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Abstract
Phononicmetamaterials have attracted extensive attention since they areflexibly adjustable to control
the transmission.Here we study a one-dimensional phononicmetamaterial with negativemass and
negative coupling,made of resonant oscillators and chiral couplings. At the frequencywhere the
effectivemass and coupling are both infinite, aflat band emerges that induces a sharply high density of
states, reminiscent of the phononic dark states. At the critical point of band degeneracy, a phononic
Dirac-like point emerges where both the effectivemass and the inverse of effective coupling are
simultaneously zero, so that zero-index is realized for phonons.Moreover, the phononic topological
phase transition is observedwhen the phononic band gap switches between singlemass-negative and
single coupling-negative regimes.When these two distinct single negative phononicmetamaterials are
connected to each other, a phononic topological interface state is identifiedwithin the gap,manifested
as the phononic counterpart of the topological Jackiw–Rebbi solution.

1. Introduction

Metamaterials usually exhibit extraordinary properties that can not found in nature like the negative
permittivity (ε), negativemagnetic permeability (μ) of electromagneticalmetamaterials which can realize
reversedDoppler effect, reversedCherenkov radiation andnegative refraction index [1–6]. Alongwith the
electromagneticalmetamaterials for photonics, the phononicmetamaterials have been greatly developed in
recent years. In 2000, the phononic crystal with local resonance is proposed and the effective negative parameter
is introduced [7]. Then a variety ofmetamaterials comprising solid and liquid are proved to have double negative
properties [8–12]which are reminiscent ofMie resonance.With the development of the theory, the negative
modulus is demonstrated [13] by the array of subwavelengthHelmholtz resonators or side holes on a tube [14]
and the negativemass is realized bymembrane-type acoustic tube [15] in low frequency range. After, the double
negative parameters in the structure with array of periodic thinmembranes and side holes [16] are proposed.
Then, non-periodic space-coiling structures [17, 18]with double negativity are demonstrated to exhibit negative
refractive index. In addition to theMie resonancemechanism, there are alsomultiple scatteringmechanisms
leading to negative effective parameters [19, 20].

Themass-spring structure with different coupling and spatial distribution can also have negative effective
parameters [21–27] because of Bragg scattering and resonantmechanism in different frequency regimes. In
2007, following thework of [7],Milton andWillis proposed amass-in-mass system and showed that the
dynamic effectivemass of compositematerials, defined in the framework ofNewtonʼs law ofmotion (contrary
to the static gravitationalmass), exhibits the existence of single or double negative properties [23]. In 2008, Yao
et al experimentally examined themodel ofmass-spring systems [24]with effective negativemass. Additionally
in 2011, Liu et al proposed an elasticmodel with double negative parameters by integrating a tri-chiral lattice
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with softly coated inclusions [25] and an other double negative systems constructed by chiralmass-spring unit
[26]. Since then, a plenty of phononicmetamaterials based on chiral and spiral structures are proposed [28–30].

On the other hand, there aremany other properties of phononicmetamaterials attracting increasing interest
recent years, such as the zero refraction index (zero-index for short) and topological bands. In zero-index
metamaterials, waves does not carry any spatial phase changes and thewave length is effectively infinite long [31]
which can be used inwave surfacemodulation and bendingwaveguides. The zero-indexmaterial has been
proved experimentally in the electromagnetic wave [32, 33] and the acoustic and phononic counterparts have
also been discussed [34–38].Meanwhile, over the past decades, the concept of ‘topology’has been attracting
extensive research interests in phononics and phononicmetamaterials [39–44].Many interesting topological
phenomena, such as topological interface and edge states [45–47], have been observed in phononic
metamatericals.

In this work, we study a 1Dphononicmetamaterials ofmechanical resonant oscillators and chiral couplings.
We analyze the phononic band structure by diagonalizing the dynamicmatrix, calculate the effectivemass and
effective coupling by the equation ofmotion, and study the corresponding transmittancewith transfermatrix
method.We show that by design, the oscillatormass and inter-oscillator coupling, although both are positive
naturally, can be either single negative or double negative effectively within a certain frequency range. At the
frequencywhere the effectivemass and coupling are both infinite, a flat band emerges that will induce a sharply
high density of states, reminiscent of the phononic dark states.Moreover, aDirac-like point of phononic band
emerges when both effectivemass and the inverse of effective coupling are simultaneously zero, so that zero-
index is realized for phonons. Finally, we report the phononic topological phase transition that the phononic
band gap switches between singlemass-negative and single coupling-negative regime. Accordingly, a topological
interface state is identified between two different single negative phononicmaterials.

2.Model andmethod

The systemwith resonantmass [23] and chiral spring coupling [26, 25] is shown infigure 1(a). Themass-in-
mass unit takes the formof a rigid ball withmassm1 and contains an internalmassm2 that is connected to the
outer ball by two internal spring k1. In addition, we add a rigid leverage as the inter-unit coupling, whose
moment of inertia and radius are J andR. Themiddle of the leverage isfixed at the pointO and both ends are
connected to the outer balls by the spring k2.α is the equilibrium angle between k2 and horizontal axis. The
lattice constant of the system is L. Form1 andm2, only themovements in the horizontal direction x are
considered for simplicity.

Similar to photonicmetamaterials, the phononicmetamaterials can be generally classified into four different
categories according to the effective inverse coupling andmass (k−1

eff ,meff) shown infigure 1(b).When they are
double positive, the phase velocity is a positive number. The direction of phase velocity and group velocity are

Figure 1. (a)The one-dimension chiral latticemodel with both negativemass and negative coupling. (b)Classification ofmaterials
according to effectivemassmeff and inverse of effective spring coupling

-keff
1. vp is the phase velocity and vg is the group velocity.
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the same and thewave can propagate forward just like in the naturalmaterials with normal refraction. Butwhen
one of (k−1

eff ,meff) is negative, we can see that the phase velocity is an imaginary number. According to the
harmonic wave solution, thewavewill present an evanescent wave of exponential decay. The third quadrant is
when (k−1

eff ,meff) are both negative. In this case, the direction of phase velocity and group velocity is sign opposite
and thewave can still propagate butwith anomalous negative refraction. At the origin of the axes, thematerial
possesses zero-indexwhere the effectivemass and the inverse of effective spring coupling are both zero, i.e. the
refractive index equals to zero and thewave can propagate perfectly.

From theNewtonʼs laws, the equations ofmotion for the nth unit are given by

a q a a q a= - - - - - ++( ) ( ) ( ) ( )m
u

t
k u v k u R k u R

d

d
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where un (vn) denotes the displacement ofmass 1 (2) in the nth cell, θn is the angle displacement of the leverage.
Under harmonic excitation, as we all know, the harmonic wave solution of the 1D lattice chain is

q q= w- +( ) ( ˆ ˆ ˆ) ( )u v u v, , , , en n n
nqL ti , with q the quasi-momentum. So from equations (2) and (3)we can have:
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By substituting these equations into equation (1), we can reorganize the equation and obtain the following result:
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Themeff and keff are the effective atomicmass and effective inter-atomic coupling of the system,which is
equivalent to a 1Dmonatomic chain. Aswe can see that the effective coupling is only related to the rotational
vibration resonance; the effectivemass is not only related to the rotational vibration resonance but also related to
the translational vibration resonance of the outer-intermasses. Therefore, the dispersion relationship can be
obtained by the effective parameters:

w = ( )k

m

qL
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2
. 82 eff
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2

Note since keff andmeff are both functions ofω
2, the bandwill split into three branches as wewill see in the

following.
Alternatively, by letting the determinant of the systemʼs dynamicmatrix equal to zero:
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we can also get the dispersion relationω(q) (frequency f=ω/2π) of thismodel, as exemplified infigure 2(a).
Because each unit cell has three degrees of freedom, there are three pass bands in the simplest Brillouin zone (the
same result of the dispersion relation is obtained if using formula equation (8)).We can see that the slope of the
upper band is positive. So the direction of the group velocity and phase velocity are the same, whichmeans that
in this frequent range, thematerial has both positivemass and couplings, corresponding to thefirst quartile of
figure 1(b). However, the slope of themiddle band and lower band are negative with positive phase velocity,
whichmeans that the group velocity is also negative and corresponds to the negative refraction in the third
quartile offigure 1(b).

But, for the two forbidden band gaps, we are not surewhether they are caused from translation resonance,
rotation resonance or Bragg scattering, andwhich kinds of single negative are they. In order to further
understand the underlying reason, we respectively check the effectivemassmeff and the inverse of effective
coupling k−1

eff versus frequency f, as shown infigures 2(b)–(c) according to equation (7).We can see that the
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middle and bottombands correspond to both negativemass and negative spring coupling. That is to say, the two
lower bands are double negative, agreeingwell with our analysis above. It should be noticed that there appears a
Bragg scattering induced gap below the bottomof themiddle band, althoughwithin double negative regime.
Besides, as displayed infigures 2(b) and (c), the upper band gap and lower band gap corresponds to the single
mass negative and single coupling negative, separately. Therefore the systemwill exhibit different properties
under different frequency ranges.

Besides, we use the transfermatrixmethod to discuss the phononic transmission properties of the
metamaterial. Our structure can be considered as an effective 1Dmonatomic lattice. Based on the previous
calculationmethod [24], the transmittance of the system is defined as =  =∣ ∣T Tn

N
n1 , = -T u un n n 1,N is the

number of unit cell. Thus, for the uniform 1Dphononicmetamaterial withNunit, the recursive relation:
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leads to the nth transmittanceTn, expressed as:
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2

withTN+1=1.
We plot the transmittance =  =∣ ∣T Tn

N
n1 of the system (with 5 units,N=5) infigure 2(d). From the

colorized area of thefigure, we can see that when the driving frequencymatcheswell with the band gap, the
systemwill have strong reflection and the transmittance is very small. The blue area is caused fromBragg
scattering although it is in double negative range and yellow areas correspond to the band gap induced by the
single negative properties, whichmeans that in the process of wave propagation, thewave present an evanescent
wave of exponential decay leading to the vanishing transmittancewithin a certain frequency range.

3. Results and discussions

3.1. Flat band anddark states
Aswe can see from figure 2 and followingfigures 3–5, wemark three points a, b and c of special frequencies in the
bands, corresponding tomeff=0, k−1

eff =0, = ¥meff , respectively. According to the formula of effective
parameters equation (7), the frequency of points a, b and c at longwavelength limit are :
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Figure 2. (a)The dispersion relation of themodel (frequency f=ω/2π). (b)The effectivemassmeff versus frequency f. (c)The inverse
of effective spring coupling -keff

1 versus frequency f. (d)The transmittance spectrumof the system composed offive units (N=5).
wherem1=0.5 kg,m2=0.5 kg, k1=30 N m−1, k2=60 N m−1, J=0.0015 kg m2,R=0.05m,α=π/6. Points a, b and c
respectively represents the frequencywhenmeff=0, =-k 0eff

1 and = ¥meff . Yellow areas correspond to single negative area and
blue areas correspond to double negative area.
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When the resonant frequencies for translation and rotation are coincident ( =f fb c) (see figure 3), we have
= =- -m k 0eff

1
eff

1 . At this condition, themiddle band become aflat band and the density of the state is very large.
For the systemwithNunits, at the frequency offlat band, there will beN eigenvalues, whichmeans that the
systemhasN vibrationalmodes. For all of these vibrationalmodes, we checked that the eigenstates (not shown
here) that only the angle displacement of the leverages θ canmove but the oscillatorsm1 andm2 stays still, which
indicates that theflat band is in accordancewith that so-called dark states.

In other words, when a planewave is incident, the outside balls and inertia ballsm1,2 can not absorb any
energy tomove. This is because at thisflat-band frequency, both  ¥m k,eff eff , so that the impedanceZ (see
the following equation (17)) becomes infinite large. As such, the extremely large impedancemismatchwill cause
the perfect wave reflection, and at this flat-band the system can not be excited by external incident waves. This is
why it is reminiscent of the ‘dark state’. These phononic dark states, however, can be excited by brute force-
driving the system that evanescently couples with the darkmodes. Once the phononic dark states are excited, the
energywill be storedwithin the local vibrations (of leverages in our case), which is not propagating through the
system. The transmittance only has a single sharp resonance peak at this resonance frequency, which is very hard
to detect from the outside incident wave.

We note thatwhen higher or lower than thisflat-band frequency, the systempresents respectively the single
negativemass regime and single negative coupling regime. Theflat band joins together these two single negative
metamaterial regimes, so that the two phononic gapsmerge into a single wider forbidden gapwith themid-gap
dark state negligible. Therefore, tuning the effective negative parameters can cause the total reflection effect in a
verywide-spectrum regime to control thewave transmission characteristics, which could finally realize the anti-
vibration and the acoustic cloaking [48–50].

Figure 3. (a)The dispersion relation of themodel with a flat band at the condition fc=fb. (b)–(d)The effectivemass, inverse of
effective spring coupling and the transmittance spectrum for the systemoffive units (N=5)with lattice parameters k2=36 N m−1.
Other parameters are the same as used infigure 2.

Figure 4. (a)The dispersion relationwith aDirac-like point fa=fb. (b)–(d)The effectivemass, inverse of effective coupling and the
transmittance spectrumof the system composed offive units (N=5)with lattice parameters J=0.005 kg m2, the other parameters
are the same as used infigure 2. The red dash line indicates the zero value ofmeff and

-keff
1 atDirac point.
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3.2. Zero-index atDirac point
In the continuous limit (i.e. the longwave limit with infinitesimal q), ¶ ¶ = - -( )m u t k u qL2 1 coseff

2 2
eff can

be expanded to be

¶
¶

= - =
¶
¶
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k Lq u k L

u

x
, 15eff

2
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2

eff

2

2

due to  ¶ ¶q xi for harmonic wave solution = w- +ˆ ( )u ue qx ti . Thus, under this longwave limit, the vibration
in 1Dphononicmetamaterials can be regarded as acoustic/elastic wave, and the discrete lattice can be regarded
as a continuousmedium. For such amedium,we know that the refractive index is defined as n=vs/vpwhere vs
is the reference sound velocity in air and w= =v q L k mp eff eff is the phase velocity in themedium. Thus,
the refractive index is

µ ( )n m k . 16eff eff

In addition, the concept of impedance inwave physics is very important, which can govern how awave
propagate in a system. In 1D acousticmetamaterials, the impedance r=Z vpeff with the line density
r = m Leff eff , so that

r= = ( )Z L k m k m . 17eff eff eff eff eff

Derived from these formulas, if refractive index n=0 (thewave can propagate through the systemwithout
any changes), there are two cases tomeet it. One is the single zero condition, whichmeans either one of the
effectivemassmeff and the inverse of effectivemodulus -keff

1 is zero, the other is double zero condition that is both
of effectivemass and inverse of effective spring coupling equal to zero. If the system is under the single zero
condition, we can see that thewave impedanceZ=0 or¥, so that thewave can not pass into the system and
propagate in it, due to the strong impedancemismatch.Only under the double zero condition ( =m 0eff and

=-k 0eff
1 ), the impedanceZ of the system can achieve afinite value so that the impedance of incident wave can

matchwell with the system and thewavewill propagate through it, not cause a high reflection at the interface. At
the same time, the refractive index n is equal to zero. So the proper necessary condition for zero refractive index
is the double zero condition.

For our system, if wewant the refractive index n=0, whichmeans the effectivemass and the inverse of
effective spring coupling are both zero at the same frequency, that is to say the frequency of point a is the same as
that of point b ( fa=fb). Sowe change the lattice parameters of the system and obtain zero refractive index in
figure 4(a). ADirac-like point emerges at the critical point where the lower two pass bands degenerate. In order

Figure 5. (a)–(c)The dispersion relation of the system by changing the parameters J, Ja=0.0015 kg m2, Jb=0.0038 kg m2,
Jc=0.0114 kg m2, the purple dotted line (i) is the effectivemass of the system, the green dotted line (ii) is the inverse of effective spring
coupling of the system. (d)The curve of the Zak phase for the lower band (the red cross) and themiddle band (the blue dotted)with
respect to J,m1=0.25 kg, k2=60 N m−1, other parameters are the same as those infigure 2(a). The yellow areas correspond to ENG
and the blue areas correspond toMNG.
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to further illustrate it is zero refractive index, we show the distribution of effectivemass and the inverse of
effective spring coupling infigures 4(b) and (c). Clearly, at the frequency ofDirac-like point, the value ofmeff and
-keff

1 are both zero. In addition, according to the equation (7), using the lattice paraments offigure 4, we calculate
the effectivemass and the inverse of effective coupling both equal to zero, whichmeet the double zero condition
at the frequency ofDirac-like point.

On the other hand, on the basis of equations (12) and (13), we can obtain the formula ofm1 atDirac-like
point and then substitute it into equation (17), the impedance become

a a=
-

+
⎛
⎝⎜

⎞
⎠⎟( )

( )Z
R

Jk
k k m

Jk R k m

1

2
cos cos . 182

2 1 2 2
2

1
2

2 2
2

2

According to the lattice parameters offigure 4, the impedance is calculated and equal to 7.5, which is afinite
number indicating that thewave can propagate into the system.

Besides, we also plot the transmittance spectrumof the system at figure 4(d). But theDirac-like point is not at
the peak of the transmittance. The reason is that the boundary condition of the systemwe use to calculate the
dispersion relation and transmittance is different. For the formerwe adopted periodic systembut for the later we
use afinite system. So there is afinite shift at the peak of the transmittance. Aswe increase the number of units,
the peak of transmittance converges to that of theDirac point.

3.3. Band inversion andZak phases
In the previous section, we obtain the zero refractive index atDirac-like point through fa=fb. Thenwe adjust
the lattice parameters to two different setting: fa>fb, fa<fb andfind that the second band canflip and become
double positive in both setting as shown infigures 5(a)–(c). Infigure 5(a), the frequency of point a is higher than
the frequency of point b ( fa>fb). The lower frequency band gap at this case is due to the effective negative spring
coupling. By further changing the parameters, we obtain figure 5(c). The frequency of point a is lower than the
frequency of point b ( fa<fb). It is interesting tofind that the lower band gap in this case is caused by negative
effectivemass. Therefore the two kinds of single negative band gap offigures 5(a) and (c) belong to different
topological phases, respectively. The topological phase transition can take placewhen the system converts from
effective elasticity negative (ENG) to effectivemass negative (MNG), which is similar to the topological change
between ENG (ò negative) andMNG (μ negative) in electromagnetism [51–54].

For our system, wefirst calculate the sign of eigenvectors to judge that whether the band of the system can
reverse between the ENG system and theMNG system as shown infigures 5(a)–(c). It is clear that comparing the
ENGandMNG systems, the eigenvector signs of the lower band and themiddle band exchangewith each other
at q=0. As such, the two lower bands can reverse as parameters change.

Geometric phases usually characterize the topological properties of Bloch bands. Therefore, we discuss the
Zak phase of ENG andMNG systems, which is defined as

òq =
¶
¶p

p

-
( )u

q
u qi d , 19n q n q n

Zak
, ,

where á ¶ ¶ ñ∣ ∣u q uiqn qn is the geometric connection. For our system, the unit cell has chiral coupling and is
asymmetric, so that it is not easily to define the revolution number of wave vector around origin, and thewinding
numbers of the system in terms of Zak phases overπwill not be quantized [55]. But, according to the curve of
Zak phases for the lower band (the red cross) and themiddle band (the blue dotted) as a function of J
(figure 5(d)), we can still observe that as the parameter J changes, Zak phases of two bands also cross with each
other, and the property of the system changes from coupling-negative tomass-negative.Meanwhile, the lower
band and themiddle band close (figure 5(b)) and reopen again, so that band inversion occurs.We should point
out that when the parameter J tends to zero (infinity), the Zak phase of the lower band and themiddle band tend
to p- (0) and 0 (−π). Similar phase transitions can be also observed by tuning other systemʼs parameters.

3.4. Topological interface states
Topological interface states can exist in the interface between two simple lattices of distinct topological phases.
In order to verify the topological phase transition between ENGandMNGphononicmetamaterials, we
construct a two-segment structure as shown infigure 6(a) tomanifest topological interface states in the lower
band gap. The leftfive units are constructed as the systemwith effective negative spring coupling (ENG) in
certain frequency range and the rightfive units are constructed as the systemwith effective negativemass (MNG)
in the same frequency range.

In order to get amore intuitive view of the interface state, we plot the transmittance of the system in
figure 6(b). The upper part of the figure is the transmittance of the system and the lower part indicates the
positions of eigenvalues. The eigenvaluematches well with the frequency of the resonance peaks. Clearly, there is
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a resonance peakwithin the gap, so-calledmid-gap state. The spatial profile of the eigenmodes at the resonance
frequency is shown infigure 6(c).We can see that the resonant states at the five units and the amplitudes
exponential decay on both sides of the interface between the ENGandMNG lattices. The resonance peak is
reminiscent of the topological Jackiw–Rebbi interface state in the quantumfield theory [56].

To understand the emergence of the interface state, we take the longwave limit asmentioned above. The 1D
single lattice wave can be regarded as elastic wave and thewave number w=q m k Leff eff . For a single

negative system, m keff eff is an imaginary number. Thus, we can let q≡−iκ [57], where

k w= ∣ ∣ ( )m k L. 20eff eff

At themiddle interface (x=0), the boundary condition is that the force and the displacementmust be
continuous, so that

= =
= =

k w k w

k w k w

+ - +

+ - + ( )
F F F F

u u u u

e , e ;

e , e . 21
L

x t
R

x t

L
x t

R
x t

0
i

0
i

0
i

0
i

L R

L R

According to the continuous version ofNewtonʼs equation ofmotion, r = -¶ ¶u t F xd deff
2 2 (substituting

= - ¶ ¶F k L u xeff into equation (15)), we obtain that: w k= ( ) ( )m u L FL R L R
2

eff, 0 0 should be hold on two sides
of the interface. Therefore,

k k
= - =⟹ ( )m m

m k m k . 22L

L

R

R
L L R R

eff, eff,
eff, eff, eff, eff,

Clearly, this condition indicates that the resonance peakmeets the condition of impedancematching.

= ( )Z Z . 23ENG MNG

The closer the impedance of the twomedia is, the easier thewavewill pass through the interface and cause a
resonance peak. So, in our system, thewave impedance of the left lattice (ENG) and right lattice (MNG) are equal
to each other at the resonance frequency.

For the system infigure 6(a), the interface is at n=5. Using the lattice parameters of the system infigure 6,
we can calculate out the resonance frequency fin= ω/(2π) satisfying equation (22) as fin= 1.09 Hz. The
penetration length of the interfacial evanescent wave is characterized by 1/κ from equation (20). The
calculations from the continuouswave equationwith impedance analysis agree well with the observation from
the discretized lattice infigure 6. At fin, the left lattice and right lattice both have single negative property in the
lower band gap, where their impedancesmatchwith each other to support the interface state.

Figure 6. (a)The schematic spring-massmodel of a 1D system to achieve the topological interface state withN=10. The left lattice is
effective elasticity negative (ENG,m1=0.5 kg, k2=20 N m−1, J=0.0015 kg m2) and the right lattice is effectivemass negative
(MNG,m1=0.25 kg, k2=60 N m−1, J=0.0114 kg m2) in the same frequency rangementioned above. The last spring is added to
change the edge-mode. (b)The transmittance spectrumand eigenvalue of the system composed of ten units (N = 10). (c)The spatial
profile of the eigenmodes of the interface state for the finite structure (N = 10). The purple solid line is theoretical results of un. The
blue triangle, orange circle and yellow star dashed line are respectively the eigenmode of un, vn and θn. Other parameters of the system
are the same as those infigure 2.
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4. Conclusion

In summary, we have shown that, the systemwe studied exhibits different effective properties, such as double
positive, single negative or double negative parameters (mass and coupling), depending on the incident
frequency. By calculating the transmission characteristics, we have observed that there is a low transmittance in
the band gapwhich can be used to design vibration-resistancematerials. At the frequency where the effective
mass and coupling are both infinite, a flat band emerges that will induce an extremely high density of states and
the systempossesses dark states.We have also achieved zero refraction index by adjusting the parameters for
forming aDirac-like point, where both effectivemassmeff=0 and the inverse of effective spring coupling

=-k 0eff
1 such that thewave impedance is finite, which havewide application prospects onwavemanipulations.

Besides, the phenomenon of topological phase transition between negativemass and negative coupling has been
studied in the low frequency band gap. Finally, we have analyzed the interface state arising fromdistinct
topological phase between ENGandMNG.These properties will deepen our understanding in both physics and
application on the emerging concept of one-dimensional topological phononicmetamaterials. The systemwe
used could be realized in experiment by themagnetic levitation guide or a thin string [44] to resist the influence
of gravity.
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