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Grimes, Matthew (Ph.D., Mathematics)

Relative Moduli of Vector Bundles and the Log-Minimal Model Program on Mg

Thesis directed by Associate Professor Sebastian Casalaina-Martin

Recent work on the log-minimal model program for the moduli space of curves, as well as past

results of Caporaso, Pandharipande, and Simpson motivate an investigation of compactifications of

the universal moduli space of slope semi-stable vector bundles over moduli spaces of curves arising

in the Hassett–Keel program. Our main result is the construction of a compactification of the

universal moduli space of vector bundles over several of these moduli spaces, along with a complete

description in the case of pseudo-stable curves.
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Chapter 1

Introduction

Moduli spaces of vector bundles over smooth curves have long been a subject of interest in

algebraic geometry. Recall that due to the work of Mumford, Newstead, and Seshadri there is a

projective moduli space Ue,r(C) of slope semi-stable vector bundles of degree e and rank r over any

fixed complex projective curve C. The result has since been generalized to other settings by many

others. In particular, in [21], Simpson constructed a relative moduli space of slope semi-stable

sheaves on families of polarized projective schemes.

As a consequence of Simpson’s result, there is a relative moduli space of slope semi-stable

vector bundles for the universal curve C◦g →M◦g over the moduli space of smooth, automorphism-

free curves, polarized by the relative canonical bundle (for g ≥ 2). Though the coarse moduli

space of Deligne–Mumford stable curves, Mg, does not admit a universal curve, it is natural to

ask whether there is a moduli space of slope semi-stable bundles over Mg that compactifies the

universal moduli space over the space of automorphism-free curves. Caporaso and Pandharipande

affirmatively answered this question in the case r = 1 and for general rank respectively in [5, 17].

Precisely, in [17], Pandharipande constructed a relative moduli space for g ≥ 2

U e,r,g →Mg

parametrizing slope semi-stable torsion-free sheaves of uniform rank r and degree e, with a dense

open subset that can be identified with the uniform rank locus in Simpson’s moduli space.

More recently, with the aim of providing a modular interpretation for the canonical model of

the moduli space of curves, there has been interest in understanding alternate modular compactifi-
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cations of the moduli space of curves. The Hassett–Keel program outlines a principle for applying

the log-minimal model program to the moduli space of genus g curves to obtain a modular inter-

pretation of the canonical model by studying spaces of the form

Mg(α) := Proj

(⊕
n

H0(Mg, n(KMg
+ α∆))

)
,

where ∆ is the boundary divisor in Mg and α ∈ [0, 1]∩Q. One has Mg(1) = Mg and Mg(0) equal

to the canonical model of Mg for g � 0 ([11, 7, 9]). We direct the reader as well to [10, 15] for

more details.

The first steps in the program have been worked out in [13, 14, 2]. In particular, Hassett and

Hyeon showed ([13]) that the first birational modification occurs at α = 9/11 and is a divisorial

contraction to the space

Mg(9/11) ∼= M
ps
g ,

where M
ps
g is Schubert’s moduli space of pseudo-stable curves (see [18]). Recall that M

ps
g is a

coarse moduli space for the moduli functor of pseudo-stable curves (see Section 3.1 for a precise

definition). The contraction essentially replaces elliptic tails with cusps. Recall that, as seen in

[12], the moduli space M
ps
2 contains a GIT semi-stable point.

Given α and a modular interpretation of Mg(α), it is natural to ask if there exists a com-

pactified universal moduli space of slope semi-stable sheaves

U e,r,g(α)→Mg(α).

This does not follow immediately from Simpson’s construction. For instance, though M◦g ⊂ M
ps
g ,

there is no universal curve over M
ps
g . The answer for 7/10 < α ≤ 9/11 is a corollary to our main

theorem, proved in §3.

Theorem 1.1. For all α ∈ Q∩(2/3, 1], e, r ≥ 1 and g ≥ 3, there exists a projective variety U e,r,g(α)
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with a canonical projection π : U e,r,g(α)→Mg(α) such that the diagram

Ue,r(C
◦
g/M

◦
g ) �
�

//

��

U e,r,g(α)

π

��

M◦g
� � //Mg(α)

is cartesian and the top row is a compactification of Ue,r(C
◦
g/M

◦
g ), the moduli space obtained by

applying Simpson’s construction to the universal curve C◦g → M◦g . Over the GIT stable points of

Mg(α), the points of U e,r,g(α) correspond to aut-equivalence classes of slope semi-stable torsion-

free sheaves of rank r and degree e. Moreover, the fiber of π over any GIT stable [C] ∈ Mg(α) is

isomorphic to Ue,r(C)/Aut(C).

Corollary 1.2. For all e, r ≥ 1, g ≥ 3, and α > 7/10, the points of U e,r,g(α) correspond to

aut-equivalence classes of slope semi-stable torsion-free sheaves of rank r and degree e. Moreover,

the fiber of π over [C] ∈Mg(α) is isomorphic to Ue,r(C)/Aut(C). Finally, U e,r,g(α) co-represents

Ue,r,g(α).

We note that the case r = 1 was established in [4] using a different approach more in line

with that of [5].

Remark 1.1. Over any moduli stack of curves,M, there is always an Artin stack U of slope semi-

stable torsion-free sheaves. The above theorem can be framed as demonstrating that for certain

M, U admits a good moduli space U with an ample line bundle.

Alternatively, one can also form an intermediate stack by applying Simpson’s construction:

to any family of curves C → S, USimp(C/S) is defined to be U(C/S).

Because Simpson’s construction is canonical, USimp forms a stack, relatively projective over

M. In particular, if M is Deligne–Mumford, so is USimp, and therefore it admits a good moduli

space which will also be a good moduli space for U .

It is not immediately obvious that the good moduli space is projective, but in a discussion

with the author, Alexeev observed that again beccause Simpson’s construction is canonical and
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the good moduli space is relatively projective locally, the relative polarizations glue and the good

moduli space is projective.

The assumption that M is Deligne–Mumford is critical for this construction, and the GIT

construction presented here applies in greater generality.

We will consider weakening the Deligne–Mumford condition in the base in future work.

We now outline the paper and our strategy for proving the result. For concreteness, our

outline is for the case of pseudo-stable curves. Because Mg(α) is a GIT quotient of a Hilbert or

Chow scheme for α > 2/3 ([14]), the same argument goes through more or less immediately.

First, we observe that for a given degree e, twisting the sheaves under consideration by an

ample line bundle forms an isomorphism with the same moduli problem for some higher degree; in

other words, it suffices to assume e is large (see Remark 3.4 for details). For g ≥ 3, let Hg denote

the appropriate locus in the Hilbert scheme corresponding to 4-canonically embedded pseudo-stable

curves, with universal curve UH ⊂ Hg × PN . Let ν : UH → Pn denote the projection map. A given

rank r and degree e uniquely determine a Hilbert polynomial, Φ(t). To streamline notation, let

n = Φ(0). We define π : Qr → Hg to be the locus in a relative Quot scheme parametrizing sheaves

of uniform rank r. A point ξ ∈ Qr corresponds to an equivalence class of the following data:

a point of Hg corresponding to a curve C; a presentation of sheaves Cn ⊗ OC → E → 0 such

that the Hilbert polynomial of E with respect to ω⊗4
C is Φ and E is of uniform rank. The groups

SLN+1 and SLn act naturally on Qr by changing the coordinates of the curve’s embedding and

the presentation of the sheaf, respectively. For any k, we have an SLN+1 × SLn-linearized ample

line bundle Lk := π∗OHg(k)⊗OQuot(1) on Qr. We may therefore define

U
ps
e,r,g,k := Qr//LkSLN+1 × SLn.

A standard variation of GIT argument (see Propositions 2.1 and 2.2 in Section 2.3) tells us

that when k � 0, the GIT (semi-)stability of a point of Qr is entirely determined by the (semi-

)stability with respect to the action of SLn. In fact, this is the same as the GIT (semi-)stability of

the point with respect to the action of SLn on the fiber Quot
Φ,ω⊗4

C
Cn⊗OC ,C

, linearized by the restriction
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of OQuot(1). It is well-known (e.g., [21]) that when the linearization on the fiber has sufficiently high

degree, GIT (semi-)stability is equivalent to slope (semi-)stability. However, we require a bound

on the linearization which holds independent of the curve under consideration, or in other words,

for every fiber of UH → Hg simultaneously.

Theorem 5.1 provides such a bound by establishing the existence of an SLN+1×SLn-linearized

ample line bundle OQuot(1) for which fiberwise GIT (semi-)stability is equivalent to slope (semi-

)stability. This completes the proof of the main result (Theorem 1.1).

This fiberwise result (Theorem 5.1) is similar to Simpson’s result, but differs in two impor-

tant ways. In [21], Simpson constructed a compactification of the moduli space of slope semi-stable

vector bundles for any projective (possibly singular) curve C. His construction utilizes an asymp-

totic description of the GIT stability of sheaves. Specifically, he studies the component Q of the

Quot scheme containing slope semi-stable, rank r, torsion-free sheaves of degree d on C. Studying

a very ample linearization OQ(1), he proves that for N � 0, GIT (semi-)stability with respect to

OQ(N) is equivalent to slope (semi-)stability. Our results differ in that we restrict attention to

the component Qr of Q containing sheaves of uniform rank r. We moreover assume that C is

Gorenstein and provide specific bounds for N , depending only on d, g, r, and the singularities of

C.

Our results are also closely related to work of Pandharipande, who established the result

for nodal curves in [17]. Our argument closely follows his, but differs in two ways. With an eye

towards future generalization, we construct the moduli of vector bundles over a fixed Gorenstein

curve C using an arbitrary polarization of the curve. In the construction of the compactified

universal moduli space, the curves we consider are pseudo-stable or more generally α-stable. This

complicates certain bounds and is dealt with mostly in Section 2.2.

Moving forward, we would like to construct analogous moduli spaces over each of the Hassett–

Keel moduli spaces and complete the point classification for α ≤ 7/10. At the time of writing, the

latest results due to [2] include a classification up to α = 2/3− ε. One of the first obstructions to

applying the same techniques to classify the points is the existence of strictly semi-stable curves
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in Mg(α) for α ≤ 7/10. Additionally, most of the techniques in this paper require the assumption

that the curves are all reduced. Recent work by Chen and Kass ([6]) has hinted at a way forward

which we are actively pursuing. Finally, the above result demonstrates that U
ps
e,r,g is a “good moduli

space,” in the sense of [1], for the Artin stack, [QSS//G]. This approach to the problem is considered

in greater detail in forthcoming work of the author.

Now we briefly outline the structure of the paper. We establish notation and recall various

standard results in section §2. In section §3, we precisely state the moduli problem of interest,

we perform the construction of the compactified universal moduli space in detail, and demonstrate

that the constructed space co-represents the moduli functor. Section §5 contains the details of the

fiberwise problem, i.e., the construction of U e,r(C) for a fixed curve C. This section contains the

specifics of the construction of the uniform bounds so essential in section §3.2.



Chapter 2

Preliminaries

2.1 Notations and Conventions

Here we fix notation and recall standard useful results which we will use later.

Notation 2.1 (Curve). A curve is a proper connected one-dimensional scheme over the complex

numbers. The genus of a curve C will refer to the arithmetic genus of C, h1(C,OC).

Definition 2.2. For a reduced curve C, the class of singularity types of C is defined to be

T = T (C) := {[ÔC,x] : x ∈ C},

where [ÔC,x] denotes the isomorphism class of the completed local ring ÔC,x. We say two curves

C and C ′ have the same class of singularity types if T (C) = T (C ′). Given a set T of

isomorphism classes of complete local rings, we say that a curve has at worst singularities of

type T if T (C) ⊂ T .

Remark 2.3. As there are only a finite number of singular points in a given reduced curve, and

the complete local ring on a smooth point is the completion of a polynomial ring, there are only

a finite number of isomorphism classes of rings in T (C). This definition is related to the common

definition of singularity type of a curve, but does not keep track of the count of each singularity

type. For example, all singular nodal curves have the same class of singularity types.

Recall the following version of asymptotic Riemann–Roch.
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Lemma 2.1 ([20, Corollary 8, p. 152]). Let (C,L) be a polarized curve with degL = d. For the

irreducible components of C, {Ci}, denote by Li the restriction L|Ci. Let di = degLi. Then for

any coherent sheaf F , we have

χ(F ⊗ Lt) = χ(F ) + t
∑
i

ridi,

where ri := dimk(ηi) F |Ci ⊗ k(ηi) and ηi is the generic point of Ci.

Motivated by this lemma, one makes the following definition of rank and degree of a sheaf

on a curve.

Definition 2.4 (Rank and Degree). Let (C,L) be a polarized curve of genus g with degL = d and

let F be a coherent sheaf on C. If Φ(t) = χ(F ⊗Lt), the rank and degree of F with respect to

L are defined so that

Φ(t) = degL F + rankL Fχ(OC) + t rankL F degL

holds.

It follows that if C is irreducible the generic rank agrees with rankL. In this case, neither

rankL nor degL depend on L.

Definition 2.5. A sheaf F on C is said to be of uniform rank if there exists a number r such that

for every component Ci of C, rankF |Ci = r.

Remark 2.6. If F is of uniform rank, then rankL F and degL F are both integers and are inde-

pendent of L. Indeed, this follows from Lemma 2.1 because
∑
ridi = rd.

Remark 2.7. In particular, because di > 0 for every i, ri ≤ rd. We will make use of this fact later

in the paper.

We will make extensive use of the fact that, for a coherent sheaf F of uniform rank and a

line bundle M , we have

rankL(F ⊗M) = rankL F, degL(F ⊗M) = degL(F ) + rankL(F ) deg(M).
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A coherent sheaf F on C is said to be pure if for every non-zero subsheaf F ′ ⊂ F , the

dimension of the support of F ′ is equal to the dimension of the support of F . A coherent sheaf F

on C is said to be torsion-free if it is pure and the support of F is equal to C.

Definition 2.8. Let (C,L) be a polarized curve and F a torsion-free sheaf on C. F is said to be

slope stable (slope semi-stable) with respect to L if for every nonzero, proper subsheaf 0→ E → F ,

χ(E)∑
sidi

< (≤)
χ(F )∑
ridi

,

where si and ri denote the ranks of E and F on each irreducible component of C, and di is the

degree of L restricted to each irreducible component.

Remark 2.9. If (C,L) is a polarized nonsingular curve and F is a vector bundle on C, then

F is slope-stable (slope-semistable) with respect to L if and only if for each nonzero subsheaf

0→ E → F ,

deg(E)

rank(E)
< (≤)

deg(F )

rank(F )
.

We caution the reader that if C is reducible, then even if we restrict to sheaves of uniform rank

so that rankL and degL do not depend on L, the slope stability condition of Definition 2.8 does in

general depend on L, because E is not required to be of uniform rank.

2.2 Sheaves on Singular Curves

We will make use of several results from [20], which we include here for convenience. For the

following results, let r > 0 be an integer, and Y an irreducible projective curve over C. Let x ∈ Y

be a point and ν : Y ν → Y the normalization of Y . Let x1, . . . , xp be the points of Y ν over x. Let

OY,x be the integral closure of OY,x.

We are interested in the interaction of singularities on a curve with sheaves on the curve.

The following lemma allows us to bound the dimension of certain quotients in terms of analytic

invariants of the curve in question.
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Lemma 2.2 ([20, Lemma 7, p. 150]). Let x be a point of an irreducible curve Y . Let M be an

OY,x-module, torsion-free of rank r. Then

dimC(M/mxM) ≤ (1 + dimCOY,x/OY,x) · r.

The statement and proof of Lemma 2.2 assume Y is irreducible. We have the following bound

for reducible Y .

Corollary 2.3. Suppose (Y,L) is a polarized projective curve with degL = d. Let F be a coherent

OY -module of multirank (r1, . . . , rp). Then for any y ∈ Y ,

dimC (Fy/myFy) ≤ dδmax
i

(ri), (2.1)

where

δ = max
A∈T (Y )

(1 + dimCA/A).

Proof. This follows by bounding the restriction of F to each component of Y ([20, p. 152]) and

observing that d is greater than the number of irreducible components of Y . Indeed, from [20,

p. 152], we have the claim

dimC (Fy/myFy) ≤
∑

rlδl,

where the summation is over the components of the normalization containing y. By rl, we denote

the rank of the stalk of F|Yl,y, and δl is the bound of Lemma 2.2. Thus we arrive at the claimed

bound by taking the maximum over l of rl and δl and observing that the number of irreducible

components must be at most d.

2.3 Variation of GIT for quotients of products

In this section, we study the properties of quotients of products. Let G and H be reductive

groups. Let (X,LX) and (Y,LY ) be polarized schemes with linearized actions of G on both X and

Y , and of H on Y . Assume that the actions of G and H commute on Y . Then we have an induced

action of G×H on the product X × Y given by

(g, h) · (x, y) = (g · x, g · (h · y)).
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Moreover, we have many linearizations on X × Y corresponding to

L⊗aX � L⊗bY := π∗XL
⊗a
X ⊗ π

∗
Y L
⊗b
Y

for all (a, b) ∈ Z2
>0.

With several group actions under consideration, we fix some notation: the superscripts S and

SS will indicate stability and semi-stability with respect to the product action of G×H. Stability

and semi-stability for G alone will be indicated by superscripts SG and SSG, and similarly for H

alone. We will also refer to the (semi-)stable locus in X with respect to G as X(S)SG .

Our plan, following [17], is to shift the weight of the polarization almost entirely to X. This,

we will show, reduces the stability condition for G×H on X × Y to the stability condition for H

on Y . The following key propositions, understood in the context of variation of GIT, makes this

precise:

Proposition 2.1. Let πX : X × Y → X be the natural projection map. Then for a/b � 0, we

have, with respect to the linearization L⊗aX � L⊗bY on X × Y ,

π−1
X (XSG) ⊂ (X × Y )SG

[a,b] ⊂ (X × Y )SSG

[a,b] ⊂ π
−1
X (XSSG).

Proof. This is a standard result in variation of GIT; see e.g. [22, Lemma 4.1]. This particular

formulation is equivalent to Propositions 7.1.1 and 7.1.2 in [17].

Proposition 2.2 ([17, Prop. 8.2.1]). Let Q ⊂ π−1
X (XSG) be a closed subscheme. Then for a, b as

in Proposition 2.1, we have

QSH

[a,b] = QS[a,b] and QSSH

[a,b] = QSS[a,b].

Proof. We sketch a variation of GIT argument here. An explicit proof in coordinates can also be

found in [17, Prop. 8.2.1]. We only prove the statement for stable loci; the semi-stable case is

identical.

To begin, certainly, QS[a,b] ⊂ QSH

[a,b], so it suffices to demonstrate the opposite inclusion. For

this, let λ be a one-parameter subgroup of G×H, with components λG and λH . Let µ denote the
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Hilbert–Mumford index and fix (x, y) ∈ QSH

[a,b]. From local arguments, we have

µL
a
X�Lb

Y ((x, y), λ) = aµLX (x, λG) + bµLY (y, λG) + bµLY (y, λH). (2.2)

From the first inclusion of Proposition 2.1, and the assumption that Q ⊂ π−1
X (XSG), it follows that

for λG 6= 1 the sum of the first two terms on the right-hand side of (2.2) is negative. If λG = 1, the

first two terms sum to 0. From the assumption that (x, y) ∈ QSH

[a,b], it follows that the last term is

also negative. Therefore, (x, y) ∈ QS[a,b].



Chapter 3

Construction of U e,r,g(α)

In this chapter, we construct the compactified universal moduli space as a GIT quotient.

First, in §3.1 we state the moduli problem. The GIT construction takes place in §3.2, and then

we prove that the GIT quotient co-represents the moduli functor over the locus of stable curves in

§3.3.

3.1 The moduli problem

Here, we describe the moduli functor of sheaves we wish to study. Throughout, we assume

that g ≥ 2. The notion of α-stability is developed in [2] to describe the various stability conditions

that arise in the Hassett–Keel program. Defined for 2/3 − ε < α ≤ 1, α-stable curves are, in

particular, reduced curves with at worst type A4 singularities. We refer the reader to [2, Def. 2.5] for

the complete definition of α-stability. For α ∈ (7/10, 9/11], the reader may also refer to Definition

4.1.

Definition 3.1. Let e, r, and g be integers such that r ≥ 1 and g ≥ 2. Let α ∈ (2/3, 1] ∩Q. The

functor Ue,r,g(α) associates to each scheme S the following set of equivalence classes of data:

• A family of genus g α-stable curves µ : C → S; i.e., a flat proper morphism such that every

geometric fiber is an α-stable curve of genus g

• A coherent sheaf F on C, flat over S, such that on geometric fibers F is slope-semistable,

torsion-free of uniform rank r and degree e.
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Two pairs (µ : C → S,F) and (µ′ : C′ → S,F ′), are equivalent if there exists an S-isomorphism

φ : C → C′ and a line bundle L on S such that F ∼= φ∗F ′ ⊗ µ∗L.

Remark 3.2. Recall that for α > 2/3 − ε, M̄g(α) admits a good moduli space, Mg(α). For

α > 7/10, Mg(α) is in fact a coarse moduli space. For 7/10 < α ≤ 9/11, Mg(α) is isomorphic to

M
ps
g , Schubert’s moduli space of pseudo-stable curves. There is a divisorial contraction of coarse

moduli spaces Mg →M
ps
g sending Deligne–Mumford stable curves with an elliptic tail to cuspidal

curves ([13]).

We will also require the so-called “fiberwise” moduli functor.

Definition 3.3. Let (C,L) be any polarized curve. The functor Ue,r(C) associates to each scheme

S the set of equivalence classes (in the sense of Def. 3.1) of sheaves F on S × C, flat over S, such

that for each s ∈ S, Fs is slope semi-stable and torsion-free of uniform rank r and degree e.

Remark 3.4. There is an isomorphism of functors

Ue,r,g(α)→ Ue±(2g−2),r,g(α), (3.1)

(µ : C → S,F) 7→ (µ : C → S,F ⊗ ω⊗±1
C/S ),

and similarly we have

Ue,r(C)
∼−→ Ue±degL,r(C).

As a result, it suffices to study the moduli functors for large e.

3.2 GIT construction of the compactified universal moduli space

We now construct a GIT quotient which we will see in §3.3 co-represents the restriction of

the moduli functor Ue,r,g(α) to GIT-stable curves in Mg(α).

Proof of Theorem 1.1. We have broken the proof into several parts. The construction and point

classification are carried out in Proposition 3.1. The classification of the fibers over stable curves

is carried out in Remark 3.6. The inclusions in the diagram are a consequence of the description

of the fibers.
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Proposition 3.1. Using the notation of Theorem 1.1, there exists a projective variety U e,r,g(α)

with a canonical projection π : U e,r,g(α)→Mg(α). The points of U e,r,g(α) lying over stable curves

correspond to aut-equivalence classes of slope semi-stable torsion-free sheaves of rank r and degree

e.

Proof. We proceed with the proof in three parts: first we set up the GIT problem, then we proceed

with the construction of the moduli space, and last we classify the orbit closures over GIT-stable

curves. For the sake of concision, the statements and proofs of various independent supporting

arguments will be found after this proof.

Part 1 - Setup From [14] and [2], for α > 2/3 there is a scheme Hg, either a Hilbert scheme

or Chow scheme depending on α, equipped with the action of a reductive group G, along with a

G-linearized line bundle OHg(1) such that

Mg(α) ∼= Hg//OHg (1)G.

Let UH ↪→ Hg×PN be the universal curve over Hg. Let ν : UH → PN be the projection map.

Define d = deg ν∗OPN (1)|C for any curve C ∈ Hg.

We will construct our moduli space using a relative Quot scheme. Specifically, let

Q ⊂ Quot
ν∗OPN (1),Φ

Cn⊗OUH
,UH ,Hg

,

be the locus of quotients of uniform rank, where Φ is a Hilbert polynomial with respect to ν∗OPN (1)

ensuring that all parametrized sheaves have rank r and degree e. A point ξ ∈ Q corresponds to an

equivalence class of the following data:

• a point of Hg corresponding to an α-stable curve C embedded in projective space by

ν∗OPN (1)|C ;

• a presentation of sheaves Cn ⊗ OC → E → 0 such that the Hilbert polynomial of E with

respect to ν∗OPN (1)|C is Φ (i.e., degE = e and rankE = r) and E is of uniform rank.
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It is well-known that Q is a union of connected components, but for lack of a reference for our

specific case, we establish this in Lemma 3.1 below.

The action of G on Hg lifts naturally to an action on Q. Moreover, Q is equipped with an

action of SLn by changing coordinates in Cn ⊗ OUH
. These two actions commute and therefore

induce an action of G × SLn on Q. In order to apply the results from variation of GIT above

(specifically, Prop. 2.2), we express the problem in terms of a quotient of a product: there is a

closed immersion respecting the group actions

Q ⊂ Hg ×Quot
ν∗OPN (1),Φ

Cn⊗OUH
,UH ,Hg

.

We now recall the very ample line bundleOQuot(1) on the Quot scheme. Recall from the construction

of the Quot scheme that tensoring a quotient by powers of an ample line bundle, e.g. the relative

dualizing sheaf,

(OnC → E → 0) 7→ (OnC ⊗ ωt → E ⊗ ωt → 0)

and applying global sections defines a rational map into a Grassmannian. For t� 0, this becomes

an embedding. There is a number t(d, g, r, e), depending only on d, g, r, and e defined in Theorem

5.1, and we take t = t(d, g, r, e). Take k from Prop. 2.2 to be the least integer such that the

conclusion of the proposition holds. Define OQuot(t) to be the pullback of the very ample line

bundle on the Grassmannian from the Plücker embedding. Let

Lk,t = OHg(k) �OQuot(t),

where � denotes the tensor product of the respective pullbacks. The line bundle Lk,t admits an

G× SLn-linearization.

Part 2 - Construction of U e,r,g(α) We now have everything required to define our GIT quotient:

U e,r,g(α) := Q//Lk,t
(G× SLn).

The reader will recall that a description for large e suffices because of the isomorphism between

moduli functors for sheaves of different degrees described in (3.1).
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By specifying the degree, d, of our ample line bundle, and the class of singularity types of

α-stable curves T , Theorem 5.1, produces a number E(d, r, g) (see (5.2) of §5.5 for an explicit

description), depending only on T , d, r and g. We now assume that e > E(d, r, g, T ).

First, we need to establish that for e > E(d, r, g, T ), all slope semi-stable sheaves (with

respect to the canonical polarization) appear in Q. This is an essentially well-known boundedness

statement, but for want of a specific reference we present a proof in Lemma 5.8 (by definition

E(d, r, g) > e4).

Let QG denote the pre-image of HS
g . Because we selected k/t so that the conclusion of the

variation of GIT result from Proposition 2.2 holds, the G × SLn-stable (semi-stable) locus of QG

with respect to the linearization Lk,t is equal to the SLn-stable (semi-stable) locus. In other words,

this implies that if C is GIT-stable, then a pair (C,F ) is GIT (semi-)stable if and only if F is GIT

(semi-)stable as a point of the fiber of QG over [C] ∈ Hg with respect to the linearization induced

by the restriction of Lk,t. Note that the fiber of QG over [C] ∈ Hg is naturally embedded in the

Quot scheme Quot
ν∗OPN (1)|C ,Φ
Cn⊗OC ,C

.

If we can establish that GIT (semi-)stability with respect to the restriction of Lk,t is equivalent

to slope (semi-)stability (with respect to the specified polarization) in each fiber simultaneously,

then we will have demonstrated that (C,F ) is GIT (semi-)stable if and only if F is slope (semi-

)stable. If we were working with a fixed curve, we could use Simpson’s result to argue that this is

true for large e and large t. The proof of Simpson’s result, however, only constructs bounds for a

fixed family of curves. For our argument, we must construct bounds for e and t which work for all

α-stable curves simultaneously, i.e. a bound which depends only on d, the allowable singularities,

r and g.

Theorem 5.1 provides such an explicit bound for e, namely E(d, r, g, T (α)), where T (α)

denotes the class of singularity types prescribed by α. Specifically, because we selected t to be

greater than the t(d, g, r, e) described in Theorem 5.1, we may apply the theorem and conclude

that when e > E(d, r, g, T ) the GIT (semi-)stability of F with respect to the linearization on the

fiber of Q over [C] induced by Lk is equivalent to the slope (semi-)stability of F . We have thus
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established that for k � 0 and a GIT-stable curve C, the GIT (semi-)stability of (C,F ) with

respect to G× SLn is equivalent to slope (semi-)stability of F .

Now we construct the projection map π. The morphism

QSS → HSS
g →Mg(α)

is equivariant with respect to the group action, and so by the universal property of the GIT quotient,

induces a morphism

U e,r,g(α)
π−→Mg(α),

sending a curve and a sheaf to the underlying curve.

Part 3 - Orbit closures.

First, observe that because Q is a union of connected components (Lemma 3.1), the space

U e,r,g(α) is the GIT quotient of a closed subset of a projective scheme, and is therefore projective.

By our construction above, Proposition 2.2 guarantees that the stable and semi-stable loci over

GIT-stable curves are completely described by the fiberwise stable and semi-stable loci, described

in Theorem 5.1. The locus of slope semi-stable vector bundles on a smooth curve is open because

it is the preimage under π of an open subset of Mg(α).

Next, we classify the orbit closures over the GIT-stable curves. Let ξ ∈ QSSG = QSS∩π−1(HS
g )

and suppose that ξ̄ ∈ QSSG lies in the orbit closure of ξ. It is immediate that π(ξ̄) is in the orbit

closure of π(ξ). Thus, if ξ corresponds to (C,F ) and ξ̄ corresponds to (C,F ), we see that C and C

are projectively equivalent. The G-orbit closure of ξ̄ consists of the images of F under projective

automorphisms of C. On the other hand, the SLn-orbit closure of ξ is known (e.g., [21, Thm.

1.21]) to consist of sheaves E which are aut-equivalent to F .

We will demonstrate that these two orbit closures intersect, which will prove that ξ and ξ̄

are aut-equivalent. Consider a path

γ = (γ1, γ2) : ∆ \ {p} → G× SLn,
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such that

lim
z→p

γ(z) · ξ = ξ̄.

Composing the path with the group action induces

µ : ∆ \ {p} → QG, µ(z) := γ2(z) · ξ.

As Q is projective, µ extends to ∆. Notice that µ(p) is in the SLn-orbit closure of ξ. If we can

demonstrate that µ(p) is also in the G-orbit closure of ξ̄, then we are done. We have

lim
z→p

γ1(z) · µ(p) = lim
z→p

γ1(z) · lim
z→p

(γ2(z) · ξ) = lim
z→p

(γ1(z) · γ2(z) · ξ) = ξ̄.

This completes the proof of the theorem.

Remark 3.5. The classification of the orbit closures fails for GIT strictly semi-stable curves because

the argument relies on a description of the GIT semi-stable points in the fiber over the curve.

For lack of a better reference, we include the following lemma to establish that the locus of

sheaves of uniform rank in the Quot scheme above is a union of connected components. It is similar

to [17, Lemma 8.1.1], with the difference that we work with arbitrary families of curves instead of

Deligne–Mumford stable curves. We note in passing that the result holds in greater generality. In

particular, with an eye towards future work, the result applies to other loci in the Hilbert scheme

arising in the Hassett–Keel program (e.g., [14]).

Lemma 3.1. Let g ≥ 2 and r be integers. Define Φ(t) = e+ r(1− g) + drt and let n = Φ(0). Let

κ : C → B be a projective, flat family of genus g curves parametrized by an irreducible curve such

that the relative ample L has relative degree d. Define

Q ⊂ QuotL,ΦCn⊗OC ,C,B

to be the subset corresponding to quotients

Cn ⊗OC → E → 0,

where E has uniform rank r on C. Then the subscheme Q is open and closed in QuotL,ΦCn⊗OC ,C,B.
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Proof. Let E be a κ-flat coherent sheaf.

Suppose there exists a b∗ ∈ B such that Eb∗ has uniform rank r on Cb∗ = C. Let {Ci} be the

irreducible components of C. The morphism κ is flat and surjective of relative dimension 1, and so

each Ci contains a component of C. By the semi-continuity of

r(z) := dimk(z)(E ⊗ k(z)),

there is an open set Ui ⊂ Ci where r(z) ≤ r.

The set U = ∩iκ(Ui) ⊂ B is open, and has the property that for every b ∈ U the rank of Eb

at the generic point of each irreducible component of Cb is at most r. We will show that U = B

and conclude that Eb is of uniform rank for every b ∈ U .

By way of contradiction, suppose that there exists a b′ ∈ B such that Eb′ is not of uniform

rank r. Then again by semi-continuity, there is an i so that r(z) < r on an open W ⊂ Ci: As

E is flat over B, the Hilbert polynomial of Eb is constant. In particular, the coefficient rd of t is

constant. By Remark 2.7,
∑

j rjdj = rd, where rj is the generic rank on the j-th component of Cb′ .

If Eb′ is not of uniform rank, then some rj is greater than r and some ri is less than r. Fixing the

component Ci containing that component, we may appeal to upper semi-continuity and see that

there is an open subset with rank bounded by ri < r.

But for any b ∈ U ∩ κ(W ), the multiranks of Eb is at most r on each component and strictly

less than r on at least one component. By Lemma 2.1, Eb cannot have Hilbert polynomial Φ(t), a

contradiction.

Thus, there was no such b′, and so for every b ∈ B, Eb has uniform rank r, proving the

lemma.

3.3 The quotient U e,r,g(α) co-represents U e,r,g(α) over stable curves

We introduce a piece of notation for the following. The functor US,e,r,g(α) is the restriction

of Ue,r,g(α) to GIT-stable curves. The same notation indicates the restriction of U e,r,g(α).
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Theorem 3.2. For any e, r, g with r ≥ 1 and g ≥ 2, the scheme US,e,r,g(α) co-represents the

functor US,e,r,g(α).

Recall that to say US,e,r,g(α) co-represents the functor US,e,r,g(α) is to say that US,e,r,g(α) is

initial with respect to morphisms from US,e,r,g(α) to schemes:

US,e,r,g(α) //

''

US,e,r,g(α)

��

Z.

Proof. First, note that by our definitions and the isomorphism

US,e,r,g(α) ∼= US,e±(2g−2),r,g(α),

it suffices to prove the claim for e > E(d, g, r, T ). Now, we construct a natural transformation

φ : Ue,r,g(α)→ Hom(−, U e,r,g(α)).

Let e > E(d, g, r, T ). For a scheme S, let (µ, C,F) ∈ Ue,r,g(α)(S). The sheaf µ∗ν
∗OPN (1) is locally

free of rank N+1. Additionally, as we have taken e sufficiently large, for all s ∈ S Lemma 5.8 states

(taking F = E = Fs) that h1(Cs,Fs) = 0 and Fs is generated by global sections. In particular,

H0(Cs,Fs) = χ(Fs) =: n. Thus µ∗F is locally free of rank n. Let {Wi} be an open cover of S

trivializing both µ∗ν
∗OPN (1) and µ∗F :

αi : CN+1 ⊗OWi

∼=−→ µ∗ν
∗OPN (1)|Wi ,

βi : Cn ⊗OWi

∼=−→ µ∗F|Wi .

If Vi = µ−1(Wi), then pulling back we obtain compositions

CN+1 ⊗OVi
∼=−→ µ∗(µ∗ν

∗OPN (1)|Vi)→ ν∗OPN (1)|Vi ,

Cn ⊗OVi
∼=−→ µ∗(µ∗F|Vi)→ F|Vi .

The second morphisms, and hence the compositions, are surjective because both ν∗OPN (1) and

Fs are globally generated; the former because it is very ample and the latter by Lemma 5.8 as
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mentioned above. Moreover, by construction, the induced maps on global sections are surjective

as well. A dimension count shows that they are isomorphisms. By the universal property of Q, we

obtain morphisms φi : Wi → Q.

We now pause to restate what we have established about the fiberwise behavior of F :

• F is fiberwise slope-semistable and torsion-free of uniform rank

• the fiberwise presentation of F induces an isomorphism on global sections.

Theorem 5.1 tells us that we may uniformly select a lower bound on t depending only on d, g, r, e

such that for larger t, such families of sheaves are in the semi-stable locus of Q. In other words,

φi(Wi) ⊂ QSS .

As φi|Wi∩Wj differs from φj |Wi∩Wj precisely by the trivializations defined above, we obtain a

well-defined morphism

S → US,e,r,g(α).

The naturality of the universal property of Q implies that the defined φ is also natural.

The proof is complete pending the universality of φ. This is, however, a straightforward

diagram chase and is left to the reader.

Remark 3.6. Now we study the fibers of π : US,e,r,g(α) → MS,g(α). Because U e,r,g(α) is a

universal categorical quotient (see [16]), for a GIT-stable curve C the fiber U e,r,g(α)×Mg(α) [C] co-

represents the fiber Ue,r,g(α)×Mg(α) [C]. By definition the fiber of the functor parametrizes families

of sheaves on isotrivial families of curves isomorphic to C. The functor Ue,r(C) parametrizes families

of sheaves on trivial families of curves isomorphic to C. Co-representing a functor is equivalent to

co-representing its sheafification. From the description of the functors above, we see that in the

étale topology we have the following identification of sheafifications(
Ue,r,g(α)×Mg(α) [C]

)+ ∼= (Ue,r(C)/Aut(C))+ .

Thus, we need to show that Ue,r(C)/Aut(C) co-represents (Ue,r(C)/Aut(C))+. Now, Ue,r(C)

co-represents Ue,r(C), and so Ue,r(C)/Aut(C) co-represents the functor Ue,r(C)/Aut(C). Also,
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it is certainly the case that Ue,r(C)/Aut(C) co-represents the sheaf (Ue,r(C)/Aut(C))+. Thus,

Ue,r(C)/Aut(C) co-represents the fiber Ue,r,g(α)×Mg(α) [C].



Chapter 4

Properties of U
ps

e,r,g

4.1 The irreducibility of U
ps

e,r,g

Before defining the universal moduli functor, let us recall the definition of a pseudo-stable

curve.

Definition 4.1. A projective curve is pseudo-stable if

• it is connected, reduced, and has only nodes and cusps as singularities;

• every subcurve of genus one meets the rest of the curve in at least two points;

• the canonical sheaf of the curve is ample.

Given a scheme S, a family of genus g pseudo-stable curves parametrized by S is a morphism

f : C → S, where f is a flat and proper morphism such that every geometric fiber is a pseudo-stable

curve of genus g. Two families f : C → S and g : D → S are isomorphic if they are isomorphic

over S. Recall the moduli functor M̄ ps
g which associates to a scheme S the set of all families of

genus g pseudo-stable curves parametrized by S modulo isomorphism.

Now, we establish the irreducibility of U
ps
e,r,g. The following lemmas extend Lemmas 9.1.1

and 9.2.3 of [17] and lay the groundwork for a deformation-theoretic argument.

Lemma 4.1. Let µ : C → S be a family of pseudo-stable, genus g ≥ 2 curves. Let E be a µ-flat

coherent sheaf on C. The condition that Es is a slope-semistable torsion-free sheaf of uniform rank

on Cs is open on S
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Proof. Suppose Es0 is a slope-semistable sheaf of uniform rank n on Cs0 for some s0 ∈ S. There

exists an integer m such that

(1) h1(Es ⊗ ωmCs , Cs) = 0 for all s ∈ S.

(2) Es ⊗ ωmCs is generated by global sections for all s ∈ S.

(3) deg(Es0 ⊗ ωmCs0 ) > E(g, r).

It is enough to prove the lemma for F := E ⊗ ωmC/S . Let f be the Hilbert polynomial of F .

We claim that there is an open W ⊂ S containing s0 and a morphism

φ : W → Q

such that F is isomorphic to the pullback of the universal quotient. The sheaf µ∗ω
4
C/S is locally

free of rank N + 1 := 4(2g − 2)− g + 1. By the above, µ∗F is locally free of rank n. Let W be an

open subset of S containing s0 such that both µ∗ω
4
C/S and µ∗F are trivialized. On V := µ−1(W ),

we obtain

CN+1 ⊗OV
∼=−→ µ∗(µ∗ω

4
C/S |V )→ ω4

C/S |V ,

Cn ⊗OV
∼=−→ µ∗(µ∗F|V )→ F|V .

The second morphisms, and hence the compositions, are surjective because both ω4
C/S and Fs

are globally generated; the former because g ≥ 3 and the latter by the above. Moreover, by

construction, the induced maps on global sections are surjective as well. A dimension count shows

that they are isomorphisms. Hence, W has the desired property by the universal property of Q.

Because φ(s0) ∈ QSS[k,1], which is open in Q, the lemma is proven.

Lemma 4.2. Let C be a pseudo-stable curve of genus g. Let E be a slope-semistable torsion-free

sheaf of uniform rank r on C. Then there exists a family µ : C → ∆0 and a µ-flat coherent sheaf E

on C such that:

(1) ∆0 is a pointed curve
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(2) C0
∼= C, and for every t 6= 0, Ct is a complete, nonsingular, irreducible genus g curve.

(3) E0
∼= E, and for every t 6= 0, Et is a slope-semistable torsion-free sheaf of rank r.

Proof. Let z ∈ C be a singular point. Because E is torsion-free of uniform rank r, we have

Ez ∼= O⊕azz ⊕m⊕r−azz ,

where az is an integer determined by E called the local semirank of E (see [3]). This follows when

C has a node at z from Propositions (2) and (3) of chapter (8) of [20]. When C has a cusp at z,

the statement follows from the main theorem of [3].

Because of its structure, a deformation of Ez may be given by merely deforming mz. We will

exploit this feature of Ez to produce a local deformation (Cz, Ez) of (Cz, Ez) over the disc which

smooths C at z and deforms Ez into a vector bundle. If z is a node of C, then [17, Lemma 9.2.2]

gives an explicit deformation of mz, which we have seen is adequate. If z is a cusp, then let S be a

neighborhood of z isomorphic to Spec(C[x, y]/(y2 − x3)). Let µ : Spec(C[x, y, t]/(y2 − x3 − 2t6)→

Spec(C[t]) be the projection map. We claim that the ideal I := (x − t2, y − t3) is the desired

deformation of mz. To see this, observe that I defines a section of µ, whose image we will call L,

satisfying an exact sequence

0→ I → OS → OL → 0. (4.1)

Because OS is torsion-free over C[t], so is I. Thus, I is µ-flat because C[t] is a Dedekind domain.

Moreover the section of µ is an isomorphism, and so OL is µ-flat. Hence (4.1) is exact after

restriction to z. Thus, I0
∼= mz and so I is the desired deformation.

At this point, we have produced a local deformation (Cz, Ez) of the germ (Cz, Ez) over the

disc which smooths Cz and deforms Ez to a vector bundle. Let (Ĉz, Êz) be the associated formal

deformation. The collection of these formal local deformations at each singular point defines a

formal deformation for the deformation functor Def loc(C,E) :=
∏
z Def(Cz, Ez), where Def(Cz, Ez)

is the local deformation functor for the pair (Cz, Ez). As established in [8, Section A.], the morphism

Def(C,E)
loc−→ Def loc(C,E)
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is smooth, where Def(C,E) is the deformation functor of the pair (C,E) and loc is the natural

restriction map. Because loc is smooth, we may lift the formal local deformation to a global formal

deformation (Ĉ, Ê) of (C,E). This global formal deformation is effective; the proof is identical to

the standard proof for deformations of schemes, e.g., [19, Thm. 2.5.13]. This effective deformation

is then algebraizable by a special case of Artin’s algebraization theorem (e.g., [19, Thm. 2.5.14]).

Let (C, E) be an algebrized deformation. Restriction to a disc gives the theorem.

Alternatively, a direct gluing argument may be carried out to explicitly construct a global

deformation from the local deformation, as in [17, Lemma 9.2.3].

Proposition 4.1. U
ps
e,r,g is an irreducible variety.

Proof. Consider πSS : QSS → Hg. By [20, Prop. 24], the scheme

π−1
SS([C])

is irreducible for each nonsingular curve C, [C] ∈ Hg. Because the locus H0
g ⊂ Hg of nonsingular

curves is irreducible, π−1
SS(H0

g ) is irreducible. By Lemma 4.2, π−1
SS(H0

g ) is dense in QSS . There is a

surjection

QSS → U
ps
e,r,g,

whence we conclude U
ps
e,r,g is irreducible.
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Moduli of sheaves on a fixed curve

Our main result for this section is the calculation of the fiberwise GIT quotient. The goal is

to extract the uniform bounds we used to solve the global version of this GIT problem in Theorem

1.1. We compare GIT stability for sheaves on a fixed curve with slope stability:

Theorem 5.1. Let g, r, and d be integers. Define Φ(t) = e + r(1 − g) + rdt, and let n = Φ(0).

Let (C,L) be a polarized reduced Gorenstein curve such that degL = d and let t̂(d, g, r, e) have the

property that for all t > t̂(d, g, r, e), the morphism

it : QuotΦ,LCn⊗OC/C
→ G(Φ(t), (Cn ⊗H0(Pn,OPn(t)))∗)

is a closed embedding.

Let T be a class of singularity types. There exists integers E(d, g, r, T ) and t(d, g, r, e) (see

Definition 5.2 for an explicit description) such that for all e > E(d, g, r, T ), t > t(d, g, r, e) and

any genus g curve C with degree d polarization L and class of singularity types T , we have the

following: if ξ ∈ QuotΦ,LCn⊗OC/C
corresponds to a quotient

Cn ⊗OC → E → 0,

where E is of rank r, then ξ is GIT stable (semi-stable) with respect to the SLn-linearization

determined by it if and only if E is a slope stable (semi-stable) torsion-free sheaf on C and the

induced function

Cχ(E) ⊗H0(C,OC)→ H0(C,E)

is an isomorphism.
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A few remarks are in order.

Remark 5.1. Theorem 5.1 is a direct generalization of [17, Thm. 2.1.1]. Here, we remove the

hypotheses that the curve be Deligne–Mumford stable, and that the polarization be given by the

dualizing bundle.

Simpson establishes the same stability criterion in [21], but the the bounds for which the

criterion holds depend a priori on the curve under consideration. Consequently, uniform bounds

must be established if we are to solve the moduli problem in a global setting without a universal

curve. Our uniform bound allows us to compare GIT stability with slope stability for all curves

in consideration at once, and therefore apply the result to families of sheaves of uniform rank over

families of curves.

We now outline the strategy of the proof. We begin with GIT destabilization arguments.

Specifically, we demonstrate that any quotient which is not slope-semistable, torsion-free, with an

induced isomorphism on global sections is GIT unstable. Then, we study GIT stabilization. We

establish that the remaining sheaves are GIT semi-stable, and show that GIT stability is equivalent

to slope-stability. The bulk of the argument is a straightfoward extension of the argument presented

in [17]. The inclusion of α-stable curves primarily affects the statement and proof of Proposition

5.6, where a more subtle bound of the numerical properties of singularities is required. Many of

the following results are straightforward extensions of or identical to previous results, and for the

sake of concision we provide a reference rather than a proof.

5.1 Numerical Criterion for Grassmannians

The following lemma, adapted from [17], provides a useful reformulation of the Hilbert-

Mumford numerical criterion for Grassmannians. The lemma constitutes the principal technical

tool we use for destabilizing sheaves on curves.

Lemma 5.2 ([17, Lemma 2.3.1]). Let g, r, and d be integers. Define Φ(t) = e + r(1 − g) + rdt,

and let n = Φ(0). Let (C,L) be a polarized reduced Gorenstein curve such that degL = d and let
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t̂(d, g, r, e) have the property that for all t > t̂(d, g, r, e), the morphism

it : QuotΦ,LCn⊗OC/C
→ G(Φ(t), (Cn ⊗H0(Pn,OPn(t)))∗)

is a closed embedding.

Let ξ ∈ QuotΦ,LCn⊗OC/C
correspond to a quotient

Cn ⊗OC → E → 0.

Let U ⊂ Cn be a subspace, and define W := im(U ⊗H0(C,OC)) ⊂ H0(C,E). Let G be the subsheaf

of E generated by W . Then if

dim(U)

n
>
h0(C,G⊗ Lt)

Φ(t)
,

ξ is GIT unstable.

5.2 Destabilization of sheaves

We recall our setup. Let g, r, and d be integers. Define Φ(t) = e + r(1 − g) + rdt, and

let n = Φ(0). Let (C,L) be a polarized reduced Gorenstein curve such that degL = d and let

t̂(d, g, r, e) have the property that for all t > t̂(d, g, r, e), the morphism

it : QuotΦ,LCn⊗OC/C
→ G(Φ(t), (Cn ⊗H0(Pn,OPn(t)))∗)

is a closed embedding.

Our strategy for understanding the points of the GIT quotient is to begin with the destabi-

lization of certain points. First, we demonstrate that semi-stability requires the presentation of a

sheaf to induce an injection on global sections. This allows us to then place bounds on the size of

torsion. Next, we destabilize slope-unstable sheaves, and finally demonstrate that the presentation

must be surjective on global sections. Combined with the bound on torsion, we will see that GIT

semi-stable sheaves must be torsion-free. In summary, by the end of the section we will have estab-

lished that for large e and t (with explicit bounds), GIT semi-stable sheaves must be torsion-free,

slope semi-stable, and have a presentation which induces an isomorphism on global sections.
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5.2.1 Injectivity for the global section map

We immediately destabilize a large class of points. The following proposition is a straight-

forward generalization of [17, Prop 2.3.1].

Proposition 5.1. Let C be a genus g curve with degree d polarization L. Let ξ ∈ QuotΦ,LCn⊗OC/C

correspond to a quotient

Cn ⊗OC → E → 0.

Then if Cn ⊗H0(C,OC)→ H0(C,E) is not injective, ξ is GIT unstable.

5.2.2 Restricting the size of Torsion

The main result of this section places restrictions on the size of torsion in GIT semi-stable

sheaves. Once we establish that semi-stability of a presentation of a sheaf requires an isomorphism

on global sections, we will conclude that sheaves with torsion are GIT unstable. The proposition

is a straightforward extention of [17, Prop. 3.2.1].

Proposition 5.2. There exists a bound t0(d, g, r, e) > t̂(d, g, r, e) such that for each t > t0(d, g, r, e)

and genus g curve C with degree d polarization L, the following holds: if ξ ∈ QuotΦ,LCn⊗OC/C
corre-

sponds to

Cn ⊗OC → E → 0,

and im(Cn ⊗H0(C,OC)) ∩H0(C, τE) 6= 0, where τE is the torsion subsheaf of E, then ξ is GIT-

unstable.

5.2.3 Destabilizing slope unstable sheaves

In this section, we destabilize certain slope-unstable sheaves using straightforward extensions

of results in [17]. The primary result is

Proposition 5.3 ([17, Prop. 4.1.1]). There exist bounds e1(d, g, r) > r(g − 1) and t1(d, g, r, e) >

t̂(d, g, r, e) such that for any pair e > e1(d, g, r) and t > t1(d, g, r, e) and genus g curve C with
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degree d polarization L, the following holds: if ξ ∈ QuotΦ,LCn⊗OC/C
corresponds to

Cn ⊗OC → E → 0,

where the induced morphism on global sections is an isomorphism and E is a slope-unstable torsion-

free sheaf, then ξ is GIT unstable with respect to the linearization induced by it.

Lemma 5.3 ([17, Lemma 4.2.1]). Assume the hypotheses of Proposition 5.3.

There exists an integer e1(d, g, r) > r(g − 1) such that for each e > e1(d, g, r), the following

holds:

if ξ ∈ QuotΦ,LCn⊗OC/C
corresponds to

Cn ⊗OC → E → 0,

where E is slope-unstable and torsion-free, then there exists a nonzero, proper, destabilizing subsheaf

0→ F → E and an exact sequence

0→ F → F → τ → 0,

where F is generated by global sections and τ is torsion.

5.2.4 Surjectivity of the global section map

In this section, we establish the surjectivity of the global sections morphism on GIT semistable

sheaves. If ξ ∈ QuotΦ,LCn⊗OC/C
corresponds to

Cn ⊗OC → E → 0,

because n = χ(E), we always have n ≤ h0(C,E). In particular, if H0(C,Cn ⊗ OC) → H0(C,E)

is a surjection, we have n ≥ h0(C,E), which implies that h1(C,E) = 0. On the other hand, if

h1(C,E) = 0, then n = χ(E). Excluding GIT unstable sheaves, we may assume by Proposition 5.1

that the global sections morphism is an injective morphism of finite-dimensional vector spaces of

the same dimension, and therefore an isomorphism. Our main result for this section thus concerns

h1(C,E):



33

Proposition 5.4 ([17, Prop. 5.2.1]). There exist bounds e2(d, g, r) > r(g − 1) and t2(d, g, r, e) >

t̂(d, g, r, e) such that for each pair e > e2(d, g, r), t > t2(d, g, r, e) and genus g curve C with degree

d polarization L, the following holds: if ξ ∈ QuotΦ,LCn⊗OC/C
corresponds to

Cn ⊗OC → E → 0,

where h1(C,E) 6= 0, then ξ is GIT unstable.

Proof. We sketch the proof. We will postpone the proofs of Lemmas 5.4 and Lemma 5.5 below in

order to streamline the argument. The lemmas compute the bounds e2 and t2, and we now assume

e > e2 and t > t2. By Proposition 5.1, we may assume that the global sections map ψ is injective.

By Proposition 5.2, we may assume that the codimension of the image of ψ is bounded by the

dimension of the space of torsion sections. We see that the hypotheses of Lemma 5.5 hold. Thus

we may apply Lemma 5.4, which produces a subspace which destabilizes ξ by Lemma 5.2.

The following two lemmas are straightforward generalizations of results in [17]. Together,

they provide the bounds needed for the proof of Proposition 5.4.

Lemma 5.4 ([17, Lemma 5.1.1]). There exists an integer e2(d, g, r) > r(g − 1) such that for each

e > e2(d, g, r) the following holds:

Suppose that E is a coherent sheaf on C having Hilbert polynomial Φ(t) with respect to L, and τ is

the maximal torsion sub-sheaf of E. If

(1) h1(C,E) 6= 0,

(2) χ(τ) < gd(rd+ 1) + 1,

then there exists a nonzero, proper subsheaf F of E with multirank (si) not identically zero such

that

(1) F is generated by global sections,

(2)

χ(F )− (gd(rd+ 1) + 1)∑
sidi

>
χ(E)

rd
+ 1.



34

Lemma 5.5 ([17, Lemma 5.1.2]). Let e > e2(d, g, r) as in Lemma 5.4.

There exists an integer t2(d, g, r, e) > t0(d, g, r, e) such that for each t > t2(d, g, r, e) the

following holds:

If ξ ∈ QuotΦ,LCn⊗OC/C
corresponds to

Cn ⊗OC → E → 0,

where E is a coherent sheaf satisfying

(i) ψ : Cn ⊗H0(C,OC)→ H0(C,E) is injective,

(ii) h1(C,E) 6= 0,

(iii) the torsion subsheaf τ of E satisfies χ(τ) < gd(rd+ 1) + 1,

then there exists a nonzero subspace W ⊂ ψ(Cn⊗H0(C,OC)) generating a nonzero, proper subsheaf

0→ G→ E such that

dimW

n
>
h0(C,G⊗ Lt)

Φ(t)
.

5.3 GIT-semistable Sheaves

In this section, we demonstrate that the classes of quotients destabilized above are in fact the

only unstable quotients. The results in this section are straightforward generalizations of results

from [17], and so for brevity we omit proofs but provide the reader with references. The central

result is the following

Proposition 5.5 ([17, Prop. 6.1.1]). There exist bounds e3(d, g, r) > r(g − 1) and t3(d, g, r, e) >

t̂(d, g, r, e) such that for each pair e > e3(d, g, r), t > t3(d, g, r, e) and genus g curve C with degree

d polarization L, the following holds: if ξ ∈ QuotΦ,LCn⊗OC/C
corresponds to a quotient

Cn ⊗OC → E → 0,

where

ψ : Cn ⊗H0(C,OC)→ H0(C,E)
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is an isomorphism and E is a slope-stable (slope-semistable), torsion-free sheaf, then ξ is a GIT

stable (semi-stable) point.

Proof. The proof follows by explicitly constructing a basis satisfying the Numerical Criterion for

Grassmannians. The degree and tensor bounds are established in Lemma 5.6 and Lemma 5.7.

The following lemmas are used in the proof of the above proposition. We include them for

completeness, as they are essentially the same as results from [17].

Lemma 5.6 ([17, Lemma 6.2.1]). Let q be an integer. Then there exists an integer e3(d, g, r, q)

such that for each e > e3(d, g, r, q), the following holds:

If E is a slope-semistable, torsion-free sheaf on C with Hilbert polynomial Φ(t) and

0→ F → E

is a nonzero subsheaf with multirank (si) satisfying h1(C,F ) 6= 0, then

χ(F ) + q∑
sidi

<
χ(E)

rd
− 1.

Lemma 5.7 ([17, Lemma 6.2.2]). Let e > e3(d, g, r, b) > r(g − 1) be as described in Lemma

5.6. Then there exists an integer t3(d, g, r, e) > t̂(d, g, r, e) such that for each t > t3(d, g, r, e), the

following holds:

If ξ ∈ QuotΦ,LCn⊗OC/C
corresponds to a quotient

Cn ⊗OC → E → 0,

where E is a torsion-free, slope-semistable sheaf on C and 0→ F → E is a nonzero, proper subsheaf

generated by global sections, then

h0(C,F )

n
≤ h0(C,F ⊗ Lt)

Φ(t)
.

Moreover, if E is slope-stable, then

h0(C,F )

n
<
h0(C,F ⊗ Lt)

Φ(t)
.
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5.4 Strict Slope-semistability

In this section, we demonstrate that strict slope-semistability implies strict GIT semistability.

The following proposition is similar to [17, Prop. 6.4.1], and the proofs are similar. Here the

weakened hypotheses on the singularities of the curve require greater care, and the arguments

begin to diverge more substantially from [17] than in the previous sections. In light of this, we

include greater detail.

Proposition 5.6. There exist bounds e4(d, g, r, T ) and t4(d, g, r, e) such that for each pair e >

e4(d, g, r, T ) and t > t4(d, g, r, e) and every genus g curve C with degree d polarization L and class

of singularity types T , the following holds:

If ξ ∈ QuotΦ,LCn⊗OC/C
corresponds to a quotient

Cn ⊗OC → E → 0

where

Cn ⊗H0(C,OC)→ H0(C,E)

is an isomorphism, and E is torsion-free and strictly slope-semistable, then ξ is GIT strictly

semistable.

Proof. Let 0 → F → E be a nonzero proper semistabilizing subsheaf. Suppose F is generated

by global sections and h1(C,F ) = 0. Then we may directly apply the Numerical Criterion for

Grassmannians to the linearized SLn action on

G(Φ(t), (Cn ⊗ Symt(H0(C,L)))∗).

The point ξ corresponds to the quotient

ψt : Cn ⊗ Symt(H0(C,L))→ H0(C,E ⊗ Lt)→ 0.

Let U ⊗H0(C,OC) be the pre-image of H0(C,F ). Let v̄ = (v1, . . . , vn) be a basis of Cn such

that v1, . . . , vh0(C,F ) is a basis for U . Define w(vi) = 0 for 1 ≤ i ≤ h0(C,F ), and 1 otherwise. We
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must show that for any Φ(t)-tuple (a1, . . . , aΦ(t)) of v̄-pure elements of Cn⊗Symt(H0(C,L)) which

projects to a basis of H0(C,E ⊗ Lt),

n∑
i=1

w(vi)

n
=

Φ(t)∑
j=1

w(aj)

Φ(t)
.

Because ξ is semi-stable, we have

n∑
i=1

w(vi)

n
≥

Φ(t)∑
j=1

w(aj)

Φ(t)
.

Thus, it suffices to demonstrate the reverse inequality. By a few algebraic manipulations, we reduce

this to

h0(C,F )rdt ≥ h0(C,E)(
∑

sidi)t,

but in fact we have equality because F is strictly slope semistable.

The proof is now finished, pending a demonstration that there is a nonzero, proper semistabi-

lizing subsheaf of E generated by global sections and whose first cohomology group vanishes. This

is the content of Lemma 5.8.

The following lemma is similar to [17, Lemma 6.4.1]. The key difference in our result is the

bound δ, which has been modified to hold for α-stable curves.

Lemma 5.8. Let T = T (C) be the class of singularity types of C. There exists an integer

e4(d, g, r, T ) such that for any e > e4(d, g, r, T ) the following holds: if E is any slope-semistable,

torsion free sheaf on C with Hilbert polynomial Φ(t), and 0 → F → E is a nonzero subsheaf with

multirank (si) satisfying

χ(F )∑
sidi

=
χ(E)

rd
,

then

(i) h1(C,F ) = 0.

(ii) F is generated by global sections.
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Proof. Suppose F is a nonzero subsheaf of E satisfying the hypothesis. By Lemma 5.6, if e >

e3(d, g, r, 0), h1(C,F ) = 0.

Let x ∈ C be a point. We have the exact sequence

0→ mxF → F → F/mxF → 0.

There is a constant δx (see Corollary 2.3), depending only on r, g, d, and T such that

dimk F/mxF < δx.

Let δ = maxx∈C δx. Note that the multirank of mxF is the same as F . We have

χ(mxF ) + δ > χ(F ).

By hypothesis,

χ(mxF ) + δ∑
sidi

>
χ(E)

rd
.

For e > e3(d, g, r, δ), h1(C,mxF ) = 0 by Lemma 5.6. In this case, Fx is generated by global sections

for every point x. Thus, F is globally generated, so we may take e4(d, g, r, T ) = e3(d, g, r, δ).

5.5 Proof of Theorem 5.1

The proof of Theorem 5.1 is complete, but the pieces must be assembled. First, we explicitly

state the degree bound determined by results in the previous section.

Definition 5.2. Let g, r and d be integers, and T be a class of singularity types. Let

• e0(d, g, r, T ) = r(g − 1)

• e1(d, g, r, T ) = (dg(rd+ 1) + 1)(rd)2 − r(1− g) (see Lemma 5.3)

• e2(d, g, r, T ) = rd(2(dg(rd+ 1) + 1) + g + rd− 1)− r(1− g) (see Lemma 5.4)

• e3(d, g, r, T ) = (rd)2(g + dg(rd+ 1) + 3)− r(1− g) (see Lemma 5.6)

• e4(d, g, r, T ) = (rd)2(g + δ + 2)− r(1− g) (see Proposition 5.6),
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where

δ = rdmax
A∈T

(1 + dimk A/A).

Define

E(d, g, r, T ) := max
i
ei(d, g, r, T ). (5.1)

Let T denote the class of singularity types of α-stable curves and define

E(r, g) := max
i
ei(degL, g, r,T ), (5.2)

where because T is fixed, E(degL, r, g) depends only on degL, r, and g. Lastly, define

t(d, g, r, e) = max
i=0,...,5

ti(d, g, r, e), (5.3)

where for i = 0, . . . , 4 the ti are given by Propositions 5.2, 5.3, 5.4, 5.5, and 5.6, and t5 = t̂(d, g, r, e).

Proof of Theorem 5.1. Let g, r, and d be integers. Define Φ(t) = e + r(1 − g) + rdt, and let

n = Φ(0). Let (C,L) be a polarized reduced Gorenstein curve such that degL = d. Let T be

the class of singularity types of C, and let E(d, g, r, T ) be as in (5.1). Let e > E(d, g, r, T ) and

ξ ∈ QuotΦ,LCn⊗OC/C
corresponding to

Cn ⊗OC → E → 0,

and let

ψ : Cn ⊗H0(C,OC)→ H0(C,E)

be the function on global sections. Let t(d, g, r, e) be as given by (5.3). By Propositions 5.1, 5.2,

5.3, and 5.4, ξ is GIT unstable if any of the following are true:

• ψ is not an isomorphism,

• E is not torsion-free,

• E is slope-unstable.



40

Now we turn to the reverse implication. By Proposition 5.5, if E is torsion-free and slope-

stable (slope-semistable) and ψ is an isomorphism, ξ is GIT stable (semi-stable).

Finally, by Proposition 5.6, if ξ is GIT semi-stable then ξ is stable if and only if E is slope-

stable, and the theorem is proved.

5.6 Construction of the GIT quotient over a fixed curve

In this section, we construct the fiberwise GIT quotient.

Definition 5.3. Let (C,L) be a polarized curve of genus g and let d be the degree of L. Let e, t,

and r be integers such that e > E(d, g, r, T (C)) defined in (5.1) and t > t(d, g, r, e) as defined in

(5.3). Define Φ(t) = e+ r(1− g) + rdt. Let

Qr ⊂ QuotΦ,LCn⊗OC/C

be the locus of sheaves of uniform rank r and OQ(1) the very ample line bundle determined by it

(see Theorem 5.1 for the definition of it). By Lemma 3.1, Qr is both closed and open. Define

ULe,r(C) := Qr//OQ(1)
SLn.

Because stability and semi-stability are determined by slopestability and slope semi-stability

for t > t(d, g, r, e), we see that the quotient is independent of the choice of t. Observe that twisting

by L⊗a induces an isomorphism

QuotΦ,LCn⊗OC/C
∼= Quot

(e+ard)+r(1−g)+rdt,L⊗a

Cn⊗OC/C
.

Thus, for any e, we may take the smallest integer a with the property that e+ ard is greater than

the ei and define

ULe,r(C) := UL
⊗a

e+ard,r(C).

The following theorem is similar to [21, Thm. 1.21] which makes the same claim, but for e � 0.

Our formulation includes an explicit lower bound on e and includes only sheaves of uniform rank.

The explicit bound on e will allow us to ensure the description holds for families of curves.
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Theorem 5.9. Let (C,L) be a polarized curve of genus g with degL = d. Then for all r and

e > E(d, g, r, T (C)), the scheme ULe,r(C) is a projective variety containing the set of aut-equivalence

classes of slope-semistable vector bundles as an open subset.

Proof. The proof follows from the definition of E and results in this section, and is roughly equiv-

alent to the proof of Theorem 1.1 above. We leave the details to the reader.

Theorem 5.10. Let (C,L) be a polarized curve. For any e, r the scheme Ue,r(C) is the categorical

moduli space for Ue,r(C).

Proof. The proof is essentially identical to that of Theorem 3.2, and so for brevity, we leave the

details in this case to the reader.

Remark 5.4. The functor Ue,r(C) is the subfunctor of the moduli problem described in [21, p. 9]

consisting of sheaves of uniform rank. Theorem 5.10 thus implies that Theorem 1.21 of [21] applies

to Ue,r(C) as a subspace of the Simpson moduli space. In particular,

(1) Ue,r(C) is projective;

(2) The points of Ue,r(C) represent the equivalence classes of semi-stable sheaves under aut-

equivalence.
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