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ABSTRACT

Our Solar System contains a large population of icy bodies beyond the orbit of Neptune. This group of
objects, known as the Kuiper Belt, are remnants from early in the formation of the Solar System. However, these
bodies exhibit strange orbital characteristics, hinting at the possibility of a missing chapter in the Solar System’s
formation history. To find an explanation to these phenomena, we investigate the effects that the KBOs’ collective
gravity has on the Solar System using computer simulations. In doing so, we find a new mechanism capable of
changing objects’ distances of closest approach to the Sun. We make this new mechanism the main subject of our
investigation given that orbits in the Kuiper Belt exhibit strikingly similar attributes. We find that although this
new mechanism is thoroughly interesting, it cannot change KBOs’ orbits within the age of the Solar System.
It could however be responsible for phenomenon a bit farther from home; namely, feeding supermassive black
holes and polluting the surfaces of white dwarf stars.

Keywords: celestial mechanics – Outer Solar System: secular dynamics – Kuiper Belt Objects

1. INTRODUCTION

Our Solar System contains a large population of icy bodies
beyond the orbit of Neptune. These bodies exist in a cold disk
called the Kuiper Belt, located at ∼ 30−50 AU from the Sun (1
AU is the distance from the Earth to the Sun). Extending away
from the Kuiper Belt is the Scattered Disk which can contain
orbits at hundreds of AU. The Scattered Disk consists of
bodies that made their way to the outer Solar System through
scattering interactions with Neptune. The orbits of some of
these bodies tilt and cluster together in bizarre ways (Trujillo
& Sheppard 2014) that do not conform to the typical story
of our Solar System’s evolution. The Solar System began as
a flat disk of gas and dust, meaning most of the orbits we
observe today should also be flat and undisturbed. These new
observations of unusual orbits demand an explanation.

Madigan & McCourt (2016) recently found that these bod-
ies are vulnerable to a collective gravitational instability which
can explain the observed phenomena. Using computer simula-
tions, they have demonstrated that this "inclination instability"
can reproduce much of what we see in the outer Solar System.
However, another popular explanation attributes the oddities
observed in the outer Solar System to a new Neptune-sized
planet, Planet 9 (Brown & Batygin 2016). However, such a
planet has yet to be detected!

The simulations performed by Madigan & McCourt (2016)
adopt the simple case where all of the Kuiper Belt Objects
(KBOs) have the same mass. We want to improve upon these
simple simulations and so we simulate the instability in
disks where the bodies are of different masses. Such mass
differences will be present in any realistic setting, such as
the outer Solar System, making them important to include.

We find that the instability still takes off and, interestingly
(in terms of making predictions for the outer Solar System),
more massive bodies tend to reach lower inclinations than less
massive bodies. In investigating this however, we discovered
a new dynamical mechanism that lowers the eccentricity and
lifts the periapse distance of massive bodies.

In this paper, we focus mostly on this new mechanism. We
are motivated by recent observations of a new population of
bodies belonging to a region outside of the Scattered Disk
(Gladman et al. 2001). These objects have periapse distances
much greater than the semi-major axis of Neptune which
implies they have a dynamical history different from that of
the Scattered Disk Objects (SDOs) and are detached from the
inner Solar System. Other histories for these bodies include
undergoing evolution in their orbits from interactions with
passing stars (Ida et al. 2000) or the hypothetical Planet 9
(Brown & Batygin 2016).

We present our work in the following manner: In section
2 we review the properties of orbits (known as the Kepler
elements), define some relevant dynamical processes, and de-
scribe the inclination instability. In section 3 we present the
effects a large mass has on a disk that undergoes the inclination
instability and describe this new dynamical mechanism with
idealized N-body simulations. In section 4, we present the re-
sults of N-body simulations in increasingly complex/realistic
scenarios. We discuss the physics underpinning the mecha-
nism and its relevance in sections 5 & 6. We conclude and
examine its implications in section 7.

2. BACKGROUND

In this section, we define dynamical terms which will be
useful in later sections.
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Figure 1. A Visual Representation of the Kepler Elements Four
of the Kepler elements are represented in this figure. Inclination (i),
the tilt of an orbit, is shown in red on the bottom of the figure. Above
that is argument of periapse (ω) in blue. True anomaly ( f ), the loca-
tion of the body along its orbit, is shown at the top of the figure in red.
Longitude of ascending node (Ω), which describes where the body
comes up through the reference plane, is illustrated in the middle of
the figure (image credit: http://inspirehep.net/record/1489981/plots).

2.1. The Kepler Elements

Kepler elements are used to describe an orbit oriented in
3-D space. With just six numbers, one can describe the shape
of an orbit, its size, how its oriented and where a body would
be located on such an orbit (see Figure 1). In general, all
celestial bodies orbiting a central mass move in ellipses. The
Kepler element eccentricity (e) is used to denote how elliptical
an orbit is and can range from 0-1. The orbits of planets have
near circular orbits with very low eccentricities, i.e. e ∼ 0,
but comets and other bodies have e ∼ 0.6 − 0.9 (meaning
their orbits are elongated). A body’s semi-major axis (a) is
half the width of its longest axis. For the Earth, which is in a
near circular orbit, this value is the distance the Earth is from
the Sun (1 AU). Another Kepler element is the inclination
(i) or tilt of an orbit. If you were to grab an orbit’s periapse,
the point of the orbit where the body is closest to the central
mass, and tilt it off a flat plane, you would be raising its
inclination. Now, if you were to instead drag this orbit by its
periapse and rotate it about the central mass, you would be
changing its argument of periapse (ω). More technically, this
is the orientation of the ellipse in the orbital plane. The last
two elements we have to describe a body and its orbit are its
longitude of ascending node (Ω) and its true anomaly ( f ). Ω

describes where an orbit passes through the "reference frame".
The reference frame is represented in the figure as the flat
plane which the orbits are oriented with respect to. Lastly, f
is the true anomaly; this is where the body is located on its
orbit, which can be denoted as the angular separation from its
periapse location.

2.2. Additional dynamical explanations

Angular momentum and torque
Angular momentum is the rotational equivalent of linear mo-
mentum. Linear momentum is the mass of an object times
its velocity (mv). A car traveling on a straight motorway has
strictly linear momentum, but if it were to curve around a
winding motorway it would have angular momentum. Celes-
tial bodies orbiting about a central mass also have angular
momentum. Their orbital angular momentum can be written
as

J = mr × v = mJc

√
1 − e2 (1)

where r is radial distance from the central mass and Jc =
√

GMa. Jc is the circular angular momentum, or the angular
momentum the body would obtain if its orbit was a perfect
circle.

Torque, like angular momentum, is the rotational equivalent
of a linear quantity. Specifically, a torque is the rotational
analog to a force (τ = J′ = mr × f ). Unless one enacts an out-
side torque on a system, angular momentum is conserved. For
instance, a skater spins faster with her arms pulled close due
to angular momentum conservation. Other physical systems,
like the Solar System, behave the same way. Unless another
star comes along and drastically disturbs our home, the whole
system will contain the same amount of angular momentum it
started with. Objects in the Solar System (asteroids, planets,
etc.) can distribute angular momentum between themselves,
but the total amount must remain constant.

Two-body versus secular dynamics
Bodies can exchange angular momentum through two-body
interactions and secular torques. Two-body interactions oc-
cur through the mutual scattering of bodies off of each other.
Bodies essentially act like gravitational slingshots that change
the angular momentum and trajectories of other nearby ob-
jects. Secular dynamics is different. Secular torques are orbit
averaged torques. Imagine spreading an asteroid out along its
orbit. The asteroid would now exist as a massive wire which
could exert gravitational forces, or torques, on the other wires
around it. Torques resulting from these orbit averaged, secular
effects are distinctly different from two-body interactions.

Apsidal precession
Apsidal precession is another way to change a body’s orbit.
Imagine a Solar System with one lone asteroid. This asteroid,
if left on its own, would move along the same orbit for billions
of years. However, if we were to add thousands more asteroids
around the central star, our original asteroid would feel the
collective forces from all the others. As a result, its orbit and
all the others would rotate like hands on a clock about the
central star. This rotation of the asteroid’s periapse is apsidal
precession.

Dynamical friction
Dynamical friction can also change an object’s orbit. Pic-
ture a massive billiards ball plowing through a sea of small
rubber balls. The billiards ball would lose energy through
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Figure 2. A Visualization of the Inclination Instability Bodies
initiated on flat eccentric orbits are vulnerable to the inclination
instability. Gravitational torques between the orbits force all the
bodies to incline off the initial disk plane (created by graduate student
Alexander Zderic, CU Boulder).

drag while, on average, the rubber balls would gain energy
from the collisions. This also happens in celestial systems.
In stellar clusters, the most massive stars lose energy through
gravitational drag and sink closer towards the center of the
cluster. The less massive stars gain a bit of energy and move
outward.

The inclination instability
The inclination instability refers to yet another dynamical
mechanism. It is a gravitational instability that occurs in disks
of bodies that are on very eccentric (e > 0.6) orbits around a
central mass. Due to the secular torques the orbits exert on
one another, they incline exponentially fast off the mid-plane,
drop in eccentricity, and cluster in ω. The latter means that all
the orbits tilt in the same way with respect to the mid-plane
of the Solar System. Figure 2 is a visual from a computer
simulation of the inclination instability. Bodies are initiated
on flat orbits and, at later times, incline off the initial disk
plane.

3. N-BODY SIMULATIONS

Here we explore the inclination instability using REBOUND
N-Body simulations with the IAS15 integrator (Rein & Liu
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Figure 3. Inclination Distributions for the Large and Small
Mass Particles The Gaussian inclination distributions for the large
and small mass particles are plotted above. The two bodies’ inclina-
tion distributions do differ slightly; the more massive bodies tend to
have lower inclination values than their less massive counterparts.

2012; Rein & Spiegel 2015). N-Body simulations are com-
puter programs which calculate the gravitational interactions
of particles in a "virtual box" and predict their motions. The
simulations in Madigan & McCourt (2016) and Madigan et al.
(2018) consider the simplified case where all the disk bod-
ies have the same mass. We improve upon this by simu-
lating the instability in disks where the bodies are of differ-
ent masses. We start simply: we populate a thin (i = 10−4

radians) axisymmetric disk with n = 400 bodies all with
the same orbital eccentricity, for a variety of starting ec-
centricities (e = 0.50, e = 0.55, e = 0.60, e = 0.70, and
e = 0.80). We give 399 of them the same mass, m, and let
just one other have mass M = 100m. We emplace the mas-
sive body at semi-major axis, aM = 1.0 and carry out our
simulations for 4000 orbital periods at a = 1. The mass of
the disk is Mdisk = 399m + M = 10−3M∗. We distribute the
smaller masses in semi-major axis space uniformly between
0.9 ≤ a ≤ 1.1 . We choose these high masses to observe
the instability quickly in our simulations; since the secular
timescale is tsec ≈ (M∗/M) P. We are also limited by computa-
tion time to small-n simulations considering the time required
for calculations grows significantly with an increasing number
of particles. Since we are limited in how many bodies we can
simulate, our goal then is to examine the behavior of these
low-n disks and extrapolate to high-n systems.

3.1. Effects of different masses on the Inclination Instability

We find that the presence of a massive body does not disrupt
the coherence of the inclination instability, but massive bodies
do tend to have lower inclinations after it has acted on the
system. Figure 3 illustrates the inclination distributions of
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Figure 4. Eccentricity vs. Time (Ideal Simulations) Top Panel:
average eccentricity versus time, simulations with no massive body;
as bodies’ inclinations rise their eccentricities plummet to conserve
their z-components of angular momenta. Bottom panel: eccentricity
of a massive body versus time, simulations with a massive body; a
new mechanism comes to light that becomes the dominant force that
shapes the massive body’s eccentricity.

the massive and less massive particles. After performing a
standard t-test on inclination values obtained after the passage
of the instability and obtaining a p-value of 4.56 × 10−8, we
conclude that the massive bodies’ and smaller bodies’ inclina-
tions are drawn from different distributions and that iM < im.
Such a conclusion may be relevant for the outer Solar System
as it could be an indication that it has undergone the inclina-
tion instability. If observers find that massive bodies in the
Kuiper Belt are at consistently lower inclinations than their
less massive counterparts, this would be evidence that inclina-
tion instability has taken place. Future discoveries of minor
planets will enable us to be more certain as to whether this
persists in the real Solar System.

3.2. A New Dynamical Mechanism Takes Form

Upon further analysis of the behavior of the massive bodies’
eccentricities’ we find that they undergo oscillatory behavior.
This is not a result of the inclination instability but is instead
the signature of a new dynamical mechanism. The top panel of
Figure 4 exhibits key signatures of the inclination instability.
The orange curve is produced from a simulation like those ran
by Madigan & McCourt (2016), without any mass differences.
The sharp downward drop in eccentricity is therefore caused
by conservation of specific angular momentum. As the bodies’
inclinations increase, their eccentricities decrease to conserve
their z-components of specific angular momentum. However,
when we add a massive body, lower the starting eccentricities,
and take the disks out of the inclination instability’s unstable
regime (e < 0.60), the new dynamical mechanism becomes
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Figure 5. Orbital Elements, Eccentricity Change and Precession
Rate vs. Time (Ideal Simulations, e = 0.55) The massive body’s
orbit undergoes oscillatory behavior in eccentricity through secular
gravitational interactions with a disk of less massive bodies (top, red).
The smaller masses exhibit the opposite oscillations (top, blue). The
massive body experiences negative change in eccentricity (second
from bottom) when its precession rate is decreasing (bottom); this
is due to the secular torques exerted by the smaller masses that pile
up behind its orbit. The reverse happens when the massive body’s
precession rate increases.

the dominate force that changes the massive body’s eccentric-
ity (see bottom of Figure 4). This new dynamical driver that
comes to light results from the interaction of two effects: dif-
ferential apsidal precession and secular gravitational torques
between the more and less massive orbits. All the orbits un-
dergo apsidal precession and rotate in retrograde about the
xy-plane like the hands on a clock. The more massive object
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undergoes slow precession relative to the others. This creates
an over-density of orbits on one side of its orbit. The smaller
masses then donate their angular momentum to the massive
body via secular gravitational torques. As a result, the massive
body drops its orbital eccentricity, lifts its periapse distance
and begins to precess more quickly (see Figure 5). The mas-
sive body, now precessing more rapidly, subsequently catches
up to the rest of the disk where it can donate its angular mo-
mentum back to the sea of less massive particles. Secular
torques now act in the opposite direction as before and the
massive body increases its orbital eccentricity. Therefore, this
mechanism is cyclical and causes oscillatory behavior in the
massive body’s eccentricity and periapse distance.

We calculate the massive body’s precession rate by ob-
taining the rate of change of its ie vector. This vector, first
introduced by Madigan & McCourt (2016), determines the
orientation of an orbit. It is represented by the projection of
its eccentricity vector in the xy-plane (i.e. ie = arctan ey

ex
). To

find the precession rate as a function of time we calculate
the numerical derivative of the massive body’s ie value and
perform a discrete Fourier transform (DFT), subtracting out
high frequency noise components. We do the same once more
to obtain the derivative of the massive object’s eccentricity
(see Figure 5).

The massive body also experiences a net drop in eccen-
tricity over the course of thousands of orbits. This is due to
secular effects as well as dynamical friction. The massive
body sinks towards the center of the gravitational potential
(via two body interactions) where there is less mass present
in its orbital annulus. Therefore, the relative precession rates
between the massive and less massive bodies become larger
and, even though there is less disk mass here, the massive
body interacts with a greater fraction of the disk than before.
These interactions donate a net positive angular momentum
to the massive body that cause its eccentricity oscillations to
occur around increasingly smaller values.

It is important to note that these eccentricity oscillations
are distinctly different from Kozai-Lidov oscillations (Lidov
1962; Kozai 1962). The Kozai-Lidov mechanism refers to
eccentricity and inclination oscillations of a satellite caused
by perturbations from a significantly more massive body. This
is not what occurs in our simulations. Eccentricity oscillations
result from the collective gravitational torques between orbits
and we see no evidence of inclination oscillations (see Figure
5).

4. N-BODY SIMULATIONS OF INCREASING REALISM

In the previous section, we showed how angular momentum
exchange between a large mass body and smaller mass bod-
ies results in eccentricity oscillations in a simplified set-up.
But, this mechanism could be applicable to a range of more
complex systems. For example, recent observations reveal a
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Figure 6. Eccentricity, Periapse, and Semi-Major Axis of the
Massive Body vs. Time (Scattered Disk Simulations) The detach-
ment mechanism persists when the bodies are initiated on Scattered
Disk orbits. Eccentricity and periapse distance exhibit downward
and upward trends respectively, as a result of dynamical friction.
The massive body sinks towards the center of the potential where
the eccentricity value needed to precess with the rest of the disk
decreases.

number of bodies in the Scattered Disk region of our Solar
System that have periapse distances much greater than the
semi-major axis of Neptune (Gladman et al. 2001). These
are called “detached objects”. Could the new mechanism we
describe be responsible for raising the perihelia of massive
Scattered disk objects and thus detaching them? The real
Solar System is a messy place. To test this idea, we need to
make our simulations less idealized and more realistic. We do
this in three steps. First, we initialize all masses on orbits con-
sistent with the Scattered Disk population (explained below).
In the second round of simulations, we include impulsive
scattering events from Neptune. In the third and final round
of additional simulations, we use a distribution of masses.
These simulations are written in the same code as the ideal
cases, REBOUND (Rein & Liu 2012). They are integrated for
between 3000− 8000 orbital periods at a = 1 using the IAS15
integrator (Rein & Spiegel 2015). We emplace the massive
body, again, at semi-major axis aM = 1 .

4.1. Scattered disk profile

In this round of simulations, we start the particles on orbits
consistent with those observed in the Scattered Disk. The
Scattered Disk, first discovered by Luu et al. (1997), is the
trans-Neptunian regime in the outer Solar System. Bodies in
this region were scattered outward by Neptune in the past and
have orbits with periapse distance ∼ 30 AU bringing them
close to Neptune upon return passages through the inner Solar
System. Therefore, the eccentricity of a SDO grows with
increasing semi-major axis such that its periapse distance stays
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fixed to Neptune. To mirror this pattern in our simulations, we
spread out bodies in semi-major axis space between 0.5 ≤ a ≤
5.0 according to a 1/a surface-density profile. Our scattered
bodies have periapse distances, p, equal to 0.3. Therefore, the
assigned e values are dependent on the assigned a values such
that e = 1 − p/a. We assign inclinations in accordance with a
Rayleigh distribution where the mean inclination is 5◦.

We find that the detachment mechanism persists when the
bodies are initiated on Scattered Disk orbits (see Figure 6).
The eccentricity and periapse distance of the massive body
undergo upward and downward oscillations respectively. The
massive body also experiences a net drop in its eccentricity
due to dynamical friction, which we discussed earlier. In
short, we conclude that this mechanism is robust for initial
conditions that emulate the Scattered Disk.

4.2. Scattering from Neptune

In this round of simulations, we subject the particles to
continual scattering from a Neptune-like planet. We cannot
include Neptune though as an active particle in our simulations
due to our chosen values of the disk mass, which we bumped
up to observe the secular effects more quickly. If we assume
that Neptune has a mass on the order of 106 times that of a
typical Scattered Disk object, then an active Neptune in our
simulations would have mass greater than that of the central
star!

To overcome this problem, we include a programmed scat-
tering force in our simulations. The force is added using the
REBOUNDX library. Duncan et al. (1987) approximated the
average change in energy from scattering interactions with
Neptune. Figure 1 of their work implies that for a low incli-
nation object with a ≈ 100 AU, the average change in orbital
energy is approximately < (∆x)2 >1/2= 2.5×10−5 AU-1 (Dun-
can et al. 1987). The resulting scattering diffusion timescale
is t = 2.5 × 105 orbital periods. The fractional change in a
per orbital period is therefore < ∆a > /a = (∆t/t)1/2 which is
equivalent to 2 × 10−3. We subject all the bodies in our simu-
lations to this fractional change in a every periapse passage
as long as their periapse distances are p ≤ 0.35 . We change
their eccentricities accordingly to keep periapse distances
fixed. There is an equal probability that the bodies are scat-
tered inward or outward. Consequently, the objects undergo
random walks in energy proportional to their semi-major axes.

We conclude that periodic scattering also does not affect
the viability of our detachment mechanism (see Figure 7).
As we stated previously, the scattering diffusion timescale
for the masses in our simulations is 2.5 × 105 orbital periods.
This is the length of time required for a body to experience a
change in semi-major axis proportional to its initial a value.
Since the secular torques in our simulations change orbits on
timescales of ∼ 103 orbital periods, scattering does not change
our bodies’ semi-major axes quickly enough for them to be

diminished. Scattering also does not change the orientation of
the orbits, allowing the secular torques to keep acting in the
same directions.
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Figure 7. Eccentricity, Periapse, and Semi-Major Axis of the
Massive Body vs. Time (Scattering Simulations). The detach-
ment mechanism continues to act on the massive body even in the
presence of continual scattering from the giant planets. Bodies are
given a kick every periapse passage as long as their periapse distance
is p ≤ 0.35 .

4.3. Distribution of masses

In our third and final round of additional simulations, we
assign masses to our bodies according to a power-law distribu-
tion. Using observations and collisional models to probe the
histories of KBOs, Kenyon & Bromley (2004) estimated that
the number density of KBOs dN/dr ∝ r−α where α ≈ 2.5−3.0
for small bodies (with radii r . 0.1 − 1.0 km) and α ≈ 3.5
for large bodies (with radii r & 10 − 100 km). Our aim is
not to emulate this exact broken power law in our simulations
but to show that this mechanism is robust for a realistic mass
distribution. If we assume that α = 3.0 and hold the density
of the masses constant, then dN/dm ∝ m−5/3. We assign mass
values, according to this density profile, that span six orders
of magnitude.

In Figure 8 we show that the mechanism is robust with a
mass distribution. The most massive body in these simulations
(with mass M ≈ 3× 10−4 such that M/Mdisk ≈ 0.3) undergoes
the same cyclical orbital changes in eccentricity and periapse.
This result is noteworthy because any real physical system,
such as a scattered debris disk, would contain a population
of bodies with a variety of masses. Additionally, one might
argue that the presence of multiple massive bodies may dis-
rupt the coherence of the mechanism. However, we show in
these simulations that it still preferentially detaches the most
massive bodies.
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Figure 8. Eccentricity, Periapse, and Semi-Major Axis of the
Massive Body vs. Time (Power-law Simulations). The detach-
ment mechanism persists for a realistic mass distribution. We assign
masses in accordance with a realistic power law size distribution
where dN/dr ∝ r−3.

5. MECHANISM

In this section, we aim for an analytic description of the
physics of the new mechanism. To do so, we consider again
the idealized set up of an axisymmetric disk consisting of a
large number (n) of small mass bodies (m) on high eccentricity
(em0 = em[t = 0]) orbits about a central mass M∗. Into this
system, we place a single body of higher mass (M) with orbital
eccentricity (eM0 ). For simplicity, we assume all bodies have
the same semi-major axis and orbital plane.

The orbits will apsidally precess due to their mutual grav-
itational forces. If orbit M precesses at a different rate with
respect to the lower mass orbits, it will experience a flow of
orbits to one side and exchange angular momentum with them
via secular torques. Its precession rate over one orbital period
is

ΓM ≈
M∗(< a)

M∗

√
1 − e2

M0
=

nm
M∗

√
1 − e2

M0
(2)

(Merritt et al. 2010) while the precession rate of small mass
bodies is

Γm ≈
nm + M

M∗

√
1 − e2

m0
. (3)

Hence if eM0 = em0 , orbit M will precess at a slower rate than
orbits m. To precess at the same rate, it will need to decrease
its orbital eccentricity (which it will do via the exchange of
angular momentum with surrounding orbits).

We calculate this equilibrium eccentricity by setting Γdiff =

Γm − ΓM = 0, which yields√
1 − e2

eqM =

(nm + M
nm

) √
1 − e2

mt
. (4)

eeqM is the eccentricity at which the massive orbit M would
precess at the same rate as the lower mass orbits. Note how-

ever emt , em0 . As total angular momentum of the system
is conserved, the massive body cannot reach the equilibrium
orbital eccentricity without changing the average eccentricity
of the surrounding lower mass orbits. Conservation of orbital
angular momentum yields

JM + nJm = MJc

√
1 − e2

Mt
+ nmJc

√
1 − e2

mt
= Jtot (5)

where Jc =
√

GM∗a is the circular angular momentum and
Jtot is the conserved total angular momentum. Combining
equations 4 and 5 and taking eM0 = em0 yields the expression
for equilibrium eccentricity√

1 − e2
eqM = δ

√
1 − e2

m0 (6)

where

δ =
(1 + α)2

α2 + (1 + α)
(7)

and
α =

nm
M
. (8)

We calculate the oscillation period by quantifying the time it
takes the massive orbit to reach the equilibrium eccentricity
via the exchange of angular momentum with surrounding
lower mass orbits; this is a quarter of the oscillation period.
The change in angular momentum due to torques exerted on
orbit M over one orbital period is given by

∆Jp ≈
π

2
χ em0

nm
M∗

Jc (9)

where χ (< 0.5) is the fraction of disk orbits that donates a net
positive angular momentum to orbit M, β(e) ≈ 0.25e is the
eccentricity dependent factor that influences the strength of the
secular torque (Gürkan & Hopman 2007), and Jc is the body’s
circular angular momentum. From numerical experiments we
find χ ≈ 0.3. The oscillation period is then

tosc = 8 (π χ em0 )−1 ∆J
Jc

M∗
nm

P (10)

where ∆J is the change in angular momentum needed to
reach the equilibrium eccentricity. We find that the oscillation
timescale for our simulations should be ∼ 1.2 × 103P, which
is in rough agreement with our numerical results (see Figure
5).

6. RELEVANCE OF MECHANISM TO REAL
ASTROPHYSICAL SYSTEMS

6.1. How (not) to make Detached Objects

We can now calculate the oscillation timescale for a typical
detached object in the Solar System. Sedna, discovered by
Brown et al. (2004) is our example case. It has a periapse dis-
tance of 76 AU, a semi-major axis of 506 AU, an eccentricity
of 0.85, and an orbital period of 11, 400 years.
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From equation 6, it holds that the lowest equilibrium ec-
centricity is obtained when δ is at its maximum. This occurs
when nm ∼ M (see Figure 9). If M � nm, δ asymptotically
approaches unity and eeqM ≈ eM0 = em0 (since the massive
body can only take so much angular momentum from the
surrounding orbits). The same occurs when M � nm. This
is because as the disk becomes increasingly massive, the pre-
cession rates of all of the Scattered Disk Objects (SDOs) are
essentially equivalent and again, eeqM ≈ eM0 . Therefore, in
order for Sedna to achieve its current eccentricity through
this mechanism it must interact with a disk equivalent to its
mass (i.e. nm ∼ M) and its equilibrium eccentricity must be
eeqM = 0.89, given that it starts as a member of the Scattered
Disk with eccentricity eM0 = 0.94. From equation 10 we can
calculate Sedna’s oscillation timescale, with the assumption
that it interacts with a disk of SDOs of similar mass to itself.
We find that t = 3.5 × 1030 years!! This indicates that Sedna
could not have possibly undergone detachment via this mech-
anism within the age of the universe (let alone the age of the
Solar System).

10-3 10-2 10-1 100 101 102 103

α=nm/M

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

δ

Figure 9. δ vs. Disk Mass δ approaches unity for sufficiently high
and low disk masses. Maximum occurs when nm ∼ M. The low-
est equilibrium eccentricity a massive body is allowed to have is
determined by maximizing δ.

We conclude that although our simulations demonstrate the
robustness of our mechanism in increasingly realistic condi-
tions, it is unfortuneately not relevant to the Scattered Disk.
The massive body in our simulations has a mass that is compa-
rable to that of the rest of the disk. Additionally, the mass of
the disk is on the order of one Jupiter mass. Since tosc ∝

M∗
nm P,

detachment of massive bodies in our simulations occur within
hundreds of orbital periods. Unfortunately, Sedna and the
real Scattered Disk have masses nowhere near the value of a
Jupiter mass. As a result, it would not be possible for massive

SDOs and minor planets to detach from the Scattered Disk
through this mechanism.

6.2. Circularizing Planet 9?

Could the hypothetical Planet 9 decrease its orbital eccen-
tricity via this mechanism? One formation mechanism for
the hypothesized planet is that it was scattered outward by
the influence of giant protoplanets beyond the frost-line in
the outer Solar System. Thommes et al. (1999) & Levison &
Morbidelli (2007) demonstrate how protoplanets similar to
Planet 9’s predicted mass could be scattered outward while
young giants are clearing debris from their orbital domains. If
Planet 9 exists and was formed by such processes, it would
be challenging to explain its currently low(er) eccentricity;
which is predicted to be ∼ 0.5 − 0.8.

Planet 9 must have a mass of ∼ 5− 10M⊕ and a semi-major
axis of ∼ 700 AU (Batygin & Morbidelli 2017). Using the
arguments in the introduction of this section, we maximize δ
and minimize the equilibrium eccentricity by hypothesizing
that Planet 9 interacts with a disk equivalent to its mass.
Assuming that it started in the Scattered Disk with an eccen-
tricity eM0 = 0.96, we find its equilibrium eccentricity to be
eeqM = 0.92. This value is higher than Planet 9’s predicted
eccentricity, indicating that Planet 9 could not have reached
its current orbit through this mechanism.

6.3. Where could this mechanism be relevant?

Although this mechanism is not important in the outer Solar
System, it could be for other Keplerian systems which host
disks of sufficiently high mass (i.e. Mdisk ∼ 10−3M∗) and
contain a distribution of bodies in which the most massive ob-
jects differ in mass from their average counterpart by a factor
of ∼ 100 or more. For example, disks containing stars and
intermediate mass black holes (IMBHs) in orbit about super
massive black holes (SMBHs) could preferentially circularize
the most massive bodies while feeding the central SMBH with
IMBHs or stars. This is important, considering that an open
question among astrophysicists is how to continually feed
SMBHs. Additionally, it is known that many white dwarfs
have surfaces polluted heavily by metals (Cottrell & Green-
stein 1980). It is unclear how such stars could accumulate
metallic surfaces, but one suggestion is a continuous bombard-
ment of asteroids from a planetesimal disk. A massive planet
(∼ MJup) embedded in a planetesimal disk roughly equal to its
mass could circularize its orbit through this new mechanism
and, in the process, generate a flux of bodies that reach high
enough eccentricities such that they interact with the central
white dwarf on timescales of ∼ 104 years. Please see the
Appendix (section 7) for more details on this phenomenon.

7. SUMMARY AND DISCUSSION
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In this paper we have shown that in a thin axisymmetric disk
of eccentric orbits, massive bodies precess at slower rates than
their less massive counterparts. Smaller masses orbits pile up
to one side of a massive body’s orbit and donate their angular
momentum via secular gravitational torques. As a result,
massive bodies undergo oscillatory behavior in eccentricity
and periapse in an effort to obtain an equilibrium precession
rate consistent with the rest of the disk.

Using N-body simulations of increasing realism, we find
that this mechanism is robust in outer Solar System conditions.
These conditions are, namely, eccentricities and semi-major
axes consistent with the Scattered Disk population, scattering
forces from the giant planets/stars, and a distribution of masses
that follow a m−5/3 power law. Sadly, this mechanism is not
capable of detaching Sedna from the Scattered Disk given

that the timescale to do so is 3.7 × 1030 years if the mass
of the Scattered Disk in its vicinity is on the order of its
own mass. Thus, this mechanism, although interesting (and
new!), is not capable of detaching massive minor planets in the
Trans-Neptunian region. However, this mechanism could be
important for exoplanet systems hosting Jupiter mass planets
embedded in planetesimal debris disks. It could also have
implications for polluted white dwarfs and the feeding of
SMBHs.
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APPENDIX

7.1. Comet Showers
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Figure 10. Eccentricity Evolution of small Masses in ideal simulations with initial eccentricity e = 0.70 Small masses undergo eccentricity
oscillations, similar to those of the massive body but in opposite direction and of higher amplitude. As eccentricities grow the small bodies are in
danger of colliding with the central object at periapse.

The angular momentum exchange between large and small mass bodies can generate an influx of small masses into the center of
the gravitational potential. As the more massive body is torqued to low eccentricities, the reverse happens to the smaller masses
(Figures 5 & 10). As a result, some are kicked to very high orbital eccentricities, e ≈ 0.999, and they are in danger of colliding
with the central star (or even terrestrial planets).

7.2. Retrograde Orbiters

Our simulations also produce retrograde orbiters. This occurs when the small masses are torqued to high enough eccentricities
such that they undergo "inclination flips" (Li et al. 2014). This refers to a body whose orbit has been torqued so greatly that its
inclination goes through a 180◦ flip, causing the body to circle the sun backwards! This occurs in our simulations due to the
artificially high masses of our particles (which are chosen for computational simplicity). Particles take steps in angular momentum
greater than that of the Sun’s loss cone and survive. Essentially, these bodies exist in the full loss cone regime (Hills 1981). This
regime is defined by a large ratio between the size of a comet’s jump in angular momentum per orbital period to that of the loss
cone , q >> 1, where

q =

(
∆Jp

JLC

)2

. (11)

The angular momentum of the loss cone is
JLC =

√
2GM�R�. (12)

∆Jp is the change in angular momentum per orbital period given by equation 9. Again, ∆Jp ≈ 2π χ β(e) nm
M�

Jc where χ (< 0.5)
is the fraction of disk orbits that donates a net positive angular momentum to orbit M, β(e) ≈ 0.25e is the eccentricity dependent
factor that influences the strength of the secular torque (Gürkan & Hopman 2007), and Jc is the body’s circular angular momentum.
From numerical experiments we find χ ≈ 0.3. In the real Solar System, the size of the Sun’s loss cone relative to a comets typical
jump in angular momentum is therefore

q =

(
nm π χ β(e)

M�

)2 (
a

R�

)
∼ 10−8. (13)

This indicates that the bodies’ periapse distances would cross through the radius of the Sun, i.e., these bodies would collide with
the Sun, and they would not become retrograde orbiters.


