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As an indispensable electronic degree of freedom, the orbital character dominates some of

the key energy scales in the solid state — the electron hopping, Coulomb repulsion, crystal field

splitting, and spin-orbit coupling. Recent years have witnessed the birth of a number of exotic

phases of matter where orbital physics plays an essential role, e.g. topological insulators, spin-

orbital coupled Mott insulators, orbital-ordered transition metal oxides, etc. However, a direct

experimental exploration is lacking concerning how the orbital degree of freedom affects the ground

state and low energy excitations in these systems.

Angle-resolved photoemission spectroscopy (ARPES) is an invaluable tool for observing the

electronic structure, low-energy electron dynamics and in some cases, the orbital wavefunction.

Here we perform a case study of (a) the topological insulator and (b) the J1/2 Mott insulator

Sr2IrO4 using ARPES.

For the prototype topological insulator Bi2X3 (X=Se, Te), our studies reveal the topological

surface state has a spin-orbital coupled wavefunction asymmetric to the Dirac point, and it is

possible to manipulate the spin of the photoelectron using polarized photons.

We also discover there are multiple features, including pseudogaps, Fermi “arcs”, and marginal-

Fermi-liquid-like electronic scattering rates in the effectively hole doped Sr2IrO4, which have been

reported in the high-TC cuprates. Due to the relatively simple phase diagram of these doped

iridates, we find the aforementioned low energy features are not exclusive to preformed Cooper

pairs, or the existence of Quantum Critical Points as suggested in influential theories. Instead,

the short-range antiferromagnetic correlation might be vital to the description of the Mott-metal

crossover.
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Chapter 1

Orbital Physics in a Nutshell

An electron in a solid has four degrees of freedom: charge, spin, lattice and orbital. The

first three degrees of freedom, charge, spin and lattice, have been the focus of study since the

early days of condensed matter physics and now we have understood a great deal about them. For

example, they have collective excitations including phasons, amplitudons, magnons, and phonons.

Also the interactions between electrons and phonons could lead to conventional superconductivity

in metals, as revealed by the “BCS theory” [1]. The orbital degree of freedom, however, is far less

talked about. Recently, exotic physics and new phases of matter have been proposed and discovered

in materials where orbitals play an essential role [2, 3, 4, 5, 6]. Orbital physics has emerged as a

new frontier of condensed matter physics.

In this chapter, we provide an overview of the orbital physics, focusing on how orbitals

determine/contribute to the fundamental energy scales in the solid. Similar to the study of other

electron degrees of freedom, our ultimate goal is to understand how orbital physics affects the

“low-energy” electronic structures and excitations near the Fermi level. This theis is but an initial

experimental attempt in this new field, exploiting the versatility of the angle-resolved photoemission

spectroscopy.

1.1 Describing Electrons Using Orbitals

The concept of “orbital” is rooted in atomic physics, which describes how electrons are spa-

tially confined relative to the positively-charged ions. For semiconductors, insulators and even
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some metals and semimetals, we could generally identify an electron in the solid as occupying an

orbital centered at a constituting atom. Many materials vital to the modern energy and electronics

industry, and also those of scientific interest fall into this category. The role of electron orbitals in

these materials is dual: on the one hand, the spatial distribution of orbital wavefunctions directly

determines the fundamental energy scales in the solid. On the other hand, the low energy wave-

function of electrons, which results from these orbital-related energy scales, could be treated as a

superposition of the same set of orbital wavefunctions. In the first-principles calculations, this latter

approach is termed the linear combination of atomic orbitals (LCAO). Thus the orbital degree of

freedom serves as a “bridge” that connects the high-energy scales and the low-energy excitations.

In a few cases, it is not straightforward to assign orbital characters to electrons. For example, in

noble metals, electrons near the Fermi level form a mobile Fermi gas and are less confined to the

atoms. After all, unlike charge and spin, the “orbital” is not an intrinsic property of an electron.

However, we will not focus on these exceptions, as many of them are well understood.

Much we know about the real space orbitals comes from the hydrogen atom from undergrad-

uate quantum mechanics, where each orbital can be identified by its radial and angular distribution

and is usually labeled with quantum numbers n, l and m, respectively. The angular distribution

is described by the spherical harmonics Ylm, with l = 0, 1, 2, 3 corresponding to the s, p, d and f

orbitals. Only the s angular wavefunction is isotropic. For a multi-electron atom, the solutions

of the hydrogen atom are of course over-simplified. We could still adopt the same set of angular

wavefunctions, while the radial wavefunctions are modified due to the Coulomb repulsion from

other electrons around the positive ion.

Now we review how the fundamental energy scales (as they appear in a theoretical Hamil-

tonian) are determined by the orbital character. We list these energy scales with the increasing

number of atoms.

On a single atom level, each atomic orbital could accommodate up to two electrons, due to

the Pauli exclusion principle. A Coulomb repulsion U is produced between these two electrons.

We could regard U > 0 as the energy cost to add an extra electron into the atomic orbital. For
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the outer shell valence electrons, U increases with reduced n (or the number of filled inner shells).

The filled inner shells effectively reduce the effective charge the outer electron sees and hence the

Coulomb attraction. For 3d orbitals, U is on the order of ∼10eV. This number reduces to 2∼3eV for

the 5d orbitals [4]. Also, U increases with larger angular momentum l. For instance, with the same

pinciple quantum number n, the d orbitals are spatially more localized than the p orbitals. The f

electrons are so localized in space (and buried inside the s and p outer shell) that the corresponding

valence band are essentially “flat” in momentum space, with a heavy band mass [7]. In this thesis

we will focus on the physics of the p and d orbitals.

For an assembly of more than one atom, the energy level and density distribution of the

orbitals are severely modified by the overlap of orbitals with the neighboring atoms.

In the case of two atoms, this is illustrated in the formation of chemical bonds. The terms

“bonding” and “antibonding” reflect the orbital wavefunction symmetry and the spatial distribution

between the two atoms. Also, the kinetic energy t for an electron to hop between two atoms is

determined by the overlap of the participating orbital wavefunctions.

New physics is brought in as the number of neighboring atoms increases. We would like to

mention two examples: in some cases, the symmetry of neighboring atoms deviates so badly from

the orbital orientation, that the orbitals are “hybridized” into new orbitals. This is how chemical

bonds form in the graphene as compared to the diamond. In the former, one s orbital and two

planar p orbitals are mixed together (sp2 hybridization) and the latter requires all three p orbitals

to participate (sp3 hybridization).

The other example I would like to discuss is the crystal field splitting. For an atom “caged” by

atoms of (usually) different species, the surrounding atoms create a static electric field and split the

otherwise degenerate orbitals of the centering atom. Without introducing the entire framework of

crystal field theory, we provide a hand-waving explanation for the energy splitting in the octahedral

atomic complex, as this is commonly seen in many material systems, including cuprates, iridates

and manganites. Figure 1.1 a presents a cartoon of the octahedron, with the transition metal

atom in the center and 6 oxygen atoms around it. The d orbitals (there are 5 of them) split
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Figure 1.1: The crystal field splitting of d orbitals in an octahedral atomic complex. a. Geometry
of the octahedron. The transition metal atom is at the center, and there is an oxygen atom at each
of the 6 corners. The oxygen 2p orbitals extends along one of the x, y and z axis. We draw the
wavefunction of the dxy orbital at the center, with less overlap with the oxygen 2p orbitals than,
e.g. the dz2 orbital. The red/blue colors represent the relative phase of the d orbital wavefunction.
b. The crystal field splitting. The two eg orbitals have higher energy than the three t2g orbitals.
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into two groups. The dz2 and dx2−y2 orbitals (the eg orbitals) are higher in energy (Figure 1.1

b) than the three t2g orbitals dxy, dyz and dzx. This is because the t2g orbitals point away from

the corner oxygen and there is less wavefunction overlap. For a perfect octahedron where the 6

oxygens share the same distance to the metal atom, the three t2g orbitals (and the two eg orbitals)

are degenerate. However, these degenerate orbitals could further split in energy, as the octahedron

becomes elongated, or as one octahedron shares a corner (or edge/face) with another octahedron.

For the 3d transition metal oxides, U is the largest term in energy. As the atomic number

increases, U becomes smaller, while the electron hopping t is larger. For the 4d/5d transition metal

oxides, the energy scales of t, U and ECF are comparable, making possible the emergence of new

phases of matter.

So far we have discussed important high-energy scales originating entirely from the orbitals.

There are other local interactions that couple both the spin and the orbital degrees of freedom.

These interactions require electrons to twist their spin as they hop from one orbital to another on

the neighboring lattice site, to optimize (at least partially) the local energy. This local spin-orbital

entanglement may have a global effect on the wavefunction symmetry and low-energy dynamics, as

we will show throughout the thesis. We list two of the often-encountered spin-orbital interactions

below:

For atoms with a high atomic number Z, the spin-orbit coupling increases as Z4 and could no

longer be neglected. In the case of topological insulators , the spin-orbit coupling is responsible for

band inversion in the known topological insulators [5]. As we will show in Chapter 3, the spin-orbit

coupling profoundly determines the unconventional spin polarization (which we will refer to as the

spin-orbital texture) of the topological surface state.

For the lighter elements, where the atomic spin-orbit coupling is relatively small, the spin and

orbital could still be coupled. This has been demonstrated in the complex phase diagrams of many

3d transition metal oxides, including doped manganites, nickelates and cobaltates [2]. In these

materials, a new energy scale, the Hund’s coupling JH comes into play. Hund’s rules state that

the d shell tends to be filled or half filled whenever possible; and the electron spins tend to achieve
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the largest total moment (the so-called high spin state). This rule suggests each new electron to

be put into the 3d shell has to choose its orbital occupation and spin polarization simultaneously.

This new electron either has to find an empty 3d orbital and maximize the total onsite moment

(by aligning itself with electron spins on other d orbitals on the same site); or has to doubly fill a

3d orbital with the spin opposite to the electron already in that orbital.

1.2 The Scope and Organization of The Thesis

This thesis is dedicated to how the orbital physics manifests itself in the “low-energy” elec-

tronic structures and correlations. We present two cases — the topological insulators (Chapter 3)

and doped Jeff=1/2 Mott insulator Sr2IrO4 (Chapter 5) — that exhibit two distinct facets of orbital

physics. We explore these materials with angle-resolved photoemission spectroscopy (ARPES), and

briefly introduce the basics of ARPES in Chapter 2.

As discussed in Section 1.1, the wavefunction of a solid could be considered as a superposition

of all the relevant atomic orbitals. ARPES and first-principles calculations provide the experimental

and theoretical tools needed for directly observing the orbital wavefunction. In Chapter 3, we

choose topological insulators as our model system, as the weak correlation between electrons allows

comparison between experiments and calculations. Interestingly, the strong spin-orbit coupling

in topological insulators gives rise to a special type of wavefunction, which is a superposition of

different orbitals coupled with the corresponding spin orientations. We term this new form the

“spin-orbital texture”, which in principle could also be found in other materials.

The collective excitation and dynamics near the Fermi energy usually result from broken

symmetries, and are not related to the details of electron interactions. Following this argument, it

might appear at first sight (and we will further the discussion in Chapter ??) the orbital degree of

freedom does not have an exclusive feature in spectroscopies. However, for such exotic low-energy

features as pseudogap, there is no agreement which symmetry is broken. The orbital physics

may offer new materials with similar low-energy dynamics but very different high-energy electron

interactions. By comparing these material families, we will be able to determine many potentially
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broken symmetries as irrelevant to the low energy feature. This in itself could mark a major

advancement in a much debated area of research. In Chapter 5, we show the Mott-metal crossover

in doped iridates shares some striking similarities with that of cuprates. By comparing the phase

diagrams of these two systems, we could rule out pre-formed Cooper pairing and quantum criticality

as responsible for these universal features during the Mott-metal crossover. Due to the complexity

of Mott physics, we review in Chapter 4 some of the key theories and experimental findings.

The review Chapters 2 and 4 include the essential ingredients for the self-consistency of the

thesis, without further details where review articles are available. For example, in Chapter 2, I

introduce the concept of energy/momentum distribution curves and the Lorentzian fitting method,

as these are the workhorses in real-world data analysis. I deliberately leave out discussions about

the spectral function of the Fermi liquid, but instead comment on the essence of single-electron

scattering rate. This is because a reader could learn the former from a review [8] or a book [9],

while the latter is much less seen.

For an emerging field as complicated as orbital physics, there are many questions unanswered

and many opportunities unexplored. We list two of them here, in the hope of inspiring further

theoretical and experimental explorations:

First, it would be interesting to investigate whether/how orbital physics affects bulk proper-

ties in select materials. In the case of topological surface states, we will show in Chapter 3 that

we could tune the photoelectron spin by controlling the orbital excitation using polarized photons.

An intriguing future direction is to generate spin-polarized photocurrent with the same photon

polarization. This requires precise control of competing electron-hole recombination processes in

the bulk topological insulators [10], as well as improved spin-current detection at the edge of the

sample.

Also, the orbital degree of freedom could form long-range orders [3, 11] and collective exci-

tations [12, 13], just like spin and charge. So far elastic and inelastic scattering experiments are

the main approaches to confirm the existence of orbital order. However, these spectroscopies rarely

provide insight into the driving mechanism. Fermi surface nesting is often used to explain the
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formation of charge order, and is a natural candidate in the case of orbital order. In this sense,

ARPES is the perfect tool to study orbital order — it could be used to detect orbitals of different

symmetries and to map the Fermi surface topology. We expect future work that combines ARPES

and scattering experiments to explore orbital ordered materials.



Chapter 2

Imaging the Electrons as a Function of Binding Energy and Crystal Momentum

Angle-resolved photoemission spectroscopy (ARPES) proves an invaluable tool for directly

observing both electronic structure and low-energy electron dynamics in the solid state and bears

implications for electronic order including density-wave instabilities. Indeed, ARPES has demon-

strated its unique ability in describing the phenomenology in many high-profile materials, including

high TC superconductors [8], few-layer graphenes [14, 15], and most recently the topological quan-

tum phases of matter [5].

There has been a major increase in the number of ARPES research groups and endstations

in the world, thanks in part to the implementation of new light sources (including synchrotrons,

lasers and gaseous lamps) with improved energy resolution and also in part to the birth of the

two-dimensional electron analyzer.

In this chapter, we present a very brief review on the principles of ARPES. We discuss how

the electronic dispersion and scattering rate could be extracted from the ARPES spectra, as well

as the modulation of ARPES intensity due to the orbital wavefunction symmetry. We review the

design of the hemispherical analyzer in Appendix A.

2.1 Energy and Momentum Conservation in the Photoemission Process

The photoemission technique was born out of the photoelectric effect discovered by Hertz

in 1887. When light strikes on a sample an electron can escape from the material by absorbing a

quanta of light radiation. Einstein provided his critical explanation in 1905 that opened the door
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to quantum mechanics. Each electron in the solid absorbs the energy of a photon1 and escapes

out by overcoming an energy barrier at the surface. Using energy conservation, the kinetic energy

of a photoelectron is related to the energy of the electron in the solid via the following equation

(also see Figure 2.1 a)

Ek = hν − Φ− EB (2.1)

where Φ is the sample workfunction and EB is the binding energy, i.e. the energy of the electron

relative to the Fermi level. Thus the maximum kinetic energy of the photoelectron is simply hν−Φ,

as observed in the photoelectric effect in the late 19th century.

Moreover, the momentum parallel to the sample surface is conserved during photoemission,

similar to the process of a ball bouncing off a wall in undergraduate mechanics. As we need to

consider the momentum from both the electron and photon

ki,‖ + khν = kf,‖ (2.2)

where khν is the momentum of the photon; ki,‖, kf,‖ are the momentum of the electron in the

solid and the photoelectron, respectively. In most of the ARPES experiments, the photon energy

hν ≤100eV and the momentum of photons are negligible. Thus we have

ki,‖ = kf,‖ =
1

~
√

2me(hν − Φ− EB) sin θ (2.3)

where θ is the angle away from normal electron emission (Figure 2.1 b).

It appears at first sight that ARPES provides a genuine “snapshot” of the energy and momen-

tum of an electron in the solid; and the photoemission spectrum is a mere “shift” of the electron

density of states in the solid. However, we have so far overlooked the complexities during the

photoemission process. For example, we have assumed the photoexcited electron interacts with

neither the surface of the material nor other electrons in the solid on its way out. For a realistic

modeling, if we want to treat photoemission (which includes photon absorption, electron removal

(from the Fermi sea), and electron escape) as a one-step process, we would then need to consider

1 Two-photon photoemission is possible, but with much reduced absorption probability.
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dicular to the sample surface are obtained from the po-
lar (!) and azimuthal (") emission angles.

Within the noninteracting electron picture, and by
taking advantage of total energy and momentum conser-
vation laws (note that the photon momentum can be
neglected at the low photon energies typically used in
ARPES experiments), one can relate the kinetic energy
and momentum of the photoelectron to the binding en-
ergy EB and crystal momentum #k inside the solid:

Ekin!h$"%"!EB!, (1)

p"!#k"!!2mEkin•sin ! . (2)

Here #k" is the component parallel to the surface of the
electron crystal momentum in the extended zone
scheme. Upon going to larger ! angles, one actually
probes electrons with k lying in higher-order Brillouin
zones. By subtracting the corresponding reciprocal-
lattice vector G, one obtains the reduced electron crystal
momentum in the first Brillouin zone. Note that the per-
pendicular component of the wave vector k! is not con-
served across the sample surface due to the lack of
translational symmetry along the surface normal. This
implies that, in general, even experiments performed for
all k" (i.e., by collecting photoelectrons at all possible
angles) will not allow a complete determination of the
total crystal wave vector k [unless some a priori assump-
tion is made for the dispersion E(k) of the electron final
states involved in the photoemission process]. In this re-

gard it has to be mentioned that several specific experi-
mental methods for absolute three-dimensional band
mapping have also been developed (see, for example,
Hüfner, 1995; Strocov et al., 1997, 1998).

A particular case in which the uncertainty in k! is less
relevant is that of the low-dimensional systems charac-
terized by an anisotropic electronic structure and, in par-
ticular, a negligible dispersion along the z axis [i.e.,
along the surface normal; see Fig. 3(a)]. The electronic
dispersion is then almost exclusively determined by k" ,
as in the case of the 2D copper oxide superconductors
which we shall focus on throughout this paper [note,
however, that possible complications arising from a finite
three-dimensionality of the initial and/or final states in-
volved in the photoemission process should always be
carefully considered (Lindroos et al., 2002)]. As a result,
one can map out in detail the electronic dispersion rela-
tions E(k") simply by tracking, as a function of p" , the
energy position of the peaks detected in the ARPES
spectra for different takeoff angles [as in Fig. 3(b),
where both direct and inverse photoemission spectra for
a single band dispersing through the Fermi energy EF
are shown]. As an additional bonus of the lack of z dis-
persion, one can directly identify the width of the pho-
toemission peaks with the lifetime of the photohole
(Smith et al., 1993), which contains information on the
intrinsic correlation effects of the system and is formally
described by the imaginary part of the electron self-
energy (see Sec. II.C). In contrast, in 3D systems the
linewidth contains contributions from both photohole
and photoelectron lifetimes, with the latter reflecting
final-state scattering processes and thus the finite prob-
ing depth; as a consequence, isolating the intrinsic many-
body effects becomes a much more complicated prob-
lem.

Before moving on to the discussion of some theoreti-
cal issues, it is worth pointing out that most ARPES
experiments are performed at photon energies in the
ultraviolet (in particular for h$#100 eV). The main rea-
son is that by working at lower photon energies it is
possible to achieve higher energy and momentum reso-
lution. This is easy to see for the case of the momentum
resolution &k" which, from Eq. (2) and neglecting the
contribution due to the finite energy resolution, is

&k"#!2mEkin /#2•cos !•&! , (3)

where &! corresponds to the finite acceptance angle of
the electron analyzer. From Eq. (3) it is clear that the
momentum resolution will be better at lower photon en-
ergy (i.e., lower Ekin), and for larger polar angles !
(note that one can effectively improve the momentum
resolution by extending the measurements to momenta
outside the first Brillouin zone). By working at low pho-
ton energies there are also some additional advantages:
first, for a typical beamline it is easier to achieve high-
energy resolution (see Sec. II.E); second, one can com-
pletely disregard the photon momentum '!2(/) in Eq.
(2), as for 100-eV photons the momentum is 3%
(0.05 Å"1) of the typical Brillouin-zone size of the cu-
prates (2(/a#1.6 Å"1), and at 21.2 eV (the HeI* line

FIG. 2. Energetics of the photoemission process. The electron
energy distribution produced by incoming photons and mea-
sured as a function of the kinetic energy Ekin of the photoelec-
trons (right) is more conveniently expressed in terms of the
binding energy EB (left) when one refers to the density of
states inside the solid (EB!0 at EF). From Hüfner, 1995.
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energy. In Sec. V we show laser ARPES data from the high
Tc superconductor Bi2212 and compare it with previous re-
sults from higher photon energies.

II. THE 6 eV LASER SYSTEM

The optical layout for the 6 eV laser system is sketched
in Fig. 2. At the heart of the system is a Kerr mode-locked
Ti:sapphire oscillator pumped with 5 W from a frequency
doubled Nd:vanadate laser. The oscillator generates 70 fs, 6
nJ pulses tunable around 840 nm !"1.5 eV# at a repetition
rate of 100 MHz. Although much higher pulse energies are
available from amplified systems, we use a high repetition
rate and a low pulse energy to avoid possible space charge
complications.15 In order to produce ultraviolet photons, we
utilize two stages of nonlinear second harmonic generation
through type I phase matching in !-barium borate !BBO#.16

The pulses are first focused into a 2 mm thick BBO crystal
cut at an angle of 29.2° generating about 150 mW of the
second harmonic at 420 nm !"3 eV#. The second harmonic
is separated from the fundamental with dichroic mirrors and
then focused into a 1 mm thick BBO crystal cut at 67.2°
resulting in generation of the fourth harmonic at 210 nm
!"6 eV#. The two beams are then separated using either
prisms or dichroic mirrors !shown in Fig. 2#.

The power of the fourth harmonic varies up to about 1
mW depending on the wavelength being used. The fourth
harmonic power decreases with increasing photon energy as
the absorption edge of the BBO crystal is approached, a
property which can vary from crystal to crystal. Currently,
the maximum usable photon energy achieved with reason-
able flux is around 6.05 eV. Figure 3!a# shows a typical
fourth harmonic spectrum along with a Gaussian fit with a
full width at half maximum of 4.7 meV. The power for this
spectrum was measured to be 200 "W which corresponds to

2#1014 photons/s !we have achieved flux of up to
1015 photons/s#. This combination of high flux and narrow
bandwidth represents a considerable improvement over even
the best undulator beamlines at synchrotron facilities.

After separation from the second harmonic, the fourth
harmonic passes through a rotatable 1 /2 wave plate, allow-
ing any linear polarization to be used for ARPES. This ease
of polarization control is an important advantage of the laser
system since the ARPES signal/background depends heavily
on polarization through the ARPES matrix elements.1–3 A
1/4 wave plate can also be used to obtain circularly polar-
ized light, which can be used for studies of magnetism or to
test for time-reversal breaking effects.17,18 Finally, the ultra-
violet light is focused into the UHV chamber though a MgF
viewport, using a curved Al mirror. The curved mirror is
mounted on a linear translation stage so that the spot size on
the sample can be adjusted. This combination of high flux,
improved resolution, low operating cost, and ease of polar-
ization and focus control, make lasers an excellent light
source for ARPES.

III. UHV SYSTEM

The laser ARPES chamber is constructed of 316 stain-
less steel, and typically maintains a base pressure below 2
#10−11 Torr after bake out. Samples are introduced into the
vacuum through a two-stage load-lock transfer system and
are measured on a five-axis He cooled cryostat capable of
temperatures as low as 8.5 K. Samples share a common
ground with the electron analyzer. The 6 eV photons enter

FIG. 1. !Color online# The “universal curve” for surface sensitivity in pho-
toemission !Ref. 4#. Electron inelastic mean free paths from a variety of
materials are plotted vs the kinetic energy relative to EF !the lowest kinetic
energies shown will not be able to overcome the work function#. Indicated
on the plot are the kinetic energy ranges for standard ARPES and laser
ARPES.

FIG. 2. !Color online# Schematic layout of the 6 eV laser system. All lenses
have a 5 cm focal length and are ultraviolet !UV# fused silica where neces-
sary. Dichroic mirrors are shown in dark green.

053905-2 Koralek et al. Rev. Sci. Instrum. 78, 053905 !2007"

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:
128.138.65.211 On: Mon, 28 Apr 2014 14:29:08

a	   b	  

c	  

Figure 2.1: Energy and momentum conservation in the photoemission process. a. (reproduced
from [9]) The electron in the solid absorbs the energy hν of a photon, overcomes the workfunction
Φ and converts itself into a photoelectron. b. The photoelectron (the solid red dot) travels out of
the solid with an angle θ relative to the normal direction of the material. c. The relation between
the mean free path and the kinetic energy of the photoelectron in the solid. Reproduced from [16],
and data originally compiled in [17].
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the above interactions, and this is a formidable job. An alternative is to adopt the following model

that divides photoemission in three steps [18]:

(1) Optical excitation of the electron in the bulk.

(2) Travel of the excited electron to the surface.

(3) Escape of the photoelectron into vacuum.

Step (3) involves how photoelectrons transmit through the surface potential barrier and is relatively

simple. We now focus on Steps (1) and (2) for the remainder of this section.

Step (1) is believed to contain intrinsic information about the electronic structure in the

solid. An optical excitation would only occur when an electron is pumped from a filled state to an

empty state. As electrons are indistinguishable particles that follows Pauli’s exclusion principle, the

excitation probability naturally requires information of all the electrons in the solid, both before

and after the excitation. Specifically, using Fermi’s golden rule, the transition probability from the

initial to the final state

w =
2π

~
|〈ΨN

f |Hint|ΨN
i 〉|2δ(ENf − ENi − hν) (2.4)

with

Hint =
e~
mc

~A · ~k (2.5)

where |ΨN
i,f 〉 are the initial and final states for all N electrons and ENi,f are the total energies for

the initial and final state. ~A is the electromagnetic gauge of the photon field.

The initial state is straightforward, with all the states below the Fermi energy filled with

electrons at 0K. For the final state, we would generally assume (which we call the “sudden approx-

imation”) the electron excited hν above the hole does not talk with the rest of the filled states

below the Fermi energy. This means we could write the N -particle final state as a product of the

wavefunction of the excited electron and the wavefunction of the (yet to be relaxed) N−1 electrons.

|ΨN
f 〉 ∝ A[|ψ~kf 〉 ⊗ |ΨN−1

f 〉] (2.6)
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We use Ψ and ψ to denote the many-electron and single-electron wavefunctions, and A is an

antisymmetric operator that properly antisymmetrizes the N-electron wave function. This way the

transition probability is reduced to tracking the relaxation of the photo-hole (as we have only N−1

electrons below the Fermi energy now). One of the N−1 electrons would fill in the photohole (with

the same energy-momentum relation as the ejected electron) during the relaxation, by scattering

with other electrons or the lattice (thus providing information about the electron-electron and

electron-phonon interactions, among others). Further discussions will be presented in Sections 2.2

and 2.3.

Step (2) could be approximated where electrons have an exponentially decaying probability

of reaching the surface, and the characteristic length is called the escape depth of photoelectrons,

which is significantly smaller than the probe depth of the incoming photon. Seah and Dench [17]

compiled how the escape depth varies with photon energy, which we now refer to as the “universal

curve”. For photons hν =20∼50eV, the escape depth is around 0.5nm and ARPES is said to be

surface-sensitive. However, this is the photon range many of the ARPES works (including this

thesis) are performed. The ARPES data collected at this photon energy range may or may not

reflect the intrinsic properties of the bulk materials, depending on the details of the solid (e.g.

sample cleave, dimensionality of the materials, etc.). For hν <10eV we see a sharp increase in

the electron escape depth. This photon energy range was not used in history, in part due to the

lack of available light sources, and more importantly as the sudden approximation was assumed

to be problematic for the low energy electrons. Koralek et al. [19] managed to prove that the

sudden approximation still holds for photon energies down to 6eV and started the era in ARPES

with better bulk sensitivity and higher resolution. It is to be noted that recently there have been

successful demonstrations of ARPES experiments using soft and even hard X-rays with hν larger

than 500eV [20, 21]. In these experiments, the momentum of photons could no longer be ignored.
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2.2 The ARPES Spectral Function

The measured ARPES intensity takes the general form [8]

I(~k, ω) = |〈ψf | ~A · ~p|ψi〉|2f(ω)A(~k, ω) (2.7)

where f(ω) is the Fermi function. |〈ψf | ~A · ~p|ψi〉|2 is the dipole transition probability (often dubbed

“the matrix element”). We will discuss the matrix element in Section 2.3. Here we focus on the

A(~k, ω) term, which is the imaginary part of the single-electron Green’s function (apart from a

prefactor of −1/π)

G(~k, ω) =
1

ω − ε~k − Σ(~k, ω)
(2.8)

Thus

A(~k, ω) = − 1

π

Σ′′(~k, ω)

[ω − ε~k − Σ′(~k, ω)]2 + [Σ′′(~k, ω)]2
(2.9)

with Σ(~k, ω) = Σ′(~k, ω) + iΣ′′(~k, ω) being the electron self-energy. The real and imaginary parts

of Σ(~k, ω) need to satisfy causality and are related by the Kramers-Kronig relations. ε~k represents

the electronic dispersion in the absence of electron correlation and is often referred to as the “bare

dispersion”. The ω~k = ε~k + Σ′(~k, ω) on the other hand is the “dressed” dispersion. The effect

of the electron correlation is reflected not only in the single-electron lifetime (which is roughly

the reciprocal of the imaginary part of the electron self-energy), but also in the measured band

dispersion. The “dressed” dispersion corresponds to the renormalized, and usually heavier effective

band mass of electrons or holes. We list the imaginary part Σ′′(~k, ω) characteristic of the Fermi

liquid (FL) and marginal Fermi liquid (MFL) [22], as these are often encountered in real materials

Σ′′(~k, ω)FL ∝ ω2 + (πkBT )2 (2.10)

Σ′′(~k, ω)MFL ∝ max(|ω|, kBT ) (2.11)

In Figure 2.2 we show a typical 2D energy-momentum intensity map. The measured/calculated

ARPES spectra as a function of energy at a fixed momentum is called an energy-distribution curve



15

0.60.50.40.3
Momentum (1/Å)

-0.15

-0.10

-0.05

0.00

E-
E F

 (
eV

)

4

3

2

1

0

0.60.50.40.3
Momentum (1/Å)

In
te

ns
ity

 (a
.u

.) 
5

4

3

2

1

0
-0.15 -0.10 -0.05 0.00

E-EF (eV)

In
te

ns
ity

 (a
.u

.) 

a	  
b	  

c	  

Figure 2.2: A typical 2D ARPES spectrum is presented in panel a. The data is taken from a
optimally doped Bi2Sr2CaCu2O8+δ with a photon energy of 6eV. The energy (vertical axis) is
measured relative to the Fermi level, with the negative side below the Fermi level. The momentum
is along the analyzer slit and converted to Å−1. b. The momentum distribution curve (MDC)
and c. the energy distribution curve (EDC) taken along the solid green and blue lines in panel a,
respectively.
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(EDC). The momentum-distribution curve (MDC) could be defined similarly. In many realistic ma-

terials, with both strong and weak electron correlations, the electron self-energy strongly depends

on the binding energy, but much less on the electron momentum. The MDC line shape usually fits

well to a Lorentzian, in a wide range of energy close to the Fermi level, i.e.

A(~k, ω) = − 1

π

Σ′′(ω)

[ω − ε~k − Σ′(ω)]2 + Σ′′(ω)2
(2.12)

The “dressed” dispersion ε~k + Σ′(ω) and the single-electron scattering rate Σ′′(ω) could thus be

obtained from the 2D energy-momentum intensity map as the centroid and the half width of the

Lorentzian.

An important (but often less discussed) question is how much Σ′′(ω) from ARPES measure-

ments tells about the intrinsic correlations between electrons. We present the following two obser-

vations to justify the above question: First, the electron scattering rate obtained using Lorentzian

fitting is often much larger than that from other (e.g. optical) spectroscopies [23]. Second, the

MDC width varies from cleave to cleave for the same material, usually with a constant offset. This

latter observation clearly suggests at least a portion of the scattering rate is contributed by the ex-

trinsic elastic scattering off imperfections in the materials or on the surface. It is yet undetermined

what this fraction would be.

If the intrinsic contribution accounts for a major fraction of Σ′′(ω) from ARPES, the intrinsic

spectral function (and accordingly the single-electron Green’s function) would take a form closely

resembling Eqn. (2.12). This puts very stringent constraints over the possible theories, especially

for strongly correlated systems, and unfortunately not all the proposed spectral functions survive

this test. One example involves the Anderson line shape [24] that successfully reproduced the asym-

metric EDC in cuprates. However, the MDC from the same spectral function is also asymmetric,

and does not agree with the measured MDC at all [25].

On the other hand, if the intrinsic contribution to Σ′′(ω) is very small, then the constraints

on the ARPES spectral function are relieved. Note the electron scattering rate reported in optical

conductivity is indeed much smaller; and we should keep this possibility in mind.
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Reber et al. have made a first attempt [23] at separating the intrinsic part of the electron

scattering rate, using the tomographic density of states (TDoS) technique. However, the language

and analysis technique used in [23] is so far exclusive to the cuprate system. We are not sure how

the TDoS technique could be applied even in simple systems such as noble metals.

2.3 The Matrix Element Effect

The measured ARPES intensity has an overall transition probability termed “the matrix

element” [8]

I ∝ |〈ψf | ~A · ~p|ψi〉|2 (2.13)

Here ~A is the electromagnetic gauge and ~p is the electron momentum. ~A shares the same spatial

mirror symmetry2 as the electric field ~E of polarized photons. |ψi〉 and |ψf 〉 are the electron

wavefunction in the solid (or “the initial state”) and the wavefunction of the photo-excited electron

(or “the final state”), respectively. The initial state wavefunction contains information about the

orbital characters of electrons, while the final state wavefunction is usually taken as a propagating

plane wave along the photoelectron momentum ~kf .

In the presence of a linearly polarized electric field, only electronic states |ψi〉 of a particular

symmetry will contribute to the measured ARPES intensity. This is because the matrix element

includes integration across all spatial dimensions, so if the parity of the product 〈ψf | ~A · ~p|ψi〉 is

overall odd with respect to a particular mirror plane, the integration goes to zero and the ARPES

intensity vanishes. We demonstrate the symmetry analysis by studying the two special cases in

Figure 2.3. By “special”, we delibrately put the Poynting vector of the light and the momentum

of the initial (~ki) and final (~kf ) states in the same plane3 normal to the sample. The electric field

normal to (along) this plane (with a pink color in Figure 2.3) is said to be s-polarized (p-polarized).

This relative geometry between the light and the sample is not available in any random ARPES

2 ~A is the spatial component of electromagnetic gauge, and is related to the electri field by ~E = −∂ ~A/∂t. The
electric potential φ is zero for the propagating electromagnetic wave in free space. In fact, ~A and ~E are parallel.

3 In optics, the plane that contains both the Poynting vector and the sample normal is known as the plane of
incidence.
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setup.

For s polarized photons (Figure 2.3 a), the electric field ~E (and thus the gauge field ~A) is odd

with respect to the mirror plane. The in-plane momentum ~k‖ = ~ki and the final state wavefunction

|ψf 〉 are all even to the mirror plane. Thus for an orbital at ~ki that is even with respect to the

mirror plane, the overall mirror symmetry of 〈ψf | ~A · ~p|ψi〉 is odd, and the matrix element vanishes.

For the p polarized photons (Figure 2.3 b), the electric field ~E is even with respect to the mirror

plane and the matrix element could be finite for the same orbital even relative to the mirror plane.

The actual amplitude of the matrix element depends on the cross-section of the electric field with

the spatial distribution of the orbital wavefunction. We could sum up the above symmetry analysis

as

〈ψf | ~A · ~p|ψi〉 = 0

 |ψi〉 even 〈+| − |+〉 ⇒ ~A odd;

|ψi〉 odd 〈+|+ |−〉 ⇒ ~A even.

(2.14)

It is now evident that ARPES provides a unique opportunity to directly measure k-state

orbital structures with different symmetries. The orbital character of the initial state wavefunction

is mostly clearly shown when the ARPES intensity is suppressed along certain k directions. In

practice, this requires careful arrangement of the geometry between the light and the sample. We

usually choose the mirror plane to be along high symmetry directions of the Brillouin zone, so

that the orbitals would have a defined mirror symmetry. We rotate the sample around the sample

normal, till the Poynting vector of the light falls into the mirror plane. In principle, we could also

choose the mirror plane to coincide with the photon plane of incidence so that the symmetry of ~A

and ~E is fixed. This is particularly useful when higher symmetry is preserved in the system. We

will adopt this latter method in Chapter 3 to analyze the orbital character of the Dirac surface

state in topological insulators.

The matrix element generates an intensity modulation most prominent in the momentum

space that may change with photon energy and polarization. For k-states away from the high-

symmetry axis, a straightforward symmetry analysis similar to the one above is not available.

Some of the complications in analyzing the matrix element over large regions in k-space include:



19

(1) The final state wavefunction: We have assumed the final state as a plane wave. For

sufficiently high photon energies, usually at tens of eV, the final state is often in a quantum

continuum above the Fermi energy and is close enough to a plane wave. For lower photon energies,

this is not always the case.

(2) The kz dependence of the initial state. For (quasi-)two-dimensional electron systems,

while the band dispersion only depends weakly on kz, there is no direct evidence that the k-space

wavefunction depends on kz as weakly. For example, in Bi2Sr2CaCu2O8+δ with two Cu-O planes,

there are bonding and anti-bonding bands as a result of bilayer splitting. The relative intensity of

these two (quasi-2D) bands are known to fluctuate with photon energies [26]. A possible explanation

is that the bonding and anti-bonding wavefunctions have different symmetries along kz.

(3) The spatial distribution of the initial state. The so-called surface states are not truly two-

dimensional, and usually extend a few atomic layers into the bulk, on a length scale comparable to

the electron mean free path in ARPES. A photoelectron could initiate from different atomic layers,

giving rise to a quantum interference between these electron path. At a fixed (kx, ky) point, the

interference between adjacent atomic layers has a prefactor eikf,zc with kf,z being the kz momentum

of the photoelectron and c the interlayer distance. Zhu et al. proposed [27] how this mechanism

may lead to pronounced intensity modulations in the topological surface states.

Our list above is certainly not exhaustive. The matrix element is so complicated that it

remains largely a “black box” in ARPES experiments. Deciphering the matrix element has been

relying heavily on first-principles calculations [28, 29]. The danger of this approach is that these

calculations hardly pinpoint the exact origin of the intensity modulation, and the calculation could

be affected by many details in the materials.

The dependence of matrix elements on the linear/circular photon polarization is commonly

referred to as the linear/circular dichroism. While these terms offer a concise phenomenological

description, they do not provide further physical insight. The circular dichroism in topological

insulators [30], copper [31] and cuprates [32] may come from very different origins. Thus we avoid

using the name linear/circular dichroism throughout the thesis.
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Figure 2.3: A demonstration of matrix element analysis. The matrix element |〈ψf | ~A · ~p|ψi〉|2 is
zero for the geometry in the panel a but finite in b. The photons are s and p polarized in panels a
and b respectively, with the electric fields denoted by the yellow double arrows. ~ki and ~kf are the
initial and final state momentum. The mirror plane is drawn in pink and contains the Poynting
vector of the light, as well as ~ki and ~kf . The orbital wavefunction of interest is even relative to the
mirror plane, with the red/blue colors marking the relative phases.



Chapter 3

Mapping the Spin-Orbital Texture in Topological Phases of Matter

The prediction and discovery of the topological phases of matter, including but not limited

to topological insulators (TIs) [33, 34, 5, 35] and topological crystalline insulators (TCIs) [36, 37],

have proven to be one of the major advances in condensed matter physics in the last decade. The

“topological” description of the solid state succeeds the integer and fractional Quantum Hall effects

(QHE) as new members of the “quantum-order” [38] family.

In this chapter, we focus on the topological insulators. The criteria that guarantee the

presence of quantum orders [39, 40, 41] do not depend on the details of the materials, which

explains why the topological phases are often regarded as “symmetry-protected”. Most of the

experimentally-confirmed topological materials are “classical” semiconductors or alloys [42], with

weak electron correlations. It would appear that theories and first-principles calculations [43, 44, 45]

have so far provided a nearly-perfect description of the topological state and dominated the progress

of experiments. The work presented in this chapter suggests otherwise. Exploiting the Orbital-

Selective and Spin-Resolved ARPES (OS-SARPES), we show the topological surface state has a

spin-orbital-coupled wavefunction (or “spin-orbital texture”). Also, the topological wavefunction

determined from ARPES is asymmetric relative to the Dirac point (DP). Both observations are

confirmed in the first-principles calculations, by directly collecting the spin and orbital information

from the calculated surface state wavefunction. In a sense, our designed ARPES experiments plays

a vital role and guides the theoretical search for these previously “hidden” facts.

The “spin-orbital texture” description of the topological surface state is in sharp contrast
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to the prevailing “spin texture”. This seemingly minor deviation comes with observable physical

consequences, and may affect the manipulation of the electron spin in future quantum computation

schemes and spintronics.

We start this chapter with an introduction to the topological insulators (following in part

the elegant discussion in [5]), and analyze why the “spin texture” does not provide a complete

description of the topological surface state. Then we map the orbital wavefunction of the topological

surface state, as well as the spin chirality coupled to each orbital component. We show at the end

of the chapter how photon polarizations control the photoelectron spin polarization, as a direct

result of the spin-orbital texture.

3.1 Classifying Insulators By the Bulk Time-Reversal Symmetry

Topology starts as a mathematical concept, describing the invariance of geometrical shapes

under continuous deformations. By “continuous” we allow deformations that bend/stretch the

object under consideration, while tearing or gluing is not permitted. A famous joke is that a

topologist cannot distinguish between a coffee mug and a donut — the number of “holes” for both

of them being one. The condensed matter community has been utilizing the concept of topology

for decades, a famous example being the non-Abelian statistics in lower dimensional systems [46].

Recently, Kane, Moore et al. [39, 40, 41] applied the “topological” perspective to the classi-

fication of band insulators, and raised the following question: are all band insulators topologically

equivalent? In other words, could we transform one band insulator into anther by continuously

“stretching” the band structure?

At first look, the answer seems obvious: we could certainly deform one band insulator (or

semiconductor) into another, as long as the Fermi level still separates the empty and filled states

and the band gap remains finite. However, after examining the time-reversal symmetry of the

bulk bands, Kane, Moore et al. decided there are actually two subgroups of band insulators,
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characterized by a time-reversal invariant, called the Z2 number

(−1)γS =
∏
i

δ(Γi) (3.1)

where δ(Γi) = ±1 marks the even (δ(Γi) = 1)/odd (δ(Γi) = −1) time-reversal symmetry at an in-

dependent time-reversal invariant momentum Γi. There are 4 Γi’s in the two-dimensional Brillouin

zone: (0, 0), (0, π), (π, 0), (π, π); and there are 8 Γi’s in a three-dimensional Brillouin zone. With

Eqn. (3.1) we divide band insulators into two subgroups: (−1)γS = 1, the regular band insulators;

and (−1)γS = −1 the topological insulators (TIs). There is no continuous deformation between the

two subgroups, as the “stretch” operation should not change the time-reversal symmetry.

Now we show why these time-reversal invariant momenta are special. Kramers theorem

dictates for materials that are time-reversal symmetric, electronic states |~k, σ〉n and | − ~k,−σ〉n

(called a Kramers pair, with n being the band index) are degenerate in energy, i.e. En(~k, σ) =

En(−~k,−σ). Some high symmetry k-points Γi’s are invariant under the time-reversal operation.

For example, in a two-dimensional Brillouin zone, (0, π) and its time-reversal counterpart (0, -π) are

connected by a reciprocal lattice vector (0, 2π) and therefore equivalent. At these special k-points,

we have En(Γi, σ) = En(Γi,−σ). This means electronic states at Γi’s are required to be doubly

degenerate and filled with both spin-“up”1 and spin-“down” electrons. In the rest of the Brillouin

zone, the states |~k, σ〉n and |~k,−σ〉n could (but does not have to) have a finite energy splitting,

with each state singly-occupied. Microscopically, this energy splitting often comes from spin-orbit

coupling, which preserves the global time-reversal symmetry. A consequence of the energy splitting

is that the net spin current from the “down” spin and the “up” spin at the same momentum does

not cancel. Thus it is natural some of the distinguishing features of the newly discovered TIs relate

to the spin degree of freedom, as we will show later in this section.

The global band structure could be thought of as connecting singly filled bands (with polarized

spins) between Γi’s, as long as these singly filled bands meet at Γi (ensuring the 2-fold degeneracy).

1 As the time-reversal symmetry is not explicitly broken, the bulk insulator is non-magnetic and the spin up/down
axes may not be well-defined. Still, for a given k-point, we could call one of the state spin up, and the other spin
down, both having the same band index.
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The even/odd symmetry at each Γi depicts how the spin “up” and “down” states split at the same

momentum ~k once away from Γi. For a trivial band insulator with 2-fold degeneracy throughout

the Brillouin zone, every δ(Γi) = 1. Only band insulators with an even number of δ(Γi) = −1 is

topologically identical to the trivial band insulator.

One of the most remarkable properties in a TI is a spin-polarized surface state between the

topological insulator and a trivial band insulator (or the vacuum which is also topologically trivial).

For the topological invariant to change at the interface, the energy gap has to vanish, and low energy

states will appear where the energy gap passes through zero.

We show the surface band dispersions between two high symmetry k-points Γa = 0 and

Γb = π for both insulators in Figure 3.1 a and b. The dispersion in the other half of the Brillouin

zone (in between −π and 0) is a mirror reflection of the dispersions shown here. The surface bands

have to be two-fold degenerate at momenta 0 and π due to the time reversal symmetry. Away

from these k-points, the degeneracy could be removed, e.g. by a spin-orbit interaction. Note we

could continuously deform the surface bands in a trivial band insulator (but not in a TI) till they

were immersed in the bulk bands (the shaded region). Also the surface states in the trivial and

topological insulators have even and odd numbers of crossings with the Fermi energy, respectively.

The surface state in two- and three-dimensional TIs are plotted in Figure 3.1 c and d. We will

focus on the three-dimensional TIs for the rest of this chapter.

In both cases, there are singly-occupied (except at Γ), spin-polarized dispersions crossing

at the Γ point. No gap opens, as the electrons are protected from back scattering. In a three-

dimensional TI, the linear surface bands form a two-dimensional Dirac cone and were confirmed in

ARPES experiments [47, 48]. The topological insulators have since attracted widespread interest,

for their potential applications in quantum computation and spintronics [5, 49, 46]. Also, TIs may

become the workbench to realize some of the dream particles, e.g. the magnetic monople [50] and

Majorana fermions [51].
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less modes is ubiquitous in physics and has appeared in
many contexts. It was originally found by Jackiw and
Rebbi !1976" in their analysis of a 1D field theory. Simi-
lar ideas were used by Su, Schrieffer, and Heeger !1979"
to describe soliton states in polyacetalene.

A simple theory of the chiral edge states based on
Jackiw and Rebbi !1976" can be developed using the two
band Dirac model !4". Consider an interface where the
mass m at one of the Dirac points changes sign as a
function of y. We thus let m→m!y", where m!y"!0
gives the insulator for y!0 and m!y""0 gives the quan-
tum Hall state for y"0. Assume m!!0 is fixed. The
Schrödinger equation, obtained by replacing q by −i!! in
Eq. !4", has a simple and elegant exact solution,

#qx
!x,y" $ eiqxx exp#− $

0

y

dy!m!y!"dy!/vF%#1
1
% , !6"

with E!qx"=%vFqx. This band of states intersects the
Fermi energy EF with a positive group velocity dE /dqx
=%vF and defines a right moving chiral edge mode.

In the 1980s related ideas were applied to narrow gap
semiconductors, which can be modeled using a 3D mas-
sive Dirac Hamiltonian !Volkov and Pankratov, 1985;
Fradkin, Dagotto, and Boyanovsky, 1986". An interface
where the Dirac mass changes sign is associated with
gapless 2D Dirac fermion states. These share some simi-
larities with the surface states of a 3D topological insu-
lator, but as we shall see in Sec. IV.A there is a funda-
mental difference. In a separate development, Kaplan
!1992" showed that in lattice quantum chromodynamics
four-dimensional !4D" chiral fermions could be simu-
lated on a five-dimensional lattice by introducing a simi-
lar domain wall. This provided a method for circumvent-
ing the doubling theorem !Nielssen and Ninomiya,
1983", which prevented the simulation of chiral fermions
on a 4D lattice. Quantum Hall edge states and surface
states of a topological insulator evade similar doubling
theorems.

The chiral edge states in the quantum Hall effect can
be seen explicitly by solving the Haldane model in a
semi-infinite geometry with an edge at y=0. Figure 2!b"
shows the energy levels as a function of the momentum
kx along the edge. The solid regions show the bulk con-
duction and valence bands, which form continuum states
and show the energy gap near K and K!. A single band,
describing states bound to the edge, connects the va-
lence band to the conduction band with a positive group
velocity.

By changing the Hamiltonian near the surface the dis-
persion of the edge states can be modified. For instance,
E!qx" could develop a kink so that the edge states inter-
sect EF three times—twice with a positive group velocity
and once with a negative group velocity. The difference,
NR−NL, between the number of right and left moving
modes, however, cannot change and is determined by
the topological structure of the bulk states. This is sum-
marized by the bulk-boundary correspondence,

NR − NL = &n , !7"

where &n is the difference in the Chern number across
the interface.

C. Z2 topological insulator

Since the Hall conductivity is odd under T, the topo-
logically nontrivial states described in Sec. II.B.3 can
only occur when T symmetry is broken. However, the
spin-orbit interaction allows a different topological class
of insulating band structures when T symmetry is unbro-
ken !Kane and Mele, 2005a". The key to understanding
this new topological class is to examine the role of T
symmetry for spin 1/2 particles.

T symmetry is represented by an antiunitary operator
'=exp!i(Sy /%"K, where Sy is the spin operator and K is
complex conjugation. For spin 1/2 electrons, ' has the
property '2=−1. This leads to an important constraint,
known as Kramers’ theorem, which all eigenstates of a T
invariant Hamiltonian are at least twofold degenerate.
This follows because if a nondegenerate state &)' existed
then '&)'=c&)' for some constant c. This would mean
'2&)'= &c&2&)', which is not allowed because &c&2
"−1. In the absence of spin-orbit interactions, Kramers’
degeneracy is simply the degeneracy between up and
down spins. In the presence of spin-orbit interactions,
however, it has nontrivial consequences.

A T invariant Bloch Hamiltonian must satisfy

'H!k"'−1 = H!− k" . !8"

One can classify the equivalence classes of Hamiltonians
satisfying this constraint that can be smoothly deformed
without closing the energy gap. The TKNN invariant is
n=0, but there is an additional invariant with two pos-
sible values, *=0 or 1 !Kane and Mele, 2005b". The fact
that there are two topological classes can be understood
by appealing to the bulk-boundary correspondence.

In Fig. 3 we plot analogous to Fig. 2 the electronic
states associated with the edge of a T invariant 2D insu-
lator as a function of the crystal momentum along the
edge. Only half of the Brillouin zone 0"kx"( /a is
shown because T symmetry requires that the other half
−( /a"k"0 is a mirror image. As in Fig. 2, the shaded
regions depict the bulk conduction and valence bands

Γa Γb

Valence Band

Conduction Band

FE

k Γa Γb

Valence Band

Conduction Band

FE

kk

(a) (b)E E

FIG. 3. !Color online" Electronic dispersion between two
boundary Kramers degenerate points +a=0 and +b=( /a. In !a"
the number of surface states crossing the Fermi energy EF is
even, whereas in !b" it is odd. An odd number of crossings
leads to topologically protected metallic boundary states.
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removed. Because surface doping does not affect the carrier density in
the bulk (which thus remains insulating), the energy of theDirac point
is lifted above the bulk VBM: a new time independent electronic
ground state is realized that lies in the topological transport regime
with EF intersecting the Dirac node.

In order to investigate the thermal stability and strength of topo-
logical order of this nodal Dirac ground state (Fig. 4e), temperature
dependent ARPES scans were collected on Bi22dCadSe3 samples that
were first surface hole doped with NO2 at a temperature T5 10K.
Figure 4c and d illustrates that the charge neutral point-like Fermi
surface (Fig. 4a) is robust up to room temperature (T5 300 K) over
measurement times of days. A density of states that decreases linearly
to zero at the Dirac point energy at 300K (Fig. 4f) is further evidence
that the low energy properties of stoichiometric Bi2Se3.NO2 or
Bi1.9975Ca0.0025Se3.NO2 are dominated by a novel topological ground
state that features massless helical Dirac fermions with nearly 100%
spin polarization. This also confirms a non-trivial p Berry’s phase on
the surface due to the spin-momentum locking pattern that we
observed which is similar to the robust Berry’s phase previously
observed in the Bi-Sb system14 (Fig. 1).

Helical nodal Dirac fermions are forbidden from acquiring a mass
through bandgap formation because they are located around time-
reversal invariant (Kramers’) momenta kT5 !CC or !MM (Fig. 4h). This
makes them fundamentally different from chiral Dirac fermions such
as those found in graphene, which are located at !KK and not topo-
logically protected (Fig. 4g) and can develop an undesirable mass
while in contact with a substrate. The helical nodal Dirac fermion
on the surface of Bi2Se3 owes its existence to a non-zero topological

number n0 given by ({1)n0~P
kT

P
N

m~1
j2m(kT), where j2m(kT) is the

parity eigenvalue of the bulk wavefunction at the 3D Kramers’ point
kT andN is the number of occupied bulk bands4. Because Ca dopants
are present in only trace quantities in Bi1.9975Ca0.0025Se3.NO2, the
values of j2m(kT) do not deviate from those of Bi2Se3, as evidenced
by the persistence of a single gapless surface band in both naturally
grown Bi2Se3 and Bi1.9975Ca0.0025Se3. Both Ca21 and NO2

2 are non-
magnetic and so do not break time-reversal symmetry, therefore the
same topological quantum number (n05 1) applies in the Dirac

transport regime (Fig. 4) realized by our method shown here, which
is stable with both time and temperature. Our direct demonstration
of spin-polarized edge channels and room temperature operability of
chemically gated stoichiometric Bi2Se3 or Bi22dCadSe3.NO2, not
achieved in purely 2D topological systems such as Hg(Cd)Te
quantum wells29, enables exciting future room temperature experi-
ments on surface helical Dirac fermions that carry non-trivial p
Berry’s phase.

Our demonstration of topological order at room temperature
opens up possibilities of using quantum Hall-like phenomena and
spin-polarized protected edge channels for spintronic or computing
device applications without the traditional requirements of high
magnetic fields and delicate cryogenics. A direct detection of sur-
face-edge states would be possible in stoichiometric Bi2Se3 or
Bi22dCadSe3, using transport methods which will bear signatures of
weak anti-localization and thus exhibit anomalous magneto-
optic effects. Here we envisage a few sample experiments that could
be carried out by using surface doped or electrically gated
Bi22dCadSe3. By applying a weak time-reversal breaking perturbation
at the helical surface so as to lift the Kramers degeneracy at EF (a
method of gap opening on the surface is shown in Supplementary
Information), a half-integer quantized magneto-electric coupling
can be realized3–6, which could be measured by standard quantum
Hall probes. This would enable a variety of novel surface quantum
Hall physics to be realized. Another class of experiments would be
made possible by interfacing the helical topological surface with
magnetic and ordinary superconducting films. An interferometer
device could be built based on Bi22dCadSe3 to create and detect
long-sought Majorana fermions7,8. These particles, which have never
been observed, possess only half the degrees of freedom of a conven-
tional fermion and constitute the key building block for topological
quantum computing that can operate in a fault-tolerant mode. Yet
another class of experiments would bemade possible by sandwiching
a charge neutral topological insulator film made of Bi22dCadSe3
within a charged capacitor. In this way, a microchip that supports
a topological electron–hole condensate with fractional vortices9

could be fabricated, which offers the exciting opportunity to probe
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Figure 4 | Topological order of the nodal helical Dirac ground state at
300K. a, Typical ARPES intensity map of the Bi2(Se/Te)3 class collected at
EF spanning several Brillouin zones. b, Energy distribution curves of the
valence bands of Bi22dCadSe3 taken at T5 10K, 200K and 300K. The peaks
around 24 eV and 27.5 eV come from NO2 adsorption (Supplementary
Information). The intensity of theseNO2 core level peaks do not change over
this temperature range, indicating no measurable NO2 desorption during
the heating process. c, d, ARPES intensity map of the surface state band
dispersion of Bi22dCadSe3 (111) after a 2 L dosage of NO2 is applied at
T5 10K, which is taken at 300K (c) and 10K (d). e, Schematic of the surface

and bulk electronic structure of Bi22dCadSe3.NO2, tuned to the topological
transport regime. f, Angle-integrated intensity near !CC (red) shows a linear
trend. Inset, the expected density of states (DOS) of a helical Dirac cone,
which is 1/2 that of a graphene Dirac cone due to its single spin degeneracy.
g, Schematic of the chiral Dirac fermion ground state of graphene, which
exhibits spin-degenerate Dirac cones that intersect away from the Kramers’
points. h, Schematic of the helical Dirac fermion ground state of
Bi22dCadSe3.NO2, which exhibits a spin-polarized Dirac cone that intersects
at a Kramers’ point and guarantees a n05 1 topological order quantum
number for the nodal Dirac ground state.
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The above discussion was predicated on the conserva-
tion of spin Sz. This is not a fundamental symmetry,
though, and spin nonconserving processes—present in
any real system—invalidate the meaning of !xy

s . This
brings into question theories that relied on spin conser-
vation to predict an integer quantized !xy

s !Volovik and
Yakovenko, 1989; Bernevig and Zhang, 2006; Qi, Wu,
and Zhang, 2006", as well as the influential theory of the
!nonquantized" spin Hall insulator !Murakami, Nagaosa,
and Zhang, 2004". Kane and Mele !2005a" showed that
due to T symmetry the edge states in the quantum spin
Hall insulator are robust even when spin conservation is
violated because their crossing at k=0 is protected by
the Kramers degeneracy discussed in Sec. II.C. This es-
tablished the quantum spin Hall insulator as a topologi-
cal phase.

The quantum spin Hall edge states have the important
“spin filtered” property that the up spins propagate in
one direction, while the down spins propagate in the
other. Such edge states were later termed “helical” !Wu,
Bernevig, and Zhang, 2006", in analogy with the corre-
lation between spin and momentum of a particle known
as helicity. They form a unique 1D conductor that is
essentially half of an ordinary 1D conductor. Ordinary
conductors, which have up and down spins propagating
in both directions, are fragile because the electronic
states are susceptible to Anderson localization in the
presence of weak disorder !Anderson, 1958; Lee and
Ramakrishnan, 1985". By contrast, the quantum spin
Hall edge states cannot be localized even for strong dis-
order. To see this, imagine an edge that is disordered in
a finite region and perfectly clean outside that region.
The exact eigenstates can be determined by solving the
scattering problem relating incoming waves to those re-
flected from and transmitted through the disordered re-
gion. Kane and Mele !2005a" showed that the reflection
amplitude is odd under T—roughly because it involves
flipping the spin. It follows that unless T symmetry is
broken, an incident electron is transmitted perfectly
across the disordered region. Thus, eigenstates at any
energy are extended, and at temperature T=0 the edge
state transport is ballistic. For T"0 inelastic back-
scattering processes are allowed, which will, in general,
lead to a finite conductivity.

The edge states are similarly protected from the ef-
fects of weak electron interactions, though for strong
interactions the Luttinger liquid effects lead to a mag-
netic instability !Wu, Bernevig, and Zhang, 2006; Xu and
Moore, 2006". This strong interacting phase is interesting
because it will exhibit charge e /2 quasiparticles similar
to solitons in the model of Su, Schrieffer, and Heeger
!1979". For sufficiently strong interactions similar frac-
tionalization could be observed by measuring shot noise
in the presence of magnetic impurities !Maciejko et al.,
2009" or at a quantum point contact !Teo and Kane,
2009".

B. HgTe ÕCdTe quantum well structures

Graphene is made out of carbon—a light element
with a weak spin-orbit interaction. Though there is dis-
agreement on its absolute magnitude !Huertas-
Hernando, Guinea, and Brataas, 2006; Min et al., 2006;
Boettger and Trickey, 2007; Yao et al., 2007; Gmitra et
al., 2009", the energy gap in graphene is likely to be
small. Clearly, a better place to look for this physics
would be in materials with strong spin-orbit interactions,
made from heavy elements near the bottom of the Peri-
odic Table. To this end, Bernevig, Hughes, and Zhang
!2006" !BHZ" had the idea to consider quantum well
structures of HgCdTe. This paved the way to the experi-
mental discovery of the quantum spin Hall insulator
phase.

Hg1−xCdxTe is a family of semiconductors with strong
spin-orbit interactions !Dornhaus and Nimtz, 1983";
CdTe has a band structure similar to other semiconduc-
tors. The conduction-band-edge states have an s-like
symmetry, while the valence-band-edge states have a
p-like symmetry. In HgTe, the p levels rise above the s
levels, leading to an inverted band structure. BHZ con-
sidered a quantum well structure where HgTe is sand-
wiched between layers of CdTe. When the thickness of
the HgTe layer is d#dc=6.3 nm the 2D electronic states
bound to the quantum well have the normal band order.
For d"dc, however, the 2D bands invert. BHZ showed
that the inversion of the bands as a function of increas-
ing d signals a quantum phase transition between the
trivial insulator and the quantum spin Hall insulator.
This can be understood simply in the approximation that
the system has inversion symmetry. In this case, since the
s and p states have opposite parity the bands will cross
each other at dc without an avoided crossing. Thus, the
energy gap at d=dc vanishes. From Eq. !12", the change
in the parity of the valence-band-edge state signals a
phase transition in which the Z2 invariant $ changes.

Within a year of the theoretical proposal the
Würzburg group, led by Laurens Molenkamp, made the
devices and performed transport experiments that
showed the first signature of the quantum spin Hall in-
sulator. König et al. !2007" measured the electrical con-
ductance due to the edge states. The low-temperature
ballistic edge state transport can be understood within a
simple Landauer-Büttiker !Büttiker, 1988" framework in

E
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Conduction Band

Valence Band

Quantum spin
Hall insulator ν=1

Conventional
Insulator

ν=0

(a) (b)

k0/a−π /a−π

FIG. 5. !Color online" Edge states in the quantum spin Hall
insulator !QSHI". !a" The interface between a QSHI and an
ordinary insulator. !b" The edge state dispersion in the
graphene model in which up and down spins propagate in op-
posite directions.

3053M. Z. Hasan and C. L. Kane: Colloquium: Topological insulators

Rev. Mod. Phys., Vol. 82, No. 4, October–December 2010

Figure 3.1: Bulk insulator coated by a surface state with net spin current and linear dispersion. a-b.
(reproduced from [5]) Band dispersion between two boundary Kramers degenerate points Γa = 0
and Γb = π. The shaded areas are the bulk conduction and valence bands, while the lines are the
surface bands. The surface states in the regular (panel a) and topological (panel b) insulators have
even and odd numbers of intersections with the Fermi energy, respectively. c. (reproduced from
[5]) The two-dimensional TI (also called quantum spin Hall insulator) has a net spin current at the
TI-vacuum interface. d. (reproduced from [47]) The prevailing cartoon of the topological surface
state at the Γ point. For the three-dimensional TI, the surface state has a massless linear dispersion
(called a Dirac cone) at Γ. The electron at each k-point on the Dirac cone is non-degenerate (except
at Γ) with chiral spin locked to the momentum. The spin is left-handed above the Dirac point and
right-handed below the Dirac Point.
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3.2 Beyond the “Standard” Spin Texture of the Dirac Surface State

Mapping the topological wavefunction is an indispensable yet missing piece in the grand

“jigsaw puzzle” of TIs. On the one hand, the existence of the topological surface state is determined

by tracking the time reversal symmetry of the bulk bands [39, 40, 41], which by itself does not

provide a description of the surface state. On the other hand, future applications of TIs in the

quantum computation will require direct manipulation of the topological wavefunction [5, 49, 46].

Also, from a historical perspective, the fractional Quantum Hall Effect, as the first case of quantum

order, was only understood after the discovery of the Laughlin wavefunction [52].

The topological surface state features a linear Dirac-cone-like dispersion near the center of

the Brillouin zone, occupied with spin-polarized electrons. A widely-accepted (but flawed) picture

of the Dirac surface state is plotted in Figure 3.1 d, with the following features:

• In the vicinity of the DP, the spin lies in the kx-O-ky plane;

• The spin chirality is left-handed above the DP and right-handed below;

• In the ideal case, the Dirac electrons are 100% polarized.

These features could be justified by considering the time-reversal and real-space symmetries of the

surface state itself, without information from the bulk bands. The time-reversal symmetry requires

for a Kramer’s pair at ±~k, the spin orientations (if well-defined on a Bloch sphere) are opposite.

Moreover, very near the DP, the Dirac cone is almost isotropic, and thus has infinitesimal rotation

symmetry. This requires the spin on the Dirac cone to lie in the kx-O-ky plane. In real materials

[45], there may still be a non-zero out-of-plane spin component, which appears further away from

the DP. The sz component has “nodes” that follow the crystalline symmetry, and often accompanies

deviation of the constant energy surface from a perfect circle [53].

We could use the minimal Hamiltonian (in the form of the Rashba interaction) below [54] to

describe the Dirac cone dispersion in a three-dimensional TI with a two-dimensional surface state

H ∝ σxky − σykx (3.2)
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where σx,y are the Pauli matrices. Solving Eqn.(3.2) as a 2×2 matrix immediately leads to the linear

dispersion and the chiral spin texture in Figure 3.1 d. The handedness of the spin texture comes

from the positive prefactor [54]. Note in the above analysis, we only consider the momentum-spin

locking of the Dirac electrons, and there is no information about the orbital degree of freedom.

Choosing ẑ normal to the layered surface of the material, we have

H ∝ ẑ · (~σ × ~k) ∝ −~σ · ~L (3.3)

with ~L = ẑ × ~~k being the orbital-angular momentum of electrons. Park et al. suggested [55, 56]

the orbital-angular momentum as defined above is locked to the electron momentum in the opposite

direction to the spin.

It may appear the minimal model presented a “perfect” cartoon of the Dirac surface state.

However, when we solve for the Dirac wavefunction, we need to identify the basis set of the 2×2

matrix. For this, we consider the real-world prototype topological insulators Bi2X3 (X=Se, Te).

The crystal structure and the calculated band dispersion of Bi2Se3 are displayed in Figure 3.2. For

Bi2X3 (X=Se, Te), the bulk conduction bands and valence bands (that invert due to the spin-orbit

coupling) come from the pz orbitals of Bi and Se/Te atoms [43]. It is natural to assume the surface

state that “connects” the bulk pz bands would also have a pz character, especially as the bulk

bands originating from the in-plane px and py orbitals are well-separated from the pz orbitals by

the strong crystal field effects. The assumption that the surface state has only pz-character was

adopted in [43], among other references, the validity of which was never discussed.

We now return to the effective Hamiltonian in Eqn.(3.3). The orbital angular momentum ~L

has been proposed as being closely tied to the local spin-orbit coupling of the constituent atoms2

[55, 56]. As we pointed out in Section 3.1, the spin-orbit coupling plays a key role in the generation of

non-spin-degenerate surface states. In fact, the spin-orbit coupling accounts for the band inversion

in the known topological insulators [5, 42]. Now consider the role of the local/atomic version of

2 Ref. [55, 56] made some interesting claims how ~L defined for the two-dimensional Dirac electrons are connected
with the local spin-orbit coupling. How these two versions of the orbital angular momentum are directly related
awaits further theoretical study.
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Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3
with a single Dirac cone on the surface
Haijun Zhang1, Chao-Xing Liu2, Xiao-Liang Qi3, Xi Dai1, Zhong Fang1 and Shou-Cheng Zhang3*
Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such
systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to
scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of
topologically protected states in two-dimensional and three-dimensional band insulators with large spin–orbit coupling. So
far, the only known three-dimensional topological insulator is BixSb1−x, which is an alloy with complex surface states. Here, we
present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3,
Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not.
These topological insulators have robust and simple surface states consisting of a single Dirac cone at the � point. In addition,
we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room
temperature. We further present a simple and unified continuum model that captures the salient topological features of this
class of materials.

Recently, the subject of time-reversal-invariant topological
insulators has attracted great attention in condensed-matter
physics1–12. Topological insulators in two or three dimensions

have insulating energy gaps in the bulk, and gapless edge or
surface states on the sample boundary that are protected by
time-reversal symmetry. The surface states of a three-dimensional
(3D) topological insulator consist of an odd number of massless
Dirac cones, with a single Dirac cone being the simplest case.
The existence of an odd number of massless Dirac cones on the
surface is ensured by the Z2 topological invariant7–9 of the bulk.
Furthermore, owing to the Kramers theorem, no time-reversal-
invariant perturbation can open up an insulating gap at the Dirac
point on the surface. However, a topological insulator can become
fully insulating both in the bulk and on the surface if a time-
reversal-breaking perturbation is introduced on the surface. In
this case, the electromagnetic response of three-dimensional (3D)
topological insulators is described by the topological θ term of
the form Sθ = (θ/2π)(α/2π)

�
d3x dt E ·B, where E and B are

the conventional electromagnetic fields and α is the fine-structure
constant10. θ = 0 describes a conventional insulator, whereas θ =π
describes topological insulators. Such a physically measurable and
topologically non-trivial response originates from the odd number
of Dirac fermions on the surface of a topological insulator.

Soon after the theoretical prediction5, the 2D topological
insulator exhibiting the quantum spin Hall effect was experimen-
tally observed in HgTe quantum wells6. The electronic states of the
2D HgTe quantum wells are well described by a 2+1-dimensional
Dirac equation where the mass term is continuously tunable by
the thickness of the quantum well. Beyond a critical thickness,
the Dirac mass term of the 2D quantum well changes sign from
being positive to negative, and a pair of gapless helical edge states
appears inside the bulk energy gap. This microscopic mechanism
for obtaining topological insulators by inverting the bulk Dirac
gap spectrum can also be generalized to other 2D and 3D sys-
tems. The guiding principle is to search for insulators where the
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Figure 1 | Crystal structure. a, Crystal structure of Bi2Se3 with three
primitive lattice vectors denoted as t1,2,3. A quintuple layer with

Se1–Bi1–Se2–Bi1
�
–Se1

�
is indicated by the red square. b, Top view along

the z-direction. The triangle lattice in one quintuple layer has three different
positions, denoted as A, B and C. c, Side view of the quintuple layer

structure. Along the z-direction, the stacking order of Se and Bi atomic

layers is ···–C(Se1�)–A(Se1)–B(Bi1)–C(Se2)–A(Bi1�)–B(Se1�)–C(Se1)–···.
The Se1 (Bi1) layer can be related to the Se1

�
(Bi1

�
) layer by an inversion

operation in which the Se2 atoms have the role of inversion centres.

conduction and the valence bands have the opposite parity, and
a ‘band inversion’ occurs when the strength of some parameter,
say the spin–orbit coupling (SOC), is tuned. For systems with
inversion symmetry, a method based on the parity eigenvalues of
band states at time-reversal-invariant points can be applied13. On
the basis of this analysis, the BixSb1−x alloy has been predicted
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a	   b	  

Figure 3.2: The crystal structure (panel a) and calculated band dispersion (panel b) of Bi2Se3. In
panel a (reproduced from [43]), the three primitive lattice vectors are denoted as t1,2,3. A quintuple
layer is indicated by the red square. b. The band structure comes from a 6 quintuple layer slab
of Bi2Se3. All energies are relative to the DP. The Dirac surface band is represented with the
solid green line. The red and blue solid lines are the bulk conduction bands and valence bands,
respectively.
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Figure 3.3: a. Cartoon drawing of the coupled spin-orbital texture, with the z component of the
total angular momentum jz conserved on both sides of the Dirac point. Panels b and c are the
leading terms in the Dirac wavefunction. The pz orbital coupled to the left-handed spin above the
DP and right handed spin below DP. Above the DP, the majority in-plane orbital component is
tangential to the constant energy surface and couples to a right-handed spin texture. Below the DP,
the majority in-plane orbital component is radial to the constant energy surface and also couples
to a right-handed spin texture.
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the orbital angular momentum operator ~L. ~L explicitly mixes the in-plane px,y states with the pz

orbitals, e.g. Lx|pz〉 → |py〉. Thus the |pz, ↑ / ↓〉 states used in [43] do not constitute a complete

basis set of the Dirac wavefunction. Instead, the complete minimal Hamiltonian is a 6×6 matrix

that includes two spin states from each of the three orthogonal p orbitals. To investigate which

features of the Dirac state the “effective model” captures we now need to check both the spin and

orbital properties of the electronic wavefunction. Indeed the once-missing in-plane states exhibit

novel and unexpected physics.

The need for the orbital degree of freedom in the Dirac wavefunction could also be illustrated

by considering the quantum invariant of the system. Since strong spin-orbit coupling is inherent in

all the known TIs, spin is not a good quantum number of the Dirac state. Instead, the total angular

momentum jz, which includes both the spin and orbital degrees of freedom, is conserved, due to

the infinitesimal rotation symmtry near the DP. The question at hand is how spin and orbitals

couple and contribute to jz.

As we will show in Section 3.3 and 3.4, the Dirac wavefunction has a spin-orbital coupled

wavefunction — a superposition of orbital wavefunctions coupled with the corresponding spin tex-

tures (Figure 3.3). The in-plane orbital wavefunction is asymmetric relative to the DP, switching

gradually from being predominantly tangential to the k-space constant energy surfaces above the

DP, to being predominantly radial to them below the DP. The in-plane p orbital tangential to

the constant energy surface couples to the right-handed spin texture, while the pz orbital and the

in-plane radial p orbital have the standard left-handed spin texture. How the spin and orbitals

couple is a direct manifestation of conserved total angular momentum jz.

Note within the minimal model in Eqn.(3.3) (even considering the spin-orbital coupled wave-

function), the orbital wavefunction in the vicinity of the DP is expected to be symmetric. It could

be shown (see the Supplementary Online Materials in Ref. [57]) that if the wavefunction |k, s〉 is

an eigenfunction of the model Hamiltonian, with an eigenvalue of E > 0, then |k, s′〉 = σz|k, s〉 is

also an eigenfunction of the model Hamiltonian, with an eigenvalue of −E. The discovery of an

asymmetric orbital wavefunction is therefore highly unusual.
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3.3 Mapping the Orbital Wavefunction of the Dirac Surface States

Angle-Resolved Photoemission Spectroscopy (ARPES) provides a unique opportunity to di-

rectly measure k-state orbital structures with different symmetries, via the matrix element effect.

While a detailed introduction is presented in Chapter 2, we briefly review some of the key points

here. The measured ARPES intensity I ∝ |〈ψf | ~A · ~p|ψi〉|2 where ~A is the electromagnetic gauge

and ~p is the electron momentum. |ψi〉 and |ψf 〉 represent the electron wavefunction in the solid

(hereafter “the initial state”) and the wavefunction of the photo-excited electron (hereafter “the

final state”), respectively. By properly arranging the experimental geometry, it is often possible to

adjust the parity of |ψf 〉 and ~A · ~p such that the ARPES intensity vanishes in a certain direction,

thus determining the parity (symmetry) of the initial state wavefunction |ψi〉.

We carefully design a set of orbital-selective ARPES experiments on Bi2Se3 to determine the

orbital symmetry of the Dirac surface state. Data has been taken both from Bi2Se3 thin films and

bulk samples and have shown consistent results. The Bi2Se3 thin films were prepared using a two-

step growth method, as describe in Ref. [58], and were protected with a Se overlayer after growth,

and decapped in the preparation chamber, with a base pressure better than 1×10−9 Torr during

decapping and then transferred into the analysis chamber while maintaining ultra-high vacuum

conditions throughout. The bulk samples were cleaved in situ at 50K with a base pressure better

than 5×10−11 Torr.

The ARPES experiments were performed at Beamline 10.0.1 (HERS) of the Advanced Light

Source, LBL. We show a photo of the beamline in Figure 3.4. The incident photons come at a

glancing angle ∼7◦ to the sample plane and can have either p-polarization (photon electric field

vector drawn with yellow arrow in Figure 3.5 a, in the orange-colored plane of incidence) or s-

polarization (E field perpendicular to the plane of incidence). These possibilities are illustrated in

Figure 3.5 a. In both configurations, only the electron analyzer is rotated to collect data, so that the

relative angles between the sample coordinate axes and the photon beam coordinates (polarization

and Poynting or incident vector) remain unchanged.
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hν	


Electron 
Analyzer 
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Figure 3.4: The ARPES endstation at Beamline 10.0.1 (HERS) of the Advanced Light Source
(ALS), Lawrence Berkeley National Laboratory. Photo courtesy of Sung-Kwan Mo at ALS. The
X-ray synchrotron beams comes in along the red arrow, parallel to the experimental ground. The
electron analyzer could be rotated around the axis of the incoming beam. The polarization of the
beam is fixed to be linear and horizontal (parallel to the ground). For sample facing up (towards
the analyer in the geometry in the photo), the sample sees the s polarization. To get p polarization,
we rotate sample around the manipulator axis by 90◦. This is equivalent to rotating the photon
polarization by 90◦ while keeping the sample intact. In both the s and p polarizations, the electron
analyzer is rotated to collect ARPES data.
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Figure 3.5: ARPES energy-momentum intensity plots at the Γ point for s and p photon polariza-
tions. Panel a shows the experimental configuration, where the sample frame is shown in red and
the lab frame (which contains the electron detector) in blue. The sample axes can be rotated by
the angle ϕ relative to the lab frame, though the normal of the sample and lab frame always stay
aligned. The incident photon beam makes an angle of ∼7◦ relative to the lab (and sample) planes
and has varying polarizations ranging from full s (E field parallel to the sample plane) to full p
(E field in the orange kx-kz plane). b and c are ARPES cuts along the Γ-K direction of Bi2Se3

taken with s and p polarization, respectively, with the sample Γ-K axis lying in the kx lab frame
direction.
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As discussed in Section 3.2, to a very good approximation we only need to consider the p-like

wavefunctions for the Dirac states and bulk bands nearest to the DP. The E field of p-polarization

points out-of-plane. Therefore it leads to a strong ARPES cross-section for the out-of-plane pz

orbitals and a weak cross section for the in-plane orbitals. In contrast, s-polarization data has a

strong cross-section for the in-plane orbitals and a weak cross-section for the out-of-plane orbitals.

This is observed in the energy-momentum intensity plot along the Γ-K cut of Bi2Se3, taken with s

and p-polarization respectively (Figure 3.5 b and c). The ARPES intensity of the Dirac cone using

p-polarization is ∼2 times stronger than using s-polarization, confirming the Dirac states have a

large pz component and non-negligible contribution from in-plane states. In addition to the surface

states that make up the Dirac cone, the bulk valence band can also be observed in the interior of

the Dirac cone below the DP using p-polarization. This indicates that the bulk valence band has

a major pz component, consistent with Ref. [43, 54].

Figure 3.6 a shows constant energy surfaces (CESs) of Bi2Se3 for different energies relative

to the DP (left to right) and for both polarizations (s and p as marked on the right of the panel).

The bottom row shows data from p-polarization, mainly made up of the pz states. These are seen

to be almost uniform around the constant energy surfaces for all energy cuts. In contrast, the data

taken with s-polarization has drastic intensity changes around the constant energy surfaces. In

particular the data above the DP (left 2 columns) both show vanishing spectral weight parallel to

the electric field, while the data below the DP (right 2 columns) shows suppressed spectral weight

normal to the electric field. To determine whether this weight distribution is related to a specific

crystalline orientation (sample frame) or relative to the photon field (lab frame), we rotated the

sample crystalline axes in multiple 5◦ steps of the angle ϕ (defined as in Figure 3.5 a) about the

sample normal while keeping all other experimental parameters the same. These data, shown in

Figure 3.6 b from left to right columns are almost identical with sample rotation, illustrating that

this pattern is not due to any particular arrangement relative to the 6-fold crystalline axes but

is more general. Moreover, the intensity distribution on the CES does not reply on any special

property of the final state wavefunction |ψf 〉. This is confirmed by varying the incident photon
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p-‐polariza)on	  

s-‐polariza)on	  

Γ-‐kA	  mirror	  plane	   Γ-‐kB	  mirror	  plane	  <Ψf|A•p|Ψi>	  

<e|e|e>	  à	  |Ψi>	  =	  px*/pz	  

<e|o|o>	  à	  |Ψi>	  =	  py	  

<e|e|e>	  à	  |Ψi>	  =	  py*/pz	  

<e|e|e>	  à	  |Ψi>	  =	  px*/pz	  

Table 3.1: Initial state orbital wavefunctions with non-vanishing ARPES spectral weight. The table
is shown across two key mirror planes (see Figure 3.5 for relevant mirror planes). For ∗ marked
states, the spectral weight is much smaller with the momentum / photon polarization combination
than the one without the ∗; but they are not symmetry forbidden.

energy so that different final states are chosen. The constant energy surface intensity plots 200meV

above the Dirac point for different photon energies from Bi2Se3 are shown in Figure 3.7.

We now use a symmetry analysis across various mirror planes to disentangle the symmetries

of the various in-plane states that contribute, requiring us to only consider s-polarized photons. A

helpful mirror plane to consider is the one defined by the sample surface normal and the photon

Poynting vector (orange plane in Figure 3.5 a, in the kx direction in the lab frame, and shown

as the orange lines in Figure 3.6 c). Relative to this kx-kz lab-based mirror plane the s-polarized

photon field E has an odd parity, while it has an even parity relative to the green ky-kz mirror

plane. The free-electron final state |ψf 〉 is even with respect to both these mirror planes. As labeled

in Figure 3.6 c, this constrains the initial state wavefunctions |ψi〉 to have a certain parity with

respect to these mirror planes, so that the ARPES intensity will vanish in the correct symmetry

locations if the overall parity of the matrix element is odd. Above the DP, the in-plane states along

the green Γ-ky line, and thus the initial state |ψi〉, must have odd symmetry with respect to this

mirror plane (3.6 c, top) for a zero matrix element. Similarly, for the in-plane states below the DP,

there is vanishing weight along the orange Γ-kx line and so the initial state is even with respect to

this mirror plane (3.6 c, bottom). Along kx above DP and along ky below the DP, there is strong

spectral weight, the matrix elements are overall even, and the initial state parities can similarly be

determined. Note neither of these mirror planes are necessarily along any of the high symmetry
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Figure 3.6: Deducing the orbital texture from constant energy surface intensity plots. All the data
were taken from Bi2Se3. a The experimental constant energy surface intensity plot at different
energies relative to the DP. The Γ-K direction of Bi2Se3 is parallel to the lab kx. b. s-polarization
experimental constant energy surface intensity plots as a function of in-plane sample orientation
and energies relative to the DP, in 5◦ steps, from left to right columns. The axes shown are the
crystal axes that are attached to the lattice orientation. The lab frame direction is unchanged as
the sample is rotated, and all energy labels are relative to the Dirac point. c. Symmetry analysis
of p orbitals across the orange kx-kz and green ky-kz lab-frame mirror planes (see also Figure 3.5

a). The free electron final state |ψf 〉 is even in all cases, while the s-polarized photon field ~A · ~p is
odd with respect to the orange kx-kz mirror plane and even with respect to the green ky-kz mirror
plane. As illustrated, this gives strong or weak intensity for initial states |ψi〉 with symmetry that
have the total matrix element even or odd, respectively. Since this result is independent of sample
rotation (panel b), it implies an in-plane tangential orbital texture above the DP and a radial one
below (see Figure 3.3).
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crystalline directions of the sample, as is seen from the data of 3.6 b. A summary of the symmetry

analysis is listed in Table 3.1.

We could deduce from Figure 3.6 c the in-plane p orbitals |ψi〉 that are consistent with

the symmetry constraints discussed above, that is, odd with respect to the orange and green

mirror planes above the DP and even with respect to these planes below the DP. These orbital

wavefunctions are tangential to the constant energy surface above the DP and then switch to being

radial to the constant energy surface below the DP. This is shown more clearly in Figure 3.3 as

the orange orbitals, while showing the out-of-plane pz components of the wavefunction in green.

It is quite evident from symmetry analysis that linear polarization cleanly disentangles ARPES

intensity contributions from different p orbitals, while the circular polarization used in previous

experiments [55, 29, 59, 60] focused on the spin chirality or the “handedness” of the wavefunctions.

The measured orbital texture is captured in our first-principles calculations based on the

local density approximation. The calculated Dirac surface bands, the bulk conduction band, and

the bulk valence band nearest to the DP of Bi2Se3 and Bi2Te3 are drawn in Figure 3.8 a and d.

The orbital character of electronic states is obtained by projecting the calculated plane-wave based

wavefunctions |ψnk〉 (n being the band index and k being the crystal momentum) onto spherical

harmonics |JRi
l Y Ri

lm 〉 including p-orbitals (l = 1) centered at the position of the ions Ri.

|ψnk〉 =

Nat∑
i

∑
lm

αRi
m,nk|J

Ri
l Y Ri

lm 〉 (3.4)

where Nat is the total number of atoms. Also we choose an s-like (l = 0) final state to represent

the electron state photon-excited to vacuum, so that it is always even with respect to the proposed

mirror planes. The projection strategy is so chosen to bring about the symmetry information in

the atomic orbitals, without contributions from any special mirror plane. We find that the Dirac

cone states especially those away from the DP are a hybridization of topological surface states and

bulk states as evidenced by their wavefunction distribution. This feature of the topological states

was found in 2D HgTe/CdTe topological insulator [61]. In order to distinguish the pure topological

surface states from bulk band states, we projected the states layer-by-layer and summed up the
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Figure 3.8: Orbital Polarization Ratio λ switches sign at the DP. a. and d. First-principles
calculation of Bi2Se3 and Bi2Te3, only showing the Dirac bands and the bulk bands closest to
the DP. b. Calculated py orbital intensity at different energies relative to the DP of Bi2Se3, each
summed over a window of 20 meV relative to the central energy shown on the plot. c. For each
energy relative to the DP of Bi2Se3, the calculated projected py orbital intensity as a function of
the sample in-plane azimuth angle (for the definition of the azimuth angle, see panel b, with 0◦ as
marked). The dashed lines are the selected cos2θ/sin2θ fits to the calculated py intensities shown in
solid lines. e. Calculated orbital polarization ratio λ of Bi2Se3 as a function of the energy relative
to the DP. f. Calculated λ of Bi2Se3 and Bi2Te3 as a function of momentum k. Note λ switches
sign exactly at the DP.
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with the experimental observations of Figure 3.6 b.
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contribution of each atomic orbital with an exponential weighting away from the surface, and we

confirmed the choice of decay distance does not affect the calculation qualitatively. The results

presented here have a decay distance of 0.5nm, which approximates the ARPES probe depth.

The experimental ARPES configuration performed with s polarized incident photons is repli-

cated in the calculations by projecting the intensity of the py orbital. In Figure 3.8 b we show the

calculated py orbital intensity of the Dirac state for Bi2Se3 on constant energy surfaces above and

below the DP, each summing over a 20 meV energy window. The calculation well reproduces the

experimental measurement of the orbital texture of the Dirac state. For example, above the DP,

the calculated py component maximizes along the lab axis kx and minimizes along ky (where the

px orbital dominates the in-plane states). Similar to the experiment, we also found that rotating

the sample azimuth angle relative to the lab frame by angle ϕ has minimal effect on the calculated

py intensity distribution, especially near the DP. In Figure 3.9, Bi2Se3 is rotated by 15◦ and the

intensity distribution remains unchanged.

To further trace the origin of the orbital texture switch of the Dirac state, we would like

to zoom in close to the Dirac point as this is the region where the Dirac physics is unaffected by

lattice effects or hybridization to the bulk bands. Due to the limit of experimental resolution we

explore this near-DP region using the initial-state p orbital densities from ab initio calculations.

The calculated py orbital intensity for each constant energy surface is displayed as a function of

sample azimuth angle (as defined in Figure 3.8 b) in 3.8 c. Most notable is the switch of the

intensity distribution above and below the DP, which is a signature of the orbital texture switch.

Also as the energy gets closer to the DP, the intensity variation fits better to a cos2θ or sin2θ

distribution. At 300 meV above the DP, the intensity curve shows a six-fold modulation on top

of the cos2θ function. This additional modulation might come from the hybridization to the bulk

bands, or from the non-isotropic term of spin-orbit coupling [53]. To identify whether the switch is

sudden or gradual, we define the Orbital Polarization Ratio (OPR) λ as a function of either energy
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(ω) or momentum (k=|~k|) relative to the DP

λ(ω) =
I0(ω)− I90(ω)

I0(ω) + I90(ω)
(3.5)

or

λ(k) =
I0(k)− I90(k)

I0(k) + I90(k)
(3.6)

where Iθ is the calculated py orbital intensity around the CES, with the 0◦ angle in θ defined in

Figure 3.8 b (note that this angle is relative to the lab frame, while the angle ϕ is between the

sample and lab frame – see Figures 3.5 and 3.6). λ > (<)0 indicates there is a larger proportion of

the tangential (radial) in-plane orbital. Figure 3.8 e and f show that this switch occurs exactly at

the DP for both Bi2Se3 and Bi2Te3.

Analysis of the λ-dependence on electron momentum and energy yields the wavefunction of

the topological state in the vicinity of the DP

|ψ(~k, 0)〉+ =
√

1− α|pz〉 ⊗ |LHS〉+

√
α

2

[
(1 + βk)|pt〉 ⊗ |st〉+ (1− βk)|pr〉 ⊗ |sr〉

]
(3.7)

and

|ψ(~k, 0)〉− =
√

1− α|pz〉 ⊗ |RHS〉+

√
α

2

[
(1− βk)|pt〉 ⊗ |st〉+ (1 + βk)|pr〉 ⊗ |sr〉

]
(3.8)

where ± denotes the wavefunction above / below the DP, α and β are (complex) coefficients and

|pz,t,r〉 stands for the pz, tangential and radial in-plane p orbitals, respectively. |LHS/RHS〉 are

left-handed and right-handed spin textures consistent with all previous spin resolved measurements

and calculations (see e.g. [62, 44]) and ⊗ is the cross product between the orbital and spin degrees

of freedom. There may still be additional phases among the |pz,t,r〉 terms and we absorb these

phases into the definition of |pz,t,r〉 for the moment. The proposed wavefunction has the following

characteristics:

First, the coefficient α ∼1/2 is the fraction of the p-orbitals with in-plane character, as

determined from first-principles calculation. Both experiments and calculation show the in-plane

orbital components account for a significant part of the Dirac wavefunction.
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Second, the terms with βk reflect how fast the in-plane orbitals become predominantly tan-

gential |pt〉 or radial |pr〉 away from the DP. At the DP (k = 0) the terms with βk disappear and

the Dirac wavefunction has an equal proportion of radial and tangential in-plane orbitals. These

statements come from the fact that λ linearly approaches zero as the energy (Figure 3.8 e) or mo-

mentum (Figure 3.8 f) approaches the DP, and to within the statistical error, changes sign exactly

at the DP.

Third, the orbital content of the wavefunction can be determined by using only two param-

eters α and β. While we might have expected different β coefficients above and below the DP, the

fact that the slopes of λ vs. k appear equal above and below the DP (∼13Å for Bi2Se3 and 11Å for

Bi2Te3, deduced from the slope of the curves in Figure 3.8 f) suggests that we need only a single

β coefficient.

Our observation that the orbital texture switches exactly at the DP in two topological insula-

tors with quite distinct electronic structures provides strong evidence that the orbital polarization

switch is an intrinsic feature of the Dirac surface state. The DP of Bi2Te3 is much closer (<20meV)

to the bulk valence band than Bi2Se3, and the surface state dispersion bends upward below the

DP, in stark contrast to Bi2Se3 that has the more “ideal” Dirac-like linear dispersion. Despite the

significant differences in the surface state dispersion, the two compounds show an almost identical

behavior of the OPR λ, which changes sign exactly at the DP in both cases. This new behavior in-

dicates the unexpected richness of the surface states of topological insulators. While the underlying

symmetries that are responsible for this generic switching behavior have not yet been unearthed,

complete effective models of the topological state should apparently include these features.

At this point, we have two possible forms of wavefunctions: If all the orbital components above

(below) the DP couple to the same LHS/RHS spin texture, the complete Dirac wavefunction merely

has a previously unnoticed spatial wavefunction, but is fundamentally the same otherwise. The

other possibility is each of the orbital component couples to a different non-colinear spin orientation

at the same momentum. We name the wavefunction from this possibility a “spin-orbital texture”

as the Dirac wavefunction could no longer be decomposed as the product of the spin and orbital
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sectors. This possibility is of course far more interesting and is chosen by Mother Nature, as we

will show in Section 3.4.

3.4 Determining the Spin-Orbital Coupling

In this section, we show the Dirac wavefunction has a “spin-orbital texture”, as opposed to

the “spin texture” commonly used in previous literatures where only one orbital (pz) was assumed

to appear. Specifically, the in-plane p orbital tangential to the constant energy surfaces above

the DP couples to a “backwards” right-handed spin (RHS) texture, while the pz orbital has the

standard left-handed spin (LHS) texture.

This is accomplished using spin-polarized electron detection, with the orbital selective p and s

polarization of the incident photons. We would like to name this experimental strategy the orbital-

selective spin-resolved ARPES (OS-SARPES). OS-SARPES is not a new experimental technique.

Rather, it is a set of deliberately designed experiments aiming at disentangling the spin and orbital

degrees of freedom. In these experiments, we carefully choose the relative geometry between the

photon and the sample so that only one orbital in the initial wavefunction is excited with selected

photon polarization. The measured photoelectron spin is thus the spin coupled to the excited

orbital component.

The experiments were performed on single crystals of Bi2Se3 cleaved and measured in situ at

T=21K with a photon energy of 47 eV at the COPHEE endstation at the Swiss Light Source [63].

The COPHEE endstation utilizes a helical undulator, allowing us to change the incident photon

polarization from linear s to linear p without altering any other parameters of the experiment, and

the multi-axis spin detector at this facility allows for a deconvolution of the various spin degrees of

freedom, as described in Ref. [64].

The experimental geometry for the designed OS-SARPES measurements is shown in Figure

3.10 a. The photons come in at 45◦ relative to the sample normal and can be tuned to have either

s or p polarization. The p polarization has the photon E-field parallel to the scattering plane, and

lying tilted 45◦ out of the sample surface plane. When taking the spin resolved measurements,
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Figure 3.10: Determining the Spin-Orbital Coupling in Bi2Se3. a. Cartoon drawing of the ex-
perimental geometry. The green and yellow arrows indicate the incoming photon and outgoing
photoelectron, which conserves in-plane momentum. The beam comes in at 45◦ relative to the
sample surface. Each spin resolved momentum distribution curve (MDC) as shown in panels d
and e is taken by rotating the sample relative to the ky axis. b and c are the energy-momentum
intensity plots along the Γ-K orientation of Bi2Se3, with the measured spin texture drawn in for
the corresponding photon polarization. The spin asymmetry curves are shown in panels (d) and
(e).
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we rotate the sample about the ky axis in the sample plane and normal to the photon incidence

plane. Thus in principle, for each data point in the spin asymmetry curve, the photon comes in at

a different angle and the ratio between the matrix elements from the |pt〉 and |pz〉 changes. Note

the s polarized photon is sensitive to only the in-plane orbital states while the component of the p

polarization normal to the sample is strongly dominated by the out-of-plane pz states.

Fortunately, the photon energy is held at 47eV and comes in at 45◦ (instead of glancing

incidence) and we can cover the Dirac cone by rotating the sample within ∼2◦. As a first order

approximation, we could assume this ratio between the matrix elements of different orbitals to be a

constant. However, for a 6eV photon with glancing incidence, we need to take the above mentioned

effect into account.

Panels 3.10 b and c show spin-integrated measurements taken with p and s polarization

respectively along the kx axis (along the Γ-K cut through the Brillouin zone) by rotating the

sample about the ky axis (see Figure 3.10 a). Aside from the reduction in experimental statistics

for the s-polarized data, these panels show an identical E vs. kx dispersion for both polarizations,

We took the spin-resolved data in the exact same geometry, at a fixed binding energy of 50 meV

in the upper Dirac cone, which is ∼300 meV above the DP. For this energy range, the |pr〉 has

negligible contribution to the complete Dirac wavefunction. The spin-resolved data are shown in

Figures 3.10 d and e, taken along the black dashed lines of Figure 3.10 b and c. The measured

spin polarizations are opposite for the two panels —they show a left-handed spin helicity for the p

polarization data and a right-handed spin helicity for the s polarization data.

The spin polarization data taken using s polarization has photons polarized along the ky axis

and is associated with the in-plane |pt〉 orbital. The p polarized photons could be decomposed as

a 1/
√

2 component along the sample normal and a 1/
√

2 component along the kx axis. Note that

the |pt〉 orbital is associated with the in-plane component of the p polarization and has vanishing

spectral weight along kx. This could be understood by referring to the intensity distribution on

the constant energy surface using s polarization (see Figure 3.6 a), where the intensity along the

electric field comes only from the radial p orbital and is very small >200meV above the DP. Note
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for the p polarization in the spin-resolved experiment here, the in-plane electric field component is

90◦ rotated compared to the electric field using s polarization in Figure 3.6 a. Thus we expect the

intensity distribution associated with this in-plane component of the p polarization is also rotated

by 90◦ from that of s polarization, giving very small intensity from the |pt〉 orbital. Therefore the

spin polarization data taken using p polarization is strongly dominated by the |pz〉 orbital.

Now we conclude the |pz〉 orbital couples to the usual LHS [47, 62, 65, 45], and the in-plane

|pt〉 orbital couples unexpectedly to the RHS texture. We illustrate this result in Figure 3.3. Figure

3.3 c shows the dominant tangential orbital states |pt〉 above the DP and the dominant radial

orbital states |pr〉 below the DP, along with the predicted (see discussion below) spin helicity for

each of these states.

The magnitude of the spin polarization detected in the present experiment is between 50%

and 100% for both polarizations. When deconvolving with the resolution and background we get

a ∼100% polarization for each of the measurements. This is one of the clearest evidence of the

spin-orbital texture. When only one type of orbital is excited, as we are able to do here by selecting

the appropriate photon polarization, all the electrons that come out have the “same” spin. In other

words, the photoemission process preselects the wave function and the spin expectation value is

thus the same for all photoexcited electrons. The measurements here turn out to be the crucial

test for the general principle above.

The spin measurements are fully consistent with the early predictions in [66]. While the

“coupled spin-orbital texture” results from the spin orbit interaction, how the spin textures couple

to the orbital components is a direct manifestation of the conserved out-of-plane total angular mo-

mentum jz. Specifically, as the surface is well described by its two dimensional surface momentum,

its spin, and a p-like orbital degree of freedom, the total angular momentum is well defined only

normal to the surface, and can be taken3 to be jz = −i∂φk + sz + lz in units of ~, where φk

is the azimuthal angle of the momentum, sz has eigenvalues ±1/2, and lz has eigenvalues 0, ±1.

It is straightforward to verify that the wave functions |pz〉 ⊗ |LHS〉 and |pt〉 ⊗ |RHS〉 both have

3 The definition we use here is different from [66].
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j = 1/2. In other words, angular momentum is a good quantum number of the measured wave

function, indicating that it is conserved by the effective Hamiltonian governing the surface states.

The spin orientations between (±kx, 0) using s and p polarizations are reversed above the

DP. This result is not related to the time-reversal symmetry. The photoemission process by itself

breaks the time reversal symmetry, and the spin-flip between (±kx, 0) points is a reflection of the

spin-flip in the initial state wavefunction, not a reflection of the time reversal symmetry of the final

photoelectron state. In principle, the spin orientation between a pair of inverted points in k space

does not need to flip, as shown in Ref. [67, 68].

Now we write the approximate wavefunction ∼300meV above the Dirac point, where the

spin polarized measurements in this paper were made. In particular, as seen from experiment the

in-plane radial component |pr〉 has negligible weight at this energy and we are reduced to two

principle orbitals in the Dirac state wavefunction

|ψ(~k, 0)〉+ =
√

1− α|pz〉 ⊗ |LHS〉+ eiχ
√
α|pt〉 ⊗ |RHS〉 (well above Dirac point) (3.9)

where |LHS〉 and |RHS〉 are the left-handed spin and right-handed spin along ky direction. The

+/− subscripts denote the wavefunction above / below the Dirac point and ⊗ is the product

between the orbital and spin degrees of freedom. There could be an extra phase of χ between the

two orbitals.

Combined with our previous observations of the orbital texture [57] (also see Section 3.3),

similarly we have the wavefunction for the Dirac surface state in the vicinity of the Dirac point

|ψ(~k, 0)〉+ =
√

1− α|pz〉 ⊗ |LHS〉

+eiχ
√
α

2

[
(1 + βk)|pt〉 ⊗ |RHS〉 − i(1− βk)|pr〉 ⊗ |LHS〉

]
(3.10)

and

|ψ(~k, 0)〉− =
√

1− α|pz〉 ⊗ |RHS〉

−eiχ
√
α

2

[
(1− βk)|pt〉 ⊗ |LHS〉 − i(1 + βk)|pr〉 ⊗ |RHS〉

]
(3.11)



48

where α, β and χ are coefficients. These wavefunctions are similar to those written down by Zhang

et al. in Ref.[66] but are more constrained by experimental data, with far fewer (only α, β and

χ) undetermined parameters. The phase i between the various in-plane orbitals is chosen to be

consistent with Ref. [66].

Recently, Zhu et al. [27] showed the dominant in-plane p orbital component varies for each

atomic layer in the quintuple layer counting from the interface, as shown in Figure 3.11. However,

regardless of the atomic layer, whenever the |pt〉 is the dominant p orbital in plane, the spin chirality

is right-handed. The spin-orbital coupling is exactly as shown in Eqn. (3.10). These results further

confirm the spin-orbital texture is a direct demonstration of a conserved jz.

It is to be noted the spin-orbital texture also appears in other solids [69, 70]. Our work of

disentangling the spin-orbital coupling may inspire future work into these new material families.

3.5 Controlling the Spin of the Photoelectrons

Achieving high spin polarization is desired for realistic spintronics applications [71, 72] and is

also one of the main goals in the search for new topological insulators [73]. The helical spin texture

was almost universally believed to be left-handed above the DP and right handed below. However,

previous spin-resolved experiments [47, 62, 74] with varying geometries and photon polarizations

and first-principles calculations [65, 45] have produced controversial results concerning the fraction

of spin-polarized electrons, ranging from ∼20% [47] to ∼75% [62]. Recently, Jozwiak et al. [68]

reported that the spin polarization of the photoelectrons can be manipulated through selection of

the light polarization, and be very different from the left-handed (right-handed) spin texture above

(below) the DP.

These works have exclusively focused on the following two questions: (a) what the spin polar-

ization axis is, and (b) what percentage of electrons is spin-polarized. The underlying assumption,

usually not explicitly stated, is that the Dirac wavefunction has a simple structure – only one or-

bital wavefunction pz exists, coupled with the spin orientation well defined on a Bloch sphere. It

follows naturally that Jozwiak and Park et al. [68, 67] interpreted the observed photoelectron spin
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conduction band [27]. As a final test of the robustness of
our DFT analysis of !TSS, we have calculated constant-
energy circular dichroism ARPES patterns, which are also
in excellent agreement with previous studies [30,31].

To gain a microscopic understanding of the properties of
!TSS we present our DFT results for a 250-layer slab of
Bi2Se3 [20] in Fig. 3(a), with bulk states in green and TSS
in orange. The in- and out-of-plane p orbital projections
in Fig. 3(b) confirm that !TSS indeed has a large pz (70%)
character—although px;y (30%) is also significant—and

most importantly that !TSS extends deep into the solid.
Even though the orbital weight decays exponentially with
the distance from the surface, as expected for a surface
bound-state, !TSS extends !2 quintupole layers (QL)
below the surface (! 2 nm), with !75% contribution
from the 1st QL and !25% from the 2nd QL. Note also
the interesting layer dependence of the orbital character:
while for most layers the main component is the out-of-
plane pz, for the 5th the in-plane px;y is actually dominant.

As a consequence of the relativistic SOI, which directly
connects orbitals to spin flips via the l"s# terms of the spin-
orbit operator l $ s ¼ lzsz þ ðlþs( þ l(sþÞ=2, the strongly
layer-dependent orbital occupation becomes entangled with
the spin polarization of!TSS. Tovisualize this entanglement,
in Figs. 3(d)–3(f) we present the layer- and orbital-projected
charge density along the 0.15 eV Dirac contour indicated in

Fig. 3(c), colored according to the expectationvalue of the Sy
operator [20]. The pz-projected charge density, being asso-
ciated with a single orbital, cannot be entangled and has
the layer-independent spin helicity shown in Fig. 3(d). In
contrast, a strong layer-dependent spin-orbital entanglement
is observed for px;y because the eigenstates can be a linear
combination of px;", py;#, and similar states, resulting in a
complex set of charge-density surfaces. These surfaces show
two overall spatial configurations oriented tangentially and
radially with respect to the Dirac contour, with opposite spin
helicity, as seen in Fig. 3(e). In Fig. 3(f) we show the total
layer-dependent charge density obtained by adding in- and
out-of-plane contributions according to their relativeweights
in Fig. 3(b); from this it is clear that while the pz orbitals
dominate, the px;y orbitals lead to a substantial spin-orbital
entanglement of the combined!TSS.
This entanglement also leads to complex in- and out-of-

plane spin texture, as shown in Figs. 4(a)–4(d) where the
layer-integrated spin patterns of individual and total p
orbitals are presented. While for pz we find the in-plane
helical spin texture expected for the TSS, this is not the
case for the px and py orbitals, which exhibit patterns
opposite to one another. Combining all contributions

[h ~Stotali=ntotal in Fig. 4(d)], the TSS out-of-plane spin tex-
ture vanishes in the vicinity of the DP; most important, the
in-plane spin polarization is reduced from 100% to 75% at
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Figure 3.11: The atomic layer dependence of the spin-orbital texture. After [27]. a. The percentage
of pz and in-plane p orbitals in the Dirac surface state at 150meV above the DP, for the top 15
atomic layers. b. Layer-projected in-plane p orbital density and spin texture at 150meV above the
DP.
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rotation as “due to the spin-dependent interaction of the helical surface electrons with light, which

originates from strong spin-orbit coupling”.

The discovery of the spin-orbital texture offers an inspiring breakaway from previous assump-

tions. Clearly spin is not defined on a Bloch sphere for the complete spin-orbital coupled wave-

function, and is only defined for each individual orbitals. Indeed, the possibility of a spin-orbital

coupled wavefunction would profoundly reshape the design and interpretation of spin-resolved mea-

surements. Instead of asking “along which axis does the spin polarize” or “what percentage of spin

is polarized”, now we need to take into account the orbital wavefunction and explore how spin

couples to each of the orbital components.

The spin-orbital texture provides a route to reconciling previous measurements. Roughly

speaking, in the presence of multiple orbitals, each carrying their corresponding spin orientation,

the total spin of the measured photoelectron exhibits interference from each spin component and

depends crucially on the experimental geometry and photon polarization. To put our argument

on a firm footing, we would like to revisit the matrix element in the presence of strong spin-orbit

coupling. Specifically we focus on whether spin-orbit coupling induces “spin-dependent interaction

of electrons with light” [68, 67].

The complete interaction between electrons in a solid and the external electromagnetic field

has the general form [67]

Hint ∝ ~A · ~v = ~A ·
[
~p

me
+

~
4m2

ec
2

(
~s×∇V

)]
(3.12)

where ~A is the electromagnetic gauge, ~p is the momentum of the electron and V is the ionic potential

the electron experiences. This comes from the invariance of the electromagnetic gauge [67]. For

spin degenerate systems, the spin orbit coupling (which still exists) is believed to have a very minor

effect on the spin of the photoelectron and the spin-flipping term in Eqn. (3.12) is often ignored.

This then gives the matrix element |〈ψf | ~A · ~p|ψi〉|2 for the photoemission process, as commonly

used in the ARPES experiments [8] as well as direct DFT simulations of the matrix elements [28].

It would be interesting to see if the spin-flipping term would have a finite effect on the spin
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of the photoelectron (the final state) for spin polarized systems. To compare the contribution of

the two terms in Eqn. (3.12), we rewrite the interaction Hamiltonian as

Hint ∝ ~A · ~v =
~
me

~A ·
[
~k +

1

4mec2

(
~s×∇V

)]
(3.13)

The second term ∼5×10−7
(
~s×∇V

)
eV−1 and the typical k value for actual experimental measure-

ment (so that peaks from different k points or energy points are well separated) is 0.05Å−1 ∼0.1Å−1.

For the two terms to be comparable, we need ∂V/∂r ∼4×105eV/Å. Assuming the p electron (5p

electron for Bi and 3p electron for Se) could get close to the nucleus where the spin orbit coupling is

strongest and the Coulomb repulsion is unscreened, the potential gradient could be approximated

by

∂V

∂r
∼ 1

4πε0

Ze2

r2
(3.14)

which would put the p electron at a distance of ∼ 6
√
Z × 10−3Å (0.055Åfor the Bi atom and

0.035Åfor the Se atom) to the nucleus. The covalent radius is ∼1.5Åfor Bi and ∼1.2Å for Se. Thus

electrons have a negligible probablity to stay near the atomic core and flip the spin.

This indicates the photoelectron is mostly determined by the matrix element |〈ψf | ~A · ~p|ψi〉|2

and the spin is conserved between the electron in the solid and the excited photoelectron. Thus the

OS-SARPES experiments in Section 3.4 faithfully reflects the spin texture of the selected orbitals

in the initial state Dirac wavefunction.

The wavefunction of the photoelectron (the “final state”) is given by [67]

|ψf 〉 =
∑
σ

|PW, σ〉〈PW, σ| ~A · ~p|ψi〉 (3.15)

where |PW, σ〉 is the plane wave with spin up/down and has an energy of Ef = Ei + hν. The

wavefunction of the photoelectron does not have any orbital character and is a direct superposition

of the spin from each component of the initial state wavefunction. We visualize the relation between

the initial and final state wavefunctions in Figure 3.12 a. The initial state is a two-component spin-

orbital wavefunction. The spin orientations coupled to the solid pink and green orbitals are not

colinear. We assume the p (with Ex and Ez in phase and colored in red) polarized photons have
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non-vanishing matrix element only with the pink orbital. Similarly, the s polarization (with Ey

colored in dark green) only interacts with the green orbital wavefunction. The final state is a

plane wave, with the two spin components (inherited from the initial state) interfering with each

other. There is a relative phase ϕsp between the s and p components of the electric field and

will be carried into the final state. The prefactor A is the ratio between the non-zero transition

probabilities 〈ψf | ~A · ~p|ψi〉 from the s and the p polarization. Since the spin-orbital wavefunction

of the Dirac surface state exhibits a linear combination of both spin chiralities at the same energy,

it is possible to engineer the spin polarization of the photoelectron by “tuning” the relative phase

between the electric field components (and thus the photon polarization).

Now we study the photoelectron spin polarization ≥200meV above the DP and along the

postive kx axis. Experimentally, the |pr〉 orbital is found to be negligible in the complete Dirac

wavefunction at this energy range. The initial state and final state could be written as

|ψi(+ω)〉(+kx,0) =
√

1− α|pz〉 ⊗

 1

−i

 + eiχ
√
α|pt〉 ⊗

 1

i

 (3.16)

and

|ψf (+ω)〉(+kx,0) = |PW 〉 ⊗
[ 1

−i

 + ei(χ+ϕsp)A

 1

i

] (3.17)

where the LHS/RHS along kx are

|LHS〉(+kx,0) = sy− =

 1

−i

 |RHS〉(+kx,0) = sy+ =

 1

i

 (3.18)

In Figure 3.12 b the photon polarization are defined as in [68, 67]. Note only the Ez component of

the p polarization will couple to |pz〉, so the photon could not come in normal to the sample. For

χ = −π/2 and A = 1. For +sp photon polarization, ϕsp = 0 and

|ψf (+ω)〉(+kx,0),+sp = (1− i)|PW 〉 ⊗

 1

1

 (3.19)



53

O kx 

ky LCP 

x	   O kx 

ky RCP 

.	  
O kx 

ky +sp 

O kx 

ky -sp 

hν	

Ex

Ez Eye
i!sp

+

+Aei!sp
a	  

b	  

Figure 3.12: The mapping relation between the initial and final state wavefunctions and the ma-
nipulation of photoelectron spin with polarized photons. a. The spins coupled to the solid pink
and green orbitals in the initial state are not parallel. The p (drawn in red) and s (drawn in
dark green) polarized photons have non-vanishing matrix element with the pink and green orbitals
respectively. The s polarization Ey has a phase ϕsp relative to the p polarization, which could be
decomposed into Ex and Ez. The prefactor A is the ratio between the two nonzero photo-transition
probabilities. b. The spin of the photoelectron with ~k‖ = (+kx, 0) could be tuned with different
photon polarizations. The grey arrows denote the photon polarization and the photoelectron spin
orientations are marked in blue.
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Similarly for -sp photon polarization, ϕsp = π and

|ψf (+ω)〉(+kx,0),−sp = (1 + i)|PW 〉 ⊗

 1

−1

 (3.20)

We list the resulting photoelectron spin polarizations from different photon polarizations in Figure

3.12 b. These calculations match the predictions and measurements in [68, 67]. As we mentioned

in Section 3.4, the dominant in-plane p orbital component changes with each atomic layer counting

from the TI-vacuum interface. Zhu et al. [27, 75] have performed ab initio calculations and

measurements of the photoelectron polarization, taking into the layer dependence. The guiding

principle behind the seemingly complex calculation, is exactly what we have discussed in this

section.



Chapter 4

The Physics of Doped Mott Insulators: Mostly Cuprates

Despite active research in the last three decades, mostly in the cuprate superconductors, the

physics of doped Mott insulators and the Mott-metal crossover remain debated. Up to date, there

is little consensus on many aspects of the Mott physics, from the global phase diagram, to the

evolution of the band structure.

Our understanding of the Mott physics is largely hindered by the complex interplay among

the spin, charge and lattice degrees of freedom, as well as a long list of emergent competing orders.

It is almost impossible to give an unbiased, or complete account of the Mott physics. Thus I

will instead focus on (1) the complexities of the Mott physics, and (2) the noteworthy features

in ARPES measurements. I will introduce very briefly the temperature-doping phase diagram as

investigated in experiments and theories. Detailed reviews are available in [76, 77, 8, 78, 79].

4.1 The Half Filled Mott Insulator

Mott designed his famous insulator [80] by tuning the lattice parameter of a half-filled metal

to infinity. We visualize the formation of Mott insulators in Figure 4.1. For a periodic array of

atoms close to one another (as in a typical metal) with one electron per atom, band theory dictates

the band is half filled and the electrons migrate freely on the lattice (Figure 4.1 a1). Similar

arguments could be made for an odd number of electrons per site, albeit with a slightly more

complex band structure. As the inter-atomic spacing goes to infinity, the electrons are bound to

their respective ion sites and form the Mott insulator (Figure 4.1 b1). In this process, the electron
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hopping between nearest neighbor sites is suppressed with the increasing lattice constant.

We could also obtain a Mott insulator by increasing the Coulomb repulsion U for an atomic

site with double electron occupancy. The natural ground state in the large U limit is to have one

electron trapped to each ion (Figure 4.1 b2). Comparing these two formulations, the metal-Mott

insulator transition is determined by the ratio of the onsite repulsion U and the electron hopping

energy t.

The electron “dispersions” are distinct in the small/large U/t limit. For a negligible U/t in

the metallic limit, the electrons fill the k states along the band dispersion up to the Fermi energy

(Figure 4.1 a2). The system is expected to follow the Landau paradigm, with a relatively large

quasiparticle lifetime, or a small MDC width in an ARPES measurement. For the “real” Mott

limit where the electron hopping is completely suppressed, we could view each site as a stand-alone

atom, with electrons occupying the same atomic level. Thus the electrons as a whole would have

a narrow distribution in energy. On the other hand, every electron is localized to the atomic site.

Due to the Heisenberg uncertainty principle, the electron momentum has a broad distribution. In

other words, there is no defined band dispersion. In the ARPES spectrum, we then expect a “flat”

spectral weight, corresponding to the state with one electron per site (Figure 4.1 b3). As there are

a total of 2 electrons (with spin up and spin down) allowed per site, the occupied and empty states

form the lower and upper Hubbard bands (LHB and UHB) respectively, separated by the energy

scale of the Coulomb repulsion, or the Mott gap. Note the bandwidth (in energy) for both LHB

and UHB is smaller than the Mott gap. For a sufficiently large U , the LHB could be pushed so

deep below the Fermi energy that other states may now lie between the LHB and the EF. These

insulators are named “charge-transfer insulators” [76]. For example, in NiO and La2CuO4, the O

2p states are believed to have a higher energy than the transition metal 3d states [81, 82, 83]. For

the majority of this chapter, however, we do not distinguish between Mott and charge transfer

insulators.

Now we consider the phase transition as U/t goes from infinity (Mott insulator limit) to zero

(Fermi metal limit) and come up with the following observations:
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Figure 4.1: The transition between a Fermi metal and a Mott insulator. There is one electron
(denoted by the solid dot) per atomic site (denoted by a potential well). The deeper potential well
corresponds to the larger on-site Coulomb repulsion U . For a closely spaced atom array with a
small U (panel a1), the electrons form a Fermi metal (panel a2), with the band dispersion half
filled to the Fermi level. For atoms either far apart (panel b1) or with a large U compared to the
electron hopping t (panel b2) a Mott insulator forms with the lower Hubbard band filled and the
upper Hubbard band empty (panel b3). The Fermi level then lies between the upper and lower
Hubbard bands. c. In a Mott insulator, anti-parallel spins on the nearest neighbor sites are allowed
to exchange via a “virtual state” in which one site is doubly occupied.
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• The bandwidth increases as 4t, and possible band dispersion (as seen in ARPES, in contrast

to the featureless atomic energy level) starts to form.

• The single-electron scattering lifetime (or the reciprocal of the MDC width observed in

ARPES) increases, indicating the electrons are better described using band theory.

• The Mott gap eventually closes at a finite U/t.

Our analyses here (and throughout Chapter 4 and Chapter 5) focus on the dispersion and scattering

rate, which could be directly observed in possible ARPES experiments.

With a finite t, the nearest neighbor hopping introduces an antiferromagnetic correlation.

This could be understood by considering the processes shown in Figure 4.1 c. For the nearest

neighbor sites, only anti-parallel spins are allowed to exchange, by creating an intermediate state

with both electrons staying on one of the sites. Thus a local “spin singlet” on the nearest neighbor

sites 〈i, j〉

|ψ〉〈i,j〉 =
1√
2

(| ↑〉i| ↓〉j − | ↓〉i| ↑〉j) (4.1)

is energetically favorable. This local antiferromagnetic correlation is intrinsic to the Mott insulator

and is not equivalent to the formation of long-range antiferromagnetic order. A new energy scale

J ∼ 4t2/U could be introduced to characterize the local antiferromagnetic pairing. J is believed to

be the leading energy scale that dominates the behavior of low energy electrons (as in the famous

t− J model) [78].

The long-range effect of this local antiferromagnetic correlation relies on the geometry of

the lattice, as well as higher order interactions. For a frustrated lattice (e.g. triangular, Kagome)

there are theoretical proposals [84, 85] and experimental evidences [86, 87] supporting a spin liquid

phase (where no long-range spin order exists down to 0K). For the two-dimensional square lattice,

experiments and numerical simulations [88, 89] suggest a stable long-range antiferromagnetic order.

Meanwhile, there is no analytical solution of the ground state wavefunction. Possible candidates

include, but are not limited to, antiferromagnetic dimers [90] and the “resonating-valence bond”
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(RVB) state [91]. The stability of these proposed states depends on the details of the system,

including the response of the lattice (as in the case of a dimer) and the next-nearest neighbor (and

even longer-distance) spin interactions.

The long-range antiferromagnetic order on the square lattice (and other bipartite lattices)

leads to a folded Brillouin zone with an even number of electrons. While less discussed, the

formation of the antiferromagnetic Brillouin zone makes possible a description of the insulator

using band theory. In the first-principles calculations, the antiferromagnetism is reinforced in

addition to the “L(ocal) D(ensity) A(pproximation)+U” scheme to achieve a “band insulator”-like

dispersion of the undoped Mott insulator. An example involves Sr2IrO4, which we will discuss

in further detail in Chapter 5. We are not to interpret the “band insulator”-like dispersion as a

signature of weak-correlation in the undoped Mott insulators. As discussed above, the strength of

electron correlations is reflected both in the band dispersion and in the single-electron lifetime in an

ARPES spectrum. Indeed the ARPES spectra of Sr2IrO4 [4] show a broad valence band, consistent

with the strong correlations in the material. An interesting question is how the antiferromagnetic

Brillouin zone evolves during the Mott-metal transition. While the antiferromagnetic Brillouin zone

is expected to disappear or “unfold” in the good-metal limit, we do not understand the details of

this process.

The Mott-metal phase transition is by definition a quantum phase transition, since we could

tune U/t at 0K. The question at hand is whether a sharp boundary exists between the Mott and

metal phases. Kohn suggested [92] this quantum transition actually consists of an infinite series of

second-order transitions, or a “crossover”. In a slightly different model where a Mott insulator is

doped with charge carriers, Sachdev et al. [93] argued the Mott and metal phases are separated by

a Quantum Critical Point. To date a definite answer to the nature of the Mott-metal transition is

yet unavailable.
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4.2 The Temperature-Doping Phase Diagram of Cuprates: An Experimental

Review

The parent compounds of cuprate superconductors have been intensively studied in the last

three decades. They are often modeled as a Mott insulator on the square lattice with one hole per

site. A typical temperature-doping phase diagram of cuprates is shown in Figure 4.3. We compile

this diagram following experimental evidences. We use shaded areas where a sharp boundary

between different phases does not exist, or where the boundary is still controversial.

The two phases with well-defined phase boundaries are the antiferromagnetic phase (AF) and

the superconducting phase (SC). These phases are distinguished from neighboring phases by bulk

measurements. However, a comprehensive examination of experimental data reveals the nontrivial

facets of both phases.

In the SC phase (or the superconducting dome named after its shape), the resistivity goes

to zero, with the presence of the Meissener effect. The hole doping with the highest TC is called

the optimal doping (OP), and samples with hole dopings smaller / larger than the OP are said

to be underdoped (UD) or overdoped (OD). The phase sensitve measurements [94], together with

ARPES [95], revealed the superconducting gap ∆(~k) has a d-wave paring symmetry, i.e. ∆(~k) ∝

cos kxa−cos kya. An ideal d-wave gap vanishes at kx = ±ky (which we refer to as the nodal region)

and maximizes near kx = 0 or ky = 0 (the anti-nodal region).

In ARPES measurements, for a large region from the lightly UD all the way to OD, and

under the SC dome, the gap size follows the d-wave symmetry. Recent studies [96, 97] suggested

for the ultra-underdoped sample there is a suppression of spectral weight at the nodal point. Thus

the entire Fermi surface is gapped. There is no conclusion why a gap opens at the node, while Ref.

[97] suggested some other pairing symmetries may be at work. There may exist profound changes

under the SC dome, as suggested in Ref. [96].

The AF phase is defined by the magnetic response in bulk materials, and extends to a finite

hole concentration ∼6%. The resistivity drops much faster than the long-range magnetic order.
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Figure 4.2: The experimental temperature-doping phase Diagram of Cuprates. The AF, PG, PP,
SC, SM, FL stand for the antiferromagnetic phase, the pseudogap phase, the pre-pairing phase,
the superconducting phase, the strange metal phase and the Fermi liquid phase respectively.
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With as few as 1% doped holes [98], the in-plane resistivity shows a metallic behavior at moderate

temperatures, with an upturn at lower temperatures. It appears there are already some “free”

charge carriers even with a few doped holes. ARPES measurements in several systems [99, 100]

observed band dispersion inside the Mott gap (defined by the parent compound) and close to the

Fermi level. The quasiparticle spectral weight is vanishingly small at low hole concentrations and

starts to grow with increased doping. Shen et al. [100] ascribed these weak quasiparticles to certain

polaron formation in the low doping limit, which is not widely agreed upon.

We refer to the region immediately above the SC dome as the pre-pairing (PP) phase [23],

while the notion is not necessarily connected to the pre-pairing suggested by Anderson and others

[91, 101, 102] which we will discuss in Section 4.3. In the PP phase, the once superconducting

d-wave gap survives above TC. As shown in [23], the ARPES spectral weight is transferred into

the d-wave gap from below TC all the way to TPP, with the gap smoothly varying across TC. It is

interesting to see there is no sharp change in the ARPES features across TC, despite drastic changes

in the bulk properties. The PP phase does not show up in most bulk measurements, except in the

Nernst signal [103]. Ref. [103] interpreted this region of the phase diagram as having spontaneous

vortices. Whether the ARPES and Nernst experiments were observing the same physics is pending

further investigation.

The region to the left and above the SC dome is the pseudogap (PG) phase. We draw the

phase boundary roughly following compiled data in [79]. The pseudogap generally shows up as a

suppression of spectral weight near EF above TC in a number of experiments, including ARPES,

optical conductivity, inelastic neutron scattering, etc. [79, 77]. The spectroscopic features of a PG

are in some sense similar to those of a band gap in classical semiconductors. We use the name

pseudogap to distinguish them from the “hard” band gap. The origin of the PG is yet to be

determined. Some reports suggest that the pseudogap may result from charge ordering [104].

The PP phase could be considered a part of the PG phase [105], and they share a common

phase boundary in the near OP and OD region. As the hole doping is reduced from OP, the phase

boundary of PG rises in temperature while that of PP curves down. The PP in this thesis follows
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Ref. [23, 105], and the boundary of the PP phase is defined as the gap closing near the node.

Some studies on the PG focused on the antinode [104], with a larger pseudogap size and higher gap

closing temperatures.

4.3 Theoretical Investigations of the Doped Mott Insulator

The Mott insulator could be driven into metallicity by introducing extra charge carriers. For

the convenience of discussion, we limit ourselves to the hole doping. The electron and hole doped

Mott insulators have similar global phase diagrams, yet with pronounced asymmetry, e.g. in the

stability of the superconducting phase [8].

From a theoretical viewpoint, solving the ground state (and the excited states) of doped

Mott insulator is formidable. For a start, as a single hole starts to hop in the antiferromagnetic

background (in the dilute hole doping limit), it creates a local spin mismatch (Figure 4.3 a), with

a high energy cost on the scale of 2J . Also, as the hole moves around the lattice plaquette and

returns where it was (as in the time-dependent path integral formulation), the topological nature

of the two-dimensional space allows spontaneous generated vortex (pairs)1 . There are again the

possibilities of dimerized states, prepaired resonating valence bond states, among others; and we

have not yet started to consider the lattice phonons and charge/orbital-density waves. Despite

increasing computing power, numerical modeling of the doped t − J model has been applied only

to a limited number of sites [107].

As it is impossible to conduct an exhaustive review of existing theories, we will focus on (1)

the chemical potential shift and (2) influential interpretations of the phase diagram. Experimental

and theoretical surveys [109, 110, 108, 111] have both yielded conflicting views on the chemical

potential shift. We show the two main scenarios in Figure 4.3 b. The first possibility is that the

chemical potential moves immediately to the LHB. Different from regular semiconductors, there is

transfer of spectral weight from the UHB to the LHB. Specifically, if one hole is doped into the

1 The theory of self-generated magnetic flux was quite popluar in the mid 1990s, under the name “anyon statistics”
[106]. However, these theories did not find much experimental support.
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Figure 4.3: Theoretical explorations of the doped Mott insulator on a square lattice. a. Cartoon of
a doped Mott insulator, with one hole on it. The hole could move and cause a spin mismatch. Also
there is the possibility of spontaneous vortices appearing in the system. The thick blue bars connect
local fluctuating spin singlets. b. Possible schemes for chemical potential shift in the doped Mott
insulator. The dashed red lines are the Fermi levels. Similar to [108]. c. Proposed phase diagram
from the pre-pairing (PP) picture. SC stands for the superconducting phase. d. Proposed phase
diagram of the quantum critical point (QCP) picture. AF and FL stand for the antiferromagnetic
phase and the Fermi liquid phase. The critical doping is marked by xC . The SC is the dome shaped
region.



65

LHB, there are two ways of adding an electron (with spin up/down) to combine with the hole.

Thus there are x states transferred from UHB for the x holes doped, and the LHB comes with a

total of 1 + x states. The other often mentioned possibility is both the LHB and UHB transfer

states into the middle of the gap, and the chemical potential is pinned to the in-gap states and

there is no sudden change of chemical potential relative to the parent compound.

Now we introduce two of the most influential theoretical phase diagrams, without explaining

the details: the pre-pairing picture (as discussed by Anderson [91], Kotliar [101], Lee and Nagaosa

[102], shown in Figure 4.3 c) and the quantum critical point (QCP) picture (as adopted by Laughlin

[112], Sachdev [93], as shown in Figure 4.3 d).

In the pre-pairing picture, there are a large number of pre-paired (PP) and incoherent spin

singlets (as in Eqn.(4.1)) bouncing around on the lattice (Figure 4.3 a) in the undoped Mott in-

sulator. In the pre-pairing phase, an increasing number of doped holes disrupt and eventually

kill the spin-singlets, leading to the suppression of the PP phase. On the other hand, as the hole

concentration increases, the spin-singlets are delocalized and start to gain phase coherence. The

superconductivity comes from the condensation of pre-formed and coherent spin-singlets. Histor-

ically, Kotliar et al. [101] have successfully predicted the d-wave pairing symmetry in cuprates in

the PP picture.

The QCP picture suggests a quantum critical point exists at 0K between the undoped Mott

insulator and the highly doped Fermi metal. The antiferromagnetic and the Fermi liquid phases

at finite temperatures are the thermal fluctuations of the corresponding order parameters at 0K.

The superconductivity arises from the two strongly competing orders and protects the QCP. There

were some experimental observations [113, 114, 115], but none of them were conclusive.



Chapter 5

Doping the Spin-Orbital Coupled Mott insulator Sr2IrO4

Universalities and New Opportunities

The 4d and 5d transition metal oxides have attracted a lot of attention over the past few

years. As the 4d/5d orbitals are more extended in real space compared to their 3d counterparts,

the energy scales of the Coulomb repulsion U , crystal field splitting ECF and electron hopping t

are comparable. In addition, the increase in the atomic number of the transition metal element

accompanies a new energy scale — the spin-orbit coupling, which is on the same order as U , ECF

and t. The competition among the above-mentioned interactions, together with the possibility of

tuning these interactions, provides a versatile playground for realizing many novel exotic phases of

matter, including high-TC superconductors [116], spin liquids [117], correlated topological insulators

[118, 119] and Weyl metals [120].

In this chapter we study a new family of Mott insulator Sr2IrO4 with an effective total

angular momentum Jeff=1/2 [4, 69], and demonstrate how this novel spin-orbital coupled Mott

insulator helps identify universal features during the Mott-metal crossover. By universality we

refer to the low-energy properties that do not depend on the details of the interactions. For

materials with relatively weak electron correlations, the low-energy excitations are well described

by the Fermi liquid theory. For doped Mott insulators where correlations are strong, pinpointing

the hallmarks common to all Mott-metal crossovers has proven a formidable task [76]. This could

largely be attributed to the long candidate list of competing electronic orders, including long-range

magnetic order and Fermi surface instabilities, among others, which yields a complex global doping-
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temperature phase diagram. It becomes inseparable whether such exotic phenomena as pseudogaps

[77, 121] and marginal Fermi liquid scattering rates [22] arise from the metal-insulator transition,

certain density-wave instabilities or are fluctuations of the superconductivity. Moreover, the charge

insulation in most known Mott insulators arises solely from the Coulomb repulsion. Thus studying

doped Sr2IrO4 may be very valuable, as this material system has a cleaner phase diagram (thus

fewer competing orders) and a different mechanism that forbids electron double-occupancy.

We focus on the evolution of electronic structure and dynamics of the hole-doped Sr2IrO4.

The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential

immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit

multiple exotic features previously observed in doped cuprates [76, 8, 78, 77, 22] – pseudogaps,

Fermi arcs, and marginal-Fermi-liquid-like electronic scattering rates. We argue these universal

features of the Mott-metal crossover are not related to preformed electron pairing, quantum criti-

cality or density-wave formation as discussed in Chapter 4. Instead, short-range antiferromagnetic

correlations may play an indispensible role.

5.1 Essence of the Spin-Orbital Coupled Mott Insulator

Sr2IrO4 is often referred to as a spin-orbital coupled Mott insulator with an effective J=1/2

[69, 4]. In this section we discuss the essence of this new concept. The key messages are (1)

Jeff=1/2 is a local description of valence electrons on the Ir atom, and (2) globally the high-energy

interactions between electrons in the antiferromagnetically ordered Sr2IrO4 are very different from

those in traditional Mott insulators.

The crystal structure of Sr2IrO4 is displayed in Figure 5.1 a. Each iridium atom sits at the

center of a Ir-O octahedra, with a Ir-O-Ir bond angle of 22◦ between adjacent Ir octahedras. The

nature of the insulator could be understood in terms of the Ir 5d level splitting, by taking into

account the role of spin-orbit coupling and Coulomb repulsion. We visualize the analysis in Figure

5.1 b. Due to the crystal field splitting, the 5 electrons in the 5d orbital occupy the t2g levels,

with the higher-in-energy eg levels empty. The Ir t2g level splits into the J3/2 doublet (filled with 4
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electrons) and the J1/2 singlet as a result of the strong spin orbit coupling (∼0.4eV). The half-filled

J1/2 further splits into lower (filled with 1 electron) and upper (empty) bands, with this splitting

general believed to be due to the Coulomb repulsion, which is why these bands should be considered

upper and lower Hubbard bands (LHB and UHB).

It is often said the LHB and UHB in iridates have an effective total angular momentum of

J=1/2. However, the iridate only has finite crystal rotations (as opposed to the case of topological

insulators near the Γ point, where infinitesimal rotations are possible, see Chapter 3 for details).

Therefore the existence of an effective total angular momentum appears non-trivial.

The experimental evidence of the J=1/2 character comes from the Resonant X-ray Scattering

(RXS) at the Ir L-edge, where the magnetic reflection at (1 0 2n) (with n being an integer) is

suppressed (Figure 5.1 c). The principle of the resonant X-ray scattering is drawn in Figure 5.1

d. The photon resonantly pumps the Ir 2p core electron to the empty energy levels immediately

above the Fermi level, leaving behind a core hole. A photo-detector collects the out-going photon

intensity generated from the recombination between the core hole and the valence electron near EF.

The resonant photon energy is determined by the peak value of the X-ray Absorption Spectroscopy

(XAS). The RXS intensity peaks at the lattice/electronic ordering vector, similar to the Bragg

scattering. The overall cross-section of the RXS follows the same dipole transition rule as in the

hydrogen atom. A detailed review of the RXS is available in [122].

For the Ir atom, as the unoccupied states immediately above the Fermi energy comes from the

Ir 5d orbitals, the dipole-allowed optical transition is between the Ir 2p and 5d states. Specifically,

the Ir L2 and L3 edges correspond to the dipole transition between the unoccupied Ir 5d states

and Ir 2p1/2 and 2p3/2 core levels respectively. Experimentally, the RXS peak at the magnetic

reflection (1 0 2n) (with n being an integer) is suppressed only at the Ir L2 edge. This could not be

explained in conventional RXS theories. Kim et al. [69] suggested the optical pump from the L2

edge is forbidden since the empty state above EF has an effective total angular momentum, rather

than the orbital angular momentum seen in other materials. Moreover, Kim et al. [69] was able to
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moved (e.g., by the Jahn-Teller effect), the orbital
angular momentum is totally quenched. How-
ever, when the spin-orbit coupling (SOC) becomes
effective, the CF states are mixed with complex
phases, which may partially restore the orbital
angular momentum in the t2g manifold. This ef-
fect is particularly pronounced in TMOs with
heavy 5d elements, where SOC is at least an
order of magnitude larger than those of TMOs
with 3d elements and can sometimes give rise
to unconventional electronic states.

5d TMO Sr2IrO4 is a layered perovskite with
low-spin d5 configuration, in which five electrons
are accommodated in almost triply degenerate t2g
orbitals. Metallic ground states are expected in 5d
TMOs because of their characteristic wide bands
and small Coulomb interactions as compared
with those of 3d TMOs. Sr2IrO4, however, is
known to be a magnetic insulator (3, 4). A recent
study has shown that the strong SOC inherent to
5d TMOs can induce a Mott instability even in
such a weakly correlated electron system (5),
resulting in a localized state very different from
the well-known spin S = 1/2 state for conven-
tionalMott insulators, proposed to be an effective
total angular momentum Jeff = 1/2 state in the
strong SOC limit expressed as

jJeff ¼ 1=2,mJeff ¼ T1=2〉

¼ 1
ffiffiffi

3
p ðjxy,∓s〉∓jyz,Ts〉þ ijzx,Ts〉Þ ð1Þ

where m is the component of Jeff along the
quantization axis and s denotes the spin state.
This state derives from the addition of S = 1/2 to
the effective orbital angular momentum Leff = 1,
which consists of triply degenerate t2g states but
acts like the atomic L = 1 state with a minus sign;
that is, Leff = –L. As a result, Jeff = 1/2 has orbital
moment parallel to spin (6). Note the charac-
teristic equal mixture of xy, yz, and zx orbitals
with complex number i involved in one of the
factors and the mixed up-and-down spin states
(7).

This realization of a Mott insulator with Jeff =
1/2 moment provides a new playground for
correlated electron phenomena, because emergent
physical properties that arise from it can be
drastically different from those of the conven-
tional Mott insulators. A prime example is when
Jeff = 1/2 is realized in a honeycomb lattice
structure where electrons hopping between Jeff =
1/2 states acquire complex phase; it generates a
Berry phase leading to the recent prediction of

quantum spin-Hall effect at room temperature (8),
and it also leads to the low-energy Hamiltonian of
Kitaev model relevant for quantum computing
(9). Experimental establishment of the Jeff = 1/2
state is thus an important step toward these
physics, and the direct probe of complex phase
in the wave function has been awaited. However,
it is usually difficult to retrieve the phase in-

formation experimentally, because it is always the
intensity, the square modulus of the wave func-
tion, that is measured; and thus a reference, with
which the state under measurement can interfere,
is required.

The resonant x-ray scattering (RXS) tech-
nique uses resonance effects at an x-ray absorp-
tion edge to selectively enhance the signal of
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Fig. 1. Schematic dia-
gram of the RXS pro-
cess. The electron makes
a trip from the initial to
the final state via multi-
ple paths of interme-
diate states and thereby
scatters a photon with
initial and final polariza-
tion of a and b, respec-
tively. The presence of
multiple scattering paths
can give rise to inter-
ferences among them,
which is reflected in the
intensity of the scattered
photon.
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Fig. 2. Resonant enhancement of the magnetic reflection (1 0 22) at the L edge. (A) Solid lines are
x-ray absorption spectra indicating the presence of Ir L3 (2p3/2) and L2 (2p1/2) edges around 11.22
and 12.83 keV. The dotted red lines represent the intensity of the magnetic (1 0 22) peak (Fig. 3C).
Miller indices are defined with respect to the unit cell in Fig. 3A. (B) Calculation of x-ray scattering
matrix elements expects equal resonant scattering intensities at L3 and L2 for the S = 1/2 model.
For the Jeff = 1/2 model, in contrast, the resonant enhancement occurs only for the L3 edge, and
zero enhancement is expected at the L2 edge.
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!ð!Þ was obtained by using Kramers-Kronig (KK) trans-
formation. The validity of KK analysis was checked by
independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5# 10$10 Torr at the Beamline 2A of the Pohang Light
Source with !h" ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy #SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field
energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically
large U & W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  ml¼'1 ¼ (ðjzxi'
ijyziÞ=

ffiffiffi
2

p
and  ml¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-
mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in
Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large #SO explains why Sr2IrO4 (#SO ) 0:4 eV) is insulat-
ing while Sr2RhO4 (#SO ) 0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in
Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
$ and %X sheets and an electronlike %M sheet centered at
", X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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interest, and has become a powerful tool for
investigating ordering phenomena (10, 11). So
far, the emphasis has been seen only in the
amplification of the signal. However, the RXS
signal contains important information about the
phase of the wave function for valence electrons,
because RXS results from quantum interference
between different scattering paths via intermedi-
ate states of a single site. The RXS process is
described by the second-order process of electron-
photon coupling perturbation, as schematically
shown in Fig. 1, and its scattering amplitude fab
from a single site is expressed under dipole ap-
proximation by

fab ¼ ∑
m

mew3
im

w
〈ijRbjm〉 〈mjRaji〉
ℏw − ℏwim þ iG=2

ð2Þ

In this process, a photon with energy (ℏ)w is
scattered by being virtually absorbed and emitted
with polarizations a and b, respectively; and in the
course of the process, an electron of mass me

makes dipole transitions through position oper-
ators Ra and Rb from and to the initial state i, via
all possible intermediate states m, collecting the
phase factors associated with the intermediate
states, weighted by some factors involving energy
differences between the initial and intermediate
states (ℏ)wim and the lifetime broadening energy
G. The interference between various scattering
paths is directly reflected in the scattering inten-
sities of the photon, and in this way the valence
electronic states can be detected with phase sen-

sitivity. This process can be contrasted with that in
x-ray absorption spectroscopy (XAS), which is a
first-order process and measures only the ampli-
tudes of the individual paths, or transition
probabilities to various valence states.

We have applied this technique to explore
unconventional electronic states produced by the
strong SOC in Sr2IrO4. Sr2IrO4 is an ideal sys-
tem in which to fully use this technique. The mag-
netic Bragg diffraction in magnetically ordered
Sr2IrO4 comes essentially from scattering by Ir
t2g electrons, to which RXS using the L edge
(2p→5d) can be applied to examine the elec-
tronic states. The wavelength at the L edge of 5d
Ir is as short as ~1 Å, in marked contrast to >10 Å
for 3d elements. This short wavelengthmakes the
detection of RXS signals much easier than in 3d
TMOs, because there exists essentially no con-
straint from the wavelength in detecting the mag-
netic Bragg signal. Moreover, the low-spin 5d5

configuration, a one-hole state, greatly reduces
the number of intermediate states and makes the
calculation of scattering matrix elements tracta-
ble. The excitation to the t2g state completely fills
the manifold, and the remaining degrees of free-
dom reside only in the 2p core holes. Because the
intermediate states are all degenerate in this case,
the denominator factors involving energies and
lifetimes of the intermediate states in Eq. 2 can
drop out. A careful analysis of the scattering
intensity can show that the wave function given
by Eq. 1 represents the ground state in Sr2IrO4

(4).

Figure 2A shows the resonance enhancement
of the magnetic reflection (1 0 22) at the L edge
of a Sr2IrO4 single crystal (4), overlaid with XAS
spectra to show the resonant edges. Whereas there
is a huge enhancement of the magnetic reflection
by a factor of ~102 at the L3 edge, the resonance
at L2 is small, showing less than 1% of the
intensity at L3. The constructive interference at
L3 gives a large signal that allows the study of
magnetic structure, whereas the destructive inter-
ference at the L2 edge hardly contributes to the
resonant enhancement.

To find out the necessary conditions for the
hole state leading to the destructive interference
at the L2 edge, we calculate the scattering ampli-
tudes. Themost general wave function for the hole
state in the t2g manifold involves six basis states,
which can be reduced by block-diagonalizing the
spin-orbit Hamiltonian as

c1jxy,þs〉þ c2jyz,−s〉þ c3jzx,−s〉 ð3Þ

With its time-reversed pair, they fully span the
t2g subspace. We neglect higher-order correc-
tions such as small residual coupling between
t2g and eg manifolds. In the limit of the
tetragonal crystal field [Q ≡ E(dxy) – E(dyz,zx)]
due to the elongation of octahedra much larger
than SOC (lSO) (that is, Q >> lSO), the ground
state will approach c1 = 1 and c2 = c3 = 0 and
become a S = 1/2 Mott insulator, whereas in the
other limit of strong SOC, Q << lSO, ci's will all
be equal in magnitude, with c1, c2 pure real and c3
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Fig. 3. Magnetic ordering pattern of Sr2IrO4. (A) Layered crystal structure of Sr2IrO4,
consisting of a tetragonal unit cell (space group I41/acd) with lattice parameters a ≈ 5.5Å and
c ≈ 26Å (4). The blue, red, and purple circles represent Ir, O, and Sr atoms, respectively. (B)
Canted antiferromagnetic ordering pattern of Jeff = 1/2 moments (arrows) within IrO2 planes
and their stacking pattern along the c axis in zero field and in the weakly ferromagnetic state,
determined from the x-ray data shown in (C) to (E) (4). (C and D) L-scan profile of magnetic
x-ray diffraction (l = 1.1Å) along the (1 0 L) and (0 1 L) direction (C) and the (0 0 L) direction
(D) at 10 K in zero field. The huge fundamental Bragg peak at (0 0 16) and its background
were removed in (D). r.l.u., reciprocal lattice unit. (E) L-scan of magnetic x-ray diffraction (l =
1.1Å) along the (1 0 L) direction at 10 K in zero field and in the in-plane magnetic field of
≈0.3 T parallel to the plane. (F) The temperature dependence of the intensity of the magnetic
(1 0 19) peak (red circles) in the in-plane magnetic field H ≈ 0.3 T. The temperature-
dependent magnetization in the in-plane field of 0.5 T is shown by the solid line.
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Figure 5.1: Sr2IrO4 as a Mott insulator with Jeff=1/2. a. Layered crystal structure of Sr2IrO4.
The blue, red, and purple spheres represent Ir, O, and Sr atoms, respectively. b. Canted anti-
ferromagnetic order of Jeff=1/2 moments (arrows) within IrO2 planes and their stacking pattern
along the c axis in zero magnetic field. c. X-ray absorption spectra (solid lines) and resonant X-ray
scattering intensity (dotted lines) at the Ir L-edge. The resonant X-ray scattering signal is taken
at the magnetic reflection (1 0 22). d. For an Ir atom with spin 1/2, the calculated resonant X-ray
scattering intensities at L3 and L2 should be almost equal. For the Jeff=1/2 model, in contrast,
the resonant scattering intensity is only enhanced at the L3 edge, and is expected to be zero at the
L2 edge. The panels a, c and d are reproduced from [69], and panel b is from [4].



70

decide the wavefunction of the empty states derived from the Ir 5d level, with

|Jeff = 1/2,meff = ±1/2〉 =
1√
3

(|xy,∓σ〉 ∓ |yz,±σ〉+ i|zx,±σ〉) (5.1)

Note the empty states accessed by the RXS are atomic-like, and do not have any k-dependence.

However, first-principles calculations (which we will discuss later in this Section) have yielded a

conduction band that disperses in k.

The discrepancy about the empty states above EF could be explained by revisiting the nature

of the RXS process. The 2p core electrons are spatially confined near the center of the atom, and the

momentum of the 2p electron has a large uncertainty. Thus the momentum of the photo-pumped

(with a >11keV photon and large momentum transfer) electron in the conduction band is also not

defined. Essentially the Jeff = 1/2 state the RXS probes is a local state from the sampling of the

k-dispersed conductions band states.

We could also interpret the Jeff = 1/2 state as an intermediate (and even transient, as the

2p core hole lifetime could be very short) state in the local crystal field enviornment, without

knowing the overall band structure. This suggests the J1/2 is incredibly fragile. A slight change

to the crystal field (e.g. with octahedra stretched along the apical oxygen) might lead to the

collapse of the effective J state, as the three t2g orbitals are no longer equally weighted. This has

been experimentally shown by applying external pressure to Sr2IrO4 [123]. Also the k-space Bloch

wavefunction of the J1/2 band could be viewed as a linear combination of J1/2 states from individual

Ir atoms. However, the relative amplitude and phase among the three t2g orbitals for these Bloch

wavefunctions would probably deviate from Eqn. (5.1), maybe except at high-symmetry k-points.

First-principles analysis as we have done in Chapter 3 could be performed to check the validity of

this claim.

The ARPES spectrum of Sr2IrO4 has a somewhat well-defined band structure of both the

LHB and the Jeff = 3/2 band, as shown in Figure 5.2 a and b. Due to the
√

2×
√

2 lattice recon-

struction in the bulk materials, the Brillion zone of Sr2IrO4 folds. The high-symmetry points X and

M in the folded Brillion zone correspond to the (π, 0) and (π/2, π/2) momentum in k-space. There
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is no band crossing the Fermi level, which is consistent with the insulating behavior. Moreover, the

calculated band structure using LDA (Local Density Approximation) + SO (Spin-Orbit coupling)

+ U with U=2.0 eV and SO=0.4 eV matches the experimentally determined dispersion reasonably

well, without major band shifting or renormalization1 . Apprantly first-principles calculations need

to take into account both SOC and U to get to get a finite band gap, which is different from the

case of cuprates and many other Mott insulators. This is illustrated in Figure 5.2 c.

The agreement between ARPES measurement and band calculations may seem surprising

for correlated electron materials, which are usually believed to have reduced band width relative

to the LDA calculations. However, even for “classical Mott insulators” such as La2CuO4, the

density functional calculations have achieved qualitative agreement with experiments [125, 126].

As discussed in Chapter 4, this comes in part from improved approximation to the correlation

integral, and more importantly, from the formation of the folded antiferromagnetic Brillion zone.

The lack of band renormalization in Sr2IrO4 may be a simple result that band width and Coulomb

repulsion are comparable. We also need to keep in mind that “strong correlation” is reflected not

only in the band width, but also in the electron scattering rate. We will focus on both aspects for

the rest of this chapter.

5.2 Evolution of the Band Structure with Effective Hole Doping

Sr2IrO4 emerges as a new family of Mott insulators. The Ir-O planes are similar to the Cu-O

planes in cuprates, with the Ir atoms antiferromagnetically ordered and located at the center of

the Ir-O octahedra [127]. Driving Sr2IrO4 towards metallicity thus provides a unique opportunity

to investigate the universal features of the Mott-metal crossover. Different approaches of doping

Sr2IrO4 have been found [128, 129, 130, 131], and of special interest is the Sr2Ir1−xRhxO4 series.

The transport, magnetization and photoemission results shown in the rest of this chapter were

1 In the ARPES data shown in Figure 5.2 a, the valence band at Γ has higher binding energy than that at X, while
the energies at Γ and X are about the same in the calculation (Figure 5.2 c3). Further details are presented in [124]
These seemingly minor details affect the thermal activation of electrons across the gap, which could be measured in
transport experiments
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a	  

to formation of the half-filled Jeff ¼ 1=2 and filled Jeff ¼
3=2 bands as shown in Fig. 1(c). The circular shaped FS
reflects the isotropic orbital character of the Jeff ¼ 1=2.

The half-filled narrow band near EF suggests that a
small U can lead to a Mott instability. Indeed, a modest
U value opens up a Mott gap and splits the Jeff ¼ 1=2 band
into the upper (UHB) and lower Hubbard bands (LHB), as
presented in Fig. 1(d). The full LDAþ SOþU results
[Fig. 2(c)] manifest the Jeff ¼ 1=2 Mott state. Comparing
the LDAþ SO and LDAþ SOþU results, one can see
that the band gap is opened up by simply shifting up the
electronlikeM sheet and down the holelike ! and X sheets,
yielding a valence band maxima topology as shown in the
left panel of Fig. 2(c). It must be emphasized that LDAþ
U alone cannot account for the band gap [Fig. 2(d)]. The
FS topology changes only slightly from the LDA one,
becauseW is so large that the small U cannot play a major
role. This result demonstrates that the strong SO coupling
is essential to trigger the Mott transition, which reduces to
a Jeff ¼ 1=2 Hubbard system.

The electronic structure predicted by the LDAþ SOþ
U is borne out by ARPES results in Fig. 3. The energy
distribution curves (EDCs) near ! display band features,
none of which crosses over ! as expected in an insulator.
Figures 3(b)–3(d) show intensity maps at binding energies
of EB ¼ 0:2, 0.3, and 0.4 eV, highlighting the evolution of
the electronic structure near !. The first valence band
maximum ("X) appears at the X points [Fig. 3(b)]. As
EB increases [Figs. 3(c) and 3(d)], another band maximum
(#) appears at the ! points. The band maxima can also be
ascertained in EDCs [Fig. 3(a)]. These results agree well
with the LDAþ SOþU results, reproducing the valence
band maxima topology (the left panel of Fig. 2(c)].
Remarkably, the topmost valence band, which represents
the Jeff ¼ 1=2 LHB, has small dispersion (#0:5 eV)

although the 5d states are spatially extended and strongly
hybridized with the O 2p ones.
The unusual electronic character of the Jeff ¼ 1=2 Mott

state is further confirmed in the optical conductivity [18]
and the O 1s XAS. The optical conductivity in Fig. 4(a),
which shows an#0:1 eV insulating gap consistent with the
observed resistivity with an activation energy of 70 meV
[19], displays a double-peak feature with a sharp peak A
around 0.5 eV and a rather broad peak B around 1 eV.
Considering the delocalized 5d states, it is unusual to have
such a sharp peak A, which is even narrower than the peaks
in 3d TMOs. However, this feature is a natural conse-
quence of the Jeff Hubbard model depicted in Fig. 1(d).
The transitions within the Jeff ¼ 1=2 manifold, from
LHB to UHB, and from the Jeff ¼ 3=2 to the Jeff ¼ 1=2
UHB results in the sharp peak A and a rather broad peak B,
respectively. A direct evidence of the Jeff ¼ 1=2 state
comes from the XAS which enables one to characterize
the orbital components by virtue of the strict selection
rules [20]. The results in Fig. 4(b) show an orbital ratio
xy:yz:zx ¼ 1:1:1 within an estimation error (<10%) for
the unoccupied t2g state. In the ionic limit, the Jeff ¼ 1=2
states are jJeff ¼ 1=2; mJeff ¼ $1=2i ¼ ðjyz;$$i&
ijzx;$$i& jxy;&$iÞ=

ffiffiffi
3

p
, where $ denotes the spin state.

In the lattice, the intersite hopping, the tetragonal and
rotational lattice distortions, and residual interactions
with the eg states could contribute to off-diagonal mixing

between the ionic Jeff states. However, the mixing seems to
be minimal and the observed isotropic orbital ratio, which
is also predicted in the LDAþ SOþU, validates the
Jeff ¼ 1=2 state.
The Jeff ¼ 1=2 state also contributes unusual magnetic

behaviors. The total magnetic moment is dominated by the
orbital moment. In the ionic Jeff ¼ 1=2 state, the spin state
is a mixture of $ (up spin) and($ (down spin) and yields
jhSzij ¼ 1=6. Meanwhile the orbital state yields jhLzij ¼
2=3, resulting in twice larger orbital moment than the spin
one, i.e., jhLzij ¼ 2jh2Szij. Note that the Jeff ¼ 1=2 is
distinguished from the atomic J ¼ 1=2 (jL( Sj) with L ¼
1 and S ¼ 1=2 despite the formal equivalence. The J ¼
1=2 has a total magnetic moment hLz þ 2Szi ¼ $1=3 with
opposite spin and orbital direction (L( S), while the
Jeff ¼ 1=2 gives hLz þ 2Szi ¼ $1 with parallel one. The
Jeff ¼ 1=2 (jLeff ( Sj) is exactly analogous to the J ¼ 1=2
(jL( Sj) with mapping Leff;z ! (Lz. This is because the
Jeff ¼ 1=2 is branched off from the atomic J ¼ 5=2 mani-
fold (Lþ S) by the crystal field, the same reason for the
violation of the Hund’s rule [Fig. 1(e)]. This aspect differ-
entiates 5d TMOs from 3d TMOs described by spin-only
moments and also from rare-earth compounds with atom-
iclike J states.
The LDAþ SOþU predicts the ground state with

weak ferromagnetism resulting from a canted AFM order
with an 11) canting angle (net 22)) in the plane. The
predicted local moment is 0:36!B=Ir with 0:10!B spin
and 0:26!B orbital contributions. This value is only about
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!ð!Þ was obtained by using Kramers-Kronig (KK) trans-
formation. The validity of KK analysis was checked by
independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5# 10$10 Torr at the Beamline 2A of the Pohang Light
Source with !h" ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy #SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field
energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically
large U & W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  ml¼'1 ¼ (ðjzxi'
ijyziÞ=

ffiffiffi
2

p
and  ml¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-
mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in
Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large #SO explains why Sr2IrO4 (#SO ) 0:4 eV) is insulat-
ing while Sr2RhO4 (#SO ) 0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in
Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
$ and %X sheets and an electronlike %M sheet centered at
", X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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(2 eV), and (d) LDAþU. In (c), the left panel shows topology
of valence band maxima (EB ¼ 0:2 eV) instead of the FS.
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b	   c	  

Figure 5.2: The measured and calculated band structure of Sr2IrO4. a. The EDC along high
symmetry directions in k-space and b. constant energy intensity maps of Sr2IrO4. c. The Fermi
surface topology (left column) and band structure (right column) calculated using (from top to
bottom) LDA, LDA+SOC, LDA+SO+U (where the constant energy surface 200meV below EF is
shown), and LDA+U. The SO=0.4eV and U=2eV in all calculations. The panels are reproduced
from [4].
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Figure 5.3: The evolution of resistivity and magnetism of Sr2Ir1−xRhxO4 as a function of Rh
doping. The left axis: the normalized resistivity; and the right axis the onset of the long-range
magnetic order.
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performed on bulk single crystal Sr2Ir1−xRhxO4 samples.

In Figure 5.3, we show the normalized resistivity (left axis) and the onset temperature of the

long-range magnetic order (right axis) as a function of Rh concentration. With as little as 4% Rh

substitution, the normalized resistivity drops by 104. The long-range magnetic order decays more

slowly2 and still survives with a TN ∼17K for 15% Rh [130]. The long-range antiferromagnetism

manifests itself as weak ferromagnetism in the magnetic susceptibility, due to the canted Ir moment

in the Ir-O plane. This is also why we refer to the onset temperature (of weak ferromagnetic order)

as the Neel temperature.

Rh is directly above Ir in the periodic table, so is expected to be isovalent. It has been

proposed that the metallicity in the Rh doped iridates comes from the reduced spin-orbit coupling

of Rh (due to the smaller atomic number) which then leads to the reduced splitting of the J3/2 and

J1/2 bands [130, 131] as well as the formation of in-gap states [131] (Figure 5.4 c3). As we will

show below, the Rh atoms in fact act as effective hole dopants to Sr2IrO4 (Figure 5.4 c2). So far,

no superconductivity has yet been reported in these Rh doped compounds, which is different from

doped cuprates. The absence of superconductivity reduces possible competing orders and makes

the Rh doped iridates a cleaner system to study – the long-range canted antiferromagnetism is the

only confirmed order in the system.

We performed ARPES on single crystals of Rh doped Sr2IrO4. The samples were cleaved in

situ with vacuum better than 5×10−11 Torr. The band structure and low-energy spectra near the

Fermi level were taken with photon energies of 77eV, 80eV, and 90eV, with an energy resolution

∼25meV.

The
√

2 ×
√

2 lattice reconstruction appears in both the parent Sr2IrO4 and the Rh-doped

materials. This leads to the folding of the Brillion zone (BZ) in a similar way that the antiferro-

magnetic order in the parent cuprates gives a zone doubling. We show the lattice structures (Figure

5.4 a) and the constant energy surfaces (Figure 5.4 b) of both Sr2IrO4 and as a comparison, of Pb

2 A spoiler: Sr2IrO4 is effectively hole doped when replacing Ir with Rh. The resistivity/magnetism phase diagram
in the Sr2Ir1−xRhxO4 shares intriguing similarity to the phase diagram, e.g. of (La1−xSrx)2CuO4 [98]. It would seem
plausible this kind of phase diagram might be intrinsic in the doped Mott insulators.
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Figure 5.4: Sr2IrO4 as a Mott insulator on the square lattice. a. The real-space unit cells of
Sr2IrO4 and La2CuO4, only showing the transition metal-oxygen layer. b. The k-space unit cells
of the same, with matching color-scaling and with near-EF ARPES spectral weight. Igonoring
the 22circ Ir-O twists gives the blue cells in real and k-space, and corresponds to the regular unit
cell of La2CuO4. Including these twists in Sr2IrO4 (black, panel a) back-folds the k-space cell in
k-space (white), similar to the AF order in the parent cuprates. c1. The formation of the Mott
gap in Sr2IrO4 as a result of the spin-orbit coupling and Coulomb interaction. c2–c3. Schematics
of possible evolution of the chemical potential with Rh doping.
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doped Bi2Sr2CaCu2O8+δ. The folded and “original” Brillion zone for the iridates are marked in

white solid and blue dashed lines, respectively. The “original” Brillion zone corresponds to an Ir-O

plaquette in real space, as shown by the blue dashed line in the left panel in Figure 5.4 a. As we

will show later in the paper, the low energy features of the doped iridates are best captured not by

the folded Brillion zone, but instead by the “original” blue Brillion zone. To avoid confusion, we

use (π, 0) to mark the X point in the Brillion zone as defined in [4], and use Γ′ to denote (π, π),

which is the Γ point in the 2nd folded Brillion zone.

In Figure 5.5 a and b, we show the constant energy surfaces as a function of binding energy for

Sr2IrO4 and Sr2Ir1−xRhxO4 with x=15% at T=50K. While there is no Fermi surface for the parent

compound, there are states at the Fermi level in the x=15% iridate, corresponding to enhanced

conductivity in the Ir-O plane. The constant energy surface of the x=15% compound is quite

similar to that of the parent, except that it is shifted in binding energy by 200meV. To identify the

Fermi surface topology, we plot the ARPES spectrum along Γ′-(π, 0) for both samples (Figure 5.5

c) (along the yellow lines in Figure 5.5 a and b panels). There is a hole-pocket centered at (π, 0),

which comes from the J1/2 LHB [4, 124]. The top of the valence band is ∼180meV below EF in

the parent compound, and is above the Fermi level for the x=15% sample. Indeed, both the J3/2

band (white dashed line in Figure 5.5 c) and J1/2 LHB (green dashed line) [132, 133] are shifted

by ∼200meV.

The shift of the chemical potential is better illustrated by taking the second derivative of

EDCs along the high symmetry directions of the Brillion zone in Figure 5.5. This technique is

routinely used to highlight the band dispersion in ARPES experiments [134, 135, 136]. For both

the parent compound and the x=15% sample, the J1/2 LHB and J3/2 band are drawn in dashed

green and red lines respectively. It is evident that both the J1/2 LHB and J3/2 band move towards

EF, with neither major relative shift between these two bands nor bandwidth renormalization.

Note that while the Rh doped compound displays strong spectral weight extending towards (π/2,

π/2) (the M point) near EF, the band dispersion at the M point lies below EF. Therefore, the

“Fermi surface” is made up only of the states encircling X or (π, 0), i.e. it encompasses holes. To
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conclude, rather than a reduced splitting of the J3/2 and J1/2 bands as would have been expected

from reduced spin-orbit coupling, we observe that Sr2IrO4 is hole doped with Rh substitution.

The chemical potential shift could be determined quantitatively from the valence bands. As

shown in Figure 5.7, with the increase of Rh concentration, the chemical potential is pushed deeper

into the J1/2 LHB, confirming that Rh acts as an effective hole dopant. We extrapolate the chemical

potential shift at finite Rh densities and derive a ∼180meV intercept in the zero doping limit. Note

the top of the valence band in the parent compound locates at (π, 0) and is around 180meV below

EF, from both ARPES [124] and STM [137] experiments.

The abrupt change in the chemical potential demonstrates that the chemical potential im-

mediately jumps to the edge of the lower Hubbard band (Figure 5.4 c2), as opposed to competing

models (Figure 5.4 c3) [131, 110] where new quasiparticle-like states emerge in the middle of the

Hubbard gap.

The doping schematic in Figure 5.4 c2 also agrees with the recent optical conductivity mea-

surements [131]. Indeed, the optical conductivity experiments could not distinguish between the

two scenarios in Figure 5.4 c2 and c3. The α and β transition peaks seen in the optical conduc-

tivity are interpreted as the optical transition from the J1/2 LHB and J3/2 band to the J1/2 UHB,

respectively. For Rh concentrations less than 20%, the α and β peak locations do not change – an

indication there is not much relative shift between the J3/2 band and J1/2 Hubbard bands. This is

consistent with both scenarios in Figure 5.4. The ARPES experiment as presented here, however,

unambiguously shows that there is a sudden jump in the chemical potential, thus ruling out the

scenario with the in-gap state as shown in Figure 5.4 c2. Moreover, the low energy peak that

appears below the α peak in the Rh substituted samples could also be explained in Figure 5.4 c2.

As we will discussion in Section 5.3, there is suppression of spectral weight near EF for the Rh

doped samples. Thus the low energy peak might originate from the intra-band optical transition

across the pseudogap, without introducing any in-gap states as in Figure 5.4 c3.

The effective hole doping is quite plausible when considering the simple atomic model depicted

in Figure 5.7 b. Rh atoms have smaller spin orbit coupling than Ir, leading to the smaller splitting
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between the J3/2 and J1/2 states. Assuming the average energy of all 6 t2g states is similar for both

Rh and Ir, the empty J1/2 state of Rh would then have a lower energy than that of Ir. Thus a J1/2

electron from a neighboring Ir atom will fill the J1/2 state on the Rh site, leaving behind a hole

on the Ir site, as well as a filled and immobile Rh3+ site. Of course this is a simplistic model that

neither takes into account the finite bandwidth of the effective J states nor the Coulomb repulsion

U . Recent X-ray absorption experiments at the Rh L3-edge have also confirmed Rh has a valence

of 3+ in these compounds [138].

5.3 Low-energy Electron Dynamics in the Hole Doped Sr2IrO4

Hereafter we focus on the low-energy electronic dynamics of these hole-doped compounds in

search for “universal” features during the Mott-metal crossover. In Figure 5.8 a we show the Fermi

surface topology for the x=15% sample at 50K. The segments of the Fermi surface centered at Γ

(Γ′) and equivalent k locations are highlighted with solid yellow (blue) lines, and labeled FS1 and

FS2, respectively. EDCs from many different k points on the Fermi surface are plotted in Figure

5.8 b. There is a dramatic difference between the EDCs from FS1 and FS2 – those from FS2 are

generally pushed away from EF.

We use the standard “midpoint of leading edge” method [95, 139] to quantify the spectral

weight suppression, by fitting the EDCs to the shifted, broadened leading edge function below,

with the amount of shift (defined as the gap size) giving the 50% point of the leading edge

BG+
A+Bω

1 + e(ω+∆)/kBT ∗ (5.2)

Eqn. (5.2) is essentially a Fermi function with variable edge width kBT
∗ and with the leading edge

midpoint shifted from the chemical potential by the pseudogap value ∆. We use a constant BG to

describe the spectral weight above EF, and A, B are fitting coefficients.

Note that in contrast to the case of a BCS-like gap that works well for superconductivity or

a standard charge or spin density wave gap, this shifted edge does not have a pile-up of spectral

weight beyond the gap edge, i.e. it does not enforce spectral weight conservation upon the opening
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of the gap. Similar broad EDCs have also been observed in lightly doped cuprates [99] as well as

manganites [139]. This suggests the effectively hole-doped iridates are certainly not Fermi liquids.

We assign the gap size ∆1 and ∆2 from the leading edge fitting to FS1 and FS2 respectively.

For x=15%, ∆1 as defined by this leading edge method vanishes, and FS1 can be considered a

regular piece of Fermi surface, while EDCs from FS2 show a partial depletion of near-EF spectral

weight. As FS1 is only topologically connected to the “gapped” FS2, we describe the FS1 as a

Fermi surface “arc” and FS2 as “pseudogapped”.

We track how ∆1 and ∆2 evolve with reduced Rh concentration, as the material gets closer to

the Mott insulator. At x=4% (Figure 5.8 c), both ∆1 and ∆2 are finite, indicating that both FS1

and FS2 are pseudogapped, with ∆1 ∼3meV and an increased ∆2 ∼38meV. In Figure 5.8 d we plot

the doping dependence of ∆1 and ∆2. For x=4%∼<11%, the entire Fermi surface is pseudogapped,

which resembles the ultra-underdoped cuprates where a second pseudogap (on top of the preparing

pseudogap and above the superconducting transition temperature) affects the nodal states [97, 96].

We mark the presence of both pseudogaps as suppressed spectral weight near EF (the notch) in

Figure 5.4 c2. The pseudogaps observed here are not to be mistaken for the matrix element effect

as these pseudogaps happen over a very narrow binding energy range that is essentially identical

for different photon energies.

The pseudogap phase is often considered a symmetry-broken phase of matter. Thus the

origin of the pseudogap could be reflected in its k-space symmetry as well as its thermal evolution.

For Rh concentration 4%∼15%, ∆1 (∆2) is roughly independent of k along the Fermi surface

segment FS1 (FS2). In this sense, the pseudogaps in the non-superconducting Rh-doped iridates

are clearly different from the near-nodal prepairing pseudogap in the near-optimal cuprates [23],

where pseudogaps follow the superconducting pairing symmetry.

Figure 5.8 e shows the temperature dependence of EDCs at kF from FS1 and FS2 for the

x=11% sample, with the temperature range straddling the AF ordering temperature TN=57K.

Within the error bar no obvious changes with temperature are observed, indicating that the pseu-

dogap is not directly related to the long range canted AF order. This is further confirmed in the
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x=15% sample (5.8 b), where ∆2 is finite at 50K, above TN=17K. This observation clearly suggests

the pseudogap is not tied to the long-range magnetic order, and it is likely the pseudogap phase

persists down to the zero-temperature quantum ground state in these hole-doped iridates.

Another commonly considered origin of pseudogaps is the density-wave instabilities in the

form of Fermi surface nesting, as has been discussed in the manganites and cuprates [139, 140, 104].

In the case of iridates, it is temping to draw nesting vectors such as the white arrows (Figure 5.8

a) between FS2’s with the same gap size ∆2. However, the same ordering vector Q also connects

FS1’s, yet with a much smaller gap ∆1. The Fermi-surface nesting scenario does not explain the

preference for a larger gap along FS2. It appears the iridate pseudogap is different from influential

explanations for the antinodal pseudogap [139, 140, 104] in manganites and near optimally-doped

cuprates though it may be more connected with the more-recently observed nodal pseudogap in

heavily underdoped cuprates [97, 96].

The non-Fermi liquid nature of these doped iridates is not only reflected in the absence of

quasiparticle peaks along the EDC (Figure 5.8 b-c), but also in the single-electron scattering rate.

In the Fermi liquid theory, the quasiparticle scattering rate grows linearly with the binding energy

(and temperature) squared. For up to 15% Rh substitution, as shown in Figure 5.9 b (with raw

data shown in Figure 5.9 a) the scattering rates increase roughly linearly with binding energy – a

signature of the marginal Fermi liquid [22]. Moreover, from the resistivity curve in Figure 5.9 c,

there is a linear relation between the scattering rate and the sample temperature, as highlighted by

the black dashed line. Here we have ignored the upturn of the resistivity at low temperatures that

is likely due to a localization effect, as has also been observed in most of the underdoped cuprates

[98]. The linear Marginal Fermi Liquid scattering rate is one of the most iconic features of the

cuprates and other correlated materials such as the ruthenates [141] and has been attributed to a

wide range of ideas including quantum critical fluctuations [22] and the break-up of quasparticles

[142].

Combining the observations presented in Figure 5.8 and 5.9, the hole doped Sr2IrO4 appar-

ently shares striking similarities with the doped cuprates, including the presence of pseudogaps and
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the same sample showing a linear dependence at intermediate temperatures (black dashed line).
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marginal-Fermi-liquid-like scattering rates, despite detailed differences.

Our analysis rules out prepairing and density-wave instabilities as accountable for the pseu-

dogap. Also there is no known quantum critical point in the doped iridates. These are some of

the most claimed origins of pseudogaps in cuprates. To identify the origin of these hallmarks in

the Mott-metal crossover, we set out to find the common features between iridates and cuprates.

While structural distortions appear in both materials, their effect is more likely to be static, and less

related to the electron dynamics. We also note that for both materials the parent compound has a

long-range AF order that is gradually suppressed with carrier doping. While the pseudogap is not

tied to the long-range antiferromagnetism in iridates, the short-range AF correlations that underlie

the long-range AF order should still survive regardless of the long-range AF order. Indeed short-

range AF correlations may be responsible for many of these hallmarks. For example, short-range

AF correlations could indicate a widespread distribution of AF interaction strengths and quantum

incoherence, giving rise to the lack of quasiparticle peaks and less well-defined gapping near the

Fermi level — a possibility also very relevant for the cuprates and other doped Mott insulators.

We would like to briefly comment on recent debates over whether Sr2IrO4 is a Mott insulator

or a Slater insulator [143, 144]. The main disagreement between the two types of insulators is

the role of short-range AF correlation. The Slater insulator is a mean-field concept that ignores

the short-range correlation, or at best considers them as fluctuations of the long-range order. It

is expected the gap in a Slater insulator will diminish with decreasing long-range magnetic order,

trending to zero as the phase transition is approached. Experimentally, there is no clear change in

the band structure for both the parent compound [124, 145] and the doped iridates (this chapter)

across the onset of long-range magnetism. This suggests the long-range magnetic order is not

necessary for the formation of the gap and Sr2IrO4 is a Mott insulator. Moreover, the smooth

crossover from the Mott insulator Sr2IrO4 to its hole-doped “bad metals”’, with the emergence of

pseudogaps and marginal Fermi liquid behavior similar to doped cuprates, pinpoints the critical

role of short-range correlation in the low energy electron dynamics.
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5.4 Universal Features during the Mott-metal Crossover: Beyond ARPES

We compile a list of similarities between iridates and cuprates during the Mott-metal crossover

as below:

• The long-range antiferromagnetic order survives at a small but finite hole doping, albeit

with a lower Neel temperature.

• The in-plane resistivity drops significantly upon hole doping, and there is an upturn in the

low temperature resistivity when cooled towards 0K.

• There is a pseudogap phase that exists above the well-defined ordered phase (being the

long-range antiferromagnetism in iridates and superconductivity in cuprates); and in the

ultra-low doping limit, the entire Fermi surface is gapped.

• The electron scattering rate is linear in energy close to the Fermi level, accompanying

linear-in-temperature resistivity (above the aforementioned upturn temperature).

• The local electron density (as observed in scanning tunneling experiments) for both iridates

[146, 147] and cuprates [148] have electronic phase separation.

While the scanning-tunneling experiment in [147] were performed on Sr3Ir2O7, our ARPES exper-

iment [124] suggests Sr2IrO4 and Sr3Ir2O7 are similar, except the latter has splitted J1/2 and J3/2

bands and reduced dimensionality due to bilayer coupling.

We suggest the above similarities may be universal to the Mott-metal crossover. This argu-

ment is highly non-trivial, as the high-energy electron interactions in iridates and cuprates are very

different:

• The mechanism that forbids electron double occupancy in cuprates is the Coulomb repul-

sion, while iridates also need the participation of spin-orbit coupling.

• The spin in cuprates is antiferromagnetically ordered, while the total moment J in iridates
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exhibits antiferromagnetism3 .

Recently, there has been substantial progress in q-resolved resonant inelastic X-ray scattering

(q-RIXS) where q denotes the k-space momentum transfer. Dispersive magnetic modes <1eV have

been identified in both cuprates [149, 150] and iridates [151, 152]. Combining ARPES and RIXS, we

could portrait both the single-particle and collective excitations during the Mott-metal crossover,

and investigate, e.g. the role of AF correlations in both materials. Specifically, the high photon

energy (and thus large momentum transfer) at the Ir L-edge makes possible mapping the magnetic

excitation in the complete q-space. In the upcoming years, combined experimental exploration into

these layered iridates under controlled conditions may greatly advance our understanding of the

Mott physics.

3 Note in elastic neutron/X-ray scattering, it requires extra work (by measuring the form factor) to distinguish
ordered spin moments from ordered J moments
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Appendix A

The Hemispherical Electron Analyzer

In this appendix, we focus on the design of hemispherical analyzers, which is and will very

likely remain the major workhorse of ARPES. The ultimate goal of the electron analyzer is to

separate photoelectrons by the kinetic energy and momentum. We treat the sample as an ex-

tended electron source, with a size comparable to the projected area of the incoming photon beam.

Electrons travel with different kinetic energies and in all directions away from the sample.

The hemispherical analyzer uses electrostatic fields to steer electrons, and consists of two

parts (Figure A.1): the cylindrical lens (hereafter lens) and the hemisphere. Electrons emitted

from the extended source are refracted in the lens towards a focal plane, with different points on

the plane corresponding to a unique emission angle. In other words, the lens Fourier transforms the

angular distribution of electrons into a spatial distribution on the focal plane. There is a narrow

slit between the lens and the hemisphere, so that only electrons along a line cut in k-space are

allowed into the hemisphere. These electrons are then bent across the hemisphere and fly towards

the micro-channel plate (MCP). The spatial distribution of the electrons on the MCP is recorded,

representing the electron distribution in enegry and momentum (along an one-dimensional line in

k-space).

We refer to the cylindrical electrodes as “lenses” due to their similarity with the optical

lenses. The trace of electrons in an electrostatic field follows the Principle of Least Action in

classical mechanics, while the path of a light ray between two points in space is the one with

the least time (Fermat’s principle). This way we could introduce optical concepts including lens,
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scription of synchrotron radiation technology and appli-
cations see Koch et al., 1991), and the development of
the Scienta electron spectrometers (Beamson et al.,
1990; Martensson et al., 1994).

The configuration of a generic angle-resolved photo-
emission beamline is shown in Fig. 6. A beam of white
radiation is produced in a wiggler or an undulator (these
so-called ‘‘insertion devices’’ are the straight sections of
the electron storage ring where radiation is produced), is
monochromatized at the desired photon energy by a
grating monochromator, and is focused on the sample.
Alternatively, a gas-discharge lamp can be used as a ra-
diation source (once properly monochromatized, to
avoid complications due to the presence of different sat-
ellites and refocused to a small spot size, essential for
high angular resolution). However, synchrotron radia-
tion offers important advantages: it covers a wide spec-
tral range, from the visible to the x-ray region, with an
intense and highly polarized continuous spectrum, while
a discharge lamp provides only a few unpolarized reso-
nance lines at discrete energies. Photoemitted electrons
are then collected by the analyzer, where kinetic energy
and emission angle are determined (the whole system is
in high vacuum at pressures lower than 5!10"11 torr).

A conventional hemispherical analyzer consists of a
multielement electrostatic input lens, a hemispherical
deflector with entrance and exit slits, and an electron
detector (i.e., a channeltron or a multichannel detector).
The heart of the analyzer is the deflector, which consists
of two concentric hemispheres of radius R1 and R2 .
These are kept at a potential difference !V , so that only
those electrons reaching the entrance slit with kinetic
energy within a narrow range centered at the value
Epass#e!V/(R1 /R2"R2 /R1) will pass through this
hemispherical capacitor, thus reaching the exit slit and
then the detector. In this way it is possible to measure
the kinetic energy of the photoelectrons with an energy
resolution given by !Ea#Epass(w/R0$"2/4), where
R0#(R1$R2)/2, w is the width of the entrance slit, and
" is the acceptance angle. The role of the electrostatic
lens is to decelerate and focus the photoelectrons onto
the entrance slit. By scanning the lens retarding poten-

tial one can effectively record the photoemission inten-
sity versus the photoelectron kinetic energy. One of the
innovative characteristics of the Scienta analyzer is the
two-dimensional position-sensitive detector consisting of
two microchannel plates and a phosphor plate in series,
followed by a charge-coupled device (CCD) camera. In
this case, no exit slit is required: the electrons, which are
spread apart along the Y axis of the detector (Fig. 6) as
a function of their kinetic energy due to the travel
through the hemispherical capacitor, are detected simul-
taneously. In other words, a range of electron energies is
dispersed over one dimension of the detector and can be
measured in parallel; scanning the lens voltage is in prin-
ciple no longer necessary, at least for narrow energy win-
dows (a few percent of Epass). Furthermore, in contrast
to a conventional electron analyzer in which the mo-
mentum information is averaged over all the photoelec-
trons within the acceptance angle (typically %1°), the
Scienta system can be operated in angle-resolved mode,
which provides energy-momentum information not only
at a single k-point but along an extended cut in k space.
In particular, the photoelectrons within an angular win-
dow of #14° along the direction defined by the analyzer
entrance slit are focused on different X positions on the
detector (Fig. 6). It is thus possible to measure multiple
energy distribution curves simultaneously for different
photoelectron angles, obtaining a 2D snapshot of energy
versus momentum (Fig. 7).

The Scienta SES200 analyzer (R0#200 mm) typically
allows energy and angular resolutions of approximately
a few meV and 0.2°, respectively [for the 21.2-eV pho-
tons of the HeI" line, as one can obtain from Eq. (2),
0.2° corresponds to #1% of the cuprates’ Brillouin-
zone edge $/a]. Note, however, that in estimating the
total energy resolution achievable on a beamline, one
also has to take into account !Em of the monochro-
mator, which can be adjusted with entrance and exit
slits. The ultimate resolution a monochromator can de-
liver is given by its resolving power R#E/!Em ; it can
be as good as 1–2 meV for 20-eV photons but worsens
upon increasing photon energy. To maximize the signal
intensity at the desired total !E , monochromator and

FIG. 6. Generic beamline equipped with a plane grating monochromator and a Scienta electron spectrometer (Color).

483Damascelli, Hussain, and Shen: Photoemission studies of the cuprate superconductors

Rev. Mod. Phys., Vol. 75, No. 2, April 2003

2Δrc 

2Rc 

Figure A.1: The hemispherical electron analyzer consists of the hemisphere and the cylindrical lens.
The lens spatially separates the ejected electrons from the material by their emission angle relative
to the sample normal, and the hemisphere further maps the kinetic energy of electrons. Figure
reproduced from [8].
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aberration, etc. to describe the electron trajectory. In fact the research on steering the electrons is

called “electron optics”.

We could also understand this “optics — electron optics” analogy from the analysis below: in

Figure A.2 a, an electron travels from a region with local potential V to one with potential V +∆V .

We assume there is a hard interface between the two potentials. The electron momentum normal

to the interface is conserved, while the momentum along the interface is retarded/accelerated due

to the potential difference. We could derive a “Snell’s Law” for an electron with kinetic energy T

with the electric potential V

√
T sinα1 =

√
T + e∆V sinα2 (A.1)

For ∆V > 0, the electron is refracted towards the normal direction at the interface (Figure A.2

a). In reality, the electric potential changes smoothly in space (Figure A.2 b). We could think

of electrons as flying through a continuum of interfaces with infinitesimal potential changes and

varying index of refraction.

To design the Fourier lens needed, manufacturers often (but not necessarily) stack a series of

Einzel lens together. The geometry of a typical Einzel lens is shown in Figure A.2 b. Each Einzel

lens has three electrodes, and the center has a higher/lower voltage than the electrodes on the two

sides. The equal potential surfaces are drawn in Figure A.2 b. It is apparent that the Einzel lens is

very “fat”. How to correct the severe spherical and chromatic aberrations from these “fat” electric

lenses is crucial for improving the performance of the electron analyzer. A partial solution is to

design lens systems with a large diameter, so that electron trajectories are better approximated by

paraxial optical rays and experience less aberrations.

The hemisphere has two concentric electrodes, with the outer hemisphere placed at a more

negative potential (Figure A.1). The electric field between the inner and outer shells follows ∝ 1/r2.

For a given potential difference between the inner/outer spheres, only electrons with a specific

kinetic energy (which we call the pass energy EP ) can travel along a circular path and land at the

center of the MCP on the other side of the hemisphere. Electrons with higher/lower kinetic energy
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Figure A.2: Working mechanism of the electrostatic lens. a. The electron bends as it travels
across a hypothetical interface with different electric potential on the two sides. With ∆V > 0, the
electron is bent towards the normal direction at the interface. b. A typical geometry of an Einzel
lens. The center electrode has a higher/lower potential than those on the two sides. The colored
lines are equal potential surfaces in the cylindrical lens.
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land away from/towards the center of the hemisphere, with an elliptical trajectory. Thus we could

map the location of the electron on the MCP to its kinetic energy at the slit. The kinetic energy

of the photoelectron Ek ±∆E and the kinetic energy at the slit EP ±∆E are further related by

Ek ±∆E = (EP ±∆E)− eVdiff (A.2)

where e is the electron charge and Vdiff is the voltage difference between the slit and the sample

(which is usually grounded). Electrons flying through different spots along the slit (Figure A.1)

are distributed on the MCP parallel to the slit, corresponding to different emission angles from the

sample. Thus the angle and energy axes of the energy-angle intensity map on the MCP are parallel

and normal to the slit, respectively.

The energy resolution of the hemispherical analyzer is dominated by [8]

∆Eres = O
( w
Rc
EP
)

(A.3)

where w is the width of the slit and Rc is the radius of the circular path of electrons (see Figure

A.1). This is why more recent analyzers usually have larger hemispheres than their precursors. We

could also improve the analyzer resolution by using lower pass energies. However electrons with

lower pass energy are more likely to be affected by the the fringe electric field which appears at

the corner of the slit or close to the electrode. Moreover, lower pass energy means a smaller energy

window available on the MCP.

Recent progress in the ultrafast laser >6eV has boosted the use of time-of-flight electron

analyzers [29], where electrons are detected in the temporal order they arrive at the analyzer.

These analyzers are cylindrical lens, without the hemisphere. As the slit is removed, more electrons

are collected per unit time.

We have discussed spin-resolved ARPES results in Chapter 3. The spin-resolved hemispher-

ical analyzers have an additional spin detector where spin-up/down electrons are scattered off a

target with different probabilities. The commonly-used spin detectors include Mott chambers and

VLEED detectors, among others. A detailed review is available in Ref. [153].


