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Abstract.  

Active colloids and liquid crystals are capable of locally converting the macroscopically 

supplied energy into directional motion and promise a host of new applications, ranging 

from drug delivery to cargo transport at the mesoscale. Here we uncover how topological 

solitons in liquid crystals can locally transform electric energy to translational motion and 

allow for the transport of cargo along directions dependent on frequency of the applied 

electric field. By combining polarized optical video microscopy and numerical modeling 

that reproduces both the equilibrium structures of solitons and their temporal evolution in 

applied fields, we uncover the physical underpinnings behind this reconfigurable motion 

and study how it depends on the structure and topology of solitons. We show that, 

unexpectedly, the directional motion of solitons with and without the cargo arises mainly 

from the asymmetry in rotational dynamics of molecular ordering in liquid crystal rather 

than from the asymmetry of fluid flows, as in conventional active soft matter systems. 
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Introduction. 

For nearly two centuries, in fields of physics ranging from fluid dynamics to optics, rich 

dynamic behavior of self-reinforcing solitary wave packets has attracted a great deal of 

interest among physicists and mathematicians alike [1,2]. These solitons maintain their 

spatially localized shape while propagating and typically emerge from a delicate balance 

of nonlinear and dispersive effects in the physical host medium [1]. Solitons of a very 

different type, often called “topological solitons”, are topologically nontrivial, spatially 

localized nonsingular field configurations that are rarely associated with out-of-

equilibrium dynamics, but rather are studied as static field configurations embedded in a 

uniform background [3]. Their topologically nontrivial configurations can be classified 

using homotopy theory [3], though their stability in real physical systems usually also 

requires nonlinearities [3-17]. For example, in particle physics, topological solitons called 

“skyrmions” are unstable within the linear models [3,5,6], but can be stabilized by adding 

nonlinear terms [3,4,7]. In noncentrosymmetric ferromagnets and chiral liquid crystals 

(LCs), various 2D and 3D condensed matter counterparts of these topological solitons are 

stabilized by the medium’s tendency to form twisted field configurations [9-17], which is 

associated with additional nonlinear terms added to the harmonic-like free energy 

potential (e.g., the Dzyaloshinskii-Moriya term in the case of chiral ferromagnets). 

However, unexpected recent observations show that ferromagnetic skyrmions can move 

over large distances within solid thin films while maintaining their topology of localized 

nonsingular spin textures [18,19]. These findings may one day enable race track memory 

devices for improved information storage and drive a great deal of interest for potential 

applications in spintronics, so that even a new term “skyrmionics” has been coined [19]. 

In LCs, topological solitons realized in localized configurations of the molecular 
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alignment field (describing the spatial orientation pattern of rod-like molecules), called 

the “director field” n(r), can be moved by applying external fields, though this motion of 

the soliton now emerges in a fluid medium rather than in a solid film [20], which 

potentially may cause a rich interplay between the motion of the localized field 

configuration and LC fluid flows. 

In this work, we realize reconfigurable active motion of various topologically 

nontrivial skyrmionic and knotted field configurations in chiral nematic LCs. Like 

singular defects in active matter [21-24], topological solitons exhibit directional motion 

both as individual objects and collectively, often spontaneously selecting and 

synchronizing their motion directions as this out-of-equilibrium process progresses.   

However, unlike in the case of singular active matter defects [21-24], this motion is not 

accompanied with annihilation and generation of defects, can persist for months and its 

direction can be controllably reversed. By using a combination of optical microscopy and 

3D modeling of both the equilibrium free-energy-minimizing director structures and their 

temporal evolution, we uncover the physical mechanisms behind the soliton motion. We 

demonstrate that this motion emerges from spatially asymmetric changes of director 

structures that evolve very differently and non-reciprocally upon the application and 

removal of the electric field, so that the periodic modulation of the applied field yields the 

net translational motion of solitons. This asymmetry of back-forth cycles of the topology-

constrained director field evolution resembles squirming of biological cells and 

biomimetic robots [25,26], though it is also very different and unique in that it mainly 

involves mainly just the rotational dynamics of the director field configuration with little 

or no coupling to the LC fluid flows. The modulated high-frequency electric field in our 

experiments is applied to the entire sample with volume 108- times larger than that 
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occupied by a typical single solitonic structure. The facile response of the LC results in 

the strong coupling between the electric field E and director n, causing a periodic local 

conversion of electric energy into the elastic energy stored within the distorted soliton 

and then into the soliton’s translational squirming motion. This behavior, exhibited by 

several different species of topological LC solitons, such as skyrmions, torons, and 

cholesteric fingers, reveals a novel type of solitonic active soft matter that may 

potentially find technological uses. Our numerical modeling adopts an approach based on 

using meshless 3D grids [27,28], allowing us to reproduce fine details of the equilibrium 

director structures of the solitons (such as the voltage-dependent three-dimensional 

knotted streamlines of the LC molecular alignment field), as well as their temporal 

evolution. Finally, we show how the anisotropic interactions of the director field with 

surfaces of colloidal particles can be used for entrapping them by solitons, as well as for 

transporting these micrometer- and nanometer-sized cargo particles.  

 

Materials and Methods. 

Material and sample preparation 

Chiral nematic LC mixtures with both positive and negative dielectric anisotropy, ∆ε, are 

prepared by mixing a room-temperature nematic host with a chiral additive. According to 

the relation p = 1/(hHTP·c) [9,20], an LC mixture with the ground-state helicoidal pitch, p, 

is prepared by controlling the concentration of the chiral additive, c, for the known helical 

twisting power, hHTP, of the chiral additive in the nematic host (Table 1).  

Material/Property E7 MLC-6609 ZLI-2806 

∆ε 13.8 -3.7 -4.8 
hHTP [additive] (µm-1) +7.3 [CB-15] -10.5 [S-811] -8.3 [S-811] 

+5.9 [CB-15] 
K11 (pN) 6.4 17.2 14.9 



	 5

K22 (pN) 3.0 7.5 7.9 
K33 (pN) 10.0 17.9 15.4 

Table 1. Material properties for used chiral nematic mixtures. The positive values of hHTP 

correspond to the right-handed chiral additives and the negative ones correspond to the 

left-handed additive. 

Glass substrates with transparent indium tin oxide (ITO) electrodes were treated with 

polyimide SE-1211 (purchased from Nissan) to impose strong homogeneous vertical 

surface boundary conditions. The SE-1211 was applied to the ITO via spin-coating at 

2700 rpm for 30 s then baked for 5 min at 90 C and 1 h at 190 C to induce cross-linking 

of the alignment layer. Glass fiber segments dispersed in ultraviolent-curable glue were 

used as spacers to set the inter-substrate separation gap, d = 10 – 30 µm. Small drops of 

the glue with spacers were sandwiched between the substrates with ITO electrodes and 

alignment layers facing inward and cured for 60 s using ultraviolent exposure (OmniCure 

UV lamp, Series 2000). Leads were soldered to the ITO electrodes to provide electrical 

connection for application of an electric potential across the LC. The chiral nematic LC 

materials were infiltrated into the confinement cells by means of capillary forces and the 

edges of the cells were sealed with 5-min fast-setting epoxy.  

To obtain the various topological solitons in materials with negative ∆ε, we used a 

mixture of the nematic host MLC-6609 or ZLI-2806 and the chiral additive ZLI-811 (all 

purchased from Merck) with equilibrium helicoidal pitch tuned to p  10 µm. For the 

study of skyrmions in a positive ∆ε material, we used a mixture of the nematic host E7 

and the chiral additive CB-15 (both purchased from EM Industries) with equilibrium 

helicoidal pitch p  30 µm. As local and global minima of free energy, the solitons were 

occurring spontaneously in cells with d/p = 0.65 - 1.2, as well as were controllably 

generated using laser tweezers, as detailed below. 
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Voltage modulation  

Homemade MATLAB-based software coupled with a data acquisition board (NIDAQ-

6363, National Instruments) was used to produce various voltage-driving schemes and 

waveforms, which were then applied to the LC cells using the wires soldered to the ITO 

electrodes. In order to avoid hydrodynamic instabilities and other types of complex 

behavior associated with ion motion induced by low-frequency applied fields, a square 

carrier waveform with a relatively high frequency of fc = 1 kHz was used throughout. The 

voltage-driving scheme utilizes amplitude modulation of the carrier waveform by a 

square wave at a lower frequency, fm. This homemade software allowed us to tune the 

frequencies, amplitude of voltage applied (Vrms), duty cycle (percentage of high carrier 

amplitude), and fill percentage (with 0% corresponding to no applied voltage during the 

fragment of period with low carrier amplitude).   

 

Tracer nanoparticles 

Gold nanorods (GNRs) used in our study have an aspect ratio of about 4, with dimensions 

of 109 x 28 nm. We synthesized these GNRs following a seed mediated method with the 

adjustment of binary surfactants and pH control [29, 30]. To produce the seed in a glass 

bottle, 5 mL of hexadecyltrimethylammonium Bromide (CTAB, Sigma-Aldrich, 0.2 M) 

was added to 5 mL Gold(III) Chloride trihydrate (HAuCl4.3H2O, Sigma-Aldrich, 0.5 

mM), followed by a quick addition of 0.6 mL of freshly-prepared, ice-cold Sodium 

Borohydride (NaBH4, Sigma-Aldrich, 10 mM). The seed was stirred vigorously for 2 

min then left at room temperature for 30 min to ensure the Borohydride was fully 

oxidized. The growth solution was prepared by mixing 247 mg of Sodium Oleate (NaOL, 

TCI America) with 50 mL of CTAB (77 mM) in a clean flask. The solution was kept 



	 7

around 50 °C, stirred until dissolved, and cooled to room temperature. Once cooled, 3.6 

mL of Silver Nitrate (AgNO3, Sigma-Aldrich, 4 mM) was added and left undisturbed for 

15 min. 50 mL of HAuCl4 (1 mM) was added and stirred at 700 rpm for 90 min, after 

which the solution became colorless and 420 µL Hydrochloric acid (HCl 37 wt.% in 

water, Fisher Scientific, 12.1 M) was added. The mixture was stirred at 500 rpm for 15 

min then 250 µL Ascorbic acid (Sigma-Aldrich, 80 mM) was added during vigorous 

stirring for 30 s followed by 80 µL of the seed. The solution was kept undisturbed at 

room temperature for 12 h before it was centrifuged at 7000 rpm for 20 min.  

To functionalize the surface of these particles, we followed a capping process using a 

thiol-terminated methoxy-poly(ethylene glycol) (mPEG-SH 5kDa, JemKem Technology) 

[31], as described in detail in our previous study [32]. We used centrifugation of the 

GNRs to get rid of excess CTAB and additives. A 1 mL aqueous suspension of 30 mg 

PEG was added to a 50 mL diluted dispersion of GNRs with an optical density of 4. This 

mixture was left for 12 h and then centrifuged for 10 min at 7000 rpm. This process was 

repeated and then the particles were washed by methanol 2-3 times.  

To disperse the GNR in MLC-6609, we first dispersed them in nematic 4-cyano-4’-

pentylbiphenyl (5CB, Chengzhi Yonghua Display Materials Co. Ltd). 30 µL of the GNR 

dispersion was added in a 0.5 mL centrifuge tube and the solvent was left for an hour at 

90 °C to fully evaporate. Then 15 µL of 5CB was added and the mixture was kept under 

sonication at 40 °C for 5 min, followed by vigorous stirring until well dispersed in the 

nematic phase. To transfer the GNR to MLC-6609 and obtain dilute dispersions of tracer 

particles, we added one part in 50 of 5CB containing GNRs into MLC-6609 to maintain 

the negative dielectric anisotropy of the MLC-6609. 
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In addition to nanorods, we utilized semiconductor nanocubes with average dimensions 

of about 22 nm, which were synthesized by following procedures described elsewhere. 

[33] When excited with a 980 nm infrared laser [34], these nanoparticles exhibit strong 

photon up-converting luminescence, which is then used to track nanoparticle positions 

and to probe the potential fluid flows by means of video microscopy.  

 

Generation of twisted solitons with laser tweezers 

Some of the 3D solitonic structures were controllably “drawn” in the LC cells using 

optical tweezers comprised of a 1064 nm Ytterbium-doped fiber laser (YLR-10-1064, 

IPG Photonics) and a phase-only spatial light modulator (P512-1064, Boulder Nonlinear 

Systems). This setup is capable of controllably producing arbitrary, dynamically evolving 

3D patterns of laser light intensity within the sample [10]. We generated 3D structures by 

means of optically induced local reorientation, a process in which the LC director couples 

to the optical-frequency electric field of the laser beam and realigns away from the far-

field background n0 [9]. We holographically generated patterns of the trapping laser 

beam’s intensity and concisely controlled motion of individual focused laser beams along 

linear and circular trajectories, including both Gaussian and Laguerre-Gaussian beams. 

This technique enabled the generation of complex patterns and distortions in the director 

field that relaxed into global or local elastic free-energy minima, typically fulfilling the 

chiral material’s preference to twist and thus yielding the twisted solitons that we study.  

 

Polarizing optical imaging and video microscopy  

We used an Olympus IX-81 inverted microscope, equipped with crossed polarizers, to 

capture transmission-mode polarizing optical microscopy (POM) images and videos, 
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which were recorded with a charge-coupled device camera (Flea, PointGrey). Various 

objectives were used to obtain the POM images of solitons, including 10x, 20x, and 50x 

dry objectives with numerical aperture ranging within NA = 0.3 - 0.9. To track the tracer 

nanoparticle motions, dark-field images were obtained using a dark-field condenser and a 

100x oil-immersion objective with an adjustable numerical aperture of NA = 0.6 - 1.3. 

The soliton dynamics and nanoparticle motion were analyzed by processing optical 

image sequences and videos using the open-source software ImageJ’s (National Institute 

of Health) particle tracking capabilities. The extracted data sets with particle positions 

within each frame were used to calculate the net displacements, velocities, and speed 

anisotropies of the solitons and tracer nanoparticles.  

 

Numerical Methods 

Director relaxation method 

The bulk LC free energy density ݂  can be described by the Frank-Oseen potential 

supplemented by the electric field coupling term ௘݂:  

݂ ൌ ଵ

ଶ
ሾܭଵଵሺ׏ ∙ ሻଶ࢔ ൅ ࢔ଶଶሺܭ ∙ ׏ ൈ ࢔ ൅ ଴ሻଶݍ ൅ ࢔ଷଷሺܭ ൈ ׏ ൈ ሻଶሿ࢔ ൅ ௘݂   (1) 

where ܭଵଵ, ܭଶଶ, and ܭଷଷ are splay, twist, and bend elastic constants, respectively, ݍ଴ ൌ

 is the chiral wave number of the ground-state chiral nematic mixture. The vectorial  ݌/ߨ2

representation assumes that the scalar order parameter is independent of coordinates. The 

free energy density contribution due to an applied electric field is expressed in terms of 

the local displacement field, ࡰ ൌ ࡱሺ̿࢘ሻߝ଴ߝ , and electric field, ࡱ , where ߝ଴  is the 

permittivity of free-space, ߝሺ̿࢘ሻ is the dielectric tensor that can be expressed with index 

notation in terms of components of the director field as ߝ௜௝ ൌ ௜௝ߜୄߝ଴൫ߝ ൅ Δ݊ߝ௜ ௝݊൯. The 

electric field coupling term of free energy density then reads: 
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௘݂ ൌ
ଵ

ଶ
ࡰ ∙  (2)                            ࡱ

We first assume fixed charge and allow the director field to relax, which is then followed 

by updating the electric field while enforcing the condition ׏ ∙ ࡰ ൌ 0 within the spatially 

varying dielectric LC material. The derivatives are calculated by a second order centered 

finite difference (FD) method or a radial basis function-generated FD method (RBF-FD) 

described below while using a Cartesian coordinate system. In equilibrium, the free 

energy is minimized, yielding Euler-Lagrange equation for the director components. 

Therefore, the relaxation method for the director structure simulations is based on an 

update formula for the director: 

݊௜௡௘௪ ൌ ݊௜௢௟ௗ െ
∆௧

ఊభ
ሾ݂ሿ௡೔     (3) 

with the functional derivatives given by: 

ሾ݂ሿ௡೔ ൌ
డ௙

డ௡೔
െ ௗ

ௗ௫
൬
డ௙

డ௡೔,ೣ
൰ െ

ௗ

ௗ௬
൬

డ௙

డ௡೔,೤
൰ െ

ௗ

ௗ௭
൬
డ௙

డ௡೔,೥
൰       (4)  

where ߛଵ is the material’s rotational	viscosity and ∆ݐ is the numerical time step. The 

maximum stable time stept௠௔௫ ൌ ݄௠௜௡	ଵߛ
ଶ/ሺ2	ܭଷଷሻ is estimated using the material 

parameters of studied LCs (Table 1) and the minimum node spacing, ݄௠௜௡. The update is 

applied iteratively to the director field, re-normalizing it each time to assure |࢔| ൌ 1. To 

determine convergence for equilibrium calculations, we monitor the evolution of the 

space-averaged rate of change of the functional derivatives. This value should approach 

zero when equilibrium is reached and is used as a stopping criterion for the simulation 

(1 ൈ 10ିଵ଴ was used as the equilibrium stopping criterion in the present study).  

 

Radial Basis Function concept  
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Radial Basis Functions (RBFs) provide a powerful numerical methodology for solving 

partial differential equations, which has many advantages as compared to other 

approaches when applied to large-scale problems. This method has been used in a diverse 

range of fields, including fluid mechanics, astrophysics and geosciences, mathematical 

biology, and computational electromagnetics. [27, 28, 35-41] RBF-FD has the following 

advantages as compared to other methods: (1) numerical stability, even when using 

explicit time stepping of purely convective problems on irregular node layouts; (2) 

accuracy levels comparable to those of pseudo-spectral and global RBF methods while 

relying on local approximations; (3) easy local (adaptive) refinements, (4) geometrical 

flexibility and (5) excellent opportunities for large-scale parallel computing. 

Before introducing our approach for the finite difference calculations used in the director 

relaxation method, let us recall the key concepts of RBF. On a scattered node set with 

node locations ࢞௞ labeled by an index ݇ ൌ 1 → ݊, a radially symmetric function, such as 

a Gaussian of the form 	߮ሺݎሻ ൌ ݁ିሺఌ௥ሻ
మ

, can be used as a basis for computing an 

interpolant by centering ߮  at each node ߮ሺ‖࢞ െ ࢞௞‖ሻ . Here ‖࢞ െ ࢞௞‖  represents the 

standard Euclidean distance and ߝ  is a shape parameter. The RBF interpolant can be 

expressed in the form: 

ሺ࢞ሻݏ ൌ ∑ ௞ߣ
௡
௞ୀଵ ߮ሺ‖࢞ െ ࢞௞‖ሻ                 (5) 

Solutions to a linear system of equations determine the unique weights ߣ௞  for the 

interpolating function where ௞݂ is the data value at the ݇th node.  

൦

߮ሺ‖࢞ଵ െ ࢞ଵ‖ሻ ߮ሺ‖࢞ଵ െ ࢞ଶ‖ሻ ⋯ ߮ሺ‖࢞ଵ െ ࢞௡‖ሻ
߮ሺ‖࢞ଶ െ ࢞ଵ‖ሻ ߮ሺ‖࢞ଶ െ ࢞ଶ‖ሻ … ߮ሺ‖࢞ଶ െ ࢞௡‖ሻ

⋮ ⋮ ⋱ ⋮
߮ሺ‖࢞௡ െ ࢞ଵ‖ሻ ߮ሺ‖࢞௡ െ ࢞ଶ‖ሻ ⋯ ߮ሺ‖࢞௡ െ ࢞௡‖ሻ

൪ ൦

ଵߣ
ଶߣ
⋮
௡ߣ

൪ ൌ ൦

ଵ݂

ଶ݂
⋮
௡݂

൪   (6) 
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For many choices of ߮, this system is guaranteed to be non-singular no matter how any 

number of distinct nodes are distributed in any number of dimensions. This fact removes 

issues of singularity of the ܣ-matrix faced by pseudo-spectral methods when applied to 

two and higher dimensional node sets. The RBF concept can be easily illustrated in 2D 

(Fig. 1a-c). A scattered node set in 2D with random fluctuations in a scalar value is 

represented by points with sticks of varying lengths extending to an x-y plane. A unique 

set of weights applied to the Gaussians centered at each node forms the interpolating 

function, which can be used to construct a surface that conforms to the scattered data. We 

can generalize some of the node distributions that are suitable to use for RBF to 3D to 

include periodic lattice meshes, scattered nodes or even hybrids of these distribution 

schemes (Fig. 1d-g). While lattice distributions have the advantage of enabling periodic 

boundary conditions, using mesh or scattered nodes allows for complex geometries and 

adaptive refinement. In this work, we additionally use hybrid square periodic and 

tetrahedral meshes to demonstrate the potential for adaptive schemes and simplicity of 

RBF methods on complex node distributions. 

 

Radial Basis Function Finite Difference (RBF-FD) method in 3D  

Our numerical modeling of director structures and their dynamics in LC cells utilizes 

both random and regular node layouts. In the RBF-FD approach, RBFs are used to 

supplement polynomials when generating weights in localized scattered node finite 

difference-like stencils. Radial functions of the form ߮ሺݎሻ ൌ ,ଷݎ ,ହݎ ଻ݎ  are then 

particularly effective. [42,43] As mentioned above, calculations performed on irregular 

node layouts enabled by RBF-FD methods permit local (adaptive) node refinements as 

well as convenient ways of efficiently discretizing irregular geometries. Simulation node 
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sets were generated using a Quality Tetrahedral Mesh Generator [44] that has adaptive 

node refinement support and additional square periodic padding to implement periodic 

boundaries along lateral directions.  

For traditional grid-based finite difference calculations, derivatives can be approximated 

with a single stencil, corresponding set of weights at all nodes, and only minor 

modification near the boundaries. With scattered nodes, however, each stencil and 

corresponding weight becomes different. Computationally efficient approaches, such as 

MATLAB’s function knnsearch, can be implemented to find each node’s nearest ݊ െ 1 

neighbors such that each node has an associated ݊-node stencil. The weights for each 

stencil for linear operators (nine first and second order derivatives in 3D) are determined 

by solving linear systems of equations augmented with some additional low-order 

polynomial terms. For example, in the linear 3D case: 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
	 	 	 | 1 ଵݔ ଵݕ ଵݖ
	 ܣ 	 | ⋮ ⋮ ⋮ ⋮
	 	 	 | 1 ௡ݔ ௡ݕ ௡ݖ
െ െ െ ൅ െ െ െ െ
1 … 1 | 	 	 	 	
ଵݔ … ௡ݔ | 	 0 	 	
ଵݕ … ௡ݕ | 	 	 	 	
ଵݖ … ௡ݖ | 	 	 	 	 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵߣ
⋮
௡ߣ
െ
௡ାଵߣ
௡ାଶߣ
௡ାଷߣ
ے௡ାସߣ

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
࢞‖ሺ߮ܮ െ ࢞ଵ‖ሻ|࢞ୀ࢞೎

⋮
࢞‖ሺ߮ܮ െ ࢞௡‖ሻ|࢞ୀ࢞೎

െ
ୀ࢞೎࢞|1	ܮ
ୀ࢞೎࢞|ݔ	ܮ
ୀ࢞೎࢞|ݕ	ܮ
ୀ࢞೎࢞|ݖ	ܮ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

.														ሺ7ሻ 

Here ܣ represents the ܣ-matrix used above in the direct approach for calculating weights 

for the interpolant, ܮ  is a linear operator, and the entries ߣ௡ାଵ  through ߣ௡ାସ  in the 

solution vector can be ignored. The RBF used in our work is a PHS of the form ݎଶ௠ିଵ, 

݉ ∈ Գ. There are additionally ൬
ߩ ൅ ܦ
ߩ ൰ polynomial terms up to degree ߩ in dimension ܦ. 

The benefits of PHS over other choices for the RBF include numerical stability along 
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boundaries, eliminating the need for special treatment such as generating ghost nodes or 

selecting a shape parameter (as in the case of the Gaussian RBF). [41] 

 

Results 

Solitons with both skyrmion-like and Hopf and Seifert Fibration features 

A chiral nematic LC with a ground-state pitch, p, confined by substrates treated to 

enforce strong vertical alignment is in a frustrated geometry. It would prefer to form the 

ground-state helical structure which is, however, incompatible with the imposed vertical 

surface boundary conditions. When the separation, d, of the confining substrate planes is 

approximately equal to p, numerous spatially-localized solitonic configurations can be 

observed, embedded in the frustrated, unwound uniform far-field n0. These long-term 

metastable or ground-state solitonic field configurations incorporate energetically-

favorable twist while meeting the imposed vertical surface boundary conditions and can 

be controllably generated or removed using laser tweezers.  

We start with the topologically nontrivial skyrmionic field configuration known as an 

elementary toron [9, 17, 20, 45], which we obtain as a result of numerical free energy 

minimization using both the RBF-FD and conventional FD (Fig. 1a-d) methods. In the 

cell mid-plane between confining substrates, the elementary toron embeds a π-twist of the 

director field n(r) radially from the center in all directions, so that it smoothly meets the 

uniform n0 in the soliton’s periphery. This skyrmionic configuration is embedded in the 

bulk LC and terminated by two singular point defects located near the confining 

substrates (Fig. 2b). To show the nontrivial skyrmion topology of this axially symmetric 

structure, we use arrows colored by their polar angle to represent it (Fig. 2c). The far field 

n0 (blue) is assumed to correspond to the north pole of the order parameter space of unit 
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vector orientations, the two-sphere ॺଶ  (inset). The vectors in this cross-section of the 

toron can be mapped to fully cover ॺଶ once, indicating that the structure corresponds to 

an elementary skyrmion. This skyrmion, however, is terminated at point defects that 

match it to the uniform boundary conditions at confining surfaces (Fig. 2b,d), as 

visualized using isosurfaces corresponding to different values of the z-component of n(r) 

(blue, red) and the isosurface depicting the small region of point singularities at which 

vectors with different orientations meet (gray).  

We induce topology-preserving distortions in the toron configuration by applying voltage 

U to the transparent electrodes, with the ensuing electric field E perpendicular to the cell 

mid-plane. For a material with a negative dielectric anisotropy, the LC tends to respond 

by reorienting perpendicular to E, competing with the elastic energy to yield a morphed 

structure that minimizes the total free energy. In the far-field, at voltages above a well-

defined threshold [20], the field-induced director tilt is accompanied by energy-reducing 

twist of n(r) around a vertical helical axis. This yields the so-called “translationally 

invariant configuration” (TIC) and a tilted or in-plane orientation of the far-field director 

in the cell midplane. To embed the skyrmion-like configuration of the toron in the TIC, 

its structure morphs and the region with the vertical orientation of n(r) becomes localized 

and manifests itself as a nonsingular umbilical region corresponding to the north-pole 

preimage. The preimages of the skyrmion’s north and south poles are separated by π-

twist, as before. The skyrmion configuration no longer has axial symmetry, but its 

topology remains unchanged because mapping n(r) to ॺଶ covers it once, though the far 

field director is now oriented along the y-axis in the cell midplane (Fig. 2e). The TIC-

embedded elementary toron can be visualized in 3D (Fig. 2f), similar to the case at no 

applied fields, demonstrating a highly asymmetric structure in which the north-pole 
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preimage wraps partially around the south-pole preimage. The side on which the north-

pole preimage comes to rest in equilibrium is determined by the orientation of the mid-

plane tilt, which for cells with initially perpendicular boundary conditions is selected 

spontaneously [20, 46].  

The detailed analysis of n(r) near singular defects shows how these point singularities 

terminate the skyrmion near confining substrates (Fig. 2g-j). Both top and bottom defects 

are self-compensating elementary hyperbolic hedgehogs of opposite charge in the 

vectorized n(r). Within the homotopy theory, the elementary skyrmions and the singular 

point defects in the vectorized n(r) are classified as elements of ߨଶሺॺଶሻ ൌ Ժ  [ߨଶሺॺଶ/Ժଶሻ ൌ

Ժ for the nonpolar n(r)] [9, 20]. It is therefore natural that the elementary skyrmion tube 

orthogonal to the cell substrates is terminated by the two ߨଶሺॺଶሻ ൌ Ժ point singularities 

near the confining substrates with strong boundary conditions for n(r). This is consistent 

with the notion that the spatial translation of a ߨଶሺॺଶሻ ൌ Ժ point singularity can leave a 

trace of the ߨଶሺॺଶሻ ൌ Ժ  nonsingular topological soliton when this trace is smoothly 

embedded in the far-field background [47].  

As already pointed out previously [45], torons exhibit structural features that bring about 

resemblance of not only skyrmions, but also the mathematical Hopf and Seifert 

fibrations. The latter can be seen by visualizing the 3D structure of streamlines tangent to 

n(r) and originating from locations in the vertical x-z plane at different distances away 

from the toron’s circular axis (Fig. 2k). These streamlines are found to form various torus 

knots, like the ones found in toroidal drops of DNA [48,49]. Thus, the regions near the 

circular axis of the toron resemble fragments of stereographic projection of ॺଷ to Թଷ, as 

in Hopf and Seifert fibrations. Similar to the case of toroidal drops of DNA, this structure 

of n(r) emerges to implement the LC’s tendency to twist while forming an axially 
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symmetric configuration. However, unlike in the case of DNA and other biopolymers, 

our toron structures emerge in a medium formed by small molecules. As a result, the rate 

of twist of n(r) changes smoothly as one moves away from the toron’s circular axis, 

where the director accommodates the effects of confinement and presence of the singular 

point defects, so that we observe different torus knots formed by the streamlines (Fig. 2k 

and Fig. 3).  

The	3D	director	twist	is	inherently	geometrically	frustrated	due	to	the	fact	that	it	is	

incompatible	 with	 Euclidian	 3D	 space,	Թଷ	[50].	 However,	 one	 can	 consider	 the	

geometry	and	topology	of	fiber	bundles	to	understand	how	LC	can	efficiently	embed	

nearly	uniform	3D	twist	 to	a	 torus‐interior	volume.	 [50]	To	describe	 these	 fibered	

spaces,	 it	 is	 convenient	 to	 start	 with	 a	 parameterization	 known	 as	 the	 toroidal	

coordinates	of	ॺଷ:	

ଵݔ ൌ ܴ cos ߠ sin߮
ଶݔ ൌ ܴ sin ߠ sin߮
ଷݔ ൌ ܴ cos߱ cos߮
ସݔ ൌ ܴ sin߱ cos߮

	

where,	ݔଵ,	ݔଶ,	ݔଷ,	and	ݔସ	are	the	hyperspherical	coordinates	in	Թସ,	ܴ	is	the	radius	of	

ॺଷ ߠ	, ∈ ሾ0, ሻߨ2 ,	߮ ∈ ሾ0, ሻߨ2 ,	 and	߱ ∈ ሾ0, 2ሿ/ߨ .	 After	 a	 stereographic	 projection	

defined	 by,	ሼݔଵ, ,ଶݔ ଷሽ/ሺ1ݔ െ 	,ସሻݔ the	 different	 values	 of	 angle	 φ	 describe	 a	 set	 of	

nested	parallel	 tori	 in	Թଷ.	The	 tori	 corresponding	 to,	φ	=	0	and	φ	=	π/2	are	great	

circles	of	ॺଷ	and	in	Թଷ	correspond	to	the	C∞	axes	of	the	set	of	tori.	For	a	given	torus	

φ,	a	torus	knot	T{,݌	ݍ}	can	be	expressed	as,	

ሼܴ cos ݍ/߱݌ sin߮ , ܴ sin ݍ/߱݌ sin߮ , ܴ cos߱ cos߮ሽ/ሺ1 െ ܴ sin߱ cos߮ሻ	



	 18

where,	݌	and	ݍ	are	 winding	 numbers	 describing	 the	 integer	 number	 of	 times	 the	

curve	 wraps	 around	 the	 two	 C∞	 axes	 and	߱ ∈ ሺ0, 	.ሻݍ݌ߨ2 For	 all	ߠ	and	߮,	 T{1,1}	

forms	 the	 famous	Hopf	 fibration	 [51],	 a	 fibered	 space	where	 linked	 circles	 fill	Թଷ.	

Other	 T{,݌	ݍ }	 knots	 form	 Seifert	 fibrations	 with	 different	 twist	 properties.	

Considering	 the	 LC	 director	 field,	 the	 requirement	 for	 winding	 numbers	 to	 be	

integer‐valued	 is	 relaxed,	 in	 other	 words,	 T{,݌	ݍ}	 can	 have	 irrational	ݍ/݌	values	

within	a	director	structure,	so	that	different	torus	knots	can	simultaneously	exist.		

Through	numerical	simulations	(Figs.	2	and	3),	one	can	analyze	the	3D	director	field	

configurations	 of	 torons	 in	 terms	 of	 the	 above	 formalism.	 For	 this,	 a	 series	 of	

streamlines	are	constructed	by	taking	small	spatial	steps	tangent	to	n(r) to form	3D	

curves	 in	Թଷ.	 Some	 streamlines	 terminate	 on	 confining	 surfaces	 or	 edges	 of	 the	

computational	volume	while	others	 loop	back	on	 themselves	 to	 form	closed	 loops	

such	 as	 the	 T{,݌	ݍ}	 knots	 (Fig.	 3).	 Furthermore,	 the	 allowed	 continuously	 varying	

irrational	ݍ/݌	values	 often	 result	 in	 streamlines	 that	 wind	 around	 the	 torus	 axes	

without	ever	completing	a	closed	curve,	which	can	be	characterized	by	measuring	

the	 length	 of	 the	 streamlines	 (Fig.	 3).	 These	 findings	 reveal	 that	 the	 toron	

configuration	has	spatially	varying	director	distortions	deviating	from	the	idealized	

3D	twisted	structure	that	one	could	obtain	by	the	stereographic	projection,	so	that	

the	rate	of	the	twist	and	T{,݌	ݍ}	depend	on	φ	and	the	distance	from	the	circular	axis.	

This	is	because	the	toron	combines	the	favorable	3D	twisted	region	with	some	bend	

and	 splay	 distortions	 that	 aid	 in	 embedding	 the	 twisted	 director	 configuration	 in	

uniform	far	field	while	minimizing	the	overall	free	energy.	Within	the	toron,	we	find	

that	the	smallest	φ	that	yields	a	T{,݌	ݍ}	knot	tangent	to	n(r) results	in	the	Hopf	link	

T{1,	1}.	Increasing	φ	results	in	different	ݍ/݌	values,	where	some	of	the	torus	knots	
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with	small	integer	winding	numbers	that	we	find	include	the	trefoil	T{3,2},	pentafoil	

T{5,3},	and	the	quatrefoil	T{3,4}	torus	knots	(Fig.	3e‐g).	By	simulating	the	response	

of	the	LC	to	applied	electric	field,	we	uncover	how	this	electric field morphs the toron	

(Fig.	3a‐d)	and	follow	the	evolution	of	these	torus	knots.	As	expected,	the	different	

torus	knots	on	 torus	 surfaces	of	 constant	φ	never	pass	 through	each	other	 as	 the	

structure	morphs	(Fig.	3e‐g),	but	the	contour	lengths	of	the	closed‐loop	knots	tend	

to	increase	with	voltage	for	sub‐1	V	applied	voltages	(Fig.	3e).	This	behavior	of	the	

streamlines	 tangent	 to	 n(r) that	 loop	 around	 both	 C∞	 axes	 is	 dominated	 by	

energetically	 favorable	 twist	within	 an	 axially	 symmetric	 toron	 structure	 at	 small	

voltages	ሺFig	3a,b,e‐gሻ.	However,	as	the	applied	voltage	is	increased	further	and	the	

soliton	becomes	asymmetric,	few	or	none	of	the	simple	closed‐loop	streamlines	can	

be	found	(Fig.	3c,d).	The	temporal	evolution	of	streamlines	is	different	upon	turning	

voltage	on	and	off	(Video	1),	so	that	the	overall	kinetic	pathway	of	evolution	of	n(r)	

is	non‐reciprocal.	Moreover,	when	 the	applied	voltage	 is	modulated,	 this	dramatic	

non‐reciprocal	 evolution	 of	 n(r) and the corresponding streamlines (Videos	 1	 and	 2)	

takes place within each	modulation	period	Tm,	which,	as	we	will	see	below,	results	in	

the	translational	motion	of	these	solitons.	 

 

Structure and topology of solitons stretched orthogonally to the far-field director 

Using laser tweezers, we can displace the top and bottom point defects of the toron 

laterally (say, along the y-direction, Fig. 4). Consequently, the skyrmion connecting the 

point defects becomes extended laterally in a direction perpendicular to the vertical far-

field director at no applied fields (Fig. 4). The topology of this extended elementary 

skyrmion remains unchanged [e.g., mapping the vectorized n(r) from the cross-section 
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orthogonal to the length of this extended skyrmion still covers the ॺଶonce], however, the 

stretched field configuration lacks axial symmetry even without applied voltage. Similar 

to the unstretched skyrmion within the toron, which spans between substrates across the 

cell thickness, the laterally stretched configuration also terminates at two point 

singularities. These singularities appear as the points at which different colors meet 

within the Pontryagin-Thom construction (Fig. 4a). The Pontryagin-Thom construction 

here represents an isosurface of the zero z-component of n(r) (corresponding to the polar 

angle θ = π/2), colored by the azimuthal orientation of the in-plane director. The vectorial 

presentation of n(r) reveal how the twist-embedding soliton is matched to the uniform 

background with the help of the same self-compensating hyperbolic point defects as 

within the toron (Fig. 4b-j), though these defects are now displaced laterally. The laser-

assisted transformation of the toron into a stretched skyrmionic configuration resembles 

an inverse process of cholesteric fingers of the second type collapsing into a toron. In 

fact, the stretched skyrmionic configuration is nothing else but a cholesteric finger of the 

second type, studied previously [52], and is often found as a metastable configuration 

occurring spontaneously, without the assistance of laser tweezers.  

Upon applying voltage to the cell with negative-∆ε LC (Fig. 5), we again observe 

asymmetric morphing of the stretched skyrmionic structure. At applied fields above a 

well-defined threshold, it becomes embedded in TIC (like in the case of a toron, Fig. 2). 

However, the topological hedgehog charges of the self-compensating hyperbolic point 

defects and the skyrmion number of the elementary skyrmion corresponding to the cross-

section of the cholesteric finger of second type remain unchanged. As in the case of 

toron, the north-pole preimage which initially corresponds to the uniform far-field 

background at U = 0 V shrinks into an umbilical region, though this region itself is 
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stretched along the length of the finger rather than being localized (Fig. 5) and embeds 

the extended skyrmion into TIC. In fact, one can think about the cholesteric finger at 

applied voltage as the corresponding stretched toron at the same applied voltage. Overall, 

our studies of skyrmionic field configurations show that the dramatic changes of n(r), as 

in response to applied voltages and stretching by laser tweezers, can preserve topological 

characteristics and remain stable due to their nontrivial topology. 

 

Topology-preserving dynamics of switching between different states of solitons 

What are the kinetic pathways for the transformations between various topology-

preserving states at different applied fields, like the ones shown in Fig. 2? The spatial 

locations of north-pole and south-pole preimages, as well as all other preimages, vary 

over time after turning voltage on and off while our topology-protected structures of 

solitons evolve towards equilibrium over time. During the initial response to switching of 

the electric field on, the reorientation of initially homeotropic background to spatially-

varying n(r) is relatively fast, on the scale of tens of milliseconds that are typical for 

switching the LC director in cells of similar thickness [32]. This is then followed by a 

much slower process (tens of seconds) associated with further minimization of elastic 

free energy that re-defines the spatial configurations of the soliton embedded in TIC to 

correspond to the free energy minimum at the corresponding voltage (Fig. 6a,b). At the 

initial stages, the localized preimages of the north and south poles appear at random 

locations with respect to each other, so that the south-north preimage dipole vectors have 

different orientations (Fig. 6a,b). These orientations of preimage vectors are initially 

determined by the spontaneous spatially varying tilt orientations of the director in 

response to the applied field, as well as by presence of the additional self-compensating 
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umbilical defects that eventually annihilate. With time, driven by the minimization of free 

energy of the background TIC texture, these preimage vectors orientations synchronize to 

all point along the roughly same orientation (Fig. 6b), perpendicular to the uniform far 

field tilt direction in the midplane of the TIC. This complex dynamic process involves 

motions of preimages of different ॺଶ-points relative to each other, e.g. the motion of 

north-pole and south-pole preimages towards each other until they reside at a certain 

equilibrium distance. This process can be studied in a controlled way (Fig. 6c-g) by using 

holographic laser tweezers to accurately manipulate the localized regions corresponding 

to preimages of the north and south poles of the skyrmionic structure, as well as by using 

video microscopy to track their motion.  

Upon application of voltage to a cell with elementary torons, POM frames of the 

localization of the north pole preimage and formation of uniform TIC can be observed 

(Fig. 6a,c). With laser tweezers, we pull the north-pole and south-pole preimages apart 

and then release them to move freely towards each other at a constant applied voltage 

within the uniform surrounding TIC (Fig. 6c-e). When released, the preimages of the 

diametrically opposite poles interact elastically at distances greater than 60 µm, 

eventually coming to rest at an equilibrium separation close to 3 µm. We observe this 

process at various voltages, ranging in amplitude within U = 3.5 – 4.1 V, with 1 kHz 

square waveform and then obtain the position versus time data shown in Fig. 6f,g by 

averaging over 10 videos. From the analysis of the spatial locations of the preimages 

within the different equally-spaced frames of optical microscopy videos, we also obtain 

velocities of preimages of the north and south poles of ॺଶ as they approach and self-

assemble within the localized solitonic structures (Fig. 7). A surface plot shown in Fig. 7a 

illustrates how these velocities behave as a function of the relative separation between the 
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preimages of the poles and applied voltage. Interestingly, the south-pole preimage moves 

significantly faster than that of the north pole for all separations and voltages (Fig. 7a), 

which resembles the differences in velocities of motion of umbilical defects studied 

previously [53]. To analyze this physical behavior further, at the minimum and maximum 

applied voltages we take the derivative of the position versus time curve (Fig. 7b), thus 

obtaining the velocity versus time (Fig. 7c) and voltage dependence of the north and 

south pole velocities. Log-log plots of the velocity and separation data in the range 

between 60 µm and 10 µm as the poles are coming together, for the minimum (Fig. 7d) 

and maximum (Fig. 7e) applied voltages, also provide insights into the dynamics of 

evolution of the skyrmionic field configurations in applied field. The different slopes of 

the two plots further highlight the voltage-dependence of the motion of preimages (Fig. 

7d,e). The dependence of preimage velocities on the distance from each other is also 

apparent: as the poles get closer, they move faster (Fig. 7). The speed anisotropy, or 

difference between the south-pole and north-pole velocities, has a similar dependence on 

the separation distance (Fig. 8). We again see that the speed anisotropy depends on both 

applied voltage and separation distance (Fig. 8a). The maximum speed anisotropy 

increases with increasing the applied voltage (Fig. 8b), whereas the separation of the 

north and south pole as measured at the maximum speed anisotropy peaks for each 

applied voltage decreases with increasing voltage (Fig. 8c). The symmetry-breaking 

dynamics of evolution of these skyrmionic structures embedded in a distorted far-field 

TIC may provide insights for understanding the physical mechanisms by which one can 

induce motion of the skyrmion with modulated voltage, as discussed below. 

 

Directional motion of extended skyrmionic structures 
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An interesting observation is that all skyrmionic structures described above tend to shift 

laterally when the applied voltage is turned on and off. A highly controllable electrically-

driven motion of the skyrmionic structures can be achieved in chiral nematic hosts with 

both positive and negative ∆ε by modulating the electric carrier signal at a lower 

modulation frequency [20]. The directions of soliton motion are in the plane of the LC 

cell orthogonal to the applied field E and depend on both the symmetry and kinetics of 

the director field realignment in response to the time-varying amplitude of the modulated 

voltage. For example, we observe the electrically driven motion (Fig. 9) of the extended 

skyrmionic structure stretched orthogonally to n0 at no fields, for which we have explored 

the energy-minimizing static field configurations at various applied voltages (Figs. 4 and 

5).  To characterize this motion, we use cholesteric fingers of the second type spanning 

through the entire width of the sample or, alternatively, we pin each end of the laser-

generated structure at the locations of hyperbolic point defects using laser tweezers with a 

relatively high-power beam (100-200 mW). The latter method allows us to modify local 

surface boundary conditions at the cholesteric finger ends so that they become effectively 

adhered to the confining surfaces. In the chiral nematic LC with positive ∆ε (based on E7, 

see Table 1), we analyze both the translational motion and periodic changes of width of 

the solitonic structure in response to the modulated applied voltage (Fig. 9). When 

applying a square waveform modulation (Fig. 9a), we find that the width of the structure 

periodically oscillates in accord with the modulated voltage: the width, w, decreases 

dramatically when the U = 2 V potential is applied and slowly grows back to nearly its 

original value when U is turned off. This periodic oscillation repeats within each 

modulation period and leads to a net directional translation of the structure over time 

(Fig. 9b). The net translation of the soliton arises from the fore-aft asymmetry of the shift 



	 25

corresponding to turning voltage on and off within each modulation period Tm. To gain 

further insights into the physical underpinnings of the observed voltage-driven dynamics 

of solitons, we analyze their periodic oscillations via probing the intensity profiles of the 

textures obtained using polarizing optical video microscopy (Fig. 9c,d). During each 

voltage modulation period, the width of the structure shrinks and grows back (Fig. 9e) 

while the structure translates by tens and hundreds of microns in the x-direction 

orthogonal to the skyrmionic structure (Fig. 9f), with the structure exhibiting similar 

cross-sectional intensity profiles at initial and final positions (Fig. 9g). 

We also demonstrate translational motion of an extended skyrmionic structure in a 

negative ∆ε material (based on the MLC-6609 nematic host, Table 1) while using a 

similar square-wave modulation voltage driving scheme (Fig. 9a). An extended 

skyrmionic structure, which is a fragment of the cholesteric finger of the second type, is 

pinned at its ends to observe the entire length of the structure using video microscopy 

(Fig. 10). Upon applying the modulated electric field, we see that a dark region (the 

preimage of the north pole in applied field) appears on the right side of the structure to 

embed it in the far-field background. The skyrmionic structure translates along a vector 

connecting this north-pole preimage to the south-pole preimage corresponding to the 

second dark region in the polarizing optical micrograph. When the voltage modulation is 

on, the end-pinned skyrmionic configuration adopts an arch-like bent profile, which 

straightens and translates back to its equilibrium position and conformation when the 

field is turned off or in applied field at carrier frequency without the amplitude 

modulation. We induce this type of dynamics repeatedly, hundreds of times, with the full 

relaxation of stretched skyrmionic structure to its unbent state taking several minutes 

(Fig. 10). This slow relaxation of the relatively short finger fragment with pinned ends to 
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a straight configuration is driven by the minimization of free energy (which can be 

estimated as a product of the finger’s line tension and length) at no applied fields, but 

fingers spanning the entire sample width can move much farther, similar to the example 

shown in Fig. 9. Since the electrically-driven translation of skyrmions occurs for various 

configuration geometries and in host materials with both positive and negative dielectric 

anisotropy, these observations support our hypothesis that the motion arises from the 

asymmetric, nonreciprocal rotation of the director field during the on and off fragments 

of the voltage modulation period [20].  

 

Field-driven translation of torons 

Characterization of directional motion of skyrmionic structures shaped as torons is 

presented in Fig. 11. The experimentally observed asymmetric spatial shift of the toron in 

response to turning voltage on and off (Fig. 11a) is reproduced by numerical modeling 

using the RBF-FD relaxation method (Fig. 11b, Video 1) and is similar to that we 

characterized for the cholesteric fingers of the second type (Fig. 9). This asymmetry of 

the lateral shift originates from the different balances of torques when the applied field is 

on and off, which can be used to controllably translate torons (Fig. 11c,d). The control 

parameters of the used voltage driving scheme (insets of Fig. 11c,d) include the low and 

high voltage amplitudes, U1 and U2, frequency of modulation, fm, and the duty cycle of 

the modulation, all allowing for the control of velocity and direction of the toron motion. 

By systematically scanning parameters U1/U2 and fm, we observe that the direction of 

motion can be controllably reversed (Fig. 11c,d). For example, starting at a relatively low 

modulation frequency (fm = 2 Hz) and 70% duty cycle, we observe a positive velocity for 

0.3 < U1/U2 < 0.6 and negative velocity for U1/U2 > 0.6 (Fig. 11c), where positive 
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displacements and velocities are defined along the x-axis pointing in the direction from 

the north-pole preimage to the south-pole preimage (Fig. 11a inset). Similarly, but now 

for the constant U1/U2 = 0, 75% duty cycle and while varying fm, we see positive 

velocities at modulation frequencies below 4.5 Hz and negative velocities above 4.5 Hz 

(Fig. 11d). To provide further insights into the physical underpinnings behind this 

controllable directional motion, we construct the temporal evolution of streamline of the 

director field that takes place within each Tm, highlighting its nonreciprocal nature (see 

the example in the Video 2 for low modulation frequency corresponding to positive 

velocities). During this motion, the periodically repeated asymmetric squeezing of the 

skyrmionic field configuration induced by turning the voltage on and off within each Tm 

results in a squirming motion of the soliton. The directionality and velocity amplitude of 

this motion can be controlled based on tuning the characteristic times of oscillation of the 

modulated voltage relative to the response times of director reorientation in response to 

turning the field on and off. These findings show how two geometrically different 

skyrmionic structures with the similar topology, the elementary toron and the cholesteric 

finger of the second type, share not only the value of the skyrmion number but also 

largely similar response to the oscillating electric field: both types of solitons move in 

directions orthogonal to the applied field and parallel or anti-parallel (depending on the 

parameters of the voltage driving scheme) to the vector connecting north-pole preimage 

to the south-pole preimage.  

 

Tracer nanoparticles and analysis of director reorientation-driven backflows 

To probe the possible role of backflows and other types of flows in the field-driven 

motion of topological solitons, we use metal and semiconductor nanoparticles as tracers. 
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The rod-like plasmonic nanoparticles, with the surface plasmon resonance spectra 

featuring transverse and longitudinal peaks (Fig. 12a), allow us to track their spatial 

translations based on light scattering when imaged in the dark field microscopy mode 

(Fig. 12b,c). Using particle tracking and video microscopy, we can indeed detect weak 

flows in the studied cells and characterize the anisotropic and depth-dependent nature of 

these flows (Fig. 12b,c), though we find that these weak flows cannot account for the 

translational motion of solitons (Fig. 12d-g). The spatial displacement amplitude 

corresponding to each period of voltage modulation Tm increases with the voltage 

amplitude, becoming direction-dependent at higher fields, but it remains relatively small 

within the range of used voltages. Because of the presence of director twist within the 

TIC, the depth dependence of the displacement amplitude is asymmetric with respect to 

the cell midplane (Fig. 12c), with only very small displacements observed close to the 

confining substrates, as expected. Imaging of both the plasmonic nanorods based on 

scattering (inset of Fig. 12c) and semiconductor nanocubes based on luminescence (Fig. 

12d,f) shows that the solitons can move past the multiple tracer nanoparticles dispersed 

within the cell bulk, close to the midplane of the LC cell (Fig. 12d,g). These findings 

support the notion that the soliton translation does not necessarily have to involve mass 

transport [20]. The rotational dynamics of n(r) within these spatially localized structures 

allows for advancement in different directions without relying on the actual LC fluid 

flows. This observation is also consistent with the fact that key features of our 

experimental findings can be reproduced numerically based on a model that involves only 

the rotational dynamics of the director, but no fluid flows (Fig. 11).  We note, however, 

that both the semiconductor nanocubes and gold nanorods follow motions of torons and 
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cholesteric fingers when these particles get entrapped within the singular cores of point 

defects at the ends of skyrmionic tubes, as discussed in our earlier studies [54].    

 

Transport of cargo using solitons 

In addition to transporting the singular-defect-entrapped nanoparticles, as mentioned 

above [54], the dynamic evolution of skyrmionic textures that lacks time-reversal 

symmetry can also be used for transporting microparticles. We investigate the skyrmion’s 

cargo carrying abilities by embedding a melanin resin microparticle of 3 µm in diameter 

with planar degenerate surface anchoring between the two hyperbolic point defects (Fig. 

2), thus entrapping our cargo within the solitonic configuration. The static 3D director 

structure of such torons entrapping particles with tangential boundary conditions has been 

reported earlier [55], so here we focus on their dynamic motion, which is then compared 

to that of torons without particles (Fig. 13). The microparticle embedded within the toron 

configuration can be observed under the optical microscope in a transmission mode 

without polarizers (Fig. 13a). When the combined motion of the toron with the 

microparticle cargo is compared side-by-side to the squirming motion of such a skyrmion 

without cargo (Fig. 13b), we find that the translational motion is not significantly 

hindered by the addition of cargo (Fig. 13c). Furthermore, similar to the case of such 

skyrmionic configurations without cargo (Fig. 11), we demonstrate directional control of 

the skyrmion motion with cargo by changing the modulation frequency (Fig. 13d). At 

higher modulation frequency, fm = 8 Hz, the toron embedding a cargo moves along the 

vector connecting the south-pole and north-pole preimages, and at lower modulation 

frequency of fm = 2 Hz, the motion is reversed to point in direction along the vector 

connecting the north-pole and south-pole preimages (Fig. 13e). These examples 
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demonstrate the capability of a controllable transport of cargo along directions dependent 

on frequency of the applied electric field.  

 

Collective dynamics of active solitons 

Finally, we demonstrate collective motion of many solitons with voltage modulation (Fig. 

14). By generating many skyrmions, we can selectively drive self-assembly of pairs, 

chains, and arrays of solitons within the far-field TIC by relying on the elasticity-

mediated self-assembly described elsewhere [47]. Using an applied field of U = 4.5 V 

with the 1 kHz carrier signal modulated at fm = 1 Hz, we then observe and compare 

motion of a self-assembled soliton pair and that of a single soliton (Fig.14a) while all 

trajectories of motion are guided to follow an arched path by controlling the far-field 

TIC. Under the same voltage driving conditions, we also drive and observe collective 

motion of a chain of three solitons along a straight-line path (Fig.14b,c). To compare the 

motion of single solitons next to soliton pairs across a given region of our cholesteric cell, 

we set up a “race” where such solitons are initially self-assembled along a straight line 

and start moving at the same point in time, when voltage is modulated at fm = 2 Hz 

(Fig.14d). We find that the single solitons move faster than the soliton pairs (Fig.14e).  

Additionally, we observe a similar difference in translational velocity for a race between 

a trio-chain, pair, and single solitons (Video 3), indicating that individual solitons are 

always faster and the bigger the chain-like assemblies of solitons, the slower they 

become. Interestingly, the solitons tend to spread apart within the self-assembled chains 

as they move, so that the inter-soliton distances within chains by a factor of 2-3 when 

they move as compared to the stationary ones (Fig. 14a-e). When we use elasticity-

mediated self-assembly [47] to guide many solitons to self-assemble into a close-packed 
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array and then modulate voltage at fm = 2 Hz, we observe dramatic transformations of 

kinetically re-assembled structures of solitons that can be guided to produce a long chain 

or many separate linear chains branching off from the initial array (Fig.14f). By tuning 

the applied voltage amplitude and fm, as well as by controlling the far-field TIC, we can 

control the motion directions and reconfigurable kinetic assemblies of these solitons at 

will (Videos 3 and 4). As an example, we show movement and transformation of various 

self-assembled structures prompted by changing the modulation frequency from fm = 2 Hz 

to fm = 8 Hz (Video 4). 

 

Discussion and Conclusions 

Although the different solitonic structures we study have very different appearance under 

a polarizing microscope, stretch in different directions with respect to the homeotropic n0 

at no fields, and are commonly called elementary torons and cholesteric bubbles (Figs. 

2,6-8,11-13) or cholesteric fingers of the second type (Figs. 4,5,9,10) [9,17,20,45,46,52, 

56], they share the topology of an elementary skyrmion tube terminating on singular 

point defects. Indeed, the torons and fingers can be inter-transformed via optical 

manipulation using laser tweezers without changing their topology. The dynamics they 

exhibit are also similar, though the structural features can result in somewhat different 

selection of the motion directions (Figs. 9-14). What are the physical underpinnings of 

the studied dynamics of these solitons? To answer this question, it is instructive to recall 

some of the basics of functioning of LC displays. 

A widely-known effect in physics of information displays is that the response of 

the LC director to turning the external electric field on is faster than in case of turning it 

off, with the characteristic rising and decay response times related as 
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, where Uth is a certain threshold voltage above which the 

director realignment starts because of the strength of electric torque overcoming the 

elastic torque [57]. At high voltages U >> Uth, the difference between the rising and 

falling director response times can be several orders of magnitude and stems from the 

different torque balances present when voltage is turned on and off: the electric torque is 

balanced by elastic and viscous torques when the field is on, but only elastic and viscous 

torques are present and balanced upon turning voltage off [32,57]. The uniform and 

distorted configurations of the director field in the display pixels are typically 

translationally invariant, so that the nonreciprocal rotation manifests itself only through 

the translationally invariant changes of optical characteristics such as phase retardation 

and polarized light transmission (though various backflow effects may need to be 

accounted for at high voltages [57]). The situation is very different for the spatially 

localized, topology-stabilized solitonic structures (Figs. 9-11 and 13), which translate in 

the lateral directions because of the non-reciprocal rotation of the constituent 3D n(r). In 

a pixel of a typical display, the applied electric field deforms the initially uniform director 

and the elastic free energy accumulated within this deformation then drives the slower 

relaxation of the director back to the uniform state. The director structure of solitions is 

three-dimensional and spatially non-uniform, but the dielectric coupling of n(r) with E 

morphs it significantly, along with deforming the structure of the surrounding LC 

background (Figs. 2,4,5). The elastic free energy cost associated with this deformation 

drives relaxation of the solitonic configuration back to the initial state that minimizes 

energy at no applied fields. The nonreciprocal nature of director rotation in response to 

switching voltage on and off yields the translational motion of solitons in the lateral 

directions. In principle, one could also expect soliton motions along the applied field 

2/ [( / ) 1]rising decay thU U  
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direction in LC samples much thicker than the dimensions of solitons, but this is 

precluded in our case by the thin-cell confinement where solitons span through the entire 

cell gap. Within each period Tm of modulated voltage, the topological solitons are 

squeezed due to the coupling of n(r) with E during the “field-on” cycle and relax to 

minimize the elastic free energy during the “field-off” cycle of Tm, where the non-

reciprocity of the director rotation translates the localized solitonic structure laterally 

within the LC cell. This periodic morphing of the localized director field structure 

resembles squirming waves in biological systems [20, 25], albeit our solitons have no cell 

boundaries, density gradients or interfaces, so that the similarity is only at the level of the 

nonreciprocal dynamics. The squirming-like dynamics of localized director structures 

may also play a role in mediating translation of various colloidal particles around which 

the director is either asymmetric even at no fields or the symmetry of director 

realignment is broken during switching, though this mechanism has not been considered 

in previous studies [58].  

The studied translation of topological solitons results from the conversion of 

electric energy into elastic energy and into motion. Similar to the cases of active colloidal 

particles and other active soft-matter systems [21], the energy conversion happens at the 

scale of individual particle-like solitons, though the oscillating field is applied globally to 

the entire sample typically 107 times larger than the lateral area of the soliton. The 

directional motion of individual and multiple torons, which are axially symmetric and 

embedded in the far-field director orthogonal to cell substrates at no fields, results from 

the symmetry breaking during switching (Fig. 6a,b). The spontaneous selection of the 

motion directions happens as a result of the synchronization of the director tilt direction 

within the TIC (Fig. 6b). Once the midplane far-field director of TIC becomes uniform, 
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without the additional umbilical defects, the vectors connecting the north-pole and south-

pole preimages all point in the same direction and the resulting motion is either parallel 

or anti-parallel to these vectors, depending on the modulation frequency (Fig. 6b, 11-14). 

Unlike the torons, the laterally stretched skyrmionic structures lack axial symmetry even 

at no fields, so that their motion direction is always orthogonal to their length (Figs. 9 and 

10), but similar otherwise. The synchronization of the motion direction that we observe 

for multiple solitons (Fig. 6a,b) also resembles synchronization of motion directions of 

defects in active matter recently studied by Dogic and colleagues [59]. The examples of 

collective out-of-equilibrium dynamics of solitons (Fig. 14) also bring about the 

resemblance with the behavior of both active colloidal particles and defects within active 

nematics [21-26]: motions of solitons influence that of their neighbors and kinetically 

self-assembled structures are significantly different from the ones obtained in the 

equilibrium. Our preliminary demonstrations (Figs. 13 and 14) demonstrate that the facile 

response of LCs, along with the diversity of means available for controlling n(r), have a 

great potential to expand the scope and means of realizing guided motion of active 

colloidal particles with and without cargo [60,61] 

Although the use of high carrier frequency in our study allows us to eliminate the 

possible role of ionic impurities in defining dynamics of the topological solitons, various 

electrophoretic and electrokinetic effects can be used to further enrich the possibilities for 

the control of the soliton dynamics [56]. Although the use of low voltages in our study 

precluded a significant role of backflows, similar to how researchers can use backflow 

effects to speed up director switching in electro-optic LC devices [62], one can 

potentially also design voltage driving schemes where backflows could further accelerate 

motions of solitons or alter their motion directions. On the other hand, the studied 
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solitons with the topology of elementary skyrmions and structures locally often 

resembling torus knots and both Hopf and Seifert fibrations may provide a model system 

for the study out-of-equilibrium phenomena related to field transformations within 

condensed matter and beyond. 

To conclude, we have demonstrated that the nonreciprocal response of LCs 

containing solitonic structures to external fields can allow for engineering spatial 

translation of solitons with and without carrying cargo, such as nanometer- and 

micrometer-sized particles. This directional electrically driven motion can be exhibited 

by a host of topologically protected structures, with different symmetry of localized 

director configurations and in LC materials with different types of response to external 

fields (e.g. LCs with positive and negative dielectric anisotropy). Although our non-

annihilating solitons provide many advantages for experimental exploration of such 

topological dynamics, these studies can be extended to more conventional singular 

defects, where electric and magnetic driving schemes can be potentially designed to drive 

defects towards each other or apart, thus enabling the means of controlling out-of-

equilibrium dynamics of soft matter with long-term-stable defects.  Although we focused 

here on ߨଶሺॺଶሻ ൌ Ժ  [ ଶሺॺଶ/Ժଶሻሿߨ ൌ Ժ  for the nonpolar n(r) solitons with the same 

terminating point defects, these studies can be extended to the ߨଷሺॺଶሻ ൌ Ժ  [ߨଷሺॺଶ/Ժଶሻሿ ൌ

Ժ  for the nonpolar n(r) Hopf solitons discovered recently in similar confined chiral 

nematic LC systems, which will be pursued in our future studies. 
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Figures: 
 

 
FIG. 1. RBF method for defining nodes. (a) Random points scattered in two dimensions. 
(b) A Gaussian basis set illustrated by centered Gaussian surfaces at the location of each 
node in (a). Colors represent the relative height of the surfaces. (c) A surface that passes 
through the points constructed from a unique linear combination of the Gaussians from 
(b). (d) Periodic square lattice, (e) face centered cubic lattice, (f) tetrahedral mesh, and (g) 
Halton-type scattered node distributions in 3D. 
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FIG. 2. Structure of a toron with the topology of an elementary skyrmion and knotted 
streamlines. A skyrmion embedded in a confined chiral nematic LC with (a-d, g-k) no 
applied field, U = 0 V, with uniform far field director n0 = {0,0,1} and (e-f) applied field, 
U = 3.1 V, with uniform far field director n0 = {0,1,0}. The direct comparison shows 
agreement of RBF-FD simulated 2D cross sectional midplanes in (a) x-y and (b) x-z of 
n(r) with the (c) traditional FD simulated 2D x-y cross sectional midplane of n(r) using 
arrows colored according to the corresponding points on ॺଶ (inset). The orientation of n0 
on ॺଶ is denoted using cones. (d) Corresponding 3D representation of n(r) described in 
part (c) by means of isosurfaces representing the z-component of the director, nz = 0.95 
(blue), nz = -0.2 (red), regions around singularities (gray) and an x-z cross-section of the 
director through both point defects visualized using black line segments. (e) 2D x-y cross 
sectional midplane of a vectorized skyrmion with applied field. (f) Corresponding 3D 
representation of n(r) described in part (e) by means of isosurfaces described in (c). A 
zoomed-in view at the x-y cross-section through point defects of skyrmions, confined in a 
chiral nematic LC with no applied field, (g) above and (h) below the skyrmion tube and 
x-z cross-section through point defects (i) above and (j) below the skyrmion. Additional 
arrows in (i,j) denote locations of (g,h) cross-sections. (k) Streamlines tangent to director 
within the twisted region of a toron (magenta surface) that trace a Hopf link (black), 
pentafoil knot (cyan), and quatrefoil knot (yellow). 
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FIG. 3. Torus knots and electric switching of director streamlines. (a-d) Streamlines 
tangent to the director field lines at various applied voltages. The streamlines originate 
from the cell midplane and propagate along the director field until they terminate on a 
substrate, close on themselves to form knots or become longer than 200 µm. The color 
bar indicates lengths of continuous streamlines, with blue representing the short 
streamlines that crash to the substrates quickly (~10 µm) and red streamlines loop around 
the torus many times and often form a {p,q} torus knots (≥ 200 µm). (e) Contour length, 
S, over the winding number, q, of some of the torus knots that are found for U < 1 V, 
plotted as a function of applied voltage. The top-left inset shows examples of the tracked 
torus knots and unknots at U= 0.8 V. The top purple curve (circles) is the circumference 
of the φ = π/2 C∞ axis. Crosses, asterisks, squares, and triangles mark length of the Hopf 
unknot, pentafoil knot, quatrefoil knot, and trefoil knot, respectively. The torus knots 
tracked each have insets representing there topology and {p,q} winding numbers, with 
the corresponding voltage dependencies of the contour lengths indicated. (f) 
Representative torus surfaces between φ=π/4 and φ=π/2 near to where the respective 
torus knots and unknots are found including the φ=π/2 C∞ axis. (g) Rectangles 
schematically representing the unwrapped torus surfaces shown in (f) with the same 
colors, where each torus is shown pq times to indicate how many times and how the 
director streamline slides on the torus surface before looping on itself. The thin black 
lines indicate the director streamlines that loop around the two axes of the torus to form 
various torus knots. 
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FIG. 4. Structure of a laterally stretched skyrmion at no fields. (a) 3D and (b-j) 2D 
representations of the stretched skyrmion structure embedded within the uniform far field 
director n0 = {0,0,1}. (a) The 3D structure is visualized using the Pontryagin-Thom 
construction, gray isosurfaces representing regions around singularities, and an x-z cross-
section of the director through the skyrmion visualized using black line segments. 2D x-y 
cross sectional planes through the (b) top (c) mid-plane and (d) bottom of vectorized n(r) 
using arrows colored according to the corresponding points on ॺଶ  (inset) and the 
orientation of n0 on ॺଶ  denoted using a cone. The black stars represent the point 
singularities (corresponding to the gray surfaces in part a). (e) A y-z cross-section along 
the length of the structure. (f) An x-z cross section through the mid-plane of the structure. 
Additionally, the x-y cross-sections through point defects (denoted with black stars) of 
the structure (g) near the top substrate and (h) near the bottom substrate and x-z cross-
section through point defects (i) near the top and (j) near the bottom of the structure.  
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FIG. 5. Structure of a laterally stretched skyrmion in an applied field. (a) 3D and (b-f) 2D 
representations of a stretched skyrmion structure at U = 4 V. (a) Isosurfaces representing 
the z-component of the director nz = -0.2 (red) and regions around singularities (gray) and 
x-z cross-section of the director through the skyrmion visualized using black line 
segments. 2D x-y cross sectional planes passing through the (b) top (c) mid-plane and (d) 
bottom of vectorized n(r)-configurations using arrows colored according to the 
corresponding points on ॺଶ (inset) and the orientation of n0 on ॺଶ denoted using a cone. 
The black stars represent the point singularities (corresponding to the gray surfaces in 
part a). 2D x-z cross-sections of the extended structure through (e) the skyrmion and (f) 
one of the hyperbolic point defects near the top substrate. Additional arrows in (f) denote 
locations of the (b,c,d) cross-sections. 
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FIG. 6. Formation of skyrmions and synchronization of south-pole to north-pole 
preimage vectors. (a) POM images showing gradual self-alignment of preimage vectors 
within the TIC. Trajectories of south-pole (red) and north-pole (blue) preimages after 
applying voltage are overlaid on the last frame. The elapsed time is indicated on the POM 
video frames. (b) An angle characterizing the azimuthal orientations of the preimage 
dipoles versus time for the five solitons labeled in (a). (c-e) POM images showing  
interaction of the north-pole and south-pole preimages after they were pulled apart by 
laser tweezers. Crossed polarizers in POM images are marked with white double arrows. 
North-pole and south-pole preimage separation (f) for many applied voltages, represented 
by a surface colored according to the magnitude of separation, and (g) for the minimum 
and maximum voltages applied. The points corresponding to the images in (c-e) are 
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marked by red dots on the U = 4.1 V curve. 

 
FIG. 7. Dynamics of skyrmion’s preimages. (a) North-pole and south-pole preimage 
velocities during skyrmion formation, where the surface is colored according to the 
velocity magnitude. (b) Position and (c) velocity of the preimages during attraction for 
the two extreme voltages. (d, e) Logarithmic representations of the preimage velocities 
and the velocity speed anisotropy during attraction at (d) U = 3.5 V and (e) U = 4.1 V.   



	 50

 
FIG. 8. Anisotropy of north-pole and south-pole preimage velocities. (a) Speed 
anisotropies of the preimages, where the surface is colored according to magnitude of 
speed anisotropy. (b, c) Voltage dependence of (b) the maximum speed anisotropy and 
(c) the north-pole and south-pole preimage separation measured at the maximum speed 
anisotropy.   
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FIG. 9. Translational motion of a stretched skyrmion structure. (a) Voltage profile of the 
square waveform used for modulation, where fm = 0.5 Hz. The black arrows indicate (b) 
corresponding POM images of a stretched skyrmion structure in the sample (top). 
Translational motion of the structure is shown over many modulation cycles (bottom). 
White double arrows indicate the polarizer orientation. (c, d) Intensity profiles of the 
extended structure within one period of voltage modulation, extracted from POM images 
shown in (b). (e) Periodic change in width, w, as defined in (b), of the structure, where 
voltage modulation starts at 0 s. (f) Lateral displacement of the structure over time. (g) 
Intensity profiles corresponding to the initial (blue) and final (orange) positions of the 
structure extracted from the corresponding POM images.  
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FIG. 10. Translational motion of a stretched skyrmion structure in a material with 
negative . The applied voltage is always U = 4.2 V, which is modulated at fm = 2 Hz 
where noted in top left corner and not modulated otherwise. The polarizer orientations are 
marked with white double arrows and elapsed time is noted in the bottom right corner 
corners of images.  
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FIG. 11. Directional motion of torons in a negative- LC. (a) Experimental and (b) 
RBF-FD simulated skyrmion position when voltage modulation is turned on (positive 
curve) and off (negative curve). The dotted line in (a) represents where the magnitudes of 
these opposite displacements are equal. The inset shows a soliton with both the south-
pole to north-pole vector and the direction of motion along the y-axis. (c,d) Experimental 
skyrmion velocity (c) with nonzero fill fraction, U1/U2, and (d) with U1/U2 = 0. The 
corresponding square waveform amplitude modulation schemes are shown in the inset.  
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FIG. 12. Analysis of flows in LC cells at amplitude-modulated applied fields. (a) SPR 
spectrum of the GNR nanoparticles used as tracers of LC flow and TEM image (inset). 
(b) Fourier analysis of GNR motion for U = 0 - 8 V, fc = 1 kHz, fm = 1 Hz and 50% duty 
cycle. Insets show displacement trajectories obtained for 15 cycles of amplitude 
modulation and the point cloud of nanoparticle positions for each trajectory offset in the 
y-direction for clarity. (c) Depth-resolved backflow displacement amplitude 
corresponding to Fourier component at 1 Hz in a 10 µm thick cell, U = 5 V, fc = 1 kHz, fm 
= 1 Hz and 50% duty cycle and characteristic dark-field image of 7 GNRs at a depth of 4 
µm (inset). (d) Fluorescence image of nanocubes in the midplane cross section of a 
skyrmion’s north-pole preimage in a 60-µm thick cell. (e) Time-coded trajectories of 
nanocubes during amplitude modulation for U = 0 - 8 V, fc = 1 kHz, fm = 2 Hz and 50% 
duty cycle where the north pole traversed through nanocubes in the bulk LC (black, 
bottom right to top left). Inset POM image of the north-pole preimage and its vicinity. (f) 
Fluorescence images of nanocubes in the midplane cross section of the north-pole and 
south-pole preimages of a skyrmion in a 60-µm thick cell. (g) Time coded trajectories of 
nanocubes as the skyrmion traverses through (black line, top left to bottom right). The 
insets are POM images of the soliton before (top) and after (bottom) applying voltage.  
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FIG. 13. Translational motion of soliton with and without entrapped melanin-resin 
microparticle cargo. (a) Bright-field microscopy of a skyrmion (top) and a skyrmion with 
cargo (bottom). (b) POM images of a skyrmion (left) and a skyrmion with cargo (right) 
during voltage modulation at fm = 2 Hz and 75% duty cycle. (c) Corresponding 
displacement of the skyrmion (red), skyrmion plus trapped cargo (black), and an 
untrapped GNR (blue). (d) POM images of a skyrmion transporting cargo during voltage 
modulation at fm = 8 Hz (top row) and fm = 2 Hz (bottom row). (e) Corresponding 
displacement of the skyrmion along y. Polarizer orientations are marked with white 
double arrows on the first frame and the elapsed time stamp is given at bottom-right of 
each POM frame. 
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FIG. 14. Collective motion of skyrmions. (a) Single and paired motion in an arced path, 
with trajectories traced for each skyrmion on the last frame. (b) Motion of three-skyrmion 
chain and (c) corresponding displacement analysis where the three skyrmions are 
numbered. (d) Single and paired motion “race” and (e) corresponding displacement 
analysis for a single skyrmions (labeled 1,4) and skyrmion pairs (labeled 2,3). (f) 
Temporal evolution of the initially close-packed array of solitons and subsequent chain 
motion. White double arrows in (a) denote crossed polarizer orientation for all POM 
images and the elapsed time stamp is marked in the top or bottom right corner of each 
frame.  
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Video 1. Video of director streamline evolution after voltage is removed and the director 
structure relaxes from that of a toron embedded in TIC to the toron embedded in a 
uniform homeotropic background. The streamlines of the field originate from the 
midplane of the cell originally in equilibrium at U = 4V and carrier frequency fc	=	1	kHz,	
followed	by	switching	voltage	to	U=0	V.	The	video	was	slowed	down	8	times	to	
reveal	the	details	of	temporal	evolution	of	streamlines.	
	
	
	

	
Video	2.	A	video	showing	the	non‐reciprocal	director	streamline	evolution	during	
one	period	of	voltage	driving	with	amplitude	modulation	(U1/U2	=	0,	75%	duty	
cycle,	fm	=	2	Hz,	fc	=	1	kHz).	The	video	was	slowed	down	2	times	to	reveal	the	details	
of	temporal	evolution	of	streamlines.	
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Video	3.	A	POM	video	showing	skyrmion	chain	motion	race	between	a	trio‐chain,	a	
pair,	and	a	single	skyrmion.	The	voltage	driving	scheme	parameters	are:	U	=	4.5V,	
75%	duty	cycle,	fc	=	1	kHz,	and	fm	=	2	or	8	Hz,	as	noted	in	top	left	of	video	frames.	
The	video	is	at	10x	speed,	with	the	total	elapsed	time	of	29	minutes	and	46	seconds.		
	
	

	
	
Video 4. A	video	of	kinetic	out‐of‐equilibrium	self‐assembly	and	reassembly	of	
skyrmion	chains	and	other	superstructures,	which	corresponds	to	frames	in	Fig.	14f.	
The	voltage	driving	scheme	parameters	are:	U	=	4.5V,	75%	duty	cycle,	fc	=	1	kHz,	and	
fm	=	2	or	8	Hz,	as	noted	in	top	left	of	video	frames.		The	video	is	at	10x	speed,	with	
the	total	elapsed	time	is	1	hour,	10	minutes,	and	18	seconds.	
 


