
Probabilistic Random Forests: Predicting Data
Point Specific Misclassification Probabilities

Markus Breitenbach
Department of Computer Science

University of Colorado
Boulder, CO 80309

breitenm@cs.colorado.edu

Rodney Nielsen
Department of Computer Science

University of Colorado
Boulder, CO 80309

rodney.nielsen@colorado.edu

Gregory Z. Grudic
Department of Computer Science

University of Colorado
Boulder, CO 80309

grudic@cs.colorado.edu

Abstract

Recently proposed classification algorithms give estimates or worst-case
bounds for the probability of misclassification [Lanckriet et al., 2002][L.
Breiman, 2001]. These accuracy estimates are for all future predictions,
even though some predictions are more likely to be correct than oth-
ers. This paper introduces Probabilistic Random Forests (PRF), which
is based on two existing algorithms, Minimax Probability Machine Clas-
sification and Random Forests, and gives data point dependent estimates
of misclassification probabilities for binary classification. A PRF model
outputs both a classification and a misclassification probability estimate
for the data point. PRF makes it possible to assess the risk of misclassifi-
cation, one prediction at a time, without detailed distribution assumptions
or density estimation. Experiments show that PRFs give good estimates
of the error probability for each classification.

1 Introduction
Classification has been extensively studied in the machine learning community, with the ac-
curacy of most existing algorithms being determined using test data that the algorithm has
never seen [1, 2, 3]. However, recent classification algorithms attempt to estimate accuracy
without using the test data. For example, the binary Minimax Probability Machine Classi-
fication (MPMC) algorithm [4] computes a bound for the probability of misclassification,
using only estimates of the covariance matrix and mean for each class, as obtained from
the training data. Similarly, Random Forest (RF) algorithms [5], which learn an ensemble
of CART tree classifiers using bagging and randomized feature selection. RF algorithms
select examples from the training data (out-of-bag examples) to obtain good estimates of
the true error rate of the final classifier.

However, both the MPMC bound and the RF algorithm misclassification probability esti-
mate are independent of the data point, even though some classifications are more likely
to be accurate than others. Other methods exist for estimating the relative accuracy of one
prediction with respect to another, without using probability estimates. For example, in the

case of Support Vector Machines one can use the real-valued output of the classification
function as an estimate of misclassification-risk: the closer the value is to zero, the more
likely it is that the classification could be wrong. This has been used to choose the clas-
sifier that is most-likely to be correct in one-against-all settings of binary classifiers used
for multi-class problems [6, 7]. Similarly, Bayesian methods such as Relevance Vector
Machines [8] and Gaussian Process Classification [9] can give variance estimates for each
classification. Such existing methods yield estimates of accuracy that cannot easily be used
to predict actual probabilities of errors for each classification. In general, in order to make
specific probability estimates for each classification, existing algorithms require detailed
probability assumptions or density modeling [10].

This paper introduces the Probabilistic Random Forests (PRF) algorithm, which gives an
estimate of the probability of misclassification for each data point, without detailed prob-
ability distribution assumptions or resorting to density modelling. Using this probability
estimate it is possible to assess how well the learned hypothesis models the data, which
has many practical applications. For example, consider a classifier for diagnosing cancer.
Cancer tests have a false-positive and a false-negative rate. A classifier that can give a good
estimate of the misclassification probability for a particular patient would allow medical
doctors to make more informed decisions about further testing and treatment protocols.

PRF is based on two existing algorithms: Minimax Probability Machine Classification [4]
and Random Forests [5]. The MPMC algorithm computes a hyperplane that minimizes the
maximum probability of misclassification using only estimates of the mean and covariance
matrices of each class. The Random Forests algorithm builds an ensemble of CART tree
classification predictors using bagging and randomized feature selection - RFs use out-of-
bag training examples to estimate the overall error rate of the final classifier. Because a
point being classified by a Random Forest is passed to each tree in the ensemble, we con-
sider each point as generating a distribution defined by combining the output of each tree
in the forest. PRF performs binary classification by first using Random Forests to gen-
erate three distributions for each prediction: one that represents the point currently being
classified; another that represents the corresponding positive out-of-bag (OOB) training ex-
amples (i.e., those positive OOB examples that are classified by the same leaf nodes); and
a third that represents the corresponding negative out-of-bag samples. Next, PRF classi-
fies by using MPMC to calculate the distance between the distribution generated by the
point being classified and the distributions of the corresponding positive and negative OOB
training examples. If the distribution associated with the point currently being classified is
closer to the negative OOB distribution than to the positive, then it is classified as being
negative - otherwise it is classified as being positive. Finally, the relative distances to these
distributions are used within the Bayes Theorem formulation to give an estimate of how
likely it is that the classification is wrong.

Matlab and C code implementing the PRM algorithm can be downloaded from:
http://ucsu.colorado.edu/∼breitenm/.

2 Probabilistic Random Forests
2.1 Random Forests revisited

Random Forests [5] build an ensemble of CART tree classification predictors using bag-
ging. In addition to using bagging, each node of the trees only considers a small subset of
features for the split, which enables the algorithm to build classifiers for high dimensional
data very quickly. The trees are not pruned and can, therefore, get very large. The accuracy
of these predictors is due to the minimization of the correlation between the classifiers,
while maximizing the strength. Strength is a measure for the ability of a tree to classify
data points correctly. Internal estimates, which are obtained using the out-of-bag examples,
can give estimates for the performance on unseen data as well as estimates for the strength

of each tree, and the correlation between trees. The classification of unseen points is done
by voting. Due to the large number of simple classifiers and the minimized correlation
between the classifiers the error converges toward error rates comparable to Ada-boost [1].
There are variants that split on a random feature or pick the best out of several random
feature subsets by comparing how well the subsets perform on the out-of-bag examples.
Another variant of Random Forests uses random linear combinations of features in the se-
lected feature subset, i.e., the features are randomly weighted with uniformly distributed
random numbers on the interval [−1, 1].

2.2 Mimimax Probability Machine Classification

Binary Minimax Probability Machine Classification (MPMC) is formulated as finding a
hyperplane that minimizes the maximum probability of misclassification [4]. Specifically,
given two random vectors in d dimensional space, u = (u1, ..., ud) ∈ <d symbolizing one
class and v = (v1, ..., vd) ∈ <d symbolizing the other class, drawn from two probability
distributions characterized by mean and covariance matrices, (ū,Σu) and (v̄,Σv), MPMC
finds a hyperplane, aT z = b (where a = (a1, ..., ad) ∈ <d, z = (z1, ..., zd) ∈ <d, b ∈ <),
such that

max
Ω,a6=0,b

Ω s.t. inf
u∼(ū,Σu)

Pr{aT u ≥ b} ≥ Ω ∧ inf
v∼(v̄,Σv)

Pr{aT v ≤ b} ≥ Ω (1)

where the maximum probability of misclassification is given by (1 − Ω). The optimal
hyperplane is found by solving the following optimization problem (see Theorem 2 in
[4]): find a minimum m ∈ < and a ∈ <d as defined below

m = min
a

(
√

aT Σu a +
√

aT Σv a) s.t. aT (ū − v̄) = 1 (2)

Given m and a, the offset b of the MPMC hyperplane is uniquely given by:

b = aT ū −

√

aT Σu a

m
= aT v̄ +

√

aT Σv a

m
(3)

and the probability bound Ω has the form:
Ω =

1

m2 + 1
(4)

In this paper, we use two versions of this MPMC theory. The first is for the one dimensional
case, u = u1 ∈ <, v = v1 ∈ <, and z = z1 ∈ < (i.e., d = 1). Solving equation (2) for this
one dimensional case leads to the following optimal linear MPMC boundary a1z1 = b:

a1 =
1

ū1 − v̄1
(5)

where b is given in (3).
The second version is for the two dimensional case u = (u1, u2) ∈ <, v = (v1, v2) ∈ <,
and z = (z1, z2) ∈ < (i.e., d = 2). Equation (2) has a closed form solution in two
dimensions as well. This involves finding the roots of a fourth order polynomial [11];
however, as we are not interested in the optimal boundary in two dimensional space (see
description of algorithm in Section 2.3), instead of solving the problem in (2), we solve the
following computationally simpler problem:

m = min
a

(aT Σu a + aT Σv a) s.t. aT (ū − v̄) = 1 (6)

Substituting a2 = (1−a1d1)/d2 into m, setting the result to zero and solving for a1 gives:

a1 =
Σu12

d2−d1Σu22
−d1Σv22

+Σv12
d2

2d1Σu12
d2−d2

1
Σu22

−Σu11
d2

2
−Σv11

d2

2
+2d1Σv12

d2−d2

1
Σv22

a2 = (1 − a1d1)/d2

(7)

where d1 = ū1 − v̄1, d2 = ū2 − v̄2, and
∑

u
=

[∑

u11

∑

u12∑

u12

∑

u22

]

∑

v
=

[∑

v11

∑

v12∑

v12

∑

v22

]

Note that it is possible that the hyperplane does not exist, if e.g., d2 = 0.

2.3 Probabilistic Random Forests: Algorithm Description

We consider the standard binary classification problem. The training data exists in some n
dimensional feature space, with the two classes being symbolized by x ∈ <n for one class,
and y ∈ <n for the other class. We assume the training data has the form x1, ...,xNx

and
y1, ...,yNy

, where Nx is the number of training examples from the x class, and Ny is the
number of examples from the y class.
The Probabilistic Random Forest algorithm differs from standard Random Forests in two
ways. First, the split at each node of the tree in the forest is defined by the following
hyperplane:

a1K (fx, f) + a1K (fy, f) − b

{

≥ 0 ⇒ right child node
< 0 ⇒ left child node

(8)

where vector f contains a randomly chosen subset of the n possible feature values for the
point being classified; fx and fy are the corresponding feature values from a randomly
chosen training examples in the x and y classes, respectively; K (fγ , f) = fγ

T f with
γ ∈ {x,y} is a linear kernel; and a1, a2 and b are obtained by setting z1 = K (fx, f), z2 =
K (fy, f) and evaluating equations (7) and (3) using the data at the tree node to estimate
the means and covariance matrices of the two classes (which are defined by (ū,Σu) and
(v̄,Σv) in the previous section). The key characteristic that we use from this formulation
is that each point being evaluated by a tree ti (for i = 1, ...k, where k is the number of trees
in the forest) has a real valued number associated with it at the terminal node as follows:

βi = a1K (fx, f) + a1K (fy, f) − b (9)

These values β1, ..., βk are used for both classification and estimating the probability of
classification error as described below.

The second key difference between PRFs and standard Random Forests is that each termi-
nal node in each tree in the forest has at least two out-of-bag examples from each class,
which are NOT used to construct the tree. The idea is to sample at least one value for each
class from each tree of the ensemble when classifying data. Using two, however, guarantees
that we have additional values to adjust the predictions as described later on. Therefore, we
stop the construction of each tree when adding further nodes would violate this condition.
These out-of-bag examples are mapped to β values using equation 9. Therefore, given an
instance r ∈ <n which is to be classified, we can obtain three sets of real valued outputs:
β = β1, ..., βk corresponding to the terminal node outputs for the point r being classified;
βx = βx

1 , βx
2 , ... which are the outputs of all the x class out-of-bag examples that are classi-

fied by the same terminal nodes as r; βy = βy
1 , βy

2 , ... which are the corresponding outputs
of all the y class out-of-bag examples. Given these three distributions, we classify the point
r using Bayes Rule as follows:

Pr (x′ |β) =
Pr (x′) Pr (β |x′)

Pr (y′) Pr (β |y′) + Pr (x′) Pr (β |x′)
(10)

where Pr(x′|β) is the probability that the point is NOT in class x given the set β; Pr (x′)
is the probability of not being in class x (i.e., the probability of class y); Pr(y′) is the
probability of class x; Pr(β|x′) is the probability of generating the set β assuming the
class is y (i.e., not x); and Pr(β|y′) is the probability of generating the set β assuming the
class is x.

We can estimate Pr(x′) and Pr(y′) simply by counting how many times the two classes
occur in the entire training set. To estimate Pr(β|x′) we use the sets βx and β within
the theoretical framework of the one dimensional MPMC theory defined in equation (5) as
follows. Let ū1 = β̄ be the mean of the β values, and v̄1 = β̄x be the mean of the βx values,
with corresponding variances Σu = V (u1) = V (β) and Σv = V (v1) = V (βx). The
estimates of means are plugged into equation (5) to obtain a1, which is used in equation (2)

along with the variance estimates to obtain the optimal m. This m is plugged into equation
(4) to obtain a bound, which we call Ωx′

, on the separability of the sets βx and β. By
separability, we mean that if a point belongs to one set, what is the minimum probability
of classifying it correctly. If the two sets are statistically identical, points in one set cannot
be separated from points in the other set (i.e., Ωx′

= 0). If they are completely different
statistically, then points in one set are completely separable from points in the other set (i.e.,
Ωx′

= 1). Therefore, we can substitute Ωx′

as an analogue for Pr(β|x′), the probability
that the set β was generated given that the points evaluated were from the class x′. A similar
calculation obtains Ωy′

as the analogue for Pr(β|y′) by using the set βy instead of βx. We
call these analogues, because the following theorem shows that Pr(β|x′) is monotonic in
Ωx′

, but not equal.

Theorem: Assume an infinite set of trees in the random forest, with the correlation, mea-
sured with respect to the outputs βi (see equation (9)) from the terminal node of each
tree, between any two trees being in the range (−1, 1). Assume that each tree has a finite
nonzero strength. Then Pr(β|x′) monotonically increases as Ωx′

increases and Pr(β|y′)

monotonically increases as Ωy′

increases

Proof Sketch: Because the strength of each tree is nonzero, and given that the trees have
finite correlations in the range (−1, 1), then from Theorems 1.2 and 2.3 in [5], it must be
the case that the mean of the values βx, for class x, cannot equal the mean of the values βy ,
for class y. Therefore, there is a nonzero probability that points in y′ can be distinguished
from points in x′ by the MPMC (see Theorem 2 in [4]). Because out-of-bag points are not
used in the construction of a tree, they are unbiased or statistically identical to a group of
points the tree has never seen. Therefore, when a point from the x′ class is classified, the
associated values β have a higher probability of being like βx′

than they do of being like
βx. Therefore, as Ωx′

decreases, Pr(β|x′) must also decrease. If it did not, then as the two
distributions move closer to one another, the probability of them being generated according
to the same process would decrease - leading to a contradiction. The same argument applies
for points belonging to the y′ class. This completes the proof sketch.

A PRF model substitutes these analogues, Ωx′

for Pr(x′|β) and Ωy′

for Pr(y′|β), into
equation (10) to approximate Pr(x′|β) and Pr(y′|β) = 1 − Pr(x′|β). These approxima-
tions are then used to estimate a classification and the corresponding probability of mis-
classification. If Pr(y′|β) > Pr(x′|β), the point is classified as belonging to class x with
the probability of misclassification being Pr(x′|β). Otherwise, it is classified as belonging
to class y with the probability of misclassification being Pr(y′|β). We further use the out-
of-bag examples to calibrate these first-order estimates of the misclassification probability
into final error rate estimates as follows.

For each training example, r, visit each tree, ti, in the ensemble where r was an out-of-bag
example (approximately 33% of the trees). Perform the same steps as described earlier
for classifying test examples. In this case, β is the set of outputs associated with our
out-of-bag example, r, and βx and βy are the outputs from all other out-of-bag examples
(excluding r) that were classified by the same terminal nodes as r. As noted previously,
the process provides a classification for example r and an estimate for the misclassification
probability. Now, we calculate the difference between the actual and predicted error rates
for the out-of-bag examples. This provides a gross adjustment to the predicted error rate for
test examples having similar predictions. In this implementation, we make the adjustment
based on the mean values over prediction intervals. After classifying a set of test points,
we group together points whose predicted misclassification probabilities fall in the same
arbitrary range. Then, using these same ranges, we group the out-of-bag points based on
their predictions. Finally, we adjust the predictions of test points by adding the difference
between the mean actual error rate and mean predicted error rate for those out-of-bag points

that fall in the same interval as the test point. The rationale for using this interval-based
approach to adjusting predictions was two-fold. First, due to the unbiased nature of OOB
examples, those points clasified by the same terminal nodes as a given test point statisticaly
will have both similar predictions and similar error rates. Second, emperical evidence
demonstrated that the error in our first-order approximations of the misclassification rate
was similar for points with similar predictions. In the future, we will likely implement a
method more directly analogous to leave-one-out validation.

Next we give a complete description of how the Probabilistic Random Forest is constructed.

Estimate Pr(x′) and Pr(y′) by counting how many times the two classes occur in the entire
training set. The following steps are repeated for each tree in the ensemble:

1. Create a bag (i.e., a bootstrap sample - N samples taken randomly with replace-
ment - of the training data) of positive and negative examples. The bags are created
separately for each class.

2. Extract all of the examples from the learning set that are not part of the bag. These
are the out-of-bag examples.

3. Grow a decision tree from the bag. At each node pick one point at random from
class x and y. Pick a random subset of features without replacement whose size
is the square root of the dimensionality. Obtain the best split by determining the
decision boundary as defined in equation (8) using the 2D-MPMC method (see
section 2.2), with a kernel function K. Split the learning and out-of-bag examples
according to the obtained decision boundary. Stop growing the tree, if (a) a child
node would have less than two training or OOB examples from either class; or (b)
the decision function does not further seperate the classes. If a node is a leaf in
the tree, compute βx and βy , the real valued outputs of the decision function for
each of the out-of-bag examples of class x and y, and store them with that node.

Classifying a data point is straight forward: traverse each tree and obtain β as well as
βx and βy from the respective terminal nodes of the trees. Compute the classification
and the estimate of misclassification, including the adjustment based on the out-of-bag
performance, as described earlier.

3 Experimental results

Figure (1) presents the key experimental findings of this work. Chiefly, that the algorithm
accurately predicts the error rate for individual regions of the input space. The figure shows
this by comparing the predictions to actual values within five intervals. Intervals were cre-
ated by sorting all of the errors by their associated predictions and dividing at the midpoint
between errors, such that there were an equal number of errors per interval. Diamonds
show the test data error rates before adjustment, circles show the error rates on out-of-bag
examples as described in section 2, and asterisks demonstrate the bottom line efficacy of
the algorithm, which adjusts the first-order predictions according to performance on the
out-of-bag data within the same prediction interval. A perfect prediction would be exactly
along the dashed line. We can see in figure (1) that the adjusted predictions (asterisks)
follow the actual error rate closely.

We evaluated our method on the same five datasets as in [4], and votes as in [5]. The
real-world datasets were downloaded from UCI [12]. Rather than generating the data for
twonorm, we downloaded it from [13]. The features in all datasets were scaled to be within
[−1, 1]. Missing boolean attribute values in votes were replaced with 0.0, resulting in
about 50% of the dataset having some essentially neutral noise. We used the square-root
of the dataset’s dimension for the size of the random feature set, as recommended in [14].
The decision at each branch in the trees was made using a linear kernel. Mean values
are reported from 100 random partitions of the data holding out 10% for testing, with the

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Predicted error rate

A
c
tu

a
l
e

rr
o

r
ra

te

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Predicted error rate

A
c
tu

a
l
e

rr
o

r
ra

te

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Predicted error rate

A
c
tu

a
l
e

rr
o

r
ra

te

Ionosphere Diabetes

Sonar

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Predicted error rate

A
c
tu

a
l
e

rr
o

r
ra

te

Twonorm

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Predicted error rate

A
c
tu

a
l
e

rr
o

r
ra

te

Votes

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Predicted error rate

A
c
tu

a
l
e

rr
o

r
ra

te

Breast Cancer

Figure 1: Diamonds show the test data error rates before adjustment, circles show the error rates on
out-of-bag examples as described in section 2, and asterisks demonstrate the bottom line efficacy of
the algorithm, which adjusts the first-order predictions according to performance on the out-of-bag
data within the same prediction interval.

Dataset PRF MPMCL MPMCG SVML SVMG RF
Ionosphere 80.8 ± .7 % 85.4% 93.0% 87.8% 91.5% 92.9%

Sonar 81.0 ± .9 % 75.1% 89.8% 75.9% 86.7% 84.1%

Breast Cancer 95.9 ± .3 % 97.2% 97.3% 92.6% 98.5% 97.1%

Pima diabetes 69.9 ± .5 % 73.8% 74.6% 70.1% 75.3% 66.9%

Twonorm 96.3 ± .1 % 96.3% 97.2% 95.6% 97.4% 96.1%

Votes 90.2 ± .6 % 95.9%

Table 1: Test set accuracy of the Probabilistic Random Forest (PRF) compared to the linear Minimax
Probability Machine (MPMCL), the Gaussian MPMC (MPMCG), the linear Support Vector Machine
(SVML), the Gaussian SVM (SVMG) (results published in [4]) and Random Forests (RF) (results
published in [5]).

exception of twonorm, where 300 random examples were used for training and 3000 for
testing, per prior work [15]. The forest constructed for each partition consisted of 100 trees.

4 Conclusion
This paper proposes an algorithm (Probabilistic Random Forests, PRM) that estimates data
point dependent misclassification probabilities. The experimental results show that the
estimates are very close to the actual misclassification rates. The method works without
making detailed distributional assumptions or density estimates, and uses only the train-
ing data to generate these probability estimates. The algorithm extends recent methods
that either calculate bounds [4], or estimate [5] misclassification probabilities for all data,
independent of the particular point being classified (but also using only the training data).

Future research will make more extensive use of kernel functions, since the current version
of the algorithm only makes use of linear kernels. We plan to explore ways to automatically
determine a good kernel for each node. Furthermore, we will examine how choosing from
several of the parameters at each node (feature subset as well as the random points for
the two classes), based on their performance on out-of-bag examples, affects the overall
strength of the trees. We have identified and will implement techniques to increase the
accuracy rate to more competitive values. Initial experiments indicate that PRMs can give
state of the art classification accuracy, and excellent estimates of data point dependent
misclassification probabilities.

References
[1] Y. Freund and R. Schapire. A short introduction to boosting. J. Japan. Soc. for Artificial

Inteligence, 14(5):771–780, 1999.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, , and C. J. Stone. Classification and Regression
Trees. Wadsworth Inc., 1984.

[3] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4] G. R. G. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. I. Jordan. A robust minimax
approach to classification. Journal of Machine Learning Research, 3:555–582, 2002.

[5] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[6] C. Hsu and C. Lin. A comparison of methods for multi-class support vector machines. Technical
report, Dept. of Comp. Sci. and IE, National Taiwan University, Taipei, 2001.

[7] L. Bottou, C. Cortes, J. Dcnkcr, H. Druckcr, I. Guyon, L. Jackcl, Y. lc Cun, U. Muller, E. Sack-
ingcr, P. Simard, , and V. Vapnik. Comparison of classifier methods: A case study in handwriting
digit recognition. International Conference on Pattern Recognition, pages 77–87, 1994.

[8] Michael E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of
Machine Learning, 1:211–244, 2001.

[9] Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse gaussian process methods:
The informative vector machine. In Advances in Neural Information Processing Systems, 2002.

[10] T.W. Anderson and R. R. Bahadur. Classification into two multivariate normal distributions
with different covariance matrices. Annals of Mathematical Statistics, pages 420–431, 1962.

[11] T. R. Strohmann, A. Belitski, D. M. DeCoste, and G. Z. Grudic. Sparse Greedy MPM Classifi-
cation. submitted to NIPS, 2003.

[12] C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

[13] The delve project. http://www.cs.toronto.edu/ delve/data/twonorm/desc.html.

[14] Leo Breiman. Random forests readme file.

[15] Leo Breiman. Arcing classifiers. The Annals of Statistics, pages 801–849, 1998.

