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Abstract. We develop a hydroclimatological approach to the modeling of regional shallow landslide initiation
that integrates spatial and temporal dimensions of parameter uncertainty to estimate an annual probability of
landslide initiation based on Monte Carlo simulations. The physically based model couples the infinite-slope
stability model with a steady-state subsurface flow representation and operates in a digital elevation model. Spa-
tially distributed gridded data for soil properties and vegetation classification are used for parameter estimation
of probability distributions that characterize model input uncertainty. Hydrologic forcing to the model is through
annual maximum daily recharge to subsurface flow obtained from a macroscale hydrologic model. We demon-
strate the model in a steep mountainous region in northern Washington, USA, over 2700 km2. The influence
of soil depth on the probability of landslide initiation is investigated through comparisons among model out-
put produced using three different soil depth scenarios reflecting the uncertainty of soil depth and its potential
long-term variability. We found elevation-dependent patterns in probability of landslide initiation that showed
the stabilizing effects of forests at low elevations, an increased landslide probability with forest decline at mid-
elevations (1400 to 2400 m), and soil limitation and steep topographic controls at high alpine elevations and in
post-glacial landscapes. These dominant controls manifest themselves in a bimodal distribution of spatial annual
landslide probability. Model testing with limited observations revealed similarly moderate model confidence for
the three hazard maps, suggesting suitable use as relative hazard products. The model is available as a component
in Landlab, an open-source, Python-based landscape earth systems modeling environment, and is designed to be
easily reproduced utilizing HydroShare cyberinfrastructure.

1 Introduction

In steep mountainous landscapes, episodic shallow land-
slides (generally < 2 m depth; Bordoni et al., 2015) and
landslide-triggered debris flows are often the dominant form
of hillside erosion and a major source of sediment into
streams (Benda and Dunne, 1997a, b; Goode et al., 2012).
Where the landslide processes intersect with human devel-
opment, they cause property damage, disruption of infras-
tructure, injury, and loss of life (Taylor and Brabb, 1986;
Baum et al., 2008a), contribute to sedimentation in reservoirs

(Bathurst et al., 2005), and may even lead to dam failures
(Ghirotti, 2012). Landslides provide punctuated sediment in-
put to streams, affecting stream geomorphology (Benda and
Dunne, 1997a, b) and ecosystem dynamics (Pollock, 1998;
May et al., 2009). Landslide hazard maps are a common tool
used to characterize the relative potential for landslide occur-
rence in space, either qualitatively (using susceptibility lev-
els) or quantitatively (using modeled landslide probabilities)
(van Westen et al., 2006; Raia et al., 2014).
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Our objective is to develop a parsimonious probabilistic
model of regional shallow landslide initiation that can be
implemented with minimal calibration for landslide hazard
mapping using regionally available, spatially distributed in-
put data for soil, vegetation type, topography, and hydrocli-
matology. Based on the literature review presented below, we
propose that a regional landslide hazard model should (1) be
flexible enough to incorporate changes in intrinsic and extrin-
sic conditions, such as vegetation and climate; (2) account
for spatial variability in model parameters and forcings; and
(3) integrate spatial and temporal dimensions of uncertainty
to quantify landslide probability. With these principles in
mind, we develop a hydroclimatological approach to model-
ing regional landslide hazard using the Landlab earth surface
modeling toolkit – an open-source, Python-based earth sur-
face modeling framework that provides flexible model cus-
tomization and coupling (Hobley et al., 2017). Next, we pro-
vide a short literature review that guides the design of our
landslide modeling approach.

1.1 Geomorphology and modeling background

Landslides occur when destabilizing forces due to gravity
and pore-water pressure exceed the resisting forces of fric-
tion and cohesion over a failure plane. These forces are con-
trolled by intrinsic hillslope conditions – including attributes
of topography, such as local slope and upslope contributing
area, and properties of rock, soil, and vegetation root cohe-
sion – and extrinsic drivers of rainfall, snowmelt, and earth-
quakes (Crozier, 1986; Wu and Sidle, 1995; van Beek, 2002;
Naudet et al., 2008). There are three primary components of
a landslide: (1) a source area or landslide scar where the ini-
tial failure begins, (2) a transmission or scour zone, such as a
debris flow channel, and (3) a toe or zone of deposition (Lu
and Godt, 2013).

Landslide susceptibility can be identified through numer-
ous methods, which can be broadly grouped into empirical
methods and process-based numerical models (Hammond et
al., 1992; Wu and Sidle, 1995; Sidle and Ochiai, 2006). Data-
driven empirical approaches relate the number and frequency
of historical landslide observations in a region to triggering
events (Caine, 1980; Crozier, 1999; Glade, 2001), landscape
attributes (Carrara et al., 1995; Chung et al., 1995; Lee et al.,
2007), or a combination of both (Kirschbaum et al., 2012)
using threshold relations and various statistical models such
as logistic regression, fuzzy logic, artificial neural networks,
and a support vector machine (Lee et al., 2007; Pardeshi et
al., 2013; Chen et al., 2014).

Process-based models employ effective stress principles
to characterize the destabilizing and resisting forces under
hydrologic drivers (Iverson, 2000; Montrasio and Valentino,
2016), offering the ability to explore changes in environmen-
tal and climatic conditions, critical for areas with limited
landslide inventories (Pardeshi et al., 2013). Recent process-
based numerical models have largely focused on improving

the characterization of the space–time dynamics of subsur-
face flow as a driver of pore-water pressure (e.g., Baum et al.,
2008b; Raia et al., 2014; Anagnostopoulos et al., 2015; Mon-
trasio and Valentino, 2016). Distributed hydrology models
that use steady-state or transient solutions for subsurface flow
depth were coupled with an infinite-slope stability model that
solves the ratio of stabilizing to destabilizing forces on a fail-
ure plane parallel to the land surface (Montgomery and Di-
etrich, 1994; Miller, 1995; Wu and Sidle, 1995; Pack et al.,
1998; Borga et al., 1998; Casadei et al., 2003; Tarolli and
Tarboton, 2006; Baum et al., 2008b).

Steady-state models assume that, at each point on the
landscape, lateral subsurface flow, driven by the topographic
gradient, is in equilibrium with a steady-state recharge rate
(Montgomery and Dietrich, 1994; Pack et al., 1998). The
degree of soil saturation is predicted proportional to the ra-
tio of upslope contributing area to local slope and a ratio of
watershed recharge and local soil transmissivity, following
TOPMODEL (TOPography based hydrological MODEL)
assumptions (Beven and Kirkby, 1979; O’Loughlin, 1986;
Pack et al., 1998). More recent efforts have focused on the
development of transient flow models in various complexities
by coupling vertical infiltration and redistribution processes
in the unsaturated zone, using the Richards equation for un-
saturated flow (Richards, 1931) or its variants, with lateral
flow parameterizations such as kinematic wave in one and
two dimensions (Iverson, 2000; Casadei et al., 2003; Baum
et al., 2008b; Godt and McKenna, 2008; Raia et al., 2014;
Alvioli et al., 2014; Anagnostopoulos et al., 2015).

While transient flow models have contributed to an im-
proved understanding of the influence of weather forcing and
temporal variability in precipitation on landslide initiation,
they remain tools typically applied for relatively small-scale
assessments (Iverson, 2000; Raia et al., 2014). Transient
models require a large number of hydrologic soil and vegeta-
tion parameters that are highly variable, uncertain, and diffi-
cult to measure or estimate (Godt and McKenna, 2008; Baum
et al., 2008b). In addition, in most steep forested moun-
tains where landslide risk is high, the presence of macro-
pores due to connected root structures, biological activity,
fractures, large clasts, and lenses leads to preferential and
funneled flows that violate the assumptions of most matrix-
flow models (Nimmo, 2005; Sidle et al., 2001; Gabet et al.,
2003; Montrasio and Valentino, 2016; Beven and Germann,
2013). Numerical solutions to flow equations also present a
major computational bottleneck in large-scale applications
for probabilistic quantification of landslide hazard.

While using transient hydrologic models provided slight
improvements in the prediction of landslide locations, over-
all, statistical comparisons of model outputs between steady-
state and transient models revealed fairly similar degrees of
success (Gorsevski et al., 2006; Zizioli et al., 2013; Anag-
nostopoulos et al., 2015; Bordoni et al., 2015; Formetta et
al., 2016). In some applications, model complexity increased
the accuracy of predicted landslide locations at the expense
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of overestimating instability on unsaturated hillslopes (e.g.,
Godt et al., 2008; Bellugi, 2011). In other cases, model pre-
cision increased while accuracy decreased (Gorsevski et al.,
2006).

Data uncertainty due to spatial and temporal variability in
parameters continues to be one of the major challenges in
predicting landslides over broad regions (Crozier, 1986; Si-
dle and Ochiai, 2006; van Westen et al., 2006; Baum et al.,
2014; Anagnostopoulos et al., 2015). Parameter uncertain-
ties can develop from geological anomalies, inherent spa-
tial heterogeneities in soil and vegetation properties and their
changes over time, and sampling limitations (El-Ramly et al.,
2002; Cho, 2007; Baum et al., 2014). Uncertainties in hy-
droclimatic variables, such as precipitation, air temperature,
and resulting hydrologic fluxes, are particularly pronounced
in steep, high mountain regions due to lack of observations
to capture complex atmospheric processes (Roe, 2005; Way-
land et al., 2016). Designating landslide hazard as a proba-
bility, rather than an index, systematically accounts for un-
certainty and variability in stability analysis (Hammond et
al., 1992; Simoni et al., 2008; Arnone et al., 2014) and
more appropriately represents complex systems (Berti et al.,
2012). Recently, some promising advances have been made
in process-based models accounting for data uncertainty in
landslide hazard mapping (e.g., Raia et al., 2014; Arnone et
al., 2016a).

Lastly, most landslide hazard methods disregard a tem-
poral dimension over which landslide probability is defined
(Wu and Sidle, 1995; van Westen et al., 2006). As a result
of this, instead of using estimated probabilities directly in
the form of return periods of observed landslides or expected
values for risks resulting from landslides, models use prob-
ability estimates as relative indices (e.g., Pack et al., 1998)
that can be used for hazard zonation (Pardeshi et al., 2013). A
lack of temporal dimension limits the incorporation of model
results into risk assessments and the decision-making pro-
cesses in high-risk regions.

1.2 Approach overview

We develop a process-based modeling approach for shal-
low landslide initiation that incorporates imprecision and un-
certainty in hydroclimatological forcing, soils, and vegeta-
tion parameters using Monte Carlo simulation. Our approach
aims to develop a spatially continuous probability of land-
slide initiation that can be updated as conditions and trig-
gers change. The model evaluates a factor of safety using
the infinite-slope stability equation on the scale of a grid cell
from a digital elevation model (DEM) through Monte Carlo
simulation and calculates the probability of landslide initia-
tion (Hammond et al., 1992; Raia et al., 2014). A Landlab
component (LandslideProbability) and a model driver that
runs the component are written, and a workflow is developed
for mapping shallow landslide probability. The model driver
and data are deployed on HydroShare (www.hydroshare.

org), an online collaboration environment for sharing data,
models, and code (Horsburgh et al., 2016; Idaszak et al.,
2016), and are made available for cloud computing via the
HydroShare JupyterHub infrastructure using a web browser
(see Sect. 2.5).

In this work we explore the following question using
Landlab and regional landslide observations: how do spa-
tial patterns in hydroclimatology, vegetation, and soil depth
influence shallow landslide initiation over large geographic
scales? We demonstrate our approach in a mountainous re-
gion of Washington, USA. This Pacific Northwest (PNW)
region is naturally susceptible to landslides because of high
and intense rainfall, steep mountains, active tectonics, and
geologic and glacial history (Nadim et al., 2006; Sidle and
Ochiai, 2006). The Oso landslide occurred in the vicinity
of our study area in 2014, resulting in 43 fatalities and over
USD 50 million in economic losses (Wartman et al., 2016).

2 Methodology

2.1 Probabilistic approach to landslide initiation

The infinite-slope stability equation, derived from the Mohr–
Coulomb failure law, predicts the factor of safety (FS) of an
infinite plane from the ratio of stabilizing forces of cohesion
and friction, reduced by pore-water pressure, to destabiliz-
ing forces of gravity (Hammond et al., 1992; Wu and Sidle,
1995). The model as given by Pack et al. (1998) is

FS=
(Cr+Cs)/hsρsg

sinθ
+

cosθ tanφ(1−Rwρw/ρs)
sinθ

(1a)

C∗ = (Cr+Cs)/hsρsg. (1b)

C∗ is a dimensionless cohesion (Eq. 1b) embodying the rel-
ative contribution of cohesive forces to slope stability. When
C∗>1, cohesion is sufficient to hold the soil slab vertically
(Pack et al., 1998). Cr and Cs are root and soil cohesion, re-
spectively (Pa), hs is the soil depth perpendicular to slope
(m), ρs and ρw are saturated soil bulk density and water den-
sity (kg m−3), respectively, g is acceleration due to gravity
(m s−2), θ is slope angle of the ground, and ∅ is soil internal
friction angle (◦). Relative wetness, Rw, is defined as the ra-
tio of subsurface flow depth, hw, flowing parallel to the soil
surface, to hs. Deterministically, a hillslope element is un-
stable if FS < 1 and stable if FS > 1 (Sidle and Ochiai, 2006;
Selby, 1993). When FS= 1, the slope is “just-stable” or in a
state of “limited equilibrium” (Lu and Godt, 2013).

Relative wetness is arguably the most dynamic factor on
short timescales, relating to water table depth and to recharge
rate. Considering that hillslope hydrology is more likely to
attain equilibrium conditions during prolonged wet condi-
tions (e.g., Barling et al., 1994; Borga et al., 2002), a steady-
state representation of subsurface flow is used. It is derived
from local subsurface lateral flow, qs (m2 d−1), represented
by a 1-D (i.e., flow parallel to bedrock) form of the kinematic
wave approximated by Darcy’s law using the topographic
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gradient of hillslope, qs =Kshw sinθ (Wu and Sidle, 1995).
Under a steady-state assumption, lateral flow is in balance
with the rate of water input, qr (m2 d−1), through a uniform
rate of recharge, R (m d−1), defined across the upslope spe-
cific contributing area, a (m), as qr =Ra. This assumption
gives Ra=Kshwsinθ , where Ks is saturated hydraulic con-
ductivity (m d−1). Solving this equation for hw and dividing
both sides by hs gives Rw (Montgomery and Dietrich, 1994;
Pack et al., 1998):

Rw =
hw

hs
=min

(
Ra

T sinθ
, 1

)
. (2)

Here T is local soil transmissivity (m2 d−1), which is depth-
integrated saturated hydraulic conductivity, Ks. For uniform
Ks within the soil profile overlying impermeable bedrock,
T =Kshs. Ground saturates when Rw = 1, the maximum
value for Rw (Montgomery and Dietrich, 1994). These as-
sumptions are appropriate for steep topography to efficiently
characterize wetness over large areas (Tarolli and Tarboton,
2006; van Westen et al., 2006).

A Monte Carlo simulation is used with Eq. (1a) by assum-
ing R, T , C (C = Cr+Cs), hs, and ∅ as random variables
represented by probability distributions (Tobutt, 1982; Ham-
mond et al., 1992). The uncertainty in R is represented us-
ing a dataset of the maximum daily recharge in each year
(e.g., Benda and Dunne, 1997a; Borga et al., 2002; Istanbul-
luoglu et al., 2004). The model includes both spatially uni-
form and spatially distributed options for sampling recharge
(described further in Sect. 2.3). Using sampled random vari-
ables in Eq. (1a), FS is calculated in each model iteration, i,
during the simulation. The annual probability of failure P (F )
and landslide return period (RP) at each grid cell are defined
as (Hammond et al., 1992; Cullen and Frey, 1999)

P (F )= P (FS≤ 1)= n (FS≤ 1)/N (3a)

RP= P (F )−1, (3b)

where n() is the number of conditions met in bracket and N
is the number of iterations. Our model does not predict the
size of a probable landslide at the initiation point, which can
be smaller or larger than the size of a DEM grid. P (F ) gives
a relative propensity that a landslide could initiate within the
grid cell. If some random samples lead to a low deterministic
FS, they contribute to an increase in the P (F ) within that
cell. Sensitivity analysis of the infinite-slope stability model
was shown in the literature (see Sidle 1984; Hammond et al.,
1992).

2.2 Model development in Landlab

Landlab is a Python-based earth surface modeling toolkit
(http://landlab.github.io). It provides a grid architecture, a
suite of pre-built components for modeling surface or near-
surface processes, and utilities that handle data creation,

management, and interoperability among process compo-
nents (Tucker et al., 2016; Hobley et al., 2017; Adams et
al., 2017). The LandslideProbability component is written in
Python and implemented with a model driver (written as a
Jupyter Notebook) using the workflow shown in Fig. 1 of the
component’s user manual (Strauch et al. 2018). The driver
imports Landlab and necessary Python libraries, loads and
processes data, and executes the LandslideProbability com-
ponent on a RasterModelGrid (RMG), which is a Landlab
class for creating raster grid objects. A structured grid is
generated by the RMG class that covers the model domain.
The spatial model parameters and model forcing data are
completed in preprocessing steps outside of Landlab. They
are loaded and stored on grid nodes (the central point of
grid cells) of the RMG as Landlab data fields, composed of
NumPy arrays.

The LandslideProbability component is instantiated by
passing four arguments: the grid, number of iterations,
recharge distribution, and recharge parameters. Once the
component has been instantiated, the component’s method
calculate_landslide_probability() is executed in a for loop
that performs the calculations at each node. An iteration
number in the range of 700 (Malkawi et al., 2000) to > 1200
(Abbaszadeh et al., 2011) was found to be sufficient in the lit-
erature. We used 3000 in this study. At each node the method
generates unique model parameters, and calculates the rela-
tive wetness (Eq. 2) and FS (Eq. 1a) for each iteration. At
the end of the iterations, the probability of saturation and the
probability of failure are calculated at each node.

Slope angle and specific contributing area are static pa-
rameters derived from a DEM in preprocessing steps. To-
tal cohesion, C (i.e., Cr+Cs), ∅, hs, and T are treated as
random variables following a triangular distribution speci-
fied with three parameters (minimum, mode, and maximum)
(Cho, 2007; Dou et al., 2014). Options for user-provided T
or Ks are accepted by the component; although comparisons
of resulting landslide probabilities were found to be simi-
lar given that the value of T was derived from hs. Triangu-
lar distributions give weight to the most likely value (i.e.,
mode) and have been proposed in other Monte Carlo simu-
lation studies for slope stability (Hammond et al., 1992; El-
Ramly et al., 2002; Strenk, 2010).

Mode parameters of the triangular distribution used for all
soil and vegetation parameters are developed as raster grids
as part of preprocessing steps, loaded to Landlab, and as-
signed to nodes of the RMG (Fig. 1). For root cohesion we
used vegetation types from the National Land Cover Data
(NLCD) (Jin et al., 2013; USGS, 2014b), with a lookup table
for cohesion obtained from the literature (Table 1). Only for
cohesion are minimum and maximum parameters also pro-
vided as raster grids to represent distributed variation with
vegetation. The Gridded Soil Survey Geographic Database
(SSURGO) (DOA-NRCS, 2016) is used to assign ∅, hs, and
T (see Sect. 3.2.1 for details). The current model design as-
sumes negligible correlation between C and ∅ as assumed
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Model	  driver	  
• Import	  Landlab	  and	  Python	  libraries
• Establish	  RasterModelGrid	  (e.g.,	  read	  in	  

esri	  ascii	  DEM)	  as	  “grid”
• Load	  data	  and	  add	  data	  fields	  to	  grid
• Set	  boundary	  conditions	  
• Set	  iteration	  number
• Specify	  recharge	  method	  and	  data
• Instantiate	  and	  run	  component:	  

-‐ LandslideProbability(grid,	  iteration,	  recharge)
-‐ calculate_landslide_probability()

• Export	  and	  visualize	  data

RasterModelGrid	  (RMG)
• Set	  model	  domain	  using	  DEM
• Boundary	  condition	  handling
• Stores	  topology	  and	  data	  structures

Component:	  LandslideProbability
• LandslideProbability
• Loop	  through	  nodes

-‐ generate	  parameter	  distributions
-‐ calculate_landslide_probability()

Model	  input	  fields

Source	  tracking	  algorithm	  (STA)
• Route	  recharge	  from	  HSD	  on	  RMG
• Python	  dictionaries	  for	  recharge	  	  	  

DEM Soil:
SSURGO	  

Land	  
cover:	  
NLCD

Hydr.	  source	  
domain	  (HSD):

VIC

TauDEM	  
processing:	  a,	  ϴ

Assign	  parameters:
C,	  Æ,	  T,	  hs, R

ASCII	  format
nrow,	  ncol,	  value

Landlab

Figure 1. Workflow for landslide modeling using the Landlab LandslideProbability component. The user creates input parameter fields
(purple box). The model driver (gray) imports Landlab, Python libraries, and model parameter fields; instantiates (i.e., creates an instance of)
the RasterModelGrid and the component; and runs utilities and the Landlab component (blue boxes inside dashed box).

in other studies (e.g., Abbaszadeh et al., 2011; Arnone et
al., 2016a). Other spatial soil and vegetation datasets can be
used in the preprocessing of the model. Exposed bedrock and
glaciated surfaces can be excluded from the model domain
by the user.

In each Monte Carlo iteration, we use the annual maxi-
mum daily recharge, R, which represents a steady-state uni-
form recharge rate defined for the upslope contributing area
of each RMG node. Local recharge (i.e., the flux of water
entering the saturated zone) within the upslope contributing
area of RMG nodes can be incorporated from a variety of
grid resolutions from hydrologic models, referred to as a hy-
drologic source domain (HSD). A source tracking algorithm
(STA) is developed that uses spatially variable recharge data
from an HSD, resampled to the grid resolution of slope sta-
bility calculations, and routes local recharge in the down-
stream direction following the steepest descent until a target
cell is reached. Then it calculates the spatially averaged up-
slope recharge for each node of the RMG, used as R in the
model. STA is described in more detail in the component’s
user manual (see Strauch et al., 2018).

Four options for sampling R are provided for Monte Carlo
simulation at each node, identified in the model driver by
selecting a probability distribution: uniform, lognormal, log-
normal_spatial, and data_driven_spatial. The first two op-
tions assign spatially uniform random variables of R across
the whole model domain with respective parameters of mini-
mum and maximum and mean and standard deviation. The

latter two spatial options are designed to represent spatial
variability in R, constructed based on the statistics of annual
maximum R obtained from an HSD using the STA utility.
The lognormal_spatial option assigns mean and standard de-
viation of R at each node derived from the modeled R data,
while the data_driven_spatial option uses a nonparametric
sampling approach to sample from the cumulative distribu-
tion of R data produced for each node of the RMG. In this
regional application of the landslide component, the Variable
Infiltration Capacity (VIC) macroscale (1/16◦ or 5× 6 km
grid cell) hydrology model is used as HSD (Liang et al.,
1994).

2.3 Hydrologic data processing

A key aspect of the regional landslide modeling approach is
the linking of landslide hazard to hydroclimatological forc-
ing on regional scales. The Landlab LandslideProbability
component is written with the capability to accept input from
hydrologic model outputs, such as the VIC macroscale hy-
drologic model (Liang et al., 1994) we demonstrate in this
paper. VIC is semi-distributed, predominantly physics-based
macroscale hydrology model that characterizes elevation-
dependent differences in regional precipitation and temper-
ature and their influence on recharge through regulating rain
on snow, snow accumulation and snowmelt, evapotranspira-
tion, and soil moisture (Hamlet et al., 2013).
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The steady-state subsurface model coupled with the
infinite-slope stability equation in our model requires a
steady-state recharge rate as input. Recharge refers to the
input of water to subsurface flow from precipitation and
snowmelt less evapotranspiration and soil storage. In a VIC
model simulation, this condition can be obtained by adding
base flow and surface runoff. Observations and model exper-
iments suggest that widespread landslides are usually asso-
ciated with the largest rainfall events (e.g., Page et al., 1994;
Gorsevski et al., 2006). To characterize when the ground is
likely to be the most saturated each year, daily base flow and
surface runoff are summed at each VIC grid cell to repre-
sent daily recharge (mm d−1) and the annual maximum daily
value is selected for each year of the dataset, similar to others
(e.g., Benda and Dunne, 1997a; Borga et al., 2002; Istanbul-
luoglu et al., 2004). To obtain a steady-state average recharge
rate in the upslope contributing area of each RMG, the Land-
lab STA utility is used (see Sect. 2.2. of this paper and Fig. 1.
of Strauch et al., 2018)

2.4 Soil evolution model

Soil depth controls the temporal and spatial patterns of land-
sliding over geomorphic timescales and is considered one of
the most significant variables controlling the FS stability in-
dex, especially at depths less than 1.5 m (Benda and Dunne,
1997a; Istanbulluoglu et al., 2004; Catani et al., 2010; Sidle
and Ochiai, 2006). Soil depth can vary in space and time as a
function of weathering and sediment transport in relation to
climate, lithology, topographic position, and vegetation cover
(Dietrich et al., 1995). Despite its fine grid resolution, the
SSURGO database (DOA-NRCS, 2016) only broadly cap-
tures topographic controls on soil depth and reflects existing
conditions in the field based on soil surveys. In an attempt
to improve the representation of spatial granularity and lo-
cal uncertainties of soil depth, a soil evolution model is used
(Dietrich et al., 1995; Simoni et al., 2008; Pelletier and Ras-
mussen, 2009; Tesfa et al., 2009; Bellugi et al., 2015). The
model is run to develop time series of soil depth from which
triangular distribution parameters for soil depth (mode, mini-
mum and maximum) can be obtained and used in the Landlab
LandslideProbability component.

In the soil evolution model, a change in soil depth is mod-
eled as the annual sum of local soil production, divergence
of sediment flux due to soil creep, and soil removal by land-
slides (e.g., Tucker and Slingerland, 1997; Heimsath et al.,
1997; Braun et al., 2001; Istanbulluoglu et al., 2004; Nicótina
et al., 2011). The rate of soil production is related exponen-
tially to local soil depth (Heimsath et al., 1997). Soil creep
is linearly related to local elevation gradient (e.g., McKean
et al., 1993). Soil removal by landslide initiation is mod-
eled with the infinite-slope stability equation, implemented
with representative parameters (Table 2). When FS≤ 1, soil
is removed to bedrock by setting it to a very small value
(0.005 m). In each model iteration, C and T were randomly

sampled and used in the FS Eq. (1a). Calibration of the soil
evolution model is done by adjusting soil production rate and
hillslope diffusivity parameter to obtain long-term soil loss
consistent with long-term regional erosion rates. Details on
model application and the utilization of model outputs are
presented in Sect. 4.1.2.

2.5 Reproducibility

To publish a reproducible version of this research, we used
the HydroShare (www.hydroshare.org) cyberinfrastructure
platform, designed for reproducing, reusing, and sharing
models (Tarboton et al., 2014; Horsburgh et al., 2016; Morsy
et al., 2017). Steps that supported reproducibility included
using the HydroShare sharing settings with a workflow that
started with Private while data and models were developed,
Discoverable while research was being shared with col-
leagues for review, and Public, once our results were ac-
cepted for publication. We used the Select a license function
to add NonCommercial (NC) use to our Creative Commons
license. We made use of the Groups social collaboration, by
making early versions of our research results available to in-
vited participants of workshops and tutorial demonstrations
to our Landlab group in HydroShare. The data and model are
accessed by launching Jupyter Notebooks that access Land-
lab installed on JupyterHub servers at the National Center for
Supercomputing Applications (Yin et al., 2017; Castranova,
2017). HydroShare features enable our current and future re-
searchers to use the Copy Resource function to replicate our
published resource (i.e., the landslide model) in their own ac-
count with Derived from metadata that reference back to the
published resource DOI, to serve as a starting point for their
work. The Supplement provides instructions on how to ac-
cess HydroShare and run a Jupyter Notebook that reproduces
portions of the application below.

3 Model application

3.1 Study area

The model described above is applied within the geograph-
ical limits of the North Cascades National Park Complex
(NOCA) in the state of Washington, USA, managed by the
US National Park Service (Fig. 2). In recent decades, NOCA
has experienced damaging and disruptive landslides that have
impacted infrastructure and the public. Furthermore, the park
area is covered by a recent soil survey between 2003 and
2009, including field investigation (DOA-NRCS and DOI-
NPS, 2012), and has a complete map of mass wasting pro-
cesses visually observed in the field (Riedel and Probala,
2005). The application is designed to demonstrate the po-
tential capability of the Landlab LandslideProbability com-
ponent using existing data in a real setting and to provide a
site-specific stability analysis for landslide susceptibility for
NOCA land management.

Earth Surf. Dynam., 6, 49–75, 2018 www.earth-surf-dynam.net/6/49/2018/

www.hydroshare.org


R. Strauch et al.: A hydroclimatological approach to predicting regional landslide probability 55

Table 1. Parameters defined for vegetation and soil types in the study region. For spatially continuous variables T and hs obtained directly
from SSURGO, values represent spatial statistics.

Variable Minimum Mode (Mean) Maximum

Root cohesion (kPa)

Barren/developed 0.03 0.10 0.15
Forest (coniferous) 3 10 20
Shrubland 1.2 4 10
Herbaceous 0.6 2 5

Internal angle of friction (◦)1

Loamy sand 26.2 32 42.2
Sandy loam 28.7 35 46.2
Developed areas (loamy, sandy) 28.7, 31.2 35, 38 46.2, 50.2

Transmissivity (m2 d−1)2 0.42 (3.39) 16.4
Soil depth (m)2 0.09 (0.62) 2.01

1 Developed areas within the two soil types have mode values 3◦ larger due to compaction. 2 Values
for the continuous variables transmissivity and soil depth represent the minimum, mean, and
maximum for spatial statistics for the study area, not individual soil map units.

Table 2. Model parameters used in the soil evolution model.

Parameter Value Units

h(initial) – initial soil depth 0.01 m
α – rate of exponential decay with depth 3 m−1

Po – soil production rate from exposed bedrock1 0.0005 m yr−1

Kd – linear hillslope diffusion coefficient1 0.01 m2 yr−1

ρr / ρs – rock to soil density1 2.65/2 (–)
Ks – saturated hydraulic conductivity 7 m d−1

∅ – internal angle of friction 35 ◦

Root cohesion2 Varies kPa
Recharge (mean and coefficient of variation)3 32, 0.35 mm d−1

1 Model parameters are derivative of those described in Heimsath et al. (1997) and
Istanbulluoglu et al. (2004). 2 Root cohesion varied by vegetation type based on Table 1 and soil
cohesion was assumed to be 0. 3 Recharge determined from average values found at four
representative VIC grid cells within NOCA.

NOCA is approximately 2757 km2, with 93 % wilderness,
where motorized or mechanized devices are not allowed
(DOI-NPS, 2012), which is ideal for studying naturally trig-
gered landslides. The elevation ranges from about 100 to
2800 m (Fig. 2a). The terrain is composed of rock slopes
at the highest elevations, short (< 100 m) soil-mantled hill-
slopes, and landslides upslope of relatively straight debris
flow channels connected to the fluvial system. Over 300
glaciers occupy mountain peaks in NOCA. The influence
of the Pacific Ocean, approximately 80 km to the west, pro-
vides a humid temperate climate. However, the north–south-
oriented Cascade Mountains create an effective orographic
climate boundary, separating a wetter west side from a drier
east side. Reported mean annual precipitation ranges from
about 708 mm at the low elevations of the eastern slopes
to 4575 mm at the highest mountain elevations west of the

Cascade crest, with about 70 % falling in November through
March (Fig. 2b). This spatial precipitation gradient is the re-
sult of orographically enhanced precipitation that leads to a
strong rain shadow (Roe, 2005). Average annual air tempera-
tures range from−2 to 11 ◦C, depending on elevation (DOA-
NRCS and DOI-NPS, 2012).

In this study vegetation classes were grouped into herba-
ceous, shrubland, and forest using the 2014 NLCD data,
based on the land-use–land-cover (LULC) classification of
2011 Landsat satellite imagery (Jin et al., 2013; USGS,
2014b). Other LULC types include water, wetland, snow/ice,
barren, and developed (e.g., roads, campgrounds), covering
about 13 % of NOCA. Based on this classification, forest,
shrubland, and herbaceous vegetation represent 58, 17, and
12 % of the park, respectively. Elevation ranges for these
vegetation classes are from 106 to 2363 m (forest), 110 to
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Figure 2. NOCA in northern Washington state, USA: (a) a 30 m
DEM of the domain overlain by debris avalanches and major water
bodies; (b) slope derived from DEM; and (c) mean annual precipi-
tation (1981–2010 average) mapped at 800 m resolution from the
Parameter-elevation Relationships on Independent Slopes Model
(PRISM; Daly et al., 2008).

2465 m (shrubs), and 121 to 2759 m (herbaceous), showing
vegetation coexistence.

The park geology is composed of a complex mosaic that
includes mostly faulted and folded sedimentary and volcanic
rocks on the west side, unmetamorphosed sedimentary and
volcanic rock on the eastern edge, and highly squeezed and
recrystallized metamorphic rock originating from great depth
in the middle (Haugerud and Tabor, 2009). Alpine and con-
tinental glaciation, along with rivers and mass wasting pro-
cesses linking peaks with rivers, created the landscape. The
glaciers eroded U-shaped valleys with steep valley walls
prone to landslides and flat valley floors with gravel-bed
rivers. The lower ends of many valleys on the east side with
lower precipitation were not covered in alpine glaciers and
have narrow, winding V-shaped canyons and steep, narrow
rivers.

A park-wide landform mapping study identified six dif-
ferent types of mass wasting landforms: rock fall/topple,
debris avalanche, debris torrent, slump/creep, sackung, and
snow avalanche-impacted landforms (Riedel et al., 2015).
Mass wasting landforms were identified using 1998 aerial
photos on a scale of 1 : 12 000, 7.5 min topographic maps,
bedrock geology maps, and field investigations. The mini-
mum mapping unit was approximately 1000 m2, except for a
few smaller slump units. In this study, we only used mapped
debris avalanches for model confirmation as they often initi-

ate by a shallow landslide. Debris avalanches typically rep-
resent a mixture of failed rock and debris. Their mapping in-
cluded polygons that combine head scars, transport and scour
channels, and deposition zones in a single polygon (Fig. 3a).
We extract the highest 10 % of the elevations in the mapped
debris avalanche polygons as landslide source areas through
comparison to aerial imagery (Tarolli and Tarboton, 2006).
This analysis located 75 % of landslide source areas at inter-
mediate elevations from 1200 to 2000 m in NOCA (Fig. 3b).

Some areas in mountainous regions are covered by
glaciers, permanent snowfields, and exposed bedrock, which
are unsuitable locations to model landslides with the infinite-
slope model (Borga et al., 2002). These landforms as well
as wetlands and other water surfaces are excluded from our
modeling domain. The total area excluded from the stability
analysis accounts for about 21 % of NOCA’s land area.

3.2 Model input fields

We used a grid resolution of 30 m from the National Ele-
vation Dataset (NED) (USGS, 2014a). Evaluation of model
performance was intended at this resolution for regional
modeling as NASA’s Shuttle Radar Topography Mission
(SRTM) DEM is available globally at a 30 m resolution
(USGS, 2017). The minimum mapping unit used for land-
slides is 30 m for NOCA (Riedel et al., 2015). Slope
(S = tanθ ), total curvature (Curv) (i.e., both planar and pro-
file), and contributing area (CA) attributes were derived from
the DEM (Fig. 2a).

3.2.1 Vegetation and soil parameters

Vegetation classes are obtained from the NLCD at a 30 m
resolution (Jin et al., 2013; USGS, 2014b). Parameters of a
triangular distribution for C,∅, T , and hs are provided in Ta-
ble 1. In our case study, C represents root cohesion. Soils
across the study domain are assumed cohesionless, due to
low clay content (< 10 %) in this mountain substrate with
large clasts (Kulhawy and Mayne, 1990). Estimating root co-
hesion is challenging because of temporal and spatial vari-
ability in root density and size, differential breakage or pull-
out mechanisms, interaction among roots, and difficulty in
measuring on a field scale (Pollen and Simon, 2005; Schwarz
et al., 2013). We developed spatial coverages for minimum,
mode, and maximum C for NOCA by relating vegetation
classes with corresponding published C values in the lit-
erature (Table 1), where field observations suggest a right-
skewed distribution (Hammond et al., 1992; Schmidt et al.,
2001; Gabet and Dunne, 2002; Hales et al., 2013). Based
on ranges available in the literature, we selected a mode
value as a commonly reported value, a minimum parameter
as 30 % of the mode, representing death and loss of produc-
tivity (Sidle, 1991, 1992), and a maximum near the highest
reported value for C. Forest have higher C than shrubland
because of the greater root area and deeper roots (Arnone et

Earth Surf. Dynam., 6, 49–75, 2018 www.earth-surf-dynam.net/6/49/2018/



R. Strauch et al.: A hydroclimatological approach to predicting regional landslide probability 57

Figure 3. (a) Example debris avalanches (cyan) mapped in three areas within NOCA. Contours are in 100 m intervals. Aerial images are from
World Imagery, Esri Inc. (images created using ArcGIS

®
software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and

are used herein under license. Copyright Esri©. All rights reserved. For more information about Esri® software, please visit www.esri.com.).
(b) Elevation distribution of the relative frequency of mapped debris avalanche source areas (upper 10 %). (c) High-elevation rock and glacier
surrounding Spiral Glacier in the North Cascades showing a bedrock glacier cirque with thin barren soils and moraine deposits (photo by
John Scurlock, used with permission).

al., 2016b). SmallC values are assigned for barren and devel-
oped land uses (∼ 14 % of the domain) having minimal veg-
etation. Mode values of C mapped over NOCA are shown in
Fig. 4b. Forest communities of the valley bottom and lower
valley walls show high values of C, which declines as veg-
etation transitions from forests to shrublands to herbaceous
communities with increasing elevation.

In order to investigate the contribution of soil depth to
mapping landslide probability, we developed and used two
alternative soil depth products: one based on SSURGO and
another based on a soil evolution model. The nationally
available SSURGO database maintained by the Natural Re-
sources Conservation Service (NRCS) is a readily available
data source that includes data on depth to restrictive layer
(DOA-NRCS, 2016), which we used to specify the mode
of soil depth (Fig. 4c). Using the Soil Data Viewer of Esri
ArcGIS (DOA-NRCS, 2015a), the weighted-average aggre-
gation option is used to extract soil depth within each soil
map unit (DOA-NRCS and DOI-NPS, 2012). SSURGO soil
depth (SSURGO-SD) is uniform for each soil map unit and
thus lacks finer-scale spatial heterogeneity and creates edge
incongruities (Fig. 4c), a limitation identified previously for
landslide modeling (Bordoni et al., 2015). A more spatially

heterogeneous soil depth map is developed using the output
of a soil evolution model.

SSURGO-SD represents the recent conditions in soil
depth. The difference between the actual soil depth in the
field and the SSURGO-reported soil depth will likely be as-
sociated with the limited number of soil depth measurements
used to develop SSURGO maps, measurement errors, and
spatial interpolation assumptions. In addition, for the loca-
tions that have already produced landslides before SSURGO
mapping, we assume that the maximum value of the triangu-
lar distribution represents the soil depth prior to a landslide.
To represent uncertainty, minimum hs is assumed to be 70 %
of the mode and maximum hs adds 10 % to the mode value.
These values give a left-skewed triangular distribution, com-
monly observed for soil depth (Hammond et al., 1992). The
selected skewed distribution was confirmed by the soil evo-
lution model discussed in Sect. 4.1.2.

Transmissivity is derived as the product of weighted-
average aggregated Ks of all soil layers above the restric-
tive layer and hs for each soil map unit (DOA-NRCS,
2015a). Similar to hs, this T value was considered the mode
(Fig. 4d), and the minimum and maximum values needed
for an asymmetrical triangular distribution were calculated

www.earth-surf-dynam.net/6/49/2018/ Earth Surf. Dynam., 6, 49–75, 2018

www.esri.com


58 R. Strauch et al.: A hydroclimatological approach to predicting regional landslide probability

Figure 4. NOCA maps for (a) LULC classified from USGS (2014b), (b) root cohesion based on LULC, (c) soil depth from SSURGO, and
(d) transmissivity based on SSURGO soil depth. Mapped values in (b) through (d) represent the mode values used in triangular distribution
for Monte Carlo simulations. Inserts show zoomed-in area with 100 m contours.

as Tmin = Tmode−0.3 ·Tmode and Tmax = Tmode+0.1 ·Tmode.
Closely related to soil depth, T is high in valley bottoms as
well on plateaus because of deeper soils; thus, more water
can move through the soil when saturated (Fig. 4d). T is low
in the thin veneer soils below retreating glaciers as well on
steeper side slopes.

The percentages of sand, silt, and clay for each soil map
unit in NOCA were derived from SSURGO data using Soil
Data Viewer (DOA-NRCS, 2015b). This revealed largely
sandy loam or loamy sand soil textures, based on the USDA
classification, across the NOCA. These soil textures corre-
sponded to Unified Soil Classification System (USCS) soil
types silty sand and well-graded (diverse particle size) fine to
coarse sand, respectively. Reported ∅ values for these USCS
soil types were assigned as the mode of ∅, ∅mode used in tri-
angular distribution. The developed land cover type was as-
signed an additional 3◦ to the mode to compensate for higher
soil density from development activity, such as compaction
(Sidle and Ochiai, 2006). Given the mode and ranges of ∅ for
these soil types, minimum and maximum ∅ were calculated
to generate right-skewed distributions for both soil types as
∅min = ∅mode−0.18·∅mode and ∅max = ∅mode+0.32·∅mode,

based on a literature review (i.e., Table 5.5 in Hammond et
al., 1992, and Table 5.2 in Selby, 1993). The soil and wa-
ter density terms in Eq. (1a) were assigned a constant value
of 2000 and 1000 kg m−3, respectively, similar to Pack et
al. (2005). The factor of safety has been found to be insen-
sitive to soil density (Hammond et al., 1992; Lepore et al.,
2013).

3.2.2 Model recharge

We used existing VIC model runs for the PNW region de-
veloped through the Columbia Basin Climate Change Sce-
narios Project (Elsner et al., 2010; Hamlet et al., 2013). The
project developed a calibrated implementation of VIC (1/16◦

or 5× 7 km grid resolution) covering the Columbia River
basin in Washington to produce validated historical hydro-
logic simulations (water years 1916–2006) driven by spa-
tially interpolated daily station observations of temperature
and precipitation (Hamlet et al., 2013). Archived model out-
put at a daily time step includes gridded base flow and runoff.
Hydrologic simulations using VIC have also been run for
all of the contiguous United States (CONUS) (data avail-
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able from Livneh et al., 2013, 2015). We determined the
maximum daily recharge for each year to generate a 91-year
long time series to characterize the wettest ground saturation
conditions for shallow landsliding. Modeling with maximum
recharge provides an indicator of individual storm events that
typically trigger shallow landslides (Lu and Godt, 2013), al-
though lesser amounts of recharge may also be sufficient
to trigger landslides in some locations. The average annual
maximum daily recharge over NOCA is about 35 mm d−1

(±15 mm d−1), ranging from a low of 7 mm d−1 along the
eastern edge of the park to a high of 79 mm d−1 on the west-
ern edge and at higher elevation peaks.

4 Results and discussion

4.1 Geomorphic analysis and soil evolution

Understanding the spatial distribution of dominant geomor-
phic processes can aid the development of landslide hazard
maps consistent with geomorphic theory. In this section, we
discuss the mapping of dominant processes on the landscape
on the slope and area domain and explore the proposed soil
evolution model to develop modeled soil depth maps.

4.1.1 Investigation of process domains

Hillslope diffusion, landslide, debris flow, and fluvial trans-
port processes leave unique imprints on landforms, man-
ifested in the slope-contributing area (S–CA) domain as
different scaling relationships (Montgomery and Dietrich,
1992; Tucker and Bras, 1998; Montgomery, 2001; Stock
and Dietrich, 2003; Tarolli and Dalla Fontana, 2009). The
infinite-slope factor-of-safety model is only applicable to the
initiation of landslides. Therefore, hazards associated with
debris flow scour and deposition cannot be predicted by this
model. We used a S–CA plot and the infinite-slope stability
theory to (1) identify process domains and limit the analysis
of the landscape to slopes where there is shallow landslide
potential, (2) evaluate observations of debris avalanches to
identify landslide source areas, and (3) infer plausible ranges
of the infinite-slope stability model parameters to corroborate
those we compiled from the literature for NOCA (Table 1).

Our geomorphic analysis was based on plotting, on a log–
log scale, S (as tan(θ ) and CA pairs of each DEM grid cell
in NOCA, cells within mapped debris avalanches (includ-
ing depositional areas), and the most likely source areas of
landslides identified as the single highest-elevation grid cell
within each mapped debris avalanche (Fig. 5). The general
trend in the S–CA relationship is acquired for all grid cells
of NOCA as well as debris avalanche (DA) cells by binning
the data with respect to CA and calculating the mean S for
each CA bin. The negative linear relation in the log–log plot
suggest a power-law scaling in the form of S∼CA−B where
B is the slope of the S–CA relation on the log–log domain,
which reflects channel longitudinal profile concavity. Con-
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Figure 5. Slope-contributing area (S–CA) log–log plot for North
Cascades National Park Complex. Mean S for bins of CA are indi-
cated by blue dots and cyan dots for all cells and debris avalanche
(DA) cells, respectively. DA source cells (orange triangles) are the
single highest-elevation grid cell within mapped debris avalanches
(gray). Horizontal slope stability curves plot the solution of S
(Eqs. 1a and 2) as a function of CA, given FS= 1, R/T = 0.0005,
∅= 34◦ and select values of dimensionless cohesion, C∗; S for
horizontal line portion (fully saturated regions) are labeled in ◦ for
ease of understanding. Above each curve landscape is unstable for
a given C∗. Saturation line (red curve) separates partially saturated
areas (left) from saturated areas (right). Blue vertical lines divide
the plot into geomorphic process domains in relation to CA of the
landscape (e.g., Montgomery, 2001). Cyan horizontal line at 17◦

generally separates potential landslide dominated areas from fluvial
dominated areas.

cavity is generally associated with fluid-driven processes,
while the degree of concavity is tightly related to the nonlin-
earity of fluvial transport with respect to S and CA (Roering
et al., 1999; Montgomery, 2001; Stock and Dietrich, 2003;
Istanbulluoglu, 2009). Based on the scaling transitions that
mark changes in concavity, process domains interpreted in
Fig. 5 are (1) a hillslope zone where slope-dependent pro-
cesses such as dry ravel and soil creep dominate, leading to
convex slopes, (2) a landsliding zone where pore-pressure-
driven slope failures introduce concavity as landslides arise
with shallower slopes as recharge CA grows, (3) a debris flow
or saturated landslide zone in headwater channels, where
mass wasting processes in saturated ground evolve into high-
concentration transport (Iverson et al., 1997), and (4) a fluvial
region (Montgomery and Foufoula-Georgiou, 1993; Tucker
and Bras, 1998). Debris-flow-dominated slopes were shown
to exhibit reduced concavity relative to channels and pore-
pressure-driven landslide zones in the S–CA domain (Mont-
gomery and Foufoula-Georgiou, 1993; Tucker and Bras,
1998; Stock and Dietrich, 2003).

A threshold CA of approximately 1 km2 and a slope
threshold of θ = 17◦ generally separates colluvial mass wast-
ing and debris transport processes from fluvial processes
(Fig. 5; see also Legg et al., 2014). Nearly all grid cells
within mapped debris avalanches plot to the left of the 1 km2
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dashed line. An average θ value of 17◦ may also corre-
spond to a low end of a slope threshold for landsliding.
Fully saturated cohesionless soils are unconditionally sta-
ble at tan(θ )≤ 1/2tan(∅) (i.e., half of ∅), assuming a ratio
of water to saturated soil density of 0.5 (e.g., Montgomery
and Dietrich, 1994). Solving for ∅ when θ = 17◦ gives 34◦,
generally consistent with selected ∅ values from soil tex-
ture (Table 1) (Hammond et al., 1992). Approximately 85 %
of NOCA landscape lies above θ > 17◦, suggesting a dom-
inant role of mass wasting processes in this landscape. We
included areas above this slope threshold in our landslide
model domain.

The red saturation curve is calculated as aR/T , where
R/T is calibrated to 0.0005 m−1 (e.g., a/sinθ = 2000 m) to
capture most landslide source cells (left of curve) and a scal-
ing break in the binned S–CA plot (Fig. 5). The saturation
curve partitions the landscape into partially saturated (left)
and saturated (right) areas, which generally delineates the S–
CA pairs separating landsliding from debris flow tracks that
form under full soil saturation. For a T = 10 m2 d−1, R is
5 mm d−1, which is within the range of the lowest maximum
annual modeled recharge values in most of the study area, in-
dicating that the plotted saturation line could reasonably map
regions that experience saturation annually.

The three lines stacked vertically (i.e., cyan, green, and
pink) plot the solution of S in the infinite-slope stability equa-
tion (Eqs. 1a and 2) as a function of CA, and given FS= 1,
R/T = 0.0005 and ∅= 34◦ and select values of dimension-
less cohesion, C∗. Conditioned on the C∗ value, slopes that
plot above the S–CA solution are unstable. Consistent with
the binned S–CA data, the solution of the infinite-slope sta-
bility equation curves down as a function of CA, and fol-
lowing soil saturation, a constant instability S threshold is
reached. Root cohesion is approximately 6 kPa for C∗ = 0.3
(middle green line) and 12 kPa for C∗ = 0.6 (upper pink
line), assuming a soil depth of 1 m and cohesionless soil.
These root cohesion values are reasonable for shrub and ma-
ture forest vegetation found in the literature (Table 1) and
they facilitate stability with steeper slopes. When C∗ = 0
(bottom cyan line), landslides initiate at lower slopes than
when cohesion is greater. This solution also envelops the low
slope end of nearly all landslide source S–CA pairs identi-
fied from debris avalanche data. Only a small portion of the
unstable areas plot above the C∗ = 0.6 solution of Eq. (1a),
which implies areas with higher root cohesion.

4.1.2 Modeled soil depth

We ran the soil evolution model described in Sect. 2.4 at
a population of representative topographic conditions and
vegetation types (forest, shrub, herb) instead of running the
simulations over the whole study domain. Capitalizing on
the S–CA analysis (see Sect. 4.1.1), local θ (◦), CA, and
Curv triplets in each of the CA bins are used from the land-
scape dominated by colluvial transport processes (θ > 17◦

and CA≤ 1 km2). In order to further classify landscapes
within each CA bin, θ and Curv pairs are grouped into shal-
low (θ ≤ the 10th percentile θ ), moderately steep (between
10th and 90th percentiles of θ ), and steep (θ ≥ the 90th per-
centile θ ) slope classes. Within each class, θ and Curv are
averaged. This led to 53 triplets used for the soil evolution
model, with the assumption that landslides do not signifi-
cantly change local θ and Curv, implying long-term equilib-
rium conditions. The model is run for 10 000 years to repre-
sent the postglacial landscape (i.e., roughly the current inter-
glacial period or Holocene) using the calibrated parameters
listed in Table 2.

Local erosion is calculated within the soil evolution model.
Calibration of the soil evolution model was performed by
adjusting model parameters from the literature (e.g., Tucker
and Slingerland, 1997; Nicótina et al., 2011) and comparing
the mean annual rock erosion rate estimated by the model
to long-term average rock erosion rates published for the
Cascade Mountains, which range from 0.02 to 0.5 mm yr−1

over roughly the last several Myr (Reiners et al., 2002, 2003)
and slightly higher rates over the last millennia of 0.08 to
0.57 mm yr−1 (Moon et al., 2011). In addition to published
erosion rates, the resulting soil depths were compared to
the SSURGO-SD, which ranged from 0.09 to 2.01 m across
NOCA.

In Fig. 6 we show modeled mean annual erosion rates in
relation to the mode of modeled soil depth (M-SD) for a steep
and moderate slope class and illustrate the local variability in
modeled soil depth under forest and shrub conditions. The
relative frequency histogram of local soil depth resembles
a triangular distribution, with mode values generally higher
than mean values, indicating a negatively (left) skewed distri-
bution for soil depth (Fig. 6a, c). Therefore, there is a higher
frequency of deeper soil relative to shallower soils. Soil creep
fills hollows, thickening soils, as FS gradually drops, leading
to episodic landslides that evacuate sediment (Fig. 6b, d).

Both θ and Curv have been found to be correlated with soil
depth (Heimsath et al., 1997; Braun et al., 2001; Mitchell and
Montgomery, 2006; Hren et al., 2007). A multivariate nonlin-
ear regression in the form of y = β1 ·x

m
1 +β2 ·x2+C was fit

to the mode of soil depth (predictand, y) given θ and Curv
(predictors, x1 and x2) for each vegetation type with R2 > 0.9
for all slope classes (not reported). Maps for the mode of M-
SD were developed over the portion of the NOCA domain
by applying the regression equations using the distributed θ
and Curv and vegetation type at each grid cell. Minimum soil
depth was set at 0.005 m, and maximum soil depth was set to
2 m. Outside the colluvial transport process domain are con-
ditions outside the regression analysis; therefore, vegetated
areas were assigned a depth of 0.5, 1, and 2 m for herbaceous,
shrubland, and forest, respectively, to generate a contiguous
soil depth map for NOCA consistent with SSURGO. Areas
with barren land cover were assigned a soil depth of 0.05 m,
representing the minimum range of modeled herbaceous ar-
eas. Developed areas were assigned a value of 0.5 m. Areas
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Figure 6. Illustration of the soil evolution model run using (a, b) steep slope (40◦) class and forest vegetation and (c, d) moderately steep
slope (29◦) class and shrub vegetation. (a, c) Modeled mean annual erosion rates plotted with respect to the mode of modeled soil depth,
along with soil depth temporal relative frequency for a representative convergent location. (b, d) Temporal evolution of soil depth and FS
(logarithmic scale) for a representative convergent (Curv=−0.01) location.

assigned fixed values are about 2 % of the model domain.
The evolved soil depth was also used to revise T , using the
Ks provided by SSURGO, which provides a more distributed
continuous field of T . The revised T map is used when Land-
lab is run based on the mode from M-SD.

M-SD exhibits substantially more spatial variability than
the SSURGO-SD (Fig. 7). While both spatial soil depth dis-
tributions have similar median values, M-SD has a wider dis-
tribution with a higher proportion of shallower and deeper
soils than SSURGO-SD. In general, the M-SD is shallower
than SSURGO-SD on steeper, convex hillslopes with herba-
ceous or shrub vegetation and deeper on gentler, concave
hillslope with forest vegetation. For both datasets, soil depth
is deeper in the valleys and shallower near the ridge tops
(Fig. 7c, d), consistent with other studies (Anagnostopoulos
et al., 2015; Montgomery and Dietrich, 1994).

The maximum and minimum soil depth parameters of the
triangular distribution were obtained by analyzing soil evo-
lution model results. At most θ , CA, and Curv triplets used,
a landslide occurred at least once over the modeled dura-
tion. As described in Sect. 3.2.1, given the negatively skewed
nature of the temporally evolved soil depth (Fig. 6a, c), the
maximum soil depth parameter of the triangular distribution
was set equal to 10 % of the mode in all model simulations.
Two scenarios for the minimum parameter of the triangular
distribution were used to reflect soil depth uncertainty for
contemporary and long-term conditions. In the first case,
we set the minimum parameter as 70 % of the mode. The

LandslideProbability model was run for this scenario for both
SSURGO (SSURGO-SD) and M-SD input. In the long-term
scenario, the minimum soil depth was set to 0.005 m, reflect-
ing bedrock scour conditions by landslides. We argue that
this assumption implicitly introduces a temporal uncertainty
component to soil depth, which may be used to more accu-
rately estimate the landslide return period over the long term.
The model run was called M-SD LT for this case.

4.2 Probability of failure

The modeled annual probability of the failure of shallow
landslides, P (F ), for NOCA simulated by the Landlab Land-
slideProbability component using SSURGO-SD and two M-
SD scenarios is shown in Fig. 8. In each model run, 3000 val-
ues were sampled (i.e., iterations) for model parameters at
each grid cell in the Monte Carlo simulations.
P (F ) derived from simulations exhibits low probabilities

where slopes are moderate and cohesion is high (e.g., for-
est). Highly unstable areas largely correspond to steep barren
landscape (13 % of the model domain) mostly located be-
low retreating alpine glaciers, with steep glacial landforms,
transitioning from glacier to colluvial processes (similar to
Guthrie and Brown, 2008; Tarolli et al., 2008; Legg et al.,
2014) (Fig. 9). These areas with a thin veneer colluvium,
except for moraines, appear to be “continuously sliding”
(Borga et al., 2002) or “chronically unstable” (Montgomery,
2001). Frequent slides impede the colonization of vegetation
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Figure 7. Sample illustration of the soil evolution model. Relative histograms of soil depths within NOCA: (a) SSURGO-SD and (b) the
mode of M-SD, with respective spatial mean and coefficient of variation (COV). Mapped soil depth, with mapped debris avalanches outlined
in black; contours are at 100 m for (c) SSURGO-SD and (d) M-SD.

(Dietrich et al., 1995; Istanbulluoglu and Bras, 2005). Slides
in barren areas were not completely included in our landslide
inventory as they do not pose major risks to humans and in-
frastructure.

Other locations of higher P (F ) are located in topographic
hollows (Figs. 8, 9). These converging areas accumulate
deeper soils, which decreases the effectiveness of root co-
hesion, and enhance pore pressure through the convergence
of subsurface flow (Dietrich et al., 1995). Converging ar-
eas often correspond to the upper portions of mapped debris
avalanches, which clearly display higher landslide probabil-
ities than the run-out portions downstream. Thus, the land-
slide probability visually appears to capture the source area
of debris avalanches.

Substantial differences between P (F ) derived with differ-
ent soil depth maps are evident (Figs. 8 and 10) and corrob-
orate previous studies showing the influence of various soil
depth estimates on landslide susceptibility (Dietrich et al.,
1995; Okimura, 1989). In general, probabilities are higher
and more spatially extensive when the model is parameter-
ized using SSURGO-SD compared to both M-SD scenarios.

To investigate the spatial distribution of P (F ) in relation
to soil depth, we plot the cumulative distribution of P (F ), re-
ferred to as the fraction of modeled area where P (F ) is less

than or equal to a given value, for each simulation (Fig. 10a).
We present our general observations of the spatial distribu-
tion of P(F) in the order of SSURGO-SD, M-SD, and M-SD
LT as depicted in Fig. 8. Simulations show approximately
26, 38, and 49 % of the modeled domain (79 % of NOCA,
where θ > 17◦) as stable (i.e., P (F )= 0) under the current
vegetation cover and climate. We refer to these sites as un-
conditionally stable (i.e., stable even when saturated, and
with minimum C and ∅ sampled) (Pack et al., 1998; Mont-
gomery, 2001). A bimodal spatial distribution for P (F ) is
evident (Fig. 10a, b). Areas with low probabilities, around
P (F )≤ 0.1, dominate the spatial distribution of P (F ), mani-
fested in a steep rise in the fraction of area from P (F )= 0 to
P (F )= 0.1 (Fig. 10a). For P (F )≤ 0.1 (RP≥ 10 years), the
order of aerial cover for the model domain, including the sta-
ble regions, is 72, 85, and 87 %. When the unconditionally
stable areas are excluded, the percentages become 46, 47,
and 38 % for the three soil depth products used. This region
approximately marks the first peak of the relative histogram
of P (F ) (Fig. 10b).

In the broad 0.9 >P (F )≥ 0.1 range, the increase in the
fraction of area with P (F ) is gradual especially for the two
M-SD simulations (Fig. 10a). In the highly unstable regions,
with P (F )≥ 0.9 (RP≤ 1.1) as mapped in Figs. 8 and 9,

Earth Surf. Dynam., 6, 49–75, 2018 www.earth-surf-dynam.net/6/49/2018/



R. Strauch et al.: A hydroclimatological approach to predicting regional landslide probability 63

1

2

3

1

2

3

1

2

3

Probability  
of   failure

NOCA

Debris  avalanches

(a)	  SSURGO-‐SD (b)	  M-‐SD (c)	  M-‐SD	  LT

1

2

3

1

2

3

1

2

3

N

0	  	  	  0.3	  	  	  0.6	  	  	  	  	  	  	  	  	  	  1.2
km

0 0.45 0.90.225
Km

(d)	  SSURGO-‐SD (e)	  M-‐SD (f)	  M-‐SD	  LT

N

Figure 8. Landslide annual P (F ) map for NOCA overlain with mapped debris avalanches for simulations with (a) SSURGO-SD, (b) M-SD,
and (c) M-SD LT. Zoomed-in areas are shown for greater detail in the lower panel in the same order and according to number designated.
Purple areas are considered chronically unstable and areas excluded from analysis are shown as gray. Contours are at 100 m. Aerial images
of zoomed-in areas are provided in Fig. 3.

the fractional area begins to rise again in all simulations
(Fig. 10a). P (F )= 1 occupies 11 and 7 % of the modeled
area in the SSURGO-SD and M-SD simulations, which can
be conceptually named as unconditionally unstable (i.e., un-

stable even when dry and with the highest combinations of C
and ∅ sampled) (Pack et al., 1998; Montgomery, 2001). The
model run using the M-SD LT soil scenario shows a smaller
area percentage, ∼ 6 %, with P (F )≥ 0.9, while SSURGO-
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Figure 9. Illustration of highly unstable steep areas: (a) high-resolution (0.3 m) imagery of a NOCA mountain compared to (b) P (F )
simulated by M-SD with mapped debris avalanches. Imagery from World Imagery, Esri Inc., created using ArcGIS® software by Esri.
ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright Esri©. All rights reserved. For
more information about Esri© software, please visit www.esri.com. Contours at 100 m. Notice the barren areas below retreating glaciers with
high P (F ).
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Figure 10. (a) Cumulative distribution and (b) relative frequency of P (F ) (bin size 1P (F )= 0.025) mapped over NOCA from Landlab
simulations using SSURGO-SD and two M-SD scenarios. Labels indicate dominant controls on the distribution of P (F ) in (b). The fraction
of area is used for cumulative spatial probability, plotted using the Weibull plotting position. Return periods for landslides are illustrated only
for SSURGO-SD.

SD and M-SD had 16 and 10 %. The M-SD LT soil scenario
provides a more realistic estimate as some locations are not
likely to produce slope failures annually due to limited soil
development. The second peak of the relative frequency his-
togram of P (F ) appears when P (F ) > 0.9, largely associated
with postglacial barren lands with steep mountain slopes and
converging topography, especially in the case of SSURGO-
SD (Fig. 10b). Dominant factors that control the relative fre-

quency of P (F ) are labeled in Fig. 10b and further discussed
in subsequent sections.

We expressed the annual probability of landsliding in the
form of a RP, plotted with respect to the fraction of area
for all three simulations, and mapped RPs for the M-SD LT
scenario in Fig. 11. The M-SD LT reduces the probability
and increases the return period estimates of landslide initi-
ation, revealing the influence of long-term memory of land-
sliding on the probability distribution of soil thickness ob-

Earth Surf. Dynam., 6, 49–75, 2018 www.earth-surf-dynam.net/6/49/2018/

www.esri.com


R. Strauch et al.: A hydroclimatological approach to predicting regional landslide probability 65

Figure 11. Modeled landslide return period simulations with M-SD LT for NOCA overlain with mapped debris avalanches, including
zoomed in areas at the top for greater detail. Cumulative distribution of return periods for SSURGO-SD, M-SD, and M-SD LT scenarios,
plotted on a log–log scale using the Weibull plotting position.

tained from the soil evolution model. Therefore, the M-SD
LT scenario would better suit the definition of RP, while the
other two simulations provide reference for relative compar-
isons. In general and in concert with the P (F ), landslides at
nearly all RPs affect a greater proportion of the domain when
SSURGO-SD is used. Approximately 28 % of the model do-
main is simulated to have a landslide return period of less
than or equal to 10 years (i.e., P (F )≥ 0.1 or frequent slides)
based on SSURGO-SD, compared to half as much area,
15 %, for simulations using M-SD; M-SD LT had slightly
less at 13 %. Low return periods (i.e., < 10 years) coincide
with steep slopes in barren areas that show chronic landslid-
ing, low-cohesion vegetation type, such as herbaceous plants,
and some steep hollows.

At the high end of the return period, 46 % of the model do-
main was simulated to have landslides with a return period of
≥ 500 years for the SSURGO-SD scenario, including stable
areas, compared to 52 and 70 % for model runs that used the
M-SD and M-SD LT scenario, respectively (Fig. 11). High
return periods (i.e., RP > 500 years, P (F ) < 0.002) are found
where slopes are gentler, on divergent topography, and in
forested areas. The fraction of the model domain with a land-
slide return period between 100 and 500 years is 10, 18, and
21 % for SSURGO-SD, M-SD, and M-SD LT, respectively,
showing a larger fraction in the M-SD products. These land-
slide frequency rates relate to long-term averages, and the
actual failures are likely to be clustered in space and time de-
pending on triggering event and the time since the last land-
slide at the same location (Guthrie and Evans, 2004).

As soils in landslide locations are formed by sediment
accumulation from surrounding hillsides and weathering of
the local bedrock, landslides can be the main source of de-
nudation across landslide-prone regions. The expected val-
ues of the mean annual denudation rate are approximated
by the spatial mean of P (F ) ·hs/(ρr/ρs) for each simula-
tion. This gives a spatial average of the long-term denuda-
tion rates due to landslides as 51.9 mm yr−1, 7.06 mm yr−1,
and 5.04 mm yr−1 for SSURGO-SD, M-SD, and M-SD LT
scenarios, respectively. While these rates are higher than the
reported mean annual denudation rates in this region over the
last millennia of 0.08 to 0.57 mm yr−1 (Moon et al., 2011),
M-SD LT clearly gives the closest estimates to observations
among the three soil depth scenarios. Over 1 order of magni-
tude variation in denudation rates is also common as part of
long-term records of erosion rates (e.g., Molnar, 2004).

A critical question that remains is the following: what are
the dominant controls that lead to the bimodal distribution of
landslide probability in the modeled domain? First, we ex-
amined whether topography alone, represented by S and CA
pairs, can explain this behavior. The S–CA data pairs from
each model grid cell are colored by the value of P (F ) in the
order from low to high value using output from the M-SD LT
scenario (Fig. 12). As slopes get steeper (S > 0.45 or 24.2◦),
a relatively rapid increase in P (F ) in relation to slope from
P (F )= 0.4 to 1.0 can be seen, surrounded with lower prob-
abilities. CA does not seem to impose a visually detectable
increase in P (F ), which is likely largely due to the wet cli-
mate in the region. The landslide source cells identified from
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Figure 12. S–CA plot colored by the P (F ) simulated with from
the M-SD LT. Source cells (orange triangles) are the single highest-
elevation grid cell within mapped debris avalanches. This figure is
comparable to Fig. 5. High probabilities plot over low probabilities.

the highest elevation of debris avalanche shapefiles fall in the
eye of this high-P (F ) region in the S–CA domain. Interest-
ingly, P (F ) diminishes on the steepest slopes of most CAs.
While the trend of increasing P (F ) as the slope gets steeper
generally shows the influence of slope in Eq. (1a), landscapes
with P (F )≥ 0.4 only constitute about 11 % of the model do-
main (Fig. 10a). For comparison, P (F )≥ 0.1 was 13 %. On
the other hand, about 57 % of the domain has steeper slopes
than 24.2◦ (S= 0.45 m m−1). This suggests that the majority
of the domain with similar pairs of S and CA exhibits lower
landslide probability, which can be largely attributed to the
spatial distribution and influence of vegetation type and soil
depth (e.g., Roering et al., 2003).

We investigated the roles of vegetation, slope steepness,
and soil depth on P (F ) in relation to elevation (Fig. 13).
From low to high elevations, vegetation changes from pre-
dominantly forest (elevation < 1400 m) to coexisting shrub,
herbaceous plants, and barren land (1400 to 2200 m) as a re-
sult of elevation-dependent ecoclimatic controls (e.g., tem-
perature) on vegetation survival and growth (Fig. 13a). In this
region of ecosystem transition, the mean P (F ) shows a per-
sistent increase from 1400 m until a maximum is reached be-
tween 2200 and 2400 m, depending on simulation (Fig. 13b,
c). Observations of debris avalanche by elevation confirm
the pattern of P (F ) dependence on elevation in relation to
ecosystem change; 75 % of the extracted landslide initia-
tion zones from mapped debris avalanches are located be-
tween 1200 and 2000 m (Fig. 3b). In the 1400 to 1900 m el-
evation range of the ecosystem transition zone, mean slope
is relatively constant ∼ 0.75 m m−1 (∼ 37◦) and rises up
to 0.9 m m−1 (42◦) between 1900 and 2200 m (Fig. 13c),
consistent with the binned-averaged slopes of the landslide
source area in the S–CA plot in Fig. 5. Mean soil depth be-
gins to drop in both SSURGO and modeled soil depth prod-
ucts above 2200 m.

These model results confirm the strong control of ecosys-
tem transition on landslide activity in the region. Below about
1400 m (∼ 40 % of NOCA), forested vegetation combined

Figure 13. Elevation (200 m bands or bin) influence on (a) vege-
tation cover fraction for NOCA, taken as the fraction of vegetation
type within each elevation band, (b) mean P (F ) using SSURGO-
SD and two M-SD scenarios, along with compact box–whisker
plots for P (F ) of the M-SD LT scenario (circle–dot symbols rep-
resent median; outliers not shown) and overlaid with hypsometric
curve for NOCA, and (c) mean soil depth for SSURGO-SD and M-
SD products with mean slope. Mean values calculated within each
200 m elevation band.

with deeper soils and moderate slopes keeps P (F ) low. In
the 1400 to 2200 m range, loss of root cohesion with ecosys-
tem transition combined with a gradual increase in landscape
slopes contributes to increased P (F ). Above 2200 m eleva-
tion, soils become very shallow and slopes exhibit the steep-
est angles in the modeled domain. This combination leads to
the largest variability in P (F ), combining the highest P (F )
values (P (F )≥ 0.9) mostly attributed to barren areas (∼ 6 %
of the model domain in the M-SD LT scenario), with lower
P (F ) values where thinner soils reduce the driving force
within Eq. (1a). Total cohesion has been found to affect FS
estimates more on thin soil than on thick soils (Hammond
et al., 1992). The sensitivity of FS to cohesion is even more
pronounced on steep slopes, especially when saturated (Si-
dle, 1984). Forest vegetation has also been found to stabilize
slopes through the hydrological process or root water up-
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take and transpiration, which leads to drier soil conditions
(Arnone et al., 2016b). In aggregate, thinner soils at higher
elevations lead to lower mean P (F ), which we referred to
as soil depth control (see also Sidle, 1984). The general con-
tribution of elevation to the spatial organization of P (F ) is
labeled in Fig. 10b.

4.3 Model evaluation

The performance of a landslide model is often based on its
ability to capture existing mapped landslides. We statistically
evaluated our model using receiver operating characteristics
(ROC) (Fawcett, 2006) and success rate (SR) curves (Bellugi
et al., 2015).

We limited our performance assessment to the source ar-
eas of the mapped debris avalanches. Source areas of de-
bris avalanches were not mapped separately from the remain-
ing debris avalanche features (i.e., transition and deposition
zones), hindering the evaluation of model predictions (Tarolli
and Tarboton, 2006). Source areas we identified in relation to
elevation (4318 samples) were treated as observed landslide
source cells during the validation of the landslide probability
using ROC and SR performance metrics. In this validation,
we excluded barren areas with slopes≥ 37◦ (∼ 5 % of the
model domain), which characterizes slopes of active small-
scale dry landslides (failure depth≤ soil depth) more appro-
priately represented by nonlinear hillslope diffusion models
(see Roering et al., 1999; DiBiase et al., 2010; Pelletier et
al., 2013). For comparison of P (F ) with source area cells,
we randomly sampled 50 000 grid cells outside mapped de-
bris avalanches (∼ 2 % of the modeled domain), similar to
the number of grid cells within the entire mapped debris
avalanche areas. We recognize that the areas outside mapped
debris avalanches have the potential to be unmapped land-
slides, other landslide types, or unstable areas lacking a trig-
gering event; therefore, we interpret the test results conser-
vatively.

ROC curves were used to examine how our model com-
pares with randomly distributed landslides over the land-
scape. These curves are constructed from confusion matrices
generated from comparisons between observed and modeled
landslides, based on varying P (F ) thresholds (e.g., 0.1, 0.2,
0.3, etc.). Details on calculating the metrics used to gener-
ates these curves have been provided elsewhere (see Mancini
et al., 2010; El-Ramly et al., 2002; Anagnostopoulos et al.,
2015). A better-performing model will exhibit a curve toward
the upper left of a false positive rate (x axis) and true posi-
tive rate (y axis) plot. A 1 : 1 line in the plot represents a
trivial model that randomly assigns stable and unstable cells.
The area under the curve (AUC) generated by the ROC curve
quantifies the performance of a model for identifying land-
slide and non-landslide locations. The AUC statistic repre-
sents the probability of correctly ranking a landslide and
non-landslide pair randomly selected from those two datasets
(Hanley and McNeil, 1982). SR curves are similar to ROC

curves, but plot the fraction of landscape predicted as un-
stable (x axis). Again, a relatively well-performing model
would plots farther away from the 1 : 1 line, representing a
trivial model.

For this comparison, we used the same datasets used in
the cumulative probability analysis discussed Sect. 4.2. Both
simulations using SSURGO and M-SD modeled 10 % source
areas and non-landslide areas better than a random selec-
tion, as demonstrated by the curves plotted above the 1 : 1
line (Fig. 14). However, the model’s strength in the classi-
fication is modest, as indicated by the AUC values of be-
tween 0.60 and 0.61 compared to an AUC of 1 representing a
perfect classification. The Transient Rainfall Infiltration and
Grid-Based Regional Slope-Stability Analysis – Probabilis-
tic (TRIGRS-P) landslide model tested by Raia et al. (2014)
found higher AUC results (i.e., 0.65 to 0.73). However, their
study tested small areas (3 to 6 km2) that were well-studied
locations with detailed inventories of landslides resulting
from one or two winter rainfall seasons, and the entire land-
slide was tested rather than source areas only.

ROC and SR curves provide an indication of how well
the modeled simulations of P (F ) classify both observed
landslide source cells and non-landslide grid cells com-
pared to random classification. The crossing of ROC and SR
curves in the simulations with M-SD (Fig. 14) implies that
at higher probability thresholds, simulated probabilities de-
lineate more false alarms (e.g., areas outside DAs that are
unstable) than capturing source areas. This may be indica-
tive of the high probability values at high elevations even
outside the debris avalanches where vegetation is sparse,
as was indicated above in the analysis of cumulative dis-
tribution plots. We found for our case study that the op-
timal probability threshold to maximizing landslides cap-
tured and minimizing false alarms (i.e., the point around
the apex of the ROC curves) declines by half depending
on the simulation: P (F )≥ 0.008 (i.e., RP≤ 125 years) for
SSURGO-SD, P (F )≥ 0.004 (i.e., RP≤ 250 years) for M-
SD, and P (F )≥ 0.002 (i.e., RP≤ 500 years) for M-SD LT.

The modeled potentially unstable landscape has generally
been greater than observed landslides when infinite-slope
stability models are calibrated with limited observations (Si-
dle and Ochiai, 2006; Baum et al., 2010). As pointed out by
Borga et al. (2002), concluding that there is an “overrepre-
sentation” of areas potentially subject to shallow landslid-
ing can be misleading because the absence of mapped land-
slides does not necessarily indicate an absence of landslide
hazard over time across the landscape. Locations with high
landslide probability outside mapped landslides in both sim-
ulations could be indicators of where to conduct additional
investigations for missed landslides or areas on the verge of
failing.

Validating hazard maps is challenging, especially in large
areas of remote mountainous regions because inventories are
typically incomplete and lack the date of landslide occur-
rence, different landslide types likely have different meteo-
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Figure 14. (a) ROC curves and (b) SR curves for simulations using SSURGO-SD, M-SD, and M-SD long term (LT). Comparisons represent
P (F ) for the upper 10 % of DA as observed landslides to a random sample of 5000 cells outside DAs. Thresholds for simulated probabilities
associated with the positive classification of source areas decline along the curves from the lower left to upper right. Black diagonal line on
a 1 : 1 line represents the case of a trivial or random classification model. AUC values range from 0.60 to 0.61.

rological triggers, environmental conditions change after a
landslide event, and unidentified high probability areas may
fail in the near future even though they appear to be stable
during an inventory (van Westen et al., 2006; Tarolli and Tar-
boton, 2006). Additional evaluation of model performance
would benefit from field investigation in areas of high and
low modeled P (F ) to identify any landslides or instability
that may have been missed during the original inventory. Fu-
ture work that couples the volume of sediment available for
landsliding will lead to further improvements in estimating
hazards and potential impacts from landslides.

4.4 Model limitations

For model design and computation efficiency, we made sev-
eral simplifying assumptions. We neglect groundwater leak-
age to the bedrock in recharge estimation and apparent soil
cohesion through the effect of surface tension in unsaturated
zones (e.g., Lepore et al., 2013), both of which could be
added to future updates to the component. Tree and snow sur-
charge is also disregarded, although it may have some stabi-
lizing effect where soils are shallower than 1 m (Hammond et
al., 1992). Our approach does not simulate the actual number
of landslides, the landslide type, or the size of the landslide
because the discretized nature of the failure field precludes
specific knowledge of which and how many grid units may
be involved in a failure at a particular time. These model
omissions present opportunities for future customization of
the component or coupling with other models.

Modeled probability does not capture the run-out of de-
bris avalanches, which can travel considerable distances in
steep mountainous environments. Some unexpected results

depicted higher probability in run-out portions of some de-
bris avalanches when using SSURGO-SD, but these proba-
bilities were lower when M-SD scenarios were used (e.g.,
Fig. 8, middle zoomed-in panels). Mis-mapping of probabil-
ities of failure and observed landslide is likely attributed to
variations in soil depth, material properties, and hydrologic
routing (Schmidt et al., 2001). Model variables such as slope
derived from DEMs developed with post-landslide mapping
can also contribute to reduced probabilities in observed land-
slides where slope and soil depth were reduced. Furthermore,
inventories over broad areas are challenging as landslides are
isolated processes that may occur with regularity but may
not be large in size (van Westen et al., 2006). Finally, steady-
state flow, which we used for subsurface flow, neglects tran-
sient processes and roles of macropores. Macropores from
decayed roots or animal activity can be important in trans-
porting water relatively quickly from the surface to deeper
soil layers and groundwater (Sidle et at., 2001; Gabet et al.,
2003; Beven and Germann, 2013).

5 Conclusion

We develop a regional model of probabilistic shallow land-
slide initiation based on the infinite-slope stability equa-
tion coupled by steady-state subsurface hydrology driven by
groundwater recharge. Uncertainty in model parameters is
explicitly accounted for through Monte Carlo simulation. A
geomorphic soil evolution model provides a spatially dis-
tributed soil depth alternative to homogeneous patches of soil
depths provided by SSURGO. This feature allows the land-
slide model to be used where soil depth information is un-
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certain, sparse, or absent. Our model workflow developed in
Landlab (Hobley et al., 2017) is made up of a landsliding
component, a Landlab utility for hydrologic data processing,
and a model driver that runs the component. The model driver
can be run on personal computers or online via HydroShare
through cloud computing creating reproducible results. Our
approach demonstrates the following points.

– Regional maps of landslide hazard produced with three
different soil depth scenarios reveal alternative simula-
tions of probability of landslide initiation, reflecting the
importance in soil depth in landslide hazard prediction.

– Simulations using SSURGO-SD returned a higher prob-
ability of failures and shorter return periods than simu-
lations using modeled soil depth products (M-SD and
M-SD LT). The M-SD LT simulation further reduces
the probability of failure and increases the return pe-
riod. Mean annual denudation estimates from the M-SD
LT scenario show closer estimates to published rates of
denudation over the last millennia than the other simu-
lations.

– The SSURGO-SD scenario provides a short-term tool
for high-risk planning using conservative estimates of
probability of failure, while M-SD LT provides long-
term estimates arguably more consistent with landslide
frequency in the region and useful for the management
of ecosystems and aquatic habitats and the estimation of
sediment budgets for watershed planning.

– Elevation-dependent patterns in the probability of land-
slide initiation show the stabilizing effects of forests at
low elevations, an increased landslide probability with
forest decline at mid-elevations (1400 to 2400 m), and
soil limitation and steep topographic controls at high
alpine elevations and in post-glacial landscapes. These
dominant controls manifest themselves in a bimodal
distribution of spatial annual landslide probability and
peaks controlled by highly stable forested and chroni-
cally unstable post-glacial domains and other barren ar-
eas. This suggests that potential declines in forest cover
with climate change could lead to widespread landslide
activity.

– Model confirmation with limited observations revealed
similar model confidence for the three hazard maps,
suggesting suitable use as relative hazard products. Vali-
dation of the model with observed landslides is hindered
by the completeness and accuracy of the inventory, esti-
mation of source areas, and unmapped landslides.

– Our shallow landslide hazard model provides regional-
scale estimates of the relative annual probability of shal-
low landslide initiation as well as the landslide return
period, which is useful for civil protection through land

use planning to minimize geohazard consequences from
precipitation triggers.

Code and data availability. To facilitate ease of use of the land-
slide hazard model, we developed the landslide model as a compo-
nent of Landlab, an open-source Python toolkit for two-dimensional
numerical modeling of earth surface dynamics available at GitHub:
http://github.com/landlab/landlab (Hobley et al., 2017). Documen-
tation, installation instructions, and software dependencies for the
entire Landlab project can be found at http://landlab.github.io/. The
Landlab project is tested on recent-generation Mac, Linux, and
Windows platforms using Python versions 2.7, 3.4, and 3.5. The
Landlab modeling framework is distributed under an MIT open-
source license. A component user manual and driver scripts for the
application of the Landlab LandslideProbability component can be
found at https://github.com/RondaStrauch/pub_strauch_etal_esurf
or in Strauch et al. (2018).

Online access to the Landlab LandslideProbability model is
freely provided through https://www.hydroshare.org, where data
and code drivers are available to demonstrate and explore the model
using interactive IPython notebooks in a JupyterHub. Thus, users
can access, test, adapt, and apply the landslide model for their
area of interest without downloading Landlab or the components.
The data and driver code used in this analysis are available at Hy-
droShare (Strauch et al., 2017, 2018). Existing demonstration driver
codes can be adapted to fit data provided in raster format by the user
to create distributed data fields used as variables in the component.
Instructions for accessing HydroShare and the online demonstra-
tions, codes, and data used in this paper are provided in the Supple-
ment.

The Supplement related to this article is available online
at https://doi.org/10.5194/esurf-6-49-2018-supplement.
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