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The mixing properties of turbulent flows are, at first order, related to the dynamics of separation of particle

pairs. Scaling laws for the evolution in time of the mean distance between particle pairs hr2iðtÞ have been
proposed since the pioneering work of Richardson. We analyze a model which shares some features with 3D

experimental and numerical turbulence, and suggest that pure scaling laws are only subdominant. The

dynamics is dominated by a very wide distribution of ‘‘delay times’’ td, the duration for which particle pairs

remain together before their separation increases significantly. The delay time distribution is exponential for

small separations and evolves towards a flat distribution at large separations. The observed hr2iðtÞ behavior is
best understood as an average over separations that individually follow the Richardson-Obukhov scaling,

r2 / t3, but each only after a fluctuating time delay td, where td is distributed uniformly.
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Scalar transport by turbulent flows is naturally described
in terms of Lagrangian particle dispersion. This most gen-
erally requires knowledge of the statistics of n-particle
dynamics fr1ðtÞ; r2ðtÞ; . . . ; rnðtÞg which in turn hinges on
a closure scheme [1]. Recent theoretical and phenomeno-
logical efforts have focused on the dynamics of tetrads
[2,3] as tracers of nonlinear (triadic) interactions. A sim-
pler first step is the pair dispersion problem, acquiring an
understanding of the evolution in time of the distance
between two Lagrangian fluid particles hr2ðtÞipairs. Recent
reviews [4,5] have concluded that for such 2-point statistics
the predictions of the celebrated Kolmogorov 1941 theory
are not as readily observed as for 1-point statistics. We
examine the issue here using a stochastically driven point-
vortex model [6]. The model creates a 2D flow via the
interaction of randomly generated vortices of random am-
plitude. Generation followed by the merger of vortices
mimics some ingredients of three-dimensional vortex
stretching and dissipation.

Let us first recall some fundamental features of the
2-point dispersion problem and associated scaling hypoth-
eses in the context of the Kolmogorov phenomenology of
turbulence. In the limit of very short times, comparable to
the dissipative time scale ��, neighboring fluid particles

are expected to separate exponentially following the larg-
est Lyapunov exponent of the local (smooth) flow. On the
other hand, for very long times, comparable to the flow
integral correlation time TL, turbulence is expected to be
diffusive and so one expects hr2ipairs / t. Modeling efforts

have thus concentrated on the intermediate range of time
scales, �� � t � TL (the ‘‘inertial’’ subrange). In this

range, there is no characteristic time or length scale and

the constraint of a fixed mean energy transfer rate h�i
suggests the relationship known as the Richardson-
Obukhov law [7,8], hr2i ¼ gh�it3, where g is a dimension-
less constant. (Note: this scaling also results if the particles
execute a random walk in velocity space, i.e., if one
assumes a diffusive behavior for the velocity difference

between two points, ð�uðtÞÞ2 / t, then rðtÞ ¼ R
�uðt0Þdt0 �

t3=2. There is some suggestion that single point Lagrangian
trajectories effectively sample velocity space in this way—
Eq. 18 in [6].)
However, the inertial range is limited in its extent,

TL=�� � Re1=2 with Re the flow Reynolds number, and it

has been argued that one should include the initial separa-
tion r0 in the above dimensional argument since the rela-
tive dynamics of a particle pair introduces an origin of
time, that at which their locations coincide. Taking t0 as the
time over which the initial separation is important, one
looks for a scaling solution hr2ipairs ¼ r20fðt=t0Þ. Batchelor
[9] suggested that the characteristic time t0 for the initial
entrainment of the particle pair by an eddy of size r0
follows the Richardson-Obukhov law, t0 � h�i�1=3r2=30 ,

and thus for times less than t0 pair separation evolves

as hr2i ¼ g0ðh�ir0Þ2=3t2, with g0 another dimensionless
constant related to the Kolmogorov constant for the
longitudinal second-order velocity structure function,
g0 ¼ ð11=3ÞC2. For t0 � t � TL, the Richardson-
Obukhov law still holds.
Such scaling behaviors have been difficult to identify in

experiments, observations, or direct numerical simulations.
It has been suggested that it is because of the limited
inertial range accessible to numerical studies that they
only hint at possible asymptotic Richardson-Obukhov
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behavior [10], though exit-time statistics seem to provide
clearer evidence [11,12]. On the other hand, experimental
studies point to Batchelor scaling when the behavior of
hr2ðtÞi is directly investigated [13,14] or to a Richardson-
Obukhov regime if time and space are suitably rescaled to
account for the initial phase (r0, t0) [15]. Here we suggest
an alternative, that while the Richardson-Obukhov scaling
may underlie the dynamical behavior of individual particle
pairs it does so only intermittently, interrupted by ‘‘trap-
ping delays’’ with a broad distribution of durations, and it
is the averaging over these delays which dominates the
observed hr2i behavior [16].

We employ a simplified point-vortex flow model, the
main characteristics of which [6] are only briefly recalled
here. Point vortices are randomly generated at a constant
average rate with Gaussianly distributed intensity in a
two-dimensional periodic domain of dimension x2max. The
velocity field is built from the contributions of each indi-
vidual vortex as

u ðxÞ ¼ XN
k¼1

�k

2�jx� xkj ½ẑ� ð dx� xkÞ�; (1)

where �k are the circulations, and the range of contribution
is truncated at the distance xmax. Vortex merger is imposed
when vortices are closer than a fixed critical separation,
unit one distance. (We note, that for simplicity of notation
(as compared to [6]) we scale the distance between

Lagrangian particles here so that r ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.) The

system would ultimately decay due to the merger of oppo-
sitely signed vortices except for the continuous stirring by
the aforementioned generation of new point vortices at
random locations in the domain. Effective stretching oc-
curs when such vortices are generated within the merging
distance of an existing like-sign vortex. The velocity field
created in this way shows surprisingly strong similarities to
3D turbulence. For example, the agreement between the
Lagrangian intermittency (1-point statistics) in the model
and that found experimentally is quite remarkable [6]. We
will show here (Fig. 2) that this is true for pair dispersion
(2-point statistics) as well.

The point-vortex model solutions discussed in this Letter
each continue, with the same parameter values, from the
endpoint of the simulation presented in [6]. They were
seeded with a grid of N 2 ½2304; 2304; 2304; 1024�
Lagrangian particle pairs, randomly oriented and with
initial separations between pair members of r0 2
½0:05; 0:2; 0:5; 1:0�, respectively. The positions and veloc-
ities of each particle were tracked as the flow evolved.
Examples of particle trajectories and corresponding pair
separations rðtÞ are shown in Fig. 1, with thin and bold lines
marking individual pair member paths and an open circle
marking their initial positions. It is clear even from this
limited sample of trajectories that individual pairs show
distinctive behaviors. Pair separation initiates after differing
initial delays and can be intermittent even at late times,

stalling due to trapping events. These differences occur
even when the pairs share the same initial separation, as
they do in Fig. 1.
The solid curves in Fig. 2 show the time evolution of the

mean squared separation of the particle pairs, and are
qualitatively similar to those of dispersion in both labora-
tory (e.g., [13,15])and three-dimensional numerical experi-
ments (e.g., [12,17]): (1) the pair separation grows steeply
after an initial phase during which the particles remain in
close proximity (though this phase is exaggerated by the
logarithmic scale) and (2) no clear scaling behavior
emerges. The slopes of the curves observed in previous
studies differ, ranging from values of 2 in [13] to 3 in
[12,15], and 4.5 (possibly 4) in [17]. In our work, the
curves collapse when time is shifted so that the origins of
time in the r0 > 0:05 cases align with the times required to
reach hr2i ¼ r20 in the r0 ¼ 0:05 case (black, blue, and red

dashed curves in Fig. 2) and show a slope of about 4 over a
limited range.

FIG. 1 (color). (a) Example trajectories of particle pair mem-
bers. Trajectories of individual members of each pair are shown
with thin and bold lines. (b) Corresponding (by color) time traces
of their separation rðtÞ. All pairs were initiated, at sites indicated
by open circles, with initial separation r0 ¼ 0:2.
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The scaling discrepancies seen in previous studies have
usually been taken to reflect the initial conditions of the
pair measurements, and several approaches have been
proposed to account for them. Perhaps the most convincing
evidence for scaling comes from the exit-time analysis
proposed in [11,12], but even in that analysis the scaling
range is quite limited. Critically, such exit-time analysis
relies on the assumption that the time t0 required to reach a
separation significantly larger than the initial r0 has a
distribution peaked around the dimensional value

ðr20=h�iÞ1=3. We show here that this is not the case—at least

not in this simplified model of a turbulent flow. As seen in
Fig. 3, the distribution of such times is very broad. It is
exponential with a time scale of order of the flow integral
time for small initial separations, but rapidly evolves
towards a flat distribution as r0 grows into the inertial
range. We will return in detail to these properties, which
are the main findings of our study, but we first demonstrate
that such a broad distribution of delay times has an order-
one effect on the dynamics of separation.

A crude model of the dynamics underlying each indi-
vidual pair separation can be constructed as a combination
of successive delays and seperations, as in [16]. Here we
consider only two such steps: in the first, the particles
remain at their original separation distance r0 for a time
td, a time chosen from a uniform distribution, as suggested
by the data. In the second, they separate according to an
algebraic law, r2 ¼ r20 þ ðt� tdÞ�, where � is a constant

which may be set to 3 for an expected Richardson scaling
or 2 for Batchelor-like behavior. The result of averaging
over this simplified dynamics is shown in Fig. 2 as the
black dash-dotted curve. Two features are readily apparent:
(i) the model behavior is in very good agreement with the
with numerical data of the simulation, (ii) a scaling plateau
hr2i=t3 � C is not observed, even when a perfect
Richardson scaling is imposed in the model—in fact an
underlying Batchelor scaling (i.e., t2) in the separation
phase actually yields a better Richardson hr2i=t3 plateau.
This is because a random sequence of algebraic separations
with uniformly distributed delays would actually lead to
the average pair separation growing as

Rðt� tdÞ�dt / t�þ1

[18]. An underlying Richardson t3 scaling leads to the t4

behavior observed in Fig. 2, when the delay time distribu-
tion is uniform. Other broad delay time distributions, non-
uniform, produce somewhat different slopes, all between
3 and 4. We conclude that similarly the actual dynamics of
separation is dominated by the wide distribution of delay
times. Additional evidence for this is found in the observed
behavior of the r0 ¼ 0:05 solution. When time in that
solution is shifted to account for the time needed to reach
the r0 ¼ 0:05 initial condition, and when that temporal
offset is based on the uniform waiting time distribution
model, it follows the black dash-dotted curve of the model
very closely (as shown by the dashed brown curve in
Fig. 2). In other words, pair dispersion in the point-vortex
model behaves as the superposition of Richardson-Obukov
trajectories with onset times sampling a uniform distribu-
tion of delays.
We thus now aim to quantify the delay times td observed

in the point-vortex simulations. We define the delay time as
the time needed for the distance between a particle pair to

FIG. 3 (color). Probability density of delay times, time to
double the initial separation, for narrow ranges of r0 (one unit
wide) characterized by mean r0 ¼ 0:05, 1.29, 3.57, 7.53, 15.4, an
31.4 (gray, red, green, blue, fuchsia, and cyan respectively).
Solid lines plot exponential fits to distribution tails. Values of
these are plotted in the inset as function of r0, along with the
same measure from a range of simulations (black symbols).

FIG. 2 (color). Pair dispersion hr2ðtÞi for initial separations
r0 ¼ 1:0, 0.5, 0.2, and 0.05 shown with black, blue, red, and
brown curves, respectively. Inset shows t3 compensated curves.
Dashed black, blue, and red plot dispersion with shift in time
based on time to reach hri ¼ r0 ¼ 1:0, 0.5, and 0.2 in r0 ¼ 0:05
solution. Dash-dotted curves show results of the uniform waiting
time distribution model (see text), and the brown dashed curve
the r0 ¼ 0:05 solution with time shifted to account for time to
reach hr0i ¼ 0:5 in that. Fiducial hr2ðtÞi / t2 and hr2ðtÞi / t3

dotted lines are shown for reference.
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grow by a factor of 2, and note that the change in terminol-
ogy from exit time, used by previous authors, to delay time
here is nontrivial. We imagine the delay time to occur not
strictly at the beginning of the measurement, to account for
effects of the initial condition, but continuously throughout
the time series as subsequent trapping events at large scales
occur with finite probability.

To illustrate the delay time probability distribution we
analyze the evolution of pairs with narrowly specified val-
ues of initial separation r0, while understanding that at any
time t a range of effective ‘‘initial’’ separations is sampled
by the solution involving many pairs (Fig. 4). The delay
time distributions as a function of r0 are shown in Fig. 3.
Very wide distributions occur for all values of r0, with the
distribution widening with increased r0. That is, even if
many pairs separate right away, a significant fraction can
remain bound for times comparable to the large scale eddy
turnover time. The distribution PðtdÞ has a marked peak
only for quite small r0 values and becomes flat as r0 grows
into the inertial range. From the exponential behavior of the
distribution, one may extract a characteristic time Te of
the ‘‘bound phase’’ of the pair dynamics. It grows with
the initial separation r0 as shown in the inset of Fig. 3; the
functional form of this growth is also exponential with a
characteristic scale of about 1=5th of the flow domain.

In Fig. 4 we turn to the evolution of the distribution of
pair separations with time in the point-vortex flow (starting
from the smallest initial separation r0 ¼ 0:05 studied). The
distribution quickly broadens, possibly to a stretched
exponential at early times, as previously reported in 2D
[19] and 3D [15] experiments, numerical studies [10,16],
and some statistical models [20,21]. At later times, PðrÞ
flattens. The inset of Fig. 4 displays the evolution of the
variance of PðrÞ compared to its mean, and shows that the

variance in pair spacing exceeds the mean value after very
short times. The system rapidly evolves to a state in which
the mean is a poor representation of the pair separation
statistics. Moreover, the wide distribution of pair separa-
tions observed is associated with a wide distribution of
delay times (Fig. 3), and these dominate further evolution
of hr2i as we have illustrated by the highly simplified
uniform delay time distribution model. While careful
data analysis may extract behavior tangent to scaling
regimes [12,15], fixed time hr2iðtÞ or fixed scale htiðr2Þ
statistics are fundamentally subdominant. This finding ex-
plains the elusive evidence for scaling in previous work:
successive trappings by coherent structures generate a very
wide distribution of delay times which dominate the func-
tional form of the average separation rate. Scaling is not
prevented by a lack of inertial range dynamics, but is
instead blurred by intermittent dynamics which generate
the wide distribution of delay times.
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distribution as a function of time. Note that the variance rapidly
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