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Abstract

Several studies have projected increases in drought severity, extent and duration in many

parts of the world under climate change. We examine sources of uncertainty arising from

the methodological choices for the assessment of future drought risk in the continental US

(CONUS). One such uncertainty is in the climate models’ expression of evaporative demand

(E0), which is not a direct climate model output but has been traditionally estimated using

several different formulations. Here we analyze daily output from two CMIP5 GCMs to eval-

uate how differences in E0 formulation, treatment of meteorological driving data, choice of

GCM, and standardization of time series influence the estimation of E0. These methodologi-

cal choices yield different assessments of spatio-temporal variability in E0 and different

trends in 21st century drought risk. First, we estimate E0 using three widely used E0 formula-

tions: Penman-Monteith; Hargreaves-Samani; and Priestley-Taylor. Our analysis, which pri-

marily focuses on the May-September warm-season period, shows that E0 climatology and

its spatial pattern differ substantially between these three formulations. Overall, we find

higher magnitudes of E0 and its interannual variability using Penman-Monteith, in particular

for regions like the Great Plains and southwestern US where E0 is strongly influenced by

variations in wind and relative humidity. When examining projected changes in E0 during the

21st century, there are also large differences among the three formulations, particularly the

Penman-Monteith relative to the other two formulations. The 21st century E0 trends, particu-

larly in percent change and standardized anomalies of E0, are found to be sensitive to the

long-term mean value and the amplitude of interannual variability, i.e. if the magnitude of E0

and its interannual variability are relatively low for a particular E0 formulation, then the nor-

malized or standardized 21st century trend based on that formulation is amplified relative to

other formulations. This is the case for the use of Hargreaves-Samani and Priestley-Taylor,

where future E0 trends are comparatively much larger than for Penman-Monteith. When

comparing Penman-Monteith E0 responses between different choices of input variables

related to wind speed, surface roughness, and net radiation, we found differences in E0
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trends, although these choices had a much smaller influence on E0 trends than did the E0

formulation choices. These methodological choices and specific climate model selection,

also have a large influence on the estimation of trends in standardized drought indices used

for drought assessment operationally. We find that standardization tends to amplify diver-

gences between the E0 trends calculated using different E0 formulations, because standard-

ization is sensitive to both the climatology and amplitude of interannual variability of E0. For

different methodological choices and GCM output considered in estimating E0, we examine

potential sources of uncertainty in 21st century trends in the Standardized Precipitation

Evapotranspiration Index (SPEI) and Evaporative Demand Drought Index (EDDI) over

selected regions of the CONUS to demonstrate the practical implications of these methodo-

logical choices for the quantification of drought risk under climate change.

Introduction

Drought is a major climatic phenomenon affecting socio-ecological systems worldwide

through scarcity of available water [1,2]. This scarcity generally arises from a sustained and

extended period of precipitation deficiency, such as in the 2012–2016 California drought, but

it often is initially set off and further intensified by increased water demand by the atmosphere

and society [3–5]. In this paper we focus on atmospheric evaporative demand (i.e., “the thirst

of the atmosphere”), which represents the amount of water that would evaporate from the

earth’s surface and be transpired by plants if water availability were not a limiting factor (e.g.,

[6]).

Future drought risks are expected to change due to changes in the hydroclimatological driv-

ers of drought processes [7]; these include changes in large-scale moisture transport [8], pre-

cipitation patterns [9], snow processes [10,11], and increases in evaporative demand (E0) in a

warmer atmosphere and its influence on soil moisture [12,13]. Previous studies have warned

of increases in drought severity, extent, and duration, affecting the water balance in many

parts of world under climate change [14,15], including regions in the continental US

(CONUS; [16,17]). These projection studies typically focus on either the precipitation deficit

itself or some proxy of soil water availability. Societal impact studies also factor in increasing

water demand by agriculture and other human activities [18–20]. On the other hand increased

aridity from enhanced E0 will likely be partially offset by increased water-use efficiency in

plants due to elevated atmospheric CO2 concentrations [21–23].

Recently, there has also been a concerted effort to frame drought risk in the context of eco-

system impacts, where an episodic deficit in “ecologically available water” can potentially drive

ecosystems beyond thresholds of vulnerability (e.g., widespread tree mortality, species habitat

shifts), often with cascading impacts in coupled natural-human systems. In an effort to incor-

porate important ecological impacts that do not fit into existing drought definitions (i.e., mete-

orological, hydrological, or agricultural droughts [24,25]) and to pave the way for new policies

and adaptive frameworks, the Science for Nature and People Partnership [26] have empha-

sized the concept of “Ecological Drought” [27,28], which they define as “a prolonged and wide-

spread deficit in naturally available water supplies—including changes in natural and managed

hydrology—that create multiple stresses across ecosystems”. In this context, natural resource

managers and decision makers must anticipate future drought risk and assess the uncertainty

associated with projected changes as they develop regional drought plans [29]. Part of the

uncertainty in drought risk assessments arises from methodologies employed in the study,

Future drought risk and evaporative demand estimation
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which include the choice of drought metrics, the methodology to estimate the various physical

terms in those metrics (evaporative demand here), and uncertainties in global climate model

(GCM) projections at regional scales [30–34].

Of particular concern related to changing drought risk under climate change is the increase

in E0 due to a warmer atmosphere, which could potentially enhance drying and heating of the

land surface, causing more frequent, long-lasting, and more severe soil moisture depletions

[15,35]. E0 is both a driver of drought (i.e., it controls loss of water from the land surface) and

an indicator of drought (through the complementary relationship between actual ET and E0,

e.g.[36]). If properly estimated, E0 is sensitive to physical variables such as net radiation, tem-

perature, humidity, and wind speed, and it both influences and is influenced by soil moisture-

atmosphere feedbacks. Furthermore, E0 is extensively considered for agricultural and ecologi-

cal impacts assessments, and many operational drought indicators (e.g., PDSI, SPEI, ESI,

EDDI) use this term.

Recent studies [21,37] suggest that E0-based drought indicators can overestimate future

drought predictions by not incorporating plants’ physiological response to elevated CO2 con-

centrations, i.e., and increased water-use efficiency that leads to a similar carbon uptake and

photosynthesis for lower transpiration losses from the plant. As such the impacts of changes in

E0 in climate projections should be interpreted with care. However, for the purposes of this

paper, the use of a standard reference serves to isolate the methodological issues considered.

Further, GCM generally have coarse spatial resolutions and land surface responses show sig-

nificant uncertainties [38–40]. The assessment of E0 is therefore very instructive, particularly

when we examine hydro-climatic processes at finer temporal and spatial resolutions relevant

to regional impacts assessment, as well as taking the benefit of the more widely available down-

scaled GCM output of atmospheric variables.

Potential evaporation and reference evapotranspiration are widely used measures of E0.

Historically, several different formulations ranging from simple temperature-based formulae

to the more complex physically based methods (i.e., those that incorporate all the physical driv-

ers—radiative and advective—that affect the energy balance that would hold over a wet surface

in given climatic conditions) such as the Penman-Monteith [41], have been used to estimate

this term (e.g., [42,43]). Even within a single method, different choices of parameter estimation

exist, e.g. Scheff and Frierson [44] found that Penman-Monteith-based E0 estimation shows

10–30% variation across the temporal scales of the input data (3-hourly versus monthly). Simi-

larly, in the Penman-Monteith formula, different studies have used either short- or tall-crop

coefficients (discussed later) which can considerably affect E0 estimation [44–46]. While E0

estimation remains an active research area (e.g., [21,37]) there is no clear set of guidelines or

recommendations for user communities interested in assessing and quantifying climate

change-induced drought impacts at regional scales. For example, the U.S. Department of Inte-

rior’s North-Central Climate Science Center is interested in better understanding the future

drought trends in the Northern Great Plains region [47], in order to properly inform stake-

holders and resource managers in their adaptation plans. E0 is also an important variable for

ecological applications, yet a number of habitat, species-distribution, and vegetation models

still use simplified radiation-based methods to estimate E0 while investigating impacts of cli-

mate change on terrestrial ecosystems (e.g., [48–50]). Another example is the commonly used

Aridity Index (AI; [51]) for the assessment of future drought risk. While some studies employ

the AI computed with physically based E0 (e.g., [52,53]), many others rely on AI computed

using temperature-based methods such as Hargreaves-Samani [54,55] to assess impacts of cli-

mate change on ecosystems (e.g., [22,31,56]).

A primary goal of this study is to evaluate how some widely used E0 formulations differ in

their estimation of E0, including in its spatial and temporal variabilities and trends under

Future drought risk and evaporative demand estimation
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climate change. Furthermore, we also investigate how different choices of parameters and tem-

poral scale of input data for a specific formulation affect E0 estimation and future trends. Previ-

ous studies have done cross-comparisons of different E0 formulations (e.g., [1,57–60]), but

only a few studies (e.g., [61,62]) have examined the importance of methodological choices for

drought risk assessment at regional scales under climate change scenarios, in particular for the

CONUS. For example, Sheffield et al. [1] found that 20th century global drying trends differ

between temperature- and physically based E0 estimation methods. A more exhaustive com-

parison including several E0 formulations, choices of parameter estimations, and drought met-

rics is needed for regional application in drought analyses. Here we compare such

uncertainties coming from the methodological choices to estimate E0 (use of different formula-

tions and input data), and selection of GCM output for the CONUS (see Table 1). Another

focus of this study is how “standardized” drought indices are affected by different methodolog-

ical choices. Standardized drought indices are widely used operationally because they allow

comparisons of drought conditions across space and time (e.g., [63]). E0 is central to the calcu-

lation of a variety of commonly used drought indices, which include the formerly mentioned

Aridity Index, the Palmer Drought Severity Index (PDSI; [64]), the Standardized Precipitation

Evapotranspiration Index (SPEI; [65]), and the recently developed Evaporative Demand

Drought Index (EDDI; [36,66]). Differences in the estimation of E0 from different methodolo-

gies will affect how these metrics represent the magnitude, duration, and the spatial extent of

drought in the historical climate and in projections of future drought (e.g., [1]). Therefore, we

also evaluate how future trends in standardized E0 anomalies and trends in standardized

drought indices like SPEI and EDDI are sensitive to methodological and GCM choices made

when estimating E0. This is crucial because ecologists and natural resource managers have a

wide variety of methods and GCM datasets to choose from, but generally rely on limited guid-

ance in the literature as to how sensitive their findings could be to these choices. This paper

addresses this problem by comparing different methodologies for E0 estimation, two drought

indicators (EDDI and SPEI), and investigating their impacts on present and future droughts

conditions at regional scales within the CONUS.

Methods: Estimating E0 and future drought risk

Data

We use daily outputs from the Coupled Model Intercomparison Project 5 (CMIP5) Historical

(1950–2005) and Representative Concentration Pathway 8.5 (RCP8.5, 2006–2100) climate

simulations from two GCMs: GFDL-ESM2M and CanESM2. Model specifications and their

climate sensitivities are shown in Table 2 (sensitivity values given by Forster et al. [67]), and

the topography of the CONUS in each model is depicted in Fig 1; more information about

these models can be found in Flato et al. [68]. We use only the first ensemble member from

each GCM’s simulations (only one member is available for GFDL-ESM2M) and we work with

the data in their native grid resolutions. We select these models because of their availability of

the required daily variables and their diverging biases and climate sensitivities. For example, in

the Northern Great Plains region, GFDL-ESM2M has a cold (-1˚C air temperature) and wet

(+40% precipitation) bias while CanESM2 has a hot (+4˚C) and dry (-10%) bias, with biases

defined as the difference between the models’ historical climate and observations (where

observations are drawn from University of Delaware v3.01 data, for temperature, and WMO’s

Global Precipitation Climatology Centre v5 data, for precipitation). Furthermore, CanESM2

projects a 2˚C greater warming by 2050 than GFDL-ESM2M for the Northern Great Plains

(region shown by red boxes in Fig 1), although both models project similar increases in

precipitation.

Future drought risk and evaporative demand estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0174045 March 16, 2017 4 / 22

https://doi.org/10.1371/journal.pone.0174045


To compute E0, we used daily maximum and minimum air temperature (tasmax and tas-
min), relative humidity (rhs), wind speed (sfcWind), and upward and downward shortwave

and longwave radiation (rsus, rsds, rlus, and rlds) at the surface. To compute the drought risk

indices, we used our daily estimates of E0 and also the models’ daily precipitation rate (pr). The

purpose of this paper is to illustrate how different methodologies can lead to very different pro-

jections of drought risk under climate change scenarios, therefore we restricted our analyses to

two climate models. We do not extensively evaluate different plausible scenarios for future

drought risk using several CMIP5 climate models, such as those done by Cook et al. [17] and

Kumar et al. [46], for example.

Pan evaporation is an alternative measure of atmospheric evaporative demand for which

long term and spatially distributed observations are available, and is closely related to E0 [69].

Pan evaporation observations are well-modeled by the PenPan equation, a version of the Pen-

man method, indicating that physically-based Penman-type methods are able to capture the

mean and variability of E0, including sensitivity to individual drivers [70–72]. We use station-

based pan evaporation observations from the NOAA Cooperative Observer (COOP) Network

to evaluate the ability of each E0 method to reproduce the spatial patterns of observed warm-

season (defined here as May-September) E0 and its interannual variability. The data consists of

an extension of that described in Hobbins [73,74]. That dataset was comprised of 228 stations

reporting warm season (May-October) pan evaporation with at least 20 years of data between

1950 and 2001. Because here we define the warm season as May-September, we were also able

to extend the dataset by adding 21 stations north of 41N latitude (see S1 Table for names and

Table 1. Analysis summary.

E0 Formulations

(Drivers)

Input Data Choices

(Penman-Monteith only)

GCM Selection

Hargreaves-Samani

(temperature)

monthly versus daily wind speeds

low versus high climate sensitivity

Priestley-Taylor

(temperature and radiation)

tall versus short crop

cold/wet versus hot/dry

(model bias relative to the observed climate)

Penman-Monteith

(temperature, radiation, humidity and wind speed)

GCM versus parameterized radiation terms

We evaluate 21st century trends in evaporative demand (E0) and standardized drought indices (SPEI and EDDI) that use E0 as function of the

methodological choices summarized above.

https://doi.org/10.1371/journal.pone.0174045.t001

Table 2. Global climate model specifications and sensitivities.

Model Modeling center Resolution (degrees lon x lat) Climate

sensitivities

(˚C)

ECS TCR

CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 2.8 x 2.8 3.69 2.40

2nd Generation Canadian Earth System Model

GFDL-ESM2M NOAA/Geophysical Fluid Dynamics Laboratory, USA 2.5 x 2.0 2.44 1.30

Geophysical Fluid Dynamics Laboratory Earth System

Model with Modular Ocean Model component

ECS = Equilibrium Climate Sensitivity; TCR = Transient Climate Response.

https://doi.org/10.1371/journal.pone.0174045.t002
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IDs of these stations). As noted in [73], the pan evaporation data require extensive quality con-

trol and homogenization due to documented and undocumented station moves and other fac-

tors. For the additional stations we followed the procedure in [73], including an adjustment in

the mean when documented station moves occurred, and the removal of obvious outliers. We

did not test for undocumented inhomogeneities for these stations. Instead, as in [73], further

visual inspection of all station timeseries was used to add additional breakpoints in the data for

homogenization (only two were added), and to eliminate two stations from consideration.

Quantifying evaporative demand

Potential or reference evapotranspiration are widely used measures of E0. Potential evapo-

transpiration is the idealized flux of water from a surface to the atmosphere under unlimited

moisture conditions (e.g., [6]), whereas reference evapotranspiration is the idealized flux of

water from a reference crop under strictly specified surface and moisture conditions that lead

to no moisture stress in plants (i.e., “well-watered”; [69]). We consider the following three for-

mulations for estimating E0 because of their wide application both operationally and in

research (e.g., [21,37,75]).

1. Penman-Monteith formulation of reference evapotranspiration. This physically

based estimate of E0 ([41,69,76,77]) is determined using the following equation:

E0 ¼
0:408 D

Dþ gð1þ cduÞ
ðRn � GÞ þ

g
cnu

Tþ273

Dþ gð1þ cduÞ
ðes � eaÞ ð1Þ

Here, the unit for E0 is mm day-1. The constant 0.408 (m2 mm MJ-1) represents the inverse

of the latent heat of vaporization, Rn (MJ m-2 day-1) is the net radiation at the crop surface, G
(MJ m-2 day-1) is the downward soil heat flux, T (˚C) is the air temperature at a 2-m height, u
(m s-1) is the wind speed at a 2-m height, es (kPa) is the saturation vapor pressure, ea (kPa) is

the actual vapor pressure (thus es−ea is the vapor pressure deficit), Δ (kPa ˚C-1) is the slope of

temperature-saturation vapor pressure curve at T, γ is the psychrometric constant (kPa ˚C-1),

cn (K mm s3 Mg-1 day-1) and cd (s m-1) are the numerator and denominator constants specific

to reference crop type at the given time step (in this case, daily) [77]. cn includes the effects of

aerodynamic conductance that increases with vegetation height [78], while cd represents a

ratio of aerodynamic to leaf surface conductance (i.e., the inverse of surface resistance) that is

Fig 1. The topography of the CONUS in GFDL-ESM2M (left) and in CanESM2 (right). The red boxes delineate the

Northern Great Plains region adopted in this study, over which E0 is spatially averaged at each daily time step.

https://doi.org/10.1371/journal.pone.0174045.g001
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likely to change under elevated CO2 concentration in the future [21,37] (this effect is not con-

sidered in this study). The first term on the right-hand side of Eq 1 is driven by the energy

available for evaporation, which is given by Rn − G. The second term is driven by the ability

to transport the water vapor away from the evaporating surface so that vapor pressure gradient

is maintained; it is also known as the advective or aerodynamic term [79]. We computed

each term using daily tasmin, tasmax, rhs, sfcWind, rsus, rsds, rlus, and rlds from the CMIP5

models. Following Allen et al. [69] (hereafter, FAO56), we primarily adopted the “tall crop”

surface parameters (cn = 1600 and cd = 0.38), but a comparison with “short crop” parameters

(cn = 900 and cd = 0.34) is also discussed. Note that a constant cd value is adopted in this study,

as the FAO56 method does not account for the effect of reducing cd under elevated CO2

concentrations.

Because the concept of reference evapotranspiration was originally intended to represent

small-scale field conditions, we test its transferability to the large-scale climate model world.

Specifically, we assess the impact of parameter choices by computing variations in E0 responses

from Eq 1 based on various input parameters for the radiative and aerodynamic terms in the

formulation, and for different temporal scales of wind speed estimates:

1. Radiative inputs: we assessed the impact on E0 of net radiation (Rn) taken from GCM out-

puts, as opposed to parameterization in the FAO56 method, where net radiation is com-

puted using the GCM’s downward shortwave radiation and a fixed surface albedo of 0.23

while the net longwave radiation is parameterized (PM-FAO56). We compared this with E0

estimates using GCM outputs for upward and downward longwave radiation while keeping

the same fixed surface albedo (PM-gcmLW), and also including all the radiative terms from

the GCM (i.e., where albedo is variable, PM-gcmSWLW). We use this latter version (PM-
gcmSWLW) to compare against the Hargreaves-Samani and the Priestley-Taylor formula-

tions throughout this paper.

2. Reference crop type: we evaluated differences in E0 responses using the tall and short crop

parameters described earlier.

3. Wind speed: we compared the use of daily wind speed inputs (as given by the GCMs) to the

use of monthly mean wind speed (i.e., where daily values are made equal to monthly mean

value). We chose to test this effect for wind speed alone because, among all drivers of E0,

wind speed has the highest daily variability, and we hypothesized that using monthly means

would thus underestimate the variability of E0.

2. Hargreaves-Samani reference evapotranspiration. The FAO56 method recommends

that, in the absence of all other meteorological data required for the Penman-Monteith equa-

tion, the temperature-based estimate of E0 proposed by Hargreaves and Samani [55] should be

used. It takes the following form:

E0 ¼ a RA ðTmax � TminÞ
0:5
ðTavg þ 17:8Þ: ð2Þ

This formulation includes a radiation term, RA, which is top-of-the-atmosphere downward

solar (extraterrestrial) radiation, here given in mm day-1, as is E0. However, RA is derived from

time of year and latitude only, so the Hargreaves-Samani method is considered temperature-

based [80]. Another very commonly used temperature-based method for E0 estimation is the

Thornthwaite method [81]. However, that method was originally proposed for monthly data,

while our analyses focuses on daily estimates. Here we employed the GCMs’ daily tasmax,

Future drought risk and evaporative demand estimation
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tasmin, and derived Tavg (in ˚C), and the value of a = 0.0023 (an adjustment constant) as

described in FAO56.

3. Priestley-Taylor potential evapotranspiration. This radiation-based method is more

commonly used to estimate evaporative demand over extensive wet areas. It is a simplified

form of the Penman equation [76], where the aerodynamic term is approximated to be 25 to

30% of the energy driven term (commonly set to 26%, or 1.26) [80,82], as follows:

E0 ¼ 1:26
D ðRn � GÞ
ðDþ gÞ l

ð3Þ

We used the GCM’s tasmax and tasmin to estimate Δ and rsus, rsds, rlus, and rlds fluxes to

estimate Rn. As in the Penman-Monteith method, G is assumed negligible at daily time scales.

Our analysis primarily focuses on the warm season which we select to be covering the

period from May through September (hereafter MJJAS). Most of the annual E0 occurs in the

warm season and thus, from an E0 perspective, it is the main period of concern for drought

processes.

Drought indices

We selected two operational drought-monitoring indices to quantify drought risk: the Evapo-

rative Demand Drought Index (EDDI; [36,66]) and the Standardized Precipitation Evapo-

transpiration Index (SPEI; [65]). EDDI, which is an emerging drought index, is based solely

on E0, while SPEI evaluates the balance between moisture supply (precipitation) and demand

(evaporative demand) in the atmosphere (a balance we hereafter refer to as P—E0). Both indi-

ces can be computed for various time scales, and are intended to detect fast-evolving droughts

(weeks to months) and characterize persistent seasonal and long-term droughts (months to

years). While EDDI was originally developed for use with physically based E0, SPEI was origi-

nally developed with a temperature-based E0. Recent studies [83,84] have suggested that com-

puting SPEI with a physically based formulation of E0 might be more appropriate to avoid

overestimating the effect of increasing temperatures on E0. We compute 12-week (i.e., roughly

a 3-month season) EDDI and SPEI using the three E0 formulations described above. Both indi-

ces are standardized relative to a 40-year climatology period (1966–2005).

We computed EDDI using the non-parametric approach described in Hobbins et al. [36],

repeated here for the reader’s convenience. First, we computed empirical probabilities of E0

using the Tukey plotting position formula [85]. For each day between 1950–2100, daily E0 esti-

mates were aggregated over the preceding 12 weeks, thus maintaining a daily temporal resolu-

tion in our timeseries. Next we ranked each 12-week E0 total against the 12-week totals for the

same date in the years of the reference period (1966–2005). To give an example, the 12-week

E0 for August 31 is the summation of daily E0 from June 9 to August 31, and we ranked the

12-week E0 for August 31 in 2036 against all the August 31 12-week E0s from the reference

period. The empirical probabilities were then mapped to an inverse normal approximation

[86] of these ranks to obtain standardized EDDI values. EDDI is distributed in a ~N(0,1) fash-

ion (i.e., a standard normal distribution), with a range that is a function of the number of years

in the reference period: in our case (n = 40) EDDI has a range of ±2.14. Because the distribu-

tion is normal, it can also be represented by percentiles. A zero EDDI value indicates that E0

accumulated over the aggregation period in a given year is equal to the median value from the

reference period (the 50th percentile); negative values (lower E0, lower percentiles) indicate

wet anomalies and positive values (higher E0, higher percentiles) indicate dry anomalies.

SPEI is an index of precipitation minus potential evapotranspiration (P-Eo). We computed

12-week SPEI using a modified version of the original procedure described in Vicente-Serrano
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et al. [65]. While the original study used a log-logistic distribution to compute the probabilities

of P—E0 values at various scales exceeding the climatological median, their procedure did not

account for seasonality and thus hindered the comparison to EDDI. In addition, when using

daily aggregates of P—E0, we found the estimation of the parameters of the log-logistic distri-

bution to be unstable. Therefore we adopted a non-parametric calculation procedure analo-

gous to EDDI, as probability-based approaches allow for more consistent comparisons

between standardized indices [87]. Just as described earlier for EDDI, daily P—E0 estimates

were aggregated to continuous 12-week totals and ranked against the same-day 12-week accu-

mulations within the reference period. SPEI values were determined from the empirical rank-

ing probabilities relative to the reference period, also covering the range of ±2.14. In this case,

positive SPEI values indicate wet anomalies while negative SPEI values indicate dry anomalies.

As with EDDI, the range of SPEI values can also be represented by percentiles.

Results

E0 responses compared between Penman-Monteith, Hargreaves-

Samani and Priestley-Taylor formulations

Historical climatologies (1976–2005) of E0 values across the CONUS for MJJAS, calculated

from the three E0 formulations with driving variables drawn from the GFDL-ESM2M and

CanESM2 models, are shown in Fig 2, along with the observed MJJAS mean pan evaporation.

In general, all three methods show a decrease in E0 values with increasing latitude. However,

the pattern is more spatially heterogeneous in the values estimated by Penman-Monteith.

Most notable are the large magnitudes in the southwestern US and Great Plains region, which

are less pronounced in Hargreaves-Samani and mostly absent in Priestley-Taylor. For both

GCMs, the Penman-Monteith based E0 maps most closely resemble the spatial pattern of pan

evaporation. We also find higher magnitudes of E0 in Penman-Monteith, and in particular for

the regions that are strongly influenced by wind-driven turbulence and relative humidity like

the southwestern US and the Great Plains (e.g., [5,72,88]). Wind speed and specific humidity

are not adequately accounted for in the Hargreaves-Samani and Priestley-Taylor formulations.

In Fig 3 we compare the coefficient of variation (CV) in seasonal (MJJAS) E0 across the

CONUS between the three formulations driven by the data from the two GCMs for the 1976–

2005 period, including the CV of observed MJJAS pan evaporation. Here again, there are large

differences between the three formulations, with Penman-Monteith maps depicting the largest

CV magnitudes, particularly in the Great Plains region. The CV is indicative of year-to-year

variability in seasonal E0, an accurate depiction of which is required to adequately capture

drought risks. Station-based pan evaporation observations confirm the maximal CV over the

Great Plains region as found in the Penman-Monteith formulation, which the other two for-

mulations do not adequately capture, in particular the Priestley-Taylor formulation.

Next we investigate 21st century projections in E0 between these three formulations. The

primary intention here is less to evaluate what future E0 projections may look like and more to

explore how different methodological choices affect these projected changes. First, we examine

the future changes in E0 and their spatial variation across the CONUS. Fig 4 shows changes in

mean MJJAS E0 by 2050 based on the three formulations as a percentage of the historical

(1976–2005) mean. We use the t-test at 5% significance level to determine whether the pro-

jected change is statistically significant. These results show that, to the first order, the choice of

GCM drives major differences in the projected changes. Overall, with the exception of one

grid cell (in Priestley-Taylor based on GFDL-ESM2M), E0 increases by mid-21st century.

CanESM2 shows significant increases in E0 across the whole domain and for all the three for-

mulations, while GFDL-ESM2M generally shows more modest increases than CanESM2, with
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large regions in the central and western US where the change is not significant when using the

Penman-Monteith formulation. Across the three formulations, these projected changes also

differ between the GCMs. For example, Priestley-Taylor gives the largest CONUS-wide

increase in GFDL-ESM2M, while Penman-Monteith has that for CanESM2.

Next, we examine and compare temporal trends in E0 between the three formulations for a

selected region, i.e., the Northern Great Plains as delineated by the rectangular boxes in Fig 1.

Fig 5 shows E0 trends for MJJAS in seasonal totals, percent of the 1976–2005 mean, and stan-

dardized anomalies based on the three formulations and the two GCMs. Here again, large dif-

ferences are evident between the three formulations in the magnitude of E0, in the amplitude

of interannual variability, and in long-term trends. The absolute E0 magnitudes are different

Fig 2. Historical mean E0 across the different E0 formulations. Climatological mean E0 (mm) across the

CONUS for the MJJAS period in GFDL-ESM2M (first three plots in left column) and CanESM2 (right column)

as estimated by the Penman-Monteith (first row), Hargreaves-Samani (second row), and Priestley-Taylor

(third row) formulations for the 1976–2005 period. The bottom left plot shows observed mean MJJAS pan

evaporation across the CONUS from 228 stations which had at least 20 years of data between 1950 and

2001.

https://doi.org/10.1371/journal.pone.0174045.g002
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between GFDL-ESM2M and CanESM2, with values for CanESM2 substantially much greater,

in particular when estimated using the Penman-Monteith and Hargreaves-Samani formula-

tions. The warm and dry bias in CanESM2 is expected to cause this difference. Despite these

differences between the two GCMs, we find that the Penman-Monteith-based E0 estimation is

both higher in magnitude of mean seasonal totals as well as the amplitude of interannual vari-

ability relative to the other two formulations. Priestley-Taylor exhibits the lowest interannual

variability, similar to results found for coefficient of variation in Fig 3. Because both Priestley-

Taylor and Hargreaves-Samani estimations yield overall lower magnitudes for climatological

mean and amplitude of interannual variability in E0, they have a large influence on the trends

in percent of historical mean and standardized anomaly (Fig 5, bottom two rows), particularly

the latter. For example, in the plots for GFDL-ESM2M (left column), Priestley-Taylor exhibits

a comparably low E0 climatology (similar to Hargreaves-Samani) and the lowest interannual

variability, yielding the largest 21st century trends in E0 in both percent of historical mean and

standardized anomalies.

Our analysis of E0 responses across the three formulations shows that Penman-Monteith

produces a more spatially heterogeneous response in E0 as well as a more enhanced realization

Fig 3. Historical coefficient of variation across the different E0 formulations. E0 coefficient of variation

(CV, times 100 for %) across the CONUS for MJJAS in GFDL-ESM2M (first three plots in left column) and

CanESM2 (right column) as estimated by the Penman-Monteith (first row), Hargreaves-Samani (second row),

and Priestley-Taylor (third row) formulations for the 1976–2005 period. The bottom left plot shows the CV of

observed MJJAS pan evaporation across the CONUS from 228 stations which had at least 20 years of data

between 1950 and 2001.

https://doi.org/10.1371/journal.pone.0174045.g003
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of the amplitude of interannual variability. We believe that both these features are a result of a

more adequate treatment of wind-driven turbulence and relative humidity in Penman-Mon-

teith, and therefore this formulation is particularly critical for regions, such as the southwest-

ern US and the Great Plains, that are sensitive to these drivers. In the next section, we focus on

just the Penman-Monteith formulation and examine how the E0 responses are further sensitive

to the choices of input variables representing both the aerodynamic and radiative terms.

Penman-Monteith E0 responses based on the choice of input

parameters

We first examine the sensitivity of projected E0 trends to different choices of radiative inputs

into the Penman-Monteith formulation. In Fig 6 (left column), we compare the following

three cases for this analysis, using data from the GFDL-ESM2M model only: (a) fixed surface

albedo (0.23) and parameterized longwave radiation balance based on FAO56, (b) fixed surface

albedo (0.23) based on FAO56 but GCM-modeled longwave radiation balance, and (c) GCM-

modeled net shortwave and longwave radiation balances. For the Northern Great Plains, the

use of parameterized versus model’s longwave creates the largest difference for absolute values

of E0. The choice of fixed versus modeled variable albedo has very little effect on the trends.

Fig 4. Projected changes (%) in E0 by 2050 across the different E0 formulations. Percent change in

mean MJJAS E0 from Penman-Monteith (top row), Hargreaves-Samani (center), and Priestley-Taylor

(bottom) formulations for GFDL-ESM2M (left) and CanESM2 (right) by 2050 (2036–2065) relative to the

historical (1976–2005) period. Grid cells where the change is not statistically significant (i.e., p > 0.05) are

masked out in white.

https://doi.org/10.1371/journal.pone.0174045.g004
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Overall, the radiative input choices have an extremely limited effect on differentiating the E0

timeseries in percent of mean and standardized E0 anomalies during the 21st century.

Next, we examined the sensitivity of projected E0 responses to input of wind speed and

crop height, which appear in the aerodynamic term. Fig 6 (right column) shows MJJAS E0

trends for the Northern Great Plains for differences in the aerodynamic term due to (i) model-

ing tall versus short reference crops, and (ii) using daily wind speeds versus monthly wind

speeds averaged from daily values. In general, the results show that (a) tall crops estimate E0

roughly 20% higher than short crops, and (b) the use of daily wind speed also yields higher E0

than for monthly wind speed, although the magnitude of that difference depends on the crop

type (surface roughness). Furthermore, interannual variability is higher for daily wind speed

and tall crop type. These factors also affect 21st century trends in percent of historical mean

and standardized anomalies, however differences due to the choice of input parameters are

much smaller relative to the differences found between the three different E0 formulations in

the previous section (see Fig 5). Although in Fig 6 we only show the sensitivity of Penman-

Monteith formulation to choices of radiative and advective terms based on GFDL-ESM2M, we

find similar results with CanESM2.

Sensitivity of 21st century projections of drought indices to E0 formulation

and GCM selection

One approach to explore changing drought risk under climate change is to evaluate future pro-

jections of currently used drought indices. Here, we examine 21st century projections for the

Northern Great Plains domain in two drought indices: the Evaporative Demand Drought

Fig 5. 21st century trends in E0 across the different E0 formulations. Trends in MJJAS E0 projected from

Penman-Monteith (green), Hargreaves-Samani (blue), and Priestley-Taylor (red) formulations driven by

GFDL-ESM2M and CanESM2 data for the Northern Great Plains. The top row shows seasonal totals in mm,

center row shows E0 anomalies as % of the 1976–2005 mean, and bottom row shows standardized E0

anomalies.

https://doi.org/10.1371/journal.pone.0174045.g005
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Index (EDDI; [36,66]), and the Standardized Precipitation Evapotranspiration Index (SPEI;

[65]), as a function of E0 formulation and climate model selection. As mentioned in the Meth-

ods section, the SPEI index calculated and plotted here uses the same standardization method

as used in calculating EDDI in order to better compare the EDDI and SPEI projections. How-

ever, for EDDI, positive values denote drier conditions, whereas for SPEI, negative values

denote drier conditions. We compare the projections of these indices between GFDL-ESM2M

and CanESM2 which have different biases and climate sensitivities. GFDL-ESM2M has a cold/

wet bias for the Northern Great Plains, where CanESM2 has a hot/dry bias in the historical

period. Furthermore, CanESM2 has higher global climate sensitivity to CO2 increase than

GFDL-ESM2M. Given these differences, we would expect CanESM2 to yield EDDI and SPEI

indices that project a more drought-prone future for the Northern Great Plains, relative to

GFDL-ESM2M.

Fig 7 shows projections of 12-week EDDI and SPEI between 1950–2100 for the two GCMs.

Each day’s (Day of Year, x axis within each plot) projected EDDI or SPEI value is binned into

a specific percentile category (spanning between driest and wettest categories) relative to the

historical (1976–2005) distribution. For GFDL-ESM2M, the primary difference is found in

EDDI projections across the three E0 formulations. Priestley-Taylor shows the strongest

Fig 6. Same as Fig 5 but using only the Penman-Monteith formulation and variations made to (a) radiation inputs

(left column): Strict FAO56 with fixed albedo (0.23) and parameterized longwave radiation (green), fixed albedo

and GCM-modeled longwave radiation (red), and GCM-modeled net shortwave and longwave radiation (blue);

and (b) to crop selection and/or daily versus monthly timescales for wind speed (right column): Tall reference

crop and daily wind (green), tall reference crop and monthly wind (brown), short reference crop and daily wind

(blue), short reference crop and monthly wind (yellow). Analysis based on GFDL-ESM2M only.

https://doi.org/10.1371/journal.pone.0174045.g006
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tendency for dry conditions throughout the 21st century. Hargreaves-Samani shows a similar

overall pattern to Priestley-Taylor, although the magnitude of the drying response is compara-

tively lower. Penman-Monteith shows the smallest trend for increases in the 21st century

drought risk, but still shows a positive drying trend in the late summer and fall period. On the

other hand, the SPEI plots look very similar across the three E0 formulations, and closer to the

EDDI plot based on Penman-Monteith. For CanESM2, EDDI projections also differ much

more across the three formulations relative to the SPEI plots. But for both indices, Hargreaves-

Samani and Priestley-Taylor show a more pronounced drying tendency relative to Penman-

Monteith.

Both GCMs show an increased tendency for droughts (as defined during the historical

period) during the 21st century, although there are large differences based on the choice of E0

formulation and GCM. The drought tendency is much more pronounced for EDDI than SPEI

across all formulations and models, however the difference between EDDI and SPEI plots is

smallest for Penman-Monteith. Overall, CanESM2 projects a more drought-prone future com-

pared to GFDL-ESM2M. A seasonal cycle is also apparent with increased cold-season drought

projected in GFDL-ESM2M and increased warm-season drought in CanESM2. We expect that

the difference between the EDDI and SPEI responses are primarily because, at any given time,

Fig 7. 21st century trends in EDDI and SPEI. Comparison of 12-week EDDI and SPEI computed with the

three E0 formulations for each day between 1950–2100 for GFDL-ESM2M and CanESM2 for the Northern

Great Plains region. Daily EDDI or SPEI values are binned into specific percentile categories (spanning

between driest and wettest categories) relative to the historical (1976–2005) distribution.

https://doi.org/10.1371/journal.pone.0174045.g007
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EDDI is only sensitive to the evaporative demand (E0) while SPEI is responding to the differ-

ence of moisture supply and evaporative demand (P—E0). Therefore, trends and model bias in

precipitation will affect the SPEI responses. An increasing trend in precipitation, which is

found for both models, can lessen or counteract a trend toward increasing dryness in SPEI. A

positive trend in precipitation can also dampen the increase in E0 through the complementary

relationship [89,90] by increasing available moisture, thereby impacting EDDI. Another rea-

son the future SPEI trends are weaker than the EDDI trends has to do with the fact that precip-

itation is much more variable than E0. In other words, P-E0 has a much wider distribution in

the historic period than E0 itself. Therefore, when standardized relative to the historical distri-

bution, future E0 trends will appear more augmented than future P-E0 trends, especially if

future P trends are relatively small.

GCM precipitation bias during the historical period can impact these drought indices in

two ways. First, a cold and wet bias as well as lower climate sensitivity for temperature in

GFDL-ESM2M strengthens P and attenuates E0, while the opposite is true for CanESM2,

which has a hot and dry bias. Second, a hot and dry bias will make EDDI more sensitive to

future climate warming as it increases the aridity of the model’s historical climate. An arid cli-

mate is more prone to conditions where the surface evapotranspiration cannot meet E0 leading

to more enhanced E0 (and therefore, EDDI) because of soil moisture-temperature feedbacks

that amplify surface temperature and water vapor deficit (i.e., the basis of the complementary

relationship [90]). A more detailed investigation of the relationship between GCM bias and

drought projections is a topic of future research, as regional temperature and precipitation

biases inherent in GCMs can strongly influence the trends in the 21st century projections of

these drought indices. Appropriate bias-corrected GCM datasets could help in reducing the

uncertainty in the projection of regional drought risks.

Conclusions

In this study we evaluated how different methodological and dataset choices in the estimation

of evaporative demand yield different assessments of temporal and spatial variability in E0 and

trends in 21st century drought risk. First, we evaluated these differential responses across three

of the more widely used formulations for E0 estimations: Penman-Monteith, Hargreaves-

Samani, and Priestley-Taylor. Our analysis shows that Penman-Monteith provides a more

physically robust treatment of E0 across the CONUS. This formulation gives a more spatially

heterogeneous realization of E0 because it is more sensitive to the variations in turbulent fluxes

(driven by wind speed and surface roughness) and relative humidity. Penman-Monteith also

facilitates a more physically robust depiction of the amplitude of interannual variability relative

to the other two methods, whose interannual variabilities are much lower, particularly Priest-

ley-Taylor. We also find regional patterns to this enhanced interannual variability in Penman-

Monteith, such as in the Great Plains and southwestern US, which is corroborated by pan

evaporation observations. This feature is not reproduced by Hargreaves-Samani and Priestley-

Taylor. Previous studies have also shown a greater importance of drivers like wind speed and

relative humidity in these regions in driving interannual variability in E0 [5,72,88]. Therefore,

the application of Penman-Monteith for E0 estimation would especially be critical for regions

where the influence of these drivers is strong.

We also find that Penman-Monteith is more appropriate for 21st century E0 projections

and for drought indices that use E0, e.g., EDDI and SPEI. The 21st century E0 trends generated

in our analysis, particularly trends in percent of historical mean and standardized anomalies,

are found to be sensitive to the long-term mean value and the amplitude of interannual vari-

ability; i.e. if the magnitude of E0 and its interannual variability are relatively low for a
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particular E0 formulation, then the normalized or standardized 21st century trend based on

that formulation is more amplified relative to other formulations. We find this to be the case

with the Hargreaves-Samani and Priestley-Taylor formulations, where the future standardized

E0 trends are much larger than those from Penman-Monteith.

In examining the Penman-Monteith-driven E0 response under various input variable

choices related to radiation, surface roughness, and wind speed, we found differences in E0

trends. However, these differences are much smaller than the differences in E0 trends from the

three E0 formulations. When making a choice for crop type, which determines surface rough-

ness, we find that parameterizing for tall crop leads to higher (by about 20%) long-term mean

E0 and interannual variability, which ultimately impacts the projected standardized anomalies.

We find that the use of the wind speed term averaged across different temporal scales (daily

versus monthly) has a similar effect on both the estimation of long-term mean E0 value and

interannual variability, i.e., monthly timescales lead to lower mean E0 and interannual variabil-

ity than daily timescales, but the magnitude of that effect varies with crop type. We also found

that different choices in estimating the radiation term have a very limited influence on E0

trends into the 21st century.

The choice of E0 formulation and specific GCM selection also have a large influence on the

projected changes in standardized drought indices as shown by Fig 8, which shows projected

changes in summertime (12-week, August 31) EDDI and SPEI by 2050 for the different E0 for-

mulations and GCMs evaluated in this study. In the absence of an adequate number of GCM

ensemble member runs available, we performed a Monte Carlo resampling (with replacement)

of the data to provide uncertainty ranges for these estimates (5th to 95th percentiles). Positive

changes in EDDI and negative changes in SPEI imply increases in drought intensity. Depend-

ing on the E0 formulation and GCM selection, we see a large range in future changes in these

indices, yet all results point to increases in drought conditions by 2050, except for the lower 25

percentile cases in GFDL-ESM2M for SPEI based on Penman-Monteith and Hargreaves-

Fig 8. Uncertainties in changing drought risk by 2050 based on E0 formulation and GCM selection.

Comparison of changes in 12-week EDDI and SPEI values for August 31 by 2050 (relative to the 1976–2005

mean) between the two GCMs based on the different E0 formulations considered in this study. Filled circles

show the mean change, box plots show 25th, 50th and 75th percentiles, and whiskers show 5th and 95th

percentiles. Confidence intervals shown here about the mean projected change are estimated based on

Monte Carlo resampling. Positive changes in EDDI and negative changes in SPEI signify increases in drought

intensity.

https://doi.org/10.1371/journal.pone.0174045.g008
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Samani. Overall, the use of Penman-Monteith formulation leads to more moderate increases

in future drought risk while, for the most part, Priestley-Taylor causes the largest increases in

drought risk, and Hargreaves-Samani falls between the two. As expected, the use of data from

CanESM2, which has higher climate sensitivity than GFDL-ESM2M as well as a hot and dry

bias, leads to a greater drought risk than GFDL-ESM2M.

We have demonstrated here that methodological and dataset choices are crucial to the

assessment of 21st century drought risk under climate change. Based on our findings, we

would recommend a revaluation of results from previous studies that are based on projected

trends in the standardized drought parameters. Furthermore, biases in GCMs affect the quan-

tification of projected changes in evaporative demand and the drought indices based on it,

introducing additional uncertainty. Use of physically consistent bias corrected and downscaled

GCMs output at daily timescales will help to avoid the problem of GCM bias when exploring

future drought risks across a suite of GCMs. Future studies examining trends in 21st century

drought risk should also attempt to incorporate the effects of increased water-use efficiency of

plants at elevated CO2 levels on E0 in order to not overestimate the drying risk. Overall, an

appropriate selection of methodology and dataset for E0 estimation based on these findings

will facilitate a better assessment of future drought risk.
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