, respectively).
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Figure 2.3: Timing results
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trimmed means.
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Figure 2.4: Overhead versus iterative optimization procedure timing results
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Figure 2.5: Numerical experiments: accuracy versus time
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stochastic estimator implemented in BOLT-REML v2.3.2 [85] (standard errors were 6.32e-5 and
2.45e-7 for the mean heritability and its standard error, respectively).
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Table 2.2: Empirical timings

Method Overhead Per eval. Eval. count Total
BOLT-LMM v2.1 34.63 35.83 4 177.95
BOLT-LMM v2.3.2 10.82 20.07 4 91.09
L_FOMC_REML 89.87 2.06 6 102.21
SLDF_REML { with genotype matrix 90.22 1.06 9 99.73

with precomputed GRM 28.95 1.07 9 38.60
Overhead and per objective function evaluation timings of stochastic algorithms for samples of
256,000 individuals. Data reflect trimmed mean wall clock time in minutes over 20 iterations per
condition.
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Chapter 3

Assortative mating and whole-genome heritability estimation

3.1 Introduction

3.1.1 Overview

Assortative mating (AM) refers to the phenomenon of “like choosing like”—mates selecting

one another based on phenotypic similarity. As a result, mates’ phenotypes become positively

correlated, which, for heritable traits, leads to a variety of consequences for the joint distribution

of causal variants and the trait of interest. There is abundant empirical evidence that a variety of

behavioral and non-behavioral phenotypes are subject to AM–e.g., height [92], political attitudes

[93], and a variety of psychiatric traits [94]. Further, recent advances in methods for analyzing whole

genome data have led to a resurgence of interest in characterizing AM via molecular genetic data

[95, 96]. However, despite this growing interest, the effects of AM on a variety of commonly used

methods for estimating heritability from genome-wide data remain unknown. Here, we present

ongoing work that aims this close this gap by characterizing the behavior of three widely-used

estimators—Haseman-Elston regression [97, 98], residual maximum likelihood [99, 100, 65], and

linkage disequilibrium score regression [50, 101]—when applied to traits subject to AM.

Though a variety of AM models have been considered in the literature, we restrict our

analysis to the earliest and one of the most popular models of AM (hereafter to referred to as the

phenotypic assortment model) first introduced by Fisher a century ago [102] and further elabo-

rated in the latter half of the twentieth century [103, 104, 105, 106, 107, 108]. The justification

for this restriction is two-fold: first, Fisher’s model has formed the foundation for recent work in

the quantification of AM using whole-genome data [95, 96, 109, 110], and second, the model is

simple enough to be theoretically tractable yet general enough to permit extension to other models

of interest (e.g., vertical transmission). In the remaining introductory sections, we introduce the

phenotypic assortment model and the three aforementioned heritability estimators. In section §3.2,
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we present our primary theoretical and computational results thus far, which are justified in sec-

tion §3.3 and section §3.4, respectively. Finally, in section §3.5 we briefly discuss limitations and

future directions.

3.1.2 The phenotypic assortment model

3.1.2.1 A bird’s eye view

Here we provide an overview of the phenotypic assortment model as elaborated by [103, 104,

105, 106, 107, 108], drawing heavily upon the exposition of [106]. We consider a heritable phenotype

subject to assortment such that mates’ phenotypes are correlated at 𝑟 ∈ (0, 1), with heritable

component comprised solely of the additive effects of 𝑚 unlinked single nucleotide polymorphism

(SNP) variants. The population, which is assumed to be infinitely large, is initially subject to

randomly mating at generation 𝑡 = 0 and subject to a time-invariant spousal correlation throughout

subsequent generations 𝑡 ≥ 1. Further, the non-heritable components of parent offspring phenotypes

are assumed to be uncorrelated—i.e., there is no environmental transmission. Additionally, we make

the following technical assumptions:

Primary phenotypic assortment Mates’ genotypic values are conditionally independent given

their phenotypic values.

Independence of variance components The heritable and non-heritable components of the

phenotype are independent and follow Gaussian distributions with variances 𝜎2
𝑔 and 𝜎2

𝑒 , re-

spectively.

Exchangeable loci Haploid allele substitution effect is inversely proportional to minor allele fre-

quency (MAF) such that a causal haploid locus with MAF 𝑞 = 1−𝑝 taking values {−𝑝, 1−𝑝}
has an allele substitution effect 𝔼[𝜂] = 𝜎𝑔/√𝑚𝑝𝑞.

Linearity of allelic effects The regression of haploid allele substitution effects onto the pheno-

type is linear.

Multivariate normality Parent-parent-offspring phenotypes are trivariate Gaussian.

Over successive generations, the correlation between mates’ phenotypes induces linkage among all

causal variants irrespective of their physical location. The additional covariance among previously
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independent causal variants increases the total genetic variance, which approaches a stable equi-

librium as the within-individual and the cross-mate correlations between causal haploid variants

approach one another. For large 𝑚 (i.e., for a polygenic trait), the equilibrium genetic variance is

approximately

𝜎2
𝑔,∞ ≈ 2(1 − ℎ2

0)
1 − 2ℎ2

0 + √1 − 4𝑟ℎ2
0 + 4𝑟ℎ4

0

𝜎2
𝑔,0, (3.1.1)

where 𝜎2
𝑔,0 is the random mating genetic variance, ℎ2

0 = 𝜎2
𝑔,0/(𝜎2

𝑔,0 + 𝜎2
𝑒) is the random mating

heritability, and 𝑟 is the (time-invariant) phenotypic correlation between mates. Likewise, the

equilibrium heritability is approximately

ℎ2
∞ ≈ 2 (1 + √1 − 4𝑟(1 − ℎ2

0)ℎ2
0)

−1
ℎ2

0. (3.1.2)

Figure 3.1 illustrates equilibrium heritability for varying generation zero heritability and spousal

correlation and figure 3.10 illustrates convergence to the equilibrium heritability across generations.

Finally, the equilibrium correlation among individual haploid loci, a quantity we will refer to

extensively, can be expressed as

𝜇∞ ≈ ( 1 − √1 − 4ℎ2
0𝑟(1 − ℎ2

0)
(2𝑚 − 1) (√1 − 4ℎ2

0𝑟(1 − ℎ2
0) + 1 − 2ℎ2

0)
) , (3.1.3)

for polygenic traits under the exchangeable loci assumption. Note that in the above, 𝑚 is the

number of diploid causal loci. Derivations of the above quantities are presented in the following

section.

3.1.2.2 Technical details

Consider a phenotype

𝑦 =
𝑚

∑
𝑘=1

𝑧𝑘𝛼𝑘 + 𝑒

where at generation 𝑡 = 0, 𝑒 ∼ 𝒩(0, 𝜎2
𝑒), 𝑉 𝑎𝑟(𝑍𝛼)0 = 𝜎2

𝑔,0, and each diploid locus 𝑧𝑘,0 = 𝑎1
𝑘,0 +𝑎2

𝑘,0

is composed of two haploid loci 𝑎1
𝑘,0, 𝑎2

𝑘,0
𝑖.𝑖.𝑑.∼ bernoulli(𝑞𝑘) independent of 𝑒. Denote the correlations



49

0.0 0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Phenotypic correlation between mates

E
qu

ilb
riu

m
 h

er
ita

bi
lit

y

h0
2 = 0.3

h0
2 = 0.5

h0
2 = 0.7

Figure 3.1: Equilibrium heritability as a function of generation zero heritability and spousal corre-
lation

among haploid loci by

𝜅𝑘𝑙,𝑡 = 𝐶𝑜𝑟𝑟(𝑎1
𝑘,𝑡, 𝑎1

𝑙,𝑡) = 𝐶𝑜𝑟𝑟(𝑎2
𝑘,𝑡, 𝑎2

𝑙,𝑡),

ℓ𝑘𝑙,𝑡 = 𝐶𝑜𝑟𝑟(𝑎1
𝑘,𝑡, 𝑎2

𝑙,𝑡) = 𝐶𝑜𝑟𝑟(𝑎2
𝑘,𝑡, 𝑎1

𝑙,𝑡),

𝜇𝑘𝑙,𝑡 = 𝐶𝑜𝑟𝑟( ̀𝑎1
𝑘,𝑡, �́�2

𝑙,𝑡) = 𝐶𝑜𝑟𝑟( ̀𝑎2
𝑘,𝑡, �́�1

𝑙,𝑡) = 𝐶𝑜𝑟𝑟( ̀𝑎1
𝑘,𝑡, �́�1

𝑙,𝑡) = 𝐶𝑜𝑟𝑟( ̀𝑎2
𝑘,𝑡, �́�2

𝑙,𝑡),

where ̀𝑎 and �́� represent haploid loci across mating pairs. 𝜅𝑘𝑙,𝑡 is then the generation 𝑡 correlation

between loci within gametes, ℓ𝑘𝑙,𝑡 across gametes, and 𝜇𝑘𝑙,𝑡 across mates. Note that for all 𝑡 ∈ ℤ+,

𝜅𝑘𝑘,𝑡 = 1 and that ℓ𝑘𝑘,𝑡 is the coefficient of inbreeding. Further, at 𝑡 = 0, we have {𝜅𝑘𝑙,0}𝑘𝑙 = 𝐼
and {ℓ𝑘𝑙,0}𝑘𝑙 = 0.

Assume that phenotypic correlation among mates 𝑟 ∈ (0, 1) is time-invariant and denote

the genetic correlation across mates as 𝑟𝑔,𝑡 = 𝑟ℎ2
𝑡 , where ℎ2

𝑡 = 𝜎2
𝑔,0/𝜎2

𝑦,0 where 𝜎2
𝑦,𝑡 = 𝜎2

𝑔,𝑡 + 𝜎2
𝑒 .

Define the standardized allele substitution effects as 𝜂𝑘 = 𝛼𝑘√𝑞𝑘(1 − 𝑞𝑘) for 𝑘 = 1, … , 𝑚 and note

that 𝜎2
𝑔,0 = 2𝜂𝑇 𝜂. Finally assume that all loci are unlinked at 𝑡 = 0 and that parent/offspring

environments are independent.
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Evolution of the system is determined by the following recurrences for 𝑡 ∈ ℕ:

ℓ𝑘𝑙,𝑡 = 𝜇𝑘𝑙,𝑡−1

𝜅𝑘𝑙,𝑡 = 1
2(𝜅𝑘𝑙,𝑡−1 + ℓ𝑘𝑙,𝑡−1) J𝑘 ≠ 𝑙K + J𝑘 = 𝑙K ,

𝜎2
𝑔,𝑡 = 2 ∑

𝑘,𝑙
𝜂𝑘𝜂𝑙(𝜅𝑘𝑙,𝑡 + ℓ𝑘𝑙,𝑡),

𝐶𝑜𝑣( ́𝑍𝛼, ̀𝑍𝛼)𝑡 = 𝑟𝑔,𝑡𝜎2
𝑔,𝑡

⟹ 4 ∑
𝑘,𝑙

𝜂𝑘𝜂𝑙𝜇𝑘𝑙,𝑡 = 2𝑟 ∑
𝑘,𝑙

𝜂𝑘𝜂𝑙(𝜅𝑘𝑙,𝑡 + ℓ𝑘𝑙,𝑡).

At equilibrium, we have

𝜅𝑘𝑙,𝑡 = ℓ𝑘𝑙,𝑡 = 𝜇𝑘𝑙,𝑡, for 𝑘 ≠ 𝑙,

𝜅𝑘𝑘 = 1,

ℓ𝑘𝑘,𝑡 = 𝜇𝑘𝑘,𝑡.

Thus, 𝐶𝑜𝑣( ́𝑍𝛼, ̀𝑍𝛼)𝑡 = 𝑟𝑔,∞𝜎2
𝑔,𝑡 implies

4 ∑
𝑘,𝑙

𝜂𝑘𝜂𝑙𝜇𝑘𝑙,∞ = 2𝑟𝑔,∞ ∑
𝑘,𝑙

𝜂𝑘𝜂𝑙(𝜅𝑘𝑙,∞ + 𝜇𝑘𝑙,∞)

= 2𝑟𝑔,∞𝜂𝑇 𝜂 − 2𝑟𝑔,∞ ∑
𝑘

𝜂2
𝑘𝜇𝑘𝑘,∞ + 4𝑟𝑔,∞ ∑

𝑘,𝑙
𝜂𝑘𝜂𝑙𝜇𝑘𝑙,∞.

Further, the equilibrium genetic variance is

𝜎2
𝑔,∞ = 2 ∑

𝑘,𝑙
𝜂𝑘𝜂𝑙(𝜅𝑘𝑙,∞ + ℓ𝑘𝑙,∞)

= 4 ∑
𝑘,𝑙

𝜂𝑘𝜂𝑙𝜇𝑘𝑙,∞ − 2 ∑
𝑘

𝜂2
𝑘𝜇𝑘𝑘,∞ + 2 ∑

𝑘
𝜂2

𝑘.

Defining the effective number of loci

�̃� =
∑𝑘,𝑙 𝜂𝑘𝜂𝑙𝜇𝑘𝑙,∞
∑𝑘 𝜂2

𝑘𝜇𝑘𝑘,∞
,
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we then have

𝐶𝑜𝑣( ́𝑍𝛼, ̀𝑍𝛼)∞ = 4�̃� ∑
𝑘

𝜂2
𝑘𝜇𝑘𝑘,∞

⟹ 𝜎2
𝑔,∞ = 𝐶𝑜𝑣( ́𝑍𝛼, ̀𝑍𝛼)∞ − 𝐶𝑜𝑣( ́𝑍𝛼, ̀𝑍𝛼)∞/2�̃� + 𝜎2

𝑔,0

= 𝑟𝑔,∞𝜎2
𝑔,∞ − 𝑟𝑔,∞𝜎2

𝑔,∞/2�̃� + 𝜎2
𝑔,0

= ( 1
1 − 𝑟𝑔,∞𝒬) 𝜎2

𝑔,0,

where we’ve defined 𝒬 = (1 − 1/2�̃�). Thus, we have for highly polygenic traits:

lim
�̃�→∞

𝜎2
𝑔,∞ = ( 1

1 − 𝑟𝑔,∞
) 𝜎2

𝑔,0.

Further, we have that

ℎ2
∞ = ( 1

1 − 𝑟𝑔,∞𝒬) 𝜎2
𝑔,0

( 1
1−𝑟𝑔,∞𝒬) 𝜎2

𝑔,0 + 𝜎2𝑒
= 𝜎2

𝑔,0
𝜎2

𝑔,0 + 𝜎2𝑒(1 − 𝑟𝑔,∞𝒬) = ℎ2
0

1 − 𝑟𝑔,∞𝒬(1 − ℎ2
0) .

Because 𝑟𝑔,∞ = 𝑟ℎ2
∞, the above then implies that

𝑟𝑔,∞ = 1 − √1 − 4ℎ2
0𝒬𝑟(1 − ℎ2

0)
2𝒬(1 − ℎ2

0) .

Substituting this expression into those for the equilibrium genetic variance and the equilibrium

heritability and taking the limit as 𝑚 → ∞ yields expressions (3.1.1) and (3.1.2).

Determining the equilibrium correlation between causal variants requires our linearity as-

sumption, which states that the random variable 𝑔𝑘 = 𝑎1
𝑘𝛼𝑘 corresponding to the haploid genic

value at the 𝑘𝑡ℎ locus and the phenotype will have a linear relationship such that

𝔼[𝑔𝑘 − 𝛼𝑘𝑞𝑘|𝑌 = 𝑦] = 𝜁𝑘,∞𝑦 𝜂𝑘
𝜎𝑦,∞

, (3.1.4)

where 𝜁𝑘,∞ is the correlation between the 𝑘𝑡ℎ haploid genic value and the phenotype. Considering
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a mating pair, we then have

𝔼[ ̀𝑔𝑙 − 𝛼𝑘𝑞𝑙| ́𝑌 = 𝑦] = 𝑟𝜁𝑙,∞𝑦 𝜂𝑙
𝜎𝑦,∞

.

Following [106], the fact that mates’ genic values are independent conditioning on either of the

phenotypic values yields

𝜇𝑘𝑙,∞𝜂𝑘𝜂𝑙 = 𝐶𝑜𝑣( ́𝑔𝑘, ̀𝑔𝑙)

= 𝔼[( ́𝑔𝑘 − 𝛼𝑞𝑘)( ̀𝑔𝑙 − 𝑞𝑙)]

= 𝔼 [𝔼[( ́𝑔𝑘 − 𝛼𝑞𝑘)( ̀𝑔𝑙 − 𝛼𝑙𝑞𝑙)| ́𝑌 − 𝔼[𝑌 ]]

= 𝔼 [𝔼[( ́𝑔𝑘 − 𝛼𝑞𝑘)| ́𝑌 − 𝔼[𝑌 ]]𝔼[( ̀𝑔𝑙 − 𝛼𝑙𝑞𝑙)| ́𝑌 − 𝔼[𝑌 ]]]

= 𝑟𝜁𝑘,∞𝜁𝑙,∞𝜂𝑘𝜂𝑙
𝜎2

𝑦,∞
𝜎2𝑦,∞

⟹ 𝜇𝑘𝑙,∞ = 𝑟𝜁𝑘,∞𝜁𝑙,∞.

We evaluate the correlation 𝜁𝑘,∞ as follows:

𝜁𝑘,∞𝜂𝑘𝜎𝑦,∞ = 𝐶𝑜𝑣(𝑎1
𝑘𝛼𝑘, 𝑌 )

= 𝐶𝑜𝑣(𝑎1
𝑘𝛼𝑘, ∑

𝑙
𝑎1

𝑙 𝛼𝑙 + 𝑎2
𝑙 𝛼𝑙)

= ∑
𝑙

(𝜇𝑘𝑙,∞ + ℓ𝑘𝑙,∞)𝜂𝑘𝜂𝑙,

= 𝜂𝑘 ((1 − 𝑟𝜁2
𝑘,∞)𝜂𝑘 + 2𝜁𝑘,∞ ∑

𝑙
𝑟𝜁𝑙,∞𝜂𝑙)

⟹ 𝜁𝑘,∞ = (1 − 𝑟𝜁2
𝑘,∞) 𝜂𝑘

𝜎𝑦,∞
+ 2𝜁𝑘,∞𝑟 ∑

𝑙
𝜁𝑙,∞

𝜂𝑙
𝜎𝑦,∞

.
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As, at equilibrium, 𝔼[𝑍𝛼|𝑌 = 𝑦] = ℎ2
∞𝑦, we have that

ℎ2
∞𝑦 = 𝔼[𝑍𝛼|𝑌 ]

⟹ ℎ2
∞ = 2 ∑

𝑘
𝜁𝑘,∞

𝜂𝑘
𝜎𝑦,∞

⟹ 𝑟𝑔,∞ = 2𝑟 ∑
𝑘

𝜁𝑘,∞
𝜂𝑘

𝜎𝑦,∞

⟹ 𝜁𝑘,∞ = (1 − 𝑟𝜁2
𝑘,∞) 𝜂𝑘

𝜎𝑦,∞
+ 𝜁𝑘,∞𝑟𝑔,∞

⟹ 𝑏𝑘 = 𝑟𝜁2
𝑘,∞𝑏𝑘 + 𝜁𝑘,∞(1 − 𝑟𝑔,∞)

⟹ 𝜁𝑘,∞ = (2𝑏𝑘𝑟)−1 (𝑟𝑔,∞ − 1 + √(1 − 𝑟𝑔,∞)2 + 4𝑏2
𝑘𝑟) ,

where 𝑏𝑘 = 𝜂𝑘
𝜎𝑦,∞

. Additionally, the assumption (3.1.4) implies that

ℎ2
∞ = 2 ∑

𝑘
𝜁𝑘,∞

𝜂𝑘
𝜎𝑦,∞

2 ∑
𝑘

𝜁𝑘,∞𝑏𝑘

Recalling that 𝜇𝑘𝑙,∞ = 𝑟𝜁𝑘,∞𝜁𝑙,∞ and that

𝑟𝑔,∞ = 1 − √1 − 4ℎ2
0𝒬𝑟(1 − ℎ2

0)
2𝑄(1 − ℎ2

0) ,

we obtain the following equation for the correlation between the 𝑘𝑡ℎ haploid genic value and the

phenotype:

𝜁𝑘,∞ = (1 − 𝑟𝜁2
𝑘,∞)𝜂𝑘/𝜎𝑦,∞ + 𝑟𝜁𝑘,∞ℎ2

∞.

Suppose 𝜂𝑘 = 𝜎𝑔,0/
√

2𝑚 for all 𝑘. That is, that each locus contributes equal variance to the

heritable component of 𝑦. This is the exchangeable loci assumption. We then have

𝜁𝑘,∞ = (2𝑟𝜂𝑘/𝜎𝑦,∞)−1 (𝑟𝑔,∞ − 1 + √(1 − 𝑟𝑔,∞)2 + 4𝑟𝜂2
𝑘/𝜎2𝑦,∞) , (3.1.5)

which implies that 𝜁𝑘,∞ = 𝜁∞ for all 𝑘. Further, we have that �̃� = 𝑚:

�̃� = (∑𝑘 𝜂𝑘𝜁𝑘,∞)2

∑𝑘 𝜂2
𝑘𝜁2

𝑘,∞
= (𝜁∞𝑚𝜎𝑔,0/

√
2𝑚)2

𝑚𝜁2∞𝜎2
𝑔,0/2𝑚 = 𝑚.



54

As a result,

𝜇∞ = 𝑟𝑔,∞
�̃�(1 − 𝑟𝑔,∞) + 𝑟𝑔,∞

≈ ( 1 − √1 − 4ℎ2
0𝑟(1 − ℎ2

0)
(2𝑚 − 1) (√1 − 4ℎ2

0𝑟(1 − ℎ2
0) + 1 − 2ℎ2

0)
) ,

as in (3.1.3), noting that 𝒬 ≈ 1 for large 𝑚.

3.1.3 Heritability estimators

3.1.3.1 Haseman-Elston regression

Haseman-Elston (HE) regression [97, 98] is a computationally efficient method for estimating

heritability using genome-wide data via ordinary least-squares. Let 𝑦 ∈ ℝ𝑛 denote an observed

vector of 𝑛 individuals’ phenotypes standardized to zero expectation and unit variance and let

𝑍 ∈ ℝ𝑛×𝑝 denote the individuals’ standardized genotypes at 𝑝 loci. Denote the lower triangular

components of the phenotypic and genotypic sample covariance matrices as

𝜓 = vec ({𝑦𝑦𝑇 }𝑖,𝑗∶𝑖<𝑗), 𝜅 = vec ({𝑝−1𝑍𝑍𝑇 }𝑖,𝑗∶𝑖<𝑗).

The HE regression heritability is estimator is obtained by regressing 𝜓 on to 𝜅:

ℎ̂2
HE = 𝐶𝑜𝑣(𝜓, 𝜅)

𝑉 𝑎𝑟(𝜅)
.

Implementations of HE regression or variants thereof are provided by multiple genome-wide data

analysis software packages [65, 111]. Theoretical justification for the HE regression estimator under

random mating is included in the discussion of lemma 3.1 and 3.2.

3.1.3.2 Genomic relatedness restricted maximum likelihood (REML)

Consider a sample sample of 𝑛 individuals measured at 𝑝 SNP loci. We model the phenotype

as a random vector with marginal distribution:

̃𝑦 ∼ ℳ𝒱𝒩(𝑋𝛽, 1
𝑝𝑍𝑍𝑇 𝜎2

𝑔 + 𝐼𝜎2
𝑒). (3.1.6)
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𝑍 consists of the standardized SNP at 𝑝 loci values for as sample of 𝑛 individuals:

𝑍 =
⎛⎜⎜⎜
⎝

⋮ ⋮
̃𝑧1,𝑖−2𝑞1

√2𝑞1(1−𝑞1) ⋯ ̃𝑧𝑝,𝑖−2𝑞𝑝

√2𝑞𝑝(1−𝑞𝑝)
⋮ ⋮

⎞⎟⎟⎟
⎠

.

The covariates 𝑋 ∈ ℝ𝑛×𝑐 (we can assume full row rank) and their effects 𝛽 ∈ ℝ𝑐 are considered to

be nuisance parameters.

The REML estimator is obtained by maximizing the log residual likelihood (REML crite-

rion), which is simply the log likelihood of 𝐾𝑇 𝑦 where 𝐾 ∈ ℝ𝑛×𝑛−𝑐 is such that 𝐾𝑇 ∶ ℝ𝑛 → (col 𝑋)⟂

and 𝐾𝑇 𝐾 = 𝐼𝑛−𝑐. Making the change of variables 𝛾 = 𝜎2
𝑔/𝜎2

𝑒 , denote

𝑃𝛾 = 𝑉 −1
𝛾 − 𝑉 −1

𝛾 𝑋(𝑋𝑇 𝑉 −1
𝛾 𝑋)−1𝑋𝑇 𝑉 −1

𝛾 , (3.1.7)

where 𝑉𝛾 = 1
𝑝𝑍𝑍𝑇 𝛾 + 𝐼 . The likelihood is maximized over 𝛾 by taking ̂𝛾 as the solution to the

REML equation:
𝑦𝑇 𝑃𝛾𝑍𝑍𝑇 𝑃𝛾𝑦

tr [𝑃𝛾𝑍𝑍𝑇 ] = 𝑦𝑇 𝑃𝛾𝑃𝛾𝑦
tr [𝑃𝛾] , (3.1.8)

and setting

�̂�2
𝑒 = 𝑦𝑇 𝑃�̂�𝑃�̂�𝑦

tr [𝑃�̂�] .

Above, the action of 𝐾𝑇 occurs through

𝑃𝛾 = 𝑉 −1
𝛾 − 𝑉 −1

𝛾 𝑋 (𝑋𝑇 𝑉 −1
𝛾 𝑋)−1 𝑋𝑇 𝑉 −1

𝛾 = 𝐾 (𝐾𝑇 𝑉𝛾𝐾)−1 𝐾𝑇 .

The heritability estimate is then

ℎ̂2
REML = �̂�2

𝑒 ̂𝛾
�̂�2𝑒 ̂𝛾 + �̂�2𝑒

= ̂𝛾/(1 + ̂𝛾).

The REML estimator doesn’t admit a closed form representation and (3.1.8) must be solved

numerically. An in depth discussion of the computational aspects of the REML method can be

found in Chapter 2.
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3.1.3.3 Linkage disequilibrium score regression

Linkage disequilibrium score regression (LDSC) [50] is a recent method for estimating her-

itability using summary statistics from genome wide association studies (GWAS) and information

regarding patterns of local dependence (linkage-disequilibrium [LD]) between variants. Specifically,

the LD score of a variant is defined as the sum of its squared correlations with all variants across

the genome

ℓ𝑗 =
𝑝

∑
𝑘=1

𝑟2
𝑗𝑘, 𝑗 = 1, … , 𝑝.

Denoting the GWAS test statistics for each variant by {𝜒2
𝑗}𝑝

𝑗=1, LDSC assumes a model wherein

𝔼[𝜒2
𝑗 ] = 𝑛𝑝−1ℓ𝑗ℎ2 + 1.

Thus, multiplying the estimated slope from a linear regression of the observed 𝜒2 on to the LD

score vector by 𝑛−1𝑝 provides an unbiased heritability estimate. In practice it is assumed that

dependence among variants is spatially limited (i.e., variants that are “far away” from one another

are assumed to be uncorrelated), and a local LD score

̃ℓ𝑗 = ∑
𝑘∈ℬ[𝑗]

1cM

̃𝑟2
𝑗𝑘,

is substituted for ℓ𝑗, where ℬ[𝑗]
1cM denotes a the set of indices falling within one centimorgan of the

𝑗𝑡ℎ variant.

3.2 Results

3.2.1 Haseman-Elston regression

HE regression is biased when there is substantial dependence among causal variants. This

is certainly true under the phenotypic assortment model but is also likely to arise under other

forms of population stratification. As a result, we characterize this bias with respect to multiple

circumstances: generally, as a function of the correlation among causal variants, and specifically,

at equilibrium under the phenotypic assortment model assuming exchangeable loci. Proofs are

provided in section 3.3.3.
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Consider a phenotype 𝑦 influenced by the additive effects of 𝑚 casual variants with stan-

dardized allele substitution effects 𝜂1, … , 𝜂𝑚. Further, suppose that 𝑝 = 𝜔−1𝑚, 𝜔 ∈ (0, 1] variants

are included in the genomic relatedness matrix, resulting in the consideration 𝑝 − 𝑚 non causal

variants such that, without loss of generality, 𝜂𝑚+1, … , 𝜂𝑝 ≡ 0. Denote the population correla-

tion matrix of individuals’ genotypes by Υ ∈ ℝ𝑝×𝑝 such that 𝜐𝑘𝑙 indicates the correlation between

haplotypes at the 𝑘𝑡ℎ and 𝑙𝑡ℎ loci.

Lemma 3.1. Assuming non-causal variants are independent but allowing for arbitrary substitution

effect sizes of causal variants, the HE regression heritability estimator has expectation

𝔼[ℎ̂2
HE] = ( 𝑝𝜂𝑇 ΥΥ𝜂

tr [ΥΥ]𝜂𝑇 Υ𝜂) ℎ2. (3.2.1)

Corollary 3.2. At equilibrium under the phenotypic assortment model assuming causal loci are

exchangeable, the HE regression heritability estimator has expectation

𝔼[ℎ̂2
HE] = ( 𝜇∞(2𝑚 − 1) + 1

1 + 4𝜔(𝑚 − 1)𝜇2∞ + 2𝜔𝜇∞(1 + 𝜇∞)) ℎ2
∞, (3.2.2)

where ℎ2
∞ and 𝜇∞ are as in equations (3.1.2) and (3.1.3), respectively. Further, 𝜔 is asymptotically

ignorable.

Note that for independent loci we simply have Υ = 𝐼𝑝 and (3.2.1) reduces to 𝔼[ℎ̂2
HE] = ℎ2;

i.e, the HE regression is unbiased. However, when there is substantial dependence among causal

variants consistent with the direction of their effects (i.e., sgn 𝜂𝑘𝜂𝑙 = sgn 𝜐𝑘𝑙 for 𝑘, 𝑙 = 1, … , 𝑚),

HE regression will substantially overestimate the true heritability. Figure 3.2 demonstrates the

substantial bias of the HE regression estimator applied to a polygenic trait under the phenotypic

assortment model. Simulation results are congruent with closed form expressions above, as is

demonstrated in figure 3.3.

3.2.2 Residual maximum likelihood

Empirical and theoretical work thus far suggest the REML heritability estimator is not

consistent with respect to the equilibrium heritability ℎ2
∞ under the phenotypic assortment model.
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Figure 3.2: Generation zero, equilibrium, and HE regression heritability estimates
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Figure 3.3: Empirical HE regression estimates versus theoretical predictions

●
●

●

1,000 10,000 100,000

1,000 10,000 100,000

r = 0.25

h0
2 = 0.5

●●●

1,000 10,000 100,000

1,000 10,000 100,000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

r = 0.5

h0
2 = 0.5

●●

●

1,000 10,000 100,000

1,000 10,000 100,000

r = 0.75

h0
2 = 0.5

●●
●

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

r = 0.5

h0
2 = 0.25

●
●

●

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

r = 0.5

h0
2 = 0.75

True equilbrium h∞
2

Predicted hHE
2

Results from simulation studies match closed form expressions for bias of HE regression under the
phenotypic assortment model for varying ℎ2

0, 𝑟. Additional simulations are on going.
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However, it does appear to be asymptotically unbiased with respect to the generation zero heritabil-

ity ℎ2
0, though convergence to the generation zero heritability is slow. Heuristically, this hypothesis

can be summarized as follows: If variants are independent of one another, the REML method pro-

vides a consistent estimator of the heritability of a phenotype generated under the model described

by (3.1.6) [112, 113]. However, assortative mating induces long-range correlations between causal

variants, thereby increasing the true genetic variance of the phenotype and simultaneously break-

ing the conditions required to ensure consistency using existing theory. Still, as the sample size 𝑛,

number of causal variants 𝑚, and total number of measured variants 𝑝 become large, the REML

estimator behaves as if the causal variants were independent and converges to the generation zero

heritability ℎ2
0. We summarize our progress so far with the following lemma characterizing the

limiting spectral distribution of the genomic relatedness matrix under the phenotypic assortment

model and formalize the above hypothesis in conjecture 3.4.

Lemma 3.3. Let 𝑆 = 𝑝−1𝑍𝑍𝑇 denote the sample relatedness matrix derived from 𝑛 individuals

measured genotypes at 𝑝 loci, including 𝑚 = 𝜔𝑝 causal variants, for a constant 𝜔 ∈ (0, 1). Under

the phenotypic assortment model, as 𝑛, 𝑝 → ∞ such that 𝑛/𝑝 → 𝜏 > 0, the empirical spectral

distribution of 𝑆 converges almost surely to the Marčenko-Pastur law:

𝐹 𝑆
𝑛

a.s.→ 𝜑𝜏(𝑥) = 1
2𝜋𝜏𝑥√(𝑏𝜏 − 𝑥)(𝑥 − 𝑎𝜏) J𝑥 ∈ [𝑎𝜏 , 𝑏𝜏 ]K .

Conjecture 3.4. Under the above conditions, we have that

1. ̂𝛾REML
𝑝

→ 𝜔𝛾, where 𝛾 = 𝜎2
𝑔,0/𝜎2

𝑒,

2. �̂�2
𝑒,REML = 𝑦𝑇 𝑃�̂�𝑃�̂�𝑦/tr [𝑃�̂�]

𝑝
→ 𝜎2

𝑒,

which together imply that ℎ̂2
REML

𝑝
→ ℎ2

0. I.e., the REML heritability estimator is a consistent

estimator of the generation zero heritability.

Simulations results so far are consistent with Conjecture 3.4 and the rate of convergence

does not not appear to depend on 𝜔 = 𝑚/𝑝 or 𝜏 = 𝑛/𝑝 (figure 3.4, figure 3.5, figure 3.6).

3.2.3 Linkage disequilibrium score regression

We are currently developing a theoretical characterization of LD score regression under the

phenotypic assortment model (see 3.3.6), but we anticipate that both the LD score regression and
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Figure 3.4: Empirical REML heritability estimates, aggregated
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Figure 3.5: Empirical REML heritability estimates split by 𝑝

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

p: 250000
p: 5e+

05
p: 1e+

06

 18,750

 37,500

 75,000

150,000

300,000

600,000

720,000

0.50

0.55

0.60

0.65

0.70

0.75

0.50

0.55

0.60

0.65

0.70

0.75

0.50

0.55

0.60

0.65

0.70

0.75

Sample size

h
R

E
M

L
2

Nsim

● 1e+06

3e+06

0.005

0.013

0.032

0.080

0.200
ω

REML heritability estimates in data simulated under the phenotypic assortment model with 𝑟 = .5,
ℎ2

0 = .5 at equilibrium for varying 𝑚, 𝑝, in unrelated samples drawn from populations of sizes 𝑁sim ∈
{1e+6, 3e+6}. Rate of convergence does not appear to vary with 𝜔 = 𝑚/𝑝. The black dashed-line
indicates the true equilibrium heritability and the black dotted line indicates the generation zero
heritability. Additional simulations are on going.
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Figure 3.6: Empirical REML heritability estimates split by 𝑚 × 𝑝
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Figure 3.7: Empirical LDSC regression heritability estimates
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intercept will exhibit upward biases bounded above by the expected HE regression estimate estab-

lished in (3.2.1), and that, like HE regression, these biases are independent of sample size. Initial

simulation results support these hypotheses: LD score regression heritability estimates appear to

be attenuated relative to HE regression estimates (but still upwardly biased; Figure 3.7) and LD

score intercepts demonstrate inflation increasing the strength of assortment.

3.3 Theoretical development

In the following section we motivate previous claims, additionally presenting requisite gen-

eral results regarding the equilibrium properties of haploid loci under the phenotypic assortment

model as necessary.

3.3.1 Correlations among unlinked, exchangeable haploid loci

Consider an individual’s standardized diploid genotype1 𝑍 as a random vector with co-

variance matrix Υ𝑡. Suppose we have measured 𝑝 ∈ ℕ genotypes, 𝑚 ∈ [1, 𝑝] of which are causal.

Without loss of generality, order the genotypes such that the first 𝑚 are causal and the remaining

𝑝 − 𝑚 are not causal. Under random mating, we simply have Υ0 = 𝐼𝑝. Under assortment however,

assuming exchangeable loci, the equilibrium population covariance matrix is

Υ∞(𝑚) =
⎡
⎢
⎢
⎢
⎣

1 + 𝜇(𝑚) Sym.
2𝜇(𝑚) ⋱ Sym.

⋮ ⋱ ⋱
2𝜇(𝑚) ⋯ 2𝜇(𝑚) 1 + 𝜇(𝑚)

0(𝑝−𝑚)×𝑚 𝐼𝑝−𝑚

⎤
⎥
⎥
⎥
⎦

,

where 𝜇(𝑚) = 𝜇∞ for 𝑚 causal variants given initial conditions 𝑟, ℎ2
0 ∈ (0, 1]. Denote entries of

Υ(𝑚) = Υ∞(𝑚) by 𝜐𝑖𝑗(𝑚).

Lemma 3.5. Under the above assumptions, as 𝑚 → ∞, we have that each 𝜐𝑖𝑗(𝑚) → 𝛿𝑖𝑗 where

𝛿𝑖𝑗 is the Kronecker delta. Further, this convergence is such that the equilibrium correlation among

haploid loci has order 𝜇(𝑚) ∼ 𝒪(𝑚−1).
1𝑍 is “standardized” in that each 𝑧𝑘 = ( ̃𝑧𝑘−2𝑞𝑘)/√2𝑝𝑘𝑞𝑘𝑙 where ̃𝑧𝑘 Under random mating, we have 𝑉 𝑎𝑟(𝑧𝑘) = 1;

under assortment, however, we have 𝑉 𝑎𝑟(𝑧𝑘,𝑡) = (1 + 𝜇𝑘𝑘,𝑡)2 > 1.
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Proof. Note that 𝜇(𝑚), as a function of three variables,

𝜇(𝑚, ℎ2
0, 𝑟) = 1 − √1 − 4ℎ2

0𝑟(1 − ℎ2
0)

(2𝑚 − 1) (√1 − 4ℎ2
0𝑟(1 − ℎ2

0) + 1 − 2ℎ2
0)

is continuous and monotone increasing with respect to ℎ2
0, 𝑟 ∈ (0, 1)2 (i.e., the equilibrium cor-

relation is largest when both heritability and the correlation among mates are unity. Thus,

𝜇(𝑚) ∼ 𝒪(𝑚−1) but not 𝑜(𝑚)−1, as demonstrated in figure 3.8.
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Figure 3.8: Equilibrium correlation among haploid variants for 𝑟 = 0.5, ℎ2
0 = 0.5.

3.3.2 Properties of the genomic relatedness matrix

Here we develop the statistical properties of the genetic relatedness matrix under arbitrary

patterns of inter-correlations among haploid loci. Denoting diploid genotypic values standardized

according to the population allele frequency by {𝑧𝑘}𝑝
𝑘=1, we define the sample genomic relatedness

matrix (GRM), or kinship matrix, as 𝐾 = 1
𝑝𝑍𝑍𝑇 . Additionally, for a standardized phenotype

𝑦 = 𝜎−1
̃𝑦 ( ̃𝑦− ̃𝑦) where ̃𝑦 = (2𝑝(1−𝑝))−1/2𝑍𝜂, denote the phenotypic outer product matrix Ψ𝑖𝑗 = 𝑦𝑦𝑇 .



67

Lemma 3.6. The variance of individual entries of the genomic related matrix is expressed

𝑉 𝑎𝑟[vec (𝐾𝑖𝑗,𝑖<𝑗)]
1
𝑝2 tr [ΥΥ].

Additionally, the covariance of the lower triangular elements of the phenotypic outer product and

genomic relatedness matrices is expressed:

𝐶𝑜𝑣(vec (Ψ𝑖𝑗,𝑖<𝑗), vec (𝐾𝑖𝑗,𝑖<𝑗)) = 2
𝑝𝜎2

̃𝑦
𝜂𝑇 ΥΥ𝜂, 𝑖 < 𝑗.

Proof. Let ℓ𝑘𝑙 denote the population correlation between the the 𝑘𝑡ℎ and 𝑙𝑡ℎ haploid loci. The first

result of several straightforward computations:

𝔼[𝑧𝑖𝑘𝑧𝑗𝑙] = 𝔼[𝑧𝑖𝑘𝑧𝑗𝑘] = 0,

𝐶𝑜𝑣(𝑧𝑖𝑘, 𝑧𝑗𝑙) = 𝐶𝑜𝑣(𝑧𝑖𝑘, 𝑧𝑗𝑘) = 0,

𝑉 𝑎𝑟(𝑧𝑖𝑙𝑧𝑗𝑙) = 𝑉 𝑎𝑟(𝑧𝑖𝑙)𝑉 𝑎𝑟(𝑧𝑗𝑙) = (1 + ℓ𝑘𝑘)2,

𝔼[𝑧𝑖𝑘𝑧𝑖𝑘] = 𝑉 𝑎𝑟(𝑧𝑖𝑘) + 𝔼[𝑧𝑖𝑘]𝔼[𝑧𝑖𝑘] = (1 + ℓ𝑘𝑘)

𝔼[𝑧𝑖𝑘𝑧𝑖𝑙≠𝑘] = 𝐶𝑜𝑣(𝑧𝑖𝑘, 𝑧𝑖𝑙) + 𝔼[𝑧𝑖𝑘]𝔼[𝑧𝑖𝑙] = 2ℓ𝑘𝑙

𝐶𝑜𝑣(𝑧𝑖𝑙𝑧𝑗𝑙, 𝑧𝑖𝑘≠𝑙𝑧𝑗𝑘≠𝑙) = 𝔼[𝑧𝑖𝑙𝑧𝑗𝑙𝑧𝑖𝑘𝑧𝑗𝑘] − 𝔼[𝑧𝑖𝑙𝑧𝑗𝑙]𝔼[𝑧𝑖𝑘𝑧𝑗𝑘] = 𝔼[𝑧𝑖𝑙𝑧𝑖𝑘]𝔼[𝑧𝑗𝑙𝑧𝑗𝑘] = 4ℓ2
𝑘𝑙,

𝔼[𝐾𝑖𝑗] = 0,

𝑉 𝑎𝑟[𝐾𝑖𝑗] = 1
𝑝2 𝑉 𝑎𝑟 (∑

𝑙=1
𝑧𝑖𝑙𝑧𝑗𝑙) = 1

𝑝2 (
𝑝

∑
𝑙=1

(1 + ℓ𝑘𝑘)2 + 4
𝑝

∑
𝑘≠𝑙

ℓ2
𝑘𝑙) = 1

𝑝2 tr [ΥΥ].

Noting that

𝜎2
𝑔 = 2

𝑚
∑

𝑘
𝜂2

𝑘(1 + ℓ𝑘𝑘) + 4 ∑
𝑘≠𝑙

𝜂𝑘𝜂𝑙ℓ𝑘𝑙 = 2𝜂𝑇 Υ𝜂,

̃𝑦 = 𝑍𝜂 + 𝑒

𝜎2
̃𝑦 = 2𝜂𝑇 Υ𝜂 + 𝜎2

𝑒

Now, note that 𝔼[Ψ𝑖𝑗] = 0 and, as ̃𝑒𝑖 and ̃𝑒𝑗 are independent of one another and of all genotypes,

the covariance of the lower triangular elements of the phenotypic and genomic relatedness matrices
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is computed as follows:

𝐶𝑜𝑣(Ψ𝑖𝑗, 𝐾𝑖𝑗)𝑖<𝑗 =𝔼[Ψ𝑖𝑗𝐾𝑖𝑗] − 𝔼[Ψ𝑖𝑗]𝔼[𝐾𝑖𝑗]

= 1
𝑝𝜎2

̃𝑦
𝔼 [∑

𝑘
(𝜂𝑘𝑧𝑖𝑘

√
2) ∑

𝑙
(𝜂𝑙𝑧𝑗𝑙

√
2) ∑

𝑡
(𝑧𝑖𝑡𝑧𝑗𝑡)]

= 2
𝑝𝜎2

̃𝑦
𝔼 [∑

𝑘,𝑙,𝑡
𝜂𝑘𝜂𝑙𝑧𝑖𝑘𝑧𝑗𝑙𝑧𝑖𝑡𝑧𝑗𝑡]

= 2
𝑝𝜎2

̃𝑦
𝜂𝑇 ΥΥ𝜂.

3.3.3 Bias of Haseman-Elston regression

The result stated in lemma 3.1 follows immediately from the results in the preceding section

as the expected slope from the linear regression of vec (Ψ𝑖𝑗,𝑖<𝑗) regressed on vec (𝐾𝑖𝑗,𝑖<𝑗) will be

𝐶𝑜𝑣(Ψ𝑖𝑗, 𝐾𝑖𝑗)/𝑉 𝑎𝑟(𝐾𝑖𝑗). Noting that 𝜎2
𝑔 = 2𝜂𝑇 Υ𝜂 we then have that

𝐶𝑜𝑣(Ψ𝑖𝑗, 𝐾𝑖𝑗)
𝑉 𝑎𝑟(𝐾𝑖𝑗)

= 2𝑝𝜂𝑇 ΥΥ𝜂
𝜎2

̃𝑦tr [ΥΥ] ⋅ 2𝜂𝑇 Υ𝜂
2𝜂𝑇 Υ𝜂 = 𝑝𝜂𝑇 ΥΥ𝜂

𝜂𝑇 Υ𝜂tr [ΥΥ]ℎ
2.

Specialization to the equilibrium case of exchangeable loci under the phenotypic assortment model,

as in (3.2), follows from the following computations. Denote the sets

Ω𝑘=𝑡≠𝑙(𝑚) = {𝑘, 𝑡, 𝑙 ∈ {1, … , 𝑚}3 ∶ 𝑘 = 𝑡 ≠ 𝑙},

Ω𝑘=𝑙≠𝑡(𝑚) = {𝑘, 𝑡, 𝑙 ∈ {1, … , 𝑚}3 ∶ 𝑘 = 𝑙 ≠ 𝑡},

and so forth, and observe that the cardinalities of the mutually exclusive sets below are computed

|Ω𝑘=𝑡≠𝑙(𝑚) ∪ Ω𝑘≠𝑙=𝑡(𝑚)| =2𝑚(𝑚 − 1),

Ω𝑘=𝑙≠𝑡(𝑚) =𝑚(𝑚 − 1)

|Ω𝑘≠𝑙≠𝑡≠𝑘(𝑚)| =𝑚(𝑚 − 1)(𝑚 − 2),

|Ω𝑘=𝑙=𝑡(𝑚)| =𝑚,
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as can be shown via induction. Thus, we compute the following quantities:

𝜂𝑇 ΥΥ𝜂 = ∑
𝑘,𝑙,𝑡

𝜂𝑘𝜂𝑙𝜐𝑘𝑡𝜐𝑙𝑡

= 𝜎2
𝑔,0/2𝑚

⎛⎜⎜⎜
⎝

∑
𝑘,𝑙,𝑡

𝑘=𝑡≠𝑙

𝜐𝑘𝑘𝜐𝑙𝑘 + ∑
𝑘,𝑙,𝑡

𝑘≠𝑙=𝑡

𝜐𝑘𝑙𝜐𝑙𝑙 + ∑
𝑘,𝑙,𝑡

𝑘=𝑙≠𝑡

𝜐𝑘𝑡𝜐𝑘𝑡 + ∑
𝑘,𝑙,𝑡

𝑘≠𝑙≠𝑡≠𝑘

𝜐𝑘𝑡𝜐𝑙𝑡 + ∑
𝑘,𝑙,𝑡

𝑘=𝑙=𝑡

𝜐𝑘𝑘𝜐𝑘𝑘
⎞⎟⎟⎟
⎠

= 𝜎2
𝑔,0/2𝑚

⎛⎜⎜⎜
⎝

∑
𝑘,𝑙,𝑡

𝑘=𝑡≠𝑙

2𝜇
1 + 𝜇 + ∑

𝑘,𝑙,𝑡
𝑘≠𝑙=𝑡

2𝜇
1 + 𝜇 + ∑

𝑘,𝑙,𝑡
𝑘=𝑙≠𝑡

( 2𝜇
1 + 𝜇)

2
+ ∑

𝑘,𝑙,𝑡
𝑘≠𝑙≠𝑡≠𝑘

( 2𝜇
1 + 𝜇)

2
+ ∑

𝑘,𝑙,𝑡
𝑘=𝑙=𝑡

1
⎞⎟⎟⎟
⎠

= 𝜎2
𝑔,0/2𝑚

⎛⎜⎜⎜
⎝

∑
𝑘,𝑙,𝑡

𝑘=𝑡≠𝑙

2𝜇
1 + 𝜇 + ∑

𝑘,𝑙,𝑡
𝑘≠𝑙=𝑡

2𝜇
1 + 𝜇 + ∑

𝑘,𝑙,𝑡
𝑘=𝑙≠𝑡

( 2𝜇
1 + 𝜇)

2
+ ∑

𝑘,𝑙,𝑡
𝑘≠𝑙≠𝑡≠𝑘

( 2𝜇
1 + 𝜇)

2
+ ∑

𝑘,𝑙,𝑡
𝑘=𝑙=𝑡

1
⎞⎟⎟⎟
⎠

= 𝜎2
𝑔,0/2 (2(𝑚 − 1) ( 2𝜇

1 + 𝜇) + (𝑚 − 1) ( 2𝜇
1 + 𝜇)

2
+ (𝑚 − 1)(𝑚 − 2) ( 2𝜇

1 + 𝜇)
2

+ 1)

= 𝜎2
𝑔,0/2 (2(𝑚 − 1) ( 2𝜇

1 + 𝜇) + (𝑚 − 1)2 ( 2𝜇
1 + 𝜇)

2
+ 1)

= 𝜎2
𝑔,0/2 (1 + (𝑚 − 1) ( 2𝜇

1 + 𝜇))
2

𝜂𝑇 Υ𝜂 = (𝜎2
𝑔,0/2𝑚) ∑

𝑘,𝑙
𝜐𝑘𝑙

= (𝜎2
𝑔,0/2) (1 + (𝑚 − 1) ( 2𝜇

1 + 𝜇)) ,

The trace term is computed

tr [ΥΥ] = tr [({(1)𝛿𝑖𝑗(2𝜇∞(1 − 𝜇∞))1−𝛿𝑖𝑗}𝑚
𝑖𝑗 0

0 𝐼𝑝−𝑚
)

2
]

= (𝑝 − 𝑚) + ∑
𝑘

∑
𝑙

𝜐𝑙𝑘𝜐𝑘𝑙

= 𝑝 + 𝑚(𝑚 − 1) 4𝜇2
∞

(1 − 𝜇∞)2 ,
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which allows us to compute the expected HE regression slope:

𝔼[ℎ̂2
HE] = ( 𝑝𝜂𝑇 ΥΥ𝜂

tr [ΥΥ]𝜂𝑇 Υ𝜂) ℎ2
∞

= ( 𝜇∞(2𝑚 − 1) + 1
1 + 4𝜔(𝑚 − 1)𝜇2∞ + 2𝜔𝜇∞(1 + 𝜇∞)) ℎ2

∞.

Further, taking the limit as 𝑚 → ∞ yields the approximation

𝔼[ℎ̂2
HE] ≈ ( (𝒱 − 2ℎ + 2) (𝒱 − 2ℎ + 2)

4ℎ2(𝑟 + 1) − 4ℎ (3𝒱 + 𝑟 + 2) − 6𝒱 + 4) ℎ2
∞,

where 𝒱 does not depend on 𝜔 or 𝑝. What’s notable here is the proportion of causal variants

𝜔 = 𝑚/𝑝 is asymptotically irrelevant, as is demonstrated in Figure 3.9.
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Figure 3.9: Bias of HE regression relative to the true population heritability at 𝑟 = 0.5, ℎ2
0 = 0.5 as

a function of the number of causal variants, 𝑚, for varying proportions of causal variants 𝜔 = 𝑚/𝑝.

3.3.4 Higher order moments of unlinked, exchangeable haploid loci

Our results regarding the behavior of the REML estimator rely on the following characteri-

zation of the higher order moments of haploid loci. Given the complexity of this topic, the notation
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in this section is modified and self-contained. Additionally, we state two needed results regarding

the properties of integral operators on 𝐿𝑝 spaces:

Fact 3.7 (Neumann series representation [114], Ex. 5.16). Let 𝐾 ∶ 𝑋 → 𝑋 be a bounded linear

operator on a Banach space 𝑋 with ‖𝑋‖ < 1. Then [𝐼 − 𝐾] is invertible and the series

[𝐼 − 𝐾]−1 =
∞

∑
𝑛=0

𝐾𝑛

converges uniformly in the space of bounded linear endomorphisms on 𝑋.

Fact 3.8 (Schur’s test; [115], Theorems 8.3.1-2). Let 𝑘 be a measurable function on ℝ2 that satisfies

the mixed-norm conditions

ess sup
𝑡∈ℝ

∫
ℝ

|𝑘(𝑡, 𝑠)| 𝑑𝑠 = 𝐶1 < ∞,

ess sup
𝑠∈ℝ

∫
ℝ

|𝑘(𝑡, 𝑠)| 𝑑𝑡 = 𝐶2 < ∞.

Then the integral operator

𝐾[𝑓(𝑡)] = ∫
ℝ

𝑘(𝑡, 𝑠) 𝑓(𝑠) 𝑑𝑠

is a bounded endomorphism on 𝐿𝑝(ℝ) for all 𝑝 ∈ [1, ∞] and its operator norm satisfies

‖𝐾‖ ≤ 𝐶1/𝑞
1 𝐶1/𝑝

2 ,

where 𝑞 is the Hölder conjugate of 𝑝.

Let 𝑌 ∗, 𝑌 ∗∗, and ̃𝑌 and denote the respective phenotypes of parent-parent-offspring trio.

By assumption, the joint distribution of ̃𝑌 , 𝑌 ∗, 𝑌 ∗∗, is multivariate normal and at equilibrium, ̃𝑌
and 𝑌 ∗ have correlation 𝜏 ∈ (0, 1) . Thus,

𝐶𝑜𝑣(𝑌 ∗, 𝑌 ∗∗, ̃𝑌 ) = 𝜎2
𝑌 ,∞

⎛⎜
⎝

1
𝑟 1
𝜏 𝜏 1

⎞⎟
⎠

,
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and

(𝑌 ∗∗| ̃𝑌 = 𝑤) 𝐷= (𝑌 ∗| ̃𝑌 = 𝑡) ∼ 𝒩(𝜏 ⋅ 𝑤, 1 − 𝜏2),

(𝑌 ∗∗|𝑌 ∗ = 𝑡) ∼ 𝒩(𝑟 ⋅ 𝑤, 1 − 𝑟2).

The genetic value at each diploid locus is the weighted sum of that at two haploid loci:

𝑍𝑘 = 1√
2(𝐺𝑘 + 𝐺𝑘′). We can write conditional second moments of the offsprings’ haploid effects at

distinct diploid loci as

𝔼[ ̃𝐺𝑘 ̃𝐺𝑙≠𝑘,𝑘′ | ̃𝑌 = 𝑤] = ∫ 𝔼[ ̃𝐺𝑘 ̃𝐺𝑙|𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣]𝑑𝑃𝑌 ∗,𝑌 ∗∗| ̃𝑌 (𝑢, 𝑣, 𝑤).

Let 𝜔∗
𝑘 denote the event that the offspring received the haploid allele 𝐺𝑘 from the first parent (with

phenotype 𝑌 ∗) and so on for 𝜔∗∗
𝑙 etc.. Then we can decompose the conditional expectation in the

above integrand as

𝔼[ ̃𝐺𝑘 ̃𝐺𝑙|𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣] =1
4 (𝔼[ ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗

𝑘 ∩ 𝜔∗
𝑙 ]

+𝔼[ ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗
𝑘 ∩ 𝜔∗∗

𝑙 ]

+𝔼[ ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗∗
𝑘 ∩ 𝜔∗

𝑙 ]

+𝔼[ ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗∗ = 𝑣, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗∗
𝑘 ∩ 𝜔∗∗

𝑙 ]) .

=1
4 (𝔼[𝐺∗

𝑘𝐺∗
𝑙 |𝑌 ∗ = 𝑢] + 𝔼[𝐺∗

𝑘𝐺∗∗
𝑙 |𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣}

+𝔼[𝐺∗∗
𝑘 𝐺∗

𝑙 |𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣] + 𝔼[𝐺∗∗
𝑘 𝐺∗∗

𝑙 |𝑌 ∗∗ = 𝑣])

=1
4 (𝔼[𝐺∗

𝑘𝐺∗
𝑙 |𝑌 ∗ = 𝑢] + 𝔼[𝐺∗

𝑘|𝑌 ∗ = 𝑢]𝔼[𝐺∗∗
𝑙 |𝑌 ∗∗ = 𝑣}

+𝔼[𝐺∗∗
𝑘 |𝑌 ∗∗ = 𝑢]𝔼[𝐺∗

𝑙 |𝑌 ∗ = 𝑣] + 𝔼[𝐺∗∗
𝑘 𝐺∗∗

𝑙 |𝑌 ∗∗ = 𝑣]) .

Employing our linearity of allelic effects assumption, we have that for 𝑘 = 1, … , 𝑝,

𝔼[𝐺𝑘|𝑌 = 𝑦] = 𝜁𝑦
𝜎𝑌 ,∞

, 𝔼[𝐺𝑘|𝑌 ∗ = 𝑦∗] = 𝑟𝜁𝑦∗

𝜎𝑌 ,∞
,
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where 𝜁 = √𝜇(𝑚)/𝑟. Thus,

𝔼[ ̃𝐺𝑘 ̃𝐺𝑙|𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣] = 1
4 (𝔼[𝐺∗

𝑘𝐺∗
𝑙 |𝑌 ∗ = 𝑢] + 𝔼[𝐺∗∗

𝑘 𝐺∗∗
𝑙 |𝑌 ∗∗ = 𝑣] + 2𝜇𝑢𝑣𝑟−1𝜎−2

𝑌 ,∞)

Defining

𝑓𝑡(𝑢) = 𝔼[𝐺∗
𝑘𝐺∗

𝑙 |𝑌 ∗ = 𝑢]𝑡,

where 𝑡 indexes reproductive generations, we then have

𝑓𝑡+1(𝑤) = 1
4 ∬ (𝑓𝑡(𝑢) + 𝑓𝑡(𝑣) + 2𝜇𝑢𝑣𝑟−1𝜎−2

𝑌 ,∞) 𝑝𝑌 ∗,𝑌 ∗∗| ̃𝑌 =𝑤(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣.

Using linearity of the integral,

𝑓𝑡+1(𝑤) =1
4 ∬ 𝑓𝑡(𝑢)𝑝𝑌 ∗,𝑌 ∗∗| ̃𝑌 =𝑤(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣 + 1

4 ∬ 𝑓𝑡(𝑣)𝑝𝑌 ∗,𝑌 ∗∗| ̃𝑌 =𝑤(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣

+ 1
2 ∬ 𝜇𝑢𝑣𝑟−1𝜎−2

𝑌 ,∞𝑝𝑌 ∗,𝑌 ∗∗| ̃𝑌 =𝑤(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣

=1
2 ∫ 𝑓𝑡(𝑢)𝑝𝑌 ∗| ̃𝑌 =𝑤(𝑢) 𝑑𝑢 + 1

2𝜇𝑟−1 ∬ 𝑢𝑣𝜎−2
𝑌 ,∞𝑝𝑌 ∗,𝑌 ∗∗| ̃𝑌 =𝑤(𝑢, 𝑣) 𝑑𝑢 𝑑𝑣.

The right hand integral above is simply the expectation of the product of two zero expectation,

variance one, covariance 𝑟, jointly normal random variables. Thus,

𝑓𝑡+1(𝑤) = 1
2 ∫ 𝑓𝑡(𝑢)𝑝𝑌 ∗| ̃𝑌 =𝑤(𝑢) 𝑑𝑢 + 1

2𝜇(𝑚).

This defines a integral equation recurrence relation of the form:

𝑓𝑡+1(𝑤) = ℎ𝑡(𝑤) − ∫ 𝑓𝑡(𝑠)𝑘(𝑤, 𝑠) 𝑑𝑠,

with known function and kernel:

ℎ𝑡(𝑤) = 1
2𝜇𝑡(𝑚),

𝑘𝑡(𝑤, 𝑠) = 1
2𝑝𝑌 ∗| ̃𝑌 (𝑠, 𝑤),
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and where 𝜇𝑡(𝑚) ∼ 𝑜(𝑚−1) for all 𝑡 ∈ ℤ+. Explicitly, the kernel function is given by

𝑘𝑡𝑠(𝑤, 𝑠) = 1
2√2𝜋(1 − 𝜏2)

exp [−(𝑠 − 𝜏𝑤)2

2(1 − 𝜏2) ] , 𝜏 ∈ (0, 1).

We now proceed to bound the conditional expectation 𝔼[ ̃𝐺𝑘 ̃𝐺𝑙| ̃𝑌 = 𝑡]:

Lemma 3.9. Consider the previously introduced recurrence relation:

𝑓𝑡+1(𝑤) = ℎ𝑡(𝑤) − ∫ 𝑓𝑡(𝑠)𝑘(𝑤, 𝑠) 𝑑𝑠,

ℎ(𝑤) = 1
2𝜇𝑡(𝑚) ∼ 𝒪(𝑚−1),

𝑘𝑡(𝑤, 𝑠) = 1
2√2𝜋(1 − 𝜏2)

exp [−(𝑠 − 𝜏𝑤)2

2(1 − 𝜏2) ] , 𝜏 ∈ (0, 1).

Then,

ess sup
𝑠∈ℝ

|𝑓𝑡(𝑠)| ≤∼ 𝒪(𝑚−1).

Proof. For fixed 𝑤 = 𝑤0 ∈ ℝ, 𝑘(𝑤0, 𝑠), as a function of 𝑠, is simply 1/2 times Gaussian density and

it’s integral is independent of the mean 𝜏 ⋅ 𝑤0. Hence,

ess sup
𝑤∈ℝ

∫
ℝ

|𝑘𝑡(𝑤, 𝑠)| 𝑑𝑠 = 1
2 ≡ 𝐶1.

A similar argument yields,

ess sup
𝑠∈ℝ

∫
ℝ

|𝑘𝑡(𝑤, 𝑠)| 𝑑𝑤 = 1
2𝜏𝑡

≡ 𝐶2.

Choose the Hölder conjugate pair 𝑝 = ∞, 𝑞 = 1. Then, by (3.8), the integral operator

𝐾 ∶ 𝜑 ↦ ∫
ℝ

𝜑(𝑠)𝑘𝑡(𝑤, 𝑠) 𝑑𝑠

is a bounded linear endomorphism on 𝐿∞(ℝ) with operator norm

‖𝐾𝑡‖ ≤ 𝐶1
1𝐶0

2 = 1
2, ∀𝑡 ∈ ℤ+.
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Next, applying (3.7), [𝐼 − 𝐾𝑡] is invertible and the series

[𝐼 − 𝐾𝑡]−1 =
∞

∑
𝑛=0

𝐾𝑛
𝑡

converges uniformly on ℬ(𝐿∞). Since we assume independence of loci and random mating at

generation zero we have 𝑓0 ∼ 𝒪(𝑚−1) and 𝜇0(𝑚) = 0. Thus,

𝑓𝑡+1 = 𝐾𝑡𝑓𝑡 + ℎ𝑡

≤ 𝐾𝑡𝑓𝑡 + 𝜇(𝑚)/2

= 𝐾𝑡[𝐾𝑡−1𝑓𝑡−1 + 𝜇𝑡(𝑚)/2] + 𝜇(𝑚/2)

⋮

= 𝐾𝑡[𝐾𝑡−1 ⋯ 𝐾0[𝑓0 + 𝜇0(𝑚)/2] ⋯] + 𝜇(𝑚/2)

⟹ ‖𝑓𝑡+1‖∞ ≤ ∑ ∥1
2∥

𝑡
‖𝜇𝑡(𝑚)/2‖ 𝔼[𝐺∗∗

𝑗 𝐺∗∗
𝑘 𝐺∗∗

𝑙 |𝑌 ∗∗ = 𝑣]

∼ 𝒪(𝑚−1).

Immediately, this yields a bound of the same order on the unconditional expectation

𝔼[ ̃𝐺𝑘 ̃𝐺𝑙] ≤ sup 𝔼[ ̃𝐺𝑘 ̃𝐺𝑙|𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣] ∫ 𝑑𝑃𝑌 ∗,𝑌 ∗∗| ̃𝑌 (𝑢, 𝑣, 𝑤)

⟹ 𝔼[ ̃𝐺𝑘 ̃𝐺𝑙] ∼ 𝒪(𝑚−1).

This same argument is used to established bounds for the conditional third moments as follows

(and hence unconditional third moments): Let 𝑗, 𝑘, 𝑙 index distinct diploid sites. We proceed as
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above, expanding the conditional third moment

𝔼[ ̃𝐺𝑗 ̃𝐺𝑘 ̃𝐺𝑙|𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣] =1
8 (𝔼[ ̃𝐺𝑗 ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗

𝑗 ∩ 𝜔∗
𝑘 ∩ 𝜔∗

𝑙 ]

+ 𝔼[ ̃𝐺𝑗 ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗∗
𝑗 ∩ 𝜔∗

𝑘 ∩ 𝜔∗
𝑙 ]

+ 𝔼[ ̃𝐺𝑗 ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗
𝑗 ∩ 𝜔∗

𝑘 ∩ 𝜔∗∗
𝑙 ]

+ 𝔼[ ̃𝐺𝑗 ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗∗
𝑗 ∩ 𝜔∗

𝑘 ∩ 𝜔∗∗
𝑙 ]

+ 𝔼[ ̃𝐺𝑗 ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗
𝑗 ∩ 𝜔∗∗

𝑘 ∩ 𝜔∗
𝑙 ]

+ 𝔼[ ̃𝐺𝑗 ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗∗
𝑗 ∩ 𝜔∗∗

𝑘 ∩ 𝜔∗
𝑙 ]

+ 𝔼[ ̃𝐺𝑗 ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑣, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗
𝑗 ∩ 𝜔∗∗

𝑘 ∩ 𝜔∗∗
𝑙 ]

+ 𝔼[ ̃𝐺𝑗 ̃𝐺𝑘 ̃𝐺𝑙|{𝑌 ∗ = 𝑣, 𝑌 ∗∗ = 𝑣} ∩ 𝜔∗∗
𝑗 ∩ 𝜔∗∗

𝑘 ∩ 𝜔∗∗
𝑙 ])

=1
8 (𝔼[𝐺∗

𝑗𝐺∗
𝑘𝐺∗

𝑙 |𝑌 ∗ = 𝑢]

+ 𝔼[𝐺∗∗
𝑗 |𝑌 ∗∗ = 𝑣]𝔼[𝐺∗

𝑘𝐺∗
𝑙 |𝑌 ∗ = 𝑢]

+ 𝔼[𝐺∗∗
𝑙 |𝑌 ∗∗ = 𝑣]𝔼[𝐺∗

𝑗𝐺∗
𝑘|𝑌 ∗ = 𝑢]

+ 𝔼[𝐺∗∗
𝑘 |𝑌 ∗∗ = 𝑣]𝔼[𝐺∗

𝑗𝐺∗
𝑙 |𝑌 ∗ = 𝑢]

+ 𝔼[𝐺∗
𝑗|𝑌 ∗ = 𝑢]𝔼[𝐺∗∗

𝑘 𝐺∗∗
𝑙 |𝑌 ∗∗ = 𝑣]

+ 𝔼[𝐺∗
𝑙 |𝑌 ∗ = 𝑢]𝔼[𝐺∗∗

𝑗 𝐺∗∗
𝑘 |𝑌 ∗∗ = 𝑣]

+ 𝔼[𝐺∗
𝑘|𝑌 ∗ = 𝑢]𝔼[𝐺∗∗

𝑗 𝐺∗∗
𝑙 |𝑌 ∗∗ = 𝑣]

+ 𝔼[𝐺∗∗
𝑗 𝐺∗∗

𝑘 𝐺∗∗
𝑙 |𝑌 ∗∗ = 𝑣])

≡ 1
8𝔼[𝐺∗

𝑗𝐺∗
𝑘𝐺∗

𝑙 |𝑌 ∗ = 𝑢] + 𝜙(𝑢, 𝑣) + 1
8𝔼[𝐺∗∗

𝑗 𝐺∗∗
𝑘 𝐺∗∗

𝑙 |𝑌 ∗∗ = 𝑣],

where 𝜙(𝑢, 𝑣) includes all the terms we have previously bounded and 𝜙(𝑢, 𝑣) ∼ 𝒪(𝑚−3/2). We can

then bound the the remaining terms, which are of the form 𝑓(𝑢) = 𝔼[𝐺∗
𝑗𝐺∗

𝑘𝐺∗
𝑙 |𝑌 ∗ = 𝑢], by applying

the same argument. Briefly,

𝑓𝑡+1 = 𝐾𝑡𝑓𝑡 + ℎ𝑡 ≤ ⋯ ≤ 𝐾𝑡[𝐾𝑡−1 ⋯ 𝐾0[𝑓0 + 𝒪(𝑚−3/2) ⋯] + 𝒪(𝑚−3/2)]

⟹ 𝔼[𝐺∗
𝑗𝐺∗

𝑘𝐺∗
𝑙 ] ∼ 𝒪(𝑚−3/2).
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Likewise, bounds are established for higher order moments recursively by applying a similar ar-

gument to the expanded conditional moments. E.g., 2/16 of the expansion of 𝔼[ ̃𝐺𝑖 ̃𝐺𝑗 ̃𝐺𝑘 ̃𝐺𝑙|𝑌 ∗ =
𝑢, 𝑌 ∗∗ = 𝑣] with |{𝑖, 𝑗, 𝑘, 𝑙}| = 4 are comprised of

𝔼[𝐺∗
𝑖𝐺∗

𝑗𝐺∗
𝑘𝐺∗∗

𝑙 |𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣] = 𝔼[𝐺∗
𝑖𝐺∗

𝑗𝐺∗
𝑘|𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣] ⋅ 𝔼[𝐺∗∗

𝑙 |𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣]

∼ 𝒪(𝑚−2).

When |{𝑖, 𝑗, 𝑘, 𝑙}| = 3, we simply have fewer possible inheritance patterns to consider. E.g., denoting
̃𝐺𝑗𝑗′𝑘𝑙 = ̃𝐺𝑗 ̃𝐺𝑗′ ̃𝐺𝑘 ̃𝐺𝑙 and 𝒫 = {𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣}, we have without loss of generality,

𝔼 ̃𝐺𝑗 ̃𝐺𝑗′ ̃𝐺𝑘 ̃𝐺𝑙[|𝑌 ∗ = 𝑢, 𝑌 ∗∗ = 𝑣] =1
8 (𝔼[ ̃𝐺𝑗𝑗′𝑘𝑙|𝒫 ∩ 𝜔∗∗

𝑗 ∩ 𝜔∗
𝑗′ ∩ 𝜔∗

𝑘 ∩ 𝜔∗
𝑙 ]

+ 𝔼[ ̃𝐺𝑗𝑗′𝑘𝑙|𝒫 ∩ 𝜔∗
𝑗 ∩ 𝜔∗∗

𝑗′ ∩ 𝜔∗
𝑘 ∩ 𝜔∗

𝑙 ]

+ 𝔼[ ̃𝐺𝑗𝑗′𝑘𝑙|𝒫 ∩ 𝜔∗∗
𝑗 ∩ 𝜔∗

𝑗′ ∩ 𝜔∗∗
𝑘 ∩ 𝜔∗

𝑙 ]

+ 𝔼[ ̃𝐺𝑗𝑗′𝑘𝑙|𝒫 ∩ 𝜔∗
𝑗 ∩ 𝜔∗∗

𝑗′ ∩ 𝜔∗∗
𝑘 ∩ 𝜔∗

𝑙 ]

+ 𝔼[ ̃𝐺𝑗𝑗′𝑘𝑙|𝒫 ∩ 𝜔∗∗
𝑗 ∩ 𝜔∗

𝑗′ ∩ 𝜔∗∗
𝑘 ∩ 𝜔∗∗

𝑙 ]

+ 𝔼[ ̃𝐺𝑗𝑗′𝑘𝑙|𝒫 ∩ 𝜔∗
𝑗 ∩ 𝜔∗∗

𝑗′ ∩ 𝜔∗∗
𝑘 ∩ 𝜔∗∗

𝑙 ]

+ 𝔼[ ̃𝐺𝑗𝑗′𝑘𝑙|𝒫 ∩ 𝜔∗∗
𝑗 ∩ 𝜔∗

𝑗′ ∩ 𝜔∗
𝑘 ∩ 𝜔∗∗

𝑙 ]

+ 𝔼[ ̃𝐺𝑗𝑗′𝑘𝑙|𝒫 ∩ 𝜔∗
𝑗 ∩ 𝜔∗∗

𝑗′ ∩ 𝜔∗
𝑘 ∩ 𝜔∗∗

𝑙 ]) .

None of the above quantities, in terms of available bounds, is asymptotically larger than 𝒪(𝑚−2).
This result can be formalized as follows:

Lemma 3.10. For a finite collection of 𝑀 distinct diploid loci {𝜉𝜄}𝜄, we have

𝔼 [∏
𝜄∈ℐ

𝜉𝜄] ∼ 𝒪 (𝑚−𝑀/2) .

Proof. This is an immediate consequence of the previous argument as ele-

ments {∏𝜄∈ℐ 𝜉𝜄 ∶ ℐ ∈ 2{1,…,𝑝}} are simply linear combinations of the elements of

{∏𝜄∈ℐ∪ℐ′ 𝐺𝜄 ∶ ℐ ∈ 2{1,…,𝑝}}.
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3.3.5 Residual maximum likelihood estimation under AM

Recall that the REML estimator is ℎ̂2
REML = ̂𝛾(1 + ̂𝛾)−1 where ̂𝛾 as the solution to the

REML equation
𝑦𝑇 𝑃𝛾𝑍𝑍𝑇 𝑃𝛾𝑦

tr [𝑃𝛾𝑍𝑍𝑇 ] = 𝑦𝑇 𝑃𝛾𝑃𝛾𝑦
tr [𝑃𝛾] ,

and 𝑃𝛾 is as in (3.1.7). This is equivalent to maximum likelihood estimation of the infinitesimal

model

𝐾𝑇 𝑦 = 𝑝−1/2𝐾𝑇 𝑍𝑢 + 𝐾𝑇 𝑒, 𝑢 𝑖.𝑖.𝑑.∼ 𝒩(0, 𝜎2
𝑔), 𝑒 𝑖.𝑖.𝑑.∼ 𝒩(0, 𝜎2

𝑒), (3.3.1)

under the change of variables 𝛾 = 𝜎2
𝑔/𝜎2

𝑒 where 𝐾𝑇 ∶ ℝ𝑛 → (col 𝑋)⟂ is a maximal rank matrix

projecting to the orthogonal complement of the fixed effect covariates 𝑋 ∈ ℝ𝑛×𝑐 and is such that

𝐾𝑇 𝐾 = 𝐼𝑛−𝑐. However, implicit in (3.3.1) is the assumption that all 𝑝 SNPs included in (3.3.1)

(and therefore in the GRM) are causal–that is, that 𝜔 = 𝑚/𝑝 = 1. Generally speaking, this

unlikely to be true for any complex trait of interest. Fortunately, Jiang and colleagues [112, 113]

have demonstrated that ℎ̂2
REML is a consistent estimator of ℎ2 in a high dimensional setting, even

when 𝜔 < 1:

Fact 3.11 (Jiang’s consistency theorem [Theorem 3.1 of [112]]). Consider the model presented in

(3.3.1) and assume that the rows of 𝑍 are independent realizations of standardized, independent

sub-Gaussian random variables with finite fourth moments. Further, suppose that the true values

of the variance components 𝜎2
𝑔, 𝜎2

𝑒 are positive and that 𝑛, 𝑚, 𝑝 → ∞ such that

𝑛
𝑝 → 𝜏 ∈ (0, 1], 𝑚

𝑝 → 𝜔 ∈ (0, 1].

Then we have that

1. ̂𝛾
𝑝

→ 𝜔𝛾, where 𝛾 = 𝜎2
𝑔/𝜎2

𝑒

2. �̂�2
𝑒 = 𝑦𝑇 𝑃�̂�𝑃�̂�𝑦/tr [𝑃�̂�]

𝑝
→ 𝜎2

𝑒.

Noting that the true heritability can be expressed as ℎ2 = 𝜔−1 ̂𝛾(1 + 𝜔−1 ̂𝛾)−1, this in turn

implies that the REML heritability estimator is consistent despite the misspecification (i.e., the
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incorrect assumption that 𝜔 = 1):

ℎ̂2
REML = ̂𝛾(1 + ̂𝛾)−1 𝑝

→ 𝜔𝜔−1𝜎2
𝑔/𝜎2

𝑒(1 + 𝜔𝜔−1𝜎2
𝑔/𝜎2

𝑒)−1 = ℎ2.

The proof of (3.11) is highly technical thus omitted. However, the following result from random

matrix theory is central to Jiang’s argument:

Fact 3.12 (Convergence of the ESD to the Marčenko-Pastur law). Let 𝑍 ∈ ℂ𝑛×𝑝 be a random

matrix with independent entries with zero expectation, unit variance, and finite fourth moments.

Define the empirical spectral distribution (ESD) 𝐹 𝑆 ∶ ℝ → [0, 1] of the sample covariance matrix

𝑆 = 𝑝−1𝑍𝑍𝑇 by

𝐹 𝑆(𝑥) = 1
𝑛 ∑

𝑘
J𝜆𝑘 ≤ 𝑥K

where {𝜆𝑘}𝑛
1 are the eigenvalues of 𝑆. Further assume that 𝑛, 𝑚, 𝑝 → ∞ such that

𝑛/𝑝 → 𝜏 ∈ (0, 1], , 𝑚/𝑝 → 𝜔 ∈ (0, 1].

Then as 𝑝 → ∞, 𝐹 𝑆
𝑛

a.s.→ 𝜑𝜏 where 𝜑𝜏 denotes the Marčenko-Pastur law 𝐹𝜏 with density

𝜑𝜏(𝑥) = 1
2𝜋𝜏𝑥√(𝑏𝜏 − 𝑥)(𝑥 − 𝑎𝜏) J𝑥 ∈ [𝑎𝜏 , 𝑏𝜏 ]K ,

and we’ve defined 𝑎𝜏 = (1 − 𝜏1/2)2, 𝑏𝜏 = (1 + 𝜏1/2)2.

Under the phenotypic assortment model, that the elements of 𝑍 are independent are vio-

lated. Specifically, the rows of 𝑍, each of which corresponds to the standardized genotypes of a

given individual, can be regarded as i.i.d. multivariate Bernoulli random vectors with covariance

matrix

Υ(𝑚) =
⎡
⎢
⎢
⎢
⎣

1 + 𝜇(𝑚) Sym.
2𝜇(𝑚) ⋱ Sym.

⋮ ⋱ ⋱
2𝜇(𝑚) ⋯ 2𝜇(𝑚) 1 + 𝜇(𝑚)

0(𝑝−𝑚)×𝑚 𝐼𝑝−𝑚

⎤
⎥
⎥
⎥
⎦

,

where again the upper left quadrant corresponds to causal variants2. However, O’Rourke [personal

communication] has extended (3.12) as follows:
2Depending on whether or not genotypes are standardized within sample or according to a reference panel, the
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Lemma 3.13 (O’Rourke’s extension of (3.12) [unpublished]). . Let 𝑍 be a random matrix with

i.i.d. rows {𝑧𝑘}𝑝
𝑘=1, each of which has covariance Υ(𝑚). Further assume that

1. 𝜇(𝑚) = 𝒪(𝑚−1).

2. There exists 𝜅 > 0 such that sup1≤𝑘≤𝑝 |𝑧𝑘| ≤ 𝜅 with probability one.

3. 𝔼[𝑧2
𝑘𝑧2

𝑙 ] = 1 + 𝑜(1) uniformly for distinct 𝑘, 𝑙

4. 𝔼[𝑧3
𝑘𝑧𝑙] = 𝑜(1) uniformly for distinct 𝑘, 𝑙

5. One has

𝔼[𝑧𝑘𝑧𝑙𝑧𝑟𝑧𝑠] =
⎧{
⎨{⎩

𝑜(𝑚−1) if |{𝑘, 𝑙, 𝑟, 𝑠}| = 4

𝑜(𝑚−1/2) if |{𝑘, 𝑙, 𝑟, 𝑠}| = 3

Suppose 𝑛/𝑝 → 𝜏 > 0 as 𝑛 → ∞ and 𝑚 ≥ 𝑐𝑝 for some 𝑐 > 0. Then the ESD of 𝑝−1𝑍𝑍𝑇 converges

almost surely to 𝜑𝜏(𝑥) as 𝑛 → ∞.

We have demonstrated that, under the phenotypic assortment model, the sample GRM

satisfies the above conditions. Specifically, condition 1 is demonstrated in section §3.3.1, condition

2 is ensured under the exchangeable loci assumption when applying an MAF threshold to SNPs

included in the GRM, and conditions 3-5 are consequences of the results presented in section 3.3.4.

Thus we have proven lemma 3.3 and have laid the foundation necessary for a proof of 3.4.

3.3.6 LD score regression under AM

As in [50], consider the phenotype 𝑦 = 𝑍𝑢 + 𝑒 where all elements of the right hand side

are mutually independent random variables. Under the phenotypic assortment model, we have

that 𝑢𝑗
𝑖.𝑖.𝑑.∼ 𝒩(0, 𝑚−1𝜎2

𝑔,0), 𝑒 𝑖.𝑖.𝑑.∼ 𝒩(0, 𝜎2
𝑒), and 𝑉 𝑎𝑟(𝑦) = 1 = 𝜎2

𝑔,∞ + 𝜎2
𝑒 such that ℎ2

𝑔,∞ = 𝜎2
𝑔,∞.

Having estimated GWAS statistics {�̂�}𝑚
𝑗=1, each defined �̂�𝑗 = 𝑧𝑇

.𝑗𝑦, for a given realization of the

above, consider the corresponding test statistics {𝜒2
𝑗}𝑚

𝑗=1, each defined 𝜒2
𝑗 = 𝑛�̂�2

𝑗 . Following [50],

the expectation of the test statistic is computed as follows

covariance matrix will be respectively as above or Υ̃(𝑚) = ⎡
⎢
⎣

1
2𝜇(𝑚)

1+𝜇(𝑚) ⋱ Sym.
⋮ ⋱ ⋱

0(𝑝−𝑚)×𝑚 𝐼𝑝−𝑚

⎤
⎥
⎦

.
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𝑉 𝑎𝑟[�̂�𝑗] = 𝔼 [𝑉 𝑎𝑟[�̂�𝑗|𝑍]] + 𝑉 𝑎𝑟 [𝔼[�̂�𝑗|𝑍]]

= 𝔼 [𝑉 𝑎𝑟[�̂�𝑗|𝑍]] ,

𝑉 𝑎𝑟[�̂�𝑗|𝑍] = 𝔼 [𝑛−2
𝑛

∑
ℎ=1

𝑛
∑
𝑖=1

𝑧𝑖𝑗𝑧ℎ𝑗 (
𝑚

∑
𝑘=1

(𝑧𝑖𝑘𝑢𝑘) + 𝑒𝑖) (
𝑚

∑
𝑙=1

(𝑧ℎ𝑙𝑢𝑙) + 𝑒ℎ) |𝑍]

= 𝔼 [𝑛−2
𝑛

∑
ℎ=1

𝑛
∑
𝑖=1

𝑧𝑖𝑗𝑧ℎ𝑗 (
𝑚

∑
𝑘=1

(𝑧𝑖𝑘𝑢𝑘)) (
𝑚

∑
𝑙=1

(𝑧ℎ𝑙𝑢𝑙)) +
𝑛

∑
𝑖=ℎ

𝑧𝑖𝑗𝑧ℎ𝑗𝑒ℎ𝑒𝑖|𝑍]

= 𝔼 [𝑛−2
𝑛

∑
ℎ=1

𝑛
∑
𝑖=1

𝑧𝑖𝑗𝑧ℎ𝑗 (
𝑚

∑
𝑘=𝑙

(𝑧𝑖𝑘𝑧ℎ𝑙𝑢𝑘𝑢𝑙)) +
𝑛

∑
𝑖=ℎ

𝑧2
𝑖𝑗𝑒2

𝑖 |𝑍]

= 𝑛−2
𝑛

∑
ℎ=1

𝑛
∑
𝑖=1

𝑚
∑
𝑘=1

𝔼 [𝑧𝑖𝑗𝑧ℎ𝑗𝑧𝑖𝑘𝑧ℎ𝑘𝑢2
𝑘|𝑍] + 𝑛−1𝜎2

𝑒

= 𝑛−2𝑚−1𝜎2
𝑔,0

𝑛
∑
ℎ=1

𝑛
∑
𝑖=1

𝑚
∑
𝑘=1

𝑧𝑖𝑗𝑧ℎ𝑗𝑧𝑖𝑘𝑧ℎ𝑘 + 𝑛−1(1 − 𝜎2
𝑔,∞)

⟹ 𝔼 [𝑉 𝑎𝑟[�̂�𝑗|𝑍]] = 𝑛−2𝑚−1𝜎2
𝑔,0𝔼 [

𝑛
∑
𝑖=1

𝑚
∑
𝑘=1

𝑧2
𝑖𝑗𝑧2

𝑖𝑘] + 𝑛−1(1 − 𝜎2
𝑔,∞)

= 𝑚−1𝜎2
𝑔,0𝔼[

𝑚
∑
𝑘=1

̃𝑟2
𝑗𝑘] + 𝑛−1(1 − 𝜎2

𝑔,∞)

⟹ 𝔼 [𝜒2
𝑗] = 𝑛𝑚−1𝜎2

𝑔,0𝔼[
𝑚

∑
𝑘=1

̃𝑟2
𝑗𝑘] + 1 − 𝜎2

𝑔,∞

where sample LD measure is defined ̃𝑟2
𝑗𝑘 = 𝑛−2 ∑𝑚

𝑘=1 ∑𝑛
ℎ=1 ∑𝑛

𝑖=1 𝑧2
𝑖𝑗𝑧2

𝑖𝑘. Applying the delta method

obtains the approximation 𝔼[∑𝑚
𝑘=1 ̃𝑟2

𝑗𝑘] ≈ ℓ𝑗 + 𝑛−1(𝑚 − ℓ𝑗), leading to

𝔼[𝜒2
𝑗 ] ≈ 𝑛𝑚−1𝜎2

𝑔,0 (ℓ𝑗 + 𝑛−1(𝑚 − ℓ𝑗)) + 1 − 𝜎2
𝑔,∞

≈ 𝑛𝑚−1𝜎2
𝑔,0ℓ𝑗 + 𝜎2

𝑔,0 + 1 − 𝜎2
𝑔,∞. (3.3.2)

However, both ℓ𝑗 and 𝜎2
𝑔,∞ and can be expressed as functions of equilibrium correlation between

causal variants, and (3.3.2) will undoubtedly admit a simpler representation. Further complicated

matters is that, in practice, the true ℓ𝑗 is replaced by a local LD score ℓ[𝑗] = ∑𝑘∈ℬ[𝑗]
1cM

𝑟2
𝑗𝑘. Work on

expressing 𝔼[𝜒2
𝑗 ] as an affine function of ℓ[𝑗] is ongoing.
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3.4 Computational methods

We conducted extensive simulations to direct and verify theoretical work. Given our inter-

est in high-dimensional asymptotics, the generation of realistic genotype/phenotype data entailed

developing new software capable of efficiently modeling populations of millions of individuals and

genetic architectures with hundreds of thousands of causal variants. A complete discussion of the

novel simulation algorithms, which we have implemented in the Forward-time Population Structure

Simulation (FPSS) software package, is beyond the scope of this dissertation.

Founder data consisted of imputed genotypes at one million randomly selected SNP loci in

a sub-sample of 435,301 European UK Biobank participants [1]. All SNPs were chosen to meet the

following criteria: minor allele frequency greater 0.01, Hardy-Weinberg 𝑝-value greater than 10−6,

INFO score of at least 0.95, and presence on the 1,000 Genomes Phase 3 (1KG3) three reference

panel [116] using Plink v1.9 [117]. Genotype data were then phased to the 1KG3 reference panel in

batches of 40,000 individuals using Eagle v2.4.1 [118]. Simulation input data was created by first

duplicating founder genotype data at random to created a population of one million individuals and

then simulating five generations of random mating. Assortative mating simulations ran for fifteen

generations under a variety of conditions (see Section §3.2) and produced results congruent with the

theoretical derivations presented in 3.1.2.2 (Figure 3.10). All simulations used a recombination map

derived from the 1KG3 data using a 50 kilobase sliding window. Samples of unrelated individuals

were produced by removing relatives as close or closer than second cousins using true pedigree

information. We also performed a small number of analogous simulations using a population of

three million individuals under a limited set of conditions due to computational constraints.

We used GCTA [65] v1.91.3b to construct genomic related matrices and perform HE regres-

sion. We obtained REML heritability estimates using Bolt-LMM v2.3.2 [68, 69] for computational

efficiency; though Bolt-LMM uses a randomized algorithm, its numerical accuracy is comparable to

that of the exact algorithm implemented GCTA [5]. We used Plink v1.9 [117] to obtain GWAS sum-

mary statistics and LDSC v1.0.1 [50] to estimate within-sample LD scores using a one centimorgan

sliding window and to perform LD score regression.
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Figure 3.10: Sample heritability over time under phenotypic assortment
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3.5 Discussion

3.5.1 Summary

In the preceding chapter, we have presented ongoing work characterizing the behavior of

three widely-used estimators of SNP heritability under the phenotypic assortment model. Haseman-

Elston regression produces dramatic overestimates of the true equilibrium heritability; we have

derived closed form expressions for this bias (lemma 3.1, corollary 3.2, figure 3.2) and confirmed

our results via simulation (figure 3.3). With respect to the REML estimator, simulation results

demonstrate that, though initially biased upward, the estimated heritability is asymptotically un-

biased with respect to the generation zero heritability (figure 3.4, figure 3.6), and thus provides

an underestimate of the true equilibrium heritability in large samples. We have developed the

foundation for a theoretical explanation of this behavior by characterizing the limiting spectral

distribution of the sample genomic covariance matrix (lemma 3.3, conjecture 3.4), in the process
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of which introducing novel theory characterizing the joint distribution of causal variants under the

phenotypic assortment model (lemma 3.10). Ongoing simulations are so far congruent with our

conjecture (figure 3.4, figure 3.6). Finally, initial simulation results demonstrate that LD score

regression produces substantially upwardly biased estimates of the equilibrium heritability (fig-

ure 3.7) and inflated intercepts (figure 3.7). We are currently working on a theoretical explanation

of this behavior (section 3.3.6)

3.5.2 Limitations and future directions

In addition to the outstanding problems mentioned above, there are several limitations to

the present investigation. Some of these limitations are imposed by the assumptions of the phe-

notypic assortment model itself: independence of parent-offspring environments, independence of

heritable and non-heritable influences on the trait under assortment, and independence of mate

availability and environments. All of these scenarios are readily handled by the novel simulation

software, FPSS, developed in the course of the preceding work, and we intend to examine their

effects on heritability estimators in future work. In terms of our results regarding the REML esti-

mator, notable assumptions include the multivariate normality of parent and offspring phenotypes

and the independence of non-causal variants in the genotype matrix. Whereas, for the latter, results

regarding the limiting spectral distribution of GRM are likely extensible to the case of local LD

(see, e.g., [119]), the former assumption is essential to our arguments bounding the higher order

moments of causal variants presented in section 3.3.4. Finally, we note that many populations

are unlikely to be in equilibrium even if subject to AM as described by the phenotypic assortment

model. Thus, for traits subject to AM for a small number of generations, our results are likely to

represent upper bounds on the degree of bias to be expected. We plan to address this scenario via

simulation in future work.
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Appendix A

Quadratic form lemma

Let 𝐴+ denote any generalized inverse and let 𝐴† denote the Moore-Penrose pseudoinverse.

Fact A.1 (Seber [120], page 457). Let 𝑆 ∈ ℝ𝑛×𝑛 be an orthogonal projection operator. Then for

any 𝐵 ∈ ℝ𝑚×𝑛,

𝑆(𝐵𝑆)† = (𝐵𝑆)†

and

(𝑆𝐵)†𝑆 = (𝑆𝐵)†

Fact A.2 ([121], Theorem 6). Let 𝐴 ∈ ℝ𝑛×𝑛 be such that 𝐴 = 𝐴𝑇 ⪰ 0, 𝐶 ∈ ℝ𝑛×𝑐, and define
̃𝐴 = 𝐴 + 𝐶𝑇 𝐶. Let 𝐴+ ⪰ 0 be a generalized inverse of 𝐴. Then

̃𝐴+ = 𝐴+ − 𝐴+𝐶𝑇 (𝐼 + 𝐶𝐴+𝐶𝑇 )−1𝐶𝐴+

is a generalized inverse of ̃𝐴 if and only if ker 𝐴 ⊆ ker 𝐶. Further, if this is the case, we have

̃𝐴+ ̃𝐴 = 𝐴+𝐴,

̃𝐴 ̃𝐴+ = 𝐴𝐴+,

̃𝐴+ ⪰ 0,

and ̃𝐴+ = ̃𝐴† ⟺ 𝐴+ = 𝐴†.

Lemma A.3. Write the full QR decomposition of 𝑋 ∈ ℝ𝑛×𝑐 as 𝑋 = 𝑄𝑅 = [𝑄𝑋|𝑄𝑋⟂ ]𝑅 such that

𝑄𝑋 ∈ ℝ𝑛×(𝑛−𝑐), 𝑄𝑋⟂ ∈ ℝ𝑛×𝑐 and define 𝑆 = 𝐼𝑛 − 𝑄𝑋𝑄𝑇
𝑋. Then,

𝑦𝑇 𝑆(𝑆(𝐻 + 𝜎𝐼)𝑆)†𝑆𝑦 = 𝑦𝑇 𝑆(𝑆𝐻𝑆 + 𝜎𝐼)−1𝑆𝑦
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Proof. Applying the first fact,

𝑦𝑇 𝑆(𝑆(𝐻 + 𝜎𝐼)𝑆)†𝑆𝑦 = 𝑦𝑇 (𝑆(𝐻 + 𝜎𝐼)𝑆)†𝑦.

Rewrite the left hand side as

𝑦𝑇 (𝑆(𝐻 + 𝜎𝐼)𝑆)†𝑦 = 𝜎−1𝑦𝑇 (𝜎−1𝑆𝐻𝑆⏟
≡𝐴

+ 𝑆𝑆)†𝑦

= 𝜎−1𝑦𝑇 ̃𝐴†𝑦,

where we define ̃𝐴 = 𝐴 + 𝑆𝑇 𝑆. Note that the first fact also yields

𝑆𝐴†𝑆 = 𝑆𝐴† = 𝐴†𝑆 = 𝐴†

Using the second fact, we then have

𝜎−1𝑦𝑇 ̃𝐴†𝑦 = 𝜎−1𝑦𝑇 (𝐴† − 𝐴†𝑆(𝐼 + 𝑆𝐴†𝑆)−1𝑆𝐴†)𝑦

= 𝜎−1𝑦𝑇 (𝐴† − 𝐴†(𝐼 + 𝐴†)−1𝐴†)𝑦

= 𝜎−1𝑦𝑇 (𝐴 + 𝐼)−1𝑦

= 𝑦𝑇 𝑆(𝑆𝐻𝑆 + 𝜎𝐼)−1𝑆𝑦


	Foreword
	Falsification of candidate gene hypotheses for major depression
	Introduction
	Materials and methods
	Identification of genes and polymorphisms
	Samples
	UK Biobank samples
	Psychiatric Genetics Consortium sample

	Phenotypes

	Analyses
	Polymorphism-wise analyses
	Gene-wise and gene-set analyses

	Results
	Polymorphism-level analyses
	Gene-level analyses 
	Attempted replication of top 16 loci implicated by PGC GWAS results
	Sensitivity of results to measurement error

	Discussion 

	Stochastic Lanczos residual maximum likelihood algorithms
	Background
	Method
	Preliminaries
	Krylov subspaces
	The Lanczos procedure
	Solving families of shifted linear systems
	Lanczos polynomials and Gaussian quadrature
	Stochastic Lanczos quadrature
	SLQ and shift invariance
	Block methods

	A derivative-free REML algorithm
	The parameter space as shifted linear systems
	The quadratic form
	The log determinant
	The SLDF_REML algorithm

	A first-order Monte Carlo REML algorithm
	BOLT_LMM (First-order Monte Carlo REML)
	The L_FOMC_REML algorithm

	Comparison of methods
	Computational complexity
	Numerical experiments


	Results
	Discussion
	Conclusions

	Assortative mating and whole-genome heritability estimation
	Introduction
	Overview
	The phenotypic assortment model
	A bird's eye view
	Technical details

	Heritability estimators
	Haseman-Elston regression
	Genomic relatedness restricted maximum likelihood (REML)
	Linkage disequilibrium score regression


	Results
	Haseman-Elston regression 
	Residual maximum likelihood
	Linkage disequilibrium score regression

	Theoretical development
	Correlations among unlinked, exchangeable haploid loci
	Properties of the genomic relatedness matrix
	Bias of Haseman-Elston regression
	Higher order moments of unlinked, exchangeable haploid loci
	Residual maximum likelihood estimation under AM
	LD score regression under AM

	Computational methods
	Discussion
	Summary
	Limitations and future directions


	Bibliography
	Appendix Quadratic form lemma

