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Lamar, Jonathan P. (Ph.D., Mathematics)

Lattices of Supercharacter Theories

Thesis directed by Nathaniel Thiem

The set of supercharacter theories of a finite group forms a lattice under a natural partial

order. An active area of research in the study of supercharacter theories is the classification of this

lattice for various families of groups. One other active area of research is the formation of Hopf

structures from compatible supercharacter theories over indexed families of groups. This thesis

therefore has two goals. First, we will classify the supercharacter theory lattice of the dihedral

groups D2n in terms of their cyclic subgroups of rotations, as well as for some semidirect products

of the form Zn oZp. Second, we will construct a pair of combinatorial Hopf algebras from natural

supercharacter theories on the alternating and finite special linear groups and relate them using the

theory of combinatorial Hopf algebras, as developed by Aguiar, Bergeron, and Sottile in 2006.
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Chapter 1

Introduction

A supercharacter theory of a finite group is a combinatorial tool for studying the character

theory of that group. It is defined by a pair of partitions: one of the irreducible characters and

one of the conjugacy classes. These partitions are subject to conditions (made precise in Chapter

2) that ensure that one can think of the supercharacter theory as an approximation of the usual

character theory. Since the character theory of a group may evade classification, this may be a

useful guiding principle.

The history of supercharacter theory began with the work of André (see [And95], [And02],

and [AN06]) and Yan (see [Yan01]), who studied certain characters (called “basic characters”)

of the groups Un(q) of n × n unipotent upper triangular matrices over finite fields Fq. These

characters can easily be indexed and have the property that each irreducible character appears as a

constituent of precisely one basic character. Moreover, the trivial character is basic, and products

of basic characters decompose into sums of basic characters. Hence, the basic characters form a

computationally friendly approximation to the usual character theory. Although the classification

of the irreducible characters of Un(q) is equivalent to the enumeration of pairs of n × n invertible

matrices up to simultaneous similarity, and as such is a “wild” problem (see [Hig60], [VLA03],

[Pol66], [Ser00]), this approximation has yielded partial solutions to previously intractible problems.

For example, in [ACDS04], the authors used this supercharacter theory to provide bounds on the

rate of convergence to equilibrium of a well-known random walk on Un(q).

In [DI08], Diaconis and Isaacs formally defined the notion of a supercharacter theory for an
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arbitrary finite group and studied a particular supercharacter theory for a family of finite groups

known as algebra groups. These and related supercharacter theories were studied in subsequent

papers (for example, see [DT09], [MT09], [TV09], [Thi10], [AAB+12], [ABT13], and [And15])

where priority was placed on using supercharacter theory to ease computation of character values

and building combinatorial Hopf-theoretic structures for nested families of groups with given su-

percharacter theories in a manner analogous to [Mac98]. In [Hen12], Hendrickson established a

one-to-one correspondence between supercharacter theories of a group and central Schur rings over

that group, connecting supercharacter theories with this earlier work (see [Tam70]). In [BBF+12],

Brumbaugh et al. connect Gauss and Ramanujan sums to supercharacter theories of cyclic groups.

As we will see below, the set SCT(G) of all supercharacter theories of a fixed group G forms

a lattice under a natural partial order. The first author to directly attempt to classify the lattice of

all supercharacter theories of a fixed group was Hendrickson in [Hen08]. In this paper, he classified

the supercharacter theories of cyclic groups of prime order, while in [Hen12], he classified the

supercharacter theories of arbitrary cyclic groups using the previous work of Leung and Man (see

[LM96] and [LM98]) on Schur rings. In [BHH14], the authors studied the combinatorial properties

of the lattice of supercharacter theories of a cyclic group. In a recent preprint ([Lan17]), Lang has

classified the supercharacter theories of Zp × Z2 × Z2 for odd primes p.

In recent years, some attempts have been made to classify the supercharacter theory lattices

of families of nonabelian groups. Lang first made some progress for semidirect products of abelian

groups in [Lan14]. Aliniaeifard has described a sublattice of supercharacter theories for any group

G, each element corresponding to a collection of normal subgroups of G (see [Ali15] and [Ali16] for

a complete description), and more recently, Aliniaeifard and Burkett in [AB17] constructed a PSH

algebra using actions of a Galois group on the irreducible characters of finite general linear groups.

Most recently, in [Wyn17], Wynn has classified supercharacter theories of Frobenius groups and

has made some general conclusions about supercharacter theories of Camina pairs. Moreover, that

thesis also contains a classification of the supercharacter theories of dihedral groups, a major result

of this thesis. We acknowledge Wynn’s result, however the classification provided in this thesis was
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proven independently and without knowledge of his work.

1.1 Organization

There are two goals in this thesis: to provide classifications of the supercharacter theory

lattices for some families of nontrivial semidirect products of cyclic groups, and to discuss Hopf-

algebraic constructions arising from supercharacter theories of nested families of groups.

Chapters 2 and 3 are mostly preliminary. Chapter 2 provides the background material re-

quired for the rest of this thesis, in particular the definitions and basic results in the study of

supercharacter theories, finite posets and lattices, and Hopf algebras. In Chapter 3, we discuss the

lattice SCT(G) of all supercharacter theories of a finite group G and prove some of the basic results

concerning the combinatorics of this lattice and its sublattices as they relate to the algebra of G.

We will also discuss an algorithm for computing SCT(G) given knowledge of its character table, and

the use of that algorithm in the classification of all groups with only two supercharacter theories.

We also discuss some results and conjectures regarding the lattices of supercharacter theories of

alternating groups.

The main result of Chapter 4 is an explicit classification of the supercharacter theories of

the dihedral groups D2n of order 2n using their cyclic subgroups of rotations. We do this first

by classifying the sublattice of characteristic supercharacter theories (defined in Chapter 3) by

embedding a canonical sublattice of SCT(Zn) into SCT(D2n), and obtaining the remainder of the

characteristic supercharacter theories through the use of a coarsening map and a refining map

which glue and split parts, respectively. We obtain the non-characteristic supercharacter theories

by generalizing the splitting map. The final section of Chapter 4 is devoted to generalizations of this

strategy to semidirect products of the form Zn o Zp. We provide a classification of SCT(Zn o Zp)

for a subfamily of these semidirect products and discuss some partial results and conjectures for a

more general case.

In Chapter 5, we will construct a pair of Hopf algebras using compatible families of superchar-

acter theories of the alternating and finite special linear groups which are induced by the natural
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actions of the symmetric and finite general linear groups, respectively. In each construction (one

being a rough q-analogue of the other), we obtain supercharacters indexed by equivalence classes of

familiar combinatorial objects and with compatible super-induction and super-restriction functors.

Finally, we relate these Hopf algebras explicitly using the theory of combinatorial Hopf algebras as

introduced by Aguiar, Bergeron, and Sottile in [ABS06].



Chapter 2

Preliminaries

In this chapter, we will develop background material on character theory of finite groups,

supercharacter theories and finite posets and lattices.

2.1 The Artin–Wedderburn theorem

Let k be an algebraically closed field and let A be a k-vector space. Suppose A has the

additional structure of a unital ring A such that for all a, b ∈ A and all z ∈ k, the condition

z(a · b) = (za) · b = a · (zb)

is met. Then A is called a k-algebra. We say A is finite-dimensional if it is finite-dimensional

as a vector space. For the remainder of this chapter, A will always refer to a finite-dimensional

k-algebra unless otherwise specified. While many of these results hold in greater generality, this

thesis is only concerned with this case.

Let A be a k-algebra and let M be a finite-dimensional k-vector space equipped with an

action of A on M , i.e., for each a ∈ A, there is a k-vector space automorphism ρa : M →M subject

to the following compatibility conditions for all a, b ∈ A, m ∈M , and z ∈ k:

(ρa + ρb)(m) = ρa(m) + ρb(m);

ρza(m) = zρa(m);

ρa·b(m) = ρa(ρb(m)).
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Such an object M is called an A-module. We generally write a ·m in place of ρa(m). If M and

N are two A-modules, then an A-module homomorphism is a k-vector space transformation

ϕ : M → N with the additional property that for all a ∈ A and m ∈M ,

ϕ(a ·m) = a · ϕ(m).

Let HomA(M,N) denote the set of all A-module homomorphisms from M to N . Note that this is

not simply the set of all k-vector space transformations. That latter set is denoted Homk(M,N);

we always have containment HomA(M,N) ⊆ Homk(M,N).

We will call an A-module M irreducible or simple if it has no proper nontrivial submodules.

We will call an algebra A semisimple if every (left or right) A-module M decomposes as a direct

sum of simple modules.

Lemma 2.1 (Schur’s lemma). Let A be a k-algebra. If V and W are irreducible A-modules,

then any nonzero element in HomA(V,W ) has an inverse in HomA(W,V ). In particular if k is

algebraically closed, then HomA(V, V ) = k · idV is the set of all scalar multiplications on V .

Theorem 2.2 (Artin–Wedderburn). Let A be a finite-dimensional k-algebra, where k is an alge-

braically closed field. Then A is semisimple if and only if A is isomorphic to a direct product of

matrix rings

A ∼= Mn1(k)× · · · ×Mns(k)

for a unique set of integers n1, . . . , ns.

If A acts on itself by left (respectively right) multiplication, the resulting module is called

the left (respectively right) regular A-module.

An element a ∈ A with the property a·a = a is called idempotent. If a is an idempotent that

lies in the center Z(A), then a is called a central idempotent. Finally, a primitive idempotent

a ∈ A is an idempotent with the property that if a can be written as a sum of idempotents a1 and

a2, i.e., a = a1 + a2, then one of a1 or a2 is equal to a and the other is equal to the zero element

0 ∈ A.
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Corollary 2.3. [CR90, Theorem 3.22] Let A be a finite-dimensional k-algebra. Then A is semisim-

ple if and only if A can be decomposed as a direct sum of ideals

A = A1 ⊕ · · · ⊕As,

with each Ai of the form A · ei, where ei is a primitive central idempotent. Moreover, each Ai is a

ring with identity ei and A is isomorphic as a ring to the direct product of the rings Ai.

The following corollary of the Artin–Wedderburn Theorem is most useful to this chapter.

Corollary 2.4. [Isa76, Corollary 1.17] Let A be a finite-dimensional semisimple algebra over an

algebraically closed field and suppose A = Mn1(k) × · · · ×Mns(k) is a direct product of s matrix

rings, as in Theorem 2.2. Then

(1) A has exactly s isomorphism classes of simple modules, and representatives M1, . . . ,Ms

may be chosen so that dim(Mi) = ni for all i.

(2) s = dim(Z(A));

(3) n2
1 + · · ·+ n2

s = dim(A);

(4) the left regular A-module A decomposes as a direct sum

A ∼=
s⊕
i=1

M
⊕ dim(Mi)
i .

2.2 Character theory of finite groups

Now we turn our attention to group algebras. If k is a field and G is a finite group, the group

algebra kG is defined to be the set of formal sums of the form

∑
g∈G

agg,

where each ag is an element of k, and with multiplication defined by the formula(∑
g∈G

agg

)
·
(∑
h∈G

bhh

)
=
∑
g∈G

agbhgh =
∑
g∈G

(∑
h∈G

ahbh−1g

)
g.
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There is another product, known as the Hadamard product, which is defined by the formula(∑
g∈G

agg

)
·
(∑
h∈G

bhh

)
=
∑
g,h∈G

agbgg.

Theorem 2.5 (Maschke). Let G be a finite group, k be a field whose characteristic does not divide

the order of G, and let V be a kG-module with kG-submodule U . Then there exists a kG-submodule

W of V such that V = U ⊕W .

Corollary 2.6. If G is a finite group, the group algebra CG is semisimple.

For the remainder of this thesis, G will always be a finite group. A (complex) representation

of G is a group homomorphism of the form ρ : G → GL(V ), where V is a vector space over C.

While one can study representations and characters over other fields, this thesis is only concerned

with the complex setting. Hence, when we speak of a representation, we will always be referring

to a complex representation unless otherwise specified. Two representations ρ : G → GL(V ) and

σ : G→ GL(V ) of G are said to be equivalent if there is a vector space isomorphism ϕ : V →W

such that ϕ ◦ ρ(g) = τ(g) ◦ ϕ for all g ∈ G.

Let G be a finite group and let ρ : G → GL(V ) be a representation of G. Then V is a

CG-module with action defined by(∑
g∈G

agg

)
· v =

∑
g∈G

agρ(g)(v)

for all v ∈ V and
∑

g agg ∈ CG. Conversely, if M is a CG-module, then we can define a represen-

tation ρ : G→ GL(M) by the rule

ρ(g)(m) = g ·m.

It is easy to show that this defines a representation, and that these two identifications are inverse

to each other. Thus, equivalence classes of representations of G are in one-to-one correspondence

with isomoprhism classes of CG-modules.

A representation ρ : G→ GL(V ) is called irreducible if the corresponding CG-module V is

irreducible. Two representations ρ : G → GL(V ) and σ : G → GL(W ) are called isomorphic if
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their corresponding CG-modules V and W are isomorphic, or equivalently, if there exists a vector

space isomorphism ϕ : V →W such that ϕ−1σ(g)ϕ = ρ(g) for all g ∈ G.

Let ρ : G → GL(V ) be a representation and let tr : GL(V ) → C denote the familiar trace

function. The composition tr ◦ ρ : G → C, is called the character afforded by ρ, and is often

denoted χρ or χV .

Proposition 2.7. [Isa76, Corollary 2.9] Two C-representations ρ and σ of G are isomorphic if

and only if the corresponding characters χρ and χσ are equal.

Thus, each character corresponds to an isomorphism class of representations. In this way,

the character theory of a group captures the essential information of the representation theory of

that group.

A character χ of G is called irreducible if it is afforded by an irreducible representation. Let

Irr(G) denote the set of all irreducible characters of G and let Cl(G) denote the set of conjugacy

classes of G. A complex-valued function f : G→ C is called a class function if f(hgh−1) = f(g)

for all g, h ∈ G. The C-vector space of all class functions of G is denoted cf(G). For each conjugacy

class K ∈ Cl(G), define the conjugacy class identifier to be the function δK : G→ C given by

δK(g) =

1 : g ∈ K

0 : g /∈ K
.

Evidently, the conjugacy class identifier functions defined above form a natural basis for cf(G).

Hence, dim(cf(G)) = #Cl(G).

Proposition 2.8. Let χ be a character of G. Then χ is a class function.
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Proof. Let g, h ∈ G and let ρ be a representation that affords χ. Then

χ(h−1gh) = tr(ρ(h−1gh))

= tr(ρ(h1g)ρ(h))

= tr(ρ(h)ρ(h−1g))

= tr(ρ(g))

= χ(g).

Therefore, χ is constant on the conjugacy classes of G. �

We can define two products on the space of class functions. The pointwise product of two

class functions f and g is the function f · g given by

(f · g)(x) = f(x)g(x).

The convolution product of two class functions f and g is the function f ∗ g given by

(f ∗ g)(x) =
1

|G|
∑
y∈G

f(y)g(y−1x).

We may define an inner product on cf(G) by the following formula:

〈f, g〉 =
1

|G|
∑
x∈G

f(x)g(x),

where the bar over g(x) denotes complex conjugation. The conjugacy class identifier functions are

clearly orthogonal with respect to this inner product.

Proposition 2.9. [CR90, Proposition 9.24] If χ and ψ are characters of G afforded by the CG-

modules V and W respectively, then 〈χ, ψ〉 = dim(HomCG(V,W )).

Corollary 2.10. The irreducible characters are linearly independent and orthonormal with respect

to the above inner product.

Proof. Orthonormality follows from Lemma 2.1. Suppose

∑
χ∈Irr(G)

cχχ = 0
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for some constants cχ ∈ C. Then for any ψ ∈ Irr(G), we have

cψ =

〈 ∑
χ∈Irr(G)

cχχ, ψ

〉
= 0,

hence the irreducible characters are linearly independent. �

Proposition 2.11. The irreducible characters form a basis of cf(G).

Proof. This follows from Corollaries 2.10 and 2.4. �

Let n be the number of conjugacy classes of G, let g1, g2, . . . , gn be representatives for the

conjugacy classes, and label the irreducible characters χ1, χ2, . . . , χn. The character table of a

finite group is the n× n matrix whose (i, j)-entry is χi(gj).

Theorem 2.12 (Orthogonality Relations). [Isa76, Corollary 2.14ff] For all h ∈ G, we have

1

|G|
∑
g∈G

χi(gh)χj(h
−1) = δi,j

χi(h)

χi(e)
, (2.1)

where δi,j is the Kronecker delta and e denotes the identity of G. For all g, h ∈ G, we have

1

|G|
∑

χ∈Irr(G)

χ(g)χ(h) = δg,h · |CG(g)|. (2.2)

It is easy to see that the conjugacy class identifiers form a basis of primitive central idem-

potents with respect to the pointwise product on cf(G). Thus, cf(G) is a commutative semisimple

C-algebra with respect to this product. One of the consequences of the above theorem is that

the scaled irreducible characters {χ(e)χ : χ ∈ Irr(G)} form a basis of primitive central idempo-

tents with respect to the convolution product on cf(G), and therefore cf(G) is a commutative1

semisimple C-algebra with respect to this product as well.

Note there is a one-to-one correspondence between complex-valued functions on G and ele-

ments of CG: if f : G→ C is a function, then we can associate f with the element
∑

g∈G f(g)g ∈
1 While it isn’t immediate that the convolution product is commutative here, but it follows because the functions

are class functions.
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CG. Under this identification, the convolution product of functions corresponds to the usual prod-

uct of elements of CG, the pointwise product corresponds to the Hadamard product of elements of

CG, and cf(G) corresponds to Z(CG).

There are several canonical ways of constructing new characters from old, all of which will

appear later. Let G be a finite group, let H be a subgroup of G, and let χ be a character of H.

The induced character, IndGH(χ),2 is defined by the following formula: for g ∈ G,

IndGH(χ)(g) =
∑
t∈T

χ0(t−1gt) =
1

|H|
∑
x∈G

χ0(x−1gx), (2.3)

where T is a set of left coset representatives for H in G and χ0 is the function that agrees with χ

on H and vanishes on GrH. An equivalent definition of the induced character is the following: if

χ is the character of H afforded by the CH-module V , then IndGH(χ) is the character of G afforded

by the CG-module CG⊗CH V .

Let G be a finite group, let H be a subgroup of G, and let χ be a character of G. The

restricted character ResGH(χ) is the usual restriction of χ to H.3 That ResGH(χ) is a class

function follows from the observation that every conjugacy class of H is a subset of a conjugacy

class of G. That ResGH(χ) is a character of H is a consequence of the following result (and the

fact that characters of a group are precisely the class functions that are nonnegative integer linear

combinations of irreducible characters).

Proposition 2.13 (Frobenius Reciprocity). Let G be a finite group, let H be a subgroup of G, and

let χ and ψ be characters of G and H, respectively. Then

〈χ, IndGH(ψ)〉G = 〈ResGH(χ), ψ〉H .

Let G and H be finite groups, let π : G → H be a surjective homomorphism, and let ψ be

a character of H. The inflated character InfGH(ψ) is the character defined by the composition

ψ◦π. We will usually see inflation in the context of normal subgroups and quotients. If G is a finite

2 We will sometimes write Ind(χ) if there is no chance of confusion, especially in Chapter 5. Some authors will
also write χG if H is clear from context.

3 or Res(χ) if there is no chance of confusion
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group with normal subgroup K, and π is the canonical projection G → G/K, then the inflated

character InfGG/K(ψ) has the formula

InfGG/K(ψ)(g) = ψ(gK).

If, on the other hand, χ is a character of G, then we may form the deflated character, DefGG/K(χ),

by averaging over cosets; i.e., DefGG/K(χ) is defined by the formula

DefGG/K(χ)(gK) =
1

|K|
∑
k∈K

χ(gk).

It is a straightforward calculation to show that if f ∈ cf(G), then DefGG/K(f) ∈ cf(G/K). By the

following result, these operations are adjoint in a manner similar to that of Proposition 2.13. This

result (together with the fact that characters are the class functions that are nonnegative integer

linear combinations of irreducible characters) also imples that DefGG/K(χ) is a character of G/K.

Proposition 2.14 (Reciprocity for Inflation and Deflation). Let G be a finite group with normal

subgroup K, and let χ and ψ be characters of G and G/K, respectively. Then

〈χ, InfGG/K(ψ)〉G = 〈DefGG/K(χ), ψ〉G/K .

2.3 Supercharacter theories of finite groups

Let G be a finite group. Let X be a subset of Irr(G). The Wedderburn sum associated to

X is the character

σX =
∑
χ∈X

χ(e)χ.

A supercharacter theory of G is an ordered pair S = (K,X ), where K is a partition of G into

unions of conjugacy classes, X is a partition of Irr(G), and such that the following conditions are

met:

(1) |K| = |X |;

(2) {e} ∈ K;
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(3) for each X ∈ X , the Wedderburn sum σX is constant on the parts of K.

If S = (K,X ) is a supercharacter theory, then we call the parts of K the superclasses of S, or S-

superclasses, and we call the the functions σX the supercharacters of S, or S-supercharacters.

By [DI08, Lemma 2.1], any class function that is constant on the parts of K is a linear combina-

tion of S-supercharacters. Let |S| denote the number of superclasses (equivalently the number of

supercharacters) of S. Let SCT(G) denote the set of all supercharacter theories of G.

Remark. (1) By [DI08, Theorem 2.2(c)], the partitions K and X uniquely determine each

other; in particular, K is the unique coarsest partition of G on whose parts the Wedderburn

sums are constant.

(2) We will very often need to refer to the superclass and supercharacter partitions of several

supercharacter theories at a time. Rather than name every partition in question, we will

use the shorthand K(S) and X (S) to denote the superclass and supercharacter partitions,

respectively, of the supercharacter theory S.

For any group G, let 1G denote the trivial character of G. We can define two extreme

supercharacter theories, which are (using the notation of [Hen08])

m(G) =
(
Cl(G),

{
{χ} : χ ∈ Irr(G)

})
,

and

M(G) =
({
{e}, Gr {e}

}
,
{
{1G}, Irr(G) r {1G}

})
.

These supercharacter theories are distinct for all groups G of order greater than 2. In [BLLW17],

it is shown that the only groups for which these are all of the supercharacter theories are the cyclic

group of order 3, the symmetric group S3, and the finite symplectic group Sp(6, 2) (see Chapter

3 for a summary of that result). Note that the supercharacters of m(G) are simply the scaled

irreducible characters χ(e)χ for χ ∈ Irr(G). This is the reason that supercharacter theories can be

thought of as generalizations (coarsenings?) of the character theory of G.
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For an algebraic interpretation of SCT(G), consider the following. To every supercharacter

theory S = (K,X ), there is an associated algebra scfS(G) of superclass functions, i.e., complex-

valued functions on G that are constant on the parts of K. One basis for scfS(G) is the set of

superclass identifier functions, which are the functions {δK : K ∈ K(S)} given by the formula

δK(g) =

1 : g ∈ K

0 : g /∈ K

for K ∈ K(S). These are primitive central idempotents with respect to the pointwise product. Since

the supercharacters are linearly independent and |X | = |K|, it follows that the supercharacters also

form a basis for scfS(G). It follows by [DI08, Theorem 2.2(b)] that (suitably scaled) supercharacters

are idempotents with respect to the convolution product. Thus scfS(G) forms a commutative

semisimple subalgebra of cf(G) with respect to both product structures.

Let S be a supercharacter theory of G. Let K = {K1, . . . ,Kn} and X = {X1, . . . , Xn} be

an ordering on the superclasses and supercharacters, respectively. Let g1, . . . , gn be representatives

for the superclasses of S. The supercharacter table associated to S is the n × n matrix whose

(i, j)-entry is σXi(gj). Then we may generalize the first orthogonality relation (2.1) in the following

manner.

Proposition 2.15. For all h ∈ G, we have

1

|G|
∑
g∈G

σXi(gh)σXi(h
−1) = δi,jσXi(h). (2.4)

In a direct analogy to the previous section, it is easy to see that the superclass identifiers form

a basis of primitive central idempotents with respect to the pointwise product on scfS(G). Thus,

scfS(G) is a commutative semisimple C-algebra with respect to this product. The main consequence

of (2.4) is that the Wedderburn sums for S form a basis of primitive central idempotents with

respect to the convolution product on scfS(G), and therefore scfS(G) is a commutative semisimple

C-algebra with respect to this product as well. Therefore, one can define a supercharacter theory

as a subalgebra of cf(G) (equivalently, Z(CG)) that is closed with respect to both products defined
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on this algebra (cf. Section 1 of [And14]). Such objects are related to Schur rings (see [Wie64],

[LM96], [LM98]). Briefly, we call a subring S of CG a Schur ring over G if there exists a partition

{D1, . . . , Dt} of G such that

(1) S is spanned by the sums
∑

x∈Di x for 1 ≤ i ≤ t, and

(2) if we define D−1
i = {x−1 : x ∈ Di} for all 1 ≤ i ≤ t, then for all i, there exists some

1 ≤ j ≤ t such that D
(−1)
i = Dj .

A central Schur ring is a Schur ring over G that lies in Z(CG). Then (see [Hen12, Proposition

2.4]), supercharacter theories are in bijection with central Schur rings over G.

2.3.1 New supercharacter theories from old

Let G be a finite group with normal subgroup N and let S be a supercharacter theory of

N . If the conjugation action of G on N fixes each superclass (equivalently, this action fixes each

supercharacter), then we call S a G-invariant supercharacter theory, and we write InvSCTG(N)

for the set of all G-invariant supercharacter theories of N .4 There is a unique minimal element

of InvSCTG(N), denoted mG(N), whose superclass and supercharacter partitions are the orbits

of the actions of G on N and Irr(N), respectively. Hence, the G-invariant supercharacter theories

are simply those whose superclass partitions consist of unions of G-conjugacy classes and whose

supercharacters are (up to scalar multiplication) sums of restrictions of irreducible characters of G.

2.3.1.1 Restrictions and deflations

If S = (K,X ) is a supercharacter theory of a finite group G and N is a subgroup, we call N

S-normal if it is a union of S-superclasses (or equivalently, if Irr(G/N) is a union of parts of X ).

In this setting, we can introduce two new supercharacter theories, which are defined in [Hen08], as

follows. The first is the restricted supercharacter theory SN ∈ SCT(N), whose superclasses

4 This subset (later we will see that it is a sublattice) of SCT(N) was defined by Hendrickson in [Hen08], where
it is denoted SCTG(N).
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are merely those that lie in N :

SN =
({
K ∈ K : K ⊆ N

}
,
{
XN : X ∈ X , X 6⊆ Irr(G/N)

}
∪
{
{1G}

})
, (2.5)

where XN denotes the set of irreducible constituents of ResGN (σX). The second is the deflated

supercharacter theory SG/N ∈ SCT(G/N), whose supercharacter blocks are merely those which

lie in Irr(G/N):

SG/N =
({
{N}

}
∪
{
{gN : g ∈ K} : K ∈ K, K 6⊆ N

}
,{

X ∈ X : X ⊆ Irr(G/N)
})
.

(2.6)

2.3.1.2 Products

In this section, we will discuss three different constructions for products of two supercharacter

theories: the direct product, the ∗-product, and the ∆-product. While only the ∗-product will be

used in the classification of SCT(D2n), the others are necessary to state the classification of the

supercharacter theories of cyclic groups.

The first and simplest product construction is the direct product. If H and K are two

finite groups, S = (K,X ) ∈ SCT(H) and T = (L,Y) ∈ SCT(K), then the direct product of S and

T , denoted S × T , is the supercharacter theory of H ×K with superclass partition

K × L = {K × L : K ∈ K, L ∈ L}

and supercharacter partition

X × Y = {X × Y : X ∈ X , Y ∈ Y}.

It is an easy calculation that S × T is a valid supercharacter theory of H ×K.

Next, let G be a finite group with normal subgroup N . Then G acts on N via automor-

phisms and the partition of N into G-orbits is the superclass partition of the minimal G-invariant

supercharacter theory mG(N) of N . The superclasses of mG(N) are simply the G-conjugacy classes

that are subsets of N . Thus, G-invariant supercharacter theories of N are those whose superclasses
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are unions of G-conjugacy classes. Consequently, the most näıve putative method of combining a

G-invariant supercharacter theory S of N with a supercharacter theory T of G/N could be to pull

back the nonidentity superclasses of T and combine them with the superclasses of S. It is perhaps

surprising that this method does in fact produce a supercharacter theory of G, which Hendrickson

calls the ∗-product of S and T , and denotes S ∗N T .

Proposition 2.16. [Hen08, Theorem 3.5] Let S = (K,X ) be a G-invariant supercharacter theory

of N and T = (L,Y) be a supercharacter theory of G/N . Then there is a supercharacter theory of

G given by S ∗N T = (M,Z), whose superclass partition is

M = K ∪
{ ⋃
gN∈L

gN : L ∈ Lr {{eN}}
}

(2.7)

and whose supercharacter partition is

Z =
{
XG : X ∈ X r {1N}

}
∪ Y, (2.8)

where XG = {Irr(G|χ) : χ ∈ X} and the elements of Irr(G/N) are identified as elements of Irr(G)

through inflation.

Let G be a finite group and let N be a normal subgroup. We say a supercharacter theory

of G factors over N if it can be written as a ∗-product of a G-invariant supercharacter theory

of N with a supercharacter theory of G/N . The unique maximal supercharacter theory of G that

factors over N is M(N) ∗N M(G/N) and we denote this supercharacter theory by MMN (G). The

unique minimal supercharacter theory of G that factors over N is mG(N) ∗N m(G/N) and we

denote this supercharacter theory by mmN (G). Finally, there is a construction in [Hen08] known

as the ∆-product, which we will summarize here.

Proposition 2.17. [Hen08, Theorem 4.1] Let G be a finite group with normal subgroups N CM C

G, let S = (K,X ) ∈ InvSCTG(M) and let T = (L,Y) ∈ SCT(G/N). Suppose

(a) N is S-normal,

(b) M/N is T -normal, and
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(c) SM/N = TM/N .

Then we can form a supercharacter theory of G called the ∆-product of S and T , denoted S ∆ T =

(M,Z), whose superclass partition is

M = K ∪
{ ⋃
gN∈L

gN : L ∈ L, L 6⊆M/N

}
, (2.9)

and whose supercharacter partition is

Z = Y ∪
{
XG : X ∈ X , X 6⊆ Irr(M/N)

}
, (2.10)

where XG denotes the set of constituents of IndGM (σX).

One can check that if M = N , then the ∆-product reduces to the ∗-product.

2.4 Finite posets and lattices

We will now summarize some basic facts about finite posets and lattices. For a thorough

reference, see [Sta02, Chapter 3].

2.4.1 Posets

A partially ordered set, or poset, is an ordered pair (P,≤), where P is a set and ≤ is a

partial order on P , i.e., a relation on P satisfying the following properties:

(1) (reflexivity) for all s ∈ P , s ≤ s;

(2) (antisymmetry) for all s, t ∈ P , if s ≤ t and t ≤ s, then s = t;

(3) (transitivity) for all s, t, u ∈ P , if s ≤ t and t ≤ u, then s ≤ u.

We will often write x < y if x and y are elements of a poset P with x ≤ y and x 6= y. If the

partial order is clear form context, we will generally refer to a poset (P,≤) by its underlying set P .

In this thesis, we will primarily be concerned with finite posets (i.e., posets whose underlying sets

are finite).
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Two elements x and y of a poset P are called comparable if x ≤ y or y ≤ x. Otherwise, we

say x and y are incomparable. Let P be a poset and let S be a subset of P . The upper ideal

generated by S is the subposet {x ∈ P : x ≥ s for some s ∈ S}. The lower ideal generated by S

is the subposet {x ∈ P : x ≤ s for some s ∈ S}.

Let (S,≤S) and (T,≤T ) be posets. A function f : S → T is order-preserving if s ≤S t

implies f(s) ≤T f(t). Two posets S and T are said to be isomorphic if there exist order-preserving

functions f : S → T and g : T → S such that f ◦ g = idT and g ◦ f = idS .

If (P,≤) is a poset and Q is a subset of the underlying set P , we can give Q the structure of

a poset by restricting the partial order ≤ to Q. The subset Q is then called a subposet of P , and

the inclusion function i : Q→ P is an order-preserving injection.

If (P,≤) is a poset and x, y ∈ P , we say y covers x if x < y and for all z ∈ P , x ≤ z ≤ y

implies z ∈ {x, y}. The relation x < y is called a covering relation. Given the data of a poset P

and its covering relations, we may form a directed graph (V,E), known as the Hasse diagram of

P , as follows. The vertices are the elements of the underlying set of P , and there is an edge from

x to y if y covers x.

Example 2.18. Let P = {x ∈ Z : x | 12} be the poset of divisors of 12, with partial order given

by divisibility, i.e., we say x ≤ y if y is divisible5 by x. The Hasse diagram of P is shown in Figure

2.1.

Let S and T be posets. We can give the cartesian product S × T the structure of a poset as

follows: we define (s1, t1) ≤ (s2, t2) if s1 ≤ s2 in S and t1 ≤ t2 in T .

Let S be a poset and let s, t ∈ S. We define the interval [s, t] to be the set of all u ∈ S such

that s ≤ u and u ≤ t. The intervals (s, t], [s, t), and (s, t) are defined analogously.

2.4.2 Lattices

Let S be a finite poset and let T be a subset of S. An element u ∈ S is called an upper

bound for T if t ≤ u for all t ∈ T . If s is an upper bound for T and s ≤ u for all upper bounds

5 In [Sta02, Chapter 3], the poset of divisors of n is denoted Dn.
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Figure 2.1: The Hasse diagram of divisors of 12

1

2 3

4 6

12
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u of T , then s is called the supremum (or least upper bound) of T and is denoted s = sup(T ).

Evidently, each T has at most one supremum.

Similarly, an element l ∈ S is called a lower bound for T if l ≤ t for all l ∈ T . If a point

s exists which is a lower bound for T , and l ≤ s for all lower bounds u of T (i.e., s is the greatest

lower bound), then s is called the infimum of T and is denoted s = inf(T ). Evidently, for each set

T , inf(T ) is unique, if it exists.

Now, let s, t ∈ S. We define the meet of s and t, denoted s ∧ t, to be the infimum of the

set {s, t}, if it exists. We define the join of s and t, denoted s ∨ t, to be the supremum of the set

{s, t}, if it exists. A poset L is called a lattice if s ∧ t and s ∨ t exist for all s, t ∈ L. Note that

every finite lattice L has a unique top (respectively bottom) element, which is obtained by taking

the supremum (respectively infimum) of the full lattice L.

Let L be a finite lattice and let 0 and 1 be the bottom and top elements of L, respectively.

An element x ∈ L that covers 0 is called an atom of L and an element x ∈ L that is covered by 1

is called a co-atom. For any z ∈ L r {0, 1}, there exists an atom x and a co-atom y (neither of

which are necessarily unique) such that x ≤ z ≤ y.

A poset P with the property that s ∧ t (respectively s ∨ t) exists for all s, t ∈ P is called a

meet semilattice (respectively join semilattice).

Lemma 2.19. [Sta02, Proposition 3.3.1] Let P be a finite meet (respectively join) semilattice with

a top (respectively bottom) element. Then P is a lattice.

Proposition 2.20. [Sta02] Let L be a lattice. Then the following properties hold for all s, t ∈ L:

(1) The operations ∨ and ∧ are associative, commutative, and idempotent;

(2) (absorption laws) s ∧ (s ∨ t) = s = s ∨ (s ∧ t);

(3) s ∧ t = s⇔ s ∨ t = t⇔ s ≤ t.

Let L and M be lattices. A lattice homomorphism, or lattice map, from L to M is an

order-preserving function f : L → M with the additional properties that f(x ∧ y) = f(x) ∧ f(y)
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and f(x ∨ y) = f(x) ∨ f(y) for all x, y ∈ L.

Proposition 2.21. If L and M are finite lattices, then the product L×M is a lattice with respect

to the product partial order. The meet and join operations are defined by

(x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∧ y2) and (x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∨ y2).

Example 2.22 (Refinement partial order on partitions). Let S be a finite set and let P and Q be

partitions of S. We say P is a refinement of Q (or equivalently, Q is a coarsening of P) and

write P ≤ Q if each part of P is a subset of a part of Q, or equivalently, if each part of Q is a

union of parts of P. The set of all partitions of S forms a lattice with respect to this relation. If S

contains n elements, then this poset is commonly referred to as Πn (see [Sta02, Example 3.1.1(d)]).

If P and Q are partitions of S, then their meet and join can be described explicitly. Con-

veniently, the parts of P ∧ Q are simply the intersections P ∩Q for P ∈ P and Q ∈ Q, excluding

those intersections that are empty. The parts of P ∨Q can be described as follows. If x ∈ S, then

there is a unique part P of P containing x. Let R0 = P , for k > 0, let

R2k+1 =
⋃
Q∈Q

Q∩R2k 6=∅

Q,

and for k > 1, let

R2k =
⋃
P∈P

P∩R2k−1 6=∅

P.

Then R0, R1, . . . is an increasing sequence of subsets of S and therefore stabilizes eventually. This

limit is the part of P ∨Q containing x.

2.5 Hopf algebras and the ring of symmetric functions

In this section, we will provide all of the necessary background to discuss graded Hopf algebras

and particularly the Hopf algebra of symmetric functions, which is used extensively in Chapter 5.

For a thorough reference on Hopf algebras, see for example [DNR00]. For references on the Hopf

algebra of symmetric functions, see [Mac98] or [Zel06].
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2.5.1 Hopf algebras

Recall the definition of a k-algebra at the beginning of Section 2.1. If we define a multipli-

cation map m : A⊗k A→ A by a⊗ b 7→ ab, a unit map u : k → A by x 7→ x · 1A, and an identity

map idA : A→ A by a 7→ a, then that definition is equivalent to the condition that m and u satisfy

commutativity of the following diagrams:6

A⊗A⊗A A⊗A

A⊗A A

m⊗ id

id⊗m
m

m

A⊗A

k ⊗A A⊗ k.

A

u⊗ id

m

id⊗ u

(2.11)

We can dualize (2.11) to obtain the following definition. A k-coalgebra is a k-vector space C

with maps ∆ : C → C⊗C and ε : C → k, called the co-multiplication and co-unit, respectively,

that satisfy commutativity of the following diagrams.

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

∆⊗ id

id⊗∆
∆

∆

C ⊗ C

k ⊗ C C ⊗ k

C

ε⊗ id

∆

id⊗ ε

(2.12)

A k-bialgebra is a k-vector space B that is both an algebra and coalgebra, and such that the

co-multiplication and co-unit are algebra morphisms.

A Hopf algebra over k is a k-bialgebra H with a map S : H → H, called the antipode,

which satisfies the following commutative diagram:

H ⊗H H H ⊗H

H ⊗H H H ⊗H.

∆ ∆

m m
S ⊗ id u ◦ ε id⊗ S (2.13)

If the field is understood, then we simply refer to H as a Hopf algebra.

A graded bialgebra over k is a bialgebra B over k such that B has a decomposition as a

direct sum of k-subspaces

B =
⊕
n≥0

Bn,

6 Unless otherwise specified, all tensor products in this thesis are taken over the ground field.
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and such that the maps m, u, ∆, ε, and S all respect this decomposition, i.e., m(Bi ⊗Bj) ⊆ Bi+j

for all i, j ≥ 0, u(k) ⊆ B0, ∆(Bn) ⊆
⊕

i+j=nBi ⊗ Bj for all n ≥ 0, and ε(Bn) = 0 for all n > 0.

Moreover, we say B is connected if B0
∼= k.

When defining a Hopf algebra, we often make no mention of its antipode. The following

result makes this possible.

Proposition 2.23. [GR15, Proposition 1.36] Let B be a graded bialgebra. If B is also connected,

then B is a Hopf algebra and the antipode S : B → B is given by the formula

S(h) = −h−
n−1∑
i=1

S(h1,j)h2,n−j , (2.14)

where the elements hi,j come from the equation

∆(h) = h⊗ 1 + 1⊗ h+

n−1∑
j=1

h1,j ⊗ h2,n−j .

An element h of a graded Hopf algebra H is called primitive if ∆(h) = 1 ⊗ h + h ⊗ 1. By

(2.14), we have S(h) = −h for any primitive element h.

2.5.2 The ring of symmetric functions

Let n be a nonnegative integer. An integer partition of size n is a tuple of nonnegative

integers λ = (λ1, . . . , λ`), whose entries are weakly decreasing and sum to n. We often identify

two integer partitions if they differ only by a string of zeros. Let P denote the set of all integer

partitions. If λ = (λ1, . . . , λk), where λi > 0 for all i, then we write `(λ) = k and refer to `(λ) as

the length of λ. For λ ∈P, let |λ| = λ1 + · · ·+ λ`(λ) denote the size of λ. We will often discuss

an integer partition λ in terms of its Ferrers diagram: the diagram of left-justified rows of boxes

that consists of λ1 boxes in the top row, λ2 boxes in the second row, and so on, as in Figure 2.2.

For each n ≥ 0, let C[x1, . . . , xn] be the C-vector space of polynomials in n indeterminate

variables with complex coefficients, and let Sn act on this space by permuting the variables. Let

Symn denote the vector space C[x1, . . . , xn]Sn of polynomials that are fixed under this action. Let

Symk
n denote the subspace of Symn of homogeneous polynomials of degree k. Then Symn is graded
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Figure 2.2: A typical Ferrers diagram, this one of the partition λ = (5, 4, 4, 1)

by homogeneous degree:

Symn =
⊕
k≥0

Symk
n.

For all m ≥ n, there is a surjective map ρm,n : Symm → Symn which is given by setting the

variables xn+1, . . . , xm equal to zero. Moreover, this map respects the above grading, so we may

write ρm,n =
⊕

k≥0 ρ
k
m,n, where ρkm,m : Symk

m → Symk
n. Now, let Symk be the inverse limit of the

subspaces Symk
n along the maps ρkm,n and for each n, let ρkn : Symk → Symk

n be the map obtained

from the universal property of inverse limits. Finally, define the ring of symmetric functions

to be the direct sum

Sym =
⊕
k≥0

Symk.

Then Sym is the inverse limit of the Symn in the category of graded rings, hence an element of

Sym is uniquely determined by its images under the maps ρn =
⊕

k ρ
k
n for n ≥ 0.

The elements of Sym can be realized as polynomials of bounded degree in countably many

indeterminates x1, x2, . . . that are fixed under all permutations of the variables by elements of any

symmetric group. In order to discuss these elements efficiently, we will need the following notation.

If α = (α1, . . . , αn) is an n-tuple of nonnegative integers, let

xα = xα1
1 xα2

2 · · ·x
αn
n .
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For any integer partition λ = (λ1, λ2, . . .) of n, define the monomial symmetric function

mλ =
∑
σ

σ · xλ,

where the sum is over all elements of the filtered union of all symmetric groups, and the action is

by permutation of the variables. Then the monomial symmetric functions form an algebraically

independent basis for Sym. We will use the monomial symmetric functions to define other bases.

For each integer r ≥ 0, let

er = m(1r) =
∑

i1<···<ir

xi1 · · ·xir .

These elements are commonly known as the elementary symmetric functions. Let

hr =
∑
|λ|=n

mλ =
∑
|α|=n

xα,

where for any tuple of integers α = (α1, . . . , αk), we denote |α| = α1 + · · ·+ αk. The hr are known

as the complete homogeneous symmetric functions. Next, let

pr = m(r) =
∑
i≥1

xri .

These are known as the power-sum symmetric functions. The power-sum symmetric functions

form a basis for the primitive elements of Sym.

If λ = (λ1, λ2, . . . , λn) is any integer partition, we will write pλ for the product pλ1pλ2 · · · pλn .

We will use similar notation eλ and hλ for the corresponding products of these basis elements.

The final canonical basis of Sym is defined as follows. For any m-tuple α = (α1, . . . , αm), let

aα = aα(x1, . . . , xm) =
∑
σ∈Sm

sgn(σ)σ · xα.

Let m ≥ n. For any integer partition λ = (λ1, . . . , λm) of size n (written as an m-tuple, so that

some entries may be zero), let λ+ δ = (λ1 +m− 1, λ2 +m− 2, . . . , λm). Then aλ+δ is divisible by

aλ (see [Mac98, Chapter I.3]), so we can define the Schur polynomial

sλ(x1, . . . , xm) =
aλ+δ

aλ
.
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Since both aλ+δ and aλ are anti-symmetric, it follows that sλ(x1, . . . , xm) is a homogeneous sym-

metric polynomial of degree n. Moreover, we have ρm1,m2(sλ(x1, . . . , xm1)) = sλ(x1, . . . , xm2) for

any m1 ≥ m2. The Schur function sλ is defined to be the unique element of Sym whose image

under ρm is sλ(x1, . . . , xm) for all m ≥ n.

If λ and µ are partitions of n, a Young tableau of shape λ and weight µ is a filling of

the Ferrers diagram of λ with integers between 1 and n such that for each i, the number of is in

the filling is µi. A Young tableau is called semistandard or column-strict if the numbers in

each column are strictly increasing and the numbers in each row are weakly increasing. A Young

tableau is called standard if the numbers in each row and column are strictly increasing. For two

partitions λ and µ, let Kλ,µ be the number of semistandard Young tableaux of shape λ and weight

µ. Then the transition matrix from the monomial basis to the Schur function basis is

sλ =
∑
µ

Kλ,µmµ.

The entries Kλ,µ of the transition matrix are known as Kostka numbers.

The structure coefficients of multiplication with respect to the Schur function basis are of

particular importance. We write

sλ · sµ =
∑
ν

cνλ,µsν .

The coefficients cνλ,µ are the famous Littlewood–Richardson coefficients. Their combinatorics

are well-studied: see [Ful97, Chapter 5] for a thorough treatment. If µ = (1k), then the Littlewood–

Richardson coefficients specialize to a simple rule, known as the Pieri formula: cνλ,(1r) = 1 if ν is

obtained from λ by adding r boxes, no two in the same row, and otherwise cνλ,(1r) = 0.



Chapter 3

Lattices of supercharacter theories

Let G be a finite group and let SCT(G) denote the set of all supercharacter theories of G.

In this chapter, we will define a partial order on SCT(G) which gives this set the structure of a

lattice. We will then discuss order-preserving actions on SCT(G) and some interesting subposets

and sublattices obtained by taking fixed points under various actions. Much of this work is inspired

by Hendrickson’s study of the structure of the supercharacter theories of cyclic groups in [Hen08]

and subsequent work, and we will cite his results accordingly. In Section 3.4, we will discuss some

smaller results and conjectures, including an algorithm for computing SCT(G) given the character

table of G.

3.1 Definitions and main results

We will use the refinement partial order defined in Example 2.22 to give SCT(G) the structure

of a lattice. To that end, the following result is due to [Hen12].1

Proposition 3.1. [Hen12, Corollary 3.4] Let S = (K,X ) and T = (L,Y) be supercharacter theories

of a finite group G. Then with respect to the refinement partial orders on G and Irr(G), K ≤ L if

and only if X ≤ Y.

Proof. Suppose K ≤ L. Then for all Y ∈ Y, the T -supercharacter σY is constant on the parts of

1 Since we are developing these results in a different order than Hendrickson does, we will provide alternate proofs
of some results.
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K. Thus, we have

σY =
∑
X∈X

cXσX

for some complex constants cX . In fact, by examining coefficients of irreducible characters, one

sees that cX ∈ {0, 1} for all X, whence Y is a union of parts of X . Thus, we have X ≤ Y.

Conversely, suppose X ≤ Y. For any subset A of G, let δA denote the indicator function

of that set. Then because the T -supercharacters form a basis for scfT (G), it follows that for any

L ∈ L, there exist constants cY such that

δL =
∑
Y ∈Y

cY σY

=
∑
Y ∈Y

∑
X⊆Y

cY σX

=
∑
Y ∈Y

∑
X⊆Y

∑
K∈K

cY σX(K)δK .

Thus, δL is constant on the parts of K, which implies that L is a union of parts of K. Therefore, it

follows that K ≤ L. �

Using the above proposition, we may define a partial order on SCT(G) as follows: if S =

(K,X ) and T = (L,Y) are supercharacter theories of G, we say S ≤ T if K is a refinement of L,

or equivalently if X is a refinement of Y. By examining superclass identifier functions, we see that

for S, T ∈ SCT(G), we have S ≤ T if and only if scfT (G) ⊆ scfS(G). Note that S ≤ T certainly

implies |T | ≤ |S|, but the converse need not be true. However, if S ≤ T and |T | = |S| − 1, then

S < T is a covering relation in SCT(G).

Proposition 3.2. [Hen12, Proposition 3.3] If S = (K,X ) and T = (L,Y) are supercharacter

theories of a group G, then their lattice-theoretic join S ∨ T in SCT(G) exists, and moreover, it is

given by

S ∨ T = (K ∨ L,X ∨ Y).
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Since SCT(G) is finite, it follows by Lemma 2.19 that SCT(G) is in fact a lattice with the

meet of two supercharacter theories S and T defined by

S ∧ T =
∨

U≤S,T
U.

Unfortunately, the meet of two supercharacter theories need not be their mutual refinement. In

fact there are meets of the form

(K,X ) ∧ (L,Z) = (M,Z),

where neither M nor Z is equal to the appropriate mutual refinement, or where one of M or Z is

equal to the appropriate mutual refinement and the other is not, as demonstrated in the following

example. However, the superclasses and supercharacters of (K,X )∧ (L,Y) are refinements of K∧L

and X ∧ Y, respectively.

Example 3.3. By direct calculation, we can find examples of all four possibilities for the meet of

two supercharacter theories.

(1) Let G be any group and let S = (K,X ) be any supercharacter theory. If m(G) = (L,Y),

then S ∧m(G) = (K ∧ L,X ∧ Y).

(2) Let G = 〈x〉 be a cyclic group of order 6 and let its character group be written 〈ξ〉, where

ξj(xi) = e
2πij
6 . Let S = (K,X ) and T = (L,Y) be the supercharacter theories with the

following partitions.

K =
{
{e}, {x, x3, x5}, {x2, x4}

}
,

L =
{
{e}, {x, x5}, {x2, x4}, {x3}

}
,

X =
{
{ξ0}, {ξ, ξ4}, {ξ2, ξ5}, {ξ3}

}
,

Y =
{
{ξ0}, {ξ, ξ5}, {ξ2, ξ4}, {ξ3}

}
.

Then one can check directly that these form supercharacter theories of G. Their meet

is therefore m(G), since X ∧ Y contains only singleton sets. However, the meet of K
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and L contains nonsingleton parts, hence K ∧ L is not singleton. Therefore if we write

S ∧ T = (M,Z), then X ∧ Y = Z but K ∧ L 6=M.

(3) Again, let G = 〈x〉 be a cyclic group of order 6 and let its character group be written

〈ξ〉 as above. Let S′ = (K′,X ′) and T ′ = (L′,Y ′) be the images of S and T through the

isomorphism between G and its character group given by x 7→ ξ. Then S′ and T ′ have the

following partitions:

K′ =
{
{e}, {x, x4}, {x2, x5}, {x3}

}
,

L′ =
{
{e}, {x, x5}, {x2, x4}, {x3}

}
,

X ′ =
{
{ξ0}, {ξ, ξ3, ξ5}, {ξ2, ξ4}

}
,

Y ′ =
{
{ξ0}, {ξ, ξ2}, {ξ2, ξ4}, {ξ3}

}
.

Then we have S′∧T ′ = m(G), since K′∧L′ contains only singleton sets. However, X ′∧Y ′ is

not singleton. Therefore if we write S′∧T ′ = (M′,Z ′), then K′∧L′ =M′ but X ′∧Y ′ 6= Z ′.

(4) Let G = 〈x〉 be a cyclic group of order 8 and let its character group be written 〈ξ〉, where

ξj(xi) = e
2πij
8 . Let S = (K,X ) and T = (L,Y) be the supercharacter theories with the

following partitions:

K =
{
{e}, {x, x3}, {x2, x6}, {x4}, {x5, x7}

}
,

L =
{
{e}, {x, x3, x5, x7}, {x2}, {x4}, {x6}

}
,

X =
{
{ξ0}, {ξ, ξ7}, {ξ2, ξ6}, {ξ3, ξ5}, {ξ4}

}
,

Y =
{
{ξ0}, {ξ, ξ5}, {ξ2, ξ6}, {ξ3, ξ7}, {ξ4}

}
.

Then S ∧ T = m(G), but both K ∧ L and X ∧ Y have nonsingleton parts. Therefore if we

write S ∧ T = (M,Z), then K ∧ L 6=M but X ∧ Y 6= Z ′.

In Chapter 4, we will classify SCT(D2n) for all n, as well as SCT(Zn o Zp) for some values

of n and p. One of the main strategies for classifying SCT(G) that we use in that chapter is to
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analyze the supercharacter theories that factor as ∗-products over a given normal subgroup N E G

and use the set of those as a core sublattice from which the remainder of SCT(G) is derived. By

the following lemma, the sublattice of ∗-products over N has a nice decomposition in terms of

supercharacter theories of N and of G/N .

Lemma 3.4. [BHH14, Lemma 2.2] Let G be a group and let N be a normal subgroup of G. Then

the map

f : InvSCTG(N)× SCT(G/N)→ SCT(G); (S, T ) 7→ S ∗N T

is an injection of lattices whose image is the interval [mmN (G),MMN (G)].

We can generalize this result to ∆-products. Recall the superclass and supercharacter par-

titions of S ∆ T , where S = (K,X ) ∈ SCTG(M) and T = (L,Y) ∈ SCT(G/N): they are (M,Z),

where

M = K(S ∆ T ) = K ∪
{
L̃ : L ∈ L, L 6⊆M/N

}
(3.1)

and

Z = X (S ∆ T ) = Y ∪
{
XG : X ∈ X , X 6⊆ Irr(M/N)

}
. (3.2)

Lemma 3.5. Let G be a finite group with normal subgroups 1 < H ≤ K, and let

A =
{
S ∈ SCTG(K) : S ≤MMH(K)

}
be the lower ideal of SCTG(K) consisting of the supercharacter theories for which H is supernormal.

Then the ∆-product provides a lattice embedding of A× SCT(G/H) into SCT(G).

Proof. The following statements are immediate consequences of (3.1) and (3.2): ∆ is injective,

S1 ∆ T1 ≤ S2 ∆ T2 if and only if S1 ≤ S2 and T1 ≤ T2, and ∆ preserves joins (recall that

(S1, T1) ∨ (S2, T2) = (S1 ∨ S2, T1 ∨ T2)). So, we just need to show that ∆ preserves the meet

operation of A× SCT(G/H), which is given by (S1, T1) ∧ (S2, T2) = (S1 ∧ S2, T1 ∧ T2).

Let (S1, T1), (S2, T2) ∈ A×SCT(G/H), let S3 = S1∧S2, and let T3 = T1∧T2. Then we have

S3 ∈ A, so it follows that S3 ∧ T3 ∈ SCT(G). Write U = (S1 ∆ T1) ∧ (S2 ∆ T2). By definition, we



34

have U ≤ S1 ∆ T1, S2 ∆ T2, so it follows that K(U) refines {K,G rK}, hence K is supernormal

with respect to U . By the monotonicity of ∆, we have S3 ∆ T3 ≤ U , hence every U -superclass

outside of K is a union of H-cosets. By [Hen08, Proposition 4.3], this is true if and only if U is a

∆-product over H and K, and therefore U is equal to S3 ∆ T3. This completes the proof. �

3.2 Compatible actions on G and Irr(G)

Let A be a group that acts on both G and on Irr(G). We say these actions are compatible

if the identity

(a · χ)(g) = χ(a−1 · g) (3.3)

holds for every χ ∈ Irr(G), g ∈ G, and a ∈ A.

Lemma 3.6. Let G be a group and let A be a group that has compatible actions on G and on

Irr(G). Then the action of A on G must permute the conjugacy classes of G.

Proof. Recall that g and h lie in the same conjugacy class if and only if χ(g) = χ(h) for all

χ ∈ Irr(G). Thus if A has compatible actions on G and Irr(G), then for any a ∈ A and any g and

h in the same conjugacy class of G, we have for all χ ∈ Irr(G) that

χ(a · g) = (a−1 · χ)(g) = (a−1 · χ)(h) = χ(a · h).

Therefore, the action of A on G must permute the conjugacy classes of G. �

Lemma 3.7. Let G be a group and let A be a group that has compatible actions on G an on Irr(G).

Then the identity e is a fixed point of the action of A on G and the trivial character 1 is a fixed

point of the action of A on Irr(G).

Proof. Let χ be the regular character of G. and let α be an element of A. Then we have

α−1 · χ =
∑

ψ∈Irr(G)

ψ(e)α−1 · ψ.

Thus α−1 · χ is a character with positive degree, and so we have χ(α · e) = (α−1 · χ)(e) > 0. Since

χ is identically zero on Gr {e}, it follows that α · e = e.
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Now, let g ∈ G and let α ∈ A. Then α · 1(g) = 1(α−1 · g) = 1, and therefore α · 1 = 1. �

Let A be a subgroup of Aut(G) and consider the natural action of A on G. For α ∈ A and

χ ∈ Irr(G), let α ·χ be the class function defined by χ ◦α−1. Then α ·χ is an irreducible character

of G, and this defines an action of A on Irr(G). Moreover, we have

(α · χ)(g) = χ(α−1(g)) = χ(α−1 · g)

for all α ∈ A, χ ∈ Irr(G), and g ∈ G. Thus, these actions are compatible, and subgroups of this

form will be primary examples of groups with compatible actions on G.

Let n = |G| and let Gal(G) denote the Galois group of the cyclotomic extension Q[ζn], where

ζn = e2πi/n. Any subgroup A of Gal(G) acts on irreducible characters by post-composition, i.e.,

if τ ∈ Gal(G) and χ ∈ Irr(G), then τ · χ = τ ◦ χ. We can define an action of A on G as follows.

For each τ ∈ A, there is a unique integer mτ < n that is relatively prime to n and such that

τ(ζn) = ζmτn . For any τ ∈ A and g ∈ G, define2 τ · g = g
m(τ−1) . Notice that this is not an action

via automorphisms in general.

Lemma 3.8. Let A be a subgroup of Gal(G). Then A acts compatibly on G and on Irr(G) with

the actions defined above.

Proof. Let g ∈ G, let χ ∈ Irr(G), and let τ ∈ A. Let ρ be an irreducible representation affording

χ, let n be the order of g, and let k = χ(1). Then by [Isa76, Lemma 2.15], ρ(g) is similar the

diagonal matrix diag(ε1, . . . , εk), where each εi is an n-th root of unity. Thus, ρ(gmτ ) = ρ(g)mτ is

2 Diaconis and Isaacs notably use a different action of A on G: they define τ · g = gmτ . While this fails to satisfy
(3.3) with the action of A on Irr(G), it does produce the same orbits. We will see below that this is sufficient for
their purpose.
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similar to the diagonal matrix diag(εmτ1 , . . . , εmτk ). Thus, we have

(τ · χ)(g) = τ ·
( k∑
i=1

εi

)

=

( k∑
i=1

εmτi

)
= tr(ρ(gmτ ))

= χ(τ−1 · g).

Therefore, these actions are compatible. �

The following construction is first discussed in [DI08], and studied extensively in [Kel14,

Chapter 6].

Proposition 3.9. [Kel14, Theorem 5.23] Let A be a group with compatible actions on G and on

Irr(G). Let K be the set of A-orbits in G and let X be the set of A-orbits in Irr(G). Then (K,X )

forms a supercharacter theory of G.

We will denote the above supercharacter theory mA(G). A supercharacter theory which is of

the form mA(G) for some subgroup A of Aut(G) is called automorphic. A supercharacter theory

of the form mA(G) for some subgroup of Gal(G) is called Galois. We will write AutSCT(G) and

GalSCT(G) to denote the sets of automorphic and Galois supercharacter theories, respectively. The

maximal Galois supercharacter theory of G is precisely the finest supercharacter theory whose su-

percharacters table is rational. Rational supercharacter theories are studied extensively in [Kel14].

Any supercharacter theory with rational entries is invariant under the action of Gal(G) in the

sense that each supercharacter is fixed under this action. We will discuss invariant supercharacter

theories in more detail below.

Lemma 3.10. Suppose A has compatible actions on G and on Irr(G) and let B be a subgroup of

A. Then the restrictions of these actions to B are compatible and we have mB(G) ≤ mA(G).

Proof. Since B ⊆ A, the restrictions to B of the actions of A are compatible. Moreover, each
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B-orbit on G is contained in an A-orbit, and hence we have K(mB(G)) ≤ K(mA(G)). Therefore,

it follows that mB(G) ≤ mA(G). �

Lemma 3.11. Let G be a finite group and let H be a group with compatible actions on G and on

Irr(G). Then for any two subgroups A and B of H, we have mA(G) ∨mB(G) = m〈A,B〉(G).

Proof. By [DI08, Theorem 2.2(c)], it suffices to show that K(mA(G) ∨ mB(G)) = K(mA(G)) ∨

K(mB(G)). By Lemma 3.10, we have K(mA(G)) ∨ K(mB(G)) ≤ K(m〈A,B〉(G)), so we just need

to show that K(m〈A,B〉(G)) ≤ K(mA(G)) ∨ K(mB(G)). We can write any element c ∈ 〈A,B〉 as

a product of the form c = c1c2 · · · cn, where each ci lies either in A or B. Now let x ∈ G and

consider the orbit of x under the action of 〈A,B〉. Let c be as above, let x0 = x, and for each i, let

xi = xcii−1. Then for all i, xi−1 and xi lie in either the same block of K(mA(G)) or of K(mB(G)),

and therefore lie in the same block of K(mA(G)) ∨ K(mB(G)). Hence, x and xc lie in the same

block of K(mA(G)) ∨ K(mB(G)). Since this holds for all x ∈ G and c ∈ 〈A,B〉, it follows that

K(m〈A,B〉(G)) ≤ K(mA(G)) ∨ K(mB(G)), and therefore that mA(G) ∨mB(G) = m〈A,B〉(G). �

Corollary 3.12. For any finite group G, the subposets AutSCT(G) and GalSCT(G) are both join-

closed.

Proof. Let S and T be elements of AutSCT(G). Then there are subgroups A and B of AutSCT(G)

such that S = mA(G) and T = mB(G). By Lemma 3.11, it follows that S ∨ T = m〈A,B〉(G). But

〈A,B〉 is a subgroup of Aut(G), therefore we have that S ∨ T ∈ AutSCT(G). The proof that

GalSCT(G) is join-closed is identical. �

A natural question to ask is whether either of these subposets is meet-closed. It is cur-

rently not known whether either is meet-closed. Let A and B be subgroups of Gal(G), and let

E and F be the field extensions of Q corresponding to A and B, respectively. Then E = Q[ζd]

and F = Q[ζe] for divisors e and d of |G|. Then, with the notation of [AB17], it follows that

X (mA(G)) = Irrd(G) and X (mB(G)) = Irre(G). Now, mA(G) ∧mB(G) corresponds to the Schur

ring 〈scfmA(G)(G), scfmB(G)(G)〉, which is spanned by Irrd(G)∪ Irre(G), and mA∩B(G) corresponds
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to the Schur ring spanned by Irrgcd(d,e)(G). Thus GalSCT(G) is meet-closed if and only if every

element of Irrgcd(d,e)(G) lies in the span of Irrd(G) ∪ Irre(G).

Conjecture 3.13. The subposet GalSCT(G) is meet-closed.

If the conjecture holds, then by Lemmas 3.10 and 3.11, we obtain a lattice embedding of the

lattice of subgroups of Gal(G) into SCT(G).

Example 3.14. Unfortunately, meet-closure fails for AutSCT(G). Let 〈x〉 and 〈y〉 be cyclic groups

of orders 8 and 2, respectively and let G be their semidirect product, with action of 〈y〉 on 〈x〉

given by y−1xy = x5. Then we have calculated using Algorithm 3.30 (which appears in Section 3.4

later in this chapter) that if we define

K1 =
{
{e}, {x4}, {y, x4y}, {x2, x6}, {x2y, x6y}, {x, x3, x5, x7}, {xy, x3y, x5y, x7y}

}
and

K2 =
{
{e}, {x4}, {y, x4y}, {x2, x6}, {x2y, x6y}, {x, x5, xy, x5y}, {x3, x7, x3y, x7y}

}
,

then K1 and K2 are the superclass partitions of automorphic supercharacter theories of G whose

meet has the superclass partition K1 ∧ K2 (although X ∧ Z is not the supercharacter partition of

this meet), and this superclass partition is not the set of orbits of any subgroup of Aut(G).

3.3 Supercharacter theories fixed by an action on SCT(G)

If A has compatible actions on G and on Irr(G), then these actions together yield an action

of A on SCT(G) in the following manner. If S = (K,X ) is a supercharacter theory and α ∈ A, we

define

α · K =
{
{α · g : g ∈ K} : K ∈ K

}
(3.4)

and

α · X =
{
{α · χ : χ ∈ X} : X ∈ X

}
. (3.5)

Lemma 3.15. With respect to the actions defined above, the ordered pair (α · K, α · X ) is a super-

character theory of G.
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Proof. First, note that

|α · K| = |K|

= |X |

= |α · X |.

Next, note that by Lemma 3.7 that α · e = e, therefore {e} ∈ α · K. Now, let X ∈ α · X and

let K ∈ α · K. Then X is of the form {α · χ : χ ∈ X ′} for some X ′ ∈ X and K is of the form

{α ·x : x ∈ K ′} for some K ′ ∈ K. Thus, if g and h lie in K, then α−1 · g and α−1 ·h lie in K ′, hence

we have

σX(g) =
∑
χ∈X′

(α · χ)(g)

=
∑
χ∈X′

χ(e)χ(α−1 · g)

=
∑
χ∈X′

χ(e)χ(α−1 · h)

= σX(h).

Thus, the Wedderburn sums of parts of α ·X are constant on the parts of α ·K. Therefore, we have

proven directly that (α · K, α · X ) is a supercharacter theory of G. �

Let α ·S denote the supercharacter theory in the previous lemma. This supercharacter theory

defines a group action of A on SCT(G), which is order-preserving. By [DI08, Theorem 2.2(f)], it

follows that Gal(G) acts trivially on SCT(G). However, the action of Aut(G) on SCT(G) is more

interesting and, moreover, yields a canonical sublattice of SCT(G), which we study in this section.

Call a supercharacter theory S characteristic if α · S = S for all α ∈ Aut(G), and write

CharSCT(G) for the subposet of all characteristic supercharacter theories of G. More generally, if

A is any group with compatible actions on G and on Irr(G), we will call a supercharacter theory S

A-characteristic if α · S = S for all α ∈ A.

It should be clear that the notion of being characteristic here shares a property of the usual

notion of being characteristic of a subgroup: If a supercharacter theory is defined by its uniqueness



40

in the possession of a property invariant with respect to the action of Aut(G), then it must be

characteristic. In much the same way, knowledge of the characteristic supercharacter theories of a

group G may aid in the classification of the full lattice SCT(G). We will see an explicit example

of this in Chapter 4. It is our belief that the general strategy of first characterizing CharSCT(G)

could be applied to other families of groups.

It is natural to ask what the relationship is between the subposets GalSCT(G), AutSCT(G),

and CharSCT(G). While there is not much to say in general, we list some small results here.

Proposition 3.16. Let mA(G) be the automorphic supercharacter theory induced by A ⊆ Aut(G).

If A E Aut(G), then mA(G) is characteristic.

Proof. Write mA(G) = (K,X ). We glue characters by the rule χ ∼ ψ if ψ = σ ·χ for some σ ∈ A.

Now let χ ∈ Irr(G) and let X be the part of X containing χ. Let τ ∈ Aut(G) and consider τ ·X.

It suffices to show that this set lies in X , i.e., that τ ·X is the part of X that contains τ · χ. Let

ψ ∈ X and let Y be the part of X containing τ · χ. Then ψ = σ · χ for some σ ∈ A. Hence

τ · ψ = (τσ) · χ

= (τστ−1) · (τ · χ)

∼ τ · χ,

so that τ ·X ⊆ Y . But this is true for all χ ∈ Irr(G) and τ ∈ Aut(G), so the reverse inclusion is

implied. Therefore, mA(G) is characteristic. �

Proposition 3.17. Let G be a finite group. Then we have GalSCT(G) ⊆ CharSCT(G).

Proof. Let mA(G) ∈ GalSCT(G) be the Galois supercharacter theory induced by the subgroup

A ⊆ Gal(G). For χ, ψ ∈ Irr(G), write χ ∼ ψ if χ and ψ lie in the same block of X (mA(G)), or

equivalently, if ψ = σ · χ for some σ ∈ A. It suffices to show for any α ∈ Aut(G) that α · χ ∼ α · ψ

if and only if χ ∼ ψ. Since function composition is associative, it follows that

α · (σ · χ) = σ ◦ χ ◦ α−1 = σ · (α · χα)
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for any σ ∈ A and α ∈ Aut(G). Thus, ψ = σ · χ if and only if α · ψ = σ · (α · χ), which proves our

claim. Hence mA(G) ∈ CharSCT(G). �

The following result is important, as it proves that CharSCT(G) is a sublattice of SCT(G)

and not merely a subposet.

Proposition 3.18. Let G be a finite group and let S and T be characteristic supercharacter theories

of G. Then S ∧ T and S ∨ T are characteristic.

Proof. Let M ∈ K(S ∧ T ). Then there exist K ∈ K(S) and L ∈ K(T ) such that M ⊆ K ∩ L.

Let σ ∈ Aut(G). Then σ · (K ∩ L) = (σ · K) ∩ (σ · L), hence σ ·M ⊆ (σ · K) ∩ (σ · L). Thus,

σ · (S ∧T ) ≤ S, T , and therefore σ · (S ∧T ) ≤ S ∧T . But |S ∧T | = |σ · (S ∧T )|, which implies that

σ · (S ∧ T ) = S ∧ T , and therefore S ∧ T is characteristic.

Now letM ∈ K(S∨T ). Then there exist subsets {Ki : i ∈ I} ⊆ K(S) and {Lj : j ∈ J} ⊆ K(T )

such that

M =
⋃
i∈I

Ki =
⋃
j∈J

Lj .

Hence for any σ ∈ Aut(G), we have

σ ·M =
⋃
i

(σ ·Ki) =
⋃
j

(σ · Lj),

and hence σ ·M is a union of parts of K(S) and of K(T ). Consequently, σ · (S ∨ T ) ≥ S, T , and we

conclude as above that σ · (S ∨ T ) = S ∨ T . �

Another important result is that the ∆-product (and therefore also the ∗-product) respects

the property of being characteristic.

Lemma 3.19. Let N ≤ M be characteristic subgroups of G, let S = (K,X ) ∈ SCTG(M) be such

that N is supernormal, and let T = (L,Y) ∈ SCT(G/N). Then S ∆ T is characteristic if and only

if S is A-characteristic and T is B-characteristic, where A ⊆ Aut(M) and B ⊆ Aut(G/N) are the

images of Aut(G) under the canonical maps ResGM : Aut(G) → Aut(M) and DefGG/N : Aut(G) →

Aut(G/N), respectively.
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Proof. Suppose S is A-characteristic and T is B-characteristic. Let α ∈ Aut(G) and consider the

action of α on S ∆ T . Since N is characteristic, α permutes the superclasses of S via the action of

ResGM (α). Let L be a superclass of T and let L̃ =
⋃
gN∈L gN be its preimage under the canonical

map G → G/N . Similarly, let L′ be the image of L under DefGG/N (α) and let L̃′ be its preimage.

We are done if we can show that α(L) = L′. But this is verified directly:

α(L̃) = α

( ⋃
x∈L

xN

)
=
⋃
x∈L

α(xN) =
⋃
x∈L

α(x)N = L̃′.

Thus, Aut(G) permutes the superclasses of S ∆ T , so this supercharacter theory is characteristic.

Conversely, suppose S ∆ T is characteristic. Then its superclasses are permuted by Aut(G).

Since M is a characteristic subgroup, the superclasses contained in K are permuted amongst them-

selves, and the superclasses that are inherited from L are permuted amongst themselves. This

immediately implies that S is A-characteristic. As before, let α ∈ Aut(G) and consider the action

of DefGG/N (α) on L. Let L ∈ L and let L̃ be its preimage under the canonical map G→ G/N . Then

by the preceeding remarks, α(L̃) = L̃′ for some L′ ∈ L. If L = {g1, . . . , ga} and L′ = {h1, . . . , hb},

then we have
⋃a
i=1 α(gi)N =

⋃b
j=1 hjN . That these are disjoint unions of distinct cosets implies

that DefGG/N (α)(L) = L′. Thus, T is B-characteristic. �

In the definition of the ∗-product in Chapter 2, we defined the notion of a G-invariant

supercharacter theory of N , where N is a normal subgroup of G. More generally, we can let A be

any group with compatible actions on G and Irr(G), and define an A-invariant supercharacter

theory of G to be any supercharacter theory S of G such that the actions of A on K(S) and

X (S) (given in (3.4) and (3.5)) are trivial. Let InvSCTA(G) denote the set of all A-invariant

supercharacter theories of G.

Lemma 3.20. Let G be a group, let A be a group which acts compatibly on G and on Irr(G), and

let S ∈ SCT(G). Then S is A-invariant if and only if its superclasses and supercharacters are

unions of A-orbits in G and Irr(G), respectively.

Proof. Suppose S is A-invariant. Then for all K ∈ K(S) and α ∈ A, we have α ·K = K. Thus for
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each g ∈ K, the A-orbit of g is a subset of K, and therefore K is a union of A-orbits. By a similar

argument, the parts of X are unions of A-orbits.

Conversely, suppose the parts of K(S) and X (S) are unions of A-orbits on G and on Irr(G),

respectively. Then for each K ∈ K(S), g ∈ K, and α ∈ A, we have α · g ∈ K, hence α ·K = K.

Thus, A acts trivially on K(S). By a similar argument, A acts trivially on X (S), and therefore S

is A-invariant. �

Hence, mA(G) is the minimal A-invariant supercharacter theory of G and InvSCTA(G) is

equal to the interval [mA(G),M(G)]. As an interval, it is clear that InvSCTA(G) is a sublattice of

SCT(G).

Example 3.21. (1) As explained in Chapter 2, if G acts on its normal subgroup N by con-

jugation, then InvSCTG(N) is the set of supercharacter theories of N whose superclasses

are unions of G-conjugacy classes.

(2) If A = Gal(G), then A-invariant supercharacter theories are precisely those whose super-

character tables contain only rational values.

(3) If A = Aut(G), then A-invariant supercharacter theories are those whose superclass and

supercharacter partitions are unions of Aut(G)-orbits. This is not to be confused with the

sublattice of characteristic supercharacter theories (the fixed points of the action of Aut(G)

on SCT(G)), whose superclass and supercharacter partitions may be permuted nontrivially.

3.3.1 Cyclic groups

Let Zn denote the cyclic group of order n. The supercharacter theories of cyclic groups are

classified in [Hen08] and [Hen12], using work of Leung and Man on Schur rings (see [LM96] and

[LM98]). We digress to restate some of Hendrickson’s results on cyclic groups of prime order to

obtain an isomoprhism between SCT(Zp) and the lattice of divisors of p− 1.
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Lemma 3.22. [Hen08, Lemma 6.9] Let G be a cyclic group of prime order. Then every superchar-

acter theory of G is automorphic.

If G is cyclic, the action of Aut(G) on G is permutation isomorphic to the action of Gal(G)

on Irr(G). Since Gal(G) acts trivially on SCT(G) (see, e.g., [DI08, Theorem 2.2]), this proves the

following result.

Lemma 3.23. [Hen08, Lemma 6.2] If G is a cyclic group, then Aut(G) acts trivially on SCT(G).

Furthermore, if G is cyclic of prime order, the action of Aut(G) on G is transitive on the

nonidentity elements of G, which proves the following lemma.

Lemma 3.24. [Hen08, Lemma 6.4] Let G be a cyclic group of prime order and let (K,X ) be a

supercharacter theory. Then every nontrivial superclass contains the same number of elements.

Tying all of these results together, we can explicitly describe an isomorphism between SCT(Zp)

and the lattice of divisors of p− 1.

Proposition 3.25. Let G = 〈x〉 be a cyclic group of prime order |G| = p. Then for each divisor

d of p − 1, there exists a unique supercharacter theory of G whose nontrivial superclasses all have

size d. In fact, these are all of the supercharacter theories of G.

Proof. Since G has prime order, its automorphism group is cyclic of order p−1, say Aut(G) = 〈σ〉,

and note that Aut(G) is in fact faithful on G. List the nontrivial elements of G as x0, x1, . . . , xp−1,

where σ ·xi = xi+1 for all i (i is taken modulo p−1). Let d be a divisor of p−1, and let e = (p−1)/d.

Then one checks that the supercharacter theory induced by 〈σe〉 has a nontrivial superclass of size

d; indeed one such class is

Ki = {x0, xe, . . . , x(d−1)e}.

By Lemma 3.24, it follows that all other nontrivial superclasses have size d.

Now suppose S = (K,X ) and T = (L,Y) are two supercharacter theories with superclasses of

size d. By Lemma 3.22, these are both induced by subgroups 〈α〉 and 〈β〉 of Aut(G), respectively.
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Since both subgroups are faithful and transitive on the nontrivial superclasses, they both have the

same order, whence they are equal. Now, let K = {x0, . . . , xd} and L = {y0, . . . , yd} be nontrivial

superclasses of S and T , respectively. We may, without loss of generality, assume α · xi = xi+1

and α · yi = yi+1. Then as Aut(G) is transitive on G r {1}, there is some γ ∈ Aut(G) such that

γ · x0 = y0. Then acting by α yields that γ ·K = L. But γ · S = S, so L ∈ K. But this is true for

all L ∈ L, therefore T = S. �

Corollary 3.26. Let G be a cyclic group of prime order and let S = (K,X ) and T = (L,Y) be

supercharacter theories. Then we have

S ∧ T = (K ∧ L,X ∧ Y).

The proof of Proposition 3.25 relies heavily on the fact that the orbits of any subgroup of

Aut(G) coincide with the orbits of some subgroup of Gal(G). The following example shows that

this is not true in general.

Example 3.27. Let G = M11 be the Mathieu group of order 7920. Then the automorphism group

and character table of G are both known. Since the outer automorphism group of G is trivial, it

follows that mA(G) = m(G) for any subgroup A of Aut(G). However, the character table of G

contains entries that are not rational. Thus, mGal(G)(G) is a strict coarsening of m(G).

3.4 Miscellany

In the final section of this chapter, we will discuss some small results and directions for future

work.

3.4.1 Computing SCT(G)

In [Hen08, Appendix A], Hendrickson developed an algorithm for computing the superchar-

acter theory lattice of a finite group G, given that group’s character table. That algorithm builds

superclass partitions part-by-part by checking that the new parts are well-behaved with respect to
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the others. Here, we develop a “dualized” algorithm which builds supercharacter partitions part-

by-part using similar ideas, albeit with Wedderburn sums rather than superclasses. Much of what

follows appears in [BLLW17], and although Algorithm 3.30 appears first in this thesis, it is a direct

adaptation of [Hen08, Algorithm A.9].

A partial partition of Irr(G) is a set X of pairwise disjoint subsets of Irr(G). Let X be a

partial partition of Irr(G) and let A be the subalgebra of cf(G) generated by {σX : X ∈ X}. Define

an equivalence relation on Irr(G) such that χ ∼ ψ if and only if the coefficients of χ(e)χ and ψ(e)ψ

in a are the same (i.e., if 1
χ(e)〈a, χ〉 = 1

ψ(e)〈a, ψ〉) for all a ∈ A. Then the support of X , denoted

S(X ), is the partition of Irr(G) into equivalence classes with respect to this relation. The algebra

A lies in the span of {σY : Y ∈ S(X )}, so each part of X is a union of parts of S(X ). If X ⊆ S(X ),

then we say X is admissible.

Lemma 3.28. Let X be a partial partition of Irr(G). Suppose there exists a supercharacter theory

S = (Y,L) such that X ⊆ Y. Then Y is a refinement of S(X ) and X is admissible.

Proof. Let A be the subalgebra of cf(G) generated by {σX : X ∈ X}. Then we have

A = 〈σX : X ∈ X〉 ⊆ 〈σY : Y ∈ Y〉 = Span
{
σY : Y ∈ Y

}
,

where the last equality follows from [And14, Lemma 2.1]. Let Y ∈ Y be a supercharacter and

let χ, ψ ∈ Y ; then for all a ∈ A, the coefficients of χ(1)χ and ψ(1)ψ are the same because

a ∈ Span{σZ : Z ∈ Y}. Then χ and ψ lie in the same part of S(X ) by definition, so it follows that

Y ≤ S(X ).

Now for each part X of X , it follows that because X is a union of parts of F(X ), we can

choose a part Y ∈ S(X ) such that Y ⊆ X. Then since Y ≤ S(X ), the set Y must be a union of

parts of Y, and since the only part of Y overlapping X is X itself, we have X ⊆ Y . Hence we have

X = Y ∈ S(X ). We conclude that X ⊆ S(X ), and the proof is complete. �

By Lemma 3.28, the support of a partial partition X is coarser than every supercharacter

theory that contains the parts of X as supercharacters. By applying this observation to a single
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set of characters X ⊆ Irr(G), we derive a necessary condition for the existence of a supercharacter

theory in which X is a supercharacter. Let G be a group and let X be a subset of Irr(G). We say

X is good if X ∈ F({X}); otherwise we say X is bad.

Corollary 3.29. Let G be a group with exactly n irreducible characters.

(1) Let S ∈ SCT(G) and let X ∈ X (S). Then X is good.

(2) Let X be a subset of Irr(G). Then X is bad if and only if there exist characters χ, ψ ∈ X

and an integer j ∈ {2, . . . , n} such that the coefficients of χ(1)χ and ψ(1)ψ in σjX differ.

Proof. Let S = (Y,L) and let X be a supercharacter. Then {X} ⊆ Y, so by Lemma 3.28, we

know {X} ⊆ S({X}). Then by definition X is good, proving part (a).

Let X be a subset of Irr(G), and suppose X is bad. Now, X is a union of parts of S({X}),

but X is not itself a part of S({X}), because it is bad. Therefore there exist elements χ, ψ ∈ X that

lie in different parts of S({X}), so there exists some element a ∈ 〈σX〉 such that the coefficients of

χ(1)χ and ψ(1)ψ in a are different. Now because 〈σX〉 ⊆ cf(G) is at most n dimensional, it follows

that 〈σX〉 is spanned by {σX , σ2
X , . . . , σ

n
X}. Then if the coefficient of χ(1)χ in σjX were equal to

that of ψ(1)ψ for all j ∈ {1, . . . , n}, it would follow that the coefficients of χ(1)χ and ψ(1)ψ would

be identical in the element a of 〈σX〉, a contradiction. Hence there exists some j ∈ {1, . . . , n} such

that χ(1)χ and ψ(1)ψ have different coefficients in σjX , and j is certainly not 1.

On the other hand, if there exist different elements χ, ψ ∈ X and an integer j such that χ(1)χ

and ψ(1)ψ have different coefficients in σjX ∈ 〈σX〉, then χ and ψ lie in different parts of S({X}),

so X is not a part of S({X}). This completes the proof of part (b). �

Algorithm 3.30 (SCTFinder). Given a group G with exactly n irreducible characters and an

admissible partial partition X of Irr(G), this algorithm returns the supercharacter partition of

every supercharacter theory of G that contains the parts of X as supercharacters.

1. Label the irreducible characters of G as Irr(G) = {χ1, . . . , χn}.

2. Let k be the smallest integer such that χk is not contained in any part of X .
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3. Let S be the part of S(X ) containing χk.

4. For each subset Y of S containing χk, do:

a*. Let Y = X ∪ {Y }.

b*. If Y is admissible, then do:

i. If Y is a full partition of Irr(G), record it as a supercharacter theory.

ii. Otherwise, call this algorithm with Y in place of X .

c*. Otherwise, continue.

By [DI08, Theorem 2.2], a supercharacter partition X uniquely determines its supercharacter

theory; indeed the superclass partition is the unique coarsest partition of G on whose parts the

Wedderburn sums of X are constant, and this is easily computed using the character table. Thus,

Algorithm 3.30 returns all supercharacter theories whose supercharacter partitions contain X , and

consequently, calling this algorithm on {{1G}} will return all supercharacter theories. The choice

of a character χk to lie in the new part Y is arbitrary, but choosing the index to be minimal

eliminates repetition. Thus, supercharacter theories are only found once. The author has imple-

mented Algorithm 3.30 using the Sage computer algebra system [The17]; this may be found at

github.com:jonathanlamar/sct finder.

Turning our attention to the group G = Sp(6, 2), it will follow from Corollary 3.29 that this

group has only the two trivial supercharacter theories if we show that the only good subsets of

Irr(G) r {1G} are the whole set and its singleton subsets. By that same corollary, we need only to

check powers of Wedderburn sums against their underlying sets’ supports. The following algorithm

does exactly this.

Algorithm 3.31. Given any group G and any subset X = {χi : i ∈ I} of Irr(G), this algorithm

determines if X is good. Suppose G has precisely n conjugacy classes with representatives g1, . . . , gn

and irreducible characters χ1, . . . , χn, and let T be the character table, represented as an n × n

matrix whose i, j entry is χi(gj).
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(1) Form the Wedderburn sum σX corresponding to X. Then with respect to the conjugacy

class identifier basis, σX takes the form

σX =
n∑
j=1

σX(gj)δ[gj ],

where δ[gj ] is the indicator function of the conjugacy class containing gi.

(2) For each k ∈ {2, . . . , n}, do the following.

(a) Consider the kth tensor power of σX ; with respect to the above basis, we have

σkX =

n∑
j=1

σX(gj)
kδ[gj ].

With respect to the irreducible character basis, write

σkX =
n∑
i=1

ci,kχi(1)χi.

(b) Set m = min(I). If there exists i ∈ I for which ci,k 6= cm,k, return bad.

(c) Otherwise, continue.

(3) Return good.

We can then record the output of this function for each subset of Irr(Sp(6, 2)). This method

will not find nontrivial supercharacter theories, however it can negatively answer the question of

whether any exist. In order to reduce runtime, we record the output only on subsets of Irr(Sp(6, 2))

which we did not already know to be good, i.e., proper nonsingleton subsets of Irr(Sp(6, 2)) r

{1Sp(6,2)}. Since Algorithm 3.31 returns bad for each of these sets, it follows that Sp(6, 2) has

exactly two supercharacter theories.

Combining the above result with [BLLW17, Corollary 3] and [BLLW17, Theorem 4], we

obtain a list of all finite groups with only trivial supercharacter theories.

Theorem 3.32. [BLLW17] The groups Z3, S3, and Sp(6, 2) each have only two supercharacter

theories. These are the only finite groups with only two supercharacter theories.
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3.4.2 Alternating groups

Fix n ≥ 7 and consider the alternating group An. The automorphism group of An is isomor-

phic to Sn and its action on An is equivalent to conjugation by this group. The nontrivial orbits

of the action of Sn on Cl(An) are therefore easy to describe: these are the split classes, i.e., those

pairs of conjugacy classes in An whose union form a single conjugacy class in Sn. It is well-known

(see [FH04, Section 5.1]) that an Sn-conjugacy class which lies in An splits if and only if its elements

have a cycle type consisting of distinct odd integers. The behavior of the irreducible characters of

Sn under restriction to An is classified by the following result.

Proposition 3.33. [FH04, Proposition 5.1] Let χλ be an irreducible character of Sn, and let

ψλ = ResSnAn(χλ). Then exactly one of the following holds:

(1) χλ is not equal to χλ
′
, ψλ is irreducible and equal to its conjugate, and IndSnAn(ψλ) = χλ+χλ

′
;

(2) χλ is equal to χλ
′
, ψλ = ψλ1 + ψλ2 , where ψλ1 and ψλ2 are irreducible and conjugate but not

equal, and IndSnAn(ψλ1 ) = IndSnAn(ψλ2 ) = χλ.

Each irreducible character of An arises uniquely in this way.

Lemma 3.34. Let λ ` n be any partition whose corresponding Sn-conjugacy class lies in An and

splits there. Then the partition K of Cl(An) whose parts are all singletons, save for the union of the

two An-conjugacy classes of elements of cycle type λ, determines a supercharacter theory of An.

Proof. Let µ be the symmetric partition of n whose diagonal hook lengths are the parts of λ:

hµ(i, i) = λi for all i. Then the symmetric group character χµ splits in An, i.e., ResSnAn(χµ) = χµ1 +χµ2 .

Let X be the following partition of Irr(An):

X = {ψµ1 , ψ
µ
2 } ∪

(
Irr(An) r {ψµ1 , ψ

µ
2 }
)
.

We claim that (K,X ) form the desired supercharacter theory. Clearly the trivial character is a part

of X , since (1n) is not symmetric. Moreover, K and X have the same number of parts, so it suffices

to show that the Wedderburn sums σX for X ∈ X are constant on the only nontrivial superclass.

But this follows immediately from [FH04, Proposition 5.3]. �
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Let S(λ) denote the supercharacter theory obtained by gluing the two split conjugacy classes

of cycle type λ. Then S(λ) is clearly an atom of SCT(An), since it has only one superclass which

is not a conjugacy class.

Conjecture 3.35. For all n ≥ 7, every proper supercharacter theory of An is a join of atoms of

the form S(λ).

Since the join of all of these atoms is the minimal Sn-invariant supercharacter theorymSn(An),

the above conjecture holds if and only if mSn(An) is the unique coatom of SCT(An).

Conjecture 3.36. For all n ≥ 7, mSn(An) is a coatom of SCT(An).

This is a useful waypoint to classifying SCT(An), because any supercharacter theory S that

lies outside of the join-closure of atoms can be joined with mAn(Sn), and this join will be M(An).

This implies that S is relatively coarse. In fact, it must clump everything except possibly some

halves of split characters. Thus S is likely to be M(An).



Chapter 4

Supercharacter theories of dihedral groups

Let D2n be the dihedral group of order 2n. In this chapter, we will provide an explicit

classification of both SCT(D2n) and CharSCT(D2n) using the subgroup of rotations. Wynn inde-

pendently obtained similar results in [Wyn17], however the work that comprises the present chapter

was complete and a preprint (see [Lam16]) was made available before the publication of that thesis.

Moreover, we believe this method of classification would be useful in any attempt at enumerating

the supercharacter theories of D2n. In Section 4.4, we will prove some partial results and state

some conjectures regarding the classification of SCT(ZnoZp), where n ≥ 1 and p is a prime divisor

of |Aut(Zn)|.

In [Wyn17], Wynn used the structures of Camina pairs—and specifically of Frobenius groups—

in his classification. We pause to discuss this work.

A Frobenius group is a finite group G with a proper and nontrivial subgroup H, called the

Frobenius complement, with the property that H ∩Hg = 1 for all g ∈ GrH. Every Frobenius

group has a unique normal subgroup K, called the Frobenius kernel, with the property that for

all k ∈ K r {e}, the centralizer in H of k is trivial. A Frobenius group is an instance of a more

general object, known as a Camina pair. A Camina pair is an ordered pair (G,N), where G is a

finite group and N is a normal subgroup of G with the property that for all g ∈ GrN , gN ⊆ Cl(g).

An equivalent condition is the following: for all χ ∈ Irr(G|N), χ vanishes on GrN .

The first classification in [Wyn17] that overlaps with this chapter is [Wyn17, Theorem 1.2].

In informal terms, this theorem states that if G is a Frobenius group with Frobenius kernel K, then
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any supercharacter theory S ∈ SCT(G) either factors as a ∗-product over K, or else S factors as a

∆-product over normal subgroups which sit in relation to K and which have a particular structure

(see Section 4.2.1 for a precise statement). Since every odd dihedral group (i.e., D2n, where n

is odd) is a Frobenius group with Frobenius kernel K = 〈r〉, this theorem provides a complete

classification of the supercharacter theories of odd dihedral groups. In Section 4.2.1, we discuss the

equivalence between this result and ours.

The classification of SCT(D2n) proven by Wynn is the following theorem, which expands the

above result to arbitrary n, but which is less structured.

Theorem 4.1. [Wyn17, Theorem 6.2] Let S be a supercharacter theory of D2n other than M(D2n).

Then S is either a ∗-product or a ∆-product.

Our classification will have a more combinatorial flavor. We will classify the sublattice

CharSCT(D2n) by first defining P to be the ∗-products over the subgroup of all rotations (star

products over a subgroup of index two have a particularly trivial formula), and obtaining the re-

mainder of CharSCT(D2n) through two order-preserving functions ϕ and ψ, whose domains are

subposets Q and R of P, respectively, and whose ranges are both subposets of CharSCT(D2n).

Then CharSCT(D2n) is simply the disjoint union P t ϕ(Q) t ψ(R). Moreover, ϕ and ψ may both

be defined in terms of gluing two superclasses (in the case of ϕ) and splitting a superclass in two (in

the case of ψ). See Figure 4.1 for a visual depiction of this process, and Theorem 4.7 for a precise

statement of the classification.

We will then classify the non-characteristic supercharacter theories of D2n by first generalizing

ψ into two order-preserving functions ψ0 and ψ1, both defined on the same domain S which contains

R as a subposet. Then SCT(D2n) is the union CharSCT(D2n)∪ ψ0(S)∪ ψ1(S). The maps ψ0 and

ψ1 may both be defined in terms of splitting a specific superclass into two smaller superclasses in

two different ways. Moreover, it will follow that ψ0(S) = ψ1(S) = ψ(S) for all S ∈ R and that the

nontrivial Aut(D2n)-orbits on SCT(D2n) are precisely the sets {ψ0(S), ψ1(S)} for S ∈ S rR. See

Theorem 4.8 for a precise statement of this result.
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4.1 Definitions and main results

Write

D2n = 〈r, s : rn = s2 = e, srs = r−1〉 = 〈r〉o 〈s〉.

The character tables of dihedral groups can be computed easily. For odd n, they take the form

class rep. e rk; 1 ≤ k ≤ n−1
2 s

class size 1 2 n

1D2n 1 1 1

λ 1 1 −1

χm, 1 ≤ m ≤ n−1
2 2 2 cos

(
2πkm
n

)
0

(4.1)

while for even n, they take the form

class rep. e rk; 1 ≤ k ≤ n−2
2 r

n
2 s rs

class size 1 2 1 n
2

n
2

1D2n 1 1 1 1 1

λ 1 1 1 −1 −1

µ0 1 (−1)k (−1)
n
2 1 −1

µ1 1 (−1)k (−1)
n
2 −1 1

χm, 1 ≤ m ≤ n−2
2 2 2 cos

(
2πkm
n

)
2 cos(πm) 0 0

(4.2)

Remark. We will define χn
2

:= µ0 + µ1 if n is even, and define χn
2
∈ X if µ0, µ1 ∈ X. This allows

us to define supercharacter theories of D2n in terms of the indices of the characters χm regardless

of the parity of n.

Let P be the image of InvSCTD2n(〈r〉) under the ∗-product with the unique superchar-

acter theory m(D2n/〈r〉) of D2n/〈r〉 and note that by Lemmas 3.4 and 3.19, P is a sublattice

of CharSCT(D2n) isomorphic to InvSCTD2n(〈r〉). Moreover, if T = (K,X ) is an element of



55

InvSCTD2n(〈r〉), then we can describe its image T ∗〈r〉 m(D2n/〈r〉) = (L,Y) easily: the super-

class partition is L = K ∪ {s〈r〉} and the supercharacters are 1D2n and λ along with IndD2n

〈r〉 (σX)

for X in X r {1〈r〉}. One can also check directly that the superclass partition of mm〈r〉(D2n) is

{s〈r〉} ∪
{
{rk, rn−k} : 0 ≤ k ≤

⌊n
2

⌋}
,

(so mm〈r〉(D2n) = m(D2n) if n is odd). Finally, MM〈r〉(D2n) has the superclass partition

{
{e}, s〈r〉, 〈r〉r {e}

}
.

Thus, a supercharacter theory of D2n factors over 〈r〉 if and only if it contains s〈r〉 as a superclass.

Our aim is to use these factorizable supercharacter theories to produce all others through

gluing and splitting maps which will be defined below. In order to define the domains of these

maps, we will need the following set of factorizable supercharacter theories.

We will need the following terminology and lemmas. Say that a supercharacter theory of D2n

glues reflections if s〈r〉 is a subset of a superclass of that supercharacter theory. Evidently if n is

odd, then every supercharacter theory of D2n glues reflections. If n is even, then note that because

µ0 and µ1 are the only irreducible characters of D2n whose values differ on s〈r2〉 and sr〈r2〉 and

µ0 +µ1 ≡ 0 on s〈r〉, it follows that a supercharacter theory S = (K,X ) glues reflections if and only

if µ0 and µ1 lie in the same block of X .

Lemma 4.2. Let G = N o H be a semidirect product of two finite groups N and H and let

S = (K,X ) be a supercharacter theory of G. Let K be a part of K that contains all of GrN . Then

GrK is a S-supernormal subgroup of G contained in N .

Proof. We will use the following notation: for any set C of elements of G, let C =
∑

g∈C g denote

the sum in CG of the elements of C. Since K 6= {e}, it follows that G r K contains {e}. Let

g ∈ G r K. Then g−1 ∈ G r K−1, where K−1 = {k−1 : k ∈ K}. By [DI08, Theorem 2.2], we

have K−1 ∈ K. But GrN is closed under inversion, whence K ∩K−1 6= ∅, and hence K = K−1.

Therefore, GrK is closed under inversion. Let g1, g2 ∈ GrK and let L1, L2 ∈ K be the respective

superclasses containing these elements. Then L1, L2 ⊆ N , so L1 ·L2 is a sum of elements of N , and
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in particular, we have g1 · g2 ∈ GrK. Therefore, GrK is a subgroup of N . The rest of the claim

follows from the observation that GrK is a union of S-superclasses. �

We can specialize the above result to D2n as follows.

Corollary 4.3. Let S = (K,X ) be a supercharacter theory of D2n that glues reflections and let

K ∈ K be the part containing s〈r〉. Then D2n rK is a subgroup of 〈r〉.

The following lemma allows us to quickly detect which elements of SCT(D2n) are fixed under

the action of Aut(D2n).

Lemma 4.4. A supercharacter theory S of D2n (for any n) is characteristic if and only if either

s〈r〉 is a union of S-superclasses or S glues reflections.

Proof. Let S be a characteristic supercharacter theory. For i = 0, 1, let Ki be the superclass

containing sri〈r2〉. If τ is the automorphism defined by r 7→ r and s 7→ sr, then τ transposes s〈r2〉

and sr〈r2〉, hence τ transposes K0 and K1. Because τ fixes all rotations, it follows that either

K0 = K1, or Ki = sri〈r2〉 for i = 0, 1.

Conversely, write S = (K,X ) and suppose s〈r2〉 and sr〈r2〉 are parts of K. Then n is

necessarily even, since these are separate conjugacy classes. Now, µ0 and µ1 lie in different parts

of X , say X0 and X1, respectively. Let τ be as before, and note that because τ permutes s〈r2〉

and sr〈r2〉 and fixes all rotations, it follows that τ · K = K and therefore τ · X = X . Thus, since τ

transposes µ0 and µ1 and fixes all other characters, it follows that Xi = {µi} for i = 0, 1. Taking

the join S ∨mm〈r〉(D2n) glues X0 to X1 and s〈r2〉 to sr〈r2〉 and preserves all other superclasses

and supercharacters. Thus, S ∨ mm〈r〉(D2n) factors over 〈r〉. By Lemma 3.19, it follows that

S ∨ mm〈r〉(D2n) is characteristic. Since Aut(D2n) fixes X0 ∪ X1 and s〈r〉, it follows that S is

characteristic.

Next, write S = (K,X ) and suppose s〈r〉 is a subset of a superclass. Then if n is even, it

follows that µ0 and µ1 lie in the same part of X . Write s〈r〉 ∪ A for the part of K containing s〈r〉

and write {λ} ∪ B for the part of X containing λ. We claim that A is fixed under the action of
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Aut(D2n). Let rk ∈ A and let j be coprime to n. Then for any part X of X that does not contain

λ or 1D2n as constituents, say X = {χ` : ` ∈ I} (where I may contain n/2), we have

σX(rk) = 2
(
ζ
n
2
n

)k
+

∑
`∈Ir{n

2
}

2(ζk`n + ζn
k`

) = 0

if n/2 ∈ I, and otherwise

σX(rk) =
∑
`∈I

2(ζk`n + ζn
k`

) = 0.

In each of the above equations, we have a polynomial f(x) ∈ Z[x] that is satisfied by ζn. Any such

polynomial f(x) is divisible by the nth cyclotomic polynomial, and is therefore satisfied by ζjn for

any j coprime to n. Hence we may replace ζn with ζjn in these equations, which yields σX(rkj) = 0.

Thus, every supercharacter of S that does not contain λ or 1D2n as constituents agrees on rk and

rkj . Since ρD2n and 1D2n agree on these elements and

σ{λ}∪B = ρD2n − 1D2n −
∑
X∈X

χ(1)>1∀χ∈X

σX ,

it follows that every supercharacter of S agrees on rk and rkj , and so these elements lie in the same

part of K. This implies that A is fixed under the action of Aut(D2n). Next, write MM〈r〉(D2n) =

(L,Y), where

L =
{
{e}, s〈r〉, 〈r〉r {e}

}
and

Y =
{
{1D2n}, {λ}, Irr(D2n) r {1D2n , λ}

}
.

Then

K ∧ L =
{
s〈r〉, A

}
∪
(
K r

{
s〈r〉 ∪A

})
and

X ∧ Y =
{
{λ}, B

}
∪
(
X r

{
{λ} ∪B

})
,

and it is not hard to show that these partitions form a supercharacter theory, namely S∧MM〈r〉(D2n).1

This supercharacter theory factors over 〈r〉, hence it is characteristic by Lemma 3.19. Since we

1 One shows that (K∧L,X ∧Y) is a supercharacter theory by showing that the characters λ and σB are constant
on the parts of K ∧ L.
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have already shown that A is fixed under the action of Aut(D2n), and s〈r〉 is also fixed, it follows

that Aut(D2n) permutes the remaining superclases amongst themselves. But these are precisely

the superclasses of K not equal to s〈r〉 ∪A. Therefore, we have shown that S is characteristic. �

Corollary 4.5. Every supercharacter theory of an odd dihedral group is characteristic.

For each divisor d of n, let Sd =
(
mD2n(〈rd〉) ∗〈rd〉 M(〈r〉/〈rd〉)

)
∗〈r〉 M(D2n/〈r〉). We will

need the superclass and supercharacter partitions of Sd in the classification, so we will state and

prove them here as a proposition.

Proposition 4.6. With Sd defined as above, we have

K(Sd) =
{
{e}, s〈r〉, {rk : d does not divide k}

}
∪
{
{rk, r−k} : d divides k}

}
and

X (Sd) =
{
{1D2n}, {λ},

{
χk :

n

d
divides k

}}
∪
b n2dc⋃
`=1

{{
χk : k ≡ ±` mod

n

d

}}
.

Proof. Let

S = mD2n

(
〈rd〉

)
∗〈rd〉M

(
〈r〉/〈rd〉

)
∈ SCT(〈r〉),

so that

Sd = S ∗〈r〉 m
(
D2n/〈r〉

)
.

It is not hard to calculate directly that

K(S) =
{
{e}
}
∪
{
{rk, r−k} : d | k

}
∪
{
{rk : d 6 | k}

}
,

and hence

K(Sd) =
{
{e}, s〈r〉

}
∪
{
{rk, r−k} : d | k

}
∪
{
{rk : d 6 | k}

}
.

To calculate the supercharacter partition of Sd, we first write

X (S) =
{
{1〈r〉}, Irr(〈r〉/〈rd〉) r {1〈r〉}

}
∪
{
Y 〈r〉 : Y ∈ X (mD2n(〈rd〉)) r {{1〈rd〉}}

}
.
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Consider the parts Y 〈r〉. Each is of the form Y = {ξk, ξk} for some 1 ≤ k < n/d, where ξk is the

character defined by rd 7→ ζkn
d
, where for any j. Then

Ind
〈r〉
〈rd〉(ξk + ξk)(r

j) =
d−1∑
i=0

(ξk + ξk)
0(r−irjri)

= d · (ξk + ξk)
0(rj)

=

d · (ζ
kj
n + ζkjn ) : d divdes j

0 : d does not divide j

.

Suppose d divides j and note that ζkjn = ζ`jn if ` ≡ k mod n/d. Moreover there are precisely d such

integers ` ∈ {1, . . . , n− 1}, namely k, k + n/d, . . . , k + (d− 1)n/d. Thus,

Ind
〈r〉
〈rd〉(ξk + ξk)(r

j) =
∑

1≤`<n
`≡kmodn

d

(ζ`jn + ζ`jn )

=
∑

1≤`≤n
2

`≡±kmodn
d

η`(r
j),

where η` is the character defined by r 7→ ζ`n. Now if d does not divide j, then∑
1≤`<n

`≡kmodn
d

(ζ`jn + ζ`jn ) =
∑

1≤`≤n
2

`≡±kmodn
d

2 cos
(2π`j

n

)

=
d−1∑
a=0

2 cos
(2πj

n

(n
d
a+ k

))
=

d−1∑
a=0

2

[
cos
(2πja

d

)
cos
(2πjk

n

)
− sin

(2πja

d

)
sin
(2πjk

n

)]
= cos

(2πjk

n

)[ d−1∑
a=0

2 cos
(2πja

d

)]

− sin
(2πjk

n

)[ d−1∑
a=0

2 sin
(2πja

d

)]
.

(4.3)

But since d does not divide j, we have

d−1∑
a=0

2 cos
(2πja

d

)
=

d−1∑
a=0

2 sin
(2πja

d

)
= 0,
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hence (4.3) is equal to zero. Thus, we have proven that

Ind
〈r〉
〈rd〉(σY ) =

∑
1≤`≤n

2
`≡±kmodn

d

η`,

and so we have

X (S) =
{
{1〈r〉},

{
η` :

n

d
| `
}}
∪
b n2dc⋃
k=1

{{
η` : ` ≡ ±k mod

n

d

}}
.

Finally, we have

X (Sd) =
{
{1D2n}, Irr(D2n/〈r〉) r {{1D2n}}

}
∪
{
ZD2n : Z ∈ X (S) r {{1〈r〉}}

}
.

Consider the parts ZD2n . Evidently IndD2n

〈r〉 (ηk) = χk, so

X (Sd) =
{
{1D2n}, Irr(D2n/〈r〉) r {{1D2n}}

}
∪
b n2dc⋃
k=1

{{
χ` : ` ≡ ±k mod

n

d
; 1 ≤ ` ≤ n

2

}}
.

�

LetQ be the upper ideal of P generated by the supercharacter theories Sp for all prime divisors

p of n, and if n is even, let R be the subposet of P consisting of those supercharacter theories for

which χn
2

is a supercharacter (if n is odd, let R = ∅). For any S ∈ Q, we may produce a new

supercharacter theory ϕ(S) ∈ CharSCT(D2n) by gluing the parts containing r and s. Moreover if n

is even, then for any T ∈ R, we may produce a new supercharacter theory ψ(T ) ∈ CharSCT(D2n)

by splitting the two conjugacy classes of reflections into distinct superclasses. The classification of

CharSCT(D2n) is given by Theorem 4.7.

Theorem 4.7. The characteristic supercharacter theories of D2n may be expressed as a disjoint

union of the form

CharSCT(D2n) = ϕ(Q) t P t ψ(R).

In other words, every characteristic supercharacter theory of D2n is either an ∗-product over 〈r〉,

or it is the image of an ∗-product over 〈r〉 under one of the maps ϕ or ψ.
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Figure 4.1: The process of obtaining the characteristic supercharacter theories of D2n for
arbitrary n.

︸ ︷︷ ︸
SCT(〈r〉)

M(〈r〉)

“r ∼ r−1”

InvSCTD2n(〈r〉) � ∗〈r〉 m(D2n/〈r〉)

︸ ︷︷ ︸
P

Q

R ψ

ϕ
ϕ(Q)

ψ(R)

M(D2n)

m(D2n)︸ ︷︷ ︸
CharSCT(D2n)
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Theorem 4.7 may be summed up by Figure 4.1.

Let S be the subposet of supercharacter theories of CharSCT(D2n) which glue reflections and

whose superclass partitions satisfy the condition that if K is a superclass containing only powers of

r, then these powers are all of the same parity (we will say these supercharacter theories respect

parity). An equivalent (although less intuitive) definition of S is as follows. By Corollary 4.3,

S is the set of supercharacter theories of the form S = T ∗〈rd〉 M(D2n/〈rd〉), where d divides n,

T ∈ InvSCTD2n(〈rd〉), and such that ResD2n

〈rd〉(µ0) is a T -superclass function.

For i = 0, 1, define order-preserving injective functions ψi : CharSCT(D2n) → SCT(D2n)

as follows. For S = (K,X ) ∈ R, let ψi(S) = (Li,Yi) be the following supercharacter theory. If

s〈r〉 ∪A∪B is the S-superclass containing the reflections, where A contains only even powers of r

and B only odd powers of r (and one or both may be empty), then ψi refines K by distinguishing

parity, i.e.,

L0 =
{
s〈r2〉 ∪A, sr〈r2〉 ∪B

}
∪
(
K r {s〈r〉 ∪A ∪B}

)
and

L1 =
{
s〈r2〉 ∪B, sr〈r2〉 ∪A

}
∪
(
K r {s〈r〉 ∪A ∪B}

)
.

The supercharacter partition is defined by removing µi from the part X of X that contains µ0 and

µ1, so that

Y0 =
{
{µ0}, X r {µ0}

}
∪
(
X r {X}

)
and

Y1 =
{
{µ1}, X r {µ1}

}
∪
(
X r {X}

)
.

Note that if A and B are both empty, then {µ0, µ1} ∈ X and ψ0 = ψ1 = ψ, where ψ is the

map defined in Theorem 4.7, and in this case, the supercharacter theory lies in R. In fact, R is

the subposet of S consisting of the supercharacter theories that respect parity and for which χn
2

is

a superclass function. We claim that every noncharacteristic supercharacter theory is of the form

ψi(S) for some i = 0, 1 and some S ∈ R for which s〈r〉 is not a superclass.
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Theorem 4.8. Let S = (K,X ) be a supercharacter theory of D2n that is not characteristic, and

let τ ∈ Aut(D2n) be the automorphism that sends s to sr and fixes all rotations. Then we have

S ∨ Sτ ∈ S and S = ψi(S ∨ Sτ ) for some i = 0, 1.

4.2 Proof of Theorem 4.7

Theorem 4.7 will follow from a series of technical lemmas.

Lemma 4.9. Every characteristic supercharacter theory of D2n either glues reflections, or is covered

by a unique factorizable supercharacter theory that glues reflections.

Proof. Let S be characteristic. If S does not glue reflections, then it follows by Lemma 4.4 that

n is even and s〈r2〉 and sr〈r2〉 are superclasses. Since s〈r2〉 and sr〈r2〉 lie in different superclasses,

it follows that µ0 and µ1 lie in different parts of the supercharacter partition of S, say X0 and X1

respectively. Let τ be the automorphism of D2n defined by r 7→ r and s 7→ sr. Then τ transposes µ0

and µ1, but it fixes all other irreducible characters. Hence, X0 = {µ0} and X1 = {µ1}. Taking the

join S∨mm〈r〉(D2n), we see that S∨mm〈r〉(D2n) factors over 〈r〉 and that |S∨mm〈r〉(D2n)| = |S|−1,

which implies that S ∨mm〈r〉(D2n) covers S. This supercharacter theory also contains {µ0, µ1} in

its supercharacter partition. That this is the unique factorizable supercharacter theory covering S

follows from the observation that any factorizable supercharacter theory must glue reflections, and

that any supercharacter theory which glues reflections must glue µ0 and µ1. �

Remark. One can check that any factorizable supercharacter theory containing {µ0, µ1} may be

refined in a manner reverse of Lemma 4.9. Thus, these factorizable covers are precisely the set of

supercharacter theories whose supercharacter partitions each contain {µ0, µ1} as a part, and this

refinement is precisely the map ψ described in Theorem 4.7.

Lemma 4.9 provides a characterization of the elements of CharSCT(D2n) which contain s〈r2〉

and sr〈r2〉 as superclasses. All that remains to prove Theorem 4.7 is to classify the elements of

CharSCT(D2n) for which s〈r〉 is properly contained in a superclass. This is done using the map ϕ
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defined in Theorem 4.7 which glues superclasses. In order to show that ϕ yields the remainder of

CharSCT(D2n), we will need the following sets of factorizable supercharacter theories.

For each divisor d of n, let mM〈rd〉(D2n) = mD2n(〈rd〉) ∗〈rd〉 M(D2n/〈rd〉). The superclass

and supercharacter partitions of mM〈rd〉(D2n) are

K(mM〈rd〉(D2n)) =
{
{e}, s〈r〉 ∪ {rk : d does not divide k}

}
∪
{
{rk, r−k} : d divides k

}
,

X (mM〈rd〉(D2n)) =
{
{1D2n}, {λ}

}
∪
{
χk :

n

d
divides k

}
∪
b n2dc⋃
k=1

{{
χ` : k ≡ ±` mod

n

d

}} (4.4)

respectively. We will also use the maximal ∗-products MM〈rd〉(D2n) in the next two results. The

superclass and supercharacter partitions of MM〈rd〉(D2n) are

K(MM〈rd〉(D2n)) =
{
{e}, s〈r〉 ∪ {rk : d does not divide k}, {rk : d divides k}

}
,

X (MM〈rd〉(D2n)) =
{
{1D2n}, {λ} ∪

{
χk :

n

d
divides k

}
,
{
χk :

n

d
does not divide k

}} (4.5)

respectively.

Remark. If d = 1, then mM〈rd〉(D2n) and MM〈rd〉(D2n) reduce to the minimal and maxi-

mal ∗-products mm〈r〉(D2n) and MM〈r〉(D2n), respectively. If d = n, then mM〈rd〉(D2n) and

MM〈rd〉(D2n) coincide and are equal to M(D2n).

We claim that the two sets of supercharacter theories

{mM〈rd〉(D2n) : d | n}

and

{MM〈rd〉(D2n) : d | n}

are the minimal and maximal nonfactorizable supercharacter theories which glue reflections, re-

spectively. This is the content of the following two lemmas.

Lemma 4.10. Suppose S ∈ SCT(D2n) is any supercharacter that glues reflections and that does not

factor over 〈r〉. Then S is a refinement of at least one of the supercharacter theories MM〈rd〉(D2n)

for some divisor d of n.
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Proof. Write S = (K,X ). Since S does not factor over 〈r〉, the part K of K containing s〈r〉 also

contains some rotation rk, and the part X of X containing λ also contains some nonlinear character

χ` (which may be µ0 + µ1). By Lemma 4.4, S is characteristic. Since Aut(D2n) fixes λ, it follows

that X is a nontrivial union of orbits under this action.

Write X = {λ} ∪ {χ` : ` ∈ J}. It will suffice to find some divisor d of n so that X is of the

form {λ} ∪ {χ` : n/d | `}. Let m = gcd(J). We claim that m is a divisor of n. To this end, let

` ∈ J and let (`, n) = a. Then ` = a · b for some b with (b, n) = 1. But this implies that χa and χ`

are related by some automorphism of D2n, which by the preceding paragraph implies that a ∈ J .

Hence m divides a, whence m divides n. Next, let d = n/m and let Xd = {λ}∪ {χ` : n/d | `} be as

in (4.5). We claim that X = Xd. Indeed, X ⊆ Xd by the definition of d, so we just need to show

that Xd rX = ∅.

If rk ∈ K, then σX(rk) = σX(s) = −1. But, if n/2 ∈ J , then we have

σX(rk) = λ(rk) + χn
2

+
∑
`∈J
`6=n

2

2χ`(r
k)

= 1 + 2
(
ζ
n
2
n

)k
+
∑
`∈J
` 6=n

2

2
(
ζk`n + ζ−k`n

)

= −1,

while if n/2 /∈ J , then we have

σX(rk) = λ(rk) +
∑
`∈J

2χ`(r
k)

= 1 +
∑
`∈J

2
(
ζk`n + ζ−k`n

)
= −1.

In either case, we have a set of powers of ζkn whose sum is −1. But this is only possible if k

is not divisible by d, hence K contains only rotations of this form. Thus, for all g ∈ K, we have

σXd(g) = σX(g) = −1, and hence σXdrX(g) = 0. On the other hand, if k is divisible by d (including

k = 0), then we have σXdrX(rk) = 4|Xd rX|. Hence, we have

σXdrX = C · ρD2n/〈rd〉
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for some constant C, where ρD2n/〈rd〉 is the regular character of D2n/〈rd〉. But this implies that

σXdrX = C ·
∑

χ∈Irr(D2n)

〈rd〉⊆Ker(χ)

χ(1)χ,

which implies that 〈λ, σXdrX〉 = C, and hence that C = 0. But this implies that σXdrX ≡ 0, and

therefore X = Xd. Since MM〈rd〉(D2n) has a three part supercharacter partition of the form

{
{1D2n}, Xd, Irr(D2n) r ({1D2n} ∪Xd)

}
,

and we have proven that Xd is a part of X , it follows that X is a refinement of the supercharacter

partition of MM〈rd〉(D2n). �

Lemma 4.11. Suppose S ∈ CharSCT(D2n) glues reflections and does not factor as a ∗-product

over 〈r〉. Then S is a coarsening of at least one of the supercharacter theories mM〈rd〉(D2n) for

some prime divisor d of n.

Proof. Let K be the superclass of S that contains s〈r〉, and note that by Corollary 4.3, D2nr{K}

is a subgroup of 〈r〉, which is necessarily of the form 〈rd〉 for some divisor d of n. Hence K is

of the form K = s〈r〉 ∪ {rk : d 6 | k}. Since S does not factor over 〈r〉, we can assume that

d 6= n. Let p be any prime divisor of n/d. Let 0 ≤ k < n. If p does not divide k, then certainly

n/d does not divide k. Hence, the set Kp = s〈r〉 ∪ {rk : p 6 | k} is a subset of K. Since this is

the only part of K(mM〈rp〉(D2n)) that is not a conjugacy class (see (4.4)), it easily follows that

mM〈rp〉(D2n) ≤ S. �

Since the mM〈rd〉(D2n) and MM〈rd〉(D2n) play an important role in the classification of

CharSCT(D2n), it is worth illustrating how they are related. If S ∈ Q, then there is some prime

divisor p of n such that Sp ≤ S. Moreover, we have mM〈rp〉(D2n) ≤ ϕ(S) and ϕ(S) = S ∨

mM〈rp〉(D2n). We also have that mM〈rp〉(D2n) ≤MM〈rd〉(D2n) for some divisor d of n, and that d

is divisible by p, and that by (4.4) and (4.5), mM〈rp〉(D2n) ≤MM〈rd〉(D2n) if and only if p divides

d. This is shown in Figure 4.2.
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Figure 4.2: The relationship between the minimal and maximal characteristic supercharacter
theories of D2n that do not factor as ∗-products over 〈r〉. Black nodes represent supercharacter
theories which factor as ∗-products over 〈r〉, while hollow nodes represent their images under
ϕ. The covering relations induced by ϕ are drawn as dashed arrows.

Sp

S
mM〈rp〉(D2n) = ϕ(Sp)

ϕ(S) = mM〈rp〉(D2n) ∨ S

MM〈rd〉(D2n)

ϕ−1(MM〈rd〉(D2n))
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Proof of Theorem 4.7. By Lemma 4.4, a supercharacter theory S = (K,X ) of D2n is character-

istic if and only if either s〈r〉 is either a union of superclasses, or a subset of a superclass. If s〈r〉

is a union of superclasses, then either s〈r〉 ∈ K (in which case S ∈ P) or s〈r2〉, sr〈r2〉 ∈ K. In this

latter case, it follows by Lemma 4.9 that S = ψ(T ) for some T ∈ R. If s〈r〉 is a proper subset of a

superclass, then by Lemma 4.10 and Lemma 4.11, we have mM〈rp〉(D2n) ≤ S ≤ MM〈rd〉(D2n) for

some divisors p and d of n, with p prime. Let Cd = (M(〈rd〉) ∗〈rd〉M(〈r〉/〈rd〉)) ∗〈r〉M(D2n/〈r〉),

so that

K(Cd) =
{
{e}, s〈r〉, {rk : d 6 | k}, {rk : d | k}

}
and

X (Cd) =
{
{1D2n}, {λ},

{
χk :

n

d
| k
}
,
{
χk :

n

d
6 | k
}}

.

Then we have that ϕ(Cd) = MM〈rd〉(D2n) and ϕ(Sp) = mM〈rp〉(D2n). To complete the proof,

it is enough to show that Cd ∧ S ∈ Q and that ϕ(Cd ∧ S) = S. One can check directly that

K(Cd ∧ S) = K(Cd) ∧ K(S) and2 X (Cd ∧ S) = X (Cd) ∧ X (S), from which both claims follow. �

Example 4.12. Let us pause and consider two small examples. By Lemma 4.4, D2n has non-

characteristic supercharacter theories if and only if n is even. We can compute the sublattices of

characteristic supercharacter theories of D12 and D30 directly, using Hendrickson’s classification

and Theorem 4.7. Beginning with D12, we consider the lattice of D12-invariant supercharacter

theories of 〈r〉. They are A, B, C, and D, where

K(A) =
{
{e}, {r, r5}, {r2, r4}, {r3}

}
,

K(B) =
{
{e}, {r, r2, r4, r5}, {r3}

}
,

K(C) =
{
{e}, {r, r3, r5}, {r2, r4}

}
, and

K(D) =
{
{e}, {r, r2, r3, r4, r5}

}
.

Let A′ = A ∗〈r〉 M(D12/〈r〉) and similarly define B′, C ′, and D′. Then R = {A′, C ′} and Q =

{B′, C ′, D′}. In particular, C ′ = S2 and B′ = S3, so that ϕ(C ′) = mM〈r2〉(D2n) and ϕ(B′) =

2 If {λ} ∪ Y is the part of X (S) containing λ, then X (S) ∧ X (Cd) has parts {λ}, Y , and all other parts are parts
of X (S). It follows that these characters are constant on the parts of K(S) ∧ K(Cd).
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mM〈r3〉(D2n). Thus, the sublattice of characteristic supercharacter theories of D12 takes the form

shown in Figure 4.3. Now consider D30. The lattice of D30-invariant supercharacter theories of 〈r〉

takes the form shown in Figure 4.4, where

K(A) =
{
{e}, {r, r14}, {r2, r13}, {r3, r12}, {r4, r11}, {r5, r10}, {r6, r9}, {r7, r8}

}
,

K(B) =
{
{e}, {r, r4, r11, r14}, {r2, r7, r8, r13}, {r3, r12}, {r5, r10}, {r6, r9}

}
,

K(C) =
{
{e}, {r, r2, r4, r5, r7, r8, r10, r11, r13, r14}, {r3, r12}, {r6, r9}

}
,

K(D) =
{
{e}, {r, r2, r4, r7, r8, r11, r13, r14}, {r3, r6, r9, r12}, {r5, r10}

}
,

K(E) =
{
{e}, {r, r4, r6, r9, r11, r14}, {r2, r3, r7, r8, r12, r13}, {r5, r10}

}
,

K(F ) =
{
{e}, {r, r2, r4, r5, r7, r8, r10, r11, r13, r14}, {r3, r6, r9, r12}

}
,

K(G) =
{
{e}, {r, r2, r3, r4, r6, r7, r8, r9, r11, r12, r13, r14}, {r5, r10}

}
, and

K(H) =
{
{e}, {r, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r11, r12, r13, r14}

}
.

Let A′ = A ∗〈r〉 M(D30/〈r〉) and similarly define B′, C ′, D′, E′, F ′, G′, H ′. Then R is empty

by definition and Q = {C ′, F ′, G′, H ′}. In particular, C ′ = S3 and G′ = S5, so that ϕ(C ′) =

mM〈r3〉(D2n) and ϕ(G′) = mM〈r5〉(D2n). Thus, the lattice of characteristic supercharacter theories

of D30 takes the form shown in Figure 4.5 We will see later that while this is the full lattice of

supercharacter theories of D30, there exist non-characteristic supercharacter theories of D12.

Example 4.13. If p is an odd prime, then SCT(D2p) has a particularly simple structure. Let

us first recall the structure of SCT(〈r〉), as classified in Proposition 3.25. For each divisor d of

p − 1, there is a unique supercharacter theory whose nontrivial superclasses all have size d, and

these superclasses are the orbits of the action of the unique subgroup of Aut(〈r〉) of size d. The

superclass partitions of the supercharacter theories of D2p can therefore be obtained by taking the

superclass partitions of the supercharacter theories of 〈r〉 whose nontrivial parts all have an even

number of elements, and including s〈r〉 as an additional superclass. Thus, SCT(D2p) is isomorphic

to the lattice of even divisors of p− 1, with an additional top element.
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Figure 4.3: The characteristic supercharacter theories of D12. Black nodes represent superchar-
acter theories which factor as ∗-products over 〈r〉, while hollow nodes represent their images
under ϕ and hatched nodes represent their images under ψ. The covering relations induced by
ϕ are drawn as dashed arrows, while those induced by ψ are drawn as dotted arrows.

A′

B′ C ′

D′

m(D12)

Figure 4.4: The D30-invariant supercharacter theories of 〈r〉.

A

B

C D E

F G

H
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Figure 4.5: The supercharacter theory lattice of D30. Hollow nodes represent the image of ϕ.
The covering relations induced by ϕ are drawn as dashed arrows.

A′

B′

C ′ D′ E′

F ′ G′

H ′
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4.2.1 An alternate version

We can restate Theorem 4.7 in a slightly different way.

For each divisor d of n, let Pd = [mM〈rd〉(D2n),MM〈rd〉(D2n)] be the interval of superchar-

acter theories lying between mM〈rd〉(D2n) and MM〈rd〉(D2n). If d = 1, then mM〈rd〉(D2n) reduces

to mm〈r〉(D2n), hence P1 = P. If d = n, then mM〈rd〉(D2n) and MM〈rd〉(D2n) coincide and are

equal to M(D2n). Let R and ψ : R → CharSCT(D2n) be defined as in Theorem 4.7.

Theorem 4.14. If n is odd, then we can express the characteristic supercharacter theories of D2n

as a disjoint union of the form

CharSCT(D2n) =
⊔
d|n

Pd.

If n is even, then we may express CharSCT(D2n) as a disjoint union of the form

CharSCT(D2n) =

(⊔
d|n

Pn
)
t ψ(R).

This result is a consequence of Theorem 4.7 and the following lemma.

Lemma 4.15. Suppose S = (K,X ) is any supercharacter theory of D2n that glues reflections. Then

there exists a divisor d of n such that mM〈rd〉(D2n) ≤ S ≤MM〈rd〉(D2n).

Proof. First note that if S factors over 〈r〉, then S ∈ P1 and we are done. Assume S does not

factor over 〈r〉. Let K be the superclass of S which contains s〈r〉, and note that by Corollary

4.3, D2n r {K} is a subgroup of 〈r〉, which is necessarily of the form 〈rd〉 for some divisor d of n.

Thus, K = s〈r〉 ∪ {rk : d 6 | k}, and so K shares this superclass with the superclass partition of

mM〈rd〉(D2n). Since this is the only mM〈rd〉(D2n)-superclass that is not a conjugacy class, it easily

follows that mM〈rd〉(D2n) ≤ S.

Since 〈rd〉 is S-supernormal, we may consider the deflated supercharacter theory SD2n/〈rd〉,

as in (2.6). By inspecting the superclass partition of SD2n/〈rd〉, we observe that SD2n/〈rd〉 =

M(D2n/〈rd〉), which implies that the number of blocks of X contained in Irr(D2n/〈rd〉) is two.

Since one of these is the trivial character 1D2n , it follows that the other must be {λ}∪{χ` : n/d | `}.
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Thus, X contains two of the three blocks of Xd. This easily implies that X ≤ Xd, and therefore

S ≤MM〈rd〉(D2n). �

Proof of Theorem 4.14. By Lemma 4.4, a supercharacter theory S = (K,X ) of D2n is character-

istic if and only if either S glues reflections, or s〈r〉 is a union of superclasses. If S glues reflections,

then Lemma 4.15 implies that S ∈ Pd for some divisor d of n. If S does not glue reflections, then

Lemma 4.9 implies that S = ψ(T ) for some T ∈ Q. It is routine to check that the subposets Pd

and ψ(Q) are pairwise disjoint. �

Recall that if n is odd, then every supercharacter theory of D2n is characteristic and D2n

is a Frobenius group with kernel K = 〈r〉. The precise statement of Wynn’s Frobenius group

classification is as follows.

Theorem 4.16. [Wyn17, Theorem 1.2] Let G be a Frobenius group with Frobenius kernel K and

let S ∈ SCT(G). Then either S factors as a ∗-product over K, or else there exist normal subgroups

L and N with L < K < N so that S = SN ∆ SG/L. Moreover, SN = T ∗L M(N/L), where

T ∈ InvSCTG(L) and SG/L = M(N/L) ∗N/L U for some U ∈ SCT(G/L
/
N/L).

Let S be a supercharacter theory of D2n, where n is odd, and suppose S does not factor over

〈r〉. Then by the above theorem, S factors as a ∆-product over normal subgroups L and N with

L < K < N and such that SN = T ∗LM(N/L) for some T ∈ InvSCTD2n(L). Since L is a subgroup

of 〈r〉, it is of the form 〈rd〉 for some divisor d of n. Moreover, since 〈r〉 is maximal, it follows that

N = D2n, and therefore S ∈ Pd. Therefore Theorem 4.14 offers the same classification as Theorem

4.16 in the case G is an odd dihedral group.

4.3 Proof of Theorem 4.8

Recall that if S = (K,X ) ∈ S, then ψi = (Li,Yi), where

Li =
{
sri〈r2〉 ∪A, sr1−i〈r2〉 ∪B

}
∪
(
K r {s〈r〉 ∪A ∪B}

)
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and

Yi =
{
{µi}, X r {µi}

}
∪
(
X r {X}

)
.

Lemma 4.17. If S = (K,X ) ∈ S, then ψi(S) = (Li,Yi) forms a supercharacter theory for i = 0, 1.

Proof. Assume i = 0 (the proof for i = 1 is identical) and let (K,X ) and (Li,Yi) be labeled as

above. Immediately, we have that if Y ∈ X r {X}, Then σY is constant on the parts of Li. By

assumption, the parts of Kr{s〈r〉∪A∪B} respect parity. Thus because µ0(rk) = µ0(rks) = (−1)k,

it follows that µ0 is constant on the parts of Li. Finally, because the regular character ρD2n is

constant on the parts of Li and

σXr{µ0} = ρD2n − µ0 −
∑

Y ∈Xr{X}

σY ,

it follows that σXr{µ0} is constant on the parts of Li. Therefore, (Li,Yi) is a supercharacter

theory. �

Before we prove Theorem 4.8, we pause to recall the rules for multiplying irreducible char-

acters of D2n, all of which are consequences of the character tables (4.1) and (4.2). First, we

have

µ2
i = 1D2n

for i = 0, 1,

µ0 · µ1 = λ,

and

µi · λ = µ1−i

for i = 0, 1. Next, let 0 ≤ i ≤ 1, 1 ≤ m < n
2 , 0 ≤ k < n, and consider

(µi · χm)(rk) = 2(−1)k cos
(2πkm

n

)
= 2 cos

(2πkn2
n

)
cos
(2πkm

n

)
+ 2 sin

(2π n2
n

)
sin
(2πkm

n

)
= 2 cos

(2πk(n2 −m)

n

)
= χn

2
−m(rk).
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Since µi · χm vanishes on s〈r〉, it follows that

µi · χm = χn
2
−m.

Finally, let 1 ≤ `,m < n
2 , 0 ≤ k < n, and consider

(χ` · χm)(rk) = 4 cos
(2πk`

n

)
cos
(2πkm

n

)
= 2
(

cos
(2πk(`+m)

n

)
+ cos

(2πk|`−m|
n

))
.

(4.6)

Now, we can generalize the definition of χa to all integers a if we define χa(r
k) = 2 cos(2πka

n ) and

χa(sr
k) = 0. In this case, χa = χ−a if a is negative, χ0 = λ + 1D2n , χn

2
= µ0 + µ1 as before, and

χa = χn
2
−a for a > n

2 . Thus, (4.6) becomes

χ`+m(rk) + χ|`−m|(r
k).

Finally, since χ` · χm vanishes on s〈r〉, we have

χ` · χm = χ`+m + χ|`−m|.

Proof of Theorem 4.8. By Lemma 4.4, we have

K =
{
s〈r2〉 ∪A, s〈r2〉 ∪B

}
∪
{
Kj : j = 1, . . . , |S| − 2

}
,

where at least one of A or B is nonempty. Because S does not glue reflections,

X =
{
{µ0} ∪ Y, {µ1} ∪ Z

}
∪
{
Xj : j = 1, . . . , |S| − 2

}
,

and because S is not characteristic, at least one of Y or Z is nonempty. We may write S ∨ Sτ =

(K ∨ Kτ ,X ∨ X τ ), where

K ∨ Kτ =
{
s〈r〉 ∪A ∪B

}
∪
{
Kj : j = 1, . . . , |S| − 2

}
and

X ∨ X τ =
{
{µ0, µ1} ∪ Y ∪ Z

}
∪
{
Xj : j = 1, . . . , |S| − 2

}
.

Thus, S ∨ Sτ glues reflections, so this supercharacter theory is characteristic. Our goal is to show

that one of Y or Z is empty; if this is true, then µi will be an S-superclass function for some
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i = 0, 1. This will imply that S ∨ Sτ respects parity and that S = ψi(S ∨ Sτ ), thus completing our

proof.

By Corollary 4.3 and Lemma 4.15, we know that {Kj : j = 1, . . . |S|−2} forms the superclass

partition for the restricted supercharacter theory S〈rd〉 for some divisor d of n, and that one of the

parts of X ∨ X τ is equal to Irr(D2n/〈rd〉) r {1D2n}. We consider two cases, and in each case show

that (without loss of generality) Z is empty.

Case 1: Suppose this part is {µ0, µ1} ∪ Y ∪ Z. Then 〈rd〉 ⊆ ker(µ0), so d is even. Also,

λ ∈ Y ∪Z, so without loss of generality we may assume λ ∈ Y . We claim that Z is empty. Assume

not, write Y = {λ} ∪ Y ′ (where Y ′ may be empty), and consider

σ{µ0,λ}∪Y ′ · σ{µ1}∪Z = (µ0 + λ+ σY ′) · (µ1 + σZ)

= µ0 · µ1 + µ0 · σZ + λ · µ1 + λ · σZ + σY ′ · µ1 + σY ′ · σZ ,

which after expanding becomes

λ+
∑
χm∈Z

2χn
2
−m + µ0 + σZ +

∑
χ`∈Y ′

2χn
2
−` +

∑
χ`∈Y ′
χm∈Z

4(χ`+m + χ|`−m|), (4.7)

Note that

Y ∪ Z = {λ} ∪
{
χm : 1 ≤ m <

n

2
,
n

d
divides m

}
.

Moreover, Y and Z are disjoint sets of irreducible characters of the form χ`·n
d
, so there are disjoint

subsets I, J ⊆ {nd , . . . ,
(d−2)n

2d } such that Y ′ = {χ` : ` ∈ I}, Z = {χm : m ∈ J}, and I ∪ J =

{nd , . . . ,
(d−2)n

2d }. So because n
d |

n
2 , it follows that n

2 − k ∈ I ∪ J for all k ∈ I ∪ J . Thus, (4.7)

becomes

σ{µ0}∪Y + 2σZ +
∑
`∈I
m∈J

4(χ`+m + χ|`−m|). (4.8)

Now, (4.8) is a linear combination of S-supercharacters by [DI08, Theorem 2.2]. Thus since we have

assumed Z 6= ∅ and σZ appears in this equation with nonzero coefficient, it follows that µ1 must

also appear with nonzero coefficient. This can only happen if the index of one of the summands of

the rightmost sum in (4.8) is n/2. Hence, there exist ` ∈ I and m ∈ J with ` + m = n/2. Hence
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we have 4χn
2

appearing in the rightmost sum of (4.8). But 4χn
2

= 4µ0 + 4µ1, so this implies that

the coefficient of µ0, and therefore σ{µ0}∪Y , in (4.8) is at least 5. Thus, the coefficient of λ in this

equation is at least 5, and therefore there exist ` ∈ I and m ∈ J with |` − m| = 0. But this is

impossible because I and J are disjoint, so we have derived a contradiction. Therefore, Z is empty.

Case 2: Now assume that one of the Xi is equal to Irr(D2n/〈rd〉) r {1D2n}; without loss,

assume it is X1, so that

X1 = {λ} ∪
{
χm :

n

d
divides m

}
.

Then d is odd and, with notation as in (2.8), {µ0, µ1} ∪ Y ∪ Z is of the form WD2n
0 , where

W0 is some part of the supercharacter partition W of S〈rd〉. Thus, by Frobenius reciprocity,

ResD2n

〈rd〉(σ{µ0,µ1}∪Y ∪Z) is equal to σW0 up to scalar multiplication by a positive integer C. Be-

cause K contains the parts {Ki : i = 1, . . . , |S| − 2}, which are the superclasses of S〈rd〉, it follows

that σ{µ0}∪Y and σ{µ1}∪Z are constant on these parts. Thus, we have nonnegative integers cW , dW

for W ∈ W such that

ResD2n

〈rd〉(σ{µ0}∪Y ) =
∑
W∈W

cWσW

and

ResD2n

〈rd〉(σ{µ1}∪Z) =
∑
W∈W

dWσW .

But

∑
W∈W

(cW + dW )σW = ResD2n

〈rd〉(σ{µ0}∪Y ) + ResD2n

〈rd〉(σ{µ1}∪Z)

= ResD2n

〈rd〉(σ{µ0,µ1}∪Y ∪Z)

= C · σW0 .

Hence, it follows that cW = dW = 0 unless W = W0, so the sets of irreducible constituents of the

restrictions of σ{µ0}∪Y and σ{µ1}∪Z are both equal to W0.
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If ξm denotes the character of 〈rd〉 given by rd 7→ ζmn
d

, then we have

ResD2n

〈rd〉(σ{µ0}∪Y ) = ResD2n

〈rd〉(µ0) +
∑
χ`∈Y

2ResD2n

〈rd〉(χm)

= ξ n
2d

+
∑
χm∈Y

2(ξm + ξm)

= cW0

∑
ξm∈W0

ξm.

Thus, Y can only contain χm if m ≡ n
2d mod n

d . Similarly, Z can only contain characters of this

form, and any character of this form must lie in Y ∪ Z, so that

Y ∪ Z =
{
χm : m ≡ n

2d
mod

n

d

}
.

As with the previous case, we claim that one of Y or Z is empty. Suppose both Y and Z

are nonempty, write Y = {χ` : ` ∈ I} and Z = {χm : m ∈ J}, where I and J are disjoint and

I ∪ J = {(2k − 1) · n2d : 1 ≤ k ≤ d−1
2 }. Consider

σ{µ0}∪Y · σ{µ1}∪Z = (µ0 + σY ) · (µ1 + σZ)

= µ0 · µ1 + µ0 · σZ + σY · µ1 + σY · σZ ,

which, after expanding becomes

λ+
∑

m≡ n
2d

modn
d

2χn
2
−m +

∑
`∈I
m∈J

4(χ`+m + χ|`−m|). (4.9)

Consider the first sum in (4.9). If m ≡ n
2d mod n

d , then n
2 −m ≡ 0 mod n

d . Thus, (4.9) becomes

σX1 +
∑
`∈I
m∈J

4(χ`+m + χ|`−m|). (4.10)

Let ` ∈ I and m ∈ J . Then ` + m and |` − m| are both nonzero integers less than n and

` + m, |` −m| ≡ 0 mod n
d . Thus because I and J are nonempty, the rightmost sum in (4.10) is

nonempty, and every summand belongs to X1. Hence, the coefficient of σX1 in (4.10) is at least 3.

Thus, the coefficient of λ in this equation is at least 3, and therefore there exist ` ∈ I and m ∈ J

with |`−m| = 0. But because I and J are disjoint, ` and m are always distinct. Therefore we have

derived a contradiction, so one of Y or Z (without loss assume Z) is empty.
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In both cases, we have shown (without losss of generality) that Z is empty, so we may write

X =
{
{µ0} ∪ Y, {µ1}

}
∪
{
Xj : j = 1, . . . , |S| − 2

}
.

Thus because µ1 is an S-supercharacter, it follows that any two rotations rk and r` lie in the same

superclass only if k ≡ ` mod 2, and that

A =
{
rk : d 6 | k, 2 6 | k

}
and

B =
{
rk : d 6 | k, 2 | k

}
.

Therefore S = ψ1(S ∨ Sτ ), and the proof is complete. �

Unfortunately, the classification provided by Theorem 4.8 does not immediately imply that

the non-characteristic supercharacter theories of D2n are ∗- or ∆-products. While this is admittedly

a downside, we believe the covering relations highlighted in this classification are more than enough

to reconstruct the lattice SCT(D2n) to a satisfactory degree of detail.

Example 4.18. Now that we have finished the classification, let us revisit Example 4.12. Us-

ing Theorem 4.8, we can compute the remainder of SCT(D12) and see how it fits with the sub-

lattice that we computed earlier. With notation as in that example, one can compute that

S = {A′, C ′, ϕ(B′), ϕ(C ′), ϕ(D′)}, so that there are six noncharacteristic supercharacter theories.

Thus, SCT(D12) takes the form shown in Figure 4.6.

4.4 More general semidirect products

The remainder of this chapter is devoted to generalizations of the dihedral group classification

to semidirect products of the form Zn o Zp, where p is a prime number. Let 〈x〉 be a cyclic group

of order n ≥ 1, let 〈y〉 be a cyclic group of prime order p, where p divides the order of Aut(〈x〉).

Let 〈y〉 act on 〈x〉 by extending the rule y ·x = xa, where a is some positive integer with 1 < a < n,

(a, n) = 1, and ap ≡ 1 mod n. Let us denote the semidirect product G = 〈x〉o 〈y〉 by

G = SD(n, p, a) = 〈x, y : xn = yp = e, yxy−1 = xa〉. (4.11)
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Figure 4.6: The full lattice of supercharacter theories of D12. Compare with Figure 4.3.
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Let ξ0, ξ1, . . . , ξn−1 be the irreducible characters of 〈x〉, where ξi(x
j) = ζijn . Similarly, let

ψ0, . . . , ψp be the irreducible characters of 〈y〉, where ψi(y
j) = ζijp . Since G/〈x〉 ∼= 〈y〉, we may view

the ψi as characters of G via the rule ψi(x
jyk) = ζikp .

Now, G acts on 〈x〉 and on Irr(〈x〉) by the following rules:

(xiyj)xk(xiyj)−1 = yj · xk = xka
j

and

(
ξ` · (xiyj)

)
(xk) = ξ`

(
(xiyj)xk(xiyj)−1

)
= ξ`(x

kaj )

= ζ`a
jk

n

= ξ`aj (x
k).

Thus, the G-orbit of a character ξ` is {ξ`, ξ`a, . . . , ξ`ap−1}, which has size 1 or p, since

StabG(ξ`) = 〈x〉 o Stab〈y〉(ξ`) and 〈y〉 is a group of prime order. The orbits of size 1 coincide

with integers ` such that ` ≡ `a mod n. If we define c = gcd(n, a − 1), then it is easy to see that

` ≡ `a mod n if and only if n/c divides `. The number c is also significant because the commutator

subgroup of G is 〈xc〉 whenever p does not divide n.

For any irreducible character ξ` of 〈x〉, let ξ̃` denote the function

ξ̃`(x
iyj) = ξ`(x

i).

This is not a character of G in general. If ξ` has an orbit of size 1 (equivalently, if n/c divides

`), then evidently StabG(ξ`) = G, and Mackey’s method of little groups (see [CR90, Section 11])

implies that the functions ξ̃`ψj for 0 ≤ j < p are irreducible characters. The orbits of size p can

be indexed by integers ` such that n/c does not divide `. For ` ∈ I, Mackey’s method also tells us

that StabG(ξ`) = 〈x〉, and hence ξG` = IndG〈x〉(ξ`) is irreducible.

Thus,

Irr(G) =
{

IndG〈x〉(ξ`) : ` ∈ I
}
∪
{
ξ̃`·n

c
ψm : 0 ≤ ` < c, 0 ≤ m < p

}
, (4.12)
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where I is an index set (to be determined) for the orbits in Irr(〈x〉) of size p.

A reasonable goal for expanding the classification of SCT(D2n) is to classify the superchar-

acter theories of Zn o Zp, at least in some tractable cases. If p does not divide n and c = 1, then

G is a Frobenius group with Frobenius kernel 〈x〉. Thus Theorem 4.16 may be applied to classify

SCT(G). In Section 4.4.1, we will provide a classification in the style of Theorem 4.14 which also

implies that every supercharacter theory is characteristic.

We have observed empirically that the structure of SCT(SD(n, p, a)) is well-behaved as long

as p does not divide n and c is prime. If either of those conditions fail, then the lattice becomes

much more complicated. In Section 4.4.2, we will describe examples highlighting this qualitative

behavior. We will also summarize partial results and conjectures towards a classification of SCT(G)

in this case.

4.4.1 p does not divide n and c = 1

4.4.1.1 More general results

Consider the normal subgroups of G = SD(n, p, a), where p does not divide n, momentarily

suspending the assumption that c = 1.

Lemma 4.19. Let G = SD(n, p, a), where p does not divide n. A normal subgroup N of G either

takes the form N = 〈xd〉 for some divisor d of n, or it takes the form 〈xd, y〉 for some divisor d of

c.

Proof. Let N be a normal subgroup of G. If N is contained in 〈x〉, then N is of the form 〈xd〉 for

some divisor d of n. Suppose N is not contained in 〈x〉. Then N contains an element of the form

xiyj for some j 6= 0. Since

(xiyj)k = (xi)1+aj+···+(aj)k−1
yjk,

it follows that p divides the order of xiyj . Thus, N contains a subgroup of order p. Since N

is normal, it contains all subgroups of G of order p. Hence, y ∈ N . Now N ∩ 〈x〉 = 〈xd〉 for
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some divisor d of n, and one can check that xd and y generate N . Therefore, N = 〈xd, y〉. Now,

conjugating y by x yields x−1yx = xa−1y ∈ N , which implies that d divides a− 1. �

Lemma 4.20. Let G = SD(n, p, a), where p does not divide n and let c = gcd(n, a− 1). Then G

is a Frobenius group if and only if c = 1. In this case, the Frobenius kernel is 〈x〉 and the Frobenius

complement is 〈y〉.

Proof. If c = 1, then one can check that G is a Frobenius group with Frobenius kernel 〈x〉 and

Frobenius complement 〈y〉. Conversely, suppose G is a Frobenius group, i.e., that there exists a

proper nontrivial subgroup H such that H ∩Hg = 1 for all g ∈ GrH. Since H is not normal, it

follows by the above lemma that H must contain y. Write H = 〈xd, y〉. Then for all g ∈ G rH,

〈xd〉 is a subgroup of Hg, which implies that d = n, and therefore H = 〈y〉. Now let g ∈ G r 〈y〉

and write g = xiyj . Then because 〈y〉g ∩ 〈y〉 = 1, it follows that yg, which is equal to xi(1−a
j+1)y,

does not lie in 〈y〉. Equivalently, n/c does not divide i. But since this is true for all 1 ≤ i < n, it

follows that c = 1. �

The following corollary holds independent of the assumption that p not divide n.

Corollary 4.21. Let G = SD(n, p, a) and let S be a supercharacter theory whose superclass par-

tition has a part K containing all of G r 〈xd〉 for some divisor d of n. Then G rK is a normal

subgroup of G.

Proof. This is an immediate consequence of Lemma 4.2. �

It will also be helpful to classify the conjugacy classes of G.

Lemma 4.22. For any group G = SD(n, p, a), where p does not divide n, and any 0 ≤ i < n,

1 ≤ j < p, we have

Cl(xiyj) = 〈xc〉xiyj .

Proof. Let xiyj be given and conjugate by x. This yields

xxiyjx−1 = xi−(aj−1)yj ∈ 〈xc〉xiyj .
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Conjugating by y yields

yxiyjy−1 = xiayj .

Since c divides a − 1, it follows that ia ≡ i mod c, so xiayj ∈ 〈xc〉xiyj . Thus, Cl(xiyj) ⊆ 〈xc〉xiyj

for all 0 ≤ i < n and 1 ≤ j < p.

For the reverse containment, consider the order of xiyj ; this is either p or p · c. In the

former case, xiyj generates a Sylow p-subgroup of G. By Sylow theory, 〈xiyj〉 is conjugate to

〈y〉. Since NG(〈y〉) = 〈xn/c, y〉 is an abelian group (in fact cyclic, since (p, c) = 1), we have

#OrbNG(〈xiyj〉)(x
iyj) = 1. Thus,

#ClG(xiyj) = #Sylp(G) ·#OrbNG(〈xiyj〉)(x
iyj) = |G : NG(〈y〉)| = n

c
.

Hence Cl(xiyj) and 〈xc〉xiyj are equal in this case.

If the order of xiyj is p · c, then 〈xiyj〉 = NG(P ) for some P ∈ Sylp(G). Thus because

normalizers of Sylow subgroups are self-normalizing, we have CG(xiyj) = NG(〈xiyj〉) = 〈xiyj〉.

Consequently, #Cl(xiyj) = n/c, and therefore Cl(xiyj) = 〈xc〉xiyj . �

Thus 〈x〉yj is a union of c conjugacy classes, for any 1 ≤ j < p. This lemma also implies

that if S is any supercharacter theory for which 〈x〉 and 〈xc〉 are supernormal, then S factors as a

∆-product over these subgroups.

Lemma 4.23. For all 0 ≤ i < n and 0 < j < p, the Aut(G)-orbit of xiyj is a subset of the coset

〈x〉yj.

Proof. First, assume i = 0 and j = 1. Let α ∈ Aut(G) and write α(y) = xky`, where 0 ≤ k < n

and 1 ≤ ` < p. Then

α(x) = α
(
yxa

p−1
y−1
)

= xky`
(
α(x)

)ap−1

y−`x−k.
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Because α restricts to an automorphism of 〈x〉, we may write α(x) = xm, where (m,n) = 1. Hence,

xm = xky`
(
xm
)ap−1

y−`x−k

=
(
xa

p+`−1)m
.

Thus, we have ap+`−1 ≡ 1 mod n and hence a`−1 ≡ 1 mod n. Assume ` > 1. Then n/c divides

1 + a + · · · + a`−2. Since ` < p, it follows that ` − 2 < p − 1. Thus because n/c also divides

1 + a + · · · + ap−1, it follows that n/c divides 1 + a + · · · + ap−`. Thus, n/c divides 1 + a + · · · +

amin(`−2,p−`), and we can repeat the same argument inductively, arriving at a contradiction. Thus,

` = 1, and therefore OrbAut(G)(y) ⊆ 〈x〉y. By a similar argument, we have OrbAut(G)(y
j) ⊆ 〈x〉yj

for all j 6= 0. Finally, we can conclude that for any automorphism α and any element of the form

xiyj with j 6= 0, we have

α(xiyj) = α(xi)α(yj) ∈ α(xi)〈x〉yj = 〈x〉yj ,

which completes the proof. �

4.4.1.2 The classification for c = 1

Now, let G = SD(n, p, a) where p does not divide n and c = gcd(n, a− 1) = 1.3 By Lemma

4.20, we can apply Theorem 4.16 to classify SCT(G). However, the goal of this section is to provide

a classification which might generalize to prime c. We also wish to provide a more combinatorial

classification which says something about the behavior of the lattice under the action of Aut(G).

In this case, every element of 〈y〉 has order p, and by Lemma 4.22, all conjugacy classes of

elements of 〈y〉 are cosets of 〈x〉. For each divisor d of n, let Pd = [mM〈xd〉(G),MM〈xd〉], where,

as in previous sections, mM〈xd〉(G) = mG(〈xd〉) ∗〈xd〉M(G/〈xd〉). Let P denote the subposet of all

supercharacter theories that factor over 〈x〉. The classification of SCT(G) is the following theorem.

3 Actually, the assumption that p does not divide n is superfluous. Indeed if c = 1, then NG(〈y〉) = 〈y〉, which
implies that the number of Sylow p-subgroups of G is n. Thus by the Sylow theorems, p divides n−1, and consequently
p does not divide n.
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Theorem 4.24. Let G = SD(n, p, a) and suppose gcd(n, a − 1) = 1. Then we can express the

supercharacter theories of D2n as a disjoint union of the form

SCT(G) = P t
⊔
d|n
d>1

Pd.

The proof of Theorem 4.24 is below. Turning our attention to the character table, we have

` ≡ `a mod n if and only if n divides `, so there are only p linear characters, all inflated from 〈y〉.

By Lemma 4.23, these linear characters are all fixed by Aut(G). By these remarks, the conjugacy

classes and irreducible characters of G may be arranged in the form

Cl(G) =
{
C1, . . . , Cp, D1, . . . , Dn−1

p

}
and

Irr(G) =
{
ψ1, . . . , ψp, ξ

G
1 , . . . , ξ

G
n−1
p

},

where:

(1) C1 = {e};

(2) for all 1 ≤ i ≤ p, Ci is the coset yi〈x〉; and

(3) for all 1 ≤ j ≤ (n− 1)/p, Dj is the conjugacy class of xj .

Note that by examination of the character table, one can easily see that mm〈x〉(G) = m(G).4

With respect to the above notation, MM〈x〉(G) is of the form (K,X ), where

K =
{
C1, C2 ∪ · · · ∪ Cp, D1 ∪ · · ·D(n−1)/p

}
(4.13)

and

X =
{
{ψ1}, {ψ2, . . . , ψp}, {ξ1, . . . , ξ(n−1)/p

}
. (4.14)

We will need these observations for the proof of Theorem 4.24.

4 This is a property of Camina pairs in general, i.e., for any group G and any normal subgroup N , (G,N) is a
Camina pair if and only if m(G) = mmN (G).
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Proof of Theorem 4.24. Let S be a supercharacter theory and suppose S does not factor over

〈x〉. Write S = (K,X ). Since S ≥ mm〈x〉(G), it follows that S 6≤MM〈x〉(G). Thus, there exists an

S-superclass K that intersects 〈x〉 and G r 〈x〉 and an S-supercharacter of the form X ∪ Y ∈ X

such that X = {ξi : i ∈ I} and Y = {ψj : j ∈ J} are both nonempty. Then we have

σX∪Y (xk) = σY (xk) + σX(xk)

= |Y |+
∑
i∈I

p−1∑
r=0

ζkja
r

n (4.15)

and

σX∪Y (x`ym) = σX(x`ym) + σY (x`ym)

=
∑
i∈I

ψi(y
m)

=
∑
i∈I

ζmip . (4.16)

Since xk and x`ym lie in the same superclass, these quantities are equal. Since (4.15) lies in Q[ζn]

and (4.16) lies in Q[ζp], it follows that the shared value of these equations lies in Q[ζn]∩Q[ζp]. But

since p does not divide n, this intersection is Q, and thefore (4.16) is integral. But p is prime, so

it follows that I = {1, . . . , p− 1}.

Since all of the linear characters lie in X ∪ Y , it follows that no supercharacter of S can

distinguish between any two elements of G r 〈x〉. Therefore, all of these elements lie in the same

superclass, which is necessarily K. By Corollary 4.21, it follows that G rK is a subgroup of 〈x〉,

which we denote 〈xd〉. Finally, by examining K, we can see that S lies in Pd as desired.

Finally, we just need to verify that the subposets Pd are disjoint. This is easy if we examine

the superclass partitions of mM〈xd〉(G) and MM〈xd〉(G). The finer of these two supercharacter

theories only has one nontrivial part, and that part is shared with the coarser of the two. �

By Lemma 3.4, together with the observation that 〈xd〉 is a characteristic subgroup of G for

every divisor d of n, we arrive at the following corollary.
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Corollary 4.25. Let G = SD(n, p, a), where p does not divide n let c = gcd(n, a − 1). If c = 1,

then every supercharacter theory of G is characteristic.

Example 4.26. By Theorem 4.24, the lattice SCT(G) has a particularly simple structure when

G = SD(n, p, a), where n and p are distinct primes: every supercharacter theory other than M(G)

factors as a star product over 〈x〉. Thus by Lemma 3.4, we have a lattice isomorphism

SCT(G) ∼= {M(G)} t (InvSCTG(〈x〉)× SCT(〈y〉)).

Since 〈x〉 and 〈y〉 are both cyclic groups of prime order, their supercharacter theories are classified

by Proposition 3.25: InvSCTG(〈x〉) is the subposet of SCT(〈x〉) which consists of supercharacter

theories whose nontrivial superclasses have sizes divisible by p, which is isomorphic to the lattice

of divisors of n − 1 which are divisible by p. Similarly, SCT(〈y〉) is isomorphic to the lattice of

divisors of p− 1.

4.4.2 Conjectures and partial results

Let G = SD(n, p, a), where p does not divide n and where c = gcd(n, a − 1) is an arbitrary

prime number. The remainder of this section will be devoted to some partial results and conjectures

concerning the structure of SCT(G). Our first conjecture is based on example computations of

SCT(SD(n, p, a)) for different values of n, p, and a. We believe this conjecture is true for all

SD(n, p, a), without regard to the primality of c.

Conjecture 4.27. Let G = SD(n, p, a), where p does not divide n. Then every supercharacter

theory of G is characteristic.

Turning our attention to the character table, one can compute that G has conjugacy classes

{xin/c} for 0 ≤ i < c, Ci = {xiak : 0 ≤ k < p} for i in some index set I, which has size (n − c)/p,

and Di,j = 〈xc〉xiyj for 0 ≤ i < c and 0 ≤ j < p. The character table of G takes the form
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class rep. e {xi
n
c } Di,j Ci

class size 1 1 n
c p

ξ̃`n
c
ψm 1 ζ

i`n
c

c ζi`c ζ
jm
p ζi`c

ξG` p pζi`c 0
∑p−1

k=0 ζ
i`ak
n

(4.17)

The following result rules out any approach to classifying SCT(G) which relies on the struc-

ture of Camina pairs. Notably, we cannot use [Wyn17, Theorem 3.1].

Proposition 4.28. There is no normal subgroup N of G for which (G,N) is a Camina pair.

Proof. Let N be a proper nontrivial normal subgroup of G. By Lemma 4.19, either N = 〈xc, y〉 or

N is equal to 〈xd〉 for some proper nontrivial divisor d of n. In the former case, we can check that

|Nx| = n
c · p and |Cl(x)| = p, so because c < n, it follows that |Nx| > |Cl(x)|, hence (G,N) is not

a Camina pair. In the latter case, we know by Lemma 4.22 that Cl(g) = 〈xc〉g for all g ∈ Gr 〈x〉.

Hence if (G,N) is a Camina pair, then c divides d. Hence x
n
c /∈ N , but Cl(x

n
c ) = {x

n
c }, which

contradicts the condition that Nx
n
c be a subset of Cl(x

n
c ). Therefore, there are no normal subgroups

N for which (G,N) is a Camina pair. �

The following example shows that any potential classification will not be as simple as Theorem

4.16.

Example 4.29. Let G = SD(n, p, a) and let c = gcd(n, a− 1). Suppose c is prime and let

K =

{
{e}, 〈x

n
c 〉r {e}, 〈xc, y〉r {e},

c−1⋃
i=1

xi〈xc, y〉
}

and

X =
{
{1G}, X1, X2, X3

}
,

where

X1 = {ξ̃`n
c

: ` = 1, . . . , c− 1},
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X2 = {ξ̃0ψm : m = 1, . . . , p− 1},

and

X3 = Irr(G) r ({1G} ∪X1 ∪X2).

Then S = (K,X ) is a supercharacter theory of G. The only subgroups of G which are supernormal

with respect to S are 〈xc, y〉 and 〈x
n
c 〉, and it follows by considering the sizes of the superclasses

that S cannot factor as a ∗- or ∆-product over either or both of these subgroups.

4.4.2.1 Towards a classification

Let G = SD(n, p, a), where p does not divide n and c = gcd(n, a− 1) is a prime number. For

a normal subgroup N of G, write mMN (G) to denote the ∗-product mG(N) ∗N M(G/N), and let

Pd denote the interval [mM〈xd〉(G),MM〈xd〉(G)], as in Section 4.4.1.2. We will see that as in those

theorems, the subposets Pd capture everything too coarse to factor over 〈x〉.

Through example computations, we have observed a strong enough pattern to expand the

above conjecture and state with some confidence that SCT(SD(n, p, a)) is a disjoint union of the

following form:

P t
⊔
d|n
d>1

Pd tR t S, (4.18)

where:

(1) P is the subposet of supercharacter theories of G that factor as ∗-products over 〈x〉;

(2) R is the subposet of supercharacter theories of G that are refinements of elements of P;

and

(3) S is a (apparently structured) subposet of “sporadic” supercharacter theories.

We can establish the relationship between P and the subposets Pd right away.
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Proposition 4.30. Let S be a supercharacter theory that does not factor over 〈x〉 and that is a

coarsening of some supercharacter theory T which factors over 〈x〉. Then S lies in the subposet Pd

for some nontrivial divisor d of n.

Proof. If S = M(G), then we may set d = n. Otherwise, assume S < M(G). Since S ≥ mm〈x〉(G),

it follows that S 6≤MM〈x〉(G). Thus there is a superclass K ∈ K(S) which intersects both 〈x〉 and

Gr 〈x〉 nontrivially. There is also a part of X (S) of the form X ∪ Y , where X = {ξG` : ` ∈ L} and

Y = {ψm : m ∈M} for nonempty subsets L ⊆ {1, . . . , n− 1} and M ⊆ {1, . . . , p− 1}.

If xiyj and xk are elements of K r 〈x〉 and K ∩ 〈x〉, respectively, then

σX∪Y (xk) = σX(xk) + σY (xk) =
∑
`∈L

p−1∑
r=0

ζk`a
r

n + #Y

and

σX∪Y (xiyj) = σX(xiyj) + σY (xiyj) =
∑
m∈M

ζmjp .

Since the right hand sides of the above two equations are equal, their value lies in Q[ζp]∩Q[ζq] = Q,

and is therefore equal to some integer s. In particular, it follows that the polynomial
∑

i∈I x
i − s

is divisible by 1 + x + · · · + xp−1, whence M = {1, . . . , p − 1} and s = −1. Since S ≥ mm〈x〉(G),

the characters ξ̃`n
c
ψm1 and ξ̃`n

c
ψm2 lie in the same part of X (S) for all m1 and m2. In particular,

no S-supercharacter can distinguish between any two elements of G r 〈x〉, and therefore G r 〈x〉

is a subset of a superclass, which is necessarily K. By Corollary 4.21, it follows that G rK is a

subgroup of 〈x〉, which we denote by 〈xd〉.

Finally, we considerK = Gr〈xd〉. This is the preimage of the nontrivial part ofK(M(G/〈xd〉))

under the canonical projection map. Hence,

K(mM〈xd〉(G)) =
{
K
}
∪
{

Cl(g) : g ∈ GrK
}

and

K(MM〈xd〉(G)) =
{
{e},K,Gr (K ∪ {e})

}
.

Therefore, S ∈ Pd. �
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There is little that we can say about the structure of R beyond some qualitative observations.

Based on a limited number of examples which were computed using the SCTFinder algorithm

(Algorithm 3.30), it appears that each element of this subposet is covered by a unique element of

P and this ∗-product is recovered by gluing together the cosets of 〈x〉.

It also appears that R is a product of two smaller lattices: one which appears related to

SCT(Zn/c) and one which appears related to SCT(Zp). This can be found by considering the

sublattice of R of supercharacter theories S for which ξ`n
c
ψm is an S-supercharacter for all ` =

0, . . . , c− 1 and m = 0, . . . , p− 1. Such a supercharacter theory S is “fully split” in the sense that

if T is the minimal ∗-product coarser than S, then X (T ) contains {ξ`n
c
ψm : m = 0, . . . , p − 1} as

a part, for each ` = 0, . . . , c − 1. While these observations are merely conjecture, we can describe

one notable covering relation in the following proposition.

Proposition 4.31. The minimal factorable supercharacter theory mm〈x〉(G) is an atom of SCT(G).

Proof. This supercharacter theory has superclass and supercharacter partitions

K(mm〈x〉(G)) =
{
{e}
}
∪
{
〈x〉yj : j = 1, . . . , p− 1

}
∪
{
Ci : i ∈ I

}
and

X (mm〈x〉(G)) =
{
{ξ̃0ψm} : m = 0, . . . , p− 1

}
∪
{
{ξ̃`n

c
ψm : m = 0, . . . , p− 1} : ` = 1, . . . , c− 1

}
∪
{
ξG` : ` ∈ I

}
,

respectively.

Let S ≤ mm〈x〉(G) and suppose one of the parts of K(S) contains both 〈xc〉xiyj and 〈xc〉xkyj

for some distinct i, k with 0 ≤ i, k < c. We claim that this implies that S = mm〈x〉(G). Note that

because K(S) is strictly coarser than Cl(G), it follows that X (S) contains some non-singleton part

X, which by the relation S ≤ mm〈x〉(G) is necessarily a subset of the set X` := {ξ̃`n
c
ψm : m =

0, . . . , p − 1} for some 1 ≤ ` < c. Let J be an index set for the elements of X, i.e., X = {ξ̃`n
c
ψm :

m ∈ J}. Then

σX(xiyj) =
∑
m∈J

ζi`c ζ
jm
p =

∑
m∈J

ζk`c ζ
jm
p = σX(xkyj).
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Hence, (ζi`c − ζk`c ) ·
∑

m∈J ζ
jm
p = 0. Since i 6= k, this equation implies that

∑
m∈J ζ

jm
p = 0, which

implies that J = {0, . . . , p− 1}, and therefore X = X`. In particular, we are done if c = 2, since in

this case X (mm〈x〉(G)) has only one non-singleton part, which is X1.

Now assume c > 2, let 1 ≤ `1, `2 < c be distinct, and suppose X`1 ∈ X (S) but X`2 /∈ X (S).

Then by the preceeding paragraph, {ξ̃`2 nc ψm} is a part of X (S) for each m = 0, . . . , p− 1. Thus,

(ξ̃`2 nc ψ1)(xiyj) = ζi`2c ζjp = ζk`2c ζjp ,

hence i`2 ≡ k`2 mod c. But since c is prime, this implies i ≡ k mod c. But this is a contradiction,

since these were assumed to be distinct. Therefore, S = mm〈x〉(G). �

We can fully classify R if we add the assumption that c = 2. Suppose c = 2 and let G be

the subposet of P consisting of those supercharacter theories S for which X (S) contains the set

X1 = {ξ̃n
2
ψm : m = 0, . . . , p− 1} as a part.

If S ∈ G factors as (L,Y) ∗〈x〉 (M,Z) and thus corresponds to the data

K(S) = L ∪
{ ⋃
yj∈M

〈x〉yj : M ∈Mr
{
{e}
}}

and

X (S) = Z ∪ Y ′,

where

Y ′ =
{

Irr(G|σY ) : Y ∈ Y r
{
{1〈y〉}

}}
,

then X1 ∈ Y ′. We can refine S to an element of R, which we denote ρ(S) and such that which

corresponds to the pair of partitions

K(ρ(S)) = L ∪
{ ⋃
yj∈M

〈x2〉yj : M ∈Mr
{
{e}
}}

∪
{ ⋃
yj∈M

〈x2〉xyj : M ∈Mr
{
{e}
}}

and

X (ρ(S)) = Z ∪
{
ξ̃n

2
σZ : Z ∈ Z r {{1〈y〉}}

}
∪ Y ′ r

{
X1

}
.

It is routine to check that these partitions define a supercharacter theory, and that ρ(S) < S.
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Lemma 4.32. Let G = SD(n, p, a), where p is prime and c = gcd(n, a− 1). If c = 2 and ρ and G

are defined as above, then S covers ρ(S) for all S ∈ G.

Proof. Suppose ρ(S) ≤ T < S. Then X1 /∈ X (T ). Then X1 /∈ X (T ), so X (T ) must contain a part

which is a proper subset of X1, say X = {ξ̃n
2
ψm : m ∈ J}. Since J 6= {0, . . . , p− 1}, it follows that∑

m∈J ζ
m
p 6= 0. Thus,

σX(yj)− σ(xyj) = 2
∑
m∈J

(ζj)m 6= 0,

Therefore, no part of K(T ) contains both 〈x2〉yj and 〈x2〉xyj for any j. Hence ξ̃n
2

is a T -

supercharacter, so ξ̃n
2
σZ is a T -supercharacter for any Z ∈ Z. Therefore T = ρ(S). �

Proposition 4.33. Let G = SD(n, p, a), where p is prime and c = gcd(n, a − 1). If c = 2 and

ρ and G are defined as above, then for all S ∈ R, S = ρ(T ), where T ∈ G is obtained from S by

coarsening K(S) according to the rule yj ∼ xyj for all 0 < j < p and coarsening X (S) according to

the rule ξ̃n
2
ψm1 ∼ ξ̃n2 ψm2 for all 0 ≤ m1,m2 < p.

Proof. Since S ∈ R, it follows that S ≤ MM〈x〉(G), hence 〈x〉 is S-normal and we can therefore

consider S〈x〉 = (L,Y) and SG/〈x〉 = (M,Z). By [Hen08, Lemma 3.9], it follows that T = S ∨

mm〈x〉(G) = S〈x〉 ∗〈x〉 SG/〈x〉. Thus, we just need to show that ρ(T ) = S. Now, mm〈x〉(G) has

superclass and supercharacter partitions given by

K(mm〈x〉(G)) =
{
{e}
}
∪
{
〈x〉yj : j = 1, . . . , p− 1

}
∪
{
Ci : i ∈ I

}
and

X (mm〈x〉(G)) =
{
{ξ̃0ψm} : m = 0, . . . , p− 1

}
∪
{
X1

}
∪
{
ξG` : ` ∈ I

}
,

respectively. Thus, the only blocks of X (S) which may differ from those of X (ρ(T )) are the blocks

which are subsets of X1. Thus, it suffices to show that these parts are necessarily of the form

{ξ̃n
2
ψm : ψm ∈ Z} for Z ∈ Z r {{1〈y〉}}. Let X ∈ X (S) be a subset of X1 and note that σX1 = ξ̃n

2

is an S-supercharacter. Then σX1σX is a linear combination of parts of Z. By a similar argument,

σX1σZ is a linear combination of parts X ∈ X (S) which are subsets of X1. Therefore, S = ρ(T ). �

Corollary 4.34. Let G = SD(n, p, a), where p is prime and c = gcd(n, a− 1). If c = 2, then R is
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order-isomorphic to A× SCT(G/〈x〉), where A is the interval of supercharacter theories of 〈x〉 for

which ξn
2

is a supercharacter.

Much of the structure of the subposet S of “sporadic” supercharacter theories has so far

evaded our classification. Based on observations, this subposet contains supercharacter theories

which factor over 〈xc, y〉, as well as the supercharacter theory defined in Example 4.29. For c

prime, it appears that |S| is small compared to |SCT(G)| and the posets S and P are mostly

incomparable.



Chapter 5

Hopf subalgebras and restriction supercharacter theories

In [AB17], the authors construct a combinatorial Hopf algebra in the sense of [ABS06] by

gluing the irreducible characters of finite general linear groups by the action of a group of Galois

automorphisms. In this chapter, we will construct a similar combinatorial Hopf algebra using the

minimal GLn(Fq)-invariant supercharacter theory of SLn(Fq) as the nth graded component, for each

n. Combinatorially, this results in a Hopf subalgebra of the Hopf algebra of characters of the finite

general linear groups. As a motivating example, we will first perform an analogous construction

with the symmetric and alternating groups. These two constructions are explicitly related by the

universality of Sym in the category of combinatorial Hopf algebras.

5.1 Hopf algebra over the alternating groups

For each n ≥ 0, the action of Sn on An by conjugation produces a supercharacter theory of

An whose superclasses are the Sn-conjugacy classes that lie in An and whose supercharacters are

the irreducible constituents of the restrictions of irreducible characters of Sn. Combinatorially, this

is the supercharacter theory obtained by clumping the pairs of “split” cycle-types, i.e., those pairs

of An-conjugacy classes whose elements possess the same cycle-type.1

For n ≥ 0, let scf(An) denote the algebra of complex-valued superclass functions on An with

respect to these supercharacter theories (where A0 = S0 = {1} by convention, so that scf(A0) =

1 It is a standard exercise to prove that the Sn-conjugacy class of elements of cycle-type λ is a union of two distinct
An-conjugacy classes if and only if the parts of λ are all distinct and odd.
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cf(S0) ∼= C). Define

scf(A) =
⊕
n≥0

scf(An).

Similarly, for all n, define cf(Sn) to be the algebra of complex-valued class functions on Sn and

let cf(S) =
⊕

n≥0 cf(Sn). This is the familiar Hopf algebra that models the representation theory

of symmetric groups, and which is isomorphic to the Hopf algebra of symmetric functions, denoted

Sym (see [Mac98]). Our first goal is to define a Hopf algebra structure on scf(A) that realizes it

as isomorphic to a Hopf subalgebra of cf(S) and examine its image in Sym, which we will denote

by Alt.

5.1.1 The maps

Let us first examine the restriction map Res : cf(S) → scf(A) which is given on graded

components by the maps ResSnAn . Let P be the set of all integer partitions. For any integer

partition λ of size |λ| = n, let δλ ∈ cf(Sn) be the identifier function for the conjugacy class of

elements of Sn of cycle-type λ. The functions δλ for all λ ∈ P (respectively, their restrictions

to the alternating groups) form a natural basis for cf(S) (respectively, scf(A)). Evidently, the

kernel of the restriction map is spanned by the identifiers of conjugacy classes which do not lie in

alternating groups.

We can distinguish which partitions index the superclasses of An as follows. Let sgn : Sn →

{−1, 1} be the sign homomorphism whose kernel is An and (at the risk of abusing notation) for

any integer partition λ ∈ P, define sgn(λ) to be the value of sgn(w), where w is any element

of S|λ| of cycle-type λ. In other words, sgn(λ) = 1 if elements of cycle-type λ lie in An and

sgn(λ) = −1 otherwise. For a more combinatorial classification of the cycle-types which lie in An,

we can formulate sgn as

sgn(λ) = (−1)|λ|−`(λ),

which is a consequence of [Mac98, Example I.7.1].



98

Let ιA be the map

ιA : scf(A)→ cf(S)

ResSnAn(δλ) 7→ δλ = ResSnAn(δλ)0

(5.1)

which takes a superclass function f ∈ scf(An) and maps it to f0, where f0 : Sn → C denotes the

class function

f0(x) =

f(x) : x ∈ An

0 : otherwise

. (5.2)

Recall that if λ ∈ P is an integer partition, then its transpose partition, denoted λ′,2

is obtained by reflecting the Ferrers diagram of λ about the main diagonal. Equivalently, λ′ =

(λ′1, λ
′
2, . . .), where for each i, λ′i = #{j : λj ≥ i}. It is known that χλ

′
= χλ · sgn. This implies

that3

Res(χλ
′
) = Res(χλ) (5.3)

and (see, e.g., [FH04, Chapter 5.1])

Res(χλ)0 =
1

2
(χλ + χλ

′
). (5.4)

Thus, ιA : scf(A) → Im(ιA) and Res|Im(ιA) : Im(ιA) → scf(A) are inverse isomorphisms and we

may therefore define the Hopf maps to exploit this identification of scf(A) with points of cf(S)

fixed under the symmetry of transposition.

Define the unit u : C→ scf(A) to be the map c 7→ c · 1A0 , where 1A0 is the trivial character

of A0 = {1}.

Define the co-unit ε : scf(A) → C as follows. If f ∈ scf(A) decomposes as f =
∑

n≥0 fn,

where fn ∈ scf(An) for all n ≥ 0, then we may let

ε(f) = 〈f0,1A0〉.
2 This is the only instance of terminology which differs from [Mac98]: that book refers to λ′ as the conjugate

partition. We have chosen a different word for obvious reasons.
3 Throughout this chapter, we will write Ind and Res with no decoration, as it always occurs componentwise

between Sn and An.
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Define a product on scf(A) by linearly extending the following operation to arbitrary elements

of scf(A). If f ∈ scf(An) and g ∈ scf(Am), then we set

mA(f, g) = Res
Sn+m
An+m

(
Ind

Sn+m
Sn×Sm(f0 × g0)

)
. (5.5)

If mS denotes the product on cf(S), then we have an equivalent definition:

mA = Res ◦mS ◦ ι⊗2
A . (5.6)

Define the comultiplication to be the linear extension of the following map: for all f ∈ scf(An),

let

∆A(f) =
∑
i+j=n

ResAnAi×Aj (f). (5.7)

If ∆S denotes the coproduct on cf(S), then we can similarly form an equivalent definition of ∆A:

∆A = Res⊗2 ◦∆S ◦ ιA. (5.8)

5.1.1.1 Compatibility conditions

Proposition 5.1. With the maps defined above, scf(A) forms a bialgebra isomorphic to a bi-

subalgebra of cf(S).

Proof. Recall that ιA and Res|Im(ιA) are inverses. Hence, applying ιA to (5.6), we obtain

ιA ◦mA = mS ◦ ι⊗2
A .

Similarly, applying ι⊗2
A to (5.8) yields

ι⊗2
A ◦∆A = ∆S ◦ ιA.

Thus if τS is the linear map on cf(S)⊗2 which exchanges the order of factors in simple tensors and

τA is the analogous map on scf(A)⊗2, then we have

ι⊗2
A ◦∆A ◦mA = ∆S ◦mS ◦ ι⊗2

A

= m⊗2
S ◦ (idS ⊗ τS ⊗ idS) ◦∆⊗2

S ◦ ι
⊗2
A

= ι⊗2
A ◦mA ◦ (idA ⊗ τA ⊗ idA) ◦∆⊗2

A .
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Therefore, applying Res⊗2 to this equation implies that ∆A and mA are compatible. The remaining

compatibility conditions follow by similar methods. �

As in [Mac98, Chapter I.7], let Ψ :
⋃
n≥0 Sn → Sym be defined by Ψ(w) = pρ(w), and define

the map chS : cf(S)→ Sym by sending a class function f ∈ cf(Sn) to

chS(f) = 〈f,Ψ〉Sn =
∑
|λ|=n

z−1
λ fλpλ,

where fλ denotes the value of f on elements of cycle type λ and

zλ =
∏
i

imi(λ)λi!,

where for all i, mi = mi(λ) is the multiplicity of i in λ. Note that zλ is the size of the centralizer

in Sn of an element of cycle-type λ. It is well-known (again, see [Mac98, Chapter I.7]) that chS is

a Hopf algebra isomorphism between cf(S) and Sym. Let chA denote the map chS ◦ ιA, so that for

f ∈ scf(An),

chA(f) = 〈f0,Ψ〉Sn =
∑
|λ|=n

sgn(λ)=1

z−1
λ fλpλ.

Let Alt denote the image of scf(A) under this map. We summarize these relationships with a

commutative square of bialgebras in (5.9).

cf(S) Sym

scf(A) Alt

chS

chA

ιA (5.9)

5.1.2 Structure coefficients

The Hopf isomorphism between scf(A) and Alt allows us to work entirely in the ring of

symmetric functions. Two natural bases for scf(A) are the superclass identifier functions

{Res(δλ) : λ ∈P, sgn(λ) = 1}
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and the supercharacters

{Res(χλ) : λ ∈ I},

where I ⊂ P is a complete set of representatives for P modulo the equivalence relation λ ∼ λ′.

We can compute the images of these bases under chA directly. Let λ ∈P be an integer partition

of n such that sgn(λ) = 1. Since ResSnAn(δλ)0 = δλ, we have

chA(ResSnAn(δλ)) = chS(δλ) = z−1
λ pλ. (5.10)

Similarly, it follows by (5.4) that

chA(ResSnAn(χλ)) = chS

(1

2
(χλ + χλ

′
)
)

=
1

2
(sλ + sλ′). (5.11)

Thus, the analogous two bases for Alt are the scaled power-sums

{z−1
λ pλ : λ ∈P, sgn(λ) = 1}

and the averaged Schur functions {1

2
(sλ + sλ′) : λ ∈ I

}
.

Recall the formula for the antipode of a graded and connected Hopf algebra, which was given

by (2.14) in Proposition 2.23: for an element h of a graded and connected Hopf algebra H, we have

S(h) = −h−
n−1∑
i=1

S(h1,j)h2,n−j ,

where the elements hi,j come from the equation

∆(h) = h⊗ 1 + 1⊗ h+

n−1∑
j=1

h1,j ⊗ h2,n−j .

Recall also that the power-sum symmetric functions p1 for n ≥ 1 are primitive elements of Sym.

Thus, the above equations imply that SSym(pn) = −pn for all n. Therefore, for any integer partition

λ of size n and length `(λ), we have

SSym(pλ) = (−1)`(λ)pλ = (−1)nω(pλ),
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where ω is the involution defined by the formula ω(sλ) = sλ′ ; see [Mac98, Chapter I, (2.13)

and (3.8)]. Therefore, S is equal to (−1)nω on the nth graded component of Sym. Combining

equations (5.9), (5.3), and (5.11), it follows that Alt (respectively scf(A)) is closed with respect to

SSym (respectively Sscf(A) ◦ ιA). By defining antipodes SAlt and Sscf(A), it follows that (5.9) is a

commutative square of Hopf algebras.

The structure coefficients for the scaled power-sums are well-known, but we will derive them

for completeness. By definition, pλ =
∏
i pλi . Hence,

(z−1
λ pλ) · (z−1

µ pµ) =
zλ∪µ
zλzµ

z−1
λ∪µpλ∪µ. (5.12)

The co-product of a power-sum is computed using the above equation and the facts that ∆ is an

algebra morphism and that the power-sums pi are primitive elements. Let λ be an integer partition

of n and write λ = (1m12m2 · · ·nmn). Then, pλ =
∏
i p
mi
i , so that

∆(z−1
λ pλ) = z−1

λ

∏
i

∆(pi)
mi

= z−1
λ

∏
i

(pi ⊗ 1 + 1⊗ pi)mi

= z−1
λ

∑
λ=µ∪ν

(
mi

mi(µ)

)
pµ ⊗ pν

=
∑

λ=µ∪ν

1

zλ

mi!

mi(µ)!mi(ν)!
pµ ⊗ pν .

Therefore,

∆(z−1
λ pλ) =

∑
λ=µ∪ν

(z−1
µ pµ)⊗ (z−1

ν pν). (5.13)

Note that the Littlewood–Richardson coefficients satisfy the following identity for all parti-

tions α, β, γ:

cγα,β = cγ
′

α′,β′ .

Thus, we have the structure coefficients of multiplication in Alt with respect to the supercharacter
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basis:
1

2
(sλ + sλ′) ·

1

2
(sµ + sµ′) =

1

4
(sλsµ + sλsµ′ + sλ′sµ + sλ′sµ′)

=
1

4

∑
ν

(
cνλ,µ + cνλ,µ′ + cνλ′,µ + cνλ′,µ′

)
sν

=
1

2

∑
ν∈I

(cνλ,µ + cνλ,µ′ + cνλ′,µ + cνλ′,µ′) ·
1

2
(sν + sν′).

(5.14)

We can also compute the structure coefficients of comultiplication in Alt with respect to this

basis. In order to make the computation easier to follow, let Z/2Z = 〈τ〉 act on P by transposition.

Then,

∆
(1

2
(sν + sν′)

)
=

1

2

∑
λ,µ

(cνλ,µ + cν
′
λ,µ)sλ ⊗ sµ.

=
1

2

∑
λ,µ∈I

∑
i,j,k∈{0,1}

cτ
kν
τ iλ,τ jµsτ iλ ⊗ sτ jµ.

Now double-count the Littlewood–Richardson coefficients by introducing another index variable `:

=
1

4

∑
λ,µ∈I

∑
i,j,k,`∈{0,1}

cτ
kν
τ iλ,τ j+`µsτ iλ ⊗ sτ jµ

=
1

4

∑
λ,µ∈I

∑
i

∑
j,k,`∈{0,1}

cτ
k−iν
λ,τ j+`−iµsτ iλ ⊗ sτ jµ.

By re-indexing the variables ` and k, we can rewrite the above expression as follows.

1

4

∑
λ,µ∈I

∑
j

∑
k,`∈{0,1}

cτ
kν
λ,τ j+`µ

(∑
i

sτ iλ

)
⊗ sτ jµ.

Now, we can similarly re-index ` to absorb j and rearrange the expression into the following form.

1

4

∑
λ,µ∈I

∑
k,`∈{0,1}

cντ−kλ,τ`−kµ

(∑
i

sτ iλ

)
⊗
(∑

j

sτ jµ

)
.

Therefore,

∆
(1

2
(sν + sν′)

)
=∑

λ,µ∈I
(cνλ,µ + cνλ,µ′ + cνλ′,µ + cνλ′,µ′)

(1

2
(sλ + sλ′)

)
⊗
(1

2
(sµ + sµ′)

)
.

(5.15)
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5.1.3 Co-commutativity and combinatorial Hopf algebras

A combinatorial Hopf algebra (CHA) is a pair (H, ζ), where H is a graded and connected

Hopf algebra and ζ : H → C is an algebra morphism (usually called a character). Aguiar,

Bergeron, and Sottile [ABS06] first defined CHAs and developed their theory. In that paper, they

showed that (Sym, ζSym) is the terminal object in the category of co-commutative CHAs, where

ζSym is defined on the monomial basis by the formula

ζSym(mλ) =

1 : λ = (n) or λ = ()

0 : otherwise

. (5.16)

hence applying (5.16), we obtain an equivalent definition

ζSym(sλ) =

1 : λ = (n) or λ = ()

0 : otherwise

. (5.17)

As a Hopf subalgebra of Sym, it follows that Alt is co-commutative. Furthermore, it is graded

and connected by construction. Thus for any algebra morphism ζAlt : Alt→ C, we obtain a unique

Hopf algebra morphism ψζAlt
: Alt → Sym such that ζAlt = ζSym ◦ ψζAlt

. This result is restated

below.

Theorem 5.2. [ABS06, Theorem 4.3] For any co-commutative CHA (H, ζH), there is a unique

Hopf algebra morphism ψH : H → Sym with the property that ζH = ζSym ◦ψH . Moreover, this map

is given by the formula

ψH(h) =
∑
µ∈P
|µ|=n

ζµ(h)mµ, (5.18)

where for all µ = (µ1, . . . , µk), ζµ is the composition

H H⊗k Hµ1 ⊗ · · · ⊗Hµk C,
∆(k−1) ζ⊗kH

and where the unlabeled map is the tensor product of the canonical projections onto the graded

components Hµi.

The universal property of Sym in this category ensures that the above map, for H = Alt,

reduces to the inclusion Alt ↪→ Sym if ψAlt is taken to be the restriction Res(ψSym).
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5.2 Hopf algebra over the special linear groups

There is a deep connection between the symmetric and general linear groups. One views Sn

as the general linear group over the (nonexistent) field with one element, or equivalently, one views

GLn(q) as the natural q-analogue of Sn. Under these analogies, the alternating groups—being the

derived subgroups of the symmetric groups—correspond to the special linear groups. We will show

that there is a similar Hopf algebra structure for the family of supercharacter theories obtained by

restricting the character theories of the general linear groups to their special linear counterparts.

Fix a prime power q and let n ≥ 0. Let Gn = GLn(q) and let Hn = SLn(q), where we

define H0 = G0 = {1}. The action of Gn on Hn by conjugation produces a supercharacter theory

of Hn whose superclasses are the Gn-conjugacy classes in Hn and whose supercharacters are the

irreducible constituents of the restrictions of irreducible characters of Gn to Hn. Let cf(Gn) denote

the algebra of complex-valued class functions on Gn, and let scf(Hn) denote the algebra of complex-

valued superclass functions on Hn, so that scf(H0) = cf(G0) ∼= C. Let cf(G) =
⊕

n cf(Gn) and

let scf(H) =
⊕

n scf(Hn). We wish to describe the superclasses of Hn as combinatorial objects

modulo some notion of symmetry in a manner similar to the previous section (i.e., integer partitions

modulo transposition). This will be possible using the combinatorics of [Mac98, Chapter IV] and

the notion of parallelism defined by Lehrer in [Leh73].

5.2.1 Combinatorial background

The following is a brief summary of the early sections of [Mac98, Chapter IV]. Let M = F×q

be the algebraic closure of the finite field Fq and let F : M →M be the Frobenius endormorphism

which sends an element x ∈ M to xq. Let Φ be the set of F -orbits in M . Then the conjugacy

classes of Gn are indexed by functions µ : Φ→P subject to the condition

‖µ‖ =
∑
f∈Φ

deg(f)|µ(f)| = n.

(Here we use deg(f) to denote the size of the orbit f . If we view elements of Φ as irreducible polyno-

mials as outlined by Macdonald, then deg(f) is simply the degree of the polynomial corresponding
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to f .) Let

I = {µ : Φ→P : ‖µ‖ <∞} (5.19)

denote the set of all functions µ : Φ→P satisfying the previous equation for some n.

We can describe the irreducible characters of Gn in a similar manner. For all n, let Mn =

F×qn = MFn , and let Ln = Hom(Mn,C×). Let L = lim
⇁

Ln, where embeddings Lm → Ln are

given for m dividing n by precomposition with the surjective norm maps Nn,m : Mn → Mm. The

Frobenius endomorphism F acts on each Ln by precomposition. These actions are compatible with

the maps Lm → Ln, and this induces an action of F on L with the property that Ln = LF
n

for all

n. Let Θ be the set of F -orbits in L. The irreducible characters of Gn are indexed by functions

λ : Θ→P subject to the condition

‖λ‖ =
∑
ϕ∈Θ

deg(ϕ)|λ(ϕ)| = n.

Let

J = {λ : Θ→P : ‖λ‖ <∞} (5.20)

denote the set of all functions λ : Θ→P satisfying the previous equation for some n.

Let Xi,f (i ≥ 1, f ∈ Φ) be independent variables over C and for any symmetric function

u ∈ Sym, let u(f) denote the symmetric function u(f) = u(Xf ) = u(X1,f , X2,f , . . .). For all f ∈ Φ,

let Sym(Xf ) denote the Hopf algebra of symmetric functions in these variables. Similarly, let Yi,ϕ

(i ≥ 1, ϕ ∈ Θ) be independent variables over C and for any symmetric function u ∈ Sym, let u(ϕ)

denote the symmetric function u(ϕ) = u(Y1,ϕ, Y2,ϕ, . . .). For all ϕ ∈ Θ, let Sym(Yϕ) denote the

Hopf algebra of symmetric functions in these variables.

These constructions give us two representations of cf(GL) as tensor products of symmetric

functions. There are isomorphisms

⊗
f∈Φ Sym(Xf )

⊕
n≥0 cf(Gn)

⊗
ϕ∈Θ Sym(Yϕ)

P̃µ δµ

χλ Sλ,

(5.21)
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where Sλ =
∏
ϕ∈Θ sλ(ϕ)(Yϕ) and P̃µ is the scaled Hall–Littlewood symmetric function defined in

[Mac98, Chapter IV.4].

5.2.1.1 Restriction of characters

Now let us recall some basic notions from [Leh73]. In this paper, Lehrer defines an n-simplex

to be an F -orbit of size n in L. Let ϕ be an orbit, and list its elements x0, x1, . . . , xn−1 in such a way

that xi = F i(x0). In particular, we have Fn(xi) = xi for all i, and hence ϕ ⊆ LFn . By construction,

we have LF
n

= Ln, where Ln is viewed as a subobject of L via its canonical embedding. Thus,

since Ln ∼= M̂n, we may view n-simplexes as F -orbits of size n in M̂n.

Two n-simplexes ϕ and ψ are said to be adjacent if there is some α ∈ L1 ⊆ Ln4 such that

if ϕ = {x0, . . . , xn−1}, then ψ = {αx0, . . . , αxn−1}. Whenever ϕ and ψ are related this way, we

write ψ = α · ϕ. For each n, let Θn be the set of n-simplexes, so that Θ =
⋃
n Θn. A translation

is a map τ : Θn → Θn such that there exists α ∈ L1 ⊆ Ln with τ(ϕ) = α · ϕ. Finally, the parallel

translation of Θ induced by α ∈ L1 is the map τα : Θ→ Θ defined by τα(ϕ) = α ·ϕ. This defines

a group action of L1 on Θ, whence the maps τα have inverses, which are given by τ−1
α = τα−1 .

If λ and µ are related by a parallel translation, call λ and µ parallel and write λ ‖ µ. For

each λ, let [λ] denote the parallel class of λ. Note that L1 = M̂1 = Hom(F×q ,C×) ∼= F×q , hence L1

is cyclic. These definitions were used by Lehrer to prove the following classification.

Theorem 5.3. [Leh73, Theorem 7, Theorem 8] Two irreducible characters χλ and χµ of Gn have

the same restriction to Hn if and only if λ and µ are parallel. Moreover, the irreducible characters

of Hn are indexed by pairs ([λ], i), where [λ] is a parallel class and 1 ≤ i ≤ (q − 1)/|[λ]|.

5.2.2 The maps

Throughout, we will write Indf
Gi+j
Gi×Gj to denote parabolic induction from Gi × Gj to Gn.

Similarly, we will denote its adjoint by Resf
Gi+j
Gi×Gj . The formula for the latter operation is as

4 We write L1 ⊆ Ln as an abuse of notation. In reality, L1 embeds into Ln by precomposition with the norm map
Nn,1 : Mn →M1.
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follows. If u is a class function on Gi+j and g0 ∈ Gi ×Gj ⊆ Gi+j , then

Resf
Gi+j
Gi×Gj (u)(g0) =

1

|Ui,j |
∑
x∈Ui,j

u(g0x),

where Ui,j is the unipotent radical of the parabolic subgroup Pi,j of Gi+j containing the Levi

subgroup Gi ×Gj .

Let scf(SL) denote the space
⊕

n≥0 scf(Hn). We wish to define operations on scf(SL) which

realize it as a graded and connected Hopf algebra.

Consider the restriction map Res : cf(GL)→ scf(SL) which is given on the graded components

by the maps ResGnHn . For any function µ ∈ I, we may define δµ to be the identifier function of the

conjugacy class indexed by µ. These identifier functions (respectively, their restrictions to the

special linear groups) form a natural basis for cf(GL) (respectively, scf(SL)). Evidently, the kernel

of the restriction map is spanned by the identifiers of conjugacy classes which do not lie in special

linear groups.

We can distinguish which functions µ ∈ I index the superclasses of Hn as follows. Let

det : Gn → Fq denote the determinant homomorphism whose kernel is Hn and (at the risk of

abusing notation) for any function µ ∈ I satisfying ‖µ‖ = n, define det(µ) to be the value of det(g)

for any element g ∈ Gn which lies in the conjugacy class indexed by µ. Then det(µ) = 1 if and only

if µ indexes a partition which lies in Hn. For a more combinatorial classification of the conjugacy

classes which lie in Hn, we can formulate det as follows.

Proposition 5.4. [Mac98, Chapter IV.2, Example 2] For all µ ∈ I, we have

det(µ) =
∏
x∈M

x|µ(x)|.

Let ιSL be the map

ιSL : scf(SL)→ cf(GL)

ResGnHn(δµ) 7→ δµ = ResGnHn(δµ)0

(5.22)

which takes a superclass function f ∈ scf(Hn) and maps it to f0, where f0 : Gn → C is defined as

in (5.2).
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The following result is analogous to (5.3).

Lemma 5.5. [Leh73, 5.31 and Theorem 7] Two irreducible characters χλ and χµ of Gn have the

same restriction to Hn if and only if µ = λ ◦ τα for some α ∈ L1.

By Clifford’s Theorem (see [Isa76, Theorem 6.2] for a character-theoretic formulation), we

obtain a formula analogous to (5.4). For any irreducible character χλ of Gn, we have

(ResGnHnχ
λ)0 =

1

q − 1
IndGnHnResGnHnχ

λ =
1

q − 1

∑
λ̃‖λ

χλ̃. (5.23)

Therefore, we have

ιSL ◦ Res|Im(ιSL) = idIm(ιSL).

However, for any irreducible character χλ, we have

(Res ◦ ιSL)(Resχλ) =
|[λ]|
q − 1

Resχλ.

Thus, ιSL is a left-inverse for Res, but unlike the previous section, these maps are not full inverses.

However, Res ◦ ιSL is clearly invertible, being a diagonal transformation of scf(SL).

Define the unit u : C→ scf(SL) to be the map c 7→ c · 1H0 , where 1H0 is the trivial character

of H0 = {1}.

Define the co-unit ε : scf(SL) → C as follows. If f ∈ scf(SL) decomposes as f =
∑

n≥0 fn,

where fn ∈ scf(Hn) for all n, then we may let

ε(f) = 〈f0,1H0〉.

Define a product on scf(SL) by linearly extending the following operation to arbitrary ele-

ments of scf(SL). If f ∈ scf(Hn) and g ∈ scf(Hm), then we set

mSL(f, g) = Res
Gn+m
Hn+m

(
Indf

Gn+m
Gn×Gm(f0 × g0)

)
, (5.24)

where f0 : Gn → C is the extension of f to Gn by zero, as in (5.2), and similarly for g0 : Gm → C.

If mGL denotes the product on cf(GL), then

mSL = Res ◦mGL ◦ ι⊗2
SL . (5.25)
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Define the coproduct by linearly extending the following rule: if f ∈ scf(Hn), then

∆SL(f) =
∑
i+j=n

Res
Gi×Gj
Hi×Hj

(
ResfGnGi×Gj (f

0)
)
. (5.26)

If ∆GL denotes the coproduct on cf(GL), then we can similarly form an equivalent definition of

∆SL:

∆SL = Res⊗2 ◦∆GL ◦ ιSL. (5.27)

5.2.3 Compatibility conditions

Proposition 5.6. With the maps defined above, scf(SL) forms a bialgebra isomorphic to a bi-

subalgebra of cf(GL).

Proof. Recall that ιSL is a left-inverse of Res|Im(ιSL) and that Res ◦ ιSL is invertible. Let ψ be the

inverse of that map. Hence, applying ιSL to (5.25), we obtain

ιSL ◦mSL = mGL ◦ ι⊗2
SL .

Similarly, applying ι⊗2
SL to (5.27) yields

ι⊗2
SL ◦∆SL = ∆GL ◦ ιSL.

Thus if τGL is the linear map on cf(GL)⊗2 which exchanges the order of factors in simple tensors

and τSL is the analogous map on scf(SL)⊗2, then we have

ι⊗2
SL ◦∆SL ◦mSL = ∆GL ◦mGL ◦ ι⊗2

SL

= m⊗2
GL ◦ (idGL ⊗ τGL ⊗ idGL) ◦∆⊗2

GL ◦ ι
⊗2
SL

= ι⊗2
SL ◦mSL ◦ (idSL ⊗ τSL ⊗ idSL) ◦∆⊗2

SL .

Therefore, applying ψ⊗2 ◦ Res⊗2 to this equation implies that ∆SL and mSL are compatible. The

remaining compatibility conditions follow by similar methods. �

Now, there is an isomorphism

⊗
f∈Φ

Sym(Xf ) −→
⊗
ϕ∈Θ

Sym(Yϕ)
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(cf. [SZ84]) which allows us to identify these two Hopf algebras as one and the same; call this Hopf

algebra SymGL.

Recall (cf. [Mac98, Chapter IV.4]) that there is an isomorphism

chGL :
⊕
n≥0

cf(Gn) −→ SymGL

given on conjugacy class identifiers by δµ 7→ P̃µ. Let chSL = chGL ◦ ιSL, and let SymSL denote the

image of scf(SL) under this map. We summarize these relationships with a commutative square of

bialgebras in (5.28).

cf(GL) SymGL

scf(SL) SymSL

chGL

chSL

ιSL (5.28)

5.2.4 Structure coefficients

As before, the Hopf isomorphism between scf(SL) and SymSL allows us to work entirely with

symmetric functions. Again, as before, the first natural question to ask is “What is a good basis

for SymSL?” Two natural bases for scf(SL) are the superclass identifier functions

{Res(δµ) : µ ∈ I, det(µ) = 1}

and the supercharacters

{Res(χλ) : λ ∈ J},

where J is a complete set of representatives for the parallel classes of functions λ ∈ J . We can

compute the images of these bases under chSL directly. By definition, we have

chSL(δµ) = P̃µ. (5.29)

for any µ ∈ I. Similarly, it follows by (5.23) that

chSL(Res(χλ)) =
1

q − 1

∑
λ̃‖λ

Sλ̃ (5.30)
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for any λ ∈ J . Thus, the analogous two bases for SymSL are the Hall–Littlewood functions

{P̃µ : µ ∈ I, det(µ) = 1}

and the averaged Schur basis {
1

q − 1

∑
λ̃‖λ

Sλ : λ ∈ J
}
.

Recall that Sλ =
∏
ϕ∈J sλ(ϕ)(Yϕ) and that SymGL =

⊗
ϕ∈J Sym(Yϕ). Thus the antipode of

SymGL acts componentwise as the antipode of Sym, and therefore5

SSymGL
(Sλ) = (−1)

∑
ϕ∈J |λ(ϕ)|Sλ′ ,

where λ′ is the componentwise transpose of λ, i.e., λ′(ϕ) = λ(ϕ)′ for all ϕ ∈ J .

Lemma 5.7. Let λ ∈ Θ. Then we have [λ′] = {µ′ : µ ∈ [λ]}.

Proof. Let τα be a parallel translation. Then we have

τα(λ′) = α ◦ λ′ = (α ◦ λ)′ = (τα(λ))′.

The result follows from this equation. �

By Lemma 5.7, we have that λ′ ‖ µ′ if and only if λ ‖ µ, and therefore (5.28) is a commutative

square of Hopf algebras.

We can calculate the structure coefficients for the product and coproduct in SymSL with

respect to the averaged Schur basis, using the analogous calculations of (5.14) and (5.15) in the

previous section. For any λ, µ, ν ∈ J , let

Cνλ,µ =
∏
ϕ∈Θ

c
ν(ϕ)
λ(ϕ),µ(ϕ),

so that in cf(Gn) (as a consequence of the isomorphism cf(Gn) ∼=
⊗

ϕ Sym(Yϕ)), we have structure

coefficients

mGL(χλ, χµ) =
∑
ν

Cνλ,µχ
ν

5 Capital S is used canonically in the literature for both Schur functions and antipodes of Hopf algebras. The
author would like to apologize for the excess of Ss in this equation and reassure the reader that it is an isolated
incident.
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and

∆GL(χν) =
∑
λ,µ

Cνλ,µχ
λ ⊗ χµ.

These coefficients, much like their classical counterparts, are well-behaved with respect to

parallelism.

Lemma 5.8. For any partition-valued functions λ, µ, ν ∈ J and any parallel translation τγ, we

have

C
τγν
τγλ,τγµ

= Cνλ,µ.

Proof. By direct calculation, we have

C
τγν
τγλ,τγµ

=
∏
ϕ∈Θ

c
τγν(ϕ)
τγλ(ϕ),τγµ(ϕ)

=
∏
ϕ∈Θ

c
ν(τγ(ϕ))
λ(τγ(ϕ)),µ(τγ(ϕ)).

By rearranging the factors in this product, we have

=
∏
ϕ∈Θ

c
ν(ϕ)
λ(ϕ),µ(ϕ)

= Cνλ,µ,

which completes the proof. �

Recall that parallel classes are orbits under the action of the cyclic group L1 = 〈α〉, which

has order q− 1. Let τ = τα be the parallel translation corresponding to α, so that for any index λ,

we have

[λ] = {τ iλ : i = 0, . . . , q − 2}

(note this set may not have size q − 1).

Proposition 5.9. The structure coefficients for multiplication in SymSL with respect to the averaged

Schur basis are(
1

q − 1

∑
λ̃‖λ

Sλ̃

)
·
(

1

q − 1

∑
µ̃‖µ

Sµ̃

)
=

1

q − 1

∑
ν∈J

(∑
λ̃‖λ
µ̃‖µ

Cν
λ̃,µ̃

)
1

q − 1

∑
ν̃‖ν

Sν̃ .
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for all λ, µ ∈ J .

Proof. Let λ, µ ∈ J . We calculate

mGL

(
(Resχλ)0, (Resχµ)0

)
=

1

(q − 1)2
mGL

(
IndResχλ, IndResχµ

)
=

1

(q − 1)2

∑
ν∈J
λ̃‖λ
µ̃‖µ

Cν
λ̃,µ̃
χν

=
1

(q − 1)2

∑
ν∈J

∑
ν̃‖ν
λ̃‖λ
µ̃‖µ

C ν̃
λ̃,µ̃
χν̃

=
1

(q − 1)2

∑
ν∈J

∑
i,j,k

Cτ
kν
τ iλ,τ jµχ

τkν ,

where i, j, and k index the parallel classes of λ, µ, and ν, respectively (and hence may not cover

the range 0, 1, . . . , q − 2). Exploiting symmetry, this equals

1

(q − 1)2

∑
ν∈J

∑
k

(∑
i,j

Cντ i−kλ,τ j−kµ

)
χτ

kν .

By reindexing the i and j to absorb k, it follows that the innermost sum is independent of k, hence

this is equal to

1

q − 1

∑
ν∈J

(∑
i,j

Cντ iλ,τ jµ

)
1

q − 1

∑
ν̃‖ν

χν̃

=
1

q − 1

∑
ν∈J

(∑
i,j

Cντ iλ,τ jµ

)
(Resχν)0,

and the calculation is complete. �

Proposition 5.10. The structure coefficients for comultiplication in SymSL with respect to the

averaged Schur basis are

∆

(
1

q − 1

∑
ν̃‖ν

Sν̃

)
=
∑
λ,µ∈J

( ∑
ν̃‖ν

`=0,...,q−2

C ν̃λ,τ`µ

)(
1

q − 1

∑
λ̃‖λ

Sλ̃

)
⊗
(

1

q − 1

∑
µ̃‖µ

Sµ̃

)
.

for all ν ∈ J .
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Proof. Let ν ∈ J . Then we have

∆GL

(
Res(χν)0

)
= ∆GL

(
1

q − 1

∑
ν̃‖ν

χν̃
)

=
1

q − 1

∑
ν̃‖ν

∑
λ,µ

C ν̃λ,µχ
λ ⊗ χµ.

=
1

q − 1

∑
λ,µ∈J

∑
i,j,k

Cτ
kν
τ iλ,τ jµχ

τ iλ ⊗ χτ jµ.

Now, overcount the Littlewood–Richardson coefficient products by introducing another index vari-

able `:

=
1

(q − 1)2

∑
λ,µ∈J

∑
i,j,k

`=0,...,q−2

Cτ
kν
τ iλ,τ j+`µχ

τ iλ ⊗ χτ jµ

=
1

(q − 1)2

∑
λ,µ∈J

∑
i

( ∑
j,k

`=0,...,q−2

Cτ
k−iν
λ,τ j+`−iµ

)
χτ

iλ ⊗ χτ jµ.

By re-indexing the variables ` and k to absorb i, it follows that the innermost sum is independent

of i, hence we can rewrite the above expression as follows.

=
1

(q − 1)2

∑
λ,µ∈J

∑
j

( ∑
k

`=0,...,q−2

Cτ
kν
λ,τ j+`µ

)(∑
i

χτ
iλ
)
⊗ χτ jµ.

Now, we can similarly re-index ` to absorb j and rearrange the expression into the following form.

=
1

(q − 1)2

∑
λ,µ∈J

∑
k

`=0,...,q−2

Cτ
kν
λ,τ`µ

(∑
i

χτ
iλ
)
⊗
(∑

j

χτ
jµ
)

=
∑
λ,µ∈J

( ∑
k

`=0,...,q−2

Cτ
kν
λ,τ j+`µ

)
Res(χλ)0 ⊗ Res(χµ)0.

�

5.2.4.1 PSH-algebras

We pause now to discuss these constructions in the context of Zelevinsky’s theory of PSH-

algebras (see [Zel06] for a thorough reference). A Hopf algebra is called positive if it is spanned
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by a distinguished basis of homogeneous elements known as irreducible elements, and in such a

way that all of the Hopf maps take positive elements (i.e., nonnegative Z-linear combinations of

irreducible elements) to positive elements. A PSH-algebra is defined to be a Hopf algebra which

is connected, positive, and self-adjoint. The following structure theorem classifies PSH-algebras.

Theorem 5.11. [Zel06, Chapter I.2ff] Let H be a PSH-algebra. If H has only one primitive

irreducible elemtent, say x, then H = C[x], and therefore H is isomorphic to Sym as a Hopf

algebra. Otherwise, H decomposes as a tensor product

H =
⊗
α∈A

Hα,

where A is the set of irreducible primitive elements in H and each Hα is a PSH-algebra with only

one irreducible primitive element, namely α.

Both Alt and SymSL are positive and connected: the averaged Schur functions {1
2(sλ +

sλ′ : λ ∈ I} serve as a basis of irreducible elements for Alt, while the averaged Schur functions

{ 1
q−1

∑
λ̃‖λ Sλ : λ ∈ J} do so for SymSL. The next result proves that Alt is not self-adjoint.

By (5.14) and (5.15), it follows that Alt is not self-adjoint, and therefore not a PSH-algebra.

In particular,

〈xy, z〉 =
1

2
〈x⊗ y, z〉

holds for all x, y, z ∈ Alt. Since Alt is a proper subalgebra of Sym, it is perhaps unsurprising that

Alt fails to be a PSH-algebra itself.

It is not immediate whether SymSL is self-adjoint; compare Propositions 5.9 and 5.10, which

give expressions for the structure coefficients of multiplication and comultiplication in SymSL. It is

our belief that in a manner analogous to Alt, SymSL at best fails to be self-adjoint by a constant

multiple of 1/(q − 1).
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5.2.5 Co-commutativity and combinatorial Hopf algebras

Recall the algebra morphism ζSym : Sym → C, which is defined in (5.16). By the co-

commutativity of Sym, it follows that for all λ, µ, ν ∈ J ,

Cνµ,λ = Cνλ,µ.

Therefore, SymGL, and consequently also SymSL, is co-commutative. Furthermore, these Hopf

algebras are graded and connected by construction. Thus for any algebra morphism ζGL : SymGL →

C (respectively ζGL : SymGL → C), we obtain a unique Hopf algebra morphism ψζGL
: SymGL →

Sym such that ζGL = ζSym ◦ψζGL
(respectively a Hopf algebra morphism ψζSL : SymSL → Sym such

that ζSL = ζSym ◦ ψζSL).

Let ζGL : cf(GL) → C be defined by linearly extending the following operation to arbitrary

elements of cf(GL). If f ∈ cf(Gn), then we set

ζGL(f) = 〈f,1Gn〉Gn . (5.31)

Then ζGL is a linear map. For f ∈ cf(Gn) and g ∈ cf(Gm), we have

ζGL(mGL(f, g)) = 〈Indf
Gn+m
Gn×Gm(f × g),1Gn+m〉Gn+m

= 〈f × g,Resf
Gn+m
Gn×Gm(1Gn+m)〉Gn×Gm

= 〈f × g,1Gn × 1Gm〉Gn×Gm

= 〈f,1Gn〉Gn〈g,1Gm〉Gm

= ζGL(f)ζGL(g).

Therefore, ζGL is an algebra map.

For each n, let αn ∈ J be the element of J such that χαn = 1Gn . Then αn is given by the

formula

αn(ϕ) =

(1n) : ϕ = {1M1}

() : otherwise

.
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Lemma 5.12. Let λ ∈ J have size ‖λ‖ = n and let µ = (µ1, . . . , µk) ∈P have size |µ| = n. Then

Cλαµ1 ,...,αµk
= cλ

(1)

(1µ1 ),...,(1µk )

= K(λ(1))′,µ,

where λ(1) is shorthand for λ({1M1}).

Proof. The first identity follows from the application of the formula for αµi to the equation

Cλαm1 ,...,αµk
=
∏
ϕ∈Θ

c
λ(ϕ)
αµ1 (ϕ),...,αµk (ϕ).

The second identity can be more generally stated as

cλ(1µ1 ),...,(1µk ) = Kλ′,µ.

The right hand side of the above equation is, by definition, equal to the number of semi-standard

(i.e., column-strict) Young tableaux of shape λ′ and weight µ. This is equal to the number of

row-strict Young tableaux of shape λ and weight µ. By co-commutativity, the left hand side of the

above equation expands as

cλ(1µ1 ),...,(1µk ) =
∑

ν1,...,νk−1

cλνk−1,(1
µk )c

νk−1

νk−2,(1
µk−1 )

· · · cν1(1µ1 ),(1µ2 ).

By the Pieri formula, each Littlewood–Richardson coefficient cνiνi−1,(1µi )
(where ν0 = (1µ1) and

νk = λ) is equal to the number of ways of building the partition νi from νi−1 by adding µi boxes,

no two in the same row. Hence, their product is equal to the number of ways of assembling λ by

first adding µ2 boxes to (1µ1), then µ3 boxes, and so on, at each step adding no more than one box

in each row. By keeping track of the step at which boxes are added, we observe that this product is

equal to the number of row-strict Young tableaux of shape λ and weight µ. Therefore, the identity

is proven. �

Then we can define the analogous character ζSymGL
: SymGL → C as follows. For all λ ∈ J

with ‖λ‖ = n,

ζSymGL
(Sλ) =

1 : λ = αn

0 : otherwise

. (5.32)
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In [ABS06], the authors provide a constructive proof that Sym is the terminal co-commutative

CHA (see Theorem 5.2 above for their formula). Let Sym(Y(1)) be the subalgebra of SymGL spanned

by the Sλ for those λ : Θ→P which are identically equal to the zero partition except at the orbit

{1M1} (cf. (5.21)).

Proposition 5.13. The map ψSymGL
: SymGL → Sym induced by the character ζSymGL

: SymGL →

C defined in (5.32) is given by the formula

ψSymGL
(Sλ) =

s(λ(1))′ : Sλ ∈ Sym(Y(1))

0 : otherwise

. (5.33)

Proof. Let λ ∈ J and write ‖λ‖ = n. With ζSymGL
defined as in (5.32), it follows that for any

integer partition µ = (µ1, . . . , µk) ∈P of size |µ| = n,

ζµ(Sλ) = ζ⊗kSymGL

((
∆(k−1)χλ

)
µ1,...,µk

)
= ζ⊗kSymGL

( ∑
ν1,...,νk∈J
‖νi‖=µi

Cλν1,...,νkSν1 ⊗ · · · ⊗ Sνk
)

= Cλαµ1 ,...,αµk

= K(λ(1))′,µ.

Therefore, by Lemma 5.12,

ψSymGL
(Sλ) =

∑
µ∈P
|µ|=n

ζµ(Sλ)mµ =
∑
µ∈P
|µ|=n

K(λ(1))′,µmµ.

A property of Kostka numbers is that for any pair of partitions ν and µ, the Kostka number Kν,µ is

zero if |ν| 6= |µ| (see [Mac98, Chapter I, (6.5)]. Thus, the above equation is nonzero only if |λ(1)| = n.

Since we know a priori that ‖λ‖ = n, it follows that |λ(1)| = n if and only if Sλ ∈ Sym(Y(1)). Hence

the above equation is zero for Sλ /∈ Sym(Y(1)). Now suppose ‖λ‖ = n and |λ(1)| = n. Then using

the known change of basis from the Schur functions to the monomial functions, we have

ψSymGL
(Sλ) =

∑
µ∈P
|µ|=n

K(λ(1))′,µmµ = s(λ(1))′ ,

and this completes the proof. �
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[VLA03] Antonio Vera-López and J. M. Arregi. Conjugacy classes in unitriangular matrices.
Linear Algebra and its Applications, 370:85–124, 2003.

[Wie64] Helmut Wielandt. Finite permutation groups. Translated from the German by R.
Bercov. Academic Press, New York-London, 1964.



123

[Wyn17] Casey Wynn. Supercharacter theories of Camina pairs. PhD thesis, Kent State Univer-
sity, 2017.

[Yan01] Ning Yan. Representation theory of the finite unipotent linear groups. PhD thesis,
University of Pennsylvania, 2001.

[Zel06] A.V. Zelevinsky. Representations of Finite Classical Groups: A Hopf Algebra Approach.
Lecture Notes in Mathematics. Springer Berlin Heidelberg, 2006.



List of Symbols

Chapter 2

Cl(G) the set of conjugacy classes of G, page 9

cf(G) the algebra of class functions on G, page 9

δK indicator function of the set K, page 9

σX Wedderburn sum of X, page 13

|S| size (dimension) of the supercharacter theory S, page 14

SCT(G) the set of all supercharacter theories of G, page 14

K(S) the superclass partition of S, page 14

X (S) the supercharacter partition of S, page 14

1G the trivial character of G, page 14

m(G) the finest supercharacter theory of G, page 14

M(G) the coarsest supercharacter theory of G, page 14

scfS(G) the algebra of S-superclass functions on G, page 15

SN S restricted to N , page 16

SG/N S deflated to G/N , page 17



125

S × T direct product of S and T , page 17

S ∗N T the ∗-product of S and T , page 18

MMN (G) M(N) ∗N M(G/N), page 18

mmN (G) mG(N) ∗N m(G/N), page 18

S ∆ T the ∆-product of S and T , page 18

P the set of all integer partitions, page 25

Sym the Hopf algebra of symmetric functions, page 26

cνλ,µ Littlewood–Richardson coefficient, page 28

Chapter 3

≤ refinement partial order of supercharacter theories, page 30

S ∨ T join of supercharacter theories, page 30

S ∧ T meet of supercharacter theories, page 31

ζn e2πi/n, page 35

mA(G) minimal A-invariant supercharacter theory of G, page 36

AutSCT(G) automorphic supercharacter theories, page 36

GalSCT(G) Galois supercharacter theories, page 36

CharSCT(G) the set of characteristic supercharacter theories, page 39

InvSCTA(G) A-invariant supercharacter theories of G, page 42

Zn cyclic group of order n, page 43

Chapter 4



126

〈r〉 subgroup of rotations of D2n, page 54

〈s〉 subgroup of reflections of D2n, page 54

λ linear character of D2n whose kernel is 〈r〉, page 54

χ` nonlinear irreducible character of D2n, page 54

µi linear character of D2n whose kernel is 〈r2〉, page 54

χn
2

µ0 + µ1, page 54

P sublattice of SCT(D2n) of ∗-products over 〈r〉, page 54

Sd
(
mD2n(〈rd〉) ∗〈rd〉M(〈r〉/〈rd〉)

)
∗〈r〉M(D2n/〈r〉), page 58

Q the upper ideal of P generated by Sp for prime p, page 60

R the subposet of P of supercharacter theories with χn
2

as a super-

character, page 60

ϕ gluing map on SCT(D2n), page 60

ψ splitting map on CharSCT(D2n), page 60

S subposet of supercharacter theories of D2n that glue reflections and

respect parity, page 62

mM〈rd〉(D2n) mD2n(〈rd〉) ∗〈rd〉M(D2n/〈rd〉), page 64

Pd [mM〈rd〉(D2n),MM〈rd〉(D2n)], page 72

SD(n, p, a) G = 〈x〉o 〈y〉 = Zn o Zp with action given by x 7→ xa, page 80

ξ` the irreducible characters of 〈x〉, page 80

ψm the irreducible characters of 〈y〉, page 80



127

c gcd(n, a− 1), page 81

mMN (G) mG(N) ∗N M(G/N), page 90

Chapter 5

scf(A) the Hopf algebra of alternating group superclass functions, page 97

cf(S) the Hopf algebra of symmetric group class functions, page 97

Alt the alternating group symmetric functions, page 97

Res : cf(S)→ scf(A) the restriction Hopf map, page 97

δλ ∈ cf(Sn) the identifier function for elements of cycle-type λ, page 97

sgn the sign homomorphism Sn → Z2, page 97

ιA inclusion scf(A)→ cf(S), page 98

λ′ transpose of λ, page 98

chS : cf(S)→ Sym characteristic map, page 100

zλ
∏
i i
mi(λ)λi!, page 100

mi(λ) multiplicity of i in λ, page 100

chA characteristic map, page 100

cf(G) the Hopf algebra of GLn(Fq)-class functions, page 105

scf(H) the Hopf algebra of SLn(Fq) superclass functions, page 105

M F×q , page 105

F : M →M Frobenius endomorphism, page 105

Φ F -orbits in M , page 105



128

Mn F×qn = MFn , page 106

Ln Hom(Mn,C×), page 106

L lim
⇁

Ln, page 106

Nn,m : Mn →Mm norm map, page 106

Θ the set of F -orbits in L, page 106

[λ] the parallel class of λ, page 107

ιSL the inclusion scfSL → cfGL, page 108

SymGL the Hopf algebra of GLn symmetric functions, page 111

chGL : cf(GL)→ SymGL characteristic map, page 111

SymSL the Hopf algebra of SLn symmetric functions, page 111

Cνλ,µ
∏
ϕ∈Θ c

ν(ϕ)
λ(ϕ),µ(ϕ), page 112


