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Orientation constrained attitude control is a requirement in most spacecraft missions. A

novel technique for attitude control of a spacecraft subjected to an arbitrary number of constraints

in the form of inclusion and exclusion conic regions using a kinematic steering law and a rate-based

attitude servo system is presented. The control laws are rate and torque bounded. The tracking

errors are defined using Modified Rodrigues Parameters to yield a non-singular description. Lya-

punov theory and logarithmic barrier potential functions are used to derive a kinematic steering law

suitable for both attitude regulation and tracking scenarios. Conditions for constraint enforcement

under limited-control-torque capability are studied. Numerical examples of regulation and tracking

problems are shown. A Monte Carlo simulation is performed to illustrate control enforcement under

bounded-torque control.
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Chapter 1

Introduction

1.1 Motivation

The spacecraft’s ability to align its orientation relative to a reference frame, or orientation-

unconstrained autonomous attitude control, has been extensively addressed in literature. In fact,

the problem has been studied using several different frameworks. Linear and non-linear control[5,

29, 34, 38, 49], optimal control[9, 12], sliding-mode control[26, 50], and adaptive control[35, 40] are

only some of the techniques that have been successfully applied to the solution of this problem.

It can be thus said that autonomous attitude control without orientation constraints is a mature

technology.

However, spacecraft reorientation may have several design-specific pointing restrictions. These

attitude constraints can be in the form of undesirable pointing regions. An example is any space-

craft carrying heat or light sensitive instruments, such as telescopes or cameras, that cannot be

exposed to direct sunlight. Bright celestial objects may thus impose constraints to a slew maneuver.

On the other hand, pointing restrictions can also manifest themselves as inclusive heading regions.

For example, a change in attitude could be performed while keeping certain instruments, e.g. an-

tennas or solar panels, pointing into a definite region in space. Ultimately, attitude constraints can

be viewed as either exclusion or inclusion zones, usually defined by cones in space around either

a forbidden or a mandatory nominal direction. An exclusion constraint example is depicted in

Figure 1.1. The boresight body-fixed vector of a camera b̂ is required to stay out of an exclusion

cone around the inertially-fixed sun vector n̂.
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Figure 1.1: Attitude exclusion constraint example. The boresight body-fixed vector of a camera b̂
is required to stay out of an exclusion cone around the inertially-fixed sun vector n̂.

In spite of the fact that most mission requirements include some kind of constraints on slew

maneuvers, the autonomous constrained attitude control literature is still sparse and many space-

craft perform constraint avoidance non-autonomously, through open-loop attitude way point navi-

gation solutions, or semi-autonomously, using simple constraint detection algorithms. Autonomous

constrained spacecraft attitude control is, therefore, not a mature technology.

This thesis proposes a novel autonomous attitude control algorithm that enforces an arbitrary

number of inclusion and exclusion conic constraints. The technique is suitable for both the regu-

lation (constant reference) and the tracking problem (continuously moving reference). Lyapunov

theory is utilized to synthesize a mathematically tractable kinematic steering control law that allows

attitude control with bounded angular velocity. By describing the orientation of a spacecraft using

Modified Rodrigues Parameters (MRPs), the short slew path can always be followed. The prob-

lem of control torque saturation is addressed by investigating solutions to guarantee the constraint

compliance even if the control torque actuation is limited.

Kinematic, or attitude-based, steering laws permit dividing the attitude and angular velocity

control strategies into two completely separate loops, simplifying the synthesis of control laws[37,

36]. Using this scheme, an angular velocity loop, usually known as servo sub-system, is controlled

by a kinematic loop. The benefit of such attitude steering laws is that the angular velocity vector is

treated as the control vector, and the rate response due to a tracking can be shaped in very general

ways. In particular, the implementation discussed in Reference [37] uses a smoothly saturated rate



3

behavior. Thus, even with very large attitude tracking errors, the spacecraft closed loop response

reaches a predicable upper rate limit.

The Modified Rodrigues Parameters (MRPs) constitute a singular, non-unique and minimal

attitude representation[27]. The non-uniqueness can be used to switch the parameters at the

unit sphere in order to avoid their only singularity while naturally overcoming the unwinding

phenomenon[2], making a control scheme to always follow the shortest path[36]. These properties

make the MRPs an elegant attitude representation.

Non-linear control methods using Lyapunov theory[13] have the advantage that they allow

synthesizing relatively simple control laws, i.e. control laws given by closed-form, usually analytic,

functions. This fact makes these algorithms specially suitable for on-board implementation. Lya-

punov theory has been applied before to the constrained attitude control regulation problem using

Euler angles[28] and quaternions[23, 25, 52]. However, it has not yet been applied to solve the

attitude tracking problem with constraints. Furthermore, the novel use of a kinematic steering

law allows the utilization of rate saturating functions to control the maximum angular velocity.

Additionally, no previous work has analyzed how constraint avoidance and reaction wheel torque

saturation are related. Finally, the use of MRPs in this problem formulation is also novel in that the

solution provides a minimal attitude parameterization that yields globally non-singular behavior.

1.2 Existing Constrained Attitude Control Frameworks

The existing techniques for studying the constrained attitude control problem may be classi-

fied into six different groups. For the purpose of this section, a constraint is classified as kinematic

hard, if it only depends on the current attitude; kinematic soft, if it depends on the attitude his-

tory; or dynamic, if it depends on the attitude and a moving reference[17]. A conic constraint

is a particular kinematic hard constraint defined by a security cone about a forbidden direction.

Detailed constraint description is given in Chapter 3.

The first framework relies on the geometry of the problem. In Reference [8], geometric

relations are used to determine trajectories that avoid the constraint volumes[8, 44]. In order to
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Initial attitude Final attitude

Intermediate attitude

Figure 1.2: The idea behind the geometric approach by Hablani[8] is to compute an intermediate
attitude to avoid the constraints. The figure shows an azimuth-elevation plane in which the uncon-
strained path is a simple slew azimuth maneuver (dash line). An intermediate attitude is computed
to avoid the constraint.

solve the slew problem of rotating a spacecraft from an initial to a final orientation, these algo-

rithms pre-compute a feasible trajectory through an intermediate attitude such that the exclusion

constraints are not violated. A simple example is sketched in Figure 1.2. These techniques are

relatively simple and can be used to slew a spacecraft from an initial to a final orientation under

inclusion and exclusion constraints, but do not scale well when the number of constraints grow[17].

A different geometric approach has been used in the SAMPEX (Solar, Anomalous, and

Magnetospheric Particle EXplorer) mission (see Figures 1.3 and 1.4a) in order to avoid its Heavy Ion

Large Telescope (HILT) to align, within a certain angle, with the velocity vector, a condition that

would have maximized the flux of orbital debris and micrometeroids into the instrument, reducing

its lifetime[6]. SAMPEX used a very simple constraint avoidance technique. The guidance system

checked the angle between the pointing target and the velocity vector. If it determined that the

boresight vector of the HILT had entered the conic constraint, it would redefine its target outside

the cone[6]. This approach is reactive and convergence cannot be demonstrated.

Another different geometric approach has been recently developed[3]. The attitude slew

problem is modeled as an optimal boundary value problem. Small forbidden regions can be avoided

by an iterative process in which, by changing some constants, the resulting trajectory is evaluated in

order to detect if the exclusion zones are effectively avoided. This technique can solve the exclusion

constrained regulation problem. However, it has some drawbacks: it is not defined any measure to
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Figure 1.3: SAMPEX avoids aligning its Heavy Ion Large Telescope with the velocity vector.

evaluate how “small” a constraint really is and the iterating (not always convergent) process does

not seem to make the algorithm suitable for on-board implementation.

The Constraint Monitor Algorithm (CMT) is a technique that uses a predictor-corrector

approach to change the trajectory in real time when approaching a constraint[17]. As the name

implies, CMT is always monitoring the control command of the attitude controller and extrapolating

the current attitude forward. In case of a foreseen exclusion constraint violation, the spacecraft is

rotationally accelerated in the radially opposite direction[43]. The method, created for the Cassini

mission[1, 43], has also been used in Deep-Space 1[16] (Figures 1.4b and 1.4c). CMT can be

utilized to avoid all kinds of exclusion zones and, even though it was designed for performing a

slew maneuver, it could be extended to work with a moving attitude reference. Unfortunately, the

convergence of the algorithm cannot be demonstrated in the general case[17].

Randomized motion planning algorithms use graphs and random search to go from an

initial to a final attitude avoiding all constraints[7]. The approach is as follows: from a vertex of

the graph (state), a random search is performed to determine a set of feasible vertices, picking the

one that minimizes some cost function. The technique solves the regulation problem with both

exclusion and inclusion constraints[17]. However, it has mainly two drawbacks: convergence can be

guaranteed only in a probabilistic sense and computational time grows dramatically with the size

of the graph.

Optimization techniques can be applied to solve the problem of slewing a spacecraft from
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(a) SAMPEX (Geometric approach).

(b) Cassini (CMT). (c) Deep-Space 1 (CMT).

Figure 1.4: Some spacecraft using constrained attitude control.

an initial to a final state under constraints with bounded control torque and bounded angular

rate, minimizing some functional, such as control effort or power. This is a hard-to-solve Non-

Linear optimization Problem (NLP)[24]. However, the formulation can be transformed into a non-

convex Quadratically Constrained Quadratic Programming (QCQP) problem[4] using quaternions,

and further simplified using a semidefinite relaxation[45]. The problem can also be convexified

as a Semi-Definite Programming (SDP) optimization problem using a different approach[15, 17].

Convex SDP problems are easier to solve than NLP[4]. The advantage of these methods is that

they can solve problems with topologically different constraints. However, they are not specially

suited for the tracking problem, with a continuously moving reference trajectory. Furthermore,

since the approach is open-loop, constraint enforcement cannot be guaranteed under perturbations.



7

Table 1.1: Comparison between existing constrained attitude control frameworks.

Method Constraints Complexity
Bounded
Velocity

Bounded
Torque

Tracking Convergence

Geometric Conic Medium Yes Yes No Yes

CMT Arbitrary Low Yes Yes
May be

extended
Not shown

Random
Search

Arbitrary High Yes Yes No Probabilistic

Optimal
Control

Convex High Yes Yes
May be

extended
Yes

Graph
Search

Static
hard

High Yes Yes No Yes

Lyapunov Conic Low No No No Yes

Fortunately, Receding Horizon Control (RHC)[20] can be utilized to synthesize a closed-loop control

law[11]. Moreover, RHC might be used to solve the tracking problem. However, the technique is

extremely expensive in terms of computational resources[30].

A recently developed new framework divides the attitude space into discrete cells and uses

graph searching algorithms, like A∗, to find an optimal solution to the constrained problem[18,

46]. One of the advantages of this technique is that the algorithm becomes more efficient as more

exclusion constraints are added[18]. The method, however, is not suited for the tracking problem.

Potential function-based algorithms use Lyapunov theory to design control laws that con-

verge to the target while evading constraints. This approach has been proposed with singular Euler

angles[28] and the unit-constrained quaternions[23, 25] to solve the constrained regulation problem

and, in the last case, with any number of exclusion and inclusion constraints. In Reference [52],

another method using quaternions and a Hamiltonian formulation is proposed to handle one exclu-

sion constraint using Lyapunov functions based on geometric considerations. However, it cannot

be shown to converge, and may not even be feasible, with several exclusion constraints.

The main advantage of using Lyapunov theory is that the synthesized control laws are math-

ematically tractable. However, the method cannot handle arbitrarily-shaped constraints. Further-

more, none of the existing Lyapunov-derived algorithms is torque-bounded.
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Table 1.1 shows a general comparison of the existing frameworks. The Complexity column

loosely describes the algorithmic numerical complexity. A low complexity means that only a few

function evaluations are needed. A high complexity, on the other side, means that more complex

numerical algorithms are required, like optimization algorithms or graph search, with lots of function

evaluations. The optimization approach can manage several types of constraints, as long as they

can be convexified[4].

1.3 Thesis Research Goals

Table 1.1 gives a good comparison between some of the pros and cons of each framework.

The optimal control approach and graph search methods seem to be the best suited to solve the

constrained orientation control problem. However, the first is open-loop (non-robust) and neither

of both solve the tracking problem. Moreover, both have high algorithmic complexity. On the other

hand, the advantage of Lyapunov methods is simplicity in the synthesized closed-loop control laws.

However, the existing techniques for constrained attitude control derived using Lyapunov theory

are neither torque-bounded nor velocity-bounded. Furthermore, they do not solve the tracking

problem either.

The main goal of this thesis is to develop a Lyapunov-derived control law such that

(1) Solves the slew problem from an initial to a final fixed orientation under any number of

feasible exclusion and inclusion conic constraints with a bounded velocity and bounded

control torque. The closed-loop solution must be robust against unmodeled torques.

(2) Solves the tracking control problem of following a continuously moving attitude trajectory

under any number of feasible exclusion and inclusion conic constraints.

(3) Uses Modified Rodrigues Parameters (MRPs) as attitude descriptors. MRPs have not been

used yet to parameterize the problem and have several advantages: minimal, non-singular,

and describe short rotations.
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The thesis is organized as follows. In Chapter 2, the rate-limited Lyapunov-derived uncon-

strained steering law is shown. A brief presentation of MRPs and the kinetics of a spacecraft with

reaction wheels, used to mathematically synthesized the law, is given. In Chapter 3, a discussion

and classification of orientation constraints are given, showing a novel description of conic con-

straints as functions of MRPs. The regulation and tracking problem with inclusion and exclusion

conic constraints are developed in Chapter 4. Chapter 5 shows the effect of a bounded control

torque, giving an algorithm for switching between the unconstrained and constrained laws when

far from exclusion constraints. Finally, Chapter 6 discusses the conclusions and possibilities for

future work.



Chapter 2

Unconstrained Steering Law Using Modified Rodrigues Parameters

The purpose of this Chapter is threefold. The main goal is to introduce a kinematic steering

law that allows regulation and tracking of a spacecraft using two different nested control laws:

an inner servo-subsystem that controls angular velocity and an outer loop, attitude-based, that

steers attitude using angular velocity as a control variable. Since the control law utilizes Modified

Rodrigues Parameters (MRPs) as kinematic states and Reaction Wheels (RW) as actuators, the

spacecraft’s kinematics using MRPs and kinetics using RW are briefly reviewed.

Constraints are not considered in this Chapter. The control law described is orientation

unconstrained. However, it is the basis to the constrained-orientation control algorithms discussed

in Chapter 4.

2.1 Modified Rodrigues Parameters

The MRPs are a minimal parametrization set of the rotation group SO(3). The MRP vector

σ is defined in terms of the quaternion β =

[
β0 β1 β2 β3

]T
or the principal rotation vector

representation (ê,Φ) as[51, 27, 42, 36]

σ =
1

1 + β0

[
β1 β2 β3

]T
= tan

(
Φ

4

)
ê (2.1)

where β0 represents the scalar part of the quaternion, ê is the principal rotation axis, and Φ is

the principal rotation angle. The representation is singular whenever β0 = −1, where the rotation

angle is Φ = ±360◦.
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MRPs have a very interesting property as the result of a stereographic projection parameters

of the four-dimensional quaternion unit sphere onto a three-dimensional hyperplane[27, 48].

The MRPs, as the quaternions, are not unique. In fact, since β and −β represent the same

attitude, σ and σs, known as the shadow set, also represent the same orientation, where[36, 10]

σs = − 1

1− β0

[
β1 β2 β3

]T
= − σ

σTσ
(2.2)

Equation (2.1) shows that short rotations (Φ ≤ 180◦) have |σ| ≤ 1. Using this fact and the shadow

set given in Equation (2.2), the general approach is to switch between MRP representations at the

unit sphere in order to avoid the singularity while always describing short rotations[36].

The rotation matrix [C(σ)], also represented as [PQ] when describes the orientation of a

frame P relative to a frame Q, can be computed from the MRP σ (or σP/Q) as[36]

[C(σ)] = [I3×3] +
8[σ̃]2 − 4(1− σTσ)[σ̃]

(1 + σTσ)2
(2.3)

where [σ̃] is the associated skew-symmetric matrix[36]

σ̃ =


0 −σ3 σ2

σ3 0 −σ1

−σ2 σ1 0

 (2.4)

Even though there exists a direct transformation from Direction Cosine Matrix (DCM) into

MRPs, the mapping is singular for rotations of 180◦[36]. Therefore, Sheppard’s method can be

used to compute quaternions from DCM[41] and then Equation (2.1) can be utilized to calculate

the MRPs.

The MRPs kinematic differential equation is given by[36]

σ̇ =
1

4

[
(1− σTσ)[I3×3] + 2[σ̃] + 2σσT

]
ω =

1

4
[B(σ)]ω (2.5)

If σ represents the attitude of frame P relative to Q (noted as σP/Q), then ω is the angular

velocity of frame P relative to Q written in P-frame components (also noted as PωP/Q, where the

left superscript notes the frame with respect to which the vector components are taken).
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2.2 Rigid-Body Dynamics with Reaction Wheels

The rotational equations of motion of a rigid spacecraft with NRW perfectly symmetric and

balanced Reaction Wheels (RW) are given by[36]

[IRW]ω̇ = −[ω̃] ([IRW]ω + [Gs]hs)− [Gs]us +L (2.6)

where [IRW] is

[IRW] = [Is] +

NRW∑
i=1

(Jti ĝti ĝ
T
ti + Jgi ĝgi ĝ

T
gi) (2.7)

and the projection matrix [Gs] is

[Gs] =

[
ĝs1 ... ĝsi ... ĝsNRW

]
(2.8)

The RW angular momentum vector hs is computed as

hs =

[
Js1(ĝTs1 ω + Ω1) ... Jsi(ĝ

T
si ω + Ωi) ... JsN (ĝTsNRW

ω + ΩNRW
)

]T
(2.9)

[Is] is the inertia tensor of the system with the wheels considered as point masses. A principal-

axis frame Wi : {ĝsi , ĝti , ĝgi} is attached to each RW, where ĝsi is the direction of the spin axis.

[Iwi ] = diag(Jsi , Jti , Jgi) is the inertia matrix of each wheel written in the W frame relative to its

center of mass. Ωi is the angular velocity of the RW i relative to the spacecraft. The vector us

contains the torques applied to each RW axis. The RW torque may saturate, with a maximum

torque usmax . L is the resultant external perturbation torque applied to the spacecraft.

The vector ω is a shorthand notation for ωB/N , where B is a body-fixed frame and N is an

inertial frame. The over-dot symbol (•̇) represents an inertial derivative while the prime symbol

(•′) represents a derivative relative to the rotating body frame. Although the equations of motion

can be solved in any frame, it is assumed that every vector and tensor are written in the body-fixed

frame B.

These are the dynamic equations of motion that are used in the rest of this work.
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Dynamics Kinematics

Kinematic
Steering Law

Servo Sub-
System

!B/N

!B⇤/R

!R/N �R/N

�B/N

us

Figure 2.1: Control system block diagram using a steering law.

2.3 Unconstrained MRP Steering Law

The unconstrained attitude problem can be solved using the Lyapunov direct method and

two separate feedback loops for attitude and rate tracking[37], in a rather similar way as the

Backstepping Control method[13, 14] provides a cascaded control design. This approach can be

used with cascaded systems where the output of one sub-system is the input of the next. Spacecraft’s

kinetics and kinematics form one of such particular systems.

A high-level block diagram is shown in Figure 2.1. The block Dynamics is the spacecraft with

RW dynamics given in Equation (2.6). The block Kinematics represents the kinematic differential

equation given in Equation (2.5). An inner Servo Sub-System loop controls angular velocity, having

as inputs the angular velocity of the reference frame R relative to inertial frame N , ωR/N , and the

ouput of the steering law, the desired body frame B∗ rate relative to the reference, ωB∗/R. The

output of the servo is the torque vector control of the RWs, us. An outer, narrower-bandwith loop,

or Kinematic Steering Law, controls attitude, taking the body frame B attitude relative to inertial

N , σB/N , and the reference frame attitude relative to inertial, σR/N , as inputs.

Using two different loops for attitude and angular velocity has the following advantages.

First, the kinematic model given by Equation (2.5) is exact. Second, the synthesis of control laws

is simplified. Third, as this thesis demonstrates, the angular velocity servo loop does not need to
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be changed when conic constraints are added.

The goal of the control scheme is to steer the body frame B to the reference frame R. In

other words, the relative attitude σB/R and angular velocity ωB/R are to be driven to zero.

2.3.1 MRP Steering Law

Consider the following Lyapunov candidate function[36]

V (σB/R) = 2 ln
(

1 + σT
B/RσB/R

)
(2.10)

Taking time derivatives

V̇ (σB/R) =
4σT
B/Rσ̇B/R

1 + σT
B/RσB/R

(2.11)

Using Equation (2.5) and the fact1 that σT
B/R[σ̃B/R] = 0, it can be immediately shown that

V̇ (σB/R) = σT
B/RωB/R (2.12)

Let B∗ be the desired body orientation and ωB∗/R the desired angular velocity vector at which the

spacecraft body should be rotating relative to the reference orientation. In the following steering

law ωB∗/R is treated as a control variable, assuming an inner rate servo loop exists that implements

these speeds. The kinematic steering command is expressed as

ωB∗/R = −f(σB/R) (2.13)

where f(σB/R) is an odd function such that

σT
B/Rf(σB/R) > 0 (2.14)

The Lyapunov function rate will, thus, be negative definite, and the system, globally asymptotically

stable2

V̇ (σB/R) = −σT
B/Rf(σB/R) < 0 ∀σB/R 6= 0 (2.15)

1 See Appendix A for details.
2 See Appendix B for a brief introduction to Lyapunov theory.
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In this work, the smoothly saturated odd function given by

f(xi) =
2ωmax

π
arctan

(
π

2ωmax
(K1xi +K3x

3
i )

)
i = 1, 2, 3 (2.16)

is used, where f(σB/R) =

[
f(σ1) f(σ2) f(σ3)

]T
.

2.3.2 Servo Sub-System

A servo sub-system is utilized to produce the required torques to make the body rates track

the desired body rates commanded by the steering law. The tracking error is defined as

ωB/B∗ = ωB/N − ωB∗/N = ωB/N − ωB∗/R − ωR/N (2.17)

where the fact that ωB∗/N = ωB∗/R + ωR/N has been used. ωB∗/R is the kinematic steering

rate command and ωR/N is an input coming from the attitude navigation solution. To create a

rate-servo that is robust to unmodeled torques[36], the integral term z is defined as

z =

∫ t

t0

ωB/B∗dτ (2.18)

Consider the Lyapunov candidate function[37]

Vω(ωB/B∗ , z) =
1

2
ωT
B/B∗ [IRW]ωB/B∗ +

1

2
zT [KI]z (2.19)

where [KI] is a positive definite matrix. Thus

V̇ω(ωB/B∗ , z) = ωT
B/B∗

(
[IRW]ω′B/B∗ + [KI]z

)
(2.20)

For convenience, body frame derivatives are taken in Equation (2.20).

Using the identities3 ω′B/N = ω̇B/N and ω′R/N = ω̇R/N − ωB/N × ωR/N , and Equation (2.17)

ω′B/B∗ = ω̇B/N − ω′B∗/R − ω̇R/N + ωB/N × ωR/N (2.21)

Plugging Equation (2.21) into Equation (2.20)

V̇ω(ωB/B∗ , z) = ωT
B/B∗

(
[IRW]ω̇B/N − [IRW](ω′B∗/R + ω̇R/N − ωB/N × ωR/N ) + [KI]z

)
(2.22)

3 See Appendix A.
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Using the equations of motion given in Equation (2.6)

V̇ω(ωB/B∗ , z) = ωT
B/B∗

[
−[ω̃B/N ]

(
[IRW]ωB/N + [Gs]hs

)
− [Gs]us +L+ [KI]z

−[IRW](ω′B∗/R + ω̇R/N − ωB/N × ωR/N )
]

(2.23)

Forcing V̇ω = −ωT
B/B∗ [P ]ωB/B∗ , with [P ] being a positive definite matrix, the kinetic system will

be globally asymptotically stable. Equating

− [P ]ωB/B∗ =
[
−[ω̃B/N ]

(
[IRW]ωB/N + [Gs]hs

)
− [Gs]us +L+ [KI]z

−[IRW](ω′B∗/R + ω̇R/N − ωB/N × ωR/N )
]

(2.24)

Equivalently

[Gs]us = Lr (2.25)

where

Lr = [P ]ωB/B∗ + [KI]z − [ω̃B/N ]
(
[IRW]ωB/N + [Gs]hs

)
− [IRW](ω′B∗/R + ω̇R/N − ωB/N × ωR/N ) (2.26)

Even though the RW torques can be mapped from Lr in several different ways, in this thesis the

minimum norm inverse is used[36]

us = [Gs]
T ([Gs][Gs]

T )−1Lr (2.27)

Equations (2.13) and (2.27) can be used to control a spacecraft’s attitude using reaction

wheels without constraints. As with any kinematic steering law, the rate-servo sub-system needs

to have a faster frequency response to ensure overall stability.

2.3.3 A Word on Numerical Computation

The algorithm requires the numerical computation of the integral z =
∫ t
t0
ωB/B∗dτ and the

body frame derivative ω′B∗/R.
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The integral term is numerically computed using the very simple trapezoidal rule[33], which

consists on interpolating the integrand with a linear function.

The numerical derivative, however, is much more delicate. In fact, depending on the frequency

of the servo sub-system loop and the frequency content of ωB∗/R, significant noise can be injected

into the control loop, requiring some kind of filtering on the torque command signals of the RW.

The approach taken here is to compute the numerical derivative using the noise-prone backward

differences[33]

ω′B∗/R(ti) ≈ fouter(ωB∗/R(ti)− ωB∗/R(ti−1)) (2.28)

where fouter is the frequency of the outer loop.

However, the derivative is smoothed using a simple moving average[32]. The width of the

window can be adjusted as a function of fouter.

Since ω′B∗/R is a feed-forward term, its accuracy is not crucial. Indeed, it has been seen that,

even in the case of over-filtering with a very wide window, the algorithm works well.



Chapter 3

Attitude Pointing Constraint Geometry Formulation

This Chapter is divided into two parts. First, a brief overview of the type of orientation

constraints that often appear in space missions is reviewed. In the second part, conic constraints

are studied in detail, with particular emphasis on a formulation as a function of MRPs, since the

rest of this work deals only with this specific type of orientation constraint.

3.1 Constraint Classification

Orientation constraints can be classified as inclusion or exclusion constraints. In the first

group, a given body-fixed direction has to be maintained pointing inside a definite region in space

while a maneuver is being performed. On the other hand, Kim, Meshabi, et. al.[17] classify exclusion

constraints into four different types

(1) Type-I (static hard constraints): This is the most common type of constraint, in which

“there is strict non-exposure constraints on the on-board sensitive instruments with respect

to celestial objects”[17]. In other words, the current attitude cannot enter certain inertially

fixed forbidden regions. In Reference [17], the categories conic and static hard constraints

can be used interchangeably. However, it is possible to generalize Type-I constraints to any

constraint that only depends on current attitude, being conic constraints a special case.

Conic constraints are defined by a forbidden direction in space and a security cone around it

given by a constant angle. The mathematical formulation of the restriction can be written
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as

C(σB/N ) < 0 (3.1)

where C(σB/N ) is some function of the current attitude.

(2) Type-II (static soft constraints): This category is a relaxation of Type-I constraints in

which violations of the forbidden zone are allowed, but for a limited amount of time. In

other words, static soft constraints depend on attitude history. Mathematically∫ t1

t0

|C(σB/N )| < φ (3.2)

where φ is a constant.

(3) Type-III (dynamic constraints): If the forbidden region changes with time, the constraint

is dynamic. A dynamic conic constraint is one in which the axis is not inertially fixed.

Dynamic constraints can also be hard or soft.

(4) Type-IV (mixed constraints): This category includes any possible combination of the last

three.

3.2 Conic Constraints

Henceforth, only conic constraints are considered. This particular static soft constraint is

illustrated in Figure 3.1, where an inertially fixed unit vector n̂ defines an exclusion or inclusion

cone around it.

For an exclusion constraint, the goal is to slew a spacecraft avoiding a body-fixed unit vector

b̂ entering the cone. The security angle is given by θmin, while θ is the instantaneous angle between

both vectors. In a typical application n̂ can be a unit vector pointing towards the sun (approxi-

mately inertially fixed) while b̂ is the boresight vector of a camera (body-fixed). Mathematically,

the condition is described as[1]

n̂ · b̂ = cos(θ) < cos(θmin) (3.3)
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✓

b̂

n̂

(a) Conic exclusion constraint. The spacecraft has
to slew keeping its sensitive optical instrument out
of the sun-defined cone.

✓

n̂b̂

(b) Conic inclusion constraint. The spacecraft has
to slew keeping the solar panels pointing somewhere
inside the sun-defined cone.

Figure 3.1: Conic constraint geometry.

Conic constraints are thus written introducing the rotation matrix [BN ] as

C[BN ]([BN ]) = cos(θ)− cos(θmin) = n̂ · b̂− cos(θmin) = Nn̂T [BN ]T
B
b̂− cos(θmin) < 0 (3.4)

where the notation C[BN ] indicates that the constraint is written as a function of the DCM.

Similarly, it might be desirable to maneuver while keeping a certain boresight vector b̂ inside

a cone defined by n̂ and θmin. For example, consider a maneuver that has to keep an antenna’s

main communication lobe inside a cone defined by a ground station. The mathematical condition

is

n̂ · b̂ = cos(θ) > cos(θmin) (3.5)

Thus, the constraint can be written as a function of the DCM as

C[BN ]([BN ]) = cos(θ)− cos(θmin) = n̂ · b̂− cos(θmin) = Nn̂T [BN ]T
B
b̂− cos(θmin) > 0 (3.6)

It is important to notice that exclusion and inclusion zones are defined using the same constraint

formulation; namely, through a function C[BN ]([BN ]). From the conic constrained definition, the

following inequality constraint must be true

− 2 ≤ C[BN ]([BN ]) ≤ 2 (3.7)
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An expression for Ċ[BN ]([BN ]) is readily computed using the transport theorem[36]1 and

the circular shift property of the triple product. If the derivatives are taken in the inertial frame

under the hypothesis that n̂ is inertially constant and b̂ is body-fixed, then

Ċ[BN ]([BN ]) =
Ndn̂

dt
· b̂+ n̂ ·

Ndb̂

dt
= n̂ · (ωB/N × b̂) = (b̂× n̂) ·ωB/N = ([

B
b̃][BN ]Nn̂)T BωB/N (3.8)

Using Equation (2.3) the constraint and constraint rate expressions are rewritten as

C[BN ]([BN ](σB/N )) = Cσ(σB/N ) = Nn̂T [BN(σB/N )]T
B
b̂− cos(θmin) (3.9)

Ċ[BN ]([BN ](σB/N )) = Ċσ(σB/N ) = ([
B
b̃][BN(σB/N )]Nn̂)T BωB/N (3.10)

It is also possible to compute the time derivative using the gradient and the kinematic dif-

ferential equation given in (2.5)

Ċ[BN ]([BN ]) = Ċσ(σB/N ) = ∇CT
σ (σB/N )σ̇B/N =

1

4
∇CT

σ (σB/N )[B(σB/N )]BωB/N (3.11)

1 See Appendix A.



Chapter 4

Attitude Constrained Steering Laws

In this Chapter, the orientation constrained laws are derived for both the regulation and

the tracking problem. Asymptotic stability of the control laws is discussed. After the derivations,

numerical examples are given. Torque-bounded orientation-constrained laws are studied in detail

in Chapter 5.

4.1 Constraint Overview

Let there be NE exclusion zones defined by continuous functions CE
i : SO(3) → R and NI

inclusion zones defined by continuous functions CI
j : SO(3)→ R, which can be the functions C[BN ]

or Cσ described in Chapter 3. Let D be a feasible attitude set such that

D = {x ∈ SO(3)/CE
i (x) < 0 ∧ CI

j (x) > 0} (4.1)

The goal is to drive σB/R and ωB/R to zero while moving inside D. The first necessary condition

is that [BN ] ∈ D for all possible times.

Barrier functions have been used to design control laws avoiding constraints[23, 28, 31, 47].

In this thesis, logarithm barrier functions[23, 25, 47] are used to design Lyapunov functions1 that

converge to the reference while avoid piercing the static constraints.

1 See Appendix B for a brief presentation on Lyapunov theory.
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4.2 Attitude Constrained Regulation Steering Law

In the regulation problem, the goal is to steer σB/N and ωB/N to zero. As in Chapter 2, the

problem is split into two parts: a steering law and a servo sub-system controlling angular velocity.

Relative to the unconstrained law described in Chapter 2, the latter remains the same. The steering

law has to be changed.

Consider the following Lyapunov candidate function V : D → R+

V (σB/N ) = 2 ln(1 + σT
B/NσB/N )

− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

) (4.2)

The parameters αi > 0 and βj > 0 can be chosen in several different ways with the only condition

−CE
i (σB/N ) < αi and CI

j (σB/N ) < βj ∀σB/N ∈ D. One possibility, based on Equation (3.7) is to

pick αi = βi = 2e. Therefore, the logarithm constraint terms will be between 1 and +∞. Another

possibility for αi is discussed later.

The function has the following characteristics

(1) V is continuously differentiable in D.

(2) V (0) = 0.

(3) V (σB/N ) > 0 ∀σB/N ∈ {D − {0}}.

Since −CE
i (σB/N ) < αi, C

I
j (σB/N ) < βj , and − ln(x) is a strictly decreasing function.− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

) > − ln(1)− ln(1) = 0 (4.3)

Given the fact that ln(1 + σT
B/NσB/N ) > 0 ∀σB/N ∈ {D − {0}}, thus V (σB/N ) >

0 ∀σB/N ∈ {D − {0}}.

(4) If αi = βi = 2e− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

) > − ln

(
1

e

)
− ln

(
1

e

)
= 2

(4.4)
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(5) V (σB/N )→ +∞ when CE
i (σB/N )→ 0 or CI

i (σB/N )→ 0.

By conditions 1, 2, and 3, V is a proper Lyapunov function[13]. Condition 5 ensures that the

motion is constrained to D.2

In order to derive a control law, the time derivative of V is computed

V̇ (σB/N ) =
4σT
B/N σ̇B/N

(1 + σT
B/NσB/N )

− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

)+

2 ln(1 + σT
B/NσB/N )

− 1

NE

NE∑
i=1

ĊE
i (σB/N )

CE
i (σB/N )

− 1

NI

NI∑
j=1

ĊI
j (σB/N )

CI
j (σB/N )

 (4.5)

Using Equation (2.5) and the fact3 that σT
B/N [σ̃B/N ] = 0

V̇ (σB/N ) = σT
B/N

BωB/N

− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

)+

2 ln(1 + σT
B/NσB/N )

− 1

NE

NE∑
i=1

ĊE
i (σB/N )

CE
i (σB/N )

− 1

NI

NI∑
j=1

ĊI
j (σB/N )

CI
j (σB/N )

 (4.6)

Using Equation (3.8) and re-arranging

V̇ (σB/N ) =

σT
B/N

− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

)+

2 ln(1 + σT
B/NσB/N )

− 1

NE

NE∑
i=1

([
B
b̃][BN ]Nn̂)T

CE
j (σB/N )

− 1

NI

NI∑
j=1

([
B
b̃][BN ]Nn̂)T

CI
j (σB/N )

 BωB/N (4.7)

Letting vR be

vR =

σB/N
− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

)+

2 ln(1 + σT
B/NσB/N )

− 1

NE

NE∑
i=1

([
B
b̃][BN ]Nn̂)

CE
i (σB/N )

− 1

NI

NI∑
j=1

([
B
b̃][BN ]Nn̂)

CI
j (σB/N )

 (4.8)

it is possible to write

V̇ (σB/N ) = vTR
BωB/N (4.9)

2 See Appendix B.
3 See Appendix A for details.
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It is important to notice that vR = 0 whenever σB/N = 0.

Choosing

BωB∗/N = −f(vR) (4.10)

where f is given by Equation (2.16)

V̇ (σB/N ) = −vTRf(vR) ≤ 0 (4.11)

Notice that the control law given in Equation (4.10) is rate-bounded.

According to Lyapunov’s direct method[13], since V̇ is negative semi-definite, the steering

law given by Equation (4.10) is stable.

For asymptotic stability, V̇ has to be negative definite. In other words, vR has to be 0 only

when σB/N = 0. This occurs almost everywhere in every single case, but there might be certain

orientations in some specific problem conditions in which vR = 0 with σB/N 6= 0. This situation is

studied in Section 4.4.

4.3 Attitude Constrained Tracking Steering Law

In the tracking problem, the goal is to steer σB/R and ωB/R to zero. As in Chapter 2, the

problem is split into two parts: a steering law and a servo sub-system, which controls angular

velocity. Relative to the unconstrained law described in Chapter 2, the latter remains the same.

The steering law has to be changed.

Consider the following Lyapunov candidate function V : D → R+

V (σB/R) = 2 ln(1 +σT
B/RσB/R)

− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

) (4.12)

This Lyapunov function is similar to the one studied in Section 4.2. However, the problem is more

complex since, in this case, V depends on σB/R and σB/N simultaneously.

If the parameters αi > 0 and βj > 0 are chosen as in Section 4.2, V will be a proper Lyapunov

candidate function and will have the properties already studied in that section.
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Its time derivative is given by

V̇ (σB/R) =
4σT
B/Rσ̇B/R

(1 + σT
B/RσB/R)

− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

)+

2 ln(1 + σT
B/RσB/R)

− 1

NE

NE∑
i=1

ĊE
i (σB/N )

CE
i (σB/N )

− 1

NI

NI∑
j=1

ĊI
j (σB/N )

CI
j (σB/N )

 (4.13)

Using Equation (2.5) and the fact4 that σT
B/R[σ̃B/R] = 0

V̇ (σB/R) = σT
B/R

BωB/R

− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

)+

2 ln(1 + σT
B/RσB/R)

− 1

NE

NE∑
i=1

ĊE
i (σB/N )

CE
i (σB/N )

− 1

NI

NI∑
j=1

ĊI
j (σB/N )

CI
j (σB/N )

 (4.14)

Plugging Equation (3.8),

V̇ (σB/R) = σT
B/R

BωB/R

− 1

NE

NE∑
i=1

ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

)+

2 ln(1 + σT
B/RσB/R)

− 1

NE

NE∑
i=1

([
B
b̃][BN ]Nn̂)T

CE
j (σB/N )

− 1

NI

NI∑
j=1

([
B
b̃][BN ]Nn̂)T

CI
j (σB/N )

 BωB/N (4.15)

Since ωB/N = ωB/R + ωR/N

V̇ (σB/R) =

σT
B/R

 1

NE

NE∑
i=1

− ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

)+

2 ln(1 + σT
B/RσB/R)

− 1

NE

NE∑
i=1

([
B
b̃][BN ]Nn̂)T

CE
j (σB/N )

− 1

NI

NI∑
j=1

([
B
b̃][BN ]Nn̂)T

CI
j (σB/N )

 BωB/R+

2 ln(1 + σT
B/RσB/R)

− 1

NE

NE∑
i=1

([
B
b̃][BN ]Nn̂)T

CE
j (σB/N )

− 1

NI

NI∑
j=1

([
B
b̃][BN ]Nn̂)T

CI
j (σB/N )

 BωR/N (4.16)

Let vT and uT be such that

uT = 2 ln(1 + σT
B/RσB/R)

− 1

NE

NE∑
i=1

([
B
b̃][BN ]Nn̂)

CE
j (σB/N )

− 1

NI

NI∑
j=1

([
B
b̃][BN ]Nn̂)

CI
j (σB/N )

 (4.17)

vT = σB/R

 1

NE

NE∑
i=1

− ln

(
−
CE
i (σB/N )

αi

)
− 1

NI

NI∑
j=1

ln

(
CI
j (σB/N )

βj

)+ uT (4.18)

4 See Appendix A for details.



27

It is important to notice that vT = uT = 0 whenever σB/R = 0.

Then

V̇ (σB/R) = vTT
BωB/R + uT

T
BωR/N (4.19)

Choosing

BωB∗/R = −f(vT )− vTu
T
T

vTT vT

BωR/N (4.20)

where f is given by Equation (2.16)

V̇ (σB/R) = −vTT f(vT ) ≤ 0 (4.21)

Since σB/R = 0 implies vT = uT = 0, the second term in Equation (4.20) contains a 0
0

indetermination. However, ln(1 + σT
B/RσB/R) → σT

B/RσB/R when σB/R → 0. Thus it is possible

to write

uT −−−−−→
σB/R→0

σT
B/RσB/Ra (4.22)

vT −−−−−→
σB/R→0

βσB/R + σT
B/RσB/Ra (4.23)

The vector a and the scalar β do not depend on the attitude error.

Therefore

vTT vT −−−−−→
σB/R→0

σT
B/RσB/Rβ

2 + (σT
B/RσB/R)2aTa+ 2βσT

B/RσB/Rσ
T
B/Ra (4.24)

vTu
T
T
BωR/N −−−−−→

σB/R→0
βσB/Rσ

T
B/RσB/Ra

T BωR/N + (σT
B/RσB/R)2aaT BωR/N (4.25)

When σB/R → 0, the expressions can be further approximated by dropping higher order terms

vTT vT −−−−−→
σB/R→0

σT
B/RσB/Rβ

2 (4.26)

vTu
T
T
BωR/N −−−−−→

σB/R→0
βσB/Rσ

T
B/RσB/Ra

T BωR/N (4.27)

Hence

vTu
T
T

vTT vT

BωR/N −−−−−→
σB/R→0

βσB/Rσ
T
B/RσB/Ra

T BωR/N

σT
B/RσB/Rβ

2
=
σB/Ra

T BωR/N

β
(4.28)
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Figure 4.1: With perfect symmetry vR can be 0.

This derivation solves the 0
0 indetermination and shows that the second term can be modeled either

by a linear function of the attitude error or by 0 when σB/R is small.

Another important remark is that, in contrast with the regulation law in Equation (4.10),

the tracking law given by Equation (4.20) is not necesarilly rate-bounded.

If the vector vT is zero when σB/R 6= 0, the controlability is lost. This situation is studied

in the following section.

4.4 Convergence Analysis

It has been shown that the laws given by Equations (4.10) and (4.20) are Lyapunov stable but

not necessarily asymptotically stable. Consider, for example, the special case in which vT = 0 and

σB/R 6= 0. Fortunately, it turns out that this occurs only with very specific symmetry conditions.

To understand the geometric conditions that lead to this situation, consider the following

regulation problem (σR/N = 0), depicted in Figure 4.1. Let there only be one exclusion condition,

given by n̂ = ŷN . The boresight vector is in the body x̂ direction: b̂ = x̂B. In this qualitative

description, the angle θmin is not relevant. The initial attitude is a rotation of 180◦ about ẑN .

Thus5 σB/N = tan(180◦/4)ẑN .

5 See Section 2.1.
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The vector vR is

vR = −σB/N ln

(
−
CE
1 (σB/N )

α1

)
− 2 ln(1 + σT

B/NσB/N )
([
B
b̃][BN ]Nn̂)

CE
1 (σB/N )

(4.29)

A necessary (but not sufficient) condition for vR to be zero with a non-zero σB/N is σB/N and

[
B
b̃][BN ]Nn̂ to be anti-parallel. The latter is simply b̂ × n̂. In this particular case, that situation

is possible since the attitude is a rotation about the ẑN axis and b̂ × n̂ is in the same direction.

These saddle points can occur whenever the problem has one of such perfect symmetries. If the

conic constraint is slightly tilted, the symmetry is broken, and no saddle point is reached for that

attitude initial condition.

In practice, due to perturbations and numerical noise, saddle points occur very rarely. How-

ever, vR (or vT ) can become arbitrarily small.

It should be clear that these saddle-points are zero-measure sets and do not affect asymptotic

stability as long as there exists some mechanism to escape from them. In other words, the control

laws are asymptotically stable anywhere else.

A heuristic solution to avoid these saddle points is to detect whenever vR (or vT ) is small

while σB/R is not and apply a very small push to the spacecraft in any direction orthogonal to

σB/R in order to break the symmetry. The heuristic algorithm is shown as Algorithm 1. σ⊥B/R is

any orthogonal vector to σB/R. The scalar algorithm parameter γ is a small number to be chosen.

Algorithm 1 Saddle-point avoidance.

1: if ‖vT ‖ (or ‖vR‖) < 0.01 &&
∥∥σB/R∥∥ > 0.01 then

2: vT (or vR) = γσ⊥B/R
3: end if
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4.5 Numerical Simulations

Three different simulations are shown. Parameters are indicated in Table 4.1. Four identical

reaction wheels in a pyramid configuration with an angle of 55◦ are used. The four reaction wheels

are spinning at nominal speed (500 rpm).

The maximum permitted angular velocity is ωmax = 2◦/sec.

Four exclusion constraints are used. One inclusion constraint (not used in the regulation

problems) is also setup. Different cameras and/or antennas (or solar panels) are defined in the

examples.

The servo sub-system given in Equation (2.27) requires the computation of the body-frame

derivative ω′B∗/R. This derivative is numerically computed6 using backward differences[33] and a

0.5-sec-window moving average[32] in order to smooth the signal and avoid unnecessary noise

Table 4.1: Simulation parameters.

Description Variables Values

Spacecraft [IS ] [kg-m2] diag(
[
4.415 4.415 3.83

]
)

RW

[Iw] [kg-m2] diag(
[
0.03 0.001 0.001

]
)

[Gs]

 0.819 0 −0.819 0
0 0.819 0 −0.819

0.5736 0.5736 0.5736 0.5736


usmax 15 mNm

Control Constants
[P ] 10[I3×3]
[KI ] 0.01[I3×3]

K1, K3 0.1

Exclusion Constraints

Nn̂1, θmin1

[
0 −0.34 −0.96

]T
, 10◦

Nn̂2, θmin2

[
0 −1 0

]T
, 30◦

Nn̂3, θmin3

[
1 1 0

]T
, 20◦

Nn̂4, θmin4

[
−1 1 0

]T
, 20◦

Inclusion Constraints Nn̂5, θmin5

[
1 0 0

]T
, 70◦

6 See Subsection 2.3.3 for details on numerically computing the derivative.
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4.5.1 Slew Problem

In this first numerical simulation, a typical slew maneuver is shown. The spacecraft is taken

from an arbitrary initial orientation to a final orientation aligned with the inertial frame. Two

sensitive instruments are considered. The first, Camera 1, is in the y-body direction, while the

second, Camera 2, is in the x-body direction. None of them must enter into the four exclusion

zones given in Table 4.1. No inclusion zones are considered in this example. Since it is a typical

slew maneuver, the initial angular velocity is zero.

Results are illustrated in Figure 4.2. Figure 4.2b shows that the angular velocity is bounded

(ω1d, ω2d, ω3d indicate the steering law commands). The reaction wheels torques, in Figure 4.2c,

are also bounded7 .

Since the problem does not have any symmetry, no saddle-points are reached, as is shown in

Figure 4.2d. Indeed, the vector vR is never zero except when σB/N = 0.

The most interesting plots are shown in Figures 4.2e and 4.2f, where a cylindrical projection

of each camera’s unit vector tip is plotted projected into a cylinder. The exclusion zones are the

numerated blobs. The numbering corresponds to that given in Table 4.1. As can be seen, both

cameras avoid the exclusion zones and reach their final destination. Camera 1, in the y-body

direction ends up aligned to the y-inertial unit vector. This corresponds to a declination of 90◦.

Similarly, Camera 2, in the x-body direction ends up aligned to the x-inertial unit vector, that

corresponds to a declination of 0◦8 .

4.5.2 Saddle-Points in the Regulation Problem

In this example, the existence of a saddle-point is illustrated. In order to have a saddle-point,

spatial symmetry relative to the initial conditions must exist. The symmetric condition is achieved

with four exclusion and no inclusion constraints. Only Camera 1 is used.

7 The reason why the algorithm works with bounded control torque is discussed in Chapter 5.
8 It can be also thought in terms of latitude and longitude, where x-inertial corresponds to 0◦latitude-0◦longitude,

and y-inertial to 0◦latitude-90◦longitude.
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Figure 4.2: Regulation control performance illustration: Typical slew maneuver.
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The initial conditions are chosen as follows:

σB/N0
=

[
−0.67 0 0

]T
(4.30)

ωB/N0
=

[
ωmax 0 0

]T
(4.31)

The initial attitude is a simple rotation of −135◦ about the x axis. The initial angular velocity is

full speed (ωmax) in the same direction. In other words, Camera 1 vector’s tip (in the y-body axis)

is rotating full speed into the first exclusion constraint. Given the four symmetric exclusion zones,

the attitude initial condition is purposely picked to achieve a condition where a saddle-point may

arise.

Algorithm 1 is used for saddle-point avoidance with γ = 0.01 and σ⊥B/N =

[
−σ3 0 σ1

]
if

σ1 6= and σ3 6= 0 and σ⊥B/N =

[
σ2 0 0

]
in other case.

Figure 4.3 shows the results. As can be seen in Figure 4.3b, the steering law generates a

command of almost full speed in the opposite direction (ω1d, ω2d, ω3d indicate the steering law

commands) in order to brake the spacecraft. The situation is depicted in the cylindrical projection

in Figure 4.3c. In this figure, the tip of the boresight vector in inertial space and the exclusion

constraints (blobs) are projected into a right ascension-declination 2-D space. The dotted line

indicates the path the unconstrained law would follow. The initial condition is such that the

boresight vector is rotating straight into the near-south-pole constraint. The controller stops the

rotation, reaches a saddle-point, and after using Algorithm 1 to getting out of it, rotates the

spacecraft smoothly to the target.

For comparison, in Figure 4.3d the fourth constraint is removed and the symmetry is broken.

Thus, no saddle-point is reached and the control is smoother. The vector vR is never zero except

when σB/N = 0.

Finally, Figure 4.3e shows the vector’s norm ‖vR‖ for the symmetric case depicted in Fig-

ure 4.3c. As can be seen, a saddle-point is reached when vR ≈ 0. Figure 4.3f, on the other side,

shows the vector’s norm ‖vR‖ for the asymmetric case depicted in Figure 4.3d. No saddle-point is

ever reached in this case.
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Figure 4.3: Regulation control performance illustration: Saddle-point avoidance.
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4.5.3 Tracking Problem

This simulation shows a tracking example using the four exclusion and one inclusion con-

straints given in Table 4.1. One sensitive instrument is considered. Camera 1 is in the y-body

direction. An antenna in the x-body direction has to point somewhere inside the inclusion con-

straint in Table 4.1.

The reference frame R is constructed as follows. In a circular orbit around a perfectly

spherical Earth, the direction r̂1 is the nadir direction. r̂3 is the angular momentum direction,

normal to the orbit, and r̂2 = r̂3 × r̂1. Thus, [RN ] =

[
Nr̂1

Nr̂2
Nr̂3

]T
. The orbital parameters

are shown in Table 4.2.

Table 4.2: Reference frame parameters.

Description Values

Earth radius 6378.0 km

Earth’s gravitational parameter 398600.0 km/sec2

Right ascension of ascending node 0◦

Inclination −90◦

Orbit altitude 400 km

Initial argument of latitude 180◦

The results can be seen in Figure 4.4. The cylindrical projections of the exclusion and

inclusion zones in Figures 4.4e and 4.4f show that the reference is tracked without violating any

constraint. This can be further corroborated in Figures 4.4c and 4.4d, which illustrate attitude and

rate errors.
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Figure 4.4: Tracking control performance illustration.



Chapter 5

The Effect of Bounded Control Torque

In this Chapter, the effect of a bounded control torque on the attitude constraint law is

studied.

5.1 Constraint avoidance with finite control torque

Even though the regulation control law given in Equation (4.10) is bounded in angular veloc-

ity, it might require infinite angular acceleration when close to a constraint. In order to study how

the control law performs with limited torque capacity, Figure 5.1 considers a very simple planar

scenario. The boresight vector is rotating on a plane straight into a constraint cone. The inertia of

the system about the fixed rotation axis is Imax, the angular velocity is ω and a constant available

torque is given by umax. The angle at time t0 is θ0 and the initial angular velocity is ω0. The prob-

lem can be stated as follows: with inertia Imax, constant control torque umax, and initial velocity

ω0 = ωmax given, what is the initial angle θ0 to exactly stop the rotation at the security cone given

by the angle θmin?

Since ω = −θ̇, it is possible to write

θ̈ = −ω̇ =
umax

Imax
(5.1)

θ̇f = θ̇(tf ) = 0 =
umax

Imax
(tf − t0)− ωmax (5.2)

θf = θ(tf ) = θmin =
1

2

umax

Imax
(tf − t0)2 − ωmax(tf − t0) + θ0 (5.3)
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Figure 5.1: Worst-case scenario. The spacecraft is rotating in a fixed plane at maximum angular
velocity straight into a constraint. umax is the maximum torque capacity in that direction.

Solving for (tf − t0) in the first equation and replacing into the second

θ0 =
1

2

Imax

umax
ω2
max + θmin (5.4)

For a given spacecraft, Imax should be the maximum axis of inertia, ωmax is the maximum velocity

used in the steering law in Equation (2.16) and umax should be, at most, the maximum torque

available in the poorest controllable direction.

Given a maximum torque for each wheel usmax , the minimum torque capacity for a RW

array can be computed using torque envelopes. The algorithm for computing this minimum torque

capacity is given in Reference [21]. An NRW-wheel system has an NRW-dimensional torque vector

us feasible set that fills the interior of a hypercube of dimension NRW, where each side has a

length of twice the maximum torque (2usmax). This hypercube is mapped into a polyhedron in 3-D

space using the projection matrix [Gs] presented in Chapter 2. The mapping preserves vertices (all

wheels saturated), edges (all but one wheel saturated), and facets (all but two wheels saturated),

even though it is not an isomorphism. Moreover, some vertices, edges, and facets of the hypercube

are mapped to the interior of the polyhedron. The algorithm given by Landis Markley et. al.[21]

calculates the minimum torque1 of each outer facet to compute the minimum torque capacity as

the minimum over all the facets. The maximum control torque magnitude that can be exerted by

1 The paper describes the calculation of the minimum angular momentum, but they are both equivalent through
a linear isomorphism.
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the RW array in the poorest controllable direction (ucap) can be computed as follows

ucap = min{ui,jmin; i, j = 1, ..., NRW} (5.5)

ui,jmin = usmax

NRW∑
k=1,k 6=i,j

|ĝsk · n̂ij | (5.6)

n̂ij =
ĝsi × ĝsj∥∥ĝsi × ĝsj∥∥ (5.7)

The umax used in Equation 5.4 can be a fraction of the torque capacity in Equation 5.5.

umax = αucap, 0 < α ≤ 1 (5.8)

Thus, for each exclusion constraint there is an angle θmin that defines the exclusion cone

(inner cone) and an angle θ0 that defines an outer cone. Using θmin in the constraint functions in

Eqs. (4.10) and (4.20), the finite-torque control will not break through any exclusion constraint as

long as the initial attitude is outside any outer cone and the angular velocity is not greater than

ωmax.

5.2 Switching between the constrained and unconstrained laws

An additional use of the result obtained in the last section enables switching between the con-

strained and unconstrained laws. When “far” from an exclusion constraint, it is possible to dismiss

its inclusion in the control laws given by Eqs. (4.10) and (4.20). The angle θ0 in Equation (5.4)

is used to evaluate this condition. The algorithm is shown as Algorithm 2. In order to avoid

chattering, two different thresholds are defined using a hysteresis or Schmitt trigger[39] approach

with a gap ψ. This algorithm is repeated for every single exclusion constraint. Therefore, at a

given instant of time, some constraints are considered while others are not. That means eliminating

those constraints that are not being utilized in Eqs. (4.8), (4.17) and (4.18).

In order to reduce (but not eliminate) the discontinuity while switching, the parameter αi in

Equation (4.18) can be chosen as

αi = | cos(
1

2

Imax

umax
ω2
max + θmini)− cos(θmini)|e (5.10)
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Algorithm 2 Constrained-Unconstrained control switching

1: Compute [BN ] from σB/N using Equation (2.3)

2: Compute θi = arccos
(
Nn̂T

i [BN ]T
B
b̂i

)
3: if θi < θ0i = 1

2
Imax
umax

ω2
max + θmini then

4: Use constrained control given in Equation (4.20)
5: else if θi > θ0i + ψ then
6:

− ln

(
−
CE
i (σB/N )

αi

)
→ 1

([
B
b̃][BN ]Nn̂)

CE
j (σB/N )

→ 0 (5.9)

7: end if

such that the logarithm in Equation (5.9) switches continuously when turning off the constraint

algorithm.

5.3 Numerical Simulations

In this section, two different simulations are shown with the parameters indicated in Table 4.1

that have already been used in Chapter 4.

5.3.1 Monte Carlo simulation

A 50-run Monte Carlo simulation is shown in Figure 5.2. A regulation problem using exclusion

constraints 1 and 2 in Table 4.1 is simulated 50 times for different initial conditions. The goal of

the simulation is to statistically test the condition given by Equation (5.4). To that end, different

initial attitudes are generated such that the boresight vector of a camera is always rotating straight

into the first exclusion constraint at maximum angular velocity.

The initial attitude is random. The boresight vector of a camera is also randomly picked

in some point on the outer cone of the first exclusion zone, computed using Equation (5.4). The

initial angular velocity is then calculated such that the boresight vector is rotating straight into

the constraint with magnitude ωmax. With this algorithm, different torque facets of the torque

envelope are tested2 .

2 See Section 5.1.
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In the cylindrical projection in Figure 5.2d, every single trajectory starts at the outer cone

of the first exclusion constrained defined by the angle θ0 in Equation (5.4). The outer cone in

Figure 5.2d is represented by a lighter blob around the exclusion zone numbered as 1. This is

shown in Figure 5.2c, where the exclusion constraint angle θ1 = arccos(n̂1 · b̂1) at the start of every

run corresponds to θ0. As can be seen, the constraints are avoided with bounded angular velocity

and limited torque (the maximum torque of each RW is 15 mNm, see Figure 5.2b), as long as the

initial attitude is outside the outer cone. In Figure 5.2c, the angle θ1 is never below θmin. This is

a key result, since it shows that it is possible to avoid piercing an exclusion conic constraint, even

with limited torque, if the initial condition is outside an outer cone. The minimum angle defining

this outer cone is related to the torque capacity of the RW configuration.
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Figure 5.2: Monte Carlo simulation.
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5.3.2 Tracking Problem With Constrained-Unconstrained Switching

The simulation given in Subsection 4.5.3 is repeated with the inclusion of Algorithm 2 for

switching between the constrained and unconstrained laws using a gap of ψ = 5◦. In Equation (5.4),

umax is chosen to be 50% of the minimum torque capacity computed with Equation (5.5).

The results can be seen in Figure 5.3. The cylindrical projections of the exclusion and

inclusion zones in Figs. 5.3e and 5.3f show that the reference is tracked without violating any

constraint.

The effect of using Algorithm 2 is shown in Figure 5.4, where the four exclusion constraint

angles θ1, θ2, θ3, θ4 and the constraint minimum (θmin) and threshold (θ0) angles are plotted. The

third and fourth exclusion constraints in Table 4.1 are so far from the trajectory that are not even

considered by the control algorithm. The algorithm switches on and off constraints 1 and 2 using

the threshold given in Equation (5.4) and the hysteresis gap given by ψ = 5◦. After approximately

50 seconds, no constraint is used anymore and the purely unconstrained law is utilized instead.

It is interesting to compare Figure 5.3 with Figure 4.4, obtained in Subsection 4.5.3. When

switching constraints off, a discontinuity occurs, due to the following change in Algorithm 2

([
B
b̃][BN ]Nn̂)

CE
j (σB/N )

→ 0 (5.11)

This discontinuity, which can be eliminated using filtering, can be seen as a sudden change in the

angular velocity (compare Figures 5.3b and 4.4b).
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Figure 5.3: Tracking control performance illustration using contrained–unconstrained switching.
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Figure 5.4: Tracking control performance illustration using contrained-unconstrained switching.
Exclusion constraint angles. Exclusion zones 3 and 4 are not considered by Algorithm 2 because
they are “far” from the trajectory.



Chapter 6

Conclusions

Orientation-constrained attitude control is not a mature technology. In fact, it is a lively

active research topic with several different proposed solutions. Existing frameworks have different

advantages and disadvantages. CMT has an inherent simplicity and has been successfully used in

two missions. However, it might not be generalized because convergence cannot be demonstrated.

Optimization techniques can take into account several different types of constraints, including

bounded rates and torques, but yield an open-loop solution. Additionally, optimal methods are

algorithmically complex and cannot be applied to tracking without modification. Graph methods

are closed-loop, but do not solve the tracking problem and also have high complexity.

On the other hand, Lyapunov-derived methods have low complexity from an algorithmic point

of view. Unfortunately, the current available techniques do not limit angular rate and control torque,

which makes them hardly applicable to real attitude constrained control problems. Furthermore,

they do not solve the tracking problem either.

One of the main advantages of using Lyapunov theory is, in fact, to be able to synthesize

control laws that, though nonlinear, are fairly simple and ideal to real-time attitude control. Indeed,

few closed-form function evaluations are usually required. This thesis extends the benefits of

using Lyapunov-derived methods to rate-and-torque-bounded problems. Furthermore, the tracking

problem with orientation constraints is also solved.

Bounded angular velocity is achieved in the regulation problem using a kinematic steering

law to control the attitude of a spacecraft with reaction wheels under static hard conic constraints.
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The algorithm works well with any number of constraints, even in highly-symmetric conditions.

Bounded control torque can be achieved by extending the exclusion cones to take into account

the limited control torque capacity of the spacecraft. The extended cones are not much larger than

the original exclusion cones, being a function of the minimum torque capability of the reaction

wheel array of the spacecraft. As a corollary, this result makes it possible, if desired, to switch

from the constrained steering law to the unconstrained steering law when sufficiently far from the

constraint cones.

As an additional characteristic, the control algorithms described use Modified Rodrigues

Parameters as attitude descriptors. The use of MRPs in this problem provides a minimal attitude

parameterization that yields globally non-singular behavior with short-rotation descriptions.

There are several questions that can be addressed in future work. First, the algorithm for

escaping from saddle points has been explained heuristically, but not mathematically. Second, the

algorithm switching between constrained and unconstrained laws still present some discontinuities.

Future work could address further smoothing techniques for switching between both. Third, the

tracking law given in Eq. (4.20) is not necessarily bounded in angular velocity because it depends on

the nature of the reference. However, it has been seen in the simulations that the angular velocity

remains bounded in spite of the second term in Eq. (4.20). This condition needs further study and

could be addressed in the future. Fourth, this work deals only with static hard conic constraints.

Extending the results to dynamic hard conic constraints, where the axis of the cone is not inertially

fixed, might be possible.
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Appendix A

Kinematic Identities

In this Appendix, some kinematic identities used throughout this work are briefly discussed.

See Reference [36] for further reading.

A.1 Transport Theorem

Let N and B be two frames with a relative angular velocity of ωB/N and let a be a generic

vector; then the derivative of a in the N frame (ȧ) can be related to the derivative of a in the B

frame (a′) as

ȧ = a′ + ωB/N × a (A.1)

It is important to understand that this is a vectorial equation that can be written in any

frame.

A.2 MRPs Identities

The MRPs kinematic differential equation is given by[36]

σ̇ =
1

4

[
(1− σTσ)[I3×3] + 2[σ̃] + 2σσT

]
ω =

1

4
[B(σ)]ω (A.2)

The product σT σ̇ is heavily used in Chapters 2 and 4. It can be computed as

σT σ̇ =
1

4

[
σT
[
(1− σTσ)[I3×3] + 2[σ̃] + 2σσT

]]
ω (A.3)

=
1

4

[
(1− σTσ)σT + 2σT [σ̃] + 2σT (σσT )

]
ω (A.4)
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Using the fact that the matrix [σ̃] is skew-symmetric, the product σT [σ̃] is equivalent to

σT [σ̃] = ([σ̃]Tσ)T = (−[σ̃]σ)T = −(σ × σ)T = 0 (A.5)

Using this result and the associativity of the matrix product

σT σ̇ =
1

4

[
(1− σTσ)σT + 2(σTσ)σT

]
ω =

1

4
(1 + σTσ)(σTω) (A.6)

Equivalently

4σT σ̇

(1 + σTσ)
= σTω (A.7)



Appendix B

Lyapunov Theory

In this Appendix, some elements of Lyapunov theory are briefly discussed. See References [13,

36] for further reading.

B.1 Lyapunov Stability

Let the autonomous system

ẋ = f(x) (B.1)

have an equilibrium point at zero: f(0) = 0. f : D ⊆ Rn → Rn is locally Lipschitz.

The equilibrium point x = 0 is

(1) Stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)‖ < δ(ε) =⇒ ‖x(t)‖ < ε, ∀t ≥ 0 (B.2)

(2) Unstable, if it is not stable.

(3) Asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ =⇒ lim
t→∞

x(t) = 0 (B.3)

(4) Globally asymptotically stable if it is asymptotic stable for any initial condition.
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B.2 Lyapunov’s Direct Method

Let x = 0 be an equilibrium point for (B.1) and D ⊆ Rn be a domain containing x = 0. Let

V : Rn → R be a continuously differentiable function such that

(1) V (0) = 0 and V (x) > 0 in D − {0}.

(2) V (x) ≤ 0 ∀x ∈ D.

Then x = 0 is stable.

Moreover, if

V (x) < 0, ∀x ∈ D − {0} (B.4)

then x = 0 is asymptotically stable.

B.3 Constrained Lyapunov Function

Let V be a proper Lyapunov function for the stable system (B.1) and C be some compact

(closed and bounded) set such that D − C is a connected set that includes 0. Additionaly,

V (y)→∞, ∀y ∈ border{C} (B.5)

where border{C} is the complement of the interior of C[4].

Then x remains in the open set D − C.

Proof

Since V is positive-definite and V̇ is negative semi-definite, V (x(t)) ≤ V (x(0)). Thus, if

x(0) ∈ D − C, V (x(t)) will be bounded for all t. Therefore, x(t) /∈ border{C}, ∀t. Since x(t) is

continous, x(0) /∈ C and C is compact, x(t) /∈ C, ∀t


