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Cheng, Ze (Ph.D., Applied Mathematics)

Qualitative Analysis of Some Nonlinear PDE systems

Thesis directed by Prof. Congming Li

We mainly study an important and interesting class of nonlinear PDE systems, the Hardy-

Littlewood-Sobolev (HLS) type system. In addition, we qualitatively study 3-wave resonance inter-

action (3WRI). HLS system plays crucial roles in geometric analysis, dynamics analysis of vacuum

states, study of nonlinear Schrödinger equations, and many other research areas. 3WRI emerges

from nonlinear optics, plasma physics, water wave etc.

Our goal is to develop some new idea and method to qualitatively analyze those systems.

This involves many types of problems, e.g. existence and non-existence, asymptotic behavior near

singularity or at infinity, stability etc.

Our study shows that nonlinear systems have brought many new challenges to us, where

methods and tools in the past may be limited to some special cases or even not applicable. By

developing new ideas we can provide insight into these problems and solve some of the challenges.
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Chapter 1

Introduction

.

1.1 HLS type systems

The well known Hardy-Littlewood-Sobolev (HLS) inequality states (see e.g. [68]):∫
Rn

∫
Rn

f(x)g(y)

|x− y|n−γ
dxdy ≤ C(n, s, γ)||f ||r||g||s (1.1)

where 0 < γ < n, 1 < s, r <∞, 1
r + 1

s + n−γ
n = 2, f ∈ Lr(Rn) and g ∈ Ls(Rn).

Define an operator T such that Tg(x) :=

∫
Rn

g(y)

|x− y|n−γ
dy, γ ∈ (0, n), then the HLS in-

equality is sometimes also written as:

||Tg|| ns
n−sγ

≤ C(n, s, γ)||g||s, or ||Tg||p ≤ C(n, s, γ)||g|| np
n+γp

, (1.2)

where n
n−γ < p <∞, and 1 < s < n/γ.

The best constant C = C(n, s, γ) is the maximum of:

J(f, g) =

∫
Rn

∫
Rn

f(x)g(y)

|x− y|n−γ
dxdy (1.3)

with constraints ‖f‖r = ‖g‖s = 1. This optimizing problem leads us to Euler-Lagrange equations

on f and g, 
c1f

r−1(x) =

∫
Rn

g(y)

|x− y|n−γ
dy,

c2g
s−1(x) =

∫
Rn

f(y)

|x− y|n−γ
dy,

(1.4)
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where c1 and c2 are constants. Let u = c1f
r−1, v = c2g

s−1, p = 1
r−1 , q = 1

s−1 , and c2, we arrive at

the following system of integral equations:


u(x) =

∫
Rn

vq(y)

|x− y|n−γ
dy,

v(x) =

∫
Rn

up(y)

|x− y|n−γ
dy,

(1.5)

with u, v > 0, u ∈ Lp+1, v ∈ Lq+1, 0 < p <∞, 0 < q <∞, 1
p+1 + 1

q+1 = n−γ
n .

For pq > 1, a solution of (1.5) is also a solution of: (−∆)γ/2u = vq, u > 0, in Rn,

(−∆)γ/2v = up, v > 0, in Rn.
(1.6)

The fractional Laplacian can be defined in several ways, e.g. via Fourier transform (see [46]). For

0 < p, q < ∞, we call (1.5) and (1.6) Hardy-Littlewood-Sobolev (HLS) type systems and

short as HLS systems.

The Hardy-Littlewood-Sobolev type systems are related to abundant problems e.g. in geo-

metric analysis, dynamics analysis of vacuum states, study of nonlinear Schrödinger equations. For

instance, if p = q = n+2
n−2 , and u(x) = v(x),

−∆u = u(n+2)/(n−2), u > 0, in Rn, (1.7)

is closely related to Yamabe problem. In the elegant paper [23], Gidas, Ni and Nirenberg classified

all the solution to (1.7) by method of moving plane (MMP) as radial and decaying, and unique up

to scaling and translation

u(x) =

( √
n(n− 2)λ

λ2 + |x− x0|2

)n−2
2

, λ > 0,

with assumption that u(x) = O( 1
|x|n−2 ). R. Schoen pointed out that this result is equivalent to a

geometric result due to Obata [48]: A Riemannian metric on Sn which is conformal to the standard

metric and having constant scalar curvature, then up to a constant scalar factor, is the pullback

of the standard metric under a conformal map of Sn to itself. Later, Caffarelli, Gidas and Spruck
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[6] removed the growth assumption u(x) = O( 1
|x|n−2 ). Chen and Li [8] simplified their proof with

Kelvin transform and MMP.

Now, consider a more general equation

−∆u = up, u ≥ 0, in Rn, (1.8)

For 1 ≤ p < n+2
n−2 , Gidas and Spruck [24] proved that the above equation admits only zero solution.

People are seeking an analogy of this result in system of equation (1.6) and call it Lane-Emden

conjecture. The conjecture says the “subcritical” (explained below) system admits only zero solu-

tion, and it is still open for spatial dimension n ≥ 5. Such Liouville type results are very useful in

the study of potential singularities and a priori estimates via a blow up argument, cf. [34, 55, 61].

For p > n+2
n−2 , it is still open that if the above equation admits non-radial solution (See [18]).

Due to their difference, p = n+2
n−2 is called critical, 1 ≤ p < n+2

n−2 subcritical and p > n+2
n−2

supercritical.

Then a more general example of HLS system is,

(−∆)γ/2u = u(n+γ)/(n−γ), u > 0, in Rn, (1.9)

which is critical in a similar sense. Chen, Li and Ou [11] showed that equation (1.9) is equivalent

to:

u(x) =

∫
Rn

u(y)
n+γ
n−γ

|x− y|n−γ
dy, u > 0 in Rn, (1.10)

and classified all the solution to take the form

u(x) = C

(
λ

λ2 + |x− x0|2

)n−γ
2

(1.11)

Therefore, in a similar fashion as the scalar case, we categorize the HLS type systems into

three cases: critical case 1
p+1 + 1

q+1 = n−γ
n , subcritical case 1

p+1 + 1
q+1 >

n−γ
n , supercritical

case 1
p+1 + 1

q+1 <
n−γ
n . Our goal is to study the different properties in each case, where various

analytic methods are applied.

The existence of solution for critical/supercritical HLS system (1.6) is established for

integer γ via a shooting method with topological degree theory, cf. [36, 42]. Indeed, the existence
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can be obtained for much more general systems via this method. All the study of shooting method

so far [63, 64, 69] requires a positivity condition on source term with which the solution has a nice

monotone decaying property. However, this positivity condition is not necessary for degree shooting

to be applicable. In Chapter 2, we present a theorem of existence of solution to systems that allow

sign-changing source terms. Note that without the the positivity condition, many estimates fail,

and thus we need to develop some new dynamic estimates to overcome these difficulties.

For the subcritical HLS type systems, in particular, γ = 2, i.e., the Lane-Emden system, we

study the non-existence of solutions. The so-called Lane-Emden conjecture states that, for γ = 2,

the subcritical HLS system (1.6), i.e. for 0 < p, q <∞, 1
p+1 + 1

q+1 >
n−2
n , −∆u(x) = vq(x), u ≥ 0, in Rn,

−∆v(x) = up(x), v ≥ 0, in Rn,
(1.12)

has u = 0 and v = 0 as the unique locally bounded solution.

The conjecture naturally generalize to the systems (1.5) or (1.6) in the subcritical cases with

an additional condition, pq > 1. Notice that pq > 1 is a necessary condition for this conjecture

to hold in high order HLS type systems. For example if p = q = 1 and γ = 4 we have solution

u = v = ew·x to (1.6) for w ∈ Rn with |w| = 1.

The conjecture is confirmed in the case of n = 3, 4, see [62, 55, 65]. For higher dimension,

only some subregion of subcritical region is confirmed, and the conjecture is still open. In Chapter

3, we present a necessary and sufficient condition to the Lane-Emden conjecture, a condition that

assumes the solution satisfies an energy estimate in certain form. We believe that this result may

point out a possible path to approach the long standing and interesting conjecture, i.e., to prove

the energy estimate mentioned above.

In Chapter 4, we consider discrete HLS inequality. Similar to continuous case, discrete HLS

inequality corresponds to discrete HLS system. In the classic paper [40], Lieb studied the optimizer

and the best constant of HLS inequality and obtained existence of both and symmetry property

of the optimizer. In particular, he gave explicit best constant and optimizer (which is essentially

unique) in the case of p = q′ or p = 2 or q = 2 via stereographic projection to recast equations
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on Sn. Here, we study the best constant and the optimizer of an extended discrete HLS system

(setting γ = 0, p = q = 2 in discrete version of (1.1) and limiting the inequality on a finite domain),

and we prove the existence and uniqueness of the optimizer, and give a sharp estimate of the best

constant. Moreover, we obtain a symmetry and monotone decaying property of the optimizer.

1.2 Three-wave resonance interaction

Consider the 3-wave resonance interaction (3WRI) system,
∂τA1 + c1 · ∇A1 = iγ1A2A3,

∂τA2 + c2 · ∇A2 = iγ2A1A3,

∂τA3 + c3 · ∇A3 = iγ3A1A2,

in Ω, (1.13)

with periodic boundary condition, where Ω is a rectangle domain,

Ω = {x ∈ Rn| |xk| < ak, k = 1, · · · , n}

and all A′js are are complex amplitude and periodic on Ω. γj = ±1, and cj ’s are real non-zero

constant vectors.

3WRI generates from various background, for example water waves, nonlinear optics and

plasma physics. The system (5.1) holds when a resonance condition is satisfied,

k1 ± k2 ± k3 = 0, ω1 ± ω2 ± ω3 = 0,

where kj ’s are wave vector (or wave number), ωj ’s are wave frequency and Aj ’s are complex am-

plitude. kj , ωj and Aj characterize a linearization of the solution of a nonlinear problem by

u(x, t) =
∑
j

Aj(x, t) exp i(kj · x− ωjt).

The derivation of (5.1) is rather standard in e.g. nonlinear optics and can be found in e.g. Chap.

4 in [1] and [32].

3WRI with positive wave energy corresponds to the case that γj ’s do not have the same sign,

which corresponds to

k1 = k2 + k3, ω1 = ω2 + ω3.
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3WRI with negative wave energy corresponds to the case that γj ’s have the same sign, which

corresponds to

k1 + k2 + k3 = 0, ω1 + ω2 + ω3 = 0.

The study of 3WRI has been focused on using inverse scattering transformation to construct

exact solution and thus providing a numerical scheme for solving the system. The 1D-3WRI was

approached by Zakharov and Manakov [71] (and independently by Kaup [29]), and the study

3D3WRI is developed along with the development of IST. We will discuss more detail in Chapter

5. However, IST only solves solution with fast decay at infinity and there is not so much study

about 3WRI with periodic boundary condition; also, there is not much qualitative information

that we can provide with the solution constructed by IST, e.g. can the solution to 3WRI develop

a singularity in finite time? If yes, does all solution blow up in finite time?

In Chapter 5, we first present a regularity theorem that guarantees no singularity can develop

in finite time for 3WRI with positive wave energy. Then for 3WRI with negative wave energy we

classify all the blow-up solution for spatial uniform case. Last, we show a class of solution that

blows up in finite time with “overlapping” initial value.



Chapter 2

Existence for critical and supercritical HLS system and more general system

The critical and supercritical HLS systems have been known to admit solution. Whereas the

subcritical HLS systems in some important cases do not admit solution, which we call non-existence

for subcritical HLS systems and will be discussed in next chapter. Here, we consider some general

systems that include critical and supercritical HLS systems as special cases.

The method we use to obtain existence is called shooting method with topological degree

theory, which is introduced independently by Liu-Guo-Zhang [42] and Li [37]. The original shooting

method with degree theory applies to system with strictly positive source term f . By developing a

new dynamic estimate, we have replaced the positivity condition imposed on the f with some mild

conditions that allow sign-changing f .

In section 2.2, we prove the main result, an existence theorem 2.1. In section 2.3, we show the

existence of solution to the some example systems. In fact, we show the nonexistence of solution to

the Dirichlet problems corresponding to those systems. Then according to theorem 2.1, the original

systems admit solution.

This chapter contains the work done in [14].
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2.1 Introduction

Inspired by the study of the existence of solution to critical and supercritical HLS system,
(−4)ku = vp in Rn,

(−4)kv = uq in Rn,

u, v > 0,

(2.1)

with 1
p+1 + 1

q+1 ≤
n−2k
n (take integer k = γ

2 in HLS system defined in chapter 1), we consider a

more general system,  −∆ui = fi(u) in Rn,

ui > 0 in Rn,
(2.2)

where i = 1, 2, · · · , L. Denote RL+ = {u ∈ RL|ui > 0, for i = 1, · · · , L}, and throughout this

chapter f = (f1, f2, · · · , fL) is assumed continuous in RL+ and locally Lipschitz continuous in RL+.

Notice that (2.1) can be reduced to (2.2).

When k = 1, HLS system (2.1) is also called Lane-Emden system. An interesting phenomena

about Lane-Emden system is that, there exists a dividing curve of parameters (p, q) introduced

independently by Clément-De Figueiredo-Mitidieri [15] and Peletier-Van der Vorst [49, 70], namely,

1

p+ 1
+

1

q + 1
= 1− 2

n
. (2.3)

Below this curve, i.e. (p, q) satisfy 1
p+1 + 1

q+1 >
n−2
n , people conjecture that the system admits no

solution (this is still open for n ≥ 5, and we will detail this in next chapter). On the other hand,

it is known that on or above this curve the Lane-Emden system admits solutions.

The critical case of Lane-Emden system, i.e., (p, q) on the curve (2.3), is known to admit

solution by concentration compactness. In [41] P.L. Lions has systematically developed the concept

of concentration compactness, and people find great application of it in calculus of variations and

nonlinear elliptic PDE, for example, to derive the existence of solution of the Lane-Emden system

in critical case. However, the argument no longer applies for supercritical case, i.e. (p, q) satisfying

1
p+1 + 1

q+1 <
n−2
n (that is above the curve (2.3)). Instead, Serrin and Zou [64] used shooting method

to get the existence of solutions of Lane-Emden system in the supercritical case.
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A degree approach to shooting method is introduced by Liu, Guo and Zhang [42] and inde-

pendently by C. Li in [37]. The method can be used to obtain existence of radial positive solution

for a general system (2.2), which includes critical and supercritical cases of Lane-Emden systems

(thus we can obtain existence of solution to both cases in a uniform way). The idea of the method

is to relate the existence of solutions in whole (global) space to the non-existence to a correspond-

ing (local) Dirichlet problem. Such idea generates from the earlier work of Berestycki, Lions and

Peletier [4] who considered radial solution to a single equation, i.e. (2.2) with L = 1. Now, with sys-

tem of equations, the degree theory will play a role in the shooting scheme. For more development

of degree approach to shooting method, see [39, 69].

Besides some non-degeneracy and growth control requirements, the conditions places on f

of system (2.2) in previous mentioned works by Li [39], Liu-Guo-Zhang [42], Serrin-Zou [64, 63],

Villavert [69] all include that f needs to be positive (i.e. fi is positive for all i = 1, · · · , L).

Although several important classes of systems such as critical and supercritical cases of (2.1) and

etc. are covered by those works, there are cases of nonlinear Shrödinger type of systems that f

does not need to be always positive. Here, we consider even more general cases where each fi can

change sign by replacing the condition f being positive by
∑
fi ≥ 0 (see assumption (2.6)).

Since we are looking for positive radial solution u(x) = u(|x|) of (2.2), the problem is equiv-

alent to looking for global positive solution to the following ODE system,
u
′′
i (r) +

n− 1

r
u
′
i(r) = −fi(u(r))

u
′
i(0) = 0, ui(0) = αi for i = 1, 2, · · · , L.

(2.4)

where α = (α1, α2, · · · , αL) is positive (i.e. each αi > 0) initial value for u.

By classical ODE theory, this initial value problem (2.4) has a unique solution u(r, α) for r in

some maximum interval. Let rα := infr≥0{r ∈ R|u(r, α) ∈ ∂RL+} (by ∂RL+ we mean the boundary

of RL+, which sometimes we call “the wall”), so r = rα is where u(r, α) touches the wall for the

first time. There are two cases, case 1: rα =∞, u never hits wall, then u(r, α) is a radial positive

solution to (2.2), and we are done; case 2: rα < ∞, u hits wall in finite time, and we will show

that the existence of solution of (2.2) will be sufficiently determined by the non-existence
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of radial solution to its corresponding Dirichlet problem (2.5) in the below,


−∆ui = fi(u) in BR,

ui > 0 in BR,

ui = 0 on ∂BR,

(2.5)

where BR := BR(0) for any R > 0 and i = 1, 2, · · · , L.

For the part of obtaining local non-existence, we follow Mitidieri’s work in [44] by implement-

ing Rellich-Pohožaev (see Pohožaev [53] and Rellich [60]) type of identities, and for completeness

we will give proof for some examples in section 3. See also the pioneering work of Pohožaev [54]

and Pucci and Serrin [56] about Pohožaev type of identities for general variational problem.

Here is our main result,

Theorem 2.1. Given the nonexistence of radial solution to system (2.5) for all R > 0, the

system (2.2) admits a radially symmetric solution of class C2,α(Rn) with 0 < α < 1, if f =

(f1(u), f2(u), · · · , fL(u)) : RL → RL satisfies the following assumptions:

(1) f is continuous in RL+ and locally Lipschitz continuous in RL+, and furthermore,

L∑
i=1

fi(u) ≥ 0 in RL+; (2.6)

(2) If α ∈ ∂RL+ and α 6= 0, i.e., for some permutation (i1, · · · , iL), αi1 = · · · = αim = 0,

αim+1 , · · · , αiL > 0 where m is an integer in (0, L), then ∃δ0 = δ0(α) > 0 such that for

β ∈ RL+ and |β − α| < δ0,

L∑
j=m+1

|fij (β)| ≤ C(α)
m∑
j=1

fij (β), (2.7)

where C is a non-negative constant that depends only on α.

Remark 2.2. (a) Notice that under assumption (2.6), the components of f is allowed to be

sign-changing. It is known that if fi’s stay positive, there are many nice properties that we

can use to obtain existence results. For example, Serrin and Zou’s paper on Lane-Emden



11

system [64] and on Hamiltonian type [63] and some recent work done by Li and Villavert

[37, 39, 69] and Liu, Guo and Zhang’s work in [42], all these works require f to be positive.

If fi changes sign, good properties are lost, which leads to estimates failing. Our work here

is to derive dynamic estimate (2.10) and (2.16) under assumptions above, such that the

degree theory approach to shooting method is applicable to show existence of solution with

sign-changing f .

(b) Assumption (2.7) guarantees the continuity of target map (see definition 2.3) near “the

wall”. As we shall see in next section, the continuity of the target map plays a crucial role

in obtaining existence of solution and the most analysis lies in proving such continuity.

2.2 Proof of main result

In this section, we will first define a target map and prove its continuity. Then we apply

degree theory to prove theorem 2.1.

2.2.1 Target map

For any real number a > 0, let Σa = {α ∈ RL+|
∑L

i=1 αi = a}, and Ba = {α ∈ ∂RL+|
∑L

i=1 αi ≤

a}. Recall that for positive α (i.e. every αi > 0) we define rα = infr≥0{r ∈ R|u(r, α) ∈ ∂RL+}. As

mentioned before, we can assume rα < ∞ since if rα = ∞ we get a solution to (2.2). Then we

define a target map on a initial data of (2.4) as following,

Definition 2.3. Let u(r, α) be a solution to (2.4) with initial value α ∈ Σa, we define a map

ψ : Σa → ∂RL+, such that

ψ(α) =

 u(rα, α) α ∈ RL+,

α α ∈ ∂RL+.
(2.8)

Here we sketch shooting method with topological degree theory as follows. Fix any real

number a > 0, and assume that for any initial value α ∈ Σa no global positive solution to (2.4)

exists (i.e. rα < ∞), so we can define a target map. Hence, step 1, we show that, under some
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suitable assumptions on f , the target map ψ is continuous from Σa to Ba; step 2, by degree theory

we show that ψ is onto, therefore ∃α0 ∈ Σa such that ψ(α0) = u(rα0 , α0) = 0; step 3, note that

by assumption rα0 < ∞, u(r, α0) for r ∈ [0, rα0 ] is a solution to the Dirichlet problem (2.5) with

R = rα0 , which makes a contradiction if we assume that system (2.5) admits no radial solution for

any R > 0.

In what follows, we assume (2.4) admits no global positive solution, i.e. rα < ∞. We first

show that under our assumptions (2.6) and (2.7) on f , the behavior of u is controlled in a good

way such that ψ is continuous.

Lemma 2.4. For any real number a > 0, let

Σa = {α ∈ RL+|
L∑
i=1

αi = a} and Ba = {α ∈ ∂RL+|
L∑
i=1

αi ≤ a}.

The target map ψ defined in definition 2.3 is a continuous map from Σa to Ba if f satisfies as-

sumptions (2.6) and (2.7).

Proof. To see that ψ maps Σa to Ba, we need to notice that by assumption (2.6) ΣL
i=1fi ≥ 0,

so we solve from the ODE system (2.4) and get

ΣL
i=1ui(r, α) = ΣL

i=1αi − ΣL
i=1

∫ r

0

∫ s

0
(
τ

s
)n−1fi(u(τ))dτds

≤ ΣL
i=1αi,

for r ∈ [0, rα]. Therefore, ψ(α) ∈ Ba.

Next, we will show that ψ is continuous on Σa. Fix any α ∈ Σa, then α lies on the boundary

of RL+ or in RL+ (α 6= 0 since a > 0), and we will prove for these two cases.

Case 1. α ∈ ∂RL+.

Suppose αi1 = · · · = αim = 0, and αim+1 , · · · , αiL > 0, for some integer m that 0 < m < L.

By the second assumption (2.7), ∃δ0 > 0, such that for α ∈ RL+ satisfying |α − α| < δ0 we

have

L∑
j=m+1

|fij (α)| ≤ C(α)
m∑
j=1

fij (α). (2.9)
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Notice that we can choose C = C(α) ≥ 1 in (2.9). First, we claim that
∑

1≤j≤m fij (α) ≥ 0. Indeed,

if C = 0, the term on the left of the inequality (2.9) must be zero, and due to the first assumption

(2.6),
∑

1≤j≤m fij (α) ≥ 0. If C > 0, then
∑

1≤j≤m fij (α) ≥ 0 obviously. Since
∑

1≤j≤m fij (α) ≥ 0

we choose C ≥ 1.

For this δ0 and C, we claim that:

Fix any δ < δ0
2(3+L)C , and for α ∈ Σa such that |α− α| ≤ δ, then for r ∈ [0, rα]

|u(r, α)− α| ≤ 2(3 + L)Cδ < δ0. (2.10)

As we will see in the following proof, (2.10) is a dynamic estimate, in the sense that if

|u(r, α)− α| < δ0 with r ∈ [0, a1) ⊂ [0, rα] for some a1 > 0, then by (2.7) we have

L∑
j=m+1

|fij (u(r, α)| ≤ C(α)
∑

1≤j≤m
fij (u(r, α)), (2.11)

and this control enables us to push the range of r in |u(r, α) − α| < δ0 further than a1 and up to

rα.

Suppose the claim not true, then there exists α0 ∈ RL+ satisfying |α0−α| ≤ δ and a1 ∈ (0, rα0)

such that the equality of (2.10) holds at r = a1 for the first time, i.e.

|u(r, α0)− α|

 < 2(3 + L)Cδ, if r < a1,

= 2(3 + L)Cδ, if r = a1.

(2.12)

For r ∈ (0, a1) we have,

|u(r, α0)− α| ≤ |u(r, α0)− α0|+ |α0 − α| (2.13)

≤
m∑
j=1

|uij (r, α0)− α0ij |+
L∑

j=m+1

|uij (r, α0)− α0ij |+ |α0 − α|. (2.14)

So, to estimate the second term of (2.14), we solve from (2.4) and get

L∑
j=m+1

|uij (r, α0)− α0ij | =
L∑

j=m+1

|
∫ r

0

∫ s

0
(
τ

s
)n−1fij (u(τ))dτds|
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Notice that since C ≥ 1, 2(3 + L)Cδ < δ0, therefore assumption (2.7) can be applied on u(r, α0)

for r ∈ (0, a1),

L∑
j=m+1

|uij (r, α0)− α0ij | ≤
L∑

j=m+1

∫ r

0

∫ s

0
|(τ
s

)n−1fij (u(τ))|dτds

≤ C
∫ r

0

∫ s

0
(
τ

s
)n−1

m∑
j=1

fij (u(τ))dτds

= C

m∑
j=1

(α0ij − uij (r, α0)),

The first term of (2.14) can be estimated by

m∑
j=1

|uij (r, α0)− α0ij | =
m∑
j=1

(α0ij − uij (r, α0))+ +
m∑
j=1

(α0ij − uij (r, α0))−

≤ 2
m∑
j=1

(α0ij − uij (r, α0))+.

To see the inequality above, one needs to notice that due to (2.7),
∑m

j=1 fij (u) ≥ 0, so
∑m

j=1 uij (r, α0)

is monotone decreasing on [0, rα0 ]. So,

m∑
j=1

(α0ij − uij (r, α0)) =

m∑
j=1

(α0ij − uij (r, α0))+ −
m∑
j=1

(α0ij − uij (r, α0))− ≥ 0.

The last term of (2.14) is bounded by δ, and notice that ui(r, α0) > 0, i = 1, · · · , L for

r ∈ (0, rα0), so we get

|u(r, α0)− α| ≤ 2
m∑
j=1

(α0ij − uij (r, α0))+ + C
m∑
j=1

(α0ij − uij (r, α0)) + δ

≤ (2 + C)

m∑
j=1

α0ij + δ

≤ (2 + C)L|α0 − α|+ δ

≤ (3 + C)Lδ,

where C is the same C in (2.7). Then we get a contradiction with (2.12) by taking r = a1 in the

above. Hence the claim is proved.

Notice that the claim and estimate (2.10) implies the continuity of ψ at α, therefore, we have

proved case 1.
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Case 2. α ∈ RL+.

As above we assume rα < ∞, and obviously rα > 0. Let’s assume at r = rα, for some

integer m that 0 < m ≤ L (m > 0 because ψ(α) = u(rα, α) ∈ ∂RL+, i.e. u touches the wall at

r = rα), so suppose ui1(rα, α) = · · · = uim(rα, α) = 0, and uim+1(rα, α), · · · , uiL(rα, α) > 0. Let

ω(r) =
∑m

j=1 uij (r, α), and we claim that ω′(rα) < 0.

By the continuity of u(r, α) with respect to r, ∃δ1 > 0 such that for r ∈ (rα − δ1, rα],

|u(r, α)− ψ(α)| < δ0. (2.15)

If m < L, the assumption (2.7) is taking effect, and therefore
∑m

j=1 fij ≥ 0 for r ∈ (rα − δ1, rα];

if m = L then by the assumption (2.6), we also have
∑m

j=1 fij ≥ 0 for r ∈ (rα − δ1, rα]. So, in

(rα − δ1, rα]

− 1

rn−1
(rn−1ω′(r))′ =

m∑
j=1

fij ≥ 0. (2.16)

Also, since ω(r) > 0 for r < rα and ω(rα) = 0, there must exist r0 ∈ (rα − δ1, rα), such that

ω′(r0) < 0. So, for r ∈ [r0, rα],

ω′(r) = (
r0

r
)n−1ω′(r0)−

∫ r

r0

(
τ

r
)n−1

m∑
j=1

fij (u(τ))dτ < 0. (2.17)

This proves the claim ω′(rα) < 0. Then there exists l0 ∈ {1, · · · ,m} such that u′il0
(rα, α) < 0.

Therefore, combining with the fact uil0 (rα, α) = 0, we see uil0 crosses the wall with a non-zero

slope, i.e. there is a transversality at r = rα, and by classical ODE stability theory (the continuous

dependence on initial value) ψ is continuous at α. �

2.2.2 Application of degree theory

Now, we recall some results in degree theory (in particular, the treatment modified by P.Lax,

cf. [47]). Consider C∞ oriented manifolds X0, Y of dimension n (all manifolds are assumed to

be paracompact) and an open subset X ⊆ X0 with compact closure. For convenience, write

dy1 ∧ · · · ∧ dyn = dy. Then for a C1 map φ : X → Y , the degree is defined as following:



16

Definition 2.5. Let µ = f(y)dy be a C∞ n-form with support contained in a coordinate patch Ω

of y0 and lying in Y \ {φ(∂X)} such that
∫
Y µ = 1; set

deg(φ,X, y0) =

∫
X
µ ◦ φ. (2.18)

Here are some properties of degree which we will refer to in our proof,

Proposition 2.6. For y1 close to y0, deg(φ,X, y0) = deg(φ,X, y1).

It follows that the degree of a mapping is constant on any connected component C of Y \

{φ(∂X)}, and we can write degree as deg(φ,X,C).

Proposition 2.7. If y0 /∈ φ(X), then deg(φ,X, y0) = 0.

As a result, if deg(φ,X, y0) 6= 0, then y0 ∈ φ(X).

An important property of degree is that, the notion can be extended to maps φ which are

merely continuous, since we can approximate such φ by C1 maps φn (see Property 1.5.3 in [47]).

Also, degree is homotopy invariant (see Proposition 1.4.3 in [47]), which enables us to define degree

for continuous map η : ∂X → Rn \ y0 (see Property 1.5.4 in [47]). It leads to the following theorem

(see Property 1.5.5 in [47]),

Theorem 2.8. deg(η,X, y0) depends only on the homotopy class of η : ∂X → Y = Rn.

The above theorem is also true if we change Rn to a hyperplane Tn = {α ∈ Rn|Σn
i=1αi = a},

i.e.,

Theorem 2.9. deg(η,X, y0) depends only on the homotopy class of η : ∂X → Y = Tn.

Now we are prepared to prove the existence of solution to (2.2).

Proof of theorem 2.1. For any fixed real number a > 0, assume that (2.4) admits no global

positive solution with any initial value α ∈ Σa, so rα <∞, and then we can define a target map ψ

by (2.3).
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Recall that Σa = {α ∈ RL+|
∑L

i=1 αi = a} and Ba = {α ∈ ∂RL+|
∑

i=1,··· ,L αi ≤ a}, and by

lemma 2.4 ψ is a continuous maps from Σa −→ Ba.

Let π(α) = α+ 1
L(a−

∑
i=1,··· ,L

αi)(1, · · · , 1) : Ba −→ Σa, then π is continuous with a continuous

inverse π−1(α) = α− ( min
i=1,··· ,L

αi)(1, · · · , 1) : Σa −→ Ba.

The map: φ = π ◦ ψ : Σa −→ Σa is continuous and φ(α) = α on ∂Σa. Then let η = id

(the identity map) and for n = L − 1, X = Σa \ ∂Σa, Y = Tn and then by theorem 2.9 we have

deg(φ,X, α) = deg(η,X, α) = 1 for any α ∈ X. By property 2.7, φ is onto, which implies that ψ is

also onto. this shows that there exists an α0 ∈ Σa such that ψ(α0) = 0.

Since we assume that system (2.5) admits no solution, rα0 corresponding to this α0 cannot

be finite, a contradiction. This completes the proof of Theorem 2.1. �

2.3 Examples

One of the simplest systems is that f ≡ 0 in (2.2), then u ≡ C for some constant vector C

is a solution. Let us point out that since f is not positive, this trivial system is not included in

results of Li and Villavert [37, 39, 69], but it is included in our cases. In this section, we will show

the existence of solution to some non-trivial systems. In the view of theorem 2.1, we only need to

show their corresponding Dirichlet problems admit no radial solution, and verify its source term

satisfy our assumptions in theorem 2.1.

The main tool of showing non-existence of solution (hence no radial solution) to Dirichlet

problem is Rellich-Pohožaev type of identities. Mitidieri did the pioneering work in [44], and here we

present a brief proof for completeness (see also Quittner-Souplet [58]). Here the Rellich-Pohožaev

identities we need are the following,
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Lemma 2.10. For the following system,

−∆u = f(u, v) in B,

−∆v = g(u, v) in B,

u, v > 0 in B,

u, v = 0 on ∂B,

in Rn, (2.19)

we have

(i) for θ ∈ [0, 1], ∫
B
∇u · ∇vdx = −

∫
B
θv∆u+ (1− θ)u∆vdx, (2.20)

(ii) ∫
B

∆u(x · ∇v) + ∆v(x · ∇u)− (n− 2)∇u · ∇vdx =

∫
∂B

(x · ν)(
∂u

∂ν

∂v

∂ν
)dσ ≥ 0, (2.21)

where ν is the outward normal,

(iii) ∫
B

∆u(x · ∇u)dx =

∫
B

n− 2

2
|∇u|2dx+

1

2

∫
∂B
x · ν|∇u|2dσ ≥ 0. (2.22)

Proof. Suppose there exists a positive solution (u, v) to (2.19).

(i) Since

−
∫
B
v∆udx =

∫
B
∇u · ∇vdx = −

∫
B
u∆vdx,

for θ ∈ [0, 1] we have ∫
B
∇u · ∇vdx = −

∫
B
θv∆u+ (1− θ)u∆vdx.
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(ii)∫
B

∆u(x · ∇v) + ∆v(x · ∇u)dx

=

∫
∂B

∂u

∂ν
(x · ∇v) +

∂v

∂ν
(x · ∇u)dσ −

∫
B

(2∇u · ∇v + xj∂iu∂
2
ijv + xj∂iv∂

2
iju)dx

=

∫
∂B

∂u

∂ν
(x · ∇v) +

∂v

∂ν
(x · ∇u)dσ −

∫
B

(2∇u · ∇v + x · ∇(∇u · ∇v))dx

=

∫
∂B

∂u

∂ν
(x · ∇v) +

∂v

∂ν
(x · ∇u)dσ −

∫
B

2∇u · ∇vdx−
∫
∂B
x · ν(∇u · ∇v))dσ + n

∫
B
∇u · ∇vdx.

Notice the fact that x = |x|ν, and ∇u = ∂u
∂ν ν and ∇v = ∂v

∂ν ν due to u, v = 0 on ∂B, and after

rearrangement we have the identity (2.21). Also, ∂u
∂ν ≤ 0 and ∂v

∂ν ≤ 0 on ∂B, so we have RHS of

(2.21) ≥ 0.

(iii) If we let u = v, then (ii) gives∫
B

∆u(x · ∇u)dx =

∫
B

n− 2

2
|∇u|2dx+

1

2

∫
∂B
x · ν|∇u|2dσ ≥ 0.

�

2.3.1 Sign-changing source terms

First we give a simple example that can be easily generated to some non-trivial sign-changing

source terms systems. Consider the following system,
−∆u = vp − up,

−∆v = up,

u, v > 0,

in Rn, (2.23)

and its corresponding Dirichlet problem,

−∆u = vp − up in B,

−∆v = up in B,

u, v > 0 in B,

u, v = 0 on ∂B,

(2.24)

where B = BR(0) ⊂ Rn for any R > 0. We have
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Theorem 2.11. If p > n+2
n−2 , then (2.23) admits radial positive solution.

Again the proof relies on the non-existence of solution to (2.24).

Lemma 2.12. If p > n+2
n−2 , then system (2.24) admits no solution for any R > 0.

Proof. By Lemma 2.10, we merge the source terms into (2.21) (we replace −up in the first

source term by ∆v, i.e. −∆u = vp + ∆v and −∆v = up), and by (2.20) we have

LHS of (2.21) =

∫
B
−(vp + ∆v)(x · ∇v)− up(x · ∇u)− (n− 2)∇u · ∇vdx

=

∫
B
−x · ∇

(
vp+1

p+ 1
+
up+1

p+ 1

)
−∆v(x · ∇v) + (n− 2) (θv∆u+ (1− θ)u∆v) dx

=

∫
B
−x · ∇

(
vp+1

p+ 1
+
up+1

p+ 1

)
−∆v(x · ∇v) + (n− 2)

(
−θ(vp+1 + v∆v)− (1− θ)up+1

)
dx

=

∫
B

{(
n

p+ 1
− (n− 2)θ

)
vp+1 +

(
n

p+ 1
− (n− 2)(1− θ)

)
up+1

}
dx

−
∫
B

∆v(x · ∇v) + (n− 2)θv∆vdx

So, by (2.22), (2.21) becomes∫
B

{(
n

p+ 1
− (n− 2)θ

)
vp+1 +

(
n

p+ 1
− (n− 2)(1− θ)

)
up+1

}
dx

=

∫
B

∆v(x · ∇v) + (n− 2)θv∆vdx+

∫
∂B

(x · ν)(
∂u

∂ν

∂v

∂ν
)dσ

=

∫
B

n− 2

2
|∇v|2dx+

1

2

∫
∂B
x · ν|∇u|2dσ −

∫
B
θ(n− 2)|∇v|2dx+

∫
∂B

(x · ν)(
∂u

∂ν

∂v

∂ν
)dσ

=

∫
B

(1− 2θ)
n− 2

2
|∇v|2dx+

1

2

∫
∂B
x · ν|∇u|2dσ +

∫
∂B

(x · ν)(
∂u

∂ν

∂v

∂ν
)dσ.

Take θ = 1
2 , and we have∫

B

(
n

p+ 1
− n− 2

2

)(
vp+1 + up+1

)
dx =

1

2

∫
∂B
x · ν|∇u|2dσ +

∫
∂B

(x · ν)(
∂u

∂ν

∂v

∂ν
)dσ ≥ 0. (2.25)

So, by assumption p > n+2
n−2 the LHS of the above identity < 0, a contradiction.

�

Proof of Theorem 2.11. Directly we see that (2.23) satisfies our first main assumption (2.6).

To see (2.7) is satisfied, just notice that if u = 0 then |f2| = 0 ≤ f1 = vp, and if v = 0 then

|f1| = up ≤ f2. Then for a neighborhood of such (u, v) (i.e. uv = 0), (2.7) holds.
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So, combined with Lemma 2.12, Theorem 2.11 follows from Theorem 2.1.

�

Remark 2.13. We thank the referees for pointing out that, actually system (2.23) can be solved

as follows. Suppose −∆w = wp, let u = λw and v = νw, then we can find suitable λ, ν such that

(u, v) is a solution.

However, consider a similar system,
−∆u = vp + vq − up,

−∆v = up,

u, v > 0,

in Rn, (2.26)

where p 6= q and p, q > n+2
n−2 . This system cannot be solved trivially as above, but we can show

the existence of solution to it by Theorem 2.1. We only need to show the nonexistence of solution

to corresponding Dirichlet problem (to show source terms satisfying assumptions (2.6) and (2.7)

is similar to the proof in Theorem 2.11). By Lemma 2.10, we merge −∆u = vp + vq + ∆v and

−∆v = up into (2.21), and take θ = 1
2 then we have an identity similar to (2.25),

∫
B

(
n
p+1 −

n−2
2

) (
vp+1 + up+1

)
+
(

n
q+1 −

n−2
2

)
vq+1dx

= 1
2

∫
∂B x · ν|∇u|

2dσ +
∫
∂B(x · ν)(∂u∂ν

∂v
∂ν )dσ > 0.

(2.27)

Then for p, q > n+2
n−2 and p 6= q, the above equation cannot hold and therefore the nonexistence of

solution to the Dirichlet problem follows.

2.3.2 Conservative source terms

In this section, we consider a system that f has a potential function F , i.e. f = ∇F , and

F (0) = 0.

Type I. Consider the following system,s −∆ui = ∂F
∂ui
,

ui > 0,

in Rn, (2.28)
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where i = 1, . . . , L. The corresponding Dirichlet problem is
−∆ui = ∂F

∂ui
in B,

ui > 0 in B,

ui = 0 on ∂B,

(2.29)

where i = 1, . . . , L, and B = BR(0) ⊂ Rn for any R > 0.

In [56], Pucci and Serrin have showed that for a general variational problem,∫
Ω
F(x, u,Du)dx = 0,

there exists Pohožaev type of identity that can give a sufficient condition on the nonexistence of

solution to Dirichlet problem on a bounded star-shaped domain. In this case, the system (2.28)

corresponds to a vector-valued extremal of the variational problem with

F(x, u,Du) =
1

2

L∑
k=1

|pk|2 − F (u),

where pk = Duk. So, theorem 6 in Pucci-Serrin [56] leads to the following result.

Lemma 2.14. For u ∈ RL+, F is a C1 function of u and satisfies F (0) = 0 and

n− 2

2
uk
∂F

∂uk
− nF (u) > 0, for u 6= 0, (2.30)

then system (2.29) admits no nontrivial solution.

Proof. Suppose there exists a solution u = (u1, · · · , uL) to system (2.29). By Lemma 2.10,

for i = 1, · · · , L,∫
B

∆ui(x · ∇ui)dx−
∫
B

n− 2

2
|∇ui|2dx =

1

2

∫
∂B
x · ν|∇ui|2dσ ≥ 0.

Sum the LHS of the above identities up and get

0 ≤
∫
B
− ∂F
∂ui

(x · ∇ui) +
n− 2

2
ui∆uidx

=

∫
B
−x · ∇F (u(x))− n− 2

2
ui
∂F

∂ui
dx

=

∫
B
nF − n− 2

2
ui
∂F

∂ui
dx,
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which contradicts to (2.30). �

Therefore, it follows from Theorem 2.1 and Lemma 2.14 that

Theorem 2.15. For system (2.28), if f satisfies the assumptions (2.6) and (2.7), and additionally

if f = ∇F , where F (0) = 0, and F satisfies (2.30) for u 6= 0, then system (2.28) admits a radially

symmetric solution of class C2(Rn).

Here is an example system of Type I (2.28): Let the potential function be

F (u, v) = −(u− v)2 + vpu+ uqv,with p, q >
n+ 2

n− 2
, (2.31)

and then 
−∆u = Fu = −2(u− v) + vp + quq−1v,

−∆v = Fv = 2(u− v) + pvp−1u+ uq,

u, v > 0,

in Rn. (2.32)

We can verify that F satisfies the condition of Theorem 2.15. F (0, 0) = 0, and Fu + Fv ≥ 0 ((2.6)

is satisfied). Let u = 0 then Fu = 2v + vp ≥ |Fv| = 2v, similarly if v = 0, then Fv = 2u + uq ≥

|Fu| = 2u, so we can see that (2.7) is satisfied in a neighborhood. Last, direct computation shows

that

n− 2

2
(uFu + vFv)− nF =

n− 2

2
(−2(u− v)2 + (p+ 1)uvp + (q + 1)uqv)− n(−(u− v)2 + vpu+ uqv)

≥ 2(u− v)2 + (
n− 2

2
(p+ 1)− n)uvp + (

n− 2

2
(q + 1)− n)vuq

> 0, for (u, v) 6= (0, 0),

so (2.30) is satisfied. Also, notice that Fu and Fv are sign-changing functions, for example, let

v = 0, then Fu < 0 and let u = 0 then Fu > 0.

Type II. In the following example, we give another class of systems with potential type of

source terms.
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Consider the following system, in Rn,
−∆u = f1 = ∂F

∂v ,

−∆v = f2 = ∂F
∂u ,

u, v > 0,

(2.33)

and corresponding Dirichlet problem

−∆u = ∂F
∂v , in B

−∆v = ∂F
∂u , in B

u, v > 0, in B

u, v = 0, on ∂B

(2.34)

where B = BR(0) ⊂ Rn for any R > 0. Similarly we have the following local-nonexistence lemma

obtained by Mitidieri in [44],

Lemma 2.16. Let F be a C1 function of u, v and satisfies F (0) = 0. In addition, if for (u, v) 6=

(0, 0), there exists θ ∈ [0, 1] such that

(n− 2)

(
θu
∂F

∂u
+ (1− θ)v∂F

∂v

)
− nF (u, v) > 0, (2.35)

then system (2.34) admits no nontrivial solution.

Then it follows from Theorem 2.1 and Lemma 2.16 that

Theorem 2.17. For system (2.33), if f1 = Fv and f2 = Fu satisfies the assumptions (2.6) and

(2.7), and additionally if F (0) = 0, and F satisfies (2.35) for (u, v) 6= (0, 0), then system (2.33)

admits a radially symmetric solution of class C2(Rn).

Proof of Lemma 2.16. Suppose there exists a solution (u, v). By Lemma 2.10, we merge
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the source terms to (2.21) and get,

0 ≤
∫
B

∆u(x · ∇v) + ∆v(x · ∇u)− (n− 2)∇u · ∇vdx

=

∫
B
−Fv(x · ∇v)− Fu(x · ∇u) + (n− 2)(θv∆u+ (1− θ)u∆v)dx

=

∫
B
−x · ∇F − (n− 2)(θvFv + (1− θ)uFu)dx

=

∫
B
nF − (n− 2)(θvFv + (1− θ)uFu)dx,

which contradicts to (2.35). �

Here is an example system of Type II (2.33): Let the potential function be

F (u, v) =
|u− v|r+1

r + 1
+
uq+1

q + 1
+
vp+1

p+ 1
,with p, q, r >

n+ 2

n− 2
, (2.36)

and 
−∆u = Fv = −|u− v|r−1(u− v) + vp,

−∆v = Fu = |u− v|r−1(u− v) + uq,

u, v > 0,

in Rn. (2.37)

We verify that F satisfies conditions in Theorem 2.17. F (0) = 0, and Fu+Fv ≥ 0 ((2.6) is satisfied).

Let u = 0 then Fv = vr + vp ≥ |Fu| = vr, similarly if v = 0, then Fu = ur + up ≥ |Fv| = ur, so

we can see that (2.7) is satisfied in a neighborhood. Last, direct computation shows that by taking

θ = 1
2 ,

n− 2

2
(uFu + vFv)− nF =

n− 2

2
(|u− v|r+1 + uq+1 + vp+1)− n(

|u− v|r+1

r + 1
+
uq+1

q + 1
+
vp+1

p+ 1
)

= (
n− 2

2
− n

r + 1
)|u− v|r+1 + (

n− 2

2
− n

q + 1
)uq+1 + (

n− 2

2
− n

p+ 1
)vp+1

> 0, for (u, v) 6= (0, 0),

so (2.35) is satisfied. Also, notice that Fu and Fv are sign-changing functions, for example, let

v = 0, then Fv < 0 for u 6= 0, and let u = 0 then Fv > 0 for v 6= 0.



Chapter 3

Non-existence for a subcritical HLS system: Lane-Emden conjecture

In this chapter, we consider a special case, γ = 2, of subcritical HLS system, i.e. the Lane-

Emden system (3.1). The so-called Lane-Emden conjecture states that the Lane-Emden system

admits only zero as non-negative solution. Should the conjecture be true, it has great application

in singular analysis and a priori estimates for a large class of nonlinear systems.

The full conjecture is still open. Here we present a necessary and sufficient condition to

the Lane-Emden conjecture. This condition is an energy type of integral estimate on solutions

to subcritical Lane-Emden system. To approach the long standing and interesting conjecture, we

believe that one plausible path is to refocus on establishing this energy type estimate.

This chapter contains the work in [12].

3.1 Introduction

Consider the subcritical Lane-Emden system, −∆u = vp,

−∆v = uq,

in Rn, (3.1)

where u, v ≥ 0, and

1

p+ 1
+

1

q + 1
>
n− 2

n
, (3.2)

For critical and supercritical cases, 1
p+1 + 1

q+1 ≤
n−2
n , see chapter 2. People guess that the following

statement holds and call it the Lane-Emden conjecture:
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Conjecture. u = v ≡ 0 is the unique nonnegative solution for system (3.1).

In [43, 45] Mitidieri has proved the nonexistence for radial solution in subcritical case, which

settles the radial case. The full Lane-Emden conjecture is still open and only partial results are

known. Many researchers have made contribution in pushing the progress forward, and we shall

briefly present some important recent developments of the Lane-Emden conjecture.

Denote the scaling exponents of system (3.1) by

α =
2(p+ 1)

pq − 1
, β =

2(q + 1)

pq − 1
, for pq > 1. (3.3)

Then subcritical condition (3.2) is equivalent to

α+ β > n− 2, for pq > 1. (3.4)

For p, q in the following region

pq ≤ 1, or pq > 1 and max{α, β} ≥ n− 2, (3.5)

(3.1) admits no positive entire supersolution, cf. Serrin and Zou [62]. This implies the conjecture

for n = 1, 2. Also, the conjecture is true for

min{α, β} ≥ n− 2

2
, with (α, β) 6= (

n− 2

2
,
n− 2

2
), (3.6)

cf. Busca and Manásevich [5]. Note that (3.6) covers the case that both (p, q) are subcritical, i.e.

max{p, q} ≤ n+2
n−2 , with (p, q) 6= (n+2

n−2 ,
n+2
n−2), which is treated earlier, cf. de Figueiredo and Felmer

[19] and Reichel and Zou [59]. Also, Mitidieri [45] has proved that the system admits no radial

positive solution. Chen and Li [10] have proved that any solution with finite energy must be radial,

therefore combined with Mitidieri [45], no finite-energy non-trivial solution exists.

For n = 3, the conjecture is solved by two papers. First, Serrin and Zou [62] proved that there

is no positive solution with polynomial growth at infinity. Then Poláčik, Quittner and Souplet [55]

removed the growth condition. In fact, they proved that no bounded positive solution implies no

positive solution. To sum up, the result of Poláčik et al. has two important consequences: one is
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that combining with Serrin and Zou’s result, one can prove the conjecture for n = 3; the other is

that proving the Lane-Emden conjecture is equivalent to proving nonexistence of bounded positive

solution. Thus, we always assume that (u, v) are bounded in this chapter.

For n = 4, the conjecture is recently solved by Souplet [65]. In [62], Serrin and Zou used

the integral estimates to derive the nonexistence results. Souplet further developed the approach

of integral estimates and solved the conjecture for n = 4 along with the case n = 3. In higher

dimensions, this approach provides a new subregion where the conjecture holds, but the problem

of full range in high dimensional space still seems stubborn. Souplet has proved that if

max{α, β} > n− 3, (3.7)

then (3.1) with (p, q) satisfying (3.2) has no positive solution. Notice that (3.7) covers (3.2) only

when n ≤ 4, and when n ≥ 5 (3.7) covers a subregion of (3.2).

The approach developed by Souplet in [65] is also effective on non-existence of positive solution

to Hardy-Hénon type equations and systems (cf. [20, 21, 51, 52]):
−∆u = |x|avp,

−∆v = |x|buq,
in Rn.

This approach can also be applied to more general elliptic systems, for further details, we refer

to [66] and [57]. Moreover, a natural extension and application of this tool is the high order

Lane-Emden system which was done by Arthur, Yan and Zhao [3].

In this chapter, we point out that the key to the Lane-Emden conjecture is obtaining a

certain type of energy estimate. This estimate is in fact a necessary and sufficient condition to the

conjecture. Connecting the estimate and the conjecture is a laborious work and needs to combine

many types of estimates. We believe that with the result here people can refocus on proving the

crucial estimate and thus solve the conjecture.

Theorem 3.1. Let n ≥ 3 and (u, v) be a non-negative bounded solution to (3.1). Assume there
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exists an s > 0 satisfying n− sβ < 1 such that∫
BR

vs ≤ CRn−sβ, (3.8)

then u, v ≡ 0 provided 0 < p, q < +∞ and 1
p+1 + 1

q+1 > 1− 2
n .

Remark 3.2. (a) Energy estimate (3.8) is a necessary condition to the Lane-Emden conjec-

ture. One just needs to notice that when u, v ≡ 0, (3.8) is obviously satisfied. The key to

the proof of Theorem 3.1 is to show (3.8) is sufficient.

(b) If p ≥ q, the assumption on v is weaker than the corresponding assumption on u due to a

comparison principle between u and v (i.e. Lemma 3.8).

In other words, if p ≥ q, and we assume for some r > 0, such that n− rα < 1,∫
BR

ur ≤ CRn−rα. (3.9)

Then (3.9) implies (3.8) by Lemma 3.8.

(c) By taking s = p Theorem 3.1 recovers the result in [65].

(d) A technical issue is that the standard W 2,p-estimate used in [65] is not enough to establish

Theorem 3.1 (see the footnote of Proposition 3.14). To overcome this difficulty, a mixed

type W 2,p-estimate is introduced in Lemma 3.5.

Remark 3.3. (a) It is worthy to point out an interesting role that the coefficient “1” of the

nonlinear source term plays in the Lane-Emden system. Consider the following system
−∆u = c1(x)vp,

−∆v = c2(x)uq,

in Rn, (3.10)

where 0 < a ≤ c1(x), c2(x) ≤ b < ∞ and x · ∇c1(x), x · ∇c2(x) ≥ 0 for some positive

constants a, b > 0. We can also have the following Rellich-Pohožaev type identity for some
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constants d1, d2 such that d1 + d2 = n− 2,∫
BR

(
nc1

p+ 1
− d1c1 +

x · ∇c1(x)

p+ 1
)vp+1 + (

nc2

q + 1
− d2c2 +

x · ∇c2(x)

q + 1
)uq+1dx

= Rn
∫
Sn−1

c1(R)vp+1(R)

p+ 1
+
c2(R)uq+1(R)

q + 1
dσ

+Rn−1

∫
Sn−1

d1v
′u+ d2u

′vdσ +Rn
∫
Sn−1

(v′u′ −R−2∇θu · ∇θv)dσ.

(3.11)

By the constrains on c1(x), c2(x), we can have the left terms (LT) in (3.11) as

LT ≥ δ0

∫
BR

vp+1 + uq+1dx, for some δ0 > 0. (3.12)

The argument in [65] is also valid for this case, and we still can prove nonexistence for

n ≤ 4 and for max(α, β) > n− 3, n ≥ 5.

On the other hand, for c1(x), c2(x) such that x ·∇c1(x), x ·∇c2(x) < 0, there exist non-zero

solutions of (3.10) in some subcritical cases (see Lei and Li [35] for detail).

(b) Theorem 3.1 is still true if we consider (3.10) with 0 < a ≤ c1(x), c2(x) ≤ b < ∞ and

x · ∇c1(x), x · ∇c2(x) ≥ 0. And the proof is very similar to the case c1 = c2 = 1. So here,

we only prove for c1 = c2 = 1.

The complete solution of the Lane-Emden conjecture may be a longstanding work. Hence,

it will be interesting to consider the Lane-Emden conjecture under some conditions weaker than

(3.8).

Open problem 1. Can we prove the Lane-Emden conjecture under the following pointwise asymp-

totic:

|v(x)| ≤ C|x|−γ , for some 0 < γ < β.

Open problem 2. Can we prove the Lane-Emden conjecture under the following integral asymp-

totic: ∫
BR

vs ≤ CRδ, for some s > 0, 0 < δ < 1.

Clearly, if problem 2 is solved, problem 1 directly follows by choosing sufficiently large s.
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In Section 3.2, we provide a few preliminary results. Some simplified proofs are given for the

completeness and convenience of readers. One of the difficulty in the proof of Theorem 3.1 was to

control the embedding index, and we derived a varied form of W 2,p-estimate (see Lemma 3.16) to

solve this problem. In Section 3.3, we give the proof of Theorem 3.1. Our proof by classifying the

argument into two cases hopefully can deliver the idea and the structure of the proof to readers in

a clearer way.

3.2 Preliminaries

Throughout this chapter, the standard Sobolev embedding on Sn−1 is frequently used. Here

we make some conventions about the notations. Let D denote the gradient with respect to standard

metric on manifold. Let n ≥ 2, j ≥ 1 be integers and 1 ≤ z1 < λ ≤ +∞, z2 6= (n − 1)/j. For

u = u(θ) ∈W j,z1(Sn−1), we have

‖u‖Lz2 (Sn−1) ≤ C
(
‖Dj

θu‖Lz1 (Sn−1) + ‖u‖L1(Sn−1)

)
, (3.13)

where 
1
z2

= 1
z1
− j

n−1 , if z1 < (n− 1)/j,

z2 =∞, if z1 > (n− 1)/j,

and C = C(j, z1, n) > 0. Although C may be different from line to line, we always denote the

universal constant by C. For simplicity, in what follows, for a function f(r, θ), we define

‖f‖p(r) = ‖f(r, ·)‖Lp(Sn−1), (3.14)

if no risk of confusion arises. Also let s, p, q be defined as in Theorem 3.1 and

l = s/p, k =
p+ 1

p
, m =

q + 1

q
.

By Remark 3.2 (b) and Lemma 3.8, throughout the chapter, we always assume p ≥ q. At last, we

set

F (R) =

∫
BR

uq+1dx.
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3.2.1 Basic Inequalities

Let us start with a basic yet important fact. Considering Lt-norm on B2R, we can write

‖f‖tLt(B2R) =

∫ 2R

0
‖f(r)‖tLt(Sn−1)r

n−1dr,

then by a standard measurement argument (cf. [62], [65]) one can prove that:

Lemma 3.4. Let fi ∈ Lpiloc(R
n), and i = 1, . . . , N , then for any R > 0, there exists R̃ ∈ [R, 2R]

such that

‖fi‖Lpi (Sn−1)(R̃) ≤ (N + 1)R
− n
pi ‖fi‖Lpi (B2R), for each i = 1, . . . , N.

The following lemma is a varied W 2,p-estimate which seems not to appear in any literature,

so we give a simple proof.

Lemma 3.5. Let 1 < γ < +∞ and R > 0. For u ∈W 2,γ(B2R), we have

‖D2u‖Lγ(BR) ≤ C
(
‖∆u‖Lγ(B2R) +R

n
γ
−(n+2)‖u‖L1(B2R)

)
where C = C(γ, n) > 0.

Proof. First we deal with functions in C2(B2)∩C0(B2). By standard elliptic W 2,p-estimate,

we have

‖D2u‖Lγ(B1) ≤ C(‖∆u‖Lγ(B 3
2

) + ‖u‖Lγ(B 3
2

)). (3.15)

By Lemma 3.4, ∃R̃ ∈ [7
4 , 2] such that on BR̃, u can be written as u = w1 + w2, where

respectively w1 and w2 are solutions to ∆w1 = ∆u, in BR̃,

w1 = 0, on ∂BR̃,

and  ∆w2 = 0, in BR̃,

w2 = u, on ∂BR̃,
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and additionally, ∫
∂BR̃

udσ ≤ C‖u‖L1(B2). (3.16)

By standard W 2,p-estimate with homogeneous boundary condition, we have

‖w1‖Lγ(B 3
2

) ≤ ‖w1‖W 2,γ(B 3
2

) ≤ C‖∆w1‖Lγ(BR̃).

Since w2 can be solved explicitly by Poisson formula on BR̃, we see that by (3.16) for any x ∈ B 3
2
(

BR̃, w2(x) can be bounded pointwisely by

|w2(x)| ≤ C
∫
∂BR̃

|u| ≤ C‖u‖L1(B2).

So,

‖w2‖Lγ(B 3
2

) ≤ C‖u‖L1(B2).

Hence,

‖u‖Lγ(B 3
2

) ≤ ‖w1‖Lγ(B 3
2

) + ‖w2‖Lγ(B 3
2

)

≤ C(‖∆u‖Lγ(BR̃) + ‖u‖L1(B2)).

Therefore, (3.15) becomes

‖D2u‖Lγ(B1) ≤ C(‖∆u‖Lγ(B2) + ‖u‖L1(B2)).

Then the lemma follows from a dilation and approximation argument. �

Lemma 3.6 (Interpolation inequality on BR). Let 1 ≤ γ < +∞ and R > 0. For u ∈ W 2,γ(BR),

we have

‖Dxu‖L1(BR) ≤ C
(
R
n(1− 1

γ
)+1‖D2

xu‖Lγ(BR) +R−1‖u‖L1(BR)

)
,

where C = C(γ, n) > 0.
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3.2.2 Pohožaev Identity, Comparison Principle and Energy Estimates

For system (3.1) we have a Rellich-Pohožaev identity, which is the starting point of the proof

of Theorem 3.1,

Lemma 3.7. Let d1, d2 ≥ 0 and d1 + d2 = n− 2, then∫
BR

(
n

p+ 1
− d1)vp+1 + (

n

q + 1
− d2)uq+1dx

= Rn
∫
Sn−1

vp+1(R)

p+ 1
+
uq+1(R)

q + 1
dσ +Rn−1

∫
Sn−1

d1v
′u+ d2u

′vdσ +Rn
∫
Sn−1

(v′u′ −R−2∇θu · ∇θv)dσ.

The following comparison principle is somewhat well known. An alternative proof can be

found in [65].

Lemma 3.8 (Comparison Principle). Let p ≥ q > 0, pq > 1 and (u, v) be a positive bounded

solution of (3.1). Then we have the following comparison principle,

vp+1(x) ≤ p+ 1

q + 1
uq+1(x), x ∈ Rn.

Proof. Let l = (p+1
q+1 )

1
p+1 , σ = q+1

p+1 . So lp+1σ = 1, and σ ≤ 1. Denote

ω = v − luσ.

We will show that ω ≤ 0.

∆ω = ∆v − l∇ · (σuσ−1∇u)

= ∆v − lσ(σ − 1)|∇u|2 − lσuσ−1∆u

≥ −uq + lσuσ−1vp

= uσ−1((
v

l
)p − uq+1−σ)

= uσ−1((
v

l
)p − uσp).

So, ∆ω > 0 if w > 0. Now, suppose w > 0 for some x ∈ Rn, and there are two cases:

Case 1: ∃x0 ∈ Rn, such that ω(x0) = max
Rn

ω(x) > 0, and ∆ω(x0) ≤ 0. However, when w > 0,

∆ω > 0, a contradiction.
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Case 2: There exists a sequence {xm} with |xm| → +∞, such that lim
m→+∞

ω(xm) = max
Rn

ω(x) >

c0 > 0 for some constant c0.

Let ωR(x) = φ( xR)ω(x), where φ(x) ∈ C∞0 (B1) is a cutoff function and φ(x) ≡ 1 in B 1
2
. Since

ωR(x) = 0 on ∂BR, there exists an xR ∈ BR such that ωR(xR) = max
BR

ωR(x) and lim
R→+∞

ω(xR) =

max
Rn

ω(x) > 0. Also,

0 = ∇ωR(xR) = φ(
xR
R

)∇ω(xR) +
1

R
∇φ(

xR
R

)ω(xR).

As φ(xRR ) ≥ c1 > 0 for some constant c1 (in fact, φ(xRR ) → 1) and ω(xR) is bounded since u, v are

bounded in Rn, we see that ∇ω(xR)→ 0 as R→ +∞. So,

0 ≥ ∆ωR(xR) =
1

R2
∆φ(

xR
R

)ω(xR) +
2

R
∇φ(

xR
R

) · ∇ω(xR) + φ(
xR
R

)∆ω(xR)

⇒ 0 ≥ ∆ω(xR) +O(
1

R2
)

Since ω(xR) > c0/2 for sufficiently large R, ∆ω(xR) > c2 > 0 for some constant c2, a contradiction.

�

Remark 3.9. For general Lane-Emden type system (3.10), we can choose

w = v − Cluσ, where Cp+1 = sup
x∈Rn

c2(x)

c1(x)
.

By the same arguments, we can also get the desired comparison principle.

Next we prove a group of energy estimates which are crucial to the entire argument. As

Theorem 3.1 points out, better energy estimates are the key to the Lane-Emden conjecture. Un-

fortunately, efforts have been made so far only provide the following inequalities, which are first

obtained by Serrin and Zou [62] (1996). Here we give a simpler proof than the original one for the

convenience of readers.

Lemma 3.10. Let p, q > 0 with pq > 1. For any positive solution (u, v) of (3.1)∫
BR

u ≤ CRn−α, and

∫
BR

v ≤ CRn−β, (3.17)

∫
BR

uq ≤ CRn−qα, and

∫
BR

vp ≤ CRn−pβ. (3.18)
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Proof. Without loss of generality, we can assume that p ≥ q.

Let φ ∈ C∞(BR(0)) be the first eigenfunction of −∆ in BR and λ be the eigenvalue. By

definition and rescaling, it is easy to see that φ |∂BR= 0 and λ ∼ 1
R2 . By normalizing, one gets

φ ≥ c0 > 0 on BR/2 for some constant c0 independent of R, φ(0) = ‖φ‖∞ = 1. So, multiplying

(3.1) by φ then integrating by parts on BR we have,∫
BR

φuq = −
∫
BR

φ∆v =

∫
∂BR

v
∂φ

∂n
dσ + λ

∫
BR

φv.

By Hopf’s Lemma we know that ∂φ
∂n < 0 on ∂BR, so∫

BR

φuq ≤ λ
∫
BR

φv. (3.19)

Similarly, we have ∫
BR

φvp ≤ λ
∫
BR

φu. (3.20)

Applying Lemma 3.8 to (3.19), we have

1

R2

∫
BR

φv ≥ C
∫
BR

φv
q(p+1)
q+1 .

Notice that q(p+1)
q+1 > 1 as pq > 1, so by Hölder inequality∫

BR

φv
q(p+1)
q+1 ≥ (

∫
BR

φv)
q(p+1)
q+1 (

∫
BR

φ)
−(

q(p+1)
q+1

−1)

≥ C(

∫
BR

φv)
q(p+1)
q+1 R

−n qp−1
q+1 .

So,

1

R2

∫
BR

φv ≥ C(

∫
BR

φv)
q(p+1)
q+1 R

−n qp−1
q+1

⇒
∫
BR

φv ≤ CRn−β.

Therefore, by (3.19) ∫
BR

φuq ≤ CRn−β−2 = CRn−qα.
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Now, Case 1: If q > 1, then by Hölder inequality∫
BR

φu ≤ (

∫
BR

φuq)
1
q (

∫
BR

φ)
1
q′ ≤ CR

n
q
−α
R

n
q′ = CRn−α,

1

q
+

1

q′
= 1.

Mean while, by (3.20) ∫
BR

φvp ≤ CRn−α−2 = CRn−pβ.

This finishes the proof for Case 1.

Case 2: Assume that q ≤ 1. To prove this trickier case, we begin with a lemma of energy-type

estimate,

Lemma 3.11. If ∆u ≤ 0, then for γ ∈ (0, 1), η ∈ C∞0 (Rn),∫
Rn

4

γ2
|D(u

γ
2 )|2η2 =

∫
η2|Du|2uγ−2 ≤ C

∫
|Dη|2uγ . (3.21)

Proof. Multiply η2uγ−1 to ∆u ≤ 0 then integrate over the whole space. �

We rewrite (3.21) as ∫
BR

|Du|2uγ−2 ≤ Cγ
R2

∫
B2R

uγ (3.22)

where Cγ → +∞ as γ → 1. From Poincaré’s Inequality, we have

|f | na
n−a ,ΩR

≤ C(n, a,Ω)
(
|Df |a,ΩR + |R|

n−a
a |fΩR |

)
, (3.23)

where

fΩR = −
∫

ΩR

f =
1

|ΩR|

∫
ΩR

f, ΩR = {Rx|x ∈ Ω}.

Next we prove a variation of embedding inequality,

Lemma 3.12. For any l ≥ 1,

|f l| an
n−a ,ΩR

≤ C(n, a,Ω)
(
|D(f l)|a,ΩR + |R|

n−a
a |fΩR |

l
)

(3.24)
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Proof. By (3.23),

|f l| an
n−a ,ΩR

≤ C(n, a,Ω)
(
|D(f l)|a,ΩR + |R|

n−a
a |(f l)ΩR |

)
≤ C(n, a,Ω)

(
|D(f l)|a,ΩR + |R|

n−a
a
−n
∫

ΩR

f ldx

)
≤ C(n, a,Ω)

{
|D(f l)|a,ΩR + |R|

n−a
a
−n(

∫
ΩR

fdx)θl(

∫
ΩR

f l
an
n−adx)(1−θ)ln−a

lan

}
, θ =

1− n−a
na

l − n−a
na

≤ C(n, a,Ω)|D(f l)|a,ΩR +
1

2
|f l| an

n−a ,ΩR
+ C(n, a,Ω)|R|

n−a
a |fΩR |

l.

In getting the last inequality, we have used the Young’s inequality. So we get (3.24). �

Let l ≥ 1, θ ≤ 2q < 2, γ = lθ < 1, f = u
θ
2 , a = 2. Then

|f l| 2n
n−2

,BR
≤ C

(
|Df l|2,BR +R

n−2
2 |fBR |

l
)

≤ C
(
|D(u

lθ
2 )|2,BR +R

n−2
2 |(u

θ
2 )BR |

l
)

≤ C

R

(∫
B2R

ulθ
) 1

2

+R
n−2
2

(
−
∫
BR

u
θ
2

)l
.

(3.25)

The last term on the right can be estimate by Hölder and the fact that −
∫
BR

uq ≤ CR−qα since

θ
2 < q. This yields that∫

BR

u
n
n−2

θl ≤ C

(
R−

2n
n−2

(∫
B2R

ulθ
) n
n−2

+Rn−
n
n−2

lθα

)
. (3.26)

This means if −
∫
BR

ulθ ≤ CR−lθα, we have −
∫
BR

u
n
n−2

lθ ≤ CR−
n
n−2

lθα provided lθ < 1. By −
∫
BR

uq ≤

CR−qα, one gets

−
∫
BR

us ≤ C(s)R−sα, for s <
n

n− 2
(3.27)

where C(s)→ +∞ as s→ n
n−2 .

By taking s = 1, the above inequality immediately leads to∫
BR

u ≤ CRn−α.

Since pq > 1 and we assume that p ≥ q, q must be greater than 1, then by Hölder and (3.20) we

get ∫
BR

vp ≤ CRn−pβ.

This finishes the proof of Lemma 3.10. �



39

3.2.3 Key Estimates on Sn−1

Now that we have energy inequalities (3.18), in our assumption (3.8) we can always assume

s ≥ p. Since l = s
p , we have l ≥ 1. The following estimates for quantities on sphere Sn−1 are

necessary to the proof.

Proposition 3.13. For R ≥ 1, there exists R̃ ∈ [R, 2R] such that for l = s
p ≥ 1, k = p+1

p and

m = q+1
q , we have

‖u‖1(R̃) ≤ CR−α, ‖v‖1(R̃) ≤ CR−β,

‖D2
xu‖l(R̃) ≤ CR−

lpβ
l+ε , ‖D2

xv‖1+ε(R̃) ≤ CR−
qα
1+ε ,

‖Dxu‖1(R̃) ≤ CR1−α+2
1+ε , ‖Dxv‖1(R̃) ≤ CR1−β+2

1+ε ,

‖D2
xu‖k(R̃) ≤ C(R−nF (2R))

1
k , ‖D2

xv‖m(R̃) ≤ C(R−nF (2R))
1
m .

In view of Lemma 3.4, to prove Proposition 3.13, we shall give the corresponding estimates

on B2R first. We use the varied W 2,p-estimate (i.e. Lemma 3.5) to achieve this.

Proposition 3.14. For R ≥ 1, we have ‖u‖L1(BR) ≤ CRn−β,

‖v‖L1(BR) ≤ CRn−α,
(3.28)

 ‖D
2
xu‖l+εLl+ε(BR)

≤ CRn−lpβ, with l = s
p ≥ 1,

‖D2
xv‖1+ε

L1+ε(BR)
≤ CRn−qα,

(3.29)

 ‖Dxu‖L1(BR) ≤ CR
n+1−α+2

1+ε ,

‖Dxv‖L1(BR) ≤ CRn+1−β+2
1+ε ,

(3.30)

and let k = p+1
p , m = q+1

q ,  ‖D
2
xu‖kLk(BR)

≤ CF (2R),

‖D2
xv‖mLm(BR) ≤ CF (2R).

(3.31)
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Proof. Some frequently used facts include, qα = β + 2, pβ = α + 2 and hence n − kpβ < 0

(due to (3.4)) and therefore l < k (since n− lpβ ≥ 0).

Estimates (3.28) directly follow from (3.17) in Lemma 3.10.

For the first estimate of (3.29), after applying Lemma 3.5, the mixed type W 2,p-estimate1 ,

we get

‖D2
xu‖l+εLl+ε(BR)

≤ C
(
‖∆u‖l+ε

Ll+ε(B2R)
+Rn−(l+ε)(n+2)‖u‖l+ε

L1(B2R)

)
.

Then we use the assumed estimate (3.8) and Lemma 3.10 to get

‖D2
xu‖l+εLl+ε(BR)

≤ C
(∫

B2R

vp(l+ε)dx+Rn−(l+ε)(n+2)R(l+ε)(n−α)

)
≤ C

(
Rn−plβ +Rn−(l+ε)(2+α)

)
≤ CRn−plβ,

where the last inequality is due to α+ 2 = pβ. For the second estimate of (3.29),

‖D2
xv‖1+ε

L1+ε(BR)
≤ C

(
‖∆v‖1+ε

L1+ε(B2R)
+Rn−(1+ε)(n+2)‖v‖1+ε

L1(B2R)

)
≤ C

(∫
B2R

uq(1+ε)dx+Rn−(1+ε)(n+2)R(1+ε)(n−β)

)
≤ C

(
Rn−qα +Rn−(1+ε)(β+2)

)
≤ CRn−qα.

For the first estimate of (3.30), by Lemma 3.6,

‖Dxu‖L1(BR) ≤ C
(
Rn(1− 1

1+ε
)+1‖D2

xu‖L1+ε(BR) +R−1‖u‖L1(BR)

)
≤ C

(
Rn(1− 1

1+ε
)+1R

n−pβ
1+ε +R−1Rn−α

)
≤ CRn+1−α+2

1+ε ,

The second estimate in (3.30) can be obtained by a similar process. Last, the fact that n−(p+1)β <

1 Notice that with the standard W 2,p-estimate, we end up with a term of ‖u‖l+ε which cannot be estimated by
any energy bound.
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0 gives

‖D2
xu‖kLk(BR) ≤ C

(∫
B2R

|∆u|kdx+Rn−k(n+2)(

∫
B2R

|u|dx)k
)

≤ C
(∫

B2R

vp+1dx+Rn−k(n+2)Rk(n−α)

)
≤ C

(
F (2R) +Rn−(p+1)β

)
≤ CF (2R),

and hence the first estimate in (3.31) follows, and similarly we get the second estimate. �

Proof of Proposition 3.13: By Lemma 3.4, ∃R̃ ∈ [R, 2R], Proposition 3.13 follows from

Proposition 3.14 immediately. �

Lemma 3.15. There exists M > 0 such that ∃{Rj} → +∞,

F (4Rj) ≤MF (Rj).

Proof. Suppose not, then for any M > 0 and any {Rj} → +∞, we have

F (4Rj) > MF (Rj).

Take M > 5n and Rj+1 = 4Rj with R0 > 1. Therefore,

F (Rj) > M jF (R0),

which leads to a contradiction with F (Rj) ≤ CRnj ≤ C(4jR0)n. �

3.3 Proof of Liouville Theorem

From now on, without loss of generality, we may assume p ≥ q. By Lemma 3.8, ‖v‖p+1
Lp+1(BR)

≤

‖u‖q+1
Lq+1(BR)

. By the Rellich-Pohožaev type identity in Lemma 3.7, we can denote

F (R) :=

∫
BR

uq+1 ≤ CG1(R) + CG2(R), (3.32)
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where

G1(R) = Rn
∫
Sn−1

uq+1(R)dσ, (3.33)

G2(R) = Rn
∫
Sn−1

(|Dxu(R)|+R−1u(R))(|Dxv(R)|+R−1v(R))dσ. (3.34)

Heuristically, we are aiming for estimate as

Gi(R) ≤ CR−aiF 1−δi(4R), i = 1, 2. (3.35)

Then by Lemma 3.15 there exists a sequence {Rj} → +∞ such that

Gi(Rj) ≤ CR−aiF 1−δi(Rj), i = 1, 2.

Suppose there are infinitely many Rj ’s such that G1(Rj) ≥ G2(Rj), then take that subsequence of

{Rj} and still denote as {Rj}. We do the same if there are infinitely many Rj ’s such that G1(Rj) ≤

G2(Rj). So, there are only two cases we shall deal with: there exists a sequence {Rj} → +∞ such

that

Case 1: G1(Rj) ≥ G2(Rj). Then we prove a1 > 0, δ1 > 0. So, F δ1(Rj) ≤ CR−a1j → 0,

Case 2: G1(Rj) ≤ G2(Rj). Then we prove a2 > 0, δ2 > 0. So, F δ2(Rj) ≤ CR−a2j → 0.

Then we conclude that F (R) ≡ 0.

Surprisingly, for both cases ai ≈ (α+ β + 2− n)δi. Indeed, we have

Theorem 3.16. For F (R) defined as (3.32) and α, β defined as (3.3), there exists a sequence

{Rj} → +∞ such that

F (Rj) ≤ CR−(α+β+2−n)+o(1)
j .

Hence, Theorem 3.1 is a direct consequence of Theorem 3.16, and we only need to prove

Theorem 3.16 for case 1 and 2.
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3.3.1 Case 1: Estimate for G1(R)

According to previous discussion in the introduction, we assume that

p ≥ q > 0, pq > 1, β ≤ α < n− 2, n ≥ 3,

hence in particular

p >
n

n− 2
. (3.36)

Remark 3.17. For systems (3.10) with double bounded coefficients, (3.36) is a necessary condition

for existence of positive solution, see [35].

In addition to our assumption that n− sβ < 1, since we have energy inequalities (3.18), we

can assume s ≥ p. Also, if n − sβ < 0, (3.8) implies v ≡ 0 and hence u ≡ 0. So, we assume

n− sβ ≥ 0. Let l = s
p , then

l ≥ 1, and
n− 1

pβ
< l ≤ n

pβ
. (3.37)

It is worthy to point out that, what the proof of Lane-Emden conjecture really needs is a

“breakthrough” on the energy estimate (3.18). s in (3.8) needs not be very large but enough to

satisfy n− sβ < 1. In other words, s can be very close to n−1
β , and it is sufficient to prove Theorem

3.1.

The strategies of attacking G1 and G2 are the same. Basically, first by Hölder inequality

we split the quantities on sphere Sn−1 into two parts. One has a lower (than original) index after

embedding, and the other has a higher one. Then we estimate the latter part by F (R), and thus

we get a feedback estimate as (3.35).

Let

k =
p+ 1

p
.

Since pβ = α+ 2, n− (p+ 1)β = n− 2− (α+ β) < 0 by (3.4). Thus, n− kpβ < 0 as n− lpβ ≥ 0,

it follows that l < k.
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Subcase 1.1 1
l ≥

2
n−1 + 1

q+1 .

Note that in this subcase, since l ≥ 1, we must have n ≥ 4 (i.e., n 6= 3). By (3.36) we see

that k = 1 + 1
p < 1 + n−2

n = 2
n(n− 1) ≤ n−1

2 . Take

1

µ
=

1

k
− 2

n− 1
.

So, W 2,k(Sn−1) ↪→ Lµ(Sn−1).

Take

1

λ
=

1

l
− 2

n− 1
≥ 1

q + 1
.

Then W 2,l+ε(Sn−1) ↪→ Lλ(Sn−1).

Direct verification shows that 1
µ = 1

k −
2

n−1 ≤
1
q+1 which is due to (3.2), so we have

1

µ
≤ 1

q + 1
≤ 1

λ
.

Then by Hölder inequality and Sobolev embedding (3.13), we have (with notation (3.14))

‖u‖q+1(R) ≤ ‖u‖θλ‖u‖1−θµ (R) (3.38)

≤ C(R2‖D2
xu‖l+ε(R) + ‖u‖1(R))θ(R2‖D2

xu‖k(R) + ‖u‖1(R))1−θ, (3.39)

where θ ∈ [0, 1] and

1

q + 1
=
θ

λ
+

1− θ
µ

. (3.40)

Since l can be 1 (then W 2,p-estimate fails for ‖D2
xu‖1(R)), we add an ε to l for later use of

W 2,p-estimate. ε can be any real positive number and later will be chosen sufficiently small.

To get desired estimate, we have requirements in form of inequalities involving parameters,

such as α, β, ε and etc. To verify those requirements very often we just verify strict inequalities

with ε = 0 because such inequalities continuously depend on ε.

So, by (3.33) and (3.39)

G1(R) ≤ CRn
(

(R2‖D2
xu‖l+ε(R) + ‖u‖1(R))θ(R2‖D2

xu‖k(R) + ‖u‖1(R))1−θ
)q+1

. (3.41)
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Then by Proposition 3.13, there exists R̃ ∈ [R, 2R] such that

G1(R̃) ≤ CRn
(

(R2R−
lpβ
l+ε +R−2−α)θ(R2(R−nF (4R))

1
k +R−α)1−θ

)q+1

≤ CRn
(
R2− lpβθ

l+ε
−n(1−θ)

k F
1−θ
k (4R)

)q+1

≤ R−a1F 1−δ1(4R),

where the last inequality is due to R−
n
k > R−α−2 and

a1 = aε1 = (q + 1)(
lpβθ

l + ε
+
np(1− θ)
p+ 1

− 2− n

1 + q
), (3.42)

1− δ1 =
(1− θ)p(q + 1)

p+ 1
. (3.43)

Since for sufficiently small ε, aε1 > 0 and δ1 > 0 are just a perturbation of

a0
1 > 0, and δ1 > 0, (3.44)

we only need to prove (3.44) is true.

Since lp = s, pβ = α+ 2 and qα = β + 2,

a0
1 = pβθ(q + 1) + (1− δ1)n− 2(q + 1)− n

= (q + 1)(pβθ − 2)− δ1n

= (q + 1)(pβ(θ − 1) + pβ − 2)− δ1n

= (q + 1)(−α(1− δ1) + α)− δ1n

= δ1((q + 1)α− n)

= (α+ β + 2− n)δ1.
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So we just need to prove δ1 > 0. By (3.42) and (3.40) we have

(1− θ)p(q + 1) < p+ 1

⇔
1
l −

2
n−1 −

1
1+q

1
l −

1
k

(q + 1) < k

⇔(
1

l
− 2

n− 1
)(q + 1)− 1 <

k

l
− 1

⇔1

l
(q + 1− 1− 1

p
) <

2

n− 1
(q + 1)

⇔pq − 1

s
<

2(q + 1)

n− 1

⇔n− 1 < sβ,

and the last inequality is included in our assumption. So, we have proved subcase 1.1.

Subcase 1.2 1
l <

2
n−1 + 1

q+1 .

As discussed in the beginning of subcase 1.1, k < n−1
2 if n > 3. Since l < k, 1

l >
2

n−1 for

n > 3. When n = 3, since l ≥ 1 by (3.37), 1
l ≤ 1 = 2

n−1 .

Therefore, for n > 3, take

1

λ
=

1

l
− 2

n− 1
<

1

q + 1
,

and for n = 3, take

λ =∞,

so we have

W 2,l+ε(Sn−1) ↪→ Lλ(Sn−1), n ≥ 3.

So,

‖u‖q+1(R) ≤ C‖u‖λ(R) ≤ C(R2‖D2
xu‖l+ε(R) + ‖u‖1(R)).
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Therefore, by Proposition 3.13 there exists R̃ ∈ [R, 2R] such that

G1(R̃) ≤ CRn(R2‖D2
xu‖l+ε(R) + ‖u‖1(R))q+1 (3.45)

≤ CRn(R2R−
lpβ
l+ε +R−α)q+1 (3.46)

≤ CRn+(2− lpβ
l+ε

)(q+1). (3.47)

So,

F (R̃) ≤ CRn+(2− lpβ
l+ε

)(q+1)

≤ CRn+(2−pβ)(q+1)+ εpβ
l+ε

(q+1)

≤ CR−(α+β+2−n)+ εpβ
l+ε

(q+1).

Since ε can be arbitrarily small,

F (R̃) ≤ CR−(α+β+2−n)+o(1).

Thus, we have proved Case 1.

3.3.2 Case 2: Estimate for G2(R).

Let

m =
q + 1

q
.

Subcase 2.1 m < n− 1.

With z, z′ > 0 and 1
z + 1

z′ = 1, (3.34) becomes,

G2(R) ≤ CRn‖|Dxu|+R−1u‖z‖|Dxv|+R−1v‖z′(R)

≤ CRn(‖Dxu‖z(R) +R−1‖u‖z(R))(‖Dxv‖z′(R) +R−1‖v‖z(R))

≤ CRn(‖Dxu‖z(R) +R−1‖u‖1(R))(‖Dxv‖z′(R) +R−1‖v‖1(R)),

(3.48)

where the last inequality is due to

‖u‖z(R) ≤ C(R‖Dxu‖z(R) + ‖u‖1(R)), and ‖v‖z′(R) ≤ C(R‖Dxv‖z′(R) + ‖v‖1(R)).
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Assume there exists z (we shall check the existence later) such that by Sobolev Embedding (3.13),

‖Dxu‖z(R) ≤ ‖Dxu‖τ1ρ1(R)‖Dxu‖1−τ1γ1 (R)

≤ C(R‖D2
xu‖l+ε(R) + ‖Dxu‖1(R))τ1(R‖D2

xu‖k(R) + ‖Dxu‖1(R))1−τ1 ,

(3.49)

‖Dxv‖z′(R) ≤ ‖Dxv‖τ2ρ2(R)‖Dxv‖1−τ2γ2 (R)

≤ C(R‖D2
xv‖1+ε(R) + ‖Dxv‖1(R))τ2(R‖D2

xv‖m(R) + ‖Dxv‖1(R))1−τ2 ,

(3.50)

where τ1, τ2 ∈ [0, 1] and

1

z
=
τ1

ρ1
+

1− τ1

γ1
, (3.51)

1

z′
=
τ2

ρ2
+

1− τ2

γ2
, (3.52)

and since l < k ≤ m < n− 1, define

1

ρ1
=

1

l
− 1

n− 1
,

1

γ1
=

1

k
− 1

n− 1
, (3.53)

1

ρ2
= 1− 1

n− 1
,

1

γ2
=

1

m
− 1

n− 1
. (3.54)

So, we have

W 1,l+ε(Sn−1) ↪→ Lρ1(Sn−1), W 1,k(Sn−1) ↪→ Lγ1(Sn−1),

W 1,1+ε(Sn−1) ↪→ Lρ2(Sn−1), W 1,m(Sn−1) ↪→ Lγ2(Sn−1).

To verify the existence of such z, by (3.51)-(3.54), we expect that

max

{
1

k
− 1

n− 1
,

1

n− 1

}
≤ 1

z
≤ min

{
1

l
− 1

n− 1
,

1

q + 1
+

1

n− 1

}
. (3.55)

Thus, we need to verify, (i) 1
k −

1
n−1 ≤

1
l −

1
n−1 , (ii) 1

n−1 ≤
1
l −

1
n−1 , (iii) 1

n−1 ≤
1
q+1 + 1

n−1 , (iv)

1
k −

1
n−1 ≤

1
q+1 + 1

n−1 .

Since l < k, (i) is true. (ii) holds for n > 3 as discussed at the beginning of subcase 1.2

1
l >

1
k >

2
n−1 ; for n = 3, take s = p and then l = 1, so (ii) still holds. (iii) is obvious. (iv) is

equivalent to 1
p+1 + 1

q+1 ≥ 1− 2
n−1 , which is guaranteed by (3.2).
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So, we put (3.49) and (3.50) in (3.48) and get

G2(R) ≤ CRn+2(‖D2
xu‖l+ε(R) +R−1‖Dxu‖1(R) +R−2‖u‖1(R))τ1

×(‖D2
xu‖k(R) +R−1‖Dxu‖1(R) +R−2‖u‖1(R))1−τ1

×(‖D2
xv‖1+ε(R) +R−1‖Dxv‖1(R) +R−2‖v‖1(R))τ2

×(‖D2
xv‖m(R) +R−1‖Dxv‖1(R) +R−2‖v‖1(R))1−τ2 .

(3.56)

Then by Proposition 3.13, there exists R̃ ∈ [R, 2R] such that

G2(R̃) ≤ CRn+2R
−pβτ1
1+ε/l

(
(R−nF (4R))

1
k +R−

α+2
1+ε +R−α−2

)1−τ1

×R−
qατ2
1+ε/l

(
(R−nF (4R))

1
m +R−

β+2
1+ε +R−β−2

)1−τ2

≤ CR−aε2F 1−δ2(4R),

where the last inequality is due to R−
n
k > R−α−2 and R−

n
m > R−β−2. Meanwhile,

a2 = aε2 = −n− 2 +
pβτ1

1 + ε/l
+

qατ2

1 + ε/l
+ n

1− τ1

k
+ n

1− τ2

m
, (3.57)

1− δ2 =
1− τ1

k
+

1− τ2

m
. (3.58)

Similar to subcase 1.1, we only need to prove

a0
2 > 0, δ2 > 0.

Surprisingly, similar to a1 ≈ (α+ β + 2− n)δ1, we have a2 ≈ (α+ β + 2− n)δ2 since we can prove

a0
2 = (α+ β + 2− n)δ2. Indeed,

a0
2 = −n− 2 + pβ(τ1 − 1) + pβ + qα(τ2 − 1) + qα+ n(1− δ2)

= −n− 2− pβk1− τ1

k
− qαm1− τ2

m
+ α+ β + 4 + n(1− δ2)

= α+ β + 2− n− (α+ β + 2)(1− δ2) + n(1− δ2)

= (α+ β + 2− n)δ2,

where the third equality above is due to pβk = (p+1)β = (q+1)α = qαm and (p+1)β = α+β+2.

So, we only need to prove δ2 > 0 or equivalently by (3.51), (3.52) and (3.58),

(m− k

l
)
1

z
+ (

k

n− 1
+ (m− 1)(k − 1))

1

l
+
m− 2

n− 1
− (m− 1) > 0, (3.59)
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To achieve this, we take the upper bound of 1
z in (3.55) and see whether (3.59) holds.

Case 2.1.1 If 1
l −

1
n−1 ≥

1
q+1 + 1

n−1 , then let 1
z = 1

q+1 + 1
n−1 , and (3.59) becomes,

(
1

pq
− p+ 1

p(q + 1)
)
1

l
+
q + 1

q
(

1

n− 1
+

1

q + 1
) +

1− q
(n− 1)q

− 1

q
> 0

⇔ (
1

pq
− p+ 1

p(q + 1)
)
1

l
+

2

q(n− 1)
> 0

⇔ − 2

βs
+

2

n− 1
> 0

⇔ sβ > n− 1.

Case 2.1.2 If 1
l −

1
n−1 <

1
q+1 + 1

n−1 , then let 1
z = 1

l −
1

n−1 , and (3.59) becomes,

(m− k

l
)(

1

l
− 1

n− 1
) + (

k

n− 1
+ (m− 1)(k − 1))

1

l
+
m− 2

n− 1
− (m− 1) > 0

⇔ − k
l2

+ (m+
k

n− 1
+

k

n− 1
+ (m− 1)(k − 1))

1

l
+
m− 2

n− 1
− (m− 1) > 0

⇔ − k
l2

+ (
p

p+ 1
+

1

q
+

2

n− 1
)
k

l
>

2

n− 1
+

1

q

⇔ − k
l2

+ (1 + k(
2

n− 1
+

1

q
))

1

l
− (

2

n− 1
+

1

q
) > 0

⇔ (
k

l
− 1)(

1

l
− (

2

n− 1
+

1

q
)) < 0

⇔ 1

k
<

1

l
<

2

n− 1
+

1

q
.

Notice that 1
l <

2
n−1 + 1

q holds under the assumption of case 2.1.2, and 1
k <

1
l since l < k. In all,

(3.59) always holds under our assumption n− sβ < 1.

Subcase 2.2 m ≥ n− 1.

First, we have for any γ ∈ [1,∞),

W 1,m(Sn−1) ↪→ Lγ(Sn−1).

Then we claim 1
l >

1
n−1 . Suppose 1

l ≤
1

n−1 , then k > l ≥ n − 1, hence p ≤ 1
n−2 , which is not

possible due to (3.36). Take 1
z = 1

l −
1

n−1 then

W 1,l+ε(Sn−1) ↪→ Lz(Sn−1).
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Therefore, by Sobolev embedding and (3.48)

G2(R) ≤ CRn(‖Dxu‖z(R) +R−1‖u‖1(R))(‖Dxv‖z′(R) +R−1‖v‖1(R))

≤ CRn+2(‖D2
xu‖l+ε +R−1‖Dxu‖1 +R−2‖u‖1)(‖D2

xv‖m +R−1‖Dxv‖1 +R−2‖v‖1).

Similarly to previous work, there exists a R̃ ∈ [R, 2R] such that

G2(R̃) ≤ CRn+2R
−pβ
1+ε/l

(
(R−nF (4R))

1
m +R−

β+2
1+ε +R−β−2

)
≤ CR−aε2F 1−δ2(4R),

where

a2 = aε2 = −n− 2 +
pβ

1 + ε/l
+
n

m
, (3.60)

1− δ2 =
1

m
. (3.61)

Direct verification shows that

a0
2 = (α+ β + 2− n)δ2,

and obviously δ2 > 0 so α0
2 > 0.

Thus, we have proved Case 2.



Chapter 4

Discrete HLS system

In this chapter, we consider discrete version of HLS system. Actually, there are two ways of

considering discrete HLS system. One way is to discretise critical and supercritical HLS inequality

and consider its optimization problem. As in continuous case, discrete HLS system is the Euler-

Lagrange equation of the optimization problem of the discrete HLS inequality. People find that

the discrete system shares some similar properties with continuous system, e.g. symmetry and

decaying property of solution; however, whether the best constant corresponding to discrete HLS

inequality (4.4) in critical case can be attained by its optimizer is still open [27].

Another way of considering discrete HLS system is to push the HLS inequality into an extreme

case: µ = n, where original HLS inequality fails. However, discrete HLS inequality can survive

if we limit the inequality on a finite domain. Here we study such a finite form of HLS inequality

with µ = n and p = q. We give estimate for the best constant with logarithm correction and

study its corresponding optimizer. For the optimizer, we prove the uniqueness and a symmetry

property. Also, by using a discrete version of maximum principle, we prove certain monotonicity

of this optimizer.

This chapter contains the work in [13].

4.1 Introduction

Recall the Hardy-Littlewood-Sobolev (HLS) inequality [68],∫
Rn

∫
Rn

f(x)g(y)

|x− y|µ
dx dy ≤ Cp,µ,n‖f‖p‖g‖q (4.1)
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for any f ∈ Lp(Rn) and g ∈ Lq(Rn) provided that

0 < µ < n, 1 < p, q <∞ with
1

p
+

1

q
+
µ

n
= 2.

Cp,µ,n is the best constant for (4.1), and proved by Lieb [40] that, such Cp,µ,n and correspond-

ing maximizing pair (f, g) exists. In particular, Lieb also gave the explicit f abd Cp,µ,n in the case

p = q. The method Lieb used was to examine the Euler-Lagrange equation of the maximizing pair

(f, g) with stereographic projection to exploit the symmetry of f . This idea is inherited in [38] and

here to find the sharp estimate of best constant of a finite form of HLS in a critical case: p = q = 2,

and hence µ = n.

Following the idea that the maximizer of HLS satisfies corresponding E-L equations (see

chapter 1), the study of the HLS inequality and weighted inequality later generalized by Stein and

Weiss [67] is naturally related to the studies of various of integral equations. For recent results,

see [8, 11, 9] and a brief summary can be found in [7]. These works have studied regularity and

radial symmetry of solutions of such integral systems, and introduced a method of moving plane

in an integral form which is proved to be a powerful tool. In [26], the result of integral system

corresponding to HLS (4.1) is improved to all cases, i.e. the condition p, q ≥ 1 is removed. Here

we do not use the method of moving plane directly, but borrowing its idea, we use a maximum

principle to deal with a discrete problem and prove the symmetry of the solution.

First, let’s have a look at the discrete and 1-dimensional version of HLS inequality (4.1), the

Hardy-Littlewood-Pólya (HLP) inequality [22]: if a ∈ lp(Z) and b ∈ lq(Z) and

0 < µ < 1, 1 < p, q <∞ with
1

p
+

1

q
+ µ = 2,

then ∑
r 6=s

arbs
|r − s|µ

≤ C‖a‖p‖b‖q (4.2)

where r, s ∈ Z and the constant C depends on p and q only.

For this HLP inequality (4.2), let’s consider the critical case: p = q = 2 and µ = 2− 1
p−

1
q = 1,

for which the original HLP fails, but we can compromise and get a finite form of HLP. In [38], the
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inequality is extended to the critical case as: If a, b ∈ lp(Z), then

∑
r 6=s,1≤r,s≤N

arbs
|r − s|

≤ λN‖a‖2‖b‖2. (4.3)

where λN is the best constant for (4.3), and λN = 2 lnN +O(1).

Remark 4.1. One of the reasons that we consider discrete version of HLS instead of the original

inequality is, when µ = 1 the integrand on the left side of HLS (4.1) is not always integrable on

a finite domain for Lp functions. So we can extend (4.2) to (4.3), but we cannot extend HLS

inequality (4.1) to the critical case unless we discretise it.

Consider the discrete HLS, if a, b ∈ lp(Zn), and

0 < µ < n, 1 < p, q <∞ with
1

p
+

1

q
+
µ

n
= 2,

then ∑
r 6=s

arbs
|r − s|µ

≤ C‖a‖p‖b‖q (4.4)

where r, s ∈ Zn and the constant C depends on p and q only. We can extend (4.4) to a finite form

in the corresponding critical case: p = q = 2 and µ = n, in the following way:

Theorem 4.2. If r, s ∈ Zn and 1 ≤ ri, si ≤ N where ri, si are integers and 1 ≤ i ≤ n, then

ar, bs ∈ RL, where L = Nn. let

λN = max
‖a‖2=‖b‖2=1

∑
r 6=s

arbs
|r − s|n

(4.5)

So, we have an extension of HLS inequality

∑
r 6=s

arbs
|r − s|n

≤ λN‖ar‖2‖bs‖2 (4.6)

where the two statements below holds

(i) |Sn−1| lnN − o(lnN) < λN < |Sn−1| lnN + o(lnN).

(ii) ∃!aN = bN and ‖aN‖2 = 1 such that the equality in (4.6) holds, and aN ∈ RL+ where L = Nn.
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Let’s call the triplet (aN = bN , λN ) the optimizer of (4.6) since it is unique, and there are

some properties of the optimizer. First, as a consequence of the uniqueness, we have symmetry

property of the optimizer in the following sense,

Theorem 4.3. Let (aN , λN ) be the optimizer. Φ : S → S is an isometric map, where S = {r ∈

Zn+|1 ≤ ri ≤ N}. Then aNΦ(r) = aNr .

Second, the optimizer has certain monotone decaying property. For convenience of writing,

let’s change the range of ri from [1, N ] to [−N,N ], which makes no essential change to the results

above, and we have the monotone decaying property for this special case,

Theorem 4.4. If (aN , λN ) is the optimizer and r ∈ Zn, −N ≤ ri ≤ N for 1 ≤ i ≤ n, then a ∈ RL+,

where L = (2N + 1)n, and aN has a monotone decaying property from its central element: For

1 ≤ i ≤ n, 
aN(ri,r′) ≤ a

N
(ri−1,r′), 1 ≤ ri ≤ N

aN(ri,r′) ≥ a
N
(ri−1,r′),−N + 1 ≤ ri ≤ 0

(4.7)

To prove Theorem (4.4), we use the following maximum principle,

Theorem 4.5 (Maximum Principle). Let RL+ be the positive cone in RL, i.e., if a ∈ RL+ then every

element of a is positive. Suppose a linear equation:

u = Au+ f (4.8)

where A : RL+ → RL+ with ‖A‖2 < 1, and f ∈ RL+, then ∃!u satisfies (4.8) and u ∈ RL+. In other

words, (I −A)−1 ∈ RL×L+ .

This Maximum Principle follows directly from standard contracting mapping iteration. It is

a discrete version of maximum principle analogous to the usual versions in PDE. To see this, let’s

look at a typical maximum principle: let Ω ⊂ R be an open bounded and connected domain with

smooth boundary ∂Ω. Let u ∈ C2(Ω) ∩ C(Ω) be a solution of following equation,
−∆u = f ≥ 0 in Ω

u = 0 on ∂Ω

(4.9)
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Then by maximum principle u ≥ 0 in Ω. Actually, by strong maximum principle, u > 0 or u ≡ 0

in Ω.

So, Theorem 4.5 is indeed saying that if (I −A)u = f ∈ RL+, then u ∈ RL+. Corresponding to

strong maximum principle, in Theorem 4.5 if every entry of A is strictly positive, it is easy to see

that u ∈ RL+. For more general symmetric linear operators, there is also maximum principle, and

one can check [33] for details.

4.2 Best Constant Estimate in High Dimension Space

In this section, we shall present proof of part (i) of Theorem 4.2.

Proof. Step 1. λN ≥ |Sn−1| lnN − o(lnN).

Let a = b, and

ar = N−
n
2 , 1 ≤ ri ≤ N, 1 ≤ i ≤ n (4.10)

So, ‖a‖2 = 1.

By the definition of λN , we have

λN ≥
∑
r 6=s

aras
|s− r|n

= N−n
∑
r 6=s

1

|s− r|n

= N−n{2n
N−1∑
xn=1

· · ·
N−1∑
x1=1

(N − x1) · · · (N − xn)

(x2
1 + · · ·x2

n)
n
2

− o(Nn lnN)}

≥ (
2

N
)n
∫ π

2

0
· · ·
∫ π

2

0

∫ N

1

(N − r cosφ1) · · ·
rn

rn−1drdφ1 · · · dφn − o(lnN)

= (
2

N
)n|Sn−1|2−nNn lnN − o(lnN)

= |Sn−1| lnN − o(lnN)

Step 2. λN ≤ |Sn−1| lnN + o(lnN)

Let J(a, b) =
∑

r 6=s
arbs
|r−s|n . Hence, λN = max‖a‖2=‖b‖2=1 J(a, b), i.e. we will maximize J(a, b) under

the constraints ‖a‖2 = ‖b‖2 = 1 (in fact, we use 1
2‖a‖

2
2 = 1

2‖b‖
2
2 = 1

2). Therefore, we conduct

Euler-Lagrange equations and by compactness: ∃‖aN‖2 = ‖bN‖2 = 1 such that λN = J(aN , bN )
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and, 
λ1aNr =

∑
s6=r

bNs
|s− r|n

λ2bNs =
∑
r 6=s

aNr
|r − s|n

(4.11)

where r, s ∈ Zn and 1 ≤ ri, si ≤ N .

For convenience, write (4.11) in matrix form,
λ1aN = AbN

λ2bN = AaN
(4.12)

Left multiply the first equation of (4.12) by aT , the second equation by bT , and by the fact that A

is symmetric and ‖aN‖2 = ‖bN‖2 = 1, one sees that

λ1 = λ1‖aN‖22 = aN
T
AbN = J(aN , bN )

= bN
T
ATaN = λ2‖bN‖22 = λ2

and since λN = J(aN , bN ), we have λ1 = λ2 = λN .

Now, let bs0 = max{|aNr |, |bNs |} > 0, so, bNs0λN =
∑

r 6=s0
aNr

|r−s0|n , which leads to

λN =
∑
r 6=s0

aNr
bs0 |r − s0|n

≤
∑
r 6=s0

1

|r − s0|n

≤
∑

r 6=(N
2
,··· ,N

2
)=m0

1

|r −m0|n

≤
∫

Σ

∫ √
2N
2

1
2

1

rn
rn−1drdσ

≤ |Sn−1|(ln(
√

2N)) = |Sn−1|(lnN +
1

2
ln 2)

= |Sn−1| lnN + o(lnN)

Part (ii) will be shown later in section 3.

Lemma 4.6. If (a, b, λN ) satisfies ‖a‖2 = ‖b‖2 = 1 and makes the equality of (4.6) hold, then

a, b ∈ RL+ ∪ RL−.
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Notice that if there is a sign change among the elements of a and b, (a, b) must not be an

optimizer since |
∑
aibi| <

∑
|ai||bi|. So the Lemma holds, and it means that we can assume the

triplet (aN , bN , λN ) above to satisfy aN , bN ∈ RL+.

Now, let’s introduce a notation,

Definition 4.7. (a, b, λN ) such that

• ‖a‖2 = ‖b‖2 = 1

• a, b ∈ RL+

• The equality of (4.6) holds

is called an optimizer or solution of optimization of (4.6).

Obviously, (aN , bN , λN ) is an optimizer. Next, we are going to prove part (ii) of Theorem

4.2, i.e., the optimizer is unique in positive cone and aN = bN .

4.3 Uniqueness of The Optimizer

From previous discussion we see that, an optimizer of (4.6), (aN , bN , λN ), satisfies Euler-

Lagrange equations(4.11). We are going to show the optimizer is unique in positive cone by showing

the solution of the Euler-Lagrange equations in the positive cone RL+ where L = Nn is unique.

Considering the following equations, 
λ1ar =

∑
s 6=r

bs
|s− r|n

λ2bs =
∑
r 6=s

ar
|r − s|n

(4.13)

where ‖a‖2 = ‖b‖2 = 1, r = (ri) ∈ Zn, and 1 ≤ ri ≤ N , 1 ≤ i ≤ n. a, b ∈ RL, where L = Nn. By

Lemma 4.6, we only need to study solution of (4.13) in the positive cone RL+.

In the proof, we will use the following simple map,

Definition 4.8. Let T : RL → RL+ such that (Ta)i = |ai| for 1 ≤ i ≤ L.
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Theorem 4.9. If (a, b, λ1, λ2) is a solution of (4.13), where a, b ∈ RL+, then λ1 = λ2 = λN , and

a = b ∈ RL+ is unique.

Proof. Step 1. λ1 = λ2.

This is similar to step 2 of Theorem 4.2. So, let λ = λ1 = λ2.

Step 2. a, b ∈ RL+.

Since

λar =
∑
s 6=r

bs
|s− r|n

=
1

λ

∑
t

∑
s 6=r,t

(
1

|r − s|n
1

|t− s|n
)at

=
1

λ

∑
t

C(r, t)at

we have λ2a = Ca, where C = ATA and A is a symmetric matrix. So C is non-negative definite.

Since C(r, t) > 0, a ∈ RL+ and a 6= 0 for ‖a‖ = 1, the last term above is strictly positive. Therefore,

a, b ∈ RL+.

Let 0 ≤ µ1 ≤ µ2 · · · ≤ µL be the eigenvalues of C. Then ∃ξL ∈ RL, s.t. CξL = µLξL, and

‖ξL‖ = 1, and ξL /∈ RL−. We can assume the last property because eigenvectors appear in pairs

with opposite signs. Also, by theory of adjoint operators, µL = sup‖ξ‖=1 < ξ,Cξ >=< ξL, CξL >.

Step 3. ∃ξL ∈ RL+, ‖ξL‖ = 1, and µL−1 < µL.

First, ∃ξL ∈ RL+. If not, then ξL /∈ RL+ ∪ RL−.

Then we have

µL = ξL
T
CξL (4.14)

< (TξL)TC(TξL) (4.15)

≤ max
‖ξ‖=1

ξTCξ = µL (4.16)

where T is defined in Definition 4.8. A contradiction. So, ∃ξL ∈ RL+, and since CξL = µLξL,

ξL ∈ RL+.
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The argument above also shows that µL−1 < µL. If not, µL−1 = µL, then by a similar

argument as above ∃ξL−1 ∈ RL+, s.t. CξL−1 = µLξL−1, and moreover ξL−1⊥ξL which is impossible.

Step 4. a = b = ξL, λ = λN =
√
µL.

Considering λ2a = Ca,

(1) If λ2 6= µL, then a⊥ξL. Since a ∈ RL+ by step 2, this is impossible. So, λ2 = µL.

(2) Since Ca = µLa,CξL = µLξL, and by the fact that µL−1 < µL and ‖a‖ = ‖ξL‖ = 1, a = ξL.

Similarly, b = ξL.

(3) If (aN , bN , λN ) is an optimizer of (4.6) in the positive cone, it is a solution of (4.13). So,

a = aN = b = bN , λ2
N = λ2 = µL, and λ, λN > 0, so λ = λN .

Hence we can prove part (ii) of Theorem 4.2. The same as the 3rd argument of step 4 above,

since an optimizer (aN , bN , λN ) is a solution of (4.13), part (ii) follows from Theorem 4.9.

Remark 4.10. At the time of this writing, thanks to Professor Dongsheng Li of Jiaotong University

in Xi’an, we find that uniqueness follows directly from Perron’s Theorem [50]. So the proof above

can be much simplified.

Corollary 4.11. λ is increasing as N increases.

Proof. Let λN and AN be a solution and coefficient matrix of (4.13). So,

λN = max
‖ξ‖=1

ξTANξ = ξN
T
ANξN

= (ξN , 0)TAN+1(ξN , 0)

< max
‖ξ‖=1

ξTAN+1ξ = λN+1

where (ξN , 0) means (ξN , 0) ∈ RL and L = (N + 1)n, and arranging ξN to take the first Nn entries

and stuffing the rest with zeros. Then calculate in blocks of matrices.
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4.4 Symmetry of The Optimizer

From section 2 we see the uniqueness of the optimizer of (4.6) in positive cone. So, from this

point, we use (a = b, λ) instead of (aN , bN , λN ) when referring the optimizer of (4.6) for simplicity,

and next we prove Theorem 4.3.

Proof. From (4.13) we have

λar =
∑
s 6=r

as
|s− r|n

then

λaΦ(r) =
∑

s 6=Φ(r)

as
|s− Φ(r)|n

=
∑
t6=r

aΦ(t)

|Φ(t)− Φ(r)|n
=
∑
t6=r

aΦ(t)

|t− r|n

So, ā = (a)Φ(r) is also a solution to (4.13). Then, by uniqueness of the solution, ā = a. So,

aΦ(r) = ar.

Example 4.1. If a is an optimizer, then a(ri,r′) = a(N−ri+1,r′) for 1 ≤ i ≤ N .

4.5 Monotone Property of The Optimizer

For convenience of writing, we change the range of ri’s from 1 ≤ ri ≤ N to −N ≤ ri ≤ N

which makes no change to the results above essentially. The following is the proof of Theorem 4.4.

Proof. We are only going to show inequalities (4.7) are true for i = 1 for simplicity. Consider

d
(1)
r = a(r1−1,r′)−a(r1,r′), where 1 ≤ r1 ≤ N and −N ≤ ri ≤ N , 2 ≤ i ≤ n. So d(1) ∈ RN(2N+1)(n−1)

.



62

Then by applying Theorem 4.3, we have

d(1)
r =

1

λ
(

∑
s 6=(r1−1,r′)

as
|s− (r1 − 1, r′)|n

−
∑

s 6=(r1,r′)

as
|s− (r1, r′)|n

)

=
1

λ
(

∑
t=(t1,t′)6=(r1,r′),
−N+1≤t1≤N+1

a(t1−1,t′)

|t− (r1, r′)|n
−

∑
s 6=(r1,r′)

a(s1,s′)

|s− (r1, r′)|n
)

=
1

λ
(

∑
t=(t1,t′)6=(r1,r′),

1≤t1≤N

d
(1)
t

|t− (r1, r′)|n
+

∑
t=(−t1+1,t′)6=(r1,r′),

1≤t1≤N

−d(1)
t

|(−t1 + 1, t′)− (r1, r′)|n

+
∑

t=(N+1,t′) 6=(r1,r′)

a(N,t′)

|t− (r1, r′)|n
−

∑
t=(−N,t′) 6=(r1,r′)

a(−N,t′)

|t− (r1, r′)|n︸ ︷︷ ︸
f(r)

)

=
1

λ
(
∑

(t1,t′)6=r
1≤t1≤N

(
1

|(t1, t′)− r|n
− 1

|(−t1 + 1, t′)− r|n
)d

(1)
t +

−d(1)
r

|2r1 − 1|n
+ f(r))

Also by Theorem 4.3, a(N,t′) = a(−N,t′), easily one sees that f(r) ≥ 0.

So, for 1 ≤ r1 ≤ N

(λ+
1

|2r1 − 1|n
)d(1)
r =

∑
(t1,t′)6=r
1≤t1≤N

(
1

|(t1, t′)− r|n
− 1

|(−t1 + 1, t′)− r|n
)d

(1)
t + f(r)

Write the above equations in matrix form,

d(1) = Ad(1) + F (4.17)

where (F )r = 1
(λ+ 1

|2r1−1|n )
f(r), and

A(r, t) =


1

(λ+ 1
|2r1−1|n )

(
1

|(t1, t′)− r|n
− 1

|(−t1 + 1, t′)− r|n
), r 6= t

0, r = t

It is easy to see that entries of A and F are non-negative. So, A : RL+ → RL+, where

L = N(2N + 1)(n−1), and F ∈ RL+. Therefore, provided ‖A‖ < 1, then by Theorem 4.5 (Maximum

Principle) we get d(1) ∈ RL+, hence (4.7) is proved. So, the only thing left to prove is ‖A‖ < 1.
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Notice that if C,D are symmetric matrices such that C,D : RL+ → RL+, for some positive

integer L, then ‖C‖ ≤ ‖C +D‖, because

‖C‖ = max
‖ξ‖=1

ξTCξ = ξ̄TCξ̄ ≤ ξ̄T (C +D)ξ̄ ≤ max
‖ξ‖=1

ξT (C +D)ξ = ‖C +D‖

Let

C(r, t) =


1

(λ+ 1
|2r1−1|n )

1

|(t1, t′)− r|n
, r 6= t

0, r = t

and

D(r, t) =


1

(λ+ 1
|2r1−1|n )

1

|(−t1 + 1, t′)− r|n
, r 6= t

0, r = t

So,

‖A‖ ≤ ‖A+D‖ = ‖C‖

≤ 1

λ+ δ(N)
‖AN‖

where AN is the matrix of (4.13) of the case that −N ≤ ri ≤ N and 1 ≤ i ≤ n, so ‖AN‖ = λ. So,

‖A‖ < 1.



Chapter 5

Qualitative analysis of three-wave resonance interaction

In this chapter, we qualitatively analyze three-wave resonance interaction (3WRI) with pe-

riodic boundary condition. First, for 3WRI with positive wave energy, we present a regularity

theorem for all spatial dimension. Second, for 3WRI with negative wave energy, we present a class

of solution in general spatial dimension that will blow up in finite time. Moreover, a complete

classification of spatial uniform solution is given for this particular system.

5.1 Introduction

Consider the 3-wave resonance interaction (3WRI) system,
∂τA1 + c1 · ∇A1 = iγ1A2A3,

∂τA2 + c2 · ∇A2 = iγ2A1A3,

∂τA3 + c3 · ∇A3 = iγ3A1A2,

in Ω, (5.1)

with periodic boundary condition, where Ω is a rectangle domain,

Ω = {x ∈ Rn| |xk| < ak, k = 1, · · · , n}

and all A′js are are complex amplitude and periodic on Ω. γj = ±1, and cj ’s are real non-zero

constant vectors. The derivation of (5.1) is rather standard in e.g. nonlinear optics and can be

found in e.g. Chap. 4 in [1] and [32].

Here we are interested in the qualitative property of solution to (5.1). Namely, we are

interested in determining if a solution possesses either finite blow up or global existence. Depending
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on whether γj ’s have the same sign, the system (5.1) can be classified into two cases, and each case

models different physical phenomena.

γj ’s not having the same sign corresponds to 3WRI with positive wave energy, which

generates from various physical backgrounds e.g. nonlinear optics and water waves. In fact most

3WRI studies in the past focused on this case, and an important tool is inverse scattering trans-

formation (IST), with which people construct solution and solve the system numerically for some

special initial value, e.g. “separable” initial value [30], or more general initial value [31]. The

1D-3WRI was approached by Zakharov and Manakov [71] (and independently by Kaup [29]) with

inverse scattering transformation, but the boundary condition they considered is that the solution

decays sufficiently fast as |x| → ∞. A detailed review of the 1-D problem can be found e.g. in [32].

For 3-D problem, Ablowitz and Haberman’s work [2] leads Cornille [17] to reformulate the problem

into integral equations and Kaup gave explicitly general inverse-scattering solution in a series of

papers [30, 31]. See also some recent developments in [25].

However, it seems there has not been any regularity analysis of 3WRI in the case of γj ’s not

having the same sign. Here, we prove that the system (5.1) cannot develop singularity in finite

time given that the coefficients cj , j = 1, 2, 3, are the same.

Theorem 5.1. For all space dimension, if initial data is continuously differentiable in space, γj’s

do not have the same sign and cj’s j = 1, 2, 3 are the same, then the solution to system (5.1) exists

globally in time.

The case that γj ’s have the same sign corresponds to 3WRI with negative wave energy, and

(5.1) becomes (5.2). One interesting phenomena about such 3WRI system is that the solution can

blow up in finite time. Coppi et al. [16] first found such instability of 3WRI with negative wave

energy in plasma physics, which they called “explosively unstable”.

Heuristically, the transportation wave equation is non-dispersive, and the nonlinear term

should enhance the amplitude in a superlinear way. One can compare this to a different system,

the 3-D wave equation, where the positive feedback from the nonlinear term needs to race with
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the dispersive tendency (See a classic paper of F. John [28]). So, finite-time blow up should not be

a surprise in system (5.1) when γj ’s have the same sign. However, note that complex amplitude

means phase interaction and cj ’s can be different, and both cause difficulty in analysis. This chapter

is dedicated to determining if a solution will blow up in finite time given any initial value.

Besides finite-in-time blow-up solution, system (5.2) obviously admits global-in-time existing

solution, e.g., two of Aj ’s are zero and the third is a constant. A natural question is whether

(5.2) admits other non-trivial globally existing solutions. In this chapter, we show that the system

admits globally existing and decaying solution. Moreover, we see that the spatial uniform solution

of (5.2) can be completely classified in terms of blowup or not. The spatial uniform case of (5.2)

reduces to an ODE system which has been well studied for decades. Here we state a classification

result which may be known to other researchers through various analysis approach. Nevertheless,

in Section 5.3.1 we give a analytic proof for convenience of the reader.

Theorem 5.2. A necessary and sufficient condition of finite-in-time blow-up solution to (5.4) is

that the initial condition satisfies one of the following,

(1) Only one of Aj(0)’s is zero, i.e., |A3(0)| ≥ |A1(0)| > |A2(0)| = 0;

(2) (θ1 + θ2 + θ3)(0) = 3π
2 , one of Aj(0)’s is strictly less than the other two and none is zero,

i.e., |A3(0)| ≥ |A1(0)| > |A2(0)| > 0;

(3) (θ1 + θ2 + θ3)(0) 6= 3π
2 (implicitly none of Aj(0)’s is zero),

where the indexes {1, 2, 3} allow any permutation and θj’s are from Aj = rje
iθj , j = 1, 2, 3.

Remark 5.3. We think an interesting question is, whether all globally existing solution to (5.2) is

spatially uniform, and this is so far open.

We also describe a new class of solutions that blow up in finite time (Theorem 5.4),

Theorem 5.4. Suppose θj(x, 0) = θj(0), j = 1, 2, 3, and (θ1+θ2+θ3)(0) = π
2 , and then the solution

of (5.2) blows up in finite time.
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The mathematical technique used here is elementary, and the results are based on the method

of characteristics. We believe that a natural step after this is to implement perturbation theory.

This chapter is organized this way. In section 5.2, we focus on 3WRI with positive wave

energy and prove Theorem 5.1. In section 5.3, we study 3WRI with negative wave energy. In

section 5.3.1, we focus on space-independent case and prove Theorem 5.2. In section 5.3.2, we

consider the general case, and after briefly discussing the well-posedness of (5.1) we prove Theorem

5.4.

5.2 3WRI with positive wave energy

Consider system (5.1) with γ1 = 1, γ2, γ3 = −1, and c1 = c2 = c3 = c.

Proof of Theorem 5.1. Multiply (5.1) by Aj and take conjugate of the system then multiply

by Aj , we have

∂τ |A1|2 + c · ∇|A1|2 = i(A1A2A3 +A1A2A3),

∂τ |A2|2 + c · ∇|A2|2 = −i(A1A2A3 +A1A2A3),

∂τ |A3|2 + c · ∇|A3|2 = −i(A1A2A3 +A1A2A3).

Hence, we have

∂τ (|A1|2 + |A2|2) + c · ∇|A1|2 + c · ∇|A2|2 = 0,

∂τ (|A1|2 + |A3|2) + c · ∇|A1|2 + c · ∇|A3|2 = 0.

These lead to

|A1(x+ cτ, τ)|2 + |A2(x+ cτ, τ)|2 = K1(x),

|A1(x+ cτ, τ)|2 + |A3(x+ cτ, τ)|2 = K2(x).

Since the initial data of Aj ’s are smooth, we know that K1(x) and K2(x) must be smooth and

bounded. Hence, |Aj |, j = 1, 2, 3, must be bounded for all time. �

Remark 5.5. The proof above is obviously valid for general domain and boundary condition.
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5.3 3WRI with negative wave energy

Now, if γj ’s have the same sign, (5.1) becomes
∂τA1 + c1 · ∇A1 = iA2A3,

∂τA2 + c2 · ∇A2 = iA1A3,

∂τA3 + c3 · ∇A3 = iA1A2,

in Ω, (5.2)

with periodic boundary condition. The constants of motion are,

K1 =

∫
Ω
|A1|2 − |A2|2dx, K2 =

∫
Ω
|A1|2 − |A3|2dx, (5.3)

where K1,K2 are constants.

5.3.1 Spatially uniform case

There are many classical studies (for reference, see section I. D. of [32]) of space-independent

3WRI which is an ODE system. Here we give a complete classification of space independent

solutions of the negative wave energy case of 3WRI,
∂τA1 = iA2A3,

∂τA2 = iA1A3,

∂τA3 = iA1A2.

(5.4)

The system (5.4) admits three constants of the motion:

K1 = |A1|2 − |A2|2, K2 = |A1|2 − |A3|2,

H = A1A2A3 +A1A2A3,

(5.5)

where K1,K2 and H are constants. The first two constants are also called Manley-Rowe relations.

By direct calculation we rewrite (5.4) as

∂τr
2
j = 2r1r2r3 sin(θ1 + θ2 + θ3), for j = 1, 2, 3, (5.6)

r1∂τθ1 = r2r3 cos(θ1 + θ2 + θ3),

r2∂τθ2 = r1r3 cos(θ1 + θ2 + θ3),

r3∂τθ3 = r1r2 cos(θ1 + θ2 + θ3),

(5.7)
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and (5.5) becomes

K1 = r2
1 − r2

2, K2 = r2
1 − r2

3,

H = 2r1r2r3 cos(θ1 + θ2 + θ3).

(5.8)

Remark 5.6. (5.6)-(5.7) holds only when none of rj’s is zero. This is because θj is not defined when

rj = 0. Actually, we should pay special attention to the situation when Aj’s touch zero since (5.4)

does not satisfy Lipchitz condition there. However, we can take advantage of (5.5). For instance A1

touches zero at τ = τ0 and A2(τ0), A3(τ0) 6= 0, then ∂τAj(τ0) 6= 0, i.e., |A1| will increase and hence

|A2|, |A3| will increase since K1,K2 are constant. By (5.6), we must have sin(θ1 + θ2 + θ3) > 0 and

this implies (θ1 + θ2 + θ3)(τ0+) ∈ (0, π). Moreover, we know H ≡ 0 and hence (θ1 + θ2 + θ3)(τ) ≡ π
2

for τ ∈ (τ0,∞). With a little extra effort we can show that the solution must blow up in finite time.

If two of Aj’s, say A1, A2, are zero at τ = τ0, the solution of (5.4) has to be an equilibrium,

see the proof of Theorem 5.8.

Proposition 5.7. If (θ1 + θ2 + θ3)(0) 6= π
2 or 3π

2 , then none of Aj’s will touch zero.

Proof. Since H 6= 0, Aj 6= 0. �

Theorem 5.8. A necessary and sufficient condition for the solution of (5.4) to exist globally in

time is that, the initial data satisfẙa either of the following,

(i) |A3(0)| ≥ |A1(0)| = |A2(0)| = 0;

(ii) |A3(0)| ≥ |A1(0)| = |A2(0)| > 0 and (θ1 + θ2 + θ3)(0) = 3π
2 ;

where the indexes {1, 2, 3} allow any permutation.

Proof. We first prove the sufficiency.

For (ii) by (5.8) H,K1 ≡ 0 and K2 ≤ 0. So, r1 = r2.

Notice that our choice of initial value ensures that all rj , j = 1, 2, 3 decay until one of them

touches zero. Let’s define τ0 to be the first time that one of rj ’s touches zero. If τ0 = ∞ then we

have a global decaying solution. So, we assume τ0 <∞ and to sum up:
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(1) rj , j = 1, 2, 3 decays in [0, τ0];

(2) (θ1 + θ2 + θ3)(τ) = 3π
2 in [0, τ0);

Let d0 := |A3(0)| − |A1(0)| ≥ 0. Case 1: If d0 = 0, we can solve the system (5.6) on interval [0, τ0)

by

rj =
rj(0)

1 + 2rj(0)τ
. (5.9)

Thus rj(τ0) 6= 0, which contradicts with the assumption on r0. So, (5.9) can extend to [0,∞).

Case 2: If d0 > 0, by (5.6) and the facts r1 = r2, r3(τ) ≤ r3(0) on [0, τ0) we have

∂τr1 ≥ −r3(0)r1.

Hence by Grönwall’s inequality,

r1 = r2 ≥ r1(0)e−r3(0)τ . (5.10)

Similar to case 1, rj(τ0) 6= 0 contradicts the assumption on r0, so (5.10) can extend to [0,∞).

For (i), the initial data obviously admits an equilibrium solution, and we claim that this is the

only solution (this is not obvious since we lose Lipchitz condition of (5.4) if some Aj ’s are zero).

Suppose a non-constant solution A1(τ), A2(τ), A3(τ) with initial condition |A3(0)| ≥ |A1(0)| =

|A2(0)| = 0 (so H ≡ 0) and |A3| ≥ |A1| = |A2| > 0 at τ = τ0 (since K1 ≡ 0, r1 ≡ r2). Then if we

change the time direction of (5.4) by letting τ = τ0− η and Bj(η) = Aj(τ0− η) (and corresponding

new rj and θj), j = 1, 2, 3, then we get a new system,
∂ηB1 = −iB2B3,

∂ηB2 = −iB1B3,

∂ηB3 = −iB1B2,

(5.11)

with initial value |B3(0)| ≥ |B2(0)| = |B1(0)| > 0 at η = 0. From H ≡ 0 (H,K1,K2 do not change)

and rj , j = 1, 2, 3, decaying for some interval, we see that θ1 + θ2 + θ3 = π
2 for that interval. So,

similar to the proof for (ii), it has a unique solution that decays to a limit (0, 0, A3(τ = 0)) as
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η → ∞ and never touches zero in finite time. This contradicts with (B1(τ0), B2(τ0), B3(τ0)) =

(A1(0), A2(0), A3(0)) = (0, 0, A3(0)).

Now we turn to the necessity. If the initial data does not satisfy either condition in Theorem

5.8, we have the following cases,

(1) Only one of Aj(0)’s is zero, i.e., |A3(0)| ≥ |A1(0)| > |A2(0)| = 0;

(2) (θ1 + θ2 + θ3)(0) = 3π
2 , one of Aj(0)’s is strictly less than the other two and none is zero,

i.e., |A3(0)| ≥ |A1(0)| > |A2(0)| > 0;

(3) (θ1 + θ2 + θ3)(0) 6= 3π
2 (implicitly none of Aj(0)’s is zero).

Again, the above indexes {1, 2, 3} allow any permutation. We are going to show that solutions to

the above initial conditions will blow up in finite time.

For case 1, by Remark 5.6, we know (θ1 + θ2 + θ3)(τ) ≡ π
2 for τ ∈ (0,∞), and by (5.6) and

(5.8) we have,

∂τr
2
1 = 2r1

√
r2

1 −K1

√
r2

1 −K2,

where K1,K2 < 0. Hence it is easy to see r1 blows up in finite time.

For case 2, by (5.6) we know that A2 will touch zero first in finite time, call this time as τ0.

Then ∂τA2(τ0) 6= 0 and by Remark 5.6 we know (θ1 + θ2 + θ3)(τ) = π
2 for τ > τ0. This implies a

finite-in-time blow up.

For case 3, let Θ = θ1 + θ2 + θ3. If Θ(0) ∈ (−π
2 ,

π
2 ] (we change 3π

2 to −π
2 for convenience),

step 1. we show that Θ increases and approaches π
2 . By (5.7) we have

∂τΘ = (
r2r3

r1
+
r1r3

r2
+
r1r2

r3
) cos Θ.

By 5.8 we have |r1r2r3| ≥ |H|2 . Suppose rj > η1, j = 1, 2, 3 for some η1 > 0, then there exists some

constant η0 > 0 such that ( r2r3r1
+ r1r3

r2
+ r1r2

r3
) > η0. Now without loss of generality suppose r1 → 0,

then r2r3 → ∞, hence r2r3
r1
→ ∞. In both cases, we see that cos Θ is positive since Θ ∈ (−π

2 ,
π
2 ],

and hence Θ will approach π
2 .
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Step 2. There exists τ1 > 0 such that Θ > π
4 for τ > τ1. Then by (5.6) for τ > τ1

∂τr1 ≥ Cr2r3

≥ C
√
r2

1 −K1

√
r2

1 −K2,

where the second inequality is due to (5.8). So a finite blow up in r1 can be easily derived.

Similarly we have a finite blow up for Θ(0) ∈ (π2 ,
3π
2 ). �

Hence Theorem 5.2 directly follows from Theorem 5.8.

5.3.2 General case

First we briefly discuss the well-posedness of (5.1). The local existence and uniqueness is

guaranteed by method of characteristics. Also, the spatially periodic boundary condition is directly

satisfied if initial data are periodic, since all cj ’s are constant vectors.

Now we consider (5.2), and by direct calculation we rewrite the system as

∂τr
2
j + cj · ∇r2

j = 2r1r2r3 sin(θ1 + θ2 + θ3), for j = 1, 2, 3, (5.12)

r1(∂τθ1 + c1 · ∇θ1) = r2r3 cos(θ1 + θ2 + θ3),

r2(∂τθ2 + c2 · ∇θ2) = r1r3 cos(θ1 + θ2 + θ3),

r3(∂τθ3 + c3 · ∇θ3) = r1r2 cos(θ1 + θ2 + θ3),

(5.13)

To outline the proof, if initially Aj is lined up in the same direction at each point, and the summation

of θj ’s equal π2 , then all θj ’s preserve at all time. Hence (5.13) is moved out of the equations. Then

we are left to analyze (5.12).

Proof of Theorem 5.4. Step 1. We show that (θ1 + θ2 + θ3)(x, τ) ≡ π
2 .

Note that implicitly, the initial condition guarantees that Aj(x, 0)’s are nowhere zero and

bounded. So, the short time existence and uniqueness of solution to (5.12) is provided by method

of characteristics. Hence, θj(x, τ) ≡ θj(0) and (θ1 + θ2 + θ3)(x, τ) ≡ π
2 .
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Step 2. (5.12) becomes 
∂τr1 + c1 · ∇r1 = r2r3,

∂τr2 + c2 · ∇r2 = r1r3,

∂τr3 + c3 · ∇r3 = r1r2,

in Ω.

By method of characteristics, the corresponding characteristic equation for r1 is
dr1
dτ = r2r3,

dx
dτ = c1,

(5.14)

with initial data x(0) = ξ and r1(ξ, 0) = φ1(ξ). Since r2, r3 ≥ 0, for fixed ξ, r1(ξ, τ) is monotone

increasing as τ increases. We say r1 is “monotone increasing” along characteristics. Similarly, r2, r3

are monotone increasing along their characteristics x = c2τ + ξ and x = c3τ + ξ.

Since rj(0)’s are strictly positive in Ω, the characteristic equations also imply that rj(x, τ) > 0

on Ω for all τ > 0. This eliminates the possible zero at the boundary of Ω. Hence after any

τ = τ0 > 0, rj ’s must have a positive infimum in Ω. Suppose

f(τ) = min
x∈Ω
{r1(x, τ), r2(x, τ), r3(x, τ)} ,

then f(τ) > 0 for τ > τ0 > 0. We claim that f(τ) is Lipschitz, and hence from (5.14) we see

df

dτ
≥ f2,

hold in weak sense. This implies that f blows up in finite time, since for any positive test function

v ∈ C1
0 (R) and if g is the solution of

dg

dτ
= g2,

g(τ0) = C0, and 0 < C0 < f(τ0),

then w = f − g satisfies

−
∫ T

τ0

wv′ds ≥
∫ T

τ0

β(s)w(s)v(s)ds,
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where β(τ) is non-negative (since f, g are positive) and suppose [τ0, T ] is the support of v. By

choosing suitable v we see that

w(T ) ≥ C
∫ T

τ0

β(s)w(s)ds,

where v(s) on the right is absolved in β(s). Hence by Grönwall’s inequality w ≥ 0. Then g blowing

up in finite time implies that f blows up in finite time.

We finish the proof by proving the claim. Let r̄1(τ) = minx∈Ω r1(x, τ) = r1(x∗, τ),. Note that

r1 is monotone increasing along characteristics, then r̄1(τ) must be monotone increasing. Hence,

0 ≤ r̄1(τ + ∆τ)− r̄1(τ)

∆τ
≤ r1(x∗, τ + ∆τ)− r1(x∗, τ)

∆τ
≤ |r1|C1 .

So r̄1(τ) is Lipschitz. Similarly r̄2, r̄3 are Lipschitz. Finally, f = min{r̄1, r̄2, r̄3} is Lipschitz. �

Remark 5.9. Although θj’s are constant, rj’s vary in space. So, for the future perturbation work,

one only needs to perturb θj’s.
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