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Abstract. This paper determines and compares the efficacy of systematic approaches to portfolio
construction using hourly assets from the PJM (Pennsylvania-New Jersey-Maryland) Independent System
Operator (PJMISO). The two models addressed herein are an unconditional mean-covariance model using
ordinary least squares (OLS) estimation and a lagged seemingly unrelated regression (SUR) model using
feasible generalized least squares (FGLS) estimation. Despite the abundance of quantitative research on
electricity markets, market participants are known for doing anecdotal analysis on the qualitative features
of the market, e.g. weather patterns, transmission and generation outages, gas prices, etc. to construct
daily portfolios and manage risk. Further, there is a lack of academic research that takes a practical
approach to daily, portfolio risk in these markets. This paper bridges the gap between academic and
industry analysis by incorporating quantitative analysis into a practical, systematic approach to portfolio
construction. To test for and compare the efficacy of optimized daily portfolios, this paper will simulate
portfolios using realized returns from the PJMISO market.



1 Introduction

Portfolio risk management is of principle concern to participants in financial markets, especially in whole-

sale power markets whose volatility far exceeds that of traditional financial markets such as the Standard

& Poor’s (S&P) 500.1 Such volatility is typically associated with opportunities for speculators to reap

large returns at the risk of potential, large losses. The market itself benefits from speculator participation

in the form of increased liquidity and theoretical market convergence. However, if market participants

are unable to manage the risk of their portfolio, they face the possibility of sustaining losses that force

them out of the market, reducing market liquidity. This paper evaluates the profitability and accuracy

of different methods of systematically managing daily portfolio risk.

One of the prevailing approaches to risk management that participants in electricity markets take is

evaluating physical phenomena to re-balance a daily portfolio. These qualitative factors include weather

patterns, transmission and generation outages, gas prices, load forecasts, and electricity flow modeling.

However, these techniques are largely used to determine which locations are ripe for financial speculation

or risk hedging and do little to determine asset allocations. Further, some of those factors are localized

whereas others are not. For instance, a low voltage transmission line outage in Boston is likely to have

only have a localized effect whereas excess natural gas supply in the US is likely to have a market-wide

effect. Market participants would therefore benefit from supplementing causal asset determination with

a quantitative method of asset allocation that takes into account the covariation across location and time

of day.

The most well-known procedure for this form of portfolio risk management is that of the modern

portfolio theory (MPT) (Markowitz, 1952). Despite the myriad of modifications that have been made to

advance this seminal theory, MPT still stands as a useful exercise in portfolio construction and optimiza-

tion, especially in relatively young markets such as electricity.2 The theoretical foundation of MPT is

that assets in the same market sometimes tend to move together and sometimes tend to move apart. By

including the covariance of assets in the process of portfolio creation, an investor can better manage their

1To demonstrate the volatility of these markets see Figure 2 which compares the S&P 500 to the average of the assets
used in this analysis.

2Restructured electricity markets still lack the theoretical and practical foundations that other, more mature financial
markets have: indices, a risk-free asset, and the like.
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risk; a portfolio composed of assets that perfectly move together is exposed to significant, centralized

risk.

Limited work has been done to incorporate MPT to restructured electricity markets. In particu-

lar, Liu and Wu (2007) examined the trade off between allocation in local bilateral, non-local bilateral

and spot energy markets in PJM (Pennsylvania-New Jersey-Maryland) Independent System Operator

(PJMISO) from the perspective of a hypothetical generation-owning market participant. Ghorbanipar-

var and Ghorbaniparvar (2013) take a similar approach to the MERALCO market in the Philippines,

including a univariate multiple linear regression to predict prices. Both papers focus on the maximiza-

tion of a defined utility function, constraining on assets weights, from the perspective of a hypothetical

risk-averse company that owns generation.

This paper expands on such research by instead minimizing portfolio variance, constraining on both

asset weights and desired return, from the perspective of a financial speculator. Further, this analysis

takes the more practical approach of hourly contracts for energy as opposed to daily aggregates. The

analysis also implements two models of returns to conduct the daily portfolio optimizations: an uncon-

ditional mean-covariance model using ordinary least squares (OLS) estimates and a lagged seemingly

unrelated regression (SUR) model using feasible generalized least squares (FGLS) estimation. The lat-

ter, lagged, modeling approach is appealing due to electricity prices’ well-documented autoregressive

tendencies (Aggarwal et al., 2009).

The objectives of this analysis are to determine: (1) can daily portfolios constructed via portfolio

optimization of pre-selected assets from PJMISO, on average, produce positive returns? (2) Is the com-

putationally costly extension from the unconditional mean-covariance model to the lagged SUR model

with FGLS estimates informative? (3) Which of the two models creates optimized portfolios that produce

the desired portfolio return more accurately? (4) What, if any, differences exist between the series of

simulated returns from the optimized portfolios produced by each model?

Section 2 will address important characteristics of electricity markets, section 3 will detail the research

methodology, section 4 will describe data, section 5 will report results, and section 6 will conclude.

2



2 Institutional Characteristics of Electricity Markets

In the United States, the conventional model of electricity historically involved a vertically integrated

natural monopoly in both generation and transmission, that served all the consumers of electricity in a

given area. The characteristics of this conventional market structure are price stability at the cost of high

barriers to entry and limited innovation.

However, in the late 1990s, certain areas of the United States decided to break from the conven-

tional model by creating largely deregulated markets for electricity. Instead of a single producer setting

electricity prices, these new markets would set price according to the supply and demand for electricity.

This paper draws electricity assets from PJMISO, one of those particular markets, which is the largest

and oldest independent system operator in the United States with hourly spot prices for thousands of

settlement locations across the Mid-Atlantic.

In theory, the market would see gains in both efficiency and innovation as market forces took the

place of regulation following the transition ot the deregulated marker structure. However, the regime

shift towards increased competition also exemplified the non-conventional characteristics of electricity as

a market commodity: non-storable, short-term supply shortage intolerance, perfectly inelastic demand

and inelastic supply in the spot market (Aggarwal et al., 2009). The short-term settlement basis, price in-

flexibility, and frequent, binding transmission constraints cause returns in restructured electricity markets

to be highly volatile (Weron, 2006).

PJMISO operates on a two-market system: the forward or day-ahead (DA) market and the spot or

real-time (RT) market. The DA market is comprised of a uniform price auction that PJMISO executes,

closing at noon Eastern Time each day (Weron, 2006). In preparation for the DA market, participants

leverage forecasts of market factors to arrive at a prediction of prices for the next market day. Market

participants submit bids (long positions) and offers (short positions) in price-quantity pairs for a given

hour of operation the next day at a given settlement location.3 These bids and offers are aggregated to

form the demand and supply curves for the DA market (Cheung et al., 2010). The equilibrium price of

these two curves will dictate the forward price (marginal clearing price or MCP) of electricity at that

given settlement location for that given hour (Weron, 2006). This paper will refer to that price as the

3 The pricing units for these contracts are in $/megawatt ($/MW) and quantity units are in megawatts (MWs).
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DA price.

Participants who submitted a price-quantity bid that is greater than the MCP will ‘receive’ those

MWs at the chosen hour the next day and pay the MCP for each, hence the uniformity of auction price.

Similarly, a participant who submitted a price-quantity offer that is lower than the MCP will ‘produce’

those MWs at the chosen hour the next day and receive the MCP for each contracted MW (Weron,

2006). This paper will strictly focuses on speculative market participants who do not have the ability to

deliver on awarded contracts and execute purely financial contracts. All positions of this nature settle

the next day at the end of the chosen hour by definition, prohibiting a ’buy and hold’ strategy; market

participants must successfully bid or offer into the market prior to each day they intend to participate.4

In contrast, the RT market does not operate based on an auction, rather operating on short-term

(hourly) supply and demand which are notably volatile. Conventional commodities are storable and

transportable allowing for arbitrage across time and space. Significant amounts of electricity, however,

cannot be stored in an economically viable manner or transported to a specific place; once a generator

supplies power to the grid it instantaneously travels in unknown proportions along the paths of least

resistance (Cheung et al., 2010). Not only that, but once electricity has been supplied to the grid, it

must be consumed to avoid the risk of damaging infrastructure in accordance with the Law of Con-

versation of Energy. Further, the prevailing aversion to power shortages in the US causes short-term

demand inelasticity (Weron, 2006). Therefore, PJMISO must quickly accommodate a short-term change

in demand or supply by ramping generators up and down.5 Since the objective of the ISO is to supply

power in the least-cost manner, the marginal generator will definitionally be more expensive than the last.

Additionally, unlike other financial markets, electricity prices can go negative. One cause for negative

prices is production subsidies, typically for wind and hydroelectric generators, that allow generators to

make positive revenues even when paying consumers to use power. Another cause for negative prices

is inflexibility of certain types of units which have a preference for continual, full production, such as

4Note: speculative participants do not actually receive or generate MWs of power. These contracts are the equivalent of
a commodity contract that is already ‘zeroed-out’. For each long position, the ISO will ensure that there will be sufficient
generation the next day and vice versa for each short position. The function of speculative trading is to increase liquidity
in the market to ensure price convergence and diminish regional market power of individual generators and load-serving
entities.

5Ramping here refers to changing the current rate of production on a generator; ramping up implies and increase in
production and ramping down implies a decrease.
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nuclear and brown coal (Staff, 2013).6 If market participants inadequately forecast RT prices during the

DA auction and fail to regionally diversify their portfolio they may be exposed to extreme returns as the

RT and DA prices diverge.

There are various contracts available in PJMISO with which financial speculators can seek profits.

This paper focuses on bids and offers for virtual contracts for a given settlement location i at a specified

hour ending (HE) for market day t+1. These contracts involve the market participant (MP) submitting

a price-quantity bid in the DA market for a chosen number of megawatts (MWs), paying the DA clearing

price (DAi,t ) per MW. The contract settles the next day at the RT clearing price (RTi,t+1) for the same

settlement location and HE, receiving that amount per MW. Such a contract will profit if RTi,t+1 > DAi,t

and will result in a loss if RTi,t+1 < DAi,t.
7 Offers have the opposite properties: the ISO pays MPs the

DA clearing price and gets paid the RT clearing price the next day. Return and log return are defined as

follows:

Ri,t =
(RTi,t+1 −DAi,t)

DAi,t
(1)

ri,t = ln(
RTi,t+1

DAi,t
) = ln(Ri,t + 1) (2)

{ri,t} N T
i=1 t=1

However, since the DA market closes as noon Eastern Time each day, RTi,t for hours 13-24 that day

are not known by auction close. This means ri,t−1 cannot be observed at time t for contracts on those

hours when constructing a portfolio for the auction at hand. For consistency across hours, for any given

time t the first observable return is ri,t−2 for all hours.

3 Econometric Methodology

This analysis includes daily simulation of portfolios constructed via constrained minimization of portfolio

variance. Daily portfolio optimization of this nature requires forecasts for expected returns and a variance-

covariance matrix of the selected assets. This analysis uses two models of log returns to obtain those

6For example, some unites are ’must run’ units. They are defined as such because ramping them can be costly due
to repairs and the fixed cost of start up (Staff, 2012). Therefore, it can sometimes be economical for a generator of this
nature to ’pay’ consumers to use energy when their is excess supply rather than ramping down their unit. Since the market
does not price these costs, prices can and do go negative. It is interesting to note that this eliminates the assumption of
zero-bound losses for long positions that other markets possess.

7Since prices can be negative in these markets, a negative DA clearing price implies that a speculator is paid to take a
long position and pays to take a short position. Similarly, a negative RT price implies that a speculator pays to hold a long
position and is paid to hold a short position.
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forecasts:

1. Unconditional mean-covariance model using OLS estimates

2. Lagged SUR model using FGLS estimation

Model 2 should prove more robust than Model 1, but requires more computational demand. The two

models will be compared by jointly testing the coefficients that are present in Model 2 that are not present

in Model 1. Post-simulation comparisons are also made to determine the relative efficacy of the model

estimates.

3.1 Models of Returns

3.1.1 Unconditional Mean-Covariance Model

The unconditional mean-covariance model reflects the base case of the SUR model. This model has

the benefit of parsimony and limited computational demand but lacks complexity and a conditional

expectation. The model specification is as follows:

ri,t = µi + εi,t (3)

(3) in its equivalent compact notation is:

ri = Riµi + εi

Ri =

 1
...
1


︸ ︷︷ ︸
Tx1

; εi =

 εi,1
...

εi,T


︸ ︷︷ ︸

Tx1

r = Rµ+ ε (4)

R =


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · RN


︸ ︷︷ ︸

TNxN

; µ =

 µ1

...
µN


︸ ︷︷ ︸

Nx1

; ε =

 ε1
...
εN


︸ ︷︷ ︸
TNx1

Where

1. E(εi) = 0
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2. E(εi,tεj,t) = σij

3. E(εi,tεj,s) = 0

The conditional expected return8 for a given asset i at time t is easily obtained as follows:

E(ri) = E(Riµi + εi) = µi (5)

The OLS estimates for µ are then:

µ̃i = (RTi Ri)
−1RTi ri (6)

Assuming µ̃i
P→ µi, µ̃i is the estimated conditional expected value of ri. Similarly, the conditional

covariance is obtained as follows:

σij = E[(ri − µi)(rj − µj)] = E(εiεj) =
εTi εj
T

(7)

σ̃ij =
ε̃Ti ε̃j
T

(8)

Assuming σ̃ij
P→ σij , σ̃ij is the estimated conditional covariance of ri and rj . Given µ̃i and σ̃ij , notate

µ̃ as a Nx1 vector of estimated conditional expected returns with µ̃i in its ith element and Ω̃ as a NxN

estimated skedasticity matrix with σ̃ij elements.

µ̃ =

 µ̃1

...
µ̃N

 (9)

Ω̃ =

 σ̃11 · · · σ̃1N
...

. . .
...

σ̃N1 · · · σ̃NN

 (10)

3.1.2 Lagged SUR Model with FGLS Estimates

As noted above, researchers have empirically shown that returns in electricity markets have autoregressive

tendencies. When the series of returns in this analysis are individually modeled on lags 1-10, lags 1, 2,

8Note that in this case the conditional expected value of ri is equivalent to the unconditional expected value of ri since
R is a constant.
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and 7 are most commonly significant. However, since ri,t−1 is unobservable at time t, this modeling

approach only implements lags 2 and 7. The model also takes into account day of the week fixed effects

to control for intraweek seasonality. The model specification is as follows:9

ri,t = β0,i + β1,iri,t−2 + β2,iri,t−7 +

6∑
d=1

γi,dDt,d + εi,t (11)

Dt,d =

{
1, if t corresponds to d

0, otherwise

The compact notation for (11) is then:

ri = Riβi + εi

Ri =

 1 ri,−1 ri,−6 D1,1 · · · D1,6

...
...

...
...

. . .
...

1 ri,T−2 ri,T−7 DT,1 · · · DT,6


︸ ︷︷ ︸

TxK

; βi =



β0,i
β1,i
β2,i
γ1,i

...
γ6,i


︸ ︷︷ ︸

Kx1

; εi =

 εi,1
...

εi,T


︸ ︷︷ ︸

Tx1

r = Rβ + ε (12)

R =


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · RN


︸ ︷︷ ︸

TNxKN

; β =

 β1
...
βN


︸ ︷︷ ︸
KNx1

; ε =

 ε1
...
εN


︸ ︷︷ ︸
TNx1

Where

1. E(εi | R) = 0

2. E(εi,tεj,t | R) = σij

3. E(εi,tεj,s | R) = 0

4. d = 1,...,6 representing the day of the week from Monday to Saturday

5. ri,t is weakly stationary

9See Appendix for the MatLab code used to estimate Model 2.
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6. K = 9

The conditional expectation of ri and the conditional covariance of ri and rj are:

µi = E(ri | R) = E(Riµi + εi | R) = Riβi (13)

σij = E[(ri − µi | R)(rj − µj | R)] = E(εiεj) =
εTi εj
T

(14)

Without proof, GLS estimates have greater efficiency than OLS estimates. However, obtaining GLS

estimates requires a known variance-covariance matrix of the stacked residuals. One method for dealing

with the lack of a such a matrix is to conduct FGLS estimation following the methodology of Zellner

(1962). First, the OLS estimates for βi are:

β̃i = (RTi Ri)
−1RTi ri (15)

Given β̃i, the estimated conditional expectation of ri and estimated residuals are:

µ̃i = Riβ̃i (16)

ε̃i = ri −Riβ̃i = ri − µ̃i (17)

Assuming µ̃i
P→ µi, µ̃i is the estimated conditional expected value of ri. Following from (17), the estimated

covariance of ri and rj is:

σ̃ij =
ε̃i
T ε̃j
T

(18)

Assuming σ̃ij
P→ σij , σ̃ij is the estimated conditional covariance of ri and rj . The NxN estimated

skedasticity matrix Ω̃ is therefore comprised of σ̃ij in its (i,j )th elements:

Ω̃ =

 σ̃11 · · · σ̃1N
...

. . .
...

σ̃N1 · · · σ̃NN

 (19)

Given Ω̃, an estimated variance-covariance matrix of the stacked residuals can be found as follows:
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Σ̃ = Ω̃ ⊗ IT (20)

The KNx1 vector of stacked FGLS estimates is now given by:

β̂ = (RT Σ̃−1R)−1RT Σ̃−1r (21)

The first available forecast period is t+2. Since E(εi,tεj,t | R) = σij is time invariant, Ω is assumed to

stay constant. However, the estimated conditional expectation can be forecasted as follows:

ri,t+2 = β̂0,i + β̂1,iri,t + β̂2,iri,t−5 +

6∑
d=1

γ̂i,dDt+2,d + εi,t+2 (22)

ri = Riβ̂i + εi (23)

Ri =

 1 ri,1 ri,−4 D3,1 · · · D3,6

...
...

...
...

. . .
...

1 ri,T ri,T−5 DT+2,1 · · · DT+2,6

; βi =



β̂0,i
β̂1,i
β̂2,i
γ̂1,i

...
γ̂6,i


; εi =

 εi,3
...

εi,T+2



µ̂i = Riβ̂i (24)

µ̂ =

 µ̂1

...
µ̂N

 (25)

To conduct hypothesis tests on the FGLS estimates, asymptotic t-tests are used. For sufficiently large

N, the estimates are asymptotically normal such that:

√
N(βFGLS − β)

d→ N [0, (plim
N→∞

RT Σ̃−1R

N
)−1] (26)

The null and alternative hypotheses of interest are:

H0 : βi = 0 (27)
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HA : βi 6= 0 (28)

Under this framework, the relevant t-statistic for each coefficient can be obtained via:

β̂ − 0√
σ2
β̂

A∼ N(0, 1) (29)

Where σ2
β̂
represents the diagonal elements of (RT Σ̃−1R)−1. Since β̂ is a KNx1 and each K=1 element is

an estimate for β0,i, the hypotheses for joint significance are specified as follows:

H0 : βres = 0 ≡ Rβ = γ (30)

HA : βres 6= 0 ≡ Rβ 6= γ (31)

Where β̂res is a (K-1)Nx1 vector of coefficients representing all the elements of β̂ except β0,i, R is a

(K-1)NxKN which represents a KNxKN identity matrix that is missing each Ki = 1 row, and γ is a

(K-1)Nx1 vector of zeroes.

W = T (Rβ̂ − γ)T [R(RTΣ−1R)−1RT ]−1(Rβ̂ − γ)
d∼ χ2

(K−1)N (32)

3.2 Portfolio Optimization

Given µ and Ω, it is now possible to optimize a daily portfolio. Model 1 is extended by using µ̃, the OLS

estimate for conditional expected return, and Ω̃, the OLS estimate for conditional covariance. Model 2

is extended by using µ̂, the FGLS estimate for conditional expected return, and Ω̃, the OLS estimate for

conditional covariance. The optimization technique follows Markowitz (1952) aside from using conditional

estimates of µ and Ω, rather than an unconditional estimates, for simplicity. The constrained optimization

problem is as follows:

min
wk

wTk Ωwk s.t.

{
µp,k = wTk µk
1 = wTk 1N

(33)
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Where wk represents a Nx1 vector of asset allocation weights and µp,k is the desired portfolio return for

day k. The above constraints require that the expected portfolio return must equal the desired portfolio

return and that the sum of all assets weights must equal 1. The relevant Lagrangian for this maximization

is:

L(w, λ1, λ2) = wTk Ωwk + λ1(µp,k − wTk µk) + λ2(wT 1N − 1) (34)

The algebraic solution to the above Lagrangian is then (Ruppert, 2004):10

∗
wk = g + µp,kh (35)

g =
(BΩ−11N −AΩ−1µk)

D
(36)

h =
(CΩ−1µk −AΩ−11N )

D
(37)

A = 1TNΩ−1µk; B = µTk Ω−1µk; C = (1TNΩ−11N ; D = BC −A2 (38)

There are many approaches to choosing a desired portfolio return, the final input to the optimization.

Common approaches include choosing the desired portfolio return from the minimum variance portfolio,

the desired portfolio return from the portfolio that maximizes the Sharpe ratio, or simply a fixed value

(Treynor and Black, 1973). Since the aforementioned optimization allows for short-selling, the portfolio

return is unbounded; the optimization could allocate an infinite amount in any given asset and short-

sell others to satisfy the constraint that the sum of all asset weights must equal unity. Further, the

efficient frontier is not necessarily the same for each iteration of the optimization rendering a fixed value

unsuitable. Therefore, this analysis defines the desired portfolio return as:

µp,k =
(µmax + µmin)

2
(39)

Where µmax is equal to the expected return of the asset with the greatest expected return and µmin is

equal to the expected return on the minimum variance portfolio:

10See Appendix for the MatLab code used to execute the optimization.
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µmax = max(µk) (40)

µmin = − g
TΩh

hTΩh
(41)

There is also the added condition that if µp,k is negative, the optimization does not occur and wk

becomes an Nx1 vector of zeros, representing no trading activity the following day. This specification

ensures that the desired portfolio return is on the efficient frontier, is finite, and falls directly between

the highest expected asset return and the return on the minimum variance portfolio. The optimization

then produces a portfolio return and standard deviation of:

∗
rp,k = rTk

∗
wk (42)

ri,k = ln(Ri,k + 1); rk =

 ri,k
...

rN,k

 ; {ri,k} N H
i=1 k=1

∗
σp,k =

√
∗
w
T

kΩ
∗
wk (43)

3.3 Simulation

This analysis continues by conducting the aforementioned optimization for a given day k to evaluate the

performance of the optimized portfolio. As a measure of the accuracy of the optimization, the root mean

squared error (RMSE) between the realized log return and the desired portfolio return can be calculated

as follows:

RMSE = (
1

H

H∑
k=1

(
∗
rp,k − µp,k)2)

1
2 (44)

Coefficient of variation of the RMSE or CV(RMSE) is also calculated to account for the difference in µp,k

between the two models:

CV (RMSE) =
RMSE

µ̄p,k
(45)
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To determine the performance of a given daily optimization the return on asset i on day k is

Ri,k =
(RTi,k+1 −DAi,k)

DAi,k
; Rk =

 Ri,k
...

RN,k

 (46)

The realized return of the portfolio of assets is then

Rp,k = RTkwk (47)

The portfolio return can then be aggregated across the holding period H (k=1, 2,...,H ) to evaluate the

performance over time.

Rp =

 Rp,k
...

Rp,H

 (48)

Various evaluative metric can then be calculated, including the mean, the 1st, 5th, and 10th percentile,

standard deviation, and Sharpe ratio absent a risk-free return. For demonstrative purposes, a Rosenblatt-

Parzen density estimation for each model is also included as follows:

f̂h(Rp) =
1

Hh

H∑
k=1

K(Xk) (49)

h = cH−0.2σR,p (50)

Where c = 1 and:

Xk =
Rp −Rp,k

h
(51)

With a Gaussian kernel:

K(X) =
1√
2π

exp(−1

2
X2) (52)
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4 Data

The data available for analysis is vast; PJMISO has more than ten thousand settlement locations that

separately settle on an hourly basis every day of the year.11 To reduce complexity and computational

demand, this analysis focuses on five of the predetermined load zones within the market as settlement

locations. These include (1) American Electric Power (AEP), (2) Commonwealth Edison (COMED), (3)

Dominion Virginia Power (DOM), (4) Allegheny Power Systems (APS), and (5) Public Service Electric

and Gas Company of New Jersey (PSEG).12

Each zone represents a weighted average of prices for the settlement locations that make up that zone

and has 24 individual hourly settlements for forward and spot prices every day. To address the intraday

variations in price, each of the 120 zone-hour combination is modeled as an individual asset (i = 1, 2,. . . ,

N ; N=120). This analysis uses a rolling lookback period of 365 days for daily simulations (t = 1, 2,. . . ,

T ; T=365) for a six year period (k = 1, 2,..., H ; H = 2191) starting on January 1st, 2009.

Using log returns is standard in financial econometrics, largely due to ease of interpretation, log-

normality, and approximation of return. Unfortunately, due to the nature of power markets, negative

and zero-value pricing can occur. When x ≤ 0, ln(x) is undefined or does not exist rendering certain

observations unusable which may introduce bias into the models. Further, if either of the models includes

an observation for ri,t, ri,t−2, ri,t−7, ri,k or Ri,k during the lookback period that is missing, the relevant

asset i and/or day t must be removed. Therefore, not all model estimations and/or simulations include

all N (N < 120) and T (T < 365).

5 Results

Unsurprisingly the simulations of the optimized portfolios from Model 1 and Model 2 differed significantly.

For instance, on the vast majority of simulation days, Model 1 produced daily average asset allocations

that varied between -1 and 1 for each of the five settlement locations.13 In contrast, Model 2 produced

average daily asset allocations that varied between -4 and 4 for each settlement location.14 This indicates

11The data in this analysis is publicly available at pjm.com but was compiled by Yes Energy. For more information,
please contact Nick@YesEnergy.com.

12See Figure 1 for the area each covers. These five load zones were chosen based on age, data availability, and regional
diversity.

13See Figure 3.
14See Figure 4.
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that Model 2 had a greater tendency for portfolio leverage than Model 1. Further, the average daily asset

allocations for the five settlement locations produced by Model 1 appear to have much more persistence

than those produced by Model 2.

Similarly, the desired portfolio return for Model 1 was more consistent than Model 2.15 The disparity

between the two models is likely due to the difference in model conditionality; since the desired portfolio

return is a function of the inputted estimate for expected returns and Model 1 relies on an unconditional

estimate for expected returns, the desired portfolio return for Model 1 is unlikely to make short-term

changes.

Interestingly, there was also a distinct difference between whether or not the models traded on a given

day. Overall, Model 1 traded on 68% of the simulation days whereas Model 2 traded on 80% of the

simulation days. Further, Model 1 had a significant drop off in trading in 2013 (23%) and 2014 (0%).16

These non-trade days reflect a negative desired portfolio return and must have had a negative µmin

and/or a negative µmax. Since Model 1 is based on time-invariant estimates of expected returns from up

to the past 365 days, individual observations can have a persistent effect on the estimates. Therefore,

sufficient negative values in Model 1 for µmin and/or µmax in 2013 and 2014 may explain the drop off in

trading during those years.

The first research objective was to determine whether daily portfolios constructed via portfolio op-

timization of pre-selected assets from PJMISO can, on average, produce positive returns. Model 2 was

successful in doing so with an average daily return of 1.17 or 117%, whereas Model 1 was not successful

with an average daily return of -16.23 or -1623%. The sum of return over the six year simulation, equiv-

alent to the total return from investing $1 each day, for Model 2 was $2,559.04 compared to -$35,551.34

for Model 1.17

The second research objective was to determine whether the computationally costly extension to the

lagged SUR model with FGLS estimates is informative. To answer that objective, this analysis relies

on a joint significance test on all the coefficients included in Model 2 that were not included in Model

1. The test statistic was greater than the critical value (α = 0.05) for each day during the six year

15See Figures 5 and 4.
16See Figure 7.
17The geometric mean was unobtainable since some daily returns were less than -1 due to negative pricing and short-

selling.
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RMSE CV(RMSE)
Model 1 0.19 3.68
Model 2 0.30 3.39

Table 1: Error Comparison Between Model 1 and Model 2

simulation. This indicates that the additional independent variables have a jointly significant impact on

log returns and non-inclusion of those variables is expected to introduce bias to the remaining coefficients.

Individually, the coefficients had mixed values and significance on average across hours.18

The third objective was to determine which of the two models produces the desired daily return more

accurately. Overall, Model 1 had a lower RMSE than Model 2 while Model 2 had a lower CV(RMSE)

than model 1, as detailed in Table 1. This result indicates that, while Model 1 had a tendency to produce

portfolio returns that were closer to the desired portfolio return than Model 2, Model 2 had less of

a deviation between portfolio return and desired portfolio return per unit of average desired portfolio

return.

The fourth objective was to determine what, if any, differences exist between the series of simulated

returns from the optimized portfolios produced by each model. This analysis addresses that objective

by comparing a myriad of performance metrics.19 Overall Model 2 outperformed Model 1 across all the

chosen metrics. This difference is likely due to the large losses for Model 1 and large gains for Model 2

in 2011. Interestingly 2011 was Model 1’s worst year whereas 2011 was Model 2’s best year. The time

series of return from each model also had different distributional qualities. Although Model 1 suffered

significant losses in 2011, it had a better 5% expected shortfall in all other years besides 2009.20 Due to

the extreme values for both models, kernel density estimations on the full series are difficult to analyze.

However, when the 1% and 99% tails are removed, the image becomes more clear. Although Model 2

appears to have more upside, Model 1 appears to have less variance.21

18See Table 2 and Figures 9 and 10 for numerical and graphical representations of the average coefficient values and
significance percentage.

19Yearly and overall performance metrics by model can be found in Table 3.
20See Table 4 for a comparison of several distributional qualities by year and model.
21See Figure 8. Those results are also reflected in Table 4 that shows Model 1 has better 1, 5, and 10 percentile values

than Model 2 in almost all cases.
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6 Concluding Remarks

This paper demonstrates the implementation of MPT to restructured electricity markets using OLS

estimates from an unconditional mean-covariance model and FGLS estimates from a lagged SUR model.

The simulation results indicate that Model 2 was more accurate in producing the desired portfolio return

after controlling for average desired portfolio return and also induced a more desirable series of returns.

However, the inadmissibility of certain observations due to the use of log returns likely biased the

results of the modeling approaches and portfolio optimizations. On average, Model 1 was able to evaluate

120 assets (N=120 ) and 268 days (T=268 ) whereas Model 2 was able to evaluate 118 assets (N=118 )

and 177 days (T=177 ), although it is unclear whether those combinations create a sufficient number of

observations for asymptotic properties to be satisfied.22

This analysis also demonstrates the staggering volatility of restructured electricity markets. When the

simulation results from Model 1 and Model 2 are compared to the unmodeled average of the 120 series,

it is clear that the modeling and optimization techniques in this analysis actually increase volatility.23

This increase in volatility is likely due to the ability to short-sell assets since the unmodeled average of

the 120 series is equivalent to taking a long position on each asset equal to 1
120 of total capital.

Another drawback to this approach is operating on the assumption of capital constraints rather than

credit constraints. There may exist a market day where all assets are expected to yield negative returns.

According to the optimization technique in this analysis, no trading would occur that day as the desired

portfolio return would be zero. Further, the constraint that the sum of all asset weights must equal

unity requires the investor to take long positions that may be unprofitable. Constraining instead on a

fixed credit amount would alleviate both issues. However, this involves forecasting the credit exposure,

a function of random variables, that PJMISO will assign to each asset the next market day.

Finally, given the significant downside and upside in these markets, taking a Post Modern Portfolio

Theory (PMPT) approach and minimizing downside volatility rather than total volatility may prove

beneficial.

22See Table 5 to see the average number of assets and days used year and model.
23See figure 13.
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Appendix

MatLab Code for Model 2 Estimation and Forecast

%% Model 2

% Establish rt as the dependent variable

Y = r(:,2:end);

% Establish rt-2 as the first independent variable

X1 = r 2(:,2:end);

% Establish rt-7 as the second independent variable

X2 = r 7(:,2:end);

% Create a Tx1 vector of dow indicators

dow = weekday(r(:,1),’long’);

% Combine, find NaNs, remove them

comb = [Y X1 X2];

nonan = ˜any(isnan(comb)’)’;

Y = Y(nonan,:);

X1 = X1(nonan,:);

X2 = X2(nonan,:);

dow = dow(nonan,:);

% Reestablish T

T = size(X1,1);

% Create a Tx1 vector of ones to represent the constant

bfone = ones(T,1);

% Preallocate space

Reg = cell(1,N);

% Turn the Tx1 vector of day of week indicators into a Tx7

% matrix of binaries (categorical variable)

dow = dummyvar(dow);

20



%Remove Sunday

dow = dow(:,2:end);

% Create N TxK (in this case K = 9) matrices of regressors

for i = 1:N

Reg{i} = [bfone X1(:,i) X2(:,i) dow];

end

% Stack Y into a TNx1 vector

Y = reshape(Y,[],1);

% Make Reg a block diagonal matrix with the N components in

% the diagonal

Reg = blkdiag(Reg{:});

% Invert Reg’*Reg

[U, S, V] = svd(Reg’*Reg);

s= diag(S); g= sum(s¿ 1e-9);

reginv = (U(:, 1: g)* diag(1./ s(1: g))* V(:, 1: g)’)’;

% Obtain OLS estimates for Beta

beta = reginv*(Reg’*Y);

% Find estimated errors

e est = (Y-Reg*beta);

% Reshape errors into TxN matrix

e est = reshape(e est,[T,N]);

% Obtain the error covariance matrix omega

omega = (1/T)*(e est’*e est);

% Invert omega

[U, S, V] = svd(omega);

s= diag(S); g= sum(s¿ 1e-9);

omegainv = (U(:, 1: g)* diag(1./ s(1: g))* V(:, 1: g)’)’;

% Create an inverted TxT identity matrix
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I t inv = inv(eye(T));

% Find the inverted variance-covariance matrix of the stacked residuals

invSigma = kron(omegainv,I t inv);

% Invert Reg’ * invSigma * Reg to find coefficient covariance

% matrix

[U, S, V]= svd(Reg’ * invSigma * Reg);

s= diag(S); g= sum(s¿ 1e-9);

var beta = (U(:, 1: g)* diag(1./ s(1: g))* V(:, 1: g)’)’;

% Calculate the FGLS estimates

beta gls = var beta * Reg’ * invSigma * Y;

% Find the difference between the t stat for each estimated

% coefficient and the critical value for a normal

% distribution

t stat = abs(beta gls./sqrt(diag(var beta)))-norminv(0.95,0,1);

% Mark with a 1 if it is positive, 0 otherwise

t stat = t stat>=0;

% Report in a daily table

daily tstat(i3+1,1:K*N) = t stat;

% Determine the percentage rejection and report in a

% daily table

daily sig(i3+1,1:K) = mean(reshape(t stat,K,N),2)’;

% Create a KNxKN matrix with ones in the diagonal

R = ones(K*N,1);

R = diag(R);

% Remove the rows that represent the constant term (the K =

% 1 component of each i-¿N group)

R(1:K:K*N,:)=[];

% Create a (K-1)Nx1 vector of zeros for hypothesis
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g =zeros((K-1)*N,1);

% Take several steps to calculate the t stat for the joint

% significant test

[U, S, V]= svd(R*var beta*R’);

s= diag(S); g= sum(s¿ 1e-9);

aux = (U(:, 1: g)* diag(1./ s(1: g))* V(:, 1: g)’)’;

aux = aux *(R*beta gls-g );

% Finish calculation and compare the absolute value to the

% critical value from a chi-squared distribution with

% (K-1)*N restrictions

t statj=abs(T*(R*beta gls-g )’*aux )-chi2inv(0.95,(K-1)*N);

% Mark with a 1 if it is positive, 0 otherwise

t statj = t statj>=0;

% Report in a daily table

daily tstat(i3+1,end) = t statj;

% Report again for consistency with individual t-tests

daily sig(i3+1,end) = t statj;

% Rename beta for consistency

beta = beta gls;

% Report betas in a daily table

daily beta(i3+1,:) = beta’;

% Create a scalar 1 to represent the constant term

bfone = 1;

% Preallocate space

Reg = cell(1,N);

% Create a 1x6 vector of DOW indicators for the market day

% (absent sunday)

dow t = zeros(1,7);
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dow t(weekday(ret t(:,1),’long’)) = 1;

dow t = dow t(2:end);

% Create N TxK (in this case K = 9) matrices of regressors

% for the market day

for i = 1:N

Reg{i} = [bfone r 2 t(i+1) r 7 t(i+1) dow t];

end

% Make Reg a block diagonal matrix with the N components in

% the diagonal

Reg = blkdiag(Reg{:});

% Determine if any of the rows have missing values

admis = ˜any(isnan(Reg)’)’;

% Determine the row number of admissible rows

admis locat = find(admis==1);

% Remove rows and columns from omega and omega inverse that were inadmissible

omega = omega(admis,admis);

omegainv = omegainv(admis,admis);

% Preallocate space

beta admis = cell(N,1);

% Make a TNx1 vector of logicals for admissible betas

for i = 1:N

beta admis{i} = repmat(admis(i),K,1);

end

beta admis = cell2mat(beta admis);

% Remove inadmissible rows from beta

beta = beta(beta admis,:);

% Remove inadmissible rows and columns from Reg

Reg = Reg(admis,beta admis);
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% Obtain the expected value of rt market day

mu = Reg*beta;

% Establish new N

N = length(mu )

MatLab Code for Optimization

%% Optimization

% Decomposition of algebraic solution to optimization

one = ones(N,1);

A=one’*omegainv*mu ;

B=mu ’*omegainv*mu ;

C=one’*omegainv*one;

D=B*C-(A.ˆ2);

g=(B*omegainv*one-A*omegainv*mu )/(D);

h=(C*omegainv*mu -A*omegainv*one)/(D);

hh = h’*omega*h;

gh = g’*omega*h;

mumin = -gh/hh;

% Establish desired portfolio return as the average between the

% maximum possible return and the return on the minimum

% variance portfolio

retp = (nanmax(mu )+mumin)/2;

% Establish protocol which makes w an Nx1 vector of zeros if

% the desired portfolio return happens to be negative,

% otherwise calculate w based on the solution to the

% optimization

if retp¿0

w=g+retp*h;
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notrade(i3+1,1) = 0;

else

retp = NaN;

w = zeros(N,1);

notrade(i3+1,1) = 1;

end
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Figures

Figure 1: Map of the load zones in PJMISO
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Figure 2: Daily Log Return for the S&P 500 Closing Price and Average of the Assets in this Analysis

Figure 3: Percentage Asset Allocation by Zone, Model 1 (gaps imply the simulation did not trade that
day)
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Figure 4: Percentage Asset Allocation by Zone, Model 2 (gaps imply the simulation did not trade that
day)

Figure 5: Realized Return vs. Desired Return, Model 1 (gaps imply the simulation did not trade that
day)
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Figure 6: Realized Return vs. Desired Return, Model 2 (gaps imply the simulation did not trade that
day)

Figure 7: Trade Percentage by Year for Model 1 and Model 2
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Figure 8: Kernel Density Estimation for Model 1 and Model 2, 1% Tails Removed

Figure 9: Average Coefficient Values for Model 2 by Settlement Location and HE
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Figure 10: Average Coefficient Significance (α = 0.05) for Model 2 by Settlement Location and HE

Figure 11: Daily Return for Model 1 by Zone (gaps imply the simulation did not trade that day)
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Figure 12: Daily Return for Model 2 by Zone (gaps imply the simulation did not trade that day)

Figure 13: Daily Return for Model 1, Model 2 and the Average of the All Series, 1% Tails Removed
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Tables

Constant Lag 2 Lag 7 Monday Tuesday Wednesday Thursday Friday Saturday

AEP
-0.040 0.020 -0.020 -0.021 -0.032 0.007 -0.004 0.001 0.050
30.16% 67.51% 63.18% 9.23% 15.71% 12.93% 9.71% 15.88% 19.11%

COMED
-0.062 0.012 -0.007 0.028 0.029 0.022 0.029 0.034 0.044
32.95% 65.55% 67.29% 13.19% 15.99% 9.47% 15.44% 14.79% 17.95%

DOM
-0.042 0.002 -0.040 0.058 0.011 0.019 -0.004 0.015 0.021
19.96% 71.91% 72.61% 20.01% 11.8% 12.6% 7.48% 8.66% 12.22%

APS
-0.069 0.042 -0.031 0.020 0.027 0.030 -0.017 -0.013 0.017
29.79% 76.93% 68.05% 12.94% 15.43% 17.89% 8.13% 12.74% 7.32%

PSEG
-0.041 0.026 -0.020 0.010 -0.004 0.019 -0.016 -0.005 0.002
23.35% 67.85% 66.54% 13.54% 13.44% 9.03% 9.55% 5.3% 5.09%

Table 2: Average Coefficient Values and Significance Percentage by Zone (α = 0.05)

Year
Return Return Desired Return Return

Sharpe Ratio
(Average) (Sum) (Average) (Std. Dev.)

Model 1

9 0.190 69.300 0.064 2.623 0.072
10 0.036 13.148 0.072 0.340 0.106
11 -97.608 -35626.762 0.065 1604.572 -0.061
12 -0.012 -4.290 0.009 0.189 -0.062
13 -0.008 -2.755 0.002 0.104 -0.073
14 0.000 0.000 0.000 0.000 0.000

Overall -16.226 -35551.357 0.051 655.178 -0.025

Model 2

9 0.148 54.083 0.148 2.333 0.064
10 0.042 15.311 0.108 0.664 0.063
11 6.911 2522.522 0.099 318.687 0.022
12 -0.034 -12.590 0.075 0.291 -0.118
13 -0.027 -9.762 0.033 0.182 -0.147
14 -0.029 -10.515 0.036 0.276 -0.104

Overall 1.168 2559.043 0.088 129.955 0.009

Table 3: Performance Metrics for Model 1 and Model 2 by Year
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Year
1st 5th 10th Expected

Percentile Percentile Percentile Shortfall (5%)

Model 1

9 -3.37 -0.51 -0.26 -2.31
10 -0.83 -0.41 -0.32 -0.75
11 -1.01 -0.39 -0.28 -1979.66
12 -0.50 -0.28 -0.20 -0.44
13 -0.38 -0.12 -0.03 -0.30
14 0.00 0.00 0.00 0.00

Overall -0.63 -0.23 -0.14 -76.01

Model 2

9 -1.60 -0.71 -0.43 -1.71
10 -1.15 -0.63 -0.46 -0.91
11 -1.09 -0.62 -0.42 -159.14
12 -1.21 -0.41 -0.27 -0.78
13 -0.51 -0.28 -0.21 -0.45
14 -1.00 -0.41 -0.25 -0.80

Overall -1.07 -0.52 -0.33 -26.85

Table 4: Distributional Qualities of Model 1 and Model 2 Returns by Year

Year
N T

(Average) (Average)

Model 1

9 120.00 224.52
10 120.00 255.30
11 120.00 252.25
12 120.00 269.23
13 120.00 300.94
14 120.00 317.61

Overall 120.00 269.97

Model 2

9 117.33 114.43
10 117.73 154.97
11 118.19 144.03
12 118.08 164.63
13 119.55 224.17
14 119.02 261.23

Overall 118.32 177.24

Table 5: Average Observations and Trade Percentages for Model 1 and Model 2 by Year
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