TENSOLVE: A SOFTWARE PACKAGE
FOR SOLVING SYSTEMS OF NONLINEAR
EQUATIONS AND NONLINEAR LEAST
SQUARES PROBLEMS USING TENSOR METHODS

Ali Bouaricha and Robert B. Schnabel

CU-CS-735-94

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

TENSOLVE: A Software Package for Solving Systems
of Nonlinear Equations and Nonlinear Least Squares
Problems Using Tensor Methods!

Ali Bouaricha? and Robert B. Schnabel®

CU-CS-735-94 October 1994

1Research supported by NSF Grant No. CCR-9101795; AFOSR Grants No. AFOSR-90-0109
and F49620-94-1-0101; ARO Grants No. DAAL03-91-G-0151 and DAAHO04-94-G-0228; and the
Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.

*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois
60439 U.S.A. (bouarich@mcs.anl.gov).

*Department of Computer Science, Campus' Box 430, Umvers1ty of Colorado, Boulder, Col-
orado 80309 U.S.A. (bobby@cs.colorado.edu)

Any opinions, findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the agencies named
in the acknowledgements section.

TENSOLVE: A Software Package for Solving
Systems of Nonlinear Equations and Nonlinear
Least Squares Problems Using Tensor Methods

Ali Bouaricha*
Argonne National Laboratory
and
Robert B. Schnabel
University of Colorado

This paper describes a modular software package for solving systems of nonlinear equations
and nonlinear least squares problems, using a new class of methods called tensor methods. It is
intended for small to medium-sized problems, say with up to 100 equations and unknowns, in
cases where it is reasonable to calculate the Jacobian matrix or approximate it by finite differ-
ences at each iteration. The software allows the user to select between a tensor method and a
standard method based upon a linear model. The tensor method models F(z) by a quadratic
model, where the second-order term is chosen so that the model is hardly more expensive to
form, store, or solve than the standard linear model. Moreover, the software provides two dif-
ferent global strategies, a line search and a two-dimensional trust region approach. Test results
indicate that, in general, tensor methods are significantly more efficient and robust than stan-
dard methods on small and medium-sized problems in iterations and function evaluations.

Categories and Subject Descriptors: G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations—
systems of equations; G.1.6 [Numerical Analysis]: Optimization—least squares methods; G.4
[Mathematics of Computing]: Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: tensor methods, nonlinear equations, nonlinear least squares,
rank-deficient matrices

*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439,
bouarich@mcs.anl.gov. Research supported in part by the Office of Scientific Computing, U.S. Department of
Energy, under Contract W-31-109-Eng-38.

"Department of Computer Science, University of Colorado, Boulder, Colorado 80309-0430,
bobby@cs.colorado.edu. Research supported by AFOSR Grants No. AFOSR-90-0109 and F49620-94-1-0101,
ARO Grants No. DAAL03-91-G-0151 and DAAH04-94-G-0228, and NSF Grant No. CCR-9101795.

1. Introduction

This paper describes.a modular software package for solving systems of nonlinear equations of

the form
F:R'"—R™, m > n, (1.1)

where F'is assumed to be at least once continuously differentiable, using a new class of methods
called tensor methods. If m is equal to n, the package solves the nonlinear equations prob-
lem, F(2) = 0, while if m is greater than n it solves the nonlinear least squares problem,
mingepn || F(2) ||2.

Tensor methods base each iteration on a quadratic model of the nonlinear function,

Mz + d) = F(z.) + Flad + %Tcdd, (1.2)

where z. is the current iterate, and 7. is a three-dimensional object referred to as a tensor. No
second derivative information is used in forming the tensor term 7T.. Instead, T, is formed by
asking the model to interpolate up to \/n past function values in a way that hardly increases the
storage requirements or arithmetic cost per iteration over standard linear model based methods.
The package also provides an option to use a method based on the standard linear model ((1.2)
without the tensor term); it then performs a standard Newton method for nonlinear equations
or Gauss-Newton method for nonlinear least squares. The global strategy used in either case
can either be a line search strategy or a two-dimensional trust region method over the subspace
spanned by the steepest descent direction and the tensor (or Newton/Gauss-Newton) step.

Required input to the package includes the dimensions m and n of the problem, where m is
the number of nonlinear equations and n is the number of unknowns; a subroutine to evaluate
the function F(z); and an estimate zg of the solution z.. The user may provide a code to
calculate the Jacobian rather than having it computed by finite differences, may choose the
standard method rather than the tensor method, and may specify various tolerances.

Upon completion, the program returns with an approximation z, to the solution z,, the value
of the sum of squares of the function F(z,), the value of the gradient G(z,) = F'(2,)T F(z,)
of the function %HF(LE)Hg2 at z,, and a flag specifying under which stopping condition the
algorithm was terminated.

The tensor methods upon which this software package is based were originally introduced
by Schnabel and Frank [11], for nonlinear equations. One main contribution of this paper is the
provision and extensive testing of a software package incorporating these methods. In addition,
the extension of these methods to nonlinear least squares, and the incorporation of a trust region
strategy with tensor methods, are new contributions of this paper.

The remainder of this paper is organized as follows. In Section 2 we give a brief overview
of tensor methods for nonlinear least squares problems (tensor methods for nonlinear equations
can be regarded as a special case of these). In Section 3 we discuss the globally convergent
modifications for tensor methods for systems of nonlinear equations and nonlinear least squares
problems. Section 4 gives an overview of the key features and options provided by the software
package. We then describe the user interface to the package in Section 5, which includes both
a simplified default calling sequence and a longer calling sequence. In Section 6 we describe the
meaning of the input, input-output, and output parameters for the package. Section 7 presents

the default values provided by the package. A few implementation dependencies are described
in Section 8. Section 9 gives an example of the use of the package. Finally, in Section 10 we
summarize and discuss our experimental results using the package, with both line search and
trust region strategies, on nonsingular and singular test problems.

2. Brief Overview of Tensor Methods

Tensor methods are general-purpose methods intended especially for problems where the Jaco-
bian matrix at the solution is singular or ill-conditioned. The idea is to base each iteration upon
a model that has more information than the standard linear model but is not appreciably more
expensive to form, store, or solve. Specifically, each iteration is based upon a quadratic model
(1.2) of the nonlinear function F(z). The particular choice of the tensor term T, € R™Xnxn
causes the second-order term T.dd in (1.2) to have a simple and useful form. The tensor term is
chosen to allow the model M (2. + d) to interpolate values of the function F(z) at past iterates
2_g; that is, the model should satisfy

1
F(a_y) = F(z.) + Fl(z)sk + chsksk, k=1,..,p (2.1)
where
Sk = Top — I, k=1, .., 0p
The past points z_y, ..., 2_, are selected so that the set of directions {s;} from z, to the

selected points is strongly linearly independent; each direction si is required to make an angle
of at least 45 degrees with the subspace spanned by the previously selected past directions. The
procedure of finding linearly independent directions is implemented easily by using a modified
Gram-Schmidt algorithm, and usually results in p = 1 or 2.

After selecting the linearly independent past directions sy, the tensor term is chosen by the
procedure of Schnabel and Frank [11], which generalizes in a straightforward way to nonlinear
least squares. T is chosen to be the smallest matrix that satisfies the interpolation conditions
(2.1); that is, _

remin o NTellF | (2.2)
subject to Tesgsy = 2 (F(z_) — F(z.) — F'(z.)sk),

where ||T;||r, the Frobenius norm of 7, is defined by

H T, HF2 =

7

1y

m n

Y (Tefi, 5, k)% (2.3)
k=1

1

The solution to (2.2) is the sum of p rank-one tensors whose horizontal faces are symmetric:
P
T, = Z Al SkSk, (2.4)
k=1
where ay is the k—th column of A € R™*P, 4 defined by A = ZM ™!, Z is an (m X p) matrix

whose columns are Z; = 2 (F(z_;) — F(z.) — F'(z.)s;), and M is a (p X p) matrix defined
by M(i,j) = (siTsj)’ 1 <i, 7 < p.

If we use the tensor term (2.4), the tensor model (1.2) becomes

P
M(zo + d) = Flz.) + Fle)d + % S ap {dTs). (2.5)
‘ k=1

The simple form of the quadratic term in (2.5) is the key to being able to efficiently form,
store, and solve the tensor model. The cost of forming the tensor term in the tensor model is
O(mnp) < O(mn!'-5) arithmetic operations, since p < \/n, which is small in comparison with
the O(mn?) cost per iteration of Gauss-Newton methods. The additional storage required is 4p
m-vectors, which is small in comparison with the storage for the Jacobian matrix.

Once the tensor model (2.5) is formed, a root of the tensor model is found. It is possible
that no root exists; in this case a least squares solution of the model is found instead. Thus, in
general, we solve the problem

find d € R™ that minimizes || M(z, + d) ||o. (2.6)

A generalization of the process in Schnabel and Frank [11] shows that the solution to (2.6)
can be reduced to the solution of a small number of quadratic equations, m — n + ¢ quadratic
equations in p unknowns, plus the solution of n — ¢ linear equations in n — p unknowns. Here ¢
is equal to p whenever F'(x.) is nonsingular and usually when rank(F'(z.)) > n — p; otherwise,
g is greater than p. Thus the system of linear equations is square or underdetermined, and the
system of quadratic equations is equally determined or overdetermined. The main steps of the
algorithm are the following:

1. An orthogonal transformation of the variable space is used to cause the m equations in n
unknowns to be linear in n — p variables, d; € R"7P, and quadratic only in the remaining
p variables, dy € RP.

2. An orthogonal transformation of the equations is used to eliminate the n — p transformed
linear variables from n — g of the equations. The result is a system of m — n + ¢ quadratic
equations in the p unknowns, ds, plus a system of n — g equations in all the variables that
is linear in the n — p unknowns, d;.

3. A nonlinear unconstrained optimization software package, UNCMIN [12], is used to minimize
the I, norm of the m — n 4 ¢ quadratic equations in the p unknowns, dy. (If p = 1, this
procedure is done analytically instead.)

4. The system of n — ¢ linear equations that is linear in the remaining n — p unknowns is
solved for d;.

The arithmetic cost per iteration of the above process is the standard O(mn?) cost of a QR
factorization of an m X n matrix, plus an additional O(mnp) < O(mn'*®) operations, plus
the cost of using UNCMIN in Step 3 of the algorithm. The cost of using UNCMIN is expected
to be O(p*) < O(n?) operations, since each iteration requires O(p?®) (O(p?*¢) when ¢ > p)
operations and a small multiple of p iterations generally suffice. Thus, the total cost of the
above algorithm is the O(mn?) cost of the standard method plus at most an additional cost of

O(mn'®) arithmetic operations. Note that in the case when p = 1 and g > 1, the one-variable
minimization problem is solved very inexpensively in closed form; this turns out to be the most
common case in practice.

The Newton or Gauss-Newton step is computed inexpensively (in O(mnp) operations) as a
by-product of the tensor step solution. Using the tensor step and the Newton or Gauss-Newton
step, the global portion of the algorithm determines the next iterate, as is described in the next
section. The overall algorithm is summarized below.

Algorithm 2.1. An Iteration of the Tensor Method
Given m, n, z., F(z.)

1. Calculate F’(z.), and decide whether to stop, if not:
Select the past points to use in the tensor model from among the
\/n most recent points.
3. Calculate the second-order term of the tensor model, 7., so that
the tensor model interpolates F(z) at all the points selected in Step 2.
4. Find the root of the tensor model, or its minimizer (in the [/, norm)
if it has no real root.
5. If m > n or GLOBAL = two-dimensional trust region then
5.1. Compute the standard step as a by-product of the tensor model solution.
5.2, Select the tensor or standard step using Algorithm 3.1.
6. Select z, using either a line search or a two-dimensional trust region
global strategy.
6.1. If GLOBAL = line search then
If m > n perform Algorithm 3.3, where the search direction is
the step selected in Step 5.2
Else {m = n} perform Algorithm 3.2.
Elself GLOBAL = two-dimensional trust region then
Perform Algorithm 3.4 using the model selected in Step 5.2.
7. Set z, « x4, F(z.) « F(z4), go to Step 1.

The reader may refer to [1}, [2], [6], and [11] for more details on tensor methods for nonlinear
equations and nonlinear least squares problems. These papers give preliminary indications that
tensor methods are more efficient and more robust computationally than standard methods, and
show that tensor methods have a superior rate of convergence to Newton’s method on nonlinear
equations problems where rank{F'(z.)} = n — 1.

3. Globally Convergent‘ Modifications for Tensor Methods

This section describes the global strategies in the tensor algorithm given above. As with all
algorithms for nonlinear equations and optimization, purely local tensor methods may fail to
converge if the initial guess is far away from the solution. To address this problem, two types of
modifications are used in general, line search methods and trust region methods, and either may

be best for a particular problem. For this reason, both of these global methods are included in
our software package.

This section first describes the overall framework that is used in both the line search and
trust region approaches for tensor methods. This framework involves a choice of whether to
use the tensor step or the Newton/Gauss-Newton step as the basis for the global strategy at a
given iteration. Next we briefly describe the line search that is used in the line search methods.
Finally, we describe a new model trust region approach for tensor methods that is used in the
trust region methods.

3.1. Globally Convergent Framework for Tensor Methods for Nonlinear Least Squares

Our computational experience has shown that when one is far from the solution, it is important
to sometimes allow the global step to be based upon the Newton/Gauss-Newton step rather than
the tensor step, and we have constructed heuristics to make this choice. Our experimentation
has led to two different sets of heuristics, one that is used in both the line search and trust region
methods for nonlinear least squares as well as the trust region method for nonlinear equations,
and a second that is used in line search methods for nonlinear equations. They differ primarily
in how much they bias the choice toward the tensor step. Both are constructed so that close to
the solution, the tensor step is nearly always selected. This section gives these heuristics and
the overall global frameworks that are based upon them.

Algorithm 3.1 gives the global framework that is used for nonlinear least squares and for
trust region methods for nonlinear equations. In this frameWork, the Gauss-Newton step is
chosen whenever the tensor step is not a descent direction, when the tensor step is a minimizer
of the tensor model and does not provide enough decrease in the tensor model, or when the
quadratic system of m — n + ¢ equations in p unknowns cannot be solved by UNCMIN [12] within
the iteration limit. Otherwise, the tensor step is chosen. In the definitions of d; and M7, the
Newton step and model are used for nonlinear equations, the Gauss-Newton step and model are
used for nonlinear least squares.

Algorithm 3.1. Global Framework for Tensor Methods for Nonlinear Least
Squares and for Trust Region Methods for Nonlinear Equations
Let
T, = current iterate,
J(z.) = approximation to F'(z.),
g = J(z)'F(z.), the gradient of 1 F(2)TF(2) at z.,
d; = minimizer of the tensor model, '
d, = Newton or Gauss-Newton step: —J(z.)"'F(z.) or —(J(z.)TJ(2.))" 1 (z)T F(z.)
if J(z.) is sufficiently well-conditioned,
Levenberg-Marquardt step —(J(z.)J(z.) + pI)"'J(z.)T F(z.) otherwise,

where u = / n e || J(z:) |1 || J(z.) |lcos € = machine epsilon,
M7t = tensor model,
My = Newton or Gauss-Newton model.

IF (no root or minimizer of the tensor model was found) OR
((minimizer of the tensor model that is not a root was found) AND

(I My (ze + di) lla > 5 (|l Flze) ll2 + |l Mn(ze + dn) |l2))) OR

(g¥de > =107 || g |l || di |]2)

THEN

Ty = x + Ady, N € (0,1] selected by line search, or

Ty — 2. + ady, — P g, «, 3 selected by trust region algorithm
ELSE

ry — z. + Adi, A € (0,1] selected by line search, or

T4 — z. + ady - [g, a, 3 selected by trust region algorithm
ENDIF

Algorithm 3.2 gives the global framework that is used in line search methods for nonlinear
equations. Its main difference from Algorithm 3.1 is that it always tries the tensor step first,
whether or not this step meets the descent or model decrease conditions of Algorithm 3.1. If
z. + d; provides enough decrease in ||F(z)||, then it is used as the next iterate. If not, the
strategy may tentatively compute global steps in both the Newton and the tensor directions.
That is, the global step ¢ = 2. + Ad, produced by a line search in the Newton direction d,,
is calculated. In addition, if d; is a descent direction, the global step 2% = . + Ad; produced
by a line search in the tensor direction also is calculated. Finally, we select z7y or z!, depending
on whichever has the lower function value. Thus, this strategy may involve one or more extra
function evaluations when both line searches are performed.

Algorithm 3.2. Global Framework for Line Search Methods for Nonlinear Equétions
Given z., d,, di, ¢ as defined in Algorithm 3.1, and a = 107*.
slope := g7d,
foo = gl F(ze) |I2*

xfi_ = z. + d;

fo = @Y |12

If fir < fo + a - min{slope,0} then
return ry = zf

Else

Find an acceptable 2z’ in the Newton direction d,,

using Algorithm 3.3
comment. Test if the tensor step is sufficiently descent
If g'd; > - 107 || g |l2 || di ||z then

return . = I}
Else
Find an acceptable mi in the tensor direction d,
using Algorithm 3.3
It [F(z3) [l <[l F(z}) || then
return z; = <zl
Else
return z, = zf
Endif
Endif

Endif

3.2. Global Framework for Line Search Methods for Nonlinear Equations

The line search used in the global frameworks outlined above is a standard quadratic backtrack-
ing line search. It starts with A = 1 and then, if z. + d is not acceptable, reduces A until
an acceptable z. + Ad is found, based upon a one-dimensional quadratic model of F(z) F(z).
Let us define '

) = 2l Fee + 2a) 12

the one-dimensional restriction of f(z) = 1|| F(z) l]2* to the line through z. in the direction
d. If we need to backtrack, we use the values of f(0), F(0), and f(\) to model f and then
take the value of A that minimizes this model as the next value of A in Algorithm 3.3 subject to
restrictions on how much A can decrease at once (see, e.g., [4], pages 126-127 for more details).
This results in the following algorithm.

Algorithm 3.3. Standard Quadratic Backtracking Line Search
Given z., d, ¢ = J(2.)TF(z.), and a = 107*.
slope := gld
1
2

fe = 3l Fzo) |2

A = 1.0

T, = T, + Ad

fy = 3l Fa) 2

While f, > fo + @ -+ A - slope do ‘
Atemp = —A - slope /(A2[fp - fe — A - slopel)
A i=max{Aemp, A/10}
T, = T, + A d
S o= Yl Py |12

EndWhile

3.3. Trust Region Tensor Methods for Nonlinear Equations and Nonlinear Least
Squares '

Two computational methods—the locally constrained optimal (or “hook”) method and the dog-
leg method—are generally used for approximately solving the trust region problem based on the

standard model,
minimize || F(z.) + J(zc)d ||2* (3.1)

subject to || d || < 4,

where 6. is the current trust region radius. When &, is shorter than the standard step, the
locally constrained optimal method [8] finds a p. such that || d(pc) ||2 = 6., where d(p.) =
—(J(z)T T (xe) + pI) " ()T F(x,). Then it takes o4 = 2, + d(u.). The dogleg method is
a modification of the trust region algorithm introduced by Powell [10]. Rather than finding a
point x4 = z.+ d(x.) on the curve d(u,.) such that || z — z. || = &, it approximates this curve
by a piecewise linear function in the subspace spanned by the Newton direction and the steepest
descent direction —.J(z.)T F(z.), and takes z, as the point on this piecewise curve for which
|| 24 — z. || = 6. (See, e.g., [4] for more details.)

Unfortunately, these two methods are difficult to extend to the tensor model, because certain
key properties do not generalize to this model. Trust region algorithms based on (3.1) are well
defined because there is always a unique point z, on the hookstep or dogleg curve such that
[ld(pe)ll = 8.. Additionally, the value of || F(z.) + J(zc)d ||2* along these curves decreases
monotonically from z. to 2%, where 2} = z. + d,, which makes the process reasonable. These
properties do not extend to the fourth-order sum of squares of the tensor model, which may not
be convex. Furthermore, the analogous curve to d(y.) is more expensive to compute. For these
reasons, we consider a different trust region approach for our tensor methods.

The trust region approach that is used in this package is to solve a two-dimensional trust
region problem over the subspace spanned by the steepest descent direction and the tensor (or
standard) step. The main reasons that led us to adopt this approach are that it is easy to
construct and is closely related to dogleg-type algorithms over the same subspace. In addition,
the resultant step may be close to the optimal trust region step in practice. Byrd, Schnabel, and
Shultz [3] have shown that for unconstrained optimization using a standard quadratic model,
the analogous two-dimensional minimization approach produces nearly as much decrease in the
quadratic model as the optimal trust region step in almost all cases.

The two-dimensional trust region approach for the tensor model computes an approximate
solution to the exact trust region problem

p

minimize || F(z.) + J(z)d + —;- S g {42 |1 (3.2)
k=1

subject to || d ||z < 6.,
by performing a two-dimensional minimization

minimize || F(z.) + J(2)d + % S o {d7s)? |12 (3.3)

k=
subject to || d {|2 < 6., d El [, g5,

where d; and g, are the tensor step and the steepest descent direction, respectively, and 6, is the
trust region radius. This approach always produces a step that reduces the quadratic model by
at least as much as a dogleg-type algorithm, which minimizes the model over a piecewise linear
curve in the same subspace. When Algorithm 3.1 chooses the Newton or Gauss-Newton step,
we instead solve the variant of (3.3) where d; is replaced by d, and the quadratic term in the
model is omitted.

Before we give the complete two-dimensional trust region algorithm for tensor methods,
we show how to convert the problem (3.3) into an unconstrained minimization problem in one
variable. This transformation is the key to solving (3.3) efficiently. First, we form an orthonormal
basis for the two-dimensional subspace by performing the projection

T
. 9gs de
s=¢s—d 34
g g tdérdt ()
and normalizing §s and d; to obtain

= dy N s
dy = s s = T . 3.5
Tl Tk (3:5)

Since d is in the subspace spanned by d; and Js, it can be written as
d = ady + Bjs, o,8€R. (3.6)

If we square the I norm of this expression for d and set it to 2, we obtain the following equation
for B as a function of a:

B = /8% — al.

o4

Substituting this expression for 8 into (3.6) and then the resulting d into (3.3) yields the global
minimization problem in the one variable «, '

minimize || F(z.) + aJ(xc)(ft + /62 —a?J(z.)gs + %Zzzl ak(c)s{(zt + /62 — azs{g;)z)ﬂgg,
(3.7)
where —6. < a < é.. Thus, problems (3.7) and (3.3) are equivalent.
We use the same procedure to convert the problem

minimize || F(z.) + J(z.)d ||2° (3.8)

subject to || d ||z < 8., de[dng]

to the equivalent global minimization problem in the one variable «,

minimize|| F(z.) + aJ(z)d, + /62 — o? J(z.)ds |22, (3.9)
where -6, < a < 6.
The two-dimensional trust region method for tensor methods is given in the following algo-
rithm.

Algorithm 3.4. Two-Dimensional Trust Region for Tensor Methods

Given z., d,, d; as defined in Algorithm 3.1.

Let g, = —J(2.)7 F(z.), the steepest descent direction;
0. the current trust region radius;
Jj and ¢ given by (3.5);

d, obtained in an analogous way to (Zt
by applying transformations (3.4) and (3.5) to d,.

If tensor model selected then
Solve problem (3.7)
d = o.d + g, /6T = o2
where «, 1s the global minimizer of (3.7)
Else { standard model selected }
Solve problem (3.9)
d = o, d, + §s 62 — a?
where «, is the global minimizer of (3.9)

10

Endif
{Check new iterate and update trust region radius}
.”L’+ = T, -+ d

L Fles) [12° — 3l Free) [)°

If > 107" then
pred
the global step d is successful
Else
decrease trust region
go to Step 1
Endif
where

pred = || F(ze) + J(z)d + § Thoja{dlsi}? |[2* - 1| F(zo) |I2%, if
tensor model selected,

pred = Y| F(e.) + J(zo)d |l2° = | F(zo) |I2°, if
standard model selected.

The methods used for adjusting the trust radius during and between steps are given in
Algorithm A6.4.5 [9, p. 338]. The initial trust radius can be supplied by the user; if not, it is set
to the length of the initial Cauchy step. Our software solves the one variable global optimization
problem by a straightforward partitioning scheme described in [2].

4. Overview of the Software Package

This section summarizes the key features of the software package.

The user has the option to solve systems of nonlinear equations or nonlinear least squares
problems. In either case, the required input for the software is the number of equations M, the
~ number of variables N, the function FVEC that computes F(z), and an initial guess Xo. If M =
N, the problem is nonlinear equations; if M > N it is nonlinear least squares. The user does not
have to set a flag differentiating between the two problems.

Two methods of calling the package are provided. In the short version, the user supplies
only the above information, and default values of all other options and parameters are used.
(These include the use of the tensor rather than the standard method, the use of the line search
global strategy, and the calculation of the Jacobian by finite differences). In the other method
for calling the package, the user may override any default values of the package options and
parameters.

The package allows the user to use the tensor method or the standard Newton or Gauss-
Newton method. METHOD = 1 specifies the tensor method and is the default value. If the flag
METHOD is set to 0, the package will use the standard method.

Two global strategies are implemented in the software package, a line search method, and a
two-dimensional trust region method over the subspace spanned by the steepest descent direction
and the tensor (or Newton/Gauss-Newton) step. The global strategy may be specified using the
parameter GLOBAL. GLOBAL = O is the default and specifies the line search. GLOBAL = 1 specifies
the trust region.

The user may supply an analytic routine to evaluate the Jacobian matrix. If it is not
supplied, the package computes the Jacobian by finite differences. The finite difference routine

11

is described in detail by Dennis and Schnabel [4]. The parameter JACFLG specifies whether an
analytic Jacobian has been provided. The default value, which specifies finite differences, is
JACFLG = 0. When the analytic Jacobian is supplied, the user has the option of checking the
supplied analytic routine against the package’s finite difference routine; if MSG is set to 2 modulo
4, the package will not check the analytic Jacobian against the finite difference one; otherwise
it will.

Scaling information for the variables and/or the functions may be supplied by the user.
The software package is coded so that if the user inputs the typical magnitude typz; of each
component of z and/or the typical magnitude typf; of each component of the function F, the
performance of the package is equivalent to what would result from redefining the independent
variable z in the user’s function and the components of the function F with

[1/typay

zscaled = o . | (4.1)

1/typz, |

and/or)
1/typfi

Fscaled = A ' (4.2)

/typfm |

respectively, and running the package without scaling. The default value of each typz; and typf;
is 1 (i.e., no scaling). Scaling is often important to use for problems in which there is great
variation in the magnitudes of individual variables and/or function components.

The package includes a module INCHK that examines the input parameters for illegal entries
and Consis‘tency. Certain illegal or inconsistent entries are reset to default values by this module,
while other illegal entries cause the package to terminate. Details are given in the parameter
listing in Section 6.

- The standard (default) output from this package consists of printing the input parameters,
the final results, and the stopping condition. The printed input parameters are those used by
the algorithm and hence include any corrections made by the module INCHK. The program will
provide an error message if it terminates as a result of input errors. The printed results include a
message indicating the reason for termination, an approximation z, to the solution z., the value
of the sum of squares of the function F(z,), and the gradient vector G(z,) = F'(z,)T F(z,) of
the function %HF(CE)H22 at r,. The package provides an additional means for controlling the

12

output by means of the variable MSG, described in Section 6. The user may suppress all output
or may print the intermediate iterations results in addition to the standard output.

5. Interfaces and Usage

Two interfaces are provided with the system. NONLQO requires the user to provide only the
dimensions M and N of the problem, a subroutine to evaluate the function F, and a starting
vector Xo (as well as three work arrays and their dimensions). NONLQ requires the user to supply
all parameters. However, the user may specify selected parameters only by first invoking the
subroutine DFAULT, which sets all parameters to their default values, and then overriding only
the desired values. This is the normal usage of NONLQ.

The two calling sequences are as follows.

1. CALL NONLQO(NRM, NRN, NC, XO, M, N, WRKUNC, WRKNEM, WRKNEN, IWRKN,
FVEC, MSG, XP, FP, GP, TERMCD)

2. CALL DFAULT(M, N, ITNLIM, JACFLG, GRADTL, STEPTL, FTOL,
METHOD, GLOBAL, STEPMX, DLT, TYPX, TYPF, IPR, MSG)

C USER OVERRIDES SPECIFIC DEFAULT VALUES PARAMETERS, E.G.

GRADTL = 1.0D-6
STEPTL = 1.0D-7
FTOL = 1.0D-10
JACFLG =1

CALL NONLQ(NRM, NRN, NC, XO, M, N, TYPX, TYPF, ITNLIM, JACFLG,
GRADTL, STEPTL, FTOL, METHOD, GLOBAL, STEPMX, DLT, IPR,
WRKUNC, WRKNEM, WRKNEN, IWRKN, ANJA, FVEC, MSG, XP, FP, GP, TERMCD)

6. Parameters and Default Values

The parameters employed with the calling sequences of Section 5 are fully described here. NONLQO
uses only those parameters that are preceded by an asterisk. When it is noted that module
DFAULT returns a given value, this is the value employed by interface NONLQO. The user may
override the default value by utilizing NONLQ as shown above.

Following each variable name in the list below appears a one- or a two-headed arrow symbol
of the form —, «, and +—. These symbols signify that the variable is for input, output, and
input-output, respectively. _ .

The symbol € in some parts of this section designates the machine epsilon (see Section 8).

*NRM—: A positive integer specifying the row dimension of the work array WRKNEM in the user’s

calling program. NRM must satisfy the relation NRM > M + N; if not, the program will abort. The
provision of this variable, NRN, and NC (below) allows the user the flexibility of solving several

13

problems with different values of M and N one after the other, with the same work arrays.

*NRN—: A positive integer specifying the row dimension of the work array WRKNEN in the user’s
calling program. NRN must satisfy the relation NRN > N; if not, the program will abort.

*NC—: A positive integer specifying the row dimension of the work array WRKUNC in the user’s
calling program. NC must satisfy the relation NC > [v/N]; if not, the program will abort.

X0—: An array of length N that contains an initial estimate of the solution x.

*M—: A positive integer specifying the number of nonlinear equations. The program will abort
ifM<O0.

*N—: A positive integer specifying the number of variables in the problem. The program
will abort if N < 0.

TYPX—: An array of length N in which the typical size of the components of X is specified.
The typical component sizes should be positive real scalars. If a negative value is specified, its
absolute value will be used. If 0. is specified, 1. will be used. This vector is used by the package
to determine the scaling matrix, D,. Although the package may work reasonably well in a large
number of instances without scaling, it may fail when the components of z, are of radically
different magnitude and scaling is not invoked. If the sizes of the parameters are known to differ
by many orders of magnitude, then the scale vector TYPX should definitely be used. For example,
if it is anticipated that the range of values for the iterates z; would be

] € [—1010, 1010]
Ty € [—102 s 104]
z3 € [-6x1075 9x 107

then an appropriate choice would be TYPX = (1.0D10, 1.0D3, 7.0D-6). Module DFAULT returns
TYPX = (1.0DO, ..., 1.0D0).

TYPF—: An array of length M in which the typical size of the components of F is specified.
The typical component sizes should be positive real scalars. If a negative value is specified,
its absolute value will be used. If 0. is specified, 1. will be used. This vector is used by the
package to determine the scaling matrix Dr. TYPF should be chosen so that all the components
of Dp(z) have similar typical magnitudes at points not too near a root, and should be chosen
in conjunction with FTOL. It is important to supply values of TYPF when the magnitudes of
the components of F(z) are expected to be very different; in this case, the program may work
better with good scaling information than with Dr = I. If the magnitudes of the components
of F(z) are similar, the choice Dp = I suffices. Module DFAULT returns TYPF = (1.0D0, ..., 1.0D0).

ITNLIM—: Positive integer specifying the maximum number of iterations to be performed before

the program is terminated. Module DFAULT returns ITNLIM = 150. If the user specifies' ITNLIM
< 0, the module INCHK will supply the value 150.

14

JACFLG—: Integer flag designating whether or not an analytic Jacobian has been supplied by
the user. ‘

e JACFLG
e JACFLG

0 : No analytic Jacobian supplied.
1 : Analytic Jacobian supplied.

1]

When JACFLG = 0, the Jacobian is obtained by finite differences. The module‘DFAULT' returns
the value 0. If the user specifies an illegal value, the module INCHK will supply the value 0.

GRADTL—: Positive scalar giving the tolerance at which the scaled gradient of f(z) = 1 F(2)T F(z)
is considered close enough to zero to terminate the algorithm. The scaled gradient is a mea-
sure of the relative change in F in each direction z; divided by the relative change in z;. More
precisely, the test used by the program is

[I Vf(z)|; maz{| ;| TYPX;}
max{ maz{Fnorm,n/2}

} < GRADTL.
Here V f(z) = J(2)T Dp?F(z), and Fnorm = %HDFF(av)Hz2 where D = diag(1/TYPFy,...,1/TYPF,,).
The module DFAULT returns the value §1/3. If the user specifies a negative value, the module
INCHK will supply the value ¢1/3 .

STEPTL—: A positive scalar providing the minimum allowable relative step length. STEPTL
should be at least as small as 107¢, where d is the number of accurate digits the user desires in
the solution z.. The actual test used is

ko k=1
max 2" — 2| < STEPTL.
p maz{|z;*, TYPX;|}

The program may terminate prematurely if STEPTL is too large. Module DFAULT returns the
value €2/3, If the user specifies a negative value, the module INCHK will supply the value €2/3.

FTOL—: A positive scalar giving the tolerance at which the scaled function DpF(z) is con-
sidered close enough to zero to terminate the algorithm. The program is halted if ||DpF(z)||oo
is < FTOL. This is the primary stopping condition for nonlinear equations; the values of TYPF
and FTOL should be chosen so that this test reflects the user’s idea of what constitutes a solution
to the problem. The module DFAULT returns the value ¢2/3. If the user specifies a negative value,
the module INCHK will supply the value €213,

METHOD—: An ihteger flag designating which method to use.

e METHOD = 0 : Newton or Gauss-Newton algorithm is used.
e METHOD = 1 : Tensor algorithm is used.

Module DFAULT returns value 1. If the user specifies an illegal value, module INCHK will reset
METHOD to 1, and execution will continue.

GLOBAL—: An integer flag designating which global strategy to use.

15

e GLOBAL = 0 : Line search is used.
e GLOBAL = 1 : Two-dimensional trust region is used.

Module DFAULT returns value of 0. If the user specifies an illegal value, module INCHK will reset
GLOBAL to 0, and execution will continue.

STEPMX—: A positive scalar providing the maximum allowable scaled step length || D, (2L —2.)||2,
where D, = diag(1/TYPXy,...,1/TYPX,). STEPMX is used to prevent steps that would cause the
nonlinear equations problem to overflow, and to prevent the algorithm from leaving the area of
interest in parameter space. STEPMX should be chosen small enough to prevent these occurrences
but should be larger than any anticipated “reasonable” step. Module DFAULT returns the value
STEPMX = 10°. If the user specifies a nonpositive value, module INCHK sets STEPMX to 103.

DLT—: A positive scalar giving the initial trust region radius. When the line search strat-
egy is used, this parameter is ignored. For the trust region algorithm, if DLT is supplied, its
value should reflect what the user considers a maximum reasonable scaled step length at the
first iteration. If DLT is not supplied (DLT = -1.0), the routine uses the length of the Cauchy step
at the initial iterate instead. The module DFAULT returns the value -1.0. If the user specifies a
nonpositive value, module INCHK sets DLT = -1.0.

IPR—: The unit on which the package outputs information. DFAULT returns the value 6, which
is the standard Fortran unit for the printer.

*WRKUNC—: Workspace used by UNCMIN. The user must declare this array to have dimensions at
least NCx(2[+/N]+4) in the calling routine; if not, the program will abort.

*WRKNEM—: Workspace used to store the Jacobian matrix, the function values matrix FV, the
tensor matrix ANLS, and working vectors. The user must declare this array to have dimensions
at least NRMx (N+2[+/N]+11) in the calling routine; if not, the program will abort.

*WRKNEN—: Workspace used to store the matrix S of previous directions, the matrix SHAT of
linearly independent directions, and working vectors. The user must declare this array to have
dimensions at least NRNx(2[v/N]+9) in the calling routine; if not, the program will abort.

*IWRKN—: Workspace used to store the integer working vectors. The user must declare this
array to have dimensions at least NRNx3 in the calling routine; if not, the program will abort.

ANJA—: The name of a user-supplied subroutine that evaluates the first derivative (Jacobian)
of the function F(z). The subroutine must be declared EXTERNAL in the user’s program and
must conform to the usage

CALL ANJA(JAC, X, NRM,),
where X is a vector of length N and the 2-dimensional array JAC is the analytic Jacobian of F at

X. When using the interface NONLQ, if no analytic Jacobian is supplied (JACFLG = 0), the user

16

must use the dummy name FDAJA as the value of this parameter.

*FVEC—: The name of a user-supplied subroutine that evaluates the function F at an arbi-
trary vector X. The subroutine must be declared EXTERNAL in the user’s calling program and
must conform to the usage

CALL FVEC(X, F, M, N),

where X is a vector of length N and F is a vector of length M. The subroutine must not alter the
values of X.

*MSGe—: An integer variable that the user may set on input to inhibit certain automatic
checks or to override certain default characteristics of the package. (In the short call it should
be set to 0 on input.) There are four “message” features that can be used individually or in
combination as discussed below.

e MSG = O : Values of input parameters, final results, and termination code are printed.

e MSG = 2 : Do not check user’s analytic Jacobian routine against its finite difference esti-
mate. This may be necessary if the user knows the Jacobian is properly coded, but the
program aborts because the comparative tolerance is too tight. Do not use MSG = 2 if the
analytic Jacobian is not supplied.

e MSG = 4: Suppress printing of the input state, the final results, and the stopping condition.

e MSG = 8: Print the intermediate results; that is, the input state, each iteration including
the current iterate zy, 2lleuF(zvk)[t;_; , and Vf(a:) =J(z)TDFQF(x), and the final results
including the stopping conditions.

(]

The user may specify a combination of features by setting MSG to the sum of the individual
components. The module DFAULT returns a value of 0. On output, if the program has terminated
because of erroneous input, MSG contains an error code indicating the reason.

e MSG = 0 : No error.

e MSG = -1 : Illegal dimension , NRM < M+N.

e MSG = -2 : Illegal dimension , NRN < N.

e MSG = -3 : Illegal dimension , NC < [v/N].

e MSG = -4 : Illegal dimension , M < 0.

e MSG = -5 : Illegal dimension , N < 0.

e MSG = -6 : Program asked to overrlde check of analytic Jacobian against finite difference
estimate, but routine ANJA not supplied (incompatible input).

e MSG = -7 : Probable coding error in the user’s analytic Jacobian routine ANJA. Analytic

and finite difference Jacobian do not agree within the assigned tolerance.

*XP«: An array of length N containing the best approximation to the solution z, upon return.
(If the algorithm has not converged, the final iterate is returned).

*FP«: An array of length M containing the function value F(XP).

17

*GP—: An array of length N containing the gradient of the function %HF(I)ng at XP.

*TERMCD~—: An integer that specifies the reason the algorithm was terminated.

o TERMCD = O : No termination criterion satisfied (occurs if package terminates because of
illegal input).

e TERMCD = 1 : function tolerance reached. Current iteration is probably solution.

e TERMCD = 2: gradient tolerance reached. For nonlinear least squares, current iteration is
probably solution; for nonlinear equations, this could either be solution or local minimizer.

e TERMCD = 3 : Successive iterates within tolerance. Current iterate may be solution, or
algorithm may have bogged down away from solution.
e TERMCD = 4: Last global step failed to locate a point lower than XP. It is likely that either
~ XP is an approximate solution of the problem or STEPTL is too large.
e TERMCD = 5 : Iteration limit exceeded.

7. Summary of Default Values

The following parameters are returned by the module DFAULT:

ITNLIM = 150
JACFLG = 0

IPR = 6

GRADTL = ¢€!/3
FTOL = ¢2/3
STEPTL = ¢2/3
METHOD = 1
GLOBAL = 0
STEPMX = 10.0D+3
DLT = -1.0DO

TYPX = (1.0D0, ..., 1.0D0)
TYPF = (1.0DO, ..., 1.0D0O)
MSG = 0O

8. Implementation Details

~ This program package has been coded in Fortran 77 using double precision. It consists of
approximately 8700 lines of code, of which 3400 lines are the software package UNCMIN [12]
which has been designed to solve the unconstrained nonlinear optimization problem, and about
25% are comments. The total data storage required is about M x (N +2v/N) + N x (N + 4v/N)
double-precision numbers. The program was developed and tested on a Sun4 computer in the
Computer Science Department at the University of Colorado at Boulder.

There is one machine dependency. The machine epsilon is calculated by the package and used
in several places, including finite differences stepsizes and stopping criteria. On some computers,
the returned value may be incorrect because of compiler optimizations. The user may wish to

18

check the computer value of the machine epsilon and, if it is incorrect, replace the code in the
subroutine MACEPS with the following statement.

EPS = correct value of machine epsilon

9. Example of Use

In the example code shown below in Figure 1, we first call the default routine DFAULT which
returns with the default values, then override the values of GRADTL, FTOL, and STEPTL. Then we
call the interface NLEQ to solve the system of nonlinear equations coded in FVEC. We arbitrarily
base our storage upon NRM = 100 and NRN = 30 to allow for larger problems than those shown.

PROGRAM TENSLV.
INTEGER NRM,NRN,NC,M,N,ITNLIM,JACFLG,METHOD
INTEGER GLOBAL,IPR,MSG,TERMCD,I
- DOUBLE PRECISION GRADTL,STEPTL,FTOL,STEPMX,DLT
PARAMETER (NRM = 100, NRN = 30, NC = 6)
INTEGER IWRKN(NRN,3)
DOUBLE PRECISION XO(NRN),WRKUNC(NC,16),WRKNEM(NRM,53)
DOUBLE PRECISION WRKNEN(NRN,21),TYPX(NRN),TYPF(NRM)
DOUBLE PRECISION XP(NRN),bFP(NRM),GP(NRN)
EXTERNAL FDAJA,FVEC
READ(5,%*) M,N
READ(5,*) (X0(I),I=1,N)
CALL DFAULT(M,N,ITNLIM,JACFLG,GRADTL,STEPTL,FTOL,METHOD,

+ GLOBAL,STEPMX,DLT,TYPX,TYPF,IPR,MSG)
GRADTL = 1.0D-5
FTOL = 1.0D-9
STEPTL = 1.0D-9
CALL NONLQ(NRM,NRN,NC,XO,M,N,TYPX,TYPF,ITNLIM, JACFLG,GRADTL,
+ STEPTL,FTOL,METHOD,GLOBAL ,STEPMX,DLT, IPR,WRKUNC,
+ WRKNEM,WRKNEN , IWRKN,FDAJA ,FVEC,MSG,XP,FP,GP,TERMCD)
END

Figure 1. Driver to solve a system of nonlinear equations or a nonlinear

' least squares problem

C

C The following is a subroutine for the Rosenbrock function.

C :
SUBROUTINE FVEC(X,F,M,N)
INTEGER N,M
DOUBLE PRECISION X(N),F(M)
F(1) = 10.0D0*(X(2)-X(1)**2)
F(2) = 1.0D0-X(1)
RETURN

" END

19

If we run the above example with the following input:
M, N: 22 .
X0: -1.2D0 1.0DO the output will be as follows:

NESLV TYPICAL X

NESLV 0.1000000000000D+01 0.1000000000000D+01
NESLV DIAGONAL SCALING MATRIX FOR X

NESLV 0.1000000000000D+01 0.1000000000000D+01
NESLV TYPICAL F

NESLV 0.1000000000000D+01 0.1000000000000D+01
NESLV DIAGONAL SCALING MATRIX FOR F

NESLV 0.1000000000000D+01 0.1000000000000D+01
NESLV JACOBIAN FLAG =0 (=1 IF ANALYTIC JACOBIAN SUPPLIED)
NESLV METHOD =1 (=1 IF TENSOR METHOD USED)
NESLV GLOBAL STRATEGY =0 (=0 IF LINE SEARCH USED)
NESLV ITERATION LIMIT = 150

NESLV MACHINE EPSILON = 0.2220446049250D-15
NESLV STEP TOLERANCE = 0.1000000000000D-08
NESLV GRADIENT TOLERANCE = 0.1000000000000D-04
NESLV FUNCTION TOLERANCE = 0.1000000000000D-08
NESLV MAXIMUM STEP SIZE = 0.1000000000000D+04
NESLV TRUST REG RADIUS =-0.1000000000000D+01
RESULT ITERATION K = 0

RESULT X(K)

RESULT -0.1200000000000D+01 0.1000000000000D+01
RESULT FUNCTION AT X(K)

RESULT 0.1210000000000D+02

RESULT GRADIENT AT X(X)

RESULT -0.1077999998579D+03 -0.4400000000000D+02
NLSTP FUNCTION VALUE CLOSE TO ZERO

RESULT ITERATION K = 7

RESULT X(K)

RESULT 0.9999999997177D+00 0.9999999994362D+00
"RESULT - FUNCTION AT X(X)

RESULT 0.3986881344063D-19

RESULT GRADIENT AT X(X)

RESULT -0.4270366293595D-09 0.7237543951455D-10

20

If we now wish to solve the nonlinear least squares problem given by the following subroutine

FVEC:

C
C
C

The following is a subroutine for the Wood function.

SUBROUTINE FVEC(X,F,M,N)
INTEGER M,N

DOUBLE PRECISION X(N),F(M)

F(1) = 10.0DO*(X(2)-X(1)*x2)

F(2) = 1.0D0-X(1)

F(3) = SQRT(90.0D0)*(X(4)-X(3)**2)

F(4) = 1.0D0-X(3)

F(5) = SQRT(10.0D0)*(X(2)+X(4)-2.0D0)
F(6) = (1.0DO/SQRT(10.0D0))*(X(2)-X(4))
RETURN

END

with the following input:

M, N: 6
X0:

4

the output will be as follows:

NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV

TYPICAL X
0.1000000000000D+01
0.1000000000000D+01

-30.0D0 -10.0D0 -30.0D0 -10.0DO
GLOBAL: 1 (i.e. this is set after the call to DFAULT in the driver program)

0.1000000000000D+01

DIAGONAL SCALING MATRIX FOR X

0.1000000000000D+01
0.1000000000000D+01
TYPICAL F

0.1000000000000D+01
0.1000000000000D+01

0.1000000000000D+01

0.1000000000000D+01
0.1000000000000D+01

DIAGONAL SCALING MATRIX FOR F

0.1000000000000D+01
0.1000000000000D+01

JACOBIAN FLAG
METHOD

GLOBAL STRATEGY
ITERATION LIMIT
MACHINE EPSILON
STEP TOLERANCE

0.1000000000000D+01

0.1000000000000D+01

0.2220446049250D-15
0.1000000000000D-08

21

o

.10060000000000D+01

.1000000000000D+01

.1060000000000D+01
.1000000000000D+01

.1000000000000D+01
.1000000000000D+01

IF ANALYTIC JACOBIAN SUPPLIED)
IF TENSOR METHOD USED)
IF LINE SEARCH USED)

NESLV GRADIENT TOLERANCE

]

0.1000000000000D-04

NESLV FUNCTION TOLERANCE = 0.1000000000000D-08
NESLV MAXIMUM STEP SIZE = 0.1000000000000D+04
NESLV TRUST REG RADIUS =-0.1000000000000D+01

RESULT ITERATION K = 0
RESULT X(K)

RESULT -0.3000000000000D+02 -0.1000000000000D+02 -0.3000000000000D+02
RESULT -0.1000000000000D+02

RESULT FUNCTION AT X(K)

RESULT 0.7867288100000D+08

RESULT GRADIENT AT X(X)

RESULT -0.5460030962972D+07 -0.9122000000267D+05 -0.4914030950915D+07
RESULT -0.8211996230035D+05

NLSTP FUNCTION VALUE CLOSE TO ZERO

RESULT ITERATION K = 5

RESULT X(X)

RESULT 0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+01
RESULT 0.1000000000000D+01

RESULT FUNCTION AT X(K)

RESULT 0.2488861702651D-26

RESULT GRADIENT AT X(K)

RESULT 0.1178612771710D-11 -0.6152522979420D-12 0.7212008821566D-12
RESULT -0.3861688746554D-12

10. Test Results

We have tested the TENSOLVE software package using the algorithms described above on a variety
of nonsingular and singular problems. This section summarizes and discusses the test results.

In our tests, the package terminates successfully if the relative size of (z4 — z.) is less
than macheps%, or || F(z4) || is less than machep,s%. It terminates unsuccessfully if the
iteration limit of 150 is exceeded. If the last global step fails to locate a point lower than z.
in the line search or trust region global strategies, or the relative size of J(z4)T F(z.) is less
than machepsi, the method stops and reports this condition; this may indicate either success
or failure. All our computations were performed on a Sun4 computer in the Computer Science
Department at the University of Colorado at Boulder, using double-precision arithmetic.

First we tested the software package on the set of nonlinear equations and nonlinear least
squares problems in Moré, Garbow, and Hillstrom [9]. These problems all have nonsingular
Jacobians at the solution with the exception of Powell’s singular function. Then we created

22

singular test problems as proposed in Schnabel and Frank [11] by modifying the nonsingular
test problems of Moré, Garbow, and Hillstrom to the form

F(a)=F(z) = Fla)AAT) AT (2 — 2.), ' (10.1)

where F'(2) is the standard nonsingular test function, z. is its root or minimizer, and A € R™**¥
has full column rank with 1 < & < n. Note that z. is a root or critical point of the modified
problem, and rank F'(I*) = n—rank(A). We used (10.1) to create two sets of singular problems,
with F’(;r) having rank n — 1 and n — 2, respectively, by using

Ae R AT =(1,1,..,1),

and
T 11 1 - - - 1

1 -1 1 -1 - - . £ | (10-2)

AGRme, AT:

respectively.

We tested our tensor algorithm on 17 test functions for systems of nonlinear equations (also
including 4 functions from [7] whose Jacobian at the solution z, is singular and are designated as
Griewank functions) and 11 test functions for nonlinear least squares. Some of the test problems
were run at various dimensions. All of these problems were also run with the standard method.
The list of test problems is given in Appendix A; the detailed test results are given in [2].

Our computational results for the test problems whose Jacobians at the solution have ranks
n, n—1, and n—2 are summarized in Tables 1 to 4. In each of these tables, columns “Better” and
“Worse” represent the number of times the tensor method was better and worse, respectively,
than the standard method by more than one iteration. The “Tie” column represents the number
of times the tensor and standard methods required within one iteration of each other. For each
set of problems, we summarize the comparative costs of the tensor and standard methods using
average ratios of two measures: iterations, and function evaluations. The average iteration
ratio is the total number of iterations required by the tensor method over all the problems
included, divided by the total number of iterations required by the standard method on the same
problems. The same measure is used for the average function evaluation ratio. These average
ratios include only problems that were successfully solved by both methods. We have excluded
from the summary of statistics all cases where the tensor and standard methods converge to
a different root, or to the same root as each other but not the singular root z, in the case
of singular problems. However, the statistics for the “Better,” “Worse,” and “Tie” columns
include the cases where only one of the two methods converges, and exclude the cases where
both methods do not converge. The total number of problems that were solved by one method
but not the other are given in the last two columns of each table.

In the test results obtained for both nonsingular and singular nonlinear equations problems,
the tensor method virtually never is less efficient than the standard method and usually is
more efficient. The improvement by the tensor method over the standard method with the same
global strategy is substantial, averaging about 49% in iterations and 41% in function evaluations
when the line search is used, and about 42% in iterations and 31% in function evaluations when
the trust region is used, on the problems that are successfully solved by both methods. The
improvement by the tensor method over the standard method is more dramatic on problems

23

with small rank deficiency than on nonsingular problems, but is substantial in all cases. On rank
n—1 problems, this is due in part to the tensor methods achieving 3 step Q-order % convergence
whereas the Newton’s method is linearly convergent with constant % [b]

The tensor method is also significantly more robust than the standard Newton-based method
for the nonlinear equations test set. Over all the nonlinear equations test problems, 5 rank n
problems, 5 rank n — 1 problems, and 8 rank n — 2 problems were solved by the tensor method
and not by the standard method when the line search was used, and 6 rank n problems, 4 rank
n — 1 problems, and 4 rank n — 2 problems were solved by the tensor method and not by the
standard method when the trust region was used. On the other hand, only 1 rank n problem
was solved by the standard method and not by the tensor method when the line search was used,
and only 1 rank n problem was solved by the standard method and not by the tensor method
when the trust region was used.

For the entire set of nonsingular and singular nonlinear least squares problems, the average
improvement of the tensor method over the standard Gauss-Newton method also is substantial.
Over the problems solved successfully by both methods, the improvement averages about 52%
in iterations and 53% in function evaluations when the line search is used, and about 35% in
iterations and 28% in function evaluations when the trust region is used.

The tensor method is also considerably more robust than the Gauss-Newton method for the
nonlinear least squares test set, especially in the line search comparison. The tensor method
solves several problems that the standard Gauss-Newton method does not, and the reverse
never occurs. Over all the nonlinear least squares test problems, 4 rank n problems, 2 rank
n — 1 problems, and 4 rank n — 2 problems were solved by the tensor method and not by the
standard Gauss-Newton method when the line search was used, and 3 rank n problems, 1 rank
n — 1 problems, and 1 rank n — 2 problems were solved by the tensor method and not by the
standard Gauss-Newton method when the trust region was used. On the other hand, there were
no problems solved by the standard Gauss-Newton method and not by the tensor method when
either the line search or the trust region was used.

A closer examination of the nonlinear least squares test results shows that the improvements
by the tensor method are considerably larger for zero residual problems than for nonzero residual
problems. The difference is most dramatic in the nonsingular case. Tables 5 and 6 show the
average iteration and function evaluation ratios of the tensor method versus the Gauss-Newton
method for zero and nonzero residual problems, respectively. The performance differences may
be attributable to the fact that both the standard and tensor methods are linearly convergent
on nonzero residual problems, but are more quickly convergent on zero residual problems.

The comparison between the line search methods and the trust region methods is very:
interesting, for both the standard and tensor methods. This is summarized in Tables 7 and 8.
These tables show that on the average, the two-dimensional trust region approach often is more
efficient than the line search method, especially on nonsingular problems. It is important to
note, however, that the line search method is simpler to implement and to understand than the
the two-dimensional trust region approach, and is appreciably faster in terms of CPU time on
small, inexpensive problems where the complexity of the code becomes the dominant cost. It
should also be noted that there is considerable variation in the comparative efficiency of the line
search and trust region methods on individual problems and that either may be more efficient
for a particular problem class.

24

Perhaps a more important consideration in the general comparison of the line search and
trust region methods, however, is that the two-dimensional trust region method solves consid-
~erably more of the test problems than the line search method. The advantage in robustness is
particularly large in comparing line search and trust region versions of the standard methods:
it is smaller but still significant in comparing tensor methods for nonlinear least squares, and
insignificant in our tests of tensor methods for nonlinear equations. Over all the nonlinear equa-
tions test problems, 1 rank n —1 and 2 rank n — 2 problems were solved by the trust region and
not by the line search, whereas 1 rank n problem and 1 rank n — 1 problem were solved by the
line search and not by the trust region, when the tensor method was used. On the other hand.
when the Newton’s method based code was used, 6 rank n problems, 6 rank n — 1 problems.
and 5 rank n — 2 problems were solved by the trust region and not by the line search, whereas
only 1 rank n problem, 1 rank n — 1 problem, and 1 rank n — 2 problem were solved by the line .
search and not by the trust region. Over all the nonlinear least squares test problems, 7 rank n
problems and 3 rank n — 2 problems were solved by the trust region and not by the line search,
whereas 4 rank n problems were solved by the line search and not by the trust region, when
the tensor method was used. When the standard Gauss-Newton method was used, 7 rank n
problems, 2 rank n — 1 problems, and 8 rank n — 2 problems were solved by the trust region and
not by the line search, whereas only 1 rank n — 1 problem and 1 rank n — 2 problem were solved
by the line search and not by the trust region. Thus, the trust region version seems to have a
considerable advantage over the line search version in its robustness, although more when using
the standard method than the tensor method. We note that the smaller average improvement of
the tensor method over the standard method in the trust region cases (Tables 2 and 4) than the
line search cases (Tables 1 and 3) is related to the difference in problem sets that are included in
these statistics, because of the differing robustness of the line search and trust region methods.
~ Finally, we compared our tensor method with the NL2SOL package [5] on the set of nonlinear
least squares problems used in [5] that is listed in Appendix B. The reason we were interested
in making this comparison is that the NL2SOL method theoretically is superlinearly convergent
on nonzero residual problems ([5]), whereas the tensor method of this paper, like Gauss-Newton
methods, is only linearly convergent on nonzero residual problems. (This difference is related to
NL2SOL using a quadratic model of F(z)T F(z) whereas the tensor and Gauss-Newton methods
use models of F'(z).) The problems include a mixture of zero, small, and large residual problems.
Table 9 reports the comparative test results of the tensor method versus NL2SOL on this test
set. The first row of Table 9 compares the tensor method using a line search with NL2SOL, whereas
the second row compares the tensor method using a two-dimensional trust region with NL2SOL.
(NL2SOL uses a trust region global strategy.) The table shows that on these test problems,
the tensor method on the average is somewhat more efficient than NL2SOL, with an average
improvement of about 58% in iterations and 29% in function evaluations when the line search is
used, and about 24% in iterations and 7% in function evaluations when the trust region is used.
(Note that the tensor method with line search is more efficient than the tensor method with
trust region on this test set.) There is no difference in the robustness of the two packages of
this test set; only 1 problem in the test set was solved by NL2SOL and not by the tensor method
using either a line search or a trust region method, and only 1 problem was solved by the tensor
method and not by NL2SOL. These limited results indicate that the tensor method appears to
be quite competitive with NL2SOL for solving least squares problems.

25

Table 2: Summary for Nonlinear Equations Test Problems Using Two-Dimensional Trust Region

Table 1: Summary for Nonhneér Eq

uations Test Problems using Line Search
Rank Tensor Average Ratio Only Ounly
F'(z.) | Better | Worse | Tie | Tensor/Newton | Newton | Tensor
Itn | . Feval Solved | Solved
n 25 2 13 | 0.60 0.69 1 5
n-1 24 0 8§ 10.48 0.53 0 5
n—2 27 1 5 | 0.46 0.56 0 8

Rank Tensor Average Ratio Only Only
F'(z.) | Better | Worse | Tie | Tensor/Newton | Newton | Tensor
Itn Feval Solved | Solved
n 26 3 13 | 0.61 0.72 1 6
n-—1 24 1 9 .10.49 0.63 0 4
n—2 26 1 5 |0.64 0.73 0 4

Table 3: Summary for Nonlinear Least Squares Test Problems Using Line Search

Rank Tensor Average Ratio Only Only
F'(z.) | Better | Worse | Tie | Tensor/Gauss-Newton | Gauss-Newton | Tensor
| Itn Feval Solved Solved
n 20 1 8 10.52 0.51 0 4
n-1 18 0 8 |045 0.41 0 2
n—2 28 0 5 1048 0.48 0 4

Table 4: Summary for Nonlinear Least Squares Test Problems Using Two-Dimensional Trust

Region
Rank Tensor Average Ratio Only Only
F'(z.) | Better | Worse | Tie | Tensor/Gauss-Newton | Gauss-Newton | Tensor
Itn Feval Solved Solved
n 26 1 | 5 |0.66 0.76 0 3
n—1 19 2 5 10.66 0.71 0 1
n—2 28 1 4 10.63 0.69 0 1

26

Table 5: Average Ratios of the Tensor Method versus the Gauss-Newton Method on Zero

Residual Problems for Line Search and Trust Region

Rank | Line Search | Trust Region

F'(z.) | Itn | Feval | Itn | Feval
n 0.43 | 0.44 | 0.43 | 0.56

n—1 1041 037 | 0.64 | 0.62

n—2 048 048 | 0.51 | 0.57

Table 6: Average Ratios of the Tensor Method versus the Gauss-Newton Method on Nonzero

Residual Problems for Line Search and Trust Region

Rank | Line Search | Trust Region

F'(z,) | Itn | Feval | Itn | Feval
n 0.64 | 0.64 | 0.78 | 0.88

n—1 1048 045 | 0.67 | 0.79

n—2 1049 048 | 0.68| 0.76

Table 7: Average Ratios of Iterations and Function Evaluations of Newton with Trust Region
versus Newton with Line Search and Tensor with Trust Region versus Tensor with Line Search
for Nonlinear Equations

Rank | Newton TR/LS | Tensor TR/LS
F'(z,) | Itn Feval Itn | Feval
n 0.80 0.84 0.70 0.57
n—-1]0.78 0.89 0.96 0.93
n—2 |0.86 0.93 0.92 0.94

Table 8: Average Ratios of Iterations and Function Evaluations of Gauss-Newton with Trust
Region versus Gauss-Newton with Line Search and Tensor with Trust Region versus Tensor with
Line Search for Nonlinear Least Squares Problems

Rank | Gauss-Newton TR/LS | Tensor TR/LS
F'(z.) | Itn Feval Itn | Feval
n 0.70 0.65 0.75 0.76
n-—110.72 0.71 1.05 1.09
n—2 | 1.01 0.97 0.74 0.80

27

Table 9: Comparison of Tensor Method with NL2SOL on the \Ionhneal Equations and Nonlinear
Least Squares Problems Listed in Table B-1

Global strategy | Tensor versus NL2SOL | Average Ratio—Tensor/NL2SOL
Better | Worse | Tie | Itn Feval

Tensor w/ LS 25 8 2 042 0.71

Tensor w/ TR 24 9 2 |0.76 0.93

References

[1] A. Bouaricha, A Software Package for Solving Systems of Nonlinear Equations and Nonlin-
ear Least Squares Problems Using Tensor Methods, M.S. thesis, Department of Computer
Science, University of Colorado at Boulder, 1986.

[2] A. Bouaricha, Solving Large Sparse Systems of Nonlinear Equations and Nonlinear Least
Squares Problems Using Tensor Methods on Sequential and Parallel Computers, Ph.D. the-
sis, Department of Computer Science, University of Colorado at Boulder, 1992.

(3] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, Approzimation Solution of the Trust Region
Problem by Minimization over Two-Dimensional Subspaces, Mathematical Programming,
40 (1988), pp. 247-263.

[4] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice-Hall, Englewood Cliffs, N.J., 1983.

(5] J. E. Dennis, D. M. Gay, and R. E. Welsch, An Adaptive Nonlinear Least Squares Algorithm,
ACM Trans. Math. Softw., 7 (1981), pp. 348-368.

- [6] D. Feng, P. Frank, R. B. Schnabel, An Analysis of Tensor Methods for Nonlinear Equations,
Technical Report CS-CS-729-94, Department of Compiuter Sc1ence, University of Colorado
at Boulder, 1992.

(7] A. O. Griewank, Analysis and Modification of Newton’s Method at Singularities, Ph.D.
thesis, Australian National University, Canberra, 1980.

(8] J. J. ‘\/Ioré The Levenberg-Marquardt Algorithm: Implementation and Theory, in Numerical
Analysis, G. A. Watson, ed., Lecture Notes in Mathematics, vol. 630, Sprmger Verlag,
Berhn 1977, pp. 105~ 116

[9] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing Unconstrained Optimization Soft-
ware, ACM Trans. Math. Softw., 7 (1981), pp. 17-41.

(10] M. J. D. Powell, A New Algorithm for Unconstrained Optimization, in Nonlinear Program-
ming, J. B. Rosen, O.L. Mangasarian, and K. Ritter, eds., Academic Press, New York, pp.
1970, 33-65.

28

[11] R. B. Schnabel and P. D. Frank, Tensor Methods for Nonlinear Fquations, SIAM. J. Num.
Anal., 21 (1984), pp. 815-843. '

[12] R. B. Schnabel, J. E. Koontz, and B. E. Weiss, A Modular System of Algorithms of Uncon-
strained Minimization, ACM Trans. Math. Softw., 11 (1985), pp. 419-440.

29

Appendix A

The columns in Tables A-1 and B-1 have the following meanings:
— Problem: name of the problem.
- m: number of equations.
- n: number of variables.

— NS: dimension of nullspace for Griewank’s singular functions.

OS: order of singularity for Griewank’s singular functions.

Table A-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Used in the
Comparison of Tensor Method versus Standard Method

Problem Dimension
lm n
Brown almost linear | 10 10
Broyden banded 30 30
Broyden tridiagonal | 30 | 30
‘Chebyquad 7 7
Discrete boundary | 30 30
Discrete integral 10 10
Helical valley 3 3
Powell singular 4 4
Rosenbrock 2 2
Trigonometric 30 30
Variable dimension | 10 10

Watson 31 31
Wood gradient 4 4
NS=10S=1 3 3
NS=20S=1 3 3
NS=10S=2 3 3
NS=20S=2 3 3

30

Table A-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Used in the
Comparison of Tensor Method versus Standard Method (continued)

Problem Dimension
m n
Wood 6 4
Variable dimension | 12 10
Bard 15 3
Beale 3 2
Kowalik 11 4
Penaltyl 11 10
Penalty?2 10 5
Brown badly scaled | 3 2
Gauss function 15 3
Brown and Dennis | 10 4
Chebyquad 8 4
Chebyquad 12 4
Chebyquad 16 4

Appendix B

Table B-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Used in the
Comparison of Tensor Method versus NL2SOL

Problem Dimension
n

Rosenbrock
Helical Valley
Powell Singular
Wood
Beale
Box three-dimensional
Freudenstein and Roth

o
NS W o w oS
[CRIVCRE RN SO IO N

31

Table B-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Used in the
Comparison of Tensor Method versus NL2SOL (continued)

Problem Dimension
m n
Watson 31 6
Watson 131 9
Watson 31 12
Watson 31 20
Chebyquad 8 8
Bard 15 3
Jennrich and Sampson | 10 2
Kowalik 11 4
Osborne 1 33 5
Osborne 2 65 11

32

