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Spatiotemporal dynamics of ultrarelativistic beam-plasma instabilities
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An electron or electron-positron beam streaming through a plasma is notoriously prone to microinstabilities.
For a dilute ultrarelativistic infinite beam, the dominant instability is a mixed mode between longitudinal two-
stream and transverse filamentation modes, with a phase velocity oblique to the beam velocity. A spatiotemporal
theory describing the linear growth of this oblique mixed instability is proposed which predicts that spatiotem-
poral effects generally prevail for finite-length beams, leading to a significantly slower instability evolution than
in the usually assumed purely temporal regime. These results are accurately supported by particle-in-cell (PIC)
simulations. Furthermore, we show that the self-focusing dynamics caused by the plasma wakefields driven by
finite-width beams can compete with the oblique instability. Analyzed through PIC simulations, the interplay of
these two processes in realistic systems bears important implications for upcoming accelerator experiments on
ultrarelativistic beam-plasma interactions.

DOI: 10.1103/PhysRevResearch.4.023085

A large number of astrophysical and laboratory systems
involve the collective interaction between beams of relativistic
charged particles and plasmas. In many cases, this interaction
is governed by plasma microinstabilities, which lead to elec-
trostatic and electromagnetic fluctuations growing at kinetic
scales, and mediating most of the energy and momentum
transfers between the beam and plasma particles [1,2].

In astrophysics these instabilities are thought to dissipate
into heat or radiation the kinetic energy of relativistic outflows
from various powerful sources (e.g., pulsar wind nebulae, neu-
tron star mergers, active galactic nuclei). Notably, as a result
of their nonlinear evolution [3], they can spawn relativistic
collisionless shock waves [4] which, in turn, are believed
to generate the most energetic particles and radiations in
the universe [5], including the electromagnetic counterpart
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of gravitational wave sources [6]. Beam-plasma instabilities
therefore lie at the heart of the fast-emerging field of multi-
messenger astrophysics [7]. Another topic of active current
research is their possibly crucial role in shaping the GeV
photon emission from blazars, the microphysics of which
remaining little understood [8].

Beyond their fundamental and astrophysical significance,
these instabilities have a prominent place in experimental
concepts utilizing relativistic beam-plasma interactions, such
as staging of laser (LWFA) and plasma wakefield acceleration
(PWFA) [9], or laser-driven ion acceleration [10,11], against
which they act detrimentally. Lately it has also been proposed
to harness them as a novel channel of γ -ray radiation [12].
Now progress in particle accelerators makes it possible to en-
vision probing these plasma processes in the laboratory [13].
In particular, extreme beam parameters, with Lorentz factors
γb > 104 and densities nb = 1018 − 1020 cm−3, will soon be
available at the new Facility for Advanced Accelerator Tests
II (FACET-II) [14]. This will open unprecedented opportuni-
ties to investigate, under various plasma conditions and in a
very controlled way, the effects of microinstabilities on beam
propagation in the ultrarelativistic regime.

The microinstabilities arising in a relativistic beam-plasma
system are usually classified into three types: the longi-
tudinal two-stream instability (TSI), the transverse current
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filamentation instability (CFI), and the mixed mode, or
oblique two-stream instability (OTSI) [2,15]. While several
modes can develop simultaneously from thermal noise or
beam-induced perturbations, a specific instability class gen-
erally dominates the early beam-plasma interaction. A fully
kinetic theory exists which describes the linear phase of the
instability for unbounded (i.e., infinite) beam-plasma systems,
allowing the dominant mode to be predicted for a given set of
beam-plasma parameters [2,16]. A key finding is the domi-
nance of the mixed mode over CFI and TSI in the case of
ultrarelativistic (γb � 1) and dilute (α ≡ nb/np � 1, where
np is the electron plasma density) beams. This leads to density
and field modulations with a longitudinal wave number kx �
c/ωp ≡ kp and a transverse wave number k⊥ � kp, growing at
a maximum rate

�OTSI =
√

3

24/3

(
1

γb

nb

np

k2
⊥

k2
p + k2

⊥

)1/3

ωp, (1)

where ωp is the background plasma frequency and nb is the
sum of the number densities nb± of the beam electrons and
positrons (if any). Still, this temporal theory cannot be directly
applied to the finite-size beams or plasma boundaries involved
in realistic settings, such as future high-energy accelerator
experiments. The first attempts to account for inhomogene-
ity effects on linear beam-plasma instabilities concerned the
TSI [17,18], revealing its pulse-shaped profile in the case of
localized initial disturbances. Recently a model of the CFI
excited by a longitudinally semi-infinite beam was proposed
[19], showing that for moderate Lorentz factors (γb � 10),
spatiotemporal effects are present at the beam head. Interest-
ingly, this model predicts spatiotemporal effects to vanish in
the ultrarelativistic limit.

For oblique modes, thought to dominate for γb � 1 and
α � 1, no spatiotemporal theory exists [20]. Yet, from the
above previous works and related studies of laser-plasma
[21,22] or beam-plasma [23,24] instabilities, one may expect
finite beam dimensions—or, more generally, boundaries in the
beam-plasma system—to strongly impact the dynamics of the
oblique modes.

In this article we address two phenomena arising when
a relativistic beam of finite spatial extent is considered in a
beam-plasma system subject to streaming instabilities. First,
we develop a spatiotemporal theory for the evolution of the
OTSI, highlighting its spatiotemporal nature and resulting
slower dynamics when a finite beam length is considered. Sec-
ond, we show that the interplay of beam-plasma instabilities
and the wakefield that is excited by a beam of finite length
and width conveys constraints on the system parameters for
the instabilities to dominate the interaction. These results are
particularly relevant to future accelerator experiments aiming
to explore ultrarelativistic beam-plasma instabilities and their
radiative by-products [12]. We start by presenting the results
of two-dimensional (2D) PIC CALDER [25] simulations of an
ultrarelativistic (γb = 2 × 104), low-density (α = 0.03) elec-
tron beam interacting with a uniform electron-proton plasma.
The mesh size was set to (�x,�y) = (0.042, 0.084)k−1

p , the
time step was �t = 0.041ω−1

p , and 100 macroparticles per
cell were used for each species (beam electrons, plasma elec-
trons, and ions). The beam profile was taken to be Gaussian

FIG. 1. Simulated instability dynamics for ultrarelativistic (γb =
2 × 104), dilute (α = 0.03) electron beams of various normalized
lengths (kpσx). (a) Snapshots of the beam density profile in the co-
moving coordinates (ξ, τ ) = (vbt − x, t ) for different beam lengths.
(b) 2D Fourier spectrum of the Ey field fluctuations at cτ = 3338k−1

p

for kpσx = 10. (c) Transverse electric field Ey,rms = 〈E 2
y 〉1/2 (solid

line) and magnetic field Bz,rms = 〈B2
z 〉1/2 (dashed line) averaged over

ξ ∈ [ξpeak − σx/2, ξpeak + σx/2] (ξpeak the position of the beam center
in the comoving coordinates) as a function of the beam propagation
distance in the plasma (cτ ) and the beam length. The dotted line plots
the theoretical growth of the OTSI, Eq. (1), in the infinite-beam case.
The evaluation of the dominant k⊥ in Eq. (1) is carried out using the
electrostatic result 〈E 2

y 〉/〈E 2
x 〉 � (k⊥/kp)2. (d) Effective growth rate

(�/�OTSI) vs kpσx within the central slice of the beam (see text for
details).

in the longitudinal (x) direction with a rms length of σx and
uniform in the transverse (y) direction. Unless otherwise men-
tioned, the boundary conditions were absorbing along x and
periodic along y, for both the fields and particles.

Figure 1(a) illustrates the chevron-shaped pattern im-
printed on the beam density profile by the OTSI in the cases
of finite and infinite (i.e., with periodic boundary condi-
tions along x) beam lengths. Galilean beam-frame coordinates
(ξ, τ ) = (vbt − x, t ) are used here, and the beam density max-
imum is located at ξ � 100k−1

p for kpσx ∈ (10, 50). While the
density modulations are uniform in the infinite-beam case,
they exhibit a clear spatial growth for finite σx. Figure 1(b)
shows the 2D Fourier spectrum of the transverse Ey fluctu-
ations within a slice around the beam maximum for kpσx =
10 [i.e., corresponding to the bottom plot of Fig. 1(a)] and
cτ = 3338k−1

p . A narrow continuum of modes located at kx �
kp and k⊥ � kp are excited, a characteristic feature of the
OTSI [2].

The evolution of the rms amplitude of the transverse Ey

and Bz fields during the beam propagation in the plasma is
presented in Fig. 1(c). In all cases considered, Ey prevails over
Bz, as is expected for the OTSI [26]. For an infinite beam, good
agreement is found with the temporal growth rate given by
Eq. (1). By contrast, we observe a slowdown in the Ey field
growth as the beam length is decreased from kpσx = 50 to
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kpσx = 10. To get a spatially resolved estimate of the effective
OTSI growth rate in the finite-σx simulations, we have fitted
to an exponential the temporal evolution of the Ey energy
contained in the “oblique” spectral range 0.8 � kx/kp � 5 and
0.8 � k⊥/kp � 10 and normalized the resulting growth rate,
�, to �OTSI. In doing so, we have evaluated k⊥ from the ratio
of the Ey and Ex spectral energies integrated in the above k
range. Figure 1(d) displays the results of this procedure as a
function of kpσx. It is clearly seen that, even for kpσx � 1, the
effective growth rate is substantially smaller than is predicted
for an unbounded system.

To understand the simulation results, we have devel-
oped a spatiotemporal model describing the growth of linear
electrostatic oblique modes in a transversely homogeneous,
relativistic beam-plasma system in the presence of immobile
ions. The analysis is restricted to a 2D (x, y) geometry, but
it can be readily generalized to three dimensions (3D). Let
us denote the equilibrium quantities with a superscript (0)

and perturbed variables with a superscript (1). Coupling the
linearized, cold-fluid momentum and continuity equations for
the beam (subscript b) and plasma (subscript p) electrons re-
sults in

(∂t + vb0∂x )2n(1)
b = nb0

(
γ −1

b0 ∂2
y − γ −3

b0 ∂2
x

)
φ(1), (2)

∂2
t n(1)

p = np0
(
∂2

y − ∂2
x

)
φ(1). (3)

Next, using the linearized Poisson equation to express the
perturbed electrostatic potential φ(1) in terms of n(1)

p and n(1)
b ,

one can obtain, after some algebra, the following differential
equation for the perturbed plasma density:

[(
∂2

x + ∂2
y

)
(∂t + vb0∂x )2

(
∂2

t + np0
) + γ −1

b0 nb0∂
2
y ∂2

t

]
n(1)

p = 0,

(4)

where the beam Lorentz factor has been supposed large
enough that ∂2

y � γ −2
b0 ∂2

x . We now adopt the comoving coordi-
nates defined above to express the plasma density perturbation
as n(1)

p = δnp(τ, ξ )e−ikpξ+ik⊥y, where δnp(τ, ξ ) represents a
slowly varying envelope. Writing Eq. (4) in terms of the co-
moving variables and assuming that kp � v−1

b0 ∂τ , ∂ξ , one can
derive the following approximate differential equation satis-
fied by δnp:

(
∂3
τ + vb∂

2
τ ∂ξ + 8i

33/2
�3

OTSI

)
δnp = 0. (5)

This equation can be solved analytically for a semi-infinite
electron (or electron-positron) beam whose front edge is lo-
cated at ξ = 0 (see Supplemental Material [27]). Following
Refs. [19,21], we assume an initial noise source through-
out the beam, i.e., δnp(τ = 0, ξ ) = δnp(τ, ξ = 0) = S and
∂τ δnp(τ = 0, ξ ) = ∂2

τ δnp(τ = 0, ξ ) = 0, where S is some
amplitude parameter. Such conditions mainly apply to a situa-
tion where the beam is created within the plasma or penetrates
a plasma with a long density ramp. An asymptotic solution
to Eq. (5) can then be obtained in the τ → ∞ limit using a
double Laplace transform and a saddle-point expansion [27].

When ξ � vbτ , one finds

δnp(τ, ξ ) � S√
6π

(
3
√

3vb

16�3
OTSI ξτ 2

)1/6

× exp

[√
3

22/3
(
√

3 + i)�OTSI

(
ξ

vb

)1/3

τ 2/3−i
π

12

]
. (6)

This solution, similar to the asymptotic impulse solution of
the TSI [18], demonstrates the spatiotemporal character of the
oblique instability. Different longitudinal ξ slices of the beam
experience different temporal evolutions, the fastest growth
being present at the rear of the beam, as might be intuitively
surmised. The same leading exponential term is found for an
initial noise source localized at the beam front, as expected
when the beam enters a sharp vacuum-plasma boundary [27].

Further away from the beam front, i.e., for ξ � vbτ , the
solution asymptotically evolves as

δnp(τ, ξ ) � S

3
exp

[(
1 + i√

3

)
�OTSI τ

]
, (7)

which exhibits a purely temporal growth at the rate given
by Eq. (1). In fact, the same exponential behavior sets in
for ξ � vbτ/3 but with a smaller prefactor [27]. In the co-
moving coordinates, the region of purely temporal growth
recedes from the front to the rear of the beam at a velocity
of ∼vb/3. Therefore, at a location ξ behind the beam front,
the instability initially grows in a purely temporal manner
at a rate �OTSI, up to τ � 3ξv−1

b , after which spatiotemporal
effects turn prominent and result in a slower growth. The same
reasoning applied to a finite beam length σx implies that for
σx � vb�

−1
OTSI, the instability is essentially of spatiotemporal

nature. The latter condition holds in particular for the short
ultrarelativistic bunches produced in particle accelerators.

To support this analysis, we carried out 2D PIC simula-
tions with a steplike beam profile. A neutral electron-positron
(e−e+) pair beam was employed in order to avoid plasma
wakefield excitation and minimize initial noise, thus enabling
accurate comparison with the model (yet similar results were
obtained with an electron beam [27]). To reproduce even more
closely the model assumptions, the beam entering the plasma
was propagated ballistically until being completely immersed,
and then (at t = 0) let to evolve freely. We used beam-plasma
parameters relevant to FACET-II: γb = 2 × 104, α = (nb− +
nb+)/np = 0.06 (nb± is the equal density of the beam electrons
and positrons), and np = 1020 cm−3. The simulation (moving)
window covered the longitudinal range −10 � ξ � ξmax =
150 μm (i.e., −19 � kpξ � 282), the beam front being placed
at ξ = 0. For these parameters one finds ξmax < vb�

−1
OTSI,

and hence the instability should evolve in a spatiotemporal
manner.

Figure 2(a) displays (in solid curves) the spectral amplitude
|Ẽy(kx, k⊥)| of the dominant oblique mode (at kx = kp and
k⊥ � 3kp) along the beam at different propagation distances
cτ , and in Fig. 2(b) the same quantity is plotted as a func-
tion of cτ for different positions ξ . Both figures show very
good agreement with the predicted spatiotemporal evolution
∝ exp[(3/22/3)�OTSI(ξ/c)1/3τ 2/3] of the instability (dashed
lines).
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FIG. 2. 2D PIC simulations of the OTSI induced by a steplike e−e+ pair beam and comparison with linear theory in the spatiotemporal
regime for γb = 2 × 104 (a)–(c) and the temporal regime for γb = 20 (d). (a), (d) Spectral amplitude |Ẽy(kx, k⊥)| of the dominant oblique mode
(kx = kp, k⊥ � 3kp) as a function of ξ for different propagation distances cτ . (b) Same quantity but as a function of cτ for different beam slices
ξ . In (a) and (b), the simulation data (solid lines) is fitted to the theoretical law A exp[(3/22/3)�OTSI(ξ/c)1/3τ 2/3] for ξ � ξsat (dashed lines).
(c) Saturation position ξsat [also shown in (a) as circles] vs cτ (filled circles), compared with the theoretical expectation ξsat ∝ τ−2 (red dashed
line). Dashed lines in (d) plot the theoretical temporal growth of |Ẽy(kp, 3kp)| at different times cτ � 17k−1

p .

For large enough propagation distances (cτ � 1000k−1
p ),

the simulation curves in Fig. 2(a) peak at some position ξ ,
beyond which they rapidly decay. This behavior is due to the
nonlinear saturation of the OTSI [8,28]. The saturation mech-
anisms involved in the ultrarelativistic regime will be studied
in a separate paper, yet one can exploit here their observed
weak spatial dependence to further validate the theory. Indeed,
assuming that the instability ceases when a certain field level
is reached, the saturation position, ξsat, should vary with τ as
ξsat ∝ τ−2. This prediction matches well with the simulation
results of Fig. 2(c), which plots ξsat vs τ .

Finally, to confirm the existence of a purely tempo-
ral regime, we repeated the same simulation but with a
lower beam Lorentz factor (γb = 20), so that ξmax > vb�

−1
OTSI.

Figure 2(d) shows that the instability then grows at a rate that
is essentially independent of the beam slice ξ > 50 μm. This
nicely agrees with Eq. (7), as shown by the dashed lines rep-
resenting the predicted amplification of the initial (recorded at
cτ = 14k−1

p ) ξ -dependent fluctuations.
Another important finite-size effect is the excitation of

plasma wakefields by non-neutral beams with relatively small
transverse width (σr). These fields act back on the beam
to pinch it, which reinforces them and causes the beam to
self-focus as it further propagates through the plasma [29].
The timescale of beam self-focusing can be estimated by
the inverse betatron frequency ω−1

β = √
γbme/∂rW⊥, where

W⊥ is the amplitude of the transverse wakefield [30]. If this
timescale is smaller than the effective growth time of the
dominant oblique instability [i.e., lengthened by spatiotempo-
ral effects, see Fig. 1(d)], the beam can shrink into a narrow
and dense filament expelling the plasma electrons away from
it, hence quenching the instability. For a beam with fixed
charge and length, changing its transverse width affects both
processes similarly and so barely modifies their interplay. By
contrast, raising the plasma density tends to favor the instabil-
ity over the beam self-focusing.

We ran additional 2D PIC simulations to examine the in-
terplay of the beam self-focusing and beam-plasma instability
depending on the plasma density. Potential effects arising in a
3D geometry are discussed in the Supplemental Material [27].

We considered a FACET-II-like electron beam (10 GeV, 2 nC,
σx = 5 μm, σr = 10 μm, peak density nb � 1.5 × 1018 cm−3,
normalized emittance εn = 3 mm mrad) injected through a
uniform plasma of different densities. Each simulation was
repeated with a transversely infinite (periodic) beam to sup-
press the effects of plasma wakefields and beam self-focusing.
Comparing ω−1

β to the timescale of the spatiotemporal OTSI
with the above parameters, one finds that beam self-focusing
should dominate for np � 1019 cm−3 [27]. This prediction is
confirmed by the simulation results depicted in Fig. 3. At
np = 1019 cm−3 [Figs. 3(a)–3(c)], the transverse wakefield
starts focusing the finite-width beam [see its rotation in the
transverse phase space in the inset of Fig. 3(a)] before the
OTSI can impart significant modulations on the beam pro-
file. This leads the whole beam to collapse into a narrow
filament [Figs. 3(b) and 3(c)], hence inhibiting the OTSI, in
stark contrast with the equivalent infinite-beam simulation
[Figs. 3(d)–3(f)]. At np = 2.5 × 1019 cm−3 [Figs. 3(g)–3(i)],
the self-focusing dynamics is slower, and so the competition
between the two processes is more balanced. Still, although
the OTSI-driven modulations have time to grow, a compressed
filament eventually forms at the beam center [Fig. 3(i)],
which is absent for an infinite beam width [Fig. 3(l)].
Finally, when further increasing the plasma density to np =
5 × 1019 cm−3 [Figs. 3(m)–3(r)], the system dynamics is
clearly governed by the OTSI, and, as expected, no significant
difference arises when changing from a finite to an infinite
beam width.

In conclusion, we have conducted the first spatiotemporal
analysis of the oblique two-stream instability triggered by
finite-size particle beams. For ultrarelativistic, short-duration
bunches, such as delivered by state-of-the-art particle ac-
celerators, we have shown analytically that in terms of the
comoving coordinates (τ, ξ ), the instability mainly evolves
as a function of (ξ/vb)1/3τ 2/3. It develops from the head to
the tail of the beam and, within a fixed beam slice, more
slowly than in unbounded geometry. Close agreement has
been found between the theory and PIC simulations in several
beam-plasma setups. Furthermore, when realistic finite-width
electron beams are considered, self-focusing induced by
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FIG. 3. Simulated electron-beam-density maps at different propagation distances in a uniform plasma of density np = 1 × 1019 cm−3

(a)–(f), 2.5 × 1019 cm−3 (g)–(l), and 5 × 1019 cm−3 (m)–(r). The transverse beam profile is taken to be either finite with σr = 10 μm rms
width [(a)–(c), (g)–(i), and (m)–(o)] or infinite, i.e., with transverse periodic boundary conditions [(d)–(f), (j)–(l), and (p)–(r)]. In all cases,
the beam has a 10-GeV energy (γb = 2 × 104), a Gaussian longitudinal profile with σx = 5 μm rms length, a transverse normalized emittance
εn = 3 mm mrad, and a peak density nb � 1.5 × 1018 cm−3 [i.e., α � 0.15 for (a)–(f), α � 0.06 for (g)–(l), and α � 0.03 for (m)–(r)], which
would correspond to a total beam charge of 2 nC in 3D. The insets show the transverse beam phase space along the slices indicated by the
dashed blue lines.

plasma wakefields may hinder the instability growth and thus
dominate the beam dynamics. Neutral pair beams, though,
can circumvent the limitation placed by wakefields and fa-
cilitate laboratory investigations of ultrarelativistic streaming
instabilities. These results are critical to guide and interpret
future experiments on high-energy beam-plasma interactions

and their envisioned applications, such as the development of
instability-based light sources.

This work was performed within the framework of the
E-305 Collaboration. E-305 is a SLAC experiment which
aims at the study of astrophysically relevant beam-plasma
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